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ABSTRACT

FINITE ELEMENT METHOD WITH WEIGHTED

EXTENDED B-SPLINES FOR ELECTROMAGNETICS

This thesis presents fundamental overview of electromagnetics and finite element

method (FEM) with weighted extended basis splines (web-splines), which is a new

developed finite element method for electromagnetic problems.

The developed method is discussed in detail. The advantages of FEM with web-

spline method are illustrated by using several electromagnetic applications. The wave

equation is solved by using web-spline method and compared with the previous studies

in the literature. The results of the simulation are shown to have excellent agreements.

Thus, this thesis proves that the FEM with web-spline method can be used in elec-

tromagnetic applications with good accuracy. The method does not need any mesh

generation as in the standard FEM, and more accurate results are obtained by using

less memory in computations.
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ÖZET

ELEKTROMANYETİK İÇİN AĞIRLIKLI GENİŞLETİLMİŞ

B-SPLINE İLE SONLU ELEMAN YÖNTEMİ

Bu tez, elektromanyetik problemler için geliştirilmiş yeni sonlu eleman yöntemi

olan ağırlıklı genişletilmiş b-spline sonlu eleman yöntemini ve elektromanyetiğin genel

hatlarını sunuyor.

Geliştirilen yöntem ayrıntılı olarak tartışılmaktadır. Çeşitli elektromanyetik uygu-

lamalar kullanılarak ağırlıklı genişletilmiş b-spline yöntemi ile sonlu eleman yönteminin

avantajları açıklanmaktadır. Ağırlıklı genişletilmiş b-spline yöntemi kullanılarak dalga

denklemi çözülüp literatürde bulunan daha önceki çalışmalarla karşılaştırılmaktadır.

Benzetim sonuçları mükemmel uyuşma gösterdi. Böylelikle, bu tez elektromanyetik

uygulamaların daha doğru şekilde ağırlıklı genişletilmiş b-spline sonlu eleman yönteminin

kullanılmasını ispatlar. Bu yöntem normal sonlu elaman yönteminde kullanılan ağ

oluşturmaya ihtiyaç duymaz ve hesaplamalarda daha az hafıza kullanılarak daha doğru

sonuçlar elde edebilmektedir.
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1. INTRODUCTION

Electromagnetics has played an important role in shaping our daily lives. The

ambition of mankind to make use of electromagnetic waves has resulted in drastic im-

provements in the communications technologies over the last few decades. We now

enjoy the ability to communicate real time over large distances, using satellite links,

and the mobile life styles enabled by portable wireless communications devices. Radar

technologies, which are used to track moving objects, support air-traffic control sys-

tems.

It was in 1831 when Faraday made a ground-breaking discovery. He observed

the relationship between electric currents and magnetism. He thus proposed the three

laws of electro-magnetic induction [1]. In 1873, Maxwell introduced the classical elec-

tromagnetics theory through developing mathematical expressions which characterize

the relationship between electric and magnetic fields [2]. These equations are still

widely used in physics and the study of electromagnetic waves. Recent discoveries re-

garding the nature of these waves, coupled with the advances in computing technology

have provided simple means of solving complex equations.

The use of wireless communications devices entails some undesired effects as well.

Such effects are mostly due to the fact wireless is a broadcast medium and therefore

it is not possible to direct the electromagnetic waves precisely. Extensive use of cell

phones, for example, has raised concerns regarding the possible harmful effects to hu-

man health. As radio waves originating from the cell phone hit the skull, they are

scattered and part of their energy is absorbed into the body. The effects of this phe-

nomenon are still an open research question. Another interesting side effect of wireless

communication technologies can be seen in the use of laptops in air-craft. The signals

for the personal laptop can interfere with the signaling between the aircraft and the

control tower, leading to potentially disastrous situations. Many other examples for

such undesired effects can be produced. To combat such undesired effects, the true

nature of electromagnetic waves need to be studied, and computationally inexpensive
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tools need to be developed. It is only through such tools that the engineering commu-

nity can design systems which can coexist and do not create undesired interference.

Maxwell’s equations have yielded some partial differential equations (PDE) which

model the behavior of the electromagnetic waves. These equations are widely used in

engineering designs and are often difficult to solve analytically. Thus, numerical com-

putation techniques which promote faster and more accurate solution techniques have

been developed. There are some numerical techniques, the most important ones being

Method of Moments (MOM) or Boundary Element Method (BEM), Finite Difference

Method (FDM), and Finite Element Method (FEM).

The choice of the solution method often depends on the specific application it

is used for. For example, FEM and FDM methods are particularly useful in studying

inhomogeneous materials as they consider a discretization approach.

FDM was developed by Yee in 1966 [3]. His idea is to divide the considered

domain in order to take the values of points and convert the partial derivatives to

difference equations. The idea is coming from Taylor expansions. The finite differences

are used to approximate derivatives. In this method, continuous equations are replaced

with their finite difference of values of selected points. However, FDM is difficult to

implement for complex objects.

FEM stands out as the most widely used method when studying complex ge-

ometries and boundaries, irregular domains or inhomogeneous media with different

boundary conditions. It uses piecewise continuous functions and numerical meshes.

More specifically it is based on the use of basis functions and numerical integration to

solve the linear system equation. More details about the FEM method can be found in

Chapter 2. It is important to note that FEM increases the computation time as well

as the memory usage.

MOM or BEM achieves better performance in terms of computation time and

memory usage. It only considers the elements along the boundaries of the domains,
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rather than the interior regions [4], and the equations are governed by the boundary

conditions. This method is not very useful in studying inhomogeneous media; as such

media require the examination of the interior region.

FDM provides fast solution in time domain. However, it cannot provide good

solutions for complex objects, because it provides a point wise approximation. Ta-

ble 1.1 summarizes the comparison between fundamental techniques to solve partial

differential equations.

Table 1.1. Comparison of numerical methods to solve partial differential equations

Method BEM FDM FEM

Complex domain Good Poor Best

Regular domain Good Good Good

Computational time Good Good Poor

Inhomogeneous domains Poor Poor Best

Complex boundary conditions Good Poor Good

For FEM, mesh generation causes consumption in computation time for higher

dimensions. In the past years, many researches have developed mesh generation and

meshless FEM [5, 6, 7, 8].

This study presents on the use of b-splines in the FEM method. The spline

functions are often used in approximation, data fitting, computer aided design (CAD),

and many other applications [9, 10]. The contributions of Carl De Boor, de Casteljau,

and Bezier have played an important role for splines. The b-splines can be used as

basis functions for their flexibility and continuity between points. However, boundary

conditions have caused problems considering stability. Many researches have been done

about this issue [11, 12, 13].
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1.1. Contribution of the Thesis

The advances of mathematics have supported the development of electromagnetic

theory in the history of electromagnetics [14]. This study uses web-spline method of

numerical solution for solving the PDE for electromagnetics for the first time. The

objective is to use the web-spline finite element method for electromagnetic problems

such as two dimensional wave equation, reflection, and waveguide problems, which

are intensively studied in literature. The analyses presented in this study show the

suitability of the proposed method to the complex electromagnetic problems. A Matlab

based graphical user interface for the web-spline is also presented in this work.

1.2. Outline of the Thesis

The outline of the thesis is as follows. Chapter 2 begins with the overview of

electromagnetics, PDE, and FEM. After introducing the general background of FEM,

it explains the b-splines.

Using FEM and b-splines, the steps of FEM with web-spline method are studied

in Chapter 3. Finite element basis functions are constructed by using web-splines

without mesh generation. Then, finite element assembly and solution are studied.

Chapter 4 focuses on some applications of electromagnetics in one dimension.

This chapter shows why the b-splines are used for constructing basis functions. The

simulation results using FEM with b-splines are compared with the exact results and

the general FEM methods.

Chapter 5 shows the applications of electromagnetics in two dimensions such as

wave equations and waveguides; then it presents the simulation results. Solutions of

problems with various parameters using weighted extended b-splines are tested and

compared with the standard FEM solutions. The advantages of FEM with web-spline

method are shown by using error analysis.
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Chapter 6 shows Graphical User Interfaces (GUI) for web-splines. These inter-

faces are designed to simplify the study of the user. Therefore, Matlab functions are

executed by clicking an icon easily.

This study comes to a conclusion with a discussion on the advantages and disad-

vantages of the proposed model in the last chapter.

The Appendix presents some vector identities, integral theorems; and gradient,

curl relationships among various coordinate systems. Then, a short overview of the

programs, which are provided for this thesis in Matlab, follows.

The computer platform used for all simulation results is a Hewlett Packard note-

book computer with a Pentium 2.0 GHz main processor and 1.5 GB of RAM.
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2. THEORETICAL BACKGROUND

2.1. Information about Electromagnetics

2.1.1. Overview of the Maxwell’s Equations

The Maxwell’s equations are four differential equations which show the classical

properties of electromagnetic fields using electric (E) and magnetic field intensity vec-

tor (H). The equations can be summarized in Table 2.1 [15]. For the equations; ρ is

the electric charge density (C/m3), (J) is the electric current density vector (A/m2),

(D) and (B) show the electric and magnetic flux density vectors (C/m2, Wb/m2) re-

spectively. The first two equations are related to the divergence of vectors, and the

others are related to the curl operation of vectors. The divergence and curl operations

for various coordinate systems are given in Appendix A.

Table 2.1. The Maxwell’s equations using differential form

Name Differential form

Gauss’s Law ∇ ·D = ρ

Gauss’s Law for magnetism ∇ ·B = 0

Faraday’s Law ∇×E = −∂B
∂t

Maxwell-Ampere’s Law ∇×H = J + ∂D
∂t

The relations between these vectors are shown in the following equations as:

D = εE (2.1)

B = µH (2.2)
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J = σE (2.3)

where ε, µ, σ denote the permittivity (F/m), the permeability (H/m), and the electric

conductivity (S/m) of the medium.

2.1.2. Wave Equations

The wave equations for the electric and magnetic fields can be obtained by using

the Maxwell’s equations [16, 17]. Taking the curl of ∇× E given in Table 2.1 divided

by µ as:

∇× (
∇× E

µ
) = −∇× ∂H

∂t
(2.4)

∇× (
∇× E

µ
) = − ∂

∂t
(∇×H) (2.5)

The fourth Maxwell’s equation is used for the curl of H as:

∇× (
∇× E

µ
) = − ∂

∂t
(J + ε

∂E

∂t
) (2.6)

Using the vector identity given in Appendix (B.1), Equation (2.6) becomes

1

µ
∇×∇× E +∇(

1

µ
)×∇× E + ε

∂2E

∂t2
= −∂J

∂t
(2.7)

For the homogeneous material, the second term in Equation (2.7) vanishes and the

vector identity given in Appendix (B.2) is applied as:

1

µ
∇×∇× E + ε

∂2E

∂t2
= −∂J

∂t
(2.8)

∇(∇ · E)−∇2E + µε
∂2E

∂t2
= −µ

∂J

∂t
(2.9)
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Using the same procedure, the equations for the magnetic field H are

1

ε
∇×∇×H + µ

∂2H

∂t2
= ∇× J

ε
(2.10)

∇(∇ ·H)−∇2H + µε
∂2H

∂t2
= ∇× J (2.11)

Using the Gauss’s Law (∇ · E = 0 and ∇ ·H = 0), the wave equation for free source

medium (ρ = 0,J = 0) can be shown as follows:

−∇2E + εµ
∂2E

∂t2
= 0 (2.12)

−∇2H + εµ
∂2H

∂t2
= 0 (2.13)

If the electric and magnetic fields are to be time harmonic with the time depen-

dence ejωt, the wave equations in Equations (2.12) and (2.13) can be written as:

−∇2u− k̃2u = 0 (2.14)

where k̃ = ω
√

µε is the wave number, ω is the wave angular frequency, ∇2(∆) is the

Laplace operator, and u shows the time harmonic magnetic and electric field. This is

called homogeneous wave equation or Helmholtz’s equation, which is the elliptic partial

differential equation.

2.1.3. Boundary Conditions

While studying the boundary conditions (BC) for the wave equations, the tan-

gential and normal components of electric and magnetic fields on the surface are to be

taken into consideration. At the interface between two media, the boundary conditions
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for the electromagnetic fields can be expressed as:

n× (E1 − E2) = 0 (2.15)

n× (H1 −H2) = Ji (2.16)

n · (B1 −B2) = 0 (2.17)

n · (D1 −D2) = ρi (2.18)

where n is the normal unit vector pointing from the second medium to the first medium,

Ji is the electric current density at the interface, and ρi is the electric charge density

at the interface.

If the boundary for the second medium has infinite conductivity, it is called perfect

conducting boundary and electromagnetic fields for the second medium are zero.

2.2. Overview of Partial Differential Equations

Partial Differential Equations are equations which contain functions of indepen-

dent variables and their partial derivatives. The general PDE of second order in m

dimensions can be shown as

m∑
p=1

m∑
q=1

apq
∂2u

∂xp∂xq

+
m∑

p=1

βp
∂u

∂xp

+ αu = f(x) (2.19)

where x shows the independent variables with the coefficients apq, βp, α; f is a forcing

function, m is the dimension, and u is the unknown quantity on Rm. The PDE can

be defined for the region (Ω ∈ Rm). They are classified as elliptic, parabolic, and
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hyperbolic according to the coefficients. If the eigenvalues of the matrix involved by

apq are non zero and have the same sign, it is called elliptic equation. If they have

opposite sign, it is called hyperbolic equation. If at least one of the eigenvalues is zero,

it is defined as parabolic equation. Table 2.2 summarizes these classifications of second

order PDE and gives some examples [18].

Table 2.2. The classification of partial differential equations

Type Examples

Elliptic 1. Laplace’s equation (∆u = 0)

Parabolic 2. Diffusion equation (∂u
∂t = κ∆u)

Hyperbolic 3. Wave equation given in (2.12)

The boundary of the region (∂Ω) should be specified to solve the PDE. The

general form of the boundary conditions can be shown as

ru + s
∂u

∂n
= g(x) (2.20)

where ∂u
∂n

shows the derivative in the direction of the outward normal to the region

with the coefficients r, s and function g which depends on the boundary conditions.

Table 2.3 shows the types of boundary conditions.

Table 2.3. The classification of boundary conditions

Boundary Condition r s

Dirichlet BC nonzero zero

Neumann BC zero nonzero

Cauchy BC nonzero nonzero
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2.3. Finite Element Method

The numerical techniques have been developed due to the fact that the analytical

solutions do not exist for some engineering problems. The FEM has become one of the

numerical techniques, which has been applied to obtain numerical solutions for partial

differential equations in engineering, physics, and applied mathematics. FEM is useful

for complex geometries and inhomogeneous media. Today, there are many developed

programs which use FEM to solve partial differential equations. The idea is to use the

piecewise continuous equations in order to find the solution. Approximate solutions

are constructed for boundary value problems.

The Rayleigh-Ritz and Galerkin methods contributed to develop this method.

FEM was firstly used in plane stress analysis by Clough [19]. The first book on FEM

was published by Zienkiewicz and Cheung in 1967 [20]. Then, it has been applied

to many engineering problems since 1960 [21, 22, 23, 24]. In the past years, many

researches have developed mesh generation for FEM. Moreover, meshless FEM has been

considered [5, 6, 7, 25, 26]. However, boundary conditions cause problems considering

stability.

In electromagnetics, most differential equations with the mixed boundary condi-

tion in the domain Ω using Equations (2.19) and (2.20) can be considered as

−A∇2u + αu = f in Ω (2.21)

ru = 0 on ∂Ω1 (2.22)

s
∂u

∂n
+ ru = g(x) on ∂Ω2 (2.23)

where ∂Ω1, ∂Ω2 show the homogeneous Dirichlet (g(x) = 0) and Cauchy boundaries

around the domain respectively.
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The idea is to divide the domain, which can be complex, into sub domains (called

elements) and to use approximated solutions according to nodes. Nodes are points in

the domain. Figure 2.1 shows the nodes and elements for linear, quadratic, and cubic

interpolation of standard FEM.

Figure 2.1. Nodes and elements for linear, quadratic, and cubic interpolation

Various approximation methods have been developed for FEM. This study presents

Ritz-Galerkin approximation by minimizing the functional with respect to its variables

as:

1

2

∫

Ω

(−A∇2u + αu)udΩ−
∫

Ω

fudΩ (2.24)

Multiplying Equation (2.21) by a smooth function v which vanishes on ∂Ω1 and inte-

grating by parts using Appendix (B.3):

−A∇2uv + αuv = fv (2.25)

A

∫

Ω

∇u · ∇vt + α

∫

Ω

uv − A

∫

∂Ω

∂u

∂n
v =

∫

Ω

fv (2.26)
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Considering Equations (2.22) and (2.23)

A

∫

Ω

∇u · ∇vt + α

∫

Ω

uv + Ar

∫

∂Ω2

uv =

∫

Ω

fv + A

∫

∂Ω2

gv (2.27)

Replacing u with the approximated solution ũ which consists of p nodes,

ũ =

p∑
i=1

ciBi (2.28)

where ci indicates the coefficients of basis functions Bi, and replacing v with Bk where

k = 1...q, q is the number of nodes in domain

A

∫

Ω

∇(

p∑
i=1

ciBi) · ∇Bt
k + α

∫

Ω

p∑
i=1

ciBiBk + Ar

∫

∂Ω2

p∑
i=1

ciBiBk =

∫

Ω

fBk + A

∫

∂Ω2

gBk

(2.29)

p∑
i=1

ci

[
A

∫

Ω(i)

∇Bi · ∇Bt
k + α

∫

Ω(i)

BiBk + Ar

∫

∂Ω
(i)
2

BiBk

]
=

∫

Ω

fBk + A

∫

∂Ω2

gBk

(2.30)

p∑
i=1

ci [Ki,k + Mi,k + Ri,k] = Fk + Gk (2.31)

The basis functions are constructed by using piecewise polynomials such as La-

grange polynomials for N data points as

lnj (x) =
N−1∏

k=0,k 6=j

x− xj+k

xj − xj+k

(2.32)

The linear and quadratic Lagrange functions are obtained respectively as





l1i (x) = x−xi+1

xi−xi+1
,

l1i+1(x) = x−xi

xi+1−xi



 (2.33)
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



l2i (x) = (x−xi+1)(x−xi+2)
(xi−xi+1)(xi−xi+2)

,

l2i+1(x) = (x−xi)(x−xi+2)
(xi+1−xi)(xi+1−xi+2)

,

l2i+2(x) = (x−xi)(x−xi+1)
(xi+2−xi)(xi+2−xi+1)





(2.34)

Figures 2.2- 2.3 show the elemental linear and quadratic Lagrange functions respec-

tively.
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Figure 2.2. The elemental linear Lagrange function

FEM generally uses triangulation with the hat function which is a linear Lagrange

function to solve problem easily. According to this consideration, the basis function

equals 1 for the selected mesh and vanishes for the triangles which do not contain

the selected mesh. So, it looks like a pyramid. However, the maximum diameter of

circle circumscribing triangles must be chosen small to provide better approximation.

The other way is to choose basis functions of higher degree such as quadrilateral,

tetrahedral, hexahedra etc. This situation is a problem for complex objects in two or

three dimensions.
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Figure 2.3. The elemental quadratic Lagrange function

After constructing the basis functions and taking the integral of each mesh in

Equation (2.30), the linear system is assembled and solved

(K + M + R)U = F + G (2.35)

where U is the matrix consisting of the coefficients of basis functions, K is the stiffness

matrix, M is the mass matrix, F is the load matrix, and R and G are matrices related

to the boundary conditions.

2.4. B-splines

The splines are used in approximation, data fitting, computer aided design (CAD),

and many other applications [9, 10]. The contributions of Carl De Boor, de Casteljau,

and Bezier have played an important role for splines. They have become popular and

many papers have been published on basis splines (b-splines). The b-splines, which can

be used as basis functions for their flexibility and continuity between points, have been

taken into consideration to implement basis functions for FEM. It was proven that
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more accurate results are obtained by using b-spline basis functions as shape functions

in order to solve two dimensional electromagnetic field problems for regular regions

[27]. Hollig has also used b-splines as basis functions to solve boundary value problems

using FEM [28]. Using b-splines involving higher order shape functions is simple for the

approximation of FEM applications. This method provides to solve electromagnetic

problems with high accuracy and can also be applied to irregular domains.

2.4.1. Definition and Properties of B-splines

The standard uniform b-spline of degree n is defined [9]

bn(x) =

∫ x

x−1

bn−1(t)dt (2.36)

starting from b0 of the unit interval between zero and one. Table 2.4 explains how

to obtain linear, quadratic, and cubic b-splines by using Equation (2.36). Figure 2.4

shows the uniform b-splines of degree one, two and three. These are linear (dotted

line), quadratic (dashed line), and cubic (dash-dotted line) b-splines respectively.

Table 2.4. Obtaining the linear, quadratic, and cubic uniform b-splines

n The uniform b-splines

1 b1(x) =





∫ x
0 dt = x x ∈ [0, 1]

∫ 1
x−1 dt = 2− x x ∈ [1, 2]

0 otherwise

2 b2(x) =





∫ x
0 t dt = 1

2x2 x ∈ [0, 1]
∫ 1
x−1 t dt +

∫ x
1 (2− t) dt = −x2 + 3x− 3

2 x ∈ [1, 2]
∫ 2
x−1(2− t) dt = 1

2x2 − 3x + 9
2 x ∈ [2, 3]

0 otherwise

3 b3(x) =





∫ x
0

1
2 t2 dt = 1

6x3 x ∈ [0, 1]
∫ 1
x−1

1
2 t2 dt +

∫ x
1 −t2 + 3t− 3

2 dt = −1
2x3 + 2x2 − 2x + 2

3 x ∈ [1, 2]
∫ 2
x−1−t2 + 3t− 3

2 dt +
∫ x
2

1
2 t2 − 3t + 9

2 dt = 1
2x3 − 4x2 + 10x− 22

3 x ∈ [2, 3]
∫ 3
x−1

1
2 t2 − 3t + 9

2 dt = −1
6x3 + 2x2 − 8x + 32

3 x ∈ [3, 4]

0 otherwise
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Figure 2.4. The uniform b-splines

The scaled b-spline with grid width h supporting in [i, i + n + 1]h is

bn
i,h(x) = bn(x/h− i) (2.37)

The basic properties of bn
i,h(x) are given as [9, 10]:

� positive on their supports [i, i + n + 1]h and vanishes outside

� n− 1 times continuously differentiable

� piecewise polynomial of degree n

� symmetric

The derivative of the scaled b-spline and recursion relations are shown as:

d

dx
bn
i,h(x) =

1

h

[
bn−1
i,h (x)− bn−1

i+1,h(x)
]

(2.38)
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bn
i,h(x) =

1

n

[(x

h
− i

)
bn−1
i,h (x) +

(
n + i + 1− x

h

)
bn−1
i+1,h(x)

]
(2.39)

Figure 2.5 shows the derivative of cubic b-spline (dashed line).
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db3(x)/dx b3(x)

x

Figure 2.5. The derivative of cubic b-spline

The recursion relation for the cubic b-spline having a grid width (h = 1) in terms

of quadratic and linear b-splines as

b3
0(x) =

x

3
b2
0(x) +

4− x

3
b2
1(x) (2.40)

b3
0(x) =

x

3

(
x

2
b1
0(x) +

3− x

2
b1
1(x)

)
+

4− x

3

(
x− 1

2
b1
1(x) +

4− x

2
b1
2(x)

)
(2.41)

b3
0(x) =

x2

6
b1
0(x) +

−x2 + 4x− 2

3
b1
1(x) +

(4− x)2

6
b1
2(x) (2.42)
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Using recurrence, the polynomial representations of b-splines are found in Table 2.5.

Table 2.5. The coefficients and representation of polynomials for various b-splines

n Representation

1 b1
i,h(x) =





x
h − i x ∈ h[i, i + 1]

− (
x
h − (i + 1)

)
+ 1 x ∈ h[i + 1, i + 2]

2 b2
i,h(x) =





1
2(x

h − i)2 x ∈ h[i, i + 1]

− (
x
h − (i + 1)

)2 +
(

x
h − (i + 1)

)
+ 1

2 x ∈ h[i + 1, i + 2]
1
2

(
x
h − (i + 2)

)2 − (
x
h − (i + 2)

)
+ 1

2 x ∈ h[i + 2, i + 3]

3 b3
i,h(x) =





1
6

(
x
h − i

)3
x ∈ h[i, i + 1]

−1
2

(
x
h − (i + 1)

)3 + 1
2

(
x
h − (i + 1)

)2 + 1
2

(
x
h − (i + 1)

)
+ 1

6 x ∈ h[i + 1, i + 2]
1
2

(
x
h − (i + 2)

)3 − (
x
h − (i + 2)

)2 + 2
3 x ∈ h[i + 2, i + 3]

−1
6

(
x
h − (i + 3)

)3 + 1
2

(
x
h − (i + 3)

)2 − 1
2

(
x
h − (i + 3)

)
+ 1

6 x ∈ h[i + 3, i + 4]

2.4.2. Convolution and Scalar Products of B-splines

The integrals of b-splines can be computed easily with the aid of convolution.

The convolution of two b-splines of degree n1 and n2 is defined as [28]

bn1+n2+1(x) =

∫

R

bn1(x− y)bn2(y)dy (2.43)

The other significant properties of b-splines are the representation of their scalar prod-

uct. The scalar product of two b-splines and their derivatives can be shown as

sn
i−k = bn

i,h · bn
k,h = hb2n+1(n + 1 + i− k) (2.44)

dn
i−k =

1

h
(2sn−1

i−k − sn−1
i−k−1 − sn−1

i−k+1) (2.45)

Table 2.6 shows the scalar products of b-splines and their derivatives for the unit grid

width [28].
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Table 2.6. The scalar products of b-splines and their derivatives

n sn
0 sn

1 sn
2 sn

3 dn
0 dn

1 dn
2 dn

3

1 2
3

1
6 2 −1

2 11
20

13
60

1
120 1 −1

3 −1
6

3 151
315

397
1680

1
42

1
5040

2
3 −1

8 −1
5 − 1

120

2.4.3. Tensor Product of B-splines

The tensor product of b-splines helps to construct b-splines in two and three

dimensions. It is defined by multiplying b-splines of each direction. The tensor product

of b-splines of degree n with support [i, i + n]h, grid index i, and dimension m is

bn
i,h(x) = h−m/2

m∏

d=1

bn
id,h(xd) i ∈ Zm,x ∈ Rm (2.46)

The support of bn
i,h consists of (n + 1)m grid cells Ci = ih + [0, h]m. h−m/2 provides

the b-spline to be bounded with respect to L2 norm
∫

Rm |b2
i,h| = 1. Figures 2.6 and 2.7

show the tensor product b-spline of n = 2 for two and three dimensions respectively.

2.4.4. Partial Derivatives of B-Splines

The first order partial derivatives of b-splines are obtained by using Equation

(2.38) as a difference of two b-splines with degree n − 1 divided by h for the unit

vectors α [28]

∂αbn
i,h =

bn−α
i,h − bn−α

i+α,h

h
(2.47)

The higher order partial derivatives of b-splines obey this rule. Figures 2.8 and 2.9

show the first and second order partial derivatives of cubic b-spline with respect to x
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Figure 2.7. Tensor product of quadratic b-spline in 3D
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and y respectively, which are obtained by using Equations (2.46) and (2.47) as:

∂

∂x1

bn
i,h = h−m/2

[
∂

∂x1

bn
i1,h

]
· bn

i2,h (2.48)

∂2

∂x2
2

bn
i,h = h−m/2bn

i1,h ·
[

∂2

∂x2
2

bn
i2,h

]
(2.49)

2.5. Error Analysis

The error in finite element approximation is defined as the difference between the

exact (ue) and the approximated solution:

e = ue − ũ (2.50)

For the accuracy studies, the maximum norm measures the maximum absolute value,

the relative error measures the absolute value of error divided by the exact value, and

relative L2-error norm measures the root mean square of integral of a squared error

function over the domain (Ω) respectively as:

‖e‖∞ = max|e| (2.51)

‖erel‖ = | e

ue

| (2.52)

‖erel‖0 =

√∫
Ω

e2 dΩ
√∫

Ω
u2

e dΩ
(2.53)

The convergence rate is significant in order to understand the strength of method
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for the numerical computation. It shows how the error reduces when the grid size is

divided by two. The grid width is divided by two and taking the logarithms of error

ratio with respect to base two gives the convergence rate, which is defined as

Convergence rate = log2

‖eh·21−l‖
‖eh·2−l‖ (2.54)

for the grid widths h · 2−l, l = 1, 2, 3, 4, ....
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3. FEM WITH B-SPLINES

FEM applications use basis functions and meshes. The mesh generation part

of FEM causes consumption in computation time for higher dimensions. In the past

years, many researches have developed mesh generation. Moreover, meshless FEM are

considered by many authors [5, 6, 7, 8, 25, 26].

The b-splines have been taken into consideration to implement basis functions

for FEM. Hollig has used b-splines as basis functions to solve boundary value prob-

lems using FEM [28]. The approach considers using b-splines for the approximation of

functions for FEM applications. However, they have some disadvantages. The bound-

ary conditions have not been modeled easily. The basis should vanish outside the

domain; and if homogeneous Dirichlet boundary condition is taken into consideration,

the function must be zero on the domain. Secondly, some b-splines which support the

domain have a little effect and this causes instability for the approximation. Thirdly,

the numerical integration for boundary cells has not been solved easily. New devel-

opments have overcome these problems. For the Dirichlet boundary conditions, the

weight functions are used. For the instability problem, the extended b-splines, given

in Equation (3.1), have been considered. Some numerical integration techniques have

been developed in order to solve the boundary integral in two and three dimensions.

Web-spline method is a new type of meshless finite element method for solving

two or three dimensional boundary value problems. Web-spline method uses weighted

extended b-splines to construct finite elements without using mesh generation. As a

result, this method reduces time computation and saves vast amounts of money. Using

web-splines, the boundary condition problems and time consuming for mesh generation

have been eliminated, and more accurate results are found with faster computation and

less memory [29, 30, 31, 32, 33, 34].
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3.1. The Flow Diagram

Before explaining web-spline method, the flow chart of FEM using web-spline

method is presented. Figure 3.1 shows the flow diagram. First of all, the simulation

region and the problem are defined by the storage of inputs for the region, PDE, and

boundary conditions. Then, the generation of the grid cells and classification of b-

splines are done for the simulation region. The next step is to compute the extension

coefficients. If there is homogeneous Dirichlet boundary condition, the weight function

for the region is determined. After assembling and solving the system of equations, the

approximated solution is computed. At the end, the results are shown as an output.

3.2. Grid generation and Classification of B-splines

For the domain Ω, firstly grid generation is completed. Figure 3.2 shows the grid

generation for the given region. The grid width is taken as 0.5.

The next step is to classify b-splines. The relevant b-splines bk, k ∈ (I∪J), which

are supporting in the domain, are determined. According to the size of their support,

they are classified as inner and outer b-splines. The inner b-splines (k ∈ I) have at

least one complete grid cell of their support in the domain. The other ones supporting

the domain are called outer b-splines (k ∈ J). For the outer b-splines, the grid cells

of their supports are not completely contained in the domain [29, 30, 31, 32, 33, 34].

Figure 3.3 shows some inner and outer b-splines. According to their centers of support,

the inner and outer b-splines are marked by (•) and (◦) respectively. Figure 3.4 shows

all the relevant b-splines for the given domain.

3.3. Extension Coefficients

Although the outer b-splines have a little effect, they are not omitted. This causes

instability. So, they are adjoined to the inner b-splines in order to form the extended
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Boundary Conditions
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the approximated solution

Assemble & Solve
the Finite Element system

Figure 3.1. The flow diagram of FEM with web-spline method
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Figure 3.2. Grid generation of web-spline method
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Figure 3.3. Support of inner (•) and outer (◦) b-splines
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Figure 3.4. All relevant inner (•) and outer (◦) b-splines for the given domain

b-splines having stable basis. The extended b-splines are

Bk = bk +
∑

i

ek,i bi for k ∈ I, i ∈ J(k) (3.1)

where ek,i are the extension coefficients. For each outer b-splines, the closest (n + 1)m

inner b-splines are affected. The extension coefficients are computed by using Lagrange

polynomials as:

ek,i =





m∏

d=1

n∏
µ=0

id − ld − µ

kd − ld − µ
for i = j ∈ J, k ∈ I(i), ld + µ 6= id

1 for i = k ∈ I

0 otherwise

(3.2)

where l = [l1, l2, . . .] ∈ Zm is the index for the lower left position of I(j).

Figure 3.5 shows some extension coefficients of the given inner and outer quadratic
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b-splines. The values of the coefficients with k ∈ I(i) are given for the outer b-spline.

The left outer b-spline circle (◦) of Figure 3.5 indicates that it involves only three

inner b-splines, and the right outer b-spline circle indicates that it involves nine inner

b-splines. The coefficients of them are shown in figure. The bullets (•) show the inner

b-splines with the extension coefficients of the adjoined outer b-splines with i ∈ J(k).

Equation (3.1) can be used to solve the system with Neumann and Cauchy bound-

ary conditions. However; if Dirichlet boundary conditions are taken into consideration,

the extended b-splines are multiplied with the weight function w(x). Multiplying with

1/w(xk) provides the extended b-splines to be normalized where w(xk) is the value of

the weight function at the center of a grid cell which intersects the support of b-spline

and the domain completely. The equation for weighted extended b-spline is shown at

the end of next section.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

1

0
9 3 0 0 3

0
0
0

1
-3
3

0
0
0

1 3 -3
9
0 3

1

1
-3
3

-3
9
-9

3
-9
9

x

y

Figure 3.5. The extension coefficients of inner (•) and outer (◦) b-splines
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3.4. The Weight Function

The weight function is a continuous positive function in the domain and zero on

the boundary. It can be constructed by using smooth distance function as [35, 36, 37,

38]:

w(x) =





1− (1− dist(x,∂Ω)
δ

)γ dist(x) < δ

1 otherwise
(3.3)

where δ is the boundary strip, γ is the smoothing parameter, and dist is the function

which determines the minimum distance to the boundary.

If analytical equations are used for the boundaries, the weight function can be

constructed by using Rvachev’s R-functions. The intersection, union, or complement

of R-functions can be considered as [35, 36, 37]:

w∩(w1, w2) =
1

1 + τ

(
w1 + w2 −

√
w2

1 + w2
2 − 2τw1w2

)
(3.4)

w∪(w1, w2) =
1

1 + τ

(
w1 + w2 +

√
w2

1 + w2
2 − 2τw1w2

)
(3.5)

wc = −w (3.6)

respectively where τ is a constant (−1 < τ ≤ 1). Taking τ = 0 provides good results in

simulations. Figures 3.6 and 3.7 show the examples of constructed weight functions for

the given domains using the distance function and Rvachev’s R-functions respectively.

The first domain is the previous consideration shown in Figure 3.2. The second one in

Figure 3.7 uses seven weight functions given in Table 3.1.
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Figure 3.6. The weight function using distance function

Figure 3.7. The weight function using Rvachev’s R-function
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Table 3.1. The weight functions and rule for the domain of Figure 3.7

Functions w1 = 9−x2

6 , w2 = 16−y2

8 , w3−,4+ = 9−x2−(y∓4)2

6

w5−,6+ = 4−(x−3)2−(y∓2)2

4 , w7 = 1−x2−(y−2)2

2

Rule ΩR = ((Ω1 ∩ Ω2) ∪ Ω3 ∪ Ω4 ∪ Ω5) ∩ Ω6 ∩ Ω7

3.5. Weighted Extended B-splines

The weighted extended b-splines are

Bk =
w(x)

w(xk)

(
bk +

∑
i

ek,ibi

)
for k ∈ I, i ∈ J(k) (3.7)

The outer b-splines are coupled with the inner b-splines in order to stabilize

basis. If we have a boundary value problem with homogeneous Dirichlet boundary

conditions, Equation (3.7) is constructed as a basis function into Equation (2.30). The

other boundary conditions use Equation (3.1) as basis function.

Figures 3.8-3.13 show the outer b-splines (◦), extended inner b-splines (N), and

standard inner b-splines (•). Figures 3.8-3.10 and Figures 3.11-3.13 use linear, quadratic,

and cubic b-splines with the grid width h = 0.5 and h = 0.25 respectively. Therefore,

the outer b-splines are adjoined to the inner b-splines, which are called extended b-

splines. These extended b-splines form a stable basis with the properties of standard

finite elements [29, 30, 31, 32, 33, 34]. As seen in figures, the majority of inner b-splines

remains unchanged for the small grid width. Web-splines use 20-40 per cent less nodes

compared with the weighted splines for this example.

Some b-splines related to extended and weighted extended b-splines are shown

in Figures 3.14-3.15 respectively. For the web-splines, all b-splines are multiplied by a

weight function which satisfies homogeneous boundary conditions. The second figure

obviously shows the effect of weight function. All web-splines vanish on the boundary

and are zero outside the domain.
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Figure 3.8. Outer (◦), extended (N), and standard (•) linear b-splines for h = 0.5
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Figure 3.9. Outer (◦), extended (N), and standard (•) quadratic b-splines for h = 0.5
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Figure 3.10. Outer (◦), extended (N), and standard (•) cubic b-splines for h = 0.5
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Figure 3.11. Outer (◦), extended (N), and standard (•) linear b-splines for h = 0.25
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Figure 3.12. Outer (◦), extended (N), and standard (•) quadratic b-splines for

h = 0.25
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Figure 3.13. Outer (◦), extended (N), and standard (•) cubic b-splines for h = 0.25
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Figure 3.14. Extended quadratic b-splines

Figure 3.15. Weighted extended quadratic b-splines
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3.6. The Assembly

To assemble the matrices, the convolution and the scalar products of b-splines

are considered. Using Equations (2.43), (2.44), and (2.45), the integrals are calculated.

Figure 3.16 shows the value of stiffness matrix Ki,k for the cubic b-splines (|k| ¹
n, h = 1). These are the integral values of gradients where the scalar products of both

are not zero. If k is taken as minus three, the intersections of their supports are in

gray color, and the integral of their gradients is −1/302400, written in the middle of

lower-left grid cell of k.

Figure 3.16. The integral values of gradients for two cubic b-splines

The integrals for the standard b-splines are easy to compute, however the ef-

fects of boundaries are taken into consideration for the integrals of other splines. For

the boundary cells, they are divided into sub cells. The subdivision requires cuts by

straight lines. References [39] and [40] explain the integration procedure for numerical

computation. The integration process is based on Gauss quadrature rules. According

to Gauss quadrature, the polynomials of degree n can be integrated by using (n+1)/2
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integration points. Table 3.2 shows the Gauss parameters. Using two, three, and four

points; Gauss quadrature rule can be used to find the integral of equations up to n = 3,

n = 5, and n = 7 respectively. For the inner cells, it is easy to find the integral with

tensor product Gauss formulas, and for the boundary cells, subdivision is used.

Using linear combinations of web-splines, the linear system equations are assem-

bled and solved easily. The Galerkin system is solved iteratively with bi-conjugate

gradients method [41, 42]. After finding the coefficients of unknown function, the so-

lution is shown graphically.

Table 3.2. Gauss parameters between [0, 1]

Degree Points Weight

2 3∓√3
6

1
2

3
1
2

5∓√15
10

4
9

5
18

4
35∓
√

525−70
√

30
70

35∓
√

525+70
√

30
70

18+
√

30
72

18−√30
72

5

1
2

21∓
√

245−14
√

70
42

21∓
√

245+14
√

70
42

64
225

332+13
√

70
1800

332−13
√

70
1800
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4. WEB-SPLINE APPLICATIONS FOR ONE DIMENSION

This section considers the web-splines as basis function for FEM in electromag-

netics with respect to the standard FEM applied to the two-point boundary value

problems with different boundary conditions. This new approach, which provides more

accurate results than standard FEM, is presented with respect to the other numeri-

cal techniques and applied to one-dimensional electromagnetic problems. Computed

results are compared with the other numerical results in literature.

Some examples, compared web-spline method with the previous studies, are

shown. First study shows the comparison of finite difference, finite element, finite

volume, and cubic b-spline interpolation with the web-spline method [43, 44]. Other

examples are electromagnetic problems. The web-spline method is applied to reflection

and electromagnetic wave problems in literature [12, 16, 17].

4.1. Comparison of Some Numerical Techniques with Web-spline

Consider the PDE for one dimension as:

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), x ∈ [x1, x2] (4.1)

with Dirichlet and/or Cauchy boundary conditions at x1 and x2 where p(x), q(x) ∈
C1[x1, x2], f(x) ∈ C[x1, x2].

For the given p(x) = e1−x, q(x) = 0, f(x) = 1+ e1−x using Equation (4.1) for the

homogeneous boundary conditions on [0, 1], the exact solution is u(x) = x(1 − ex−1).

The boundary condition is essential and modeled with a weight function.

Web-spline method has a better numerical approximation as shown in Table 4.1

compared with several numerical solution methods [44].
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For FEM analysis; using quadratic, cubic Lagrange polynomials is not always

easy to implement. Selection of grid width is important for higher older polynomials.

However, using web-splines with higher orders is easy to implement compared to the

standard FEM analysis.

Figure 4.1 shows the L2 error norm of computation for various basis functions

which are linear Lagrange polynomial (solid line), linear (dashed line), quadratic (dot-

ted line), and cubic (dashed-dotted line) web-splines. As seen in Figure 4.2, the con-

vergence rate is equal to one more of order n.

Table 4.1. The max-norm of errors with respect to exact solution of Section 4.1.

Methods h Max-norm/h2

Finite Difference Method
0.1

0.01

8.240e− 3

8.306e− 3

Finite Element Method (linear)
0.1

0.01

6.351e− 3

6.364e− 3

Finite Element Method (quadratic)
0.1

0.01

1.987e− 3

2.223e− 5

Finite Volume Method
0.1

0.01

3.177e− 3

3.182e− 3

Cubic b-spline interpolation
0.1

0.01

2.900e− 4

2.896e− 6

Finite Element Method (linear web-splines)
0.1

0.01

5.365e− 3

5.776e− 3

Finite Element Method (quadratic web-splines)
0.1

0.01

2.055e− 6

4.910e− 8

Finite Element Method (cubic web-splines)
0.1

0.01

4.771e− 7

4.823e− 9
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Figure 4.1. L2 error norm of FEM using Lagrange (solid), linear (dash), quadratic

(dot), and cubic (dash-dot) web-spline
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Figure 4.2. Convergence rate of web-splines by increasing degree
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4.2. Reflection from a Metal Dielectric Slab

Consider a uniform plane wave which is incident upon a dielectric slab shown

in Figure 4.3 with thickness T , relative permittivity εr, relative permeability µr; the

reflection coefficient of the slab (R) is to be calculated.

x

y

x=x
1

x=x
2

x=T

ε
r
 ,

µ
r

ε
0
 ,

µ
0

Figure 4.3. The metal dielectric slab

The electric field (perpendicular polarization) reflected from a metal dielectric

slab is found by using Equation (2.14) as:

d

dx

(
1

µr

d

dx
Ez

)
+ k̃2

0εrEz = 0 (4.2)

with Dirichlet and Cauchy boundary conditions on [x1, x2]

Ez(x1) = 0 (4.3)

d

dx
Ez(x2) + jk̃0Ez(x2) = 2jk̃0e

jk̃0x2 (4.4)
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The incident and reflected fields at normal incidence are represented as:

Ein
z = ejk̃0x (4.5)

Er
z = R · e−jk̃0x (4.6)

where R is the reflection coefficient. The analytical reflection coefficient is found as:

R = −
√

εr − j
√

µr tan(k̃0T
√

µrεr)√
εr + j

√
µr tan(k̃0T

√
µrεr)

(4.7)

According to FEM analysis, the sum of incident and reflected wave is found. It is

noted that the grid width should be selected as small compared to the wavelength. In

order to find the reflection coefficient, the electric field at x2 is used. The reflection

coefficient by the help of FEM is obtained by using

RFEM =
Ez(x2)− Ein

z (x2)

Ein
z (x2)

(4.8)

The reflection coefficient is obtained by using thickness, permittivity, frequency (f),

x2, and grid width which are tabulated in Table 4.2. Figure 4.4 shows the exact and

computed reflection coefficients at normal incidence while changing the loss parameter

(β) of the material using linear web-splines. The results give good agreement with the

exact solution.

The error analysis, which agrees with the previous application, shows better ap-

proximation when web-splines are used as basis functions. Figure 4.5 shows the com-

parison of maximum error analysis with the standard FEM and the linear, quadratic,

cubic web-splines. As seen in Figure 4.5 the error increases for high loss parameter.

So, high order polynomials like cubic web-splines are suitable.
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Table 4.2. The parameters for the reflection from dielectric slab

Parameter Value

T 0.25

εr 4− jβ

µr 1

f 300 MHz

x2 0.3

h 0.05

While doing some simulations for εr = 4−0.5j, and frequencies 200 MHz, 2 GHz,

20 GHz; the relative maximum errors are obtained in the fourth decimal place if k0h

is taken between 0.2 and 0.5. Therefore; the grid width and the domain must be small

for high frequencies in order to obtain fast calculation.

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

1.1

β

|R
|

Figure 4.4. Exact (solid) and computed (points) reflection coefficient versus loss

parameter for FEM using linear web-splines
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Figure 4.5. Maximum error analysis using Lagrange (solid), linear (dash), quadratic

(dot), and cubic (dash-dot) web-splines

4.3. Electromagnetic Waves Between Parallel Plates

One of the other examples of electromagnetic problems in one dimension is to

find the electromagnetic waves between parallel plates, shown in Figure 4.6.

Consider the parallel plate waveguide; the general differential equation is given

as [16]:

d

dx

(
1

µr

d

dx
Ey

)
+ k̃2

0εrEy = f(x) (4.9)

where Ey is the electric field between plates, f(x) is the source, and other parameters

are defined in previous example.

The first application uses the parameters; µr = 1, k̃2
0εr = π2, f(x) = 2π2 sin(πx)

with the homogeneous Dirichlet boundary conditions Ey(0) = Ey(1) = 0 in order

to obtain the results using FEM with web-splines. The exact solution is found as
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Figure 4.6. Parallel plates

Ey(x) = sin(πx).

Solving the system using eleven web-splines shown in Figure 4.7, more accurate

results are obtained with respect to the standard FEM [16]. Figure 4.7 shows the

quadratic b-splines between zero and one. The grid width is taken as 0.1 in simulations.

Figure 4.8 shows the exact analytical results and simulated results using linear web-

splines with solid line and points respectively. The maximum error is in the third, sixth,

and seventh decimal place for the linear, quadratic, and cubic b-splines respectively.

The simulations are compared with the standard FEM, which uses linear La-

grange polynomial basis functions. As seen in Figure 4.9, by using web-splines basis

functions, more accurate results are obtained with respect to the standard FEM anal-

ysis.

Figure 4.10 shows the relative L2 error norm of computation for various basis

functions which are linear Lagrange polynomial (solid), linear (dash), quadratic (dot),

and cubic (dash-dot) web-splines.
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Figure 4.7. Weighted quadratic inner (•) b-splines for parallel plates between 0 and 1
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Figure 4.8. Exact (solid) and computed (points) electric fields of parallel plates using

linear web-splines
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Figure 4.10. The relative L2 error norm of parallel plates between 0 and 1 for various

basis functions versus the number of nodes
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The second application uses the parameters; µr = 1, k̃2
0εr = π2, and f(x) =

2π2 sin (π(x− 0.2)) with the homogeneous Dirichlet boundary conditions Ey(0.2) =

Ey(1.2) = 0 in order to obtain the results using FEM with web-splines. The exact

solution is found as Ey(x) = sin (π(x− 0.2)). Figure 4.11 shows the quadratic b-splines

taking the grid width 0.125.

−0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x

2 outer, 6 extended inner & 3 standard inner b−splines for n=2 & h=0.125

Figure 4.11. Weighted extended quadratic b-splines for parallel plates between 0.2

and 1.2 (outer (◦), extended inner (N), and standard inner (•) b-splines)

In all simulations, the standard FEM uses linear Lagrange polynomial basis func-

tions. By using web-splines as basis functions, more accurate results are obtained

as compared with standard FEM analysis. Figure 4.12 shows the L2 error norm of

computation for various basis functions which are linear Lagrange polynomial, linear,

quadratic, and cubic web-splines.

The condition number is a measure of stability of linear system to the numerical

operations. It is defined as the product of the norm of the matrix and the norm of the

inverse of matrix. If the condition number is low, it is said to be well-conditioned which
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Figure 4.12. The L2 error norm of parallel plates between 0.2 and 1.2 for various

basis functions versus the number of nodes

means its inverse can be computed with good accuracy. If the condition number is high,

it is said to be ill-conditioned. Using web-splines instead of weighted b-splines, the

condition number decreases, which means the instability problem is solved. Secondly,

more accurate maximum errors and L2 errors are obtained.
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5. WEB-SPLINE APPLICATIONS FOR TWO

DIMENSIONS

In this section, the web-spline method is applied to electromagnetic wave prob-

lems and waveguides illustrated in literature [16, 17, 45, 46, 47, 48, 49]. For the wave

equation analysis, the square and circular domains are chosen in order to compare

with the exact results by using error analysis. Then, the method is used for two di-

mensional waveguides and compared with the previous studies. These studies show

that using web-splines in electromagnetic applications gets more accurate results with

fewer nodes, higher stability than standard FEM analysis.

5.1. Wave Equation Analysis For Square Domain

The wave equation obeys the Helmholtz equation shown at Equation (2.14). First

application is to study the Helmholtz equation for the square boundary shown in Fig-

ure 5.1 using boundary conditions given at Equation (2.23) for s = 1, r = jk̃ and

g(x, y) as:

g(x, y) =





jk̃(1− sin θ)ejk̃(cos θx+sin θy1) on Γ1

jk̃(1 + cos θ)ejk̃(cos θx2+sin θy) on Γ2

jk̃(1 + sin θ)ejk̃(cos θx+sin θy2) on Γ3

jk̃(1− cos θ)ejk̃(cos θx1+sin θy) on Γ4

(5.1)

where θ shows the direction angle of wave. The exact solution of wave equation for the

above conditions is obtained as [46]:

u(x, y) = ejk̃(cos θx+sin θy) (5.2)

According to the wave equation for square domain, web-spline method is compared

with the standard FEM by using the exact solution. The square domain has 2 × 2 m

side lengths. Figure 5.2 shows triangulation for the square domain using 665 nodes
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Figure 5.1. Square domain

and 1248 triangles. Figure 5.3 shows the b-spline basis of the same domain using 100

inner b-splines. Since the square domain is regular, there are no outer b-splines. The

simulations can be studied by changing the direction of wave, wave number, and the

grid width.

Figure 5.4 shows the computational results of wave equation (5.2) using standard

FEM with 665 nodes. Then, the web-spline method is tested with the same parameters

for the comparison as seen in Figure 5.5 for the direction angle π/4, wave number π,

and grid width 0.25 m. Both results are reconciled with the exact solution. However,

the web-spline method only uses 100 b-splines to compute.

The relative L2 error norm with the number of nodes is used to compare the

methods. Figure 5.6 shows the relative L2 error norm versus number of nodes for

square domain. Although the linear b-splines are same as the hat functions, regular

grid generation works better than triangulation for square domain.
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Figure 5.2. Triangulation for square domain
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Figure 5.3. Quadratic b-spline basis for square domain (standard inner (•) b-splines)
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Figure 5.4. The computational results of electric field using standard FEM for square

domain

Figure 5.5. The computational results of electric field using web-spline method for

square domain
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Figure 5.6. The relative L2 error norm for various basis functions versus the number

of nodes for square domain
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Figure 5.7. The relative L2 error norm and convergence rate for linear (◦), quadratic

(•), and cubic b-splines (¦) for square domain



57

Figure 5.7 shows the relative L2 error norm and convergence rate for the grid

width h = 2−l, l = 0, 1, ..., 5. As seen in Figure 5.7, the convergence rate equals one

more of degree n for the relative L2 error norm for square domain.

5.2. Wave Equation Analysis For Circular Domain

Considering the wave equation with Cauchy boundary conditions, the solution of

the wave equation for circular domain is obtained by using linear, quadratic, and cubic

extended b-splines.

According to the wave equation for circular domain, the web-spline method is

compared with the standard FEM by using the exact solution given in Equation (5.2).

Figure 5.8 shows triangulation for the circular domain using 549 nodes and 1032 tri-

angles. Figure 5.9 shows the b-spline basis of the same domain using 68 outer, 148

extended inner, and 76 standard inner quadratic b-splines. Figure 5.10 shows the com-

putational results of wave equation using standard FEM with 549 nodes. Then, the

web-spline method is tested for comparison seen in Figure 5.11 for the direction angle

0°, wave number π/2, grid width 0.125. Both results are in line with the exact solution.

Although the relative L2 error norm for the standard FEM with 549 nodes is 1.8 ·10−3,

the web-spline method uses 224 b-splines with a relative L2 error norm 1.27 · 10−4.

The error analysis shows better approximation when web-splines are used as basis

functions. Figure 5.12 shows the relative L2 error norm versus number of nodes with

the standard FEM and the linear, quadratic, and cubic extended b-splines. According

to figure, more accurate results are obtained by using web-splines with fewer basis

functions instead of standard finite elements.

According to Table 5.1, the efficiency of using web-splines instead of weighted

splines is tabulated for various grid width and degree values. For example, 59 nodes

are used for n = 1, h = 1/4 instead of 100 nodes or the necessary time to obtain the

results is 10 seconds for n = 2, h = 1/8 instead of 100 seconds. The computational

time improvement for two dimension is efficiently better. The reason is that the new
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basis function is more stable and the condition number of stiffness and mass matrix is

smaller than the standard weighted b-splines.

For h = 0.25 m and k̃2 = 10, the condition number is 78.06 instead of 216.89 with

41 per cent less nodes using linear web-splines instead of linear weighted b-splines. The

condition number is 56.36 instead of 2.30e5 with 38 per cent less nodes using quadratic

web-splines instead of quadratic weighted b-splines. The condition number is 544.58

instead of 1.76e9 with 34 per cent less nodes using cubic web-splines instead of cubic

weighted b-splines. The condition number is 2.84e4 instead of 5.44e13 with 31 per

cent less nodes using quantic web-splines instead of quantic weighted b-splines. The

condition number is 9.06e6 instead of 1.25e19 with 29 per cent less nodes using quintic

web-splines instead of quintic weighted b-splines.

In conclusion, web-splines are better basis functions with more stable and less

computation time.

Table 5.1. The efficiency of web-spline method for circular domain (per cent)

n h Efficiency of nodes (per cent) Efficiency of computation time (per cent)

1

1/4

1/8

1/16

41.56

24.90

13.90

90

80

70

2

1/4

1/8

1/16

37.50

23.29

13.36

90

90

90

3

1/4

1/8

1/16

34.19

21.89

12.87

90

90

90
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Figure 5.8. Triangulation for circular domain
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Figure 5.9. Quadratic extended b-splines for circular domain (outer (◦), extended

inner (N), and standard (•) inner b-splines)
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Figure 5.10. The computational electric field using standard FEM for circular domain

Figure 5.11. The computational electric field using web-spline method for circular

domain
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Figure 5.12. The relative L2 error norm for various basis functions which are linear

Lagrange polynomial (4), linear (◦), quadratic (•), and cubic (¦) extended b-splines

versus the number of nodes for circular domain

5.3. Waveguides

Waveguides are used to carry electromagnetic waves over a wide portion of the

electromagnetic spectrum. However, they are useful in microwave and optical frequency

ranges. Depending on the frequency, they can be constructed from either conductive

or dielectric materials. Waveguides are used for transferring both power and commu-

nication signals.

Waveguides are usually used in a frequency range where only the lowest mode or

few modes propagate.

This part studies two dimensional waveguide problems using FEM with trian-

gulation and web-splines by using Equation (2.14) without source. These results are

compared with the analytical results given by [16, 17, 47, 48, 49].
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Figure 5.13. Cross section of (i) rectangular, (ii) circular, and (iii) coaxial waveguides

5.3.1. Rectangular Waveguides

Consider rectangular waveguide of sides a and b on x and y direction shown

in Figure 5.13(i). The cutoff wave numbers (k̃c) for Transverse Electric (TE) and

Transverse Magnetic (TM) modes are obtained [48] as:

(
k̃c

)
mn

=

√(mπ

a

)2

+
(nπ

b

)2





m = n 6= 0 (TE)





m = 0, 1, 2, . . .

n = 0, 1, 2, · · ·

(TM)





m = 1, 2, 3, . . .

n = 1, 2, 3, · · ·

(5.3)

Tables 5.2 and 5.3 show some corrections about the ratio of analytical cutoff

frequencies of TE and TM modes in bold for the given tables in [48].

FEM is used to obtain numerical solution of cutoff wave numbers for various TE,

TM modes. Figures 5.14-5.25 show the relative errors of k̃ca for TE and TM modes

respectively using FEM with triangulation and web-spline method.

The web-spline method provides more accurate results with using the same num-
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ber of nodes. Therefore, web-splines for Dirichlet conditions and extended splines for

Neumann conditions are used to find the wave number of TM and TE modes respec-

tively. As a result of Dirichlet and Neumann boundary condition, the relative errors

for TM modes (Dirichlet boundary condition) are more accurate than the TE modes

(Neumann boundary condition) according to the error analysis.

Table 5.2. The ratio cutoff frequency (Rmn) of TEmn modes to that of TE10 mode

a/b 10 5 2.25 2 1

m,n 1, 0 1, 0 1, 0 1, 0 1, 0; 0, 1

Rmn 1 1 1 1 1

m,n 2, 0 2, 0 2, 0 2, 0; 0, 1 1, 1

Rmn 2 2 2 2 1.414

m,n 3, 0 3, 0 0, 1 1, 1 2, 0; 0,2

Rmn 3 3 2.25 2.236 2

m,n 4, 0 4, 0 1, 1 2, 1 2, 1; 1, 2

Rmn 4 4 2.462 2.828 2.236

m,n 5, 0 5, 0; 0, 1 3, 0 3, 0 2, 2

Rmn 5 5 3 3 2.828

m,n 6, 0 1, 1 2, 1 3, 1 3, 0; 0, 3

Rmn 6 5.099 3.010 3.606 3

m,n 7, 0 2, 1 3, 1 4, 0; 0, 2 3, 1; 1, 3

Rmn 7 5.385 3.75 4 3.162

m,n 8, 0 3, 1 4, 0 1, 2 3, 2; 2, 3

Rmn 8 5.831 4 4.123 3.606

m,n 9, 0 6, 0 0, 2 4, 1; 2, 2 4, 0; 0, 4

Rmn 9 6 4.5 4.472 4

m,n 10, 0; 0, 1 4, 1 4, 1 5, 0; 3, 2 4, 1; 1, 4

Rmn 10 6.403 4.589 5 4.123
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Table 5.3. The ratio cutoff frequency (Tmn) of TMmn modes to that of TE10 mode

a/b 10 5 2.25 2 1

m,n 1, 1 1, 1 1, 1 1, 1 1, 1

Tmn 10.050 5.099 2.462 2.236 1.414

m,n 2, 1 2, 1 2, 1 2, 1 2, 1; 1, 2

Tmn 10.198 5.385 3.010 2.828 2.236

m,n 3, 1 3, 1 3, 1 3, 1 2, 2

Tmn 10.440 5.831 3.75 3.606 2.828

m,n 4, 1 4, 1 4, 1 1, 2 3, 1; 1, 3

Tmn 10.770 6.403 4.589 4.123 3.162

m,n 5, 1 5, 1 1, 2 4, 1; 2, 2 3, 2; 2, 3

Tmn 11.180 7.071 4.610 4.472 3.606

m,n 6, 1 6, 1 2, 2 3, 2 4, 1; 1, 4

Tmn 11.662 7.810 4.924 5 4.123

m,n 7, 1 7, 1 3,2 5, 1 3, 3

Tmn 12.207 8.602 5.408 5.385 4.243

m,n 8, 1 8, 1 5,1 4, 2 4, 2; 2, 4

Tmn 12.806 9.434 5.483 5.657 4.472

m,n 9, 1 1, 2 4, 2 1, 3 4, 3; 3, 4

Tmn 13.454 10.050 6.021 6.083 5

m,n 10, 1 2, 2 6, 1 2, 3 5, 1; 1, 5

Tmn 14.142 10.198 6.408 6.325 5.099
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Figure 5.14. The relative errors of k̃ca (TE10 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.15. The relative errors of k̃ca (TE01 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.16. The relative errors of k̃ca (TE11 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.17. The relative errors of k̃ca (TE21 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.18. The relative errors of k̃ca (TE30 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.19. The relative errors of k̃ca (TE31 mode) using basis functions which are

linear Lagrange polynomial(N), linear(◦), quadratic(•), and cubic(¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.20. The relative errors of k̃ca (TM11 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.21. The relative errors of k̃ca (TM21 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.22. The relative errors of k̃ca (TM31 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.23. The relative errors of k̃ca (TM12 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.24. The relative errors of k̃ca (TM22 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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Figure 5.25. The relative errors of k̃ca (TM32 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for rectangular waveguide (a/b = 2)
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5.3.2. Circular Waveguides

The cutoff wave numbers for circular waveguide shown in Figure 5.13(ii) are

obtained by using FEM analysis and compared with the analytical results, which are

tabulated in Table 5.4.

20 per cent less nodes are used to obtain relative errors 1.4e − 3, 4.8e − 7, and

1.3e − 9 for the linear, quadratic, and cubic web-spline analysis of TE11 mode. Fig-

ures 5.26-5.37 show the relative errors of k̃cr for various TE and TM modes using FEM

with triangulation and web-spline method. As seen in figures, the web-spline method

provides more accurate results with using the same number of nodes than standard

FEM. Same as the previous study, the relative errors for the TM modes are more ac-

curate than the TE modes too, since TM and TE modes use Dirichlet and Neumann

boundary conditions respectively.

Table 5.4. k̃cr for a circular waveguide

mode k̃cr

TE11 1.84118378134066

TM01 2.40482555769577

TE21 3.05423692822714

TM11; TE01 3.83170597020751

TE31 4.20118894121053

TM21 5.13562230184068

TE41 5.31755312608400

TE12 5.33144277352503

TM02 5.52007811028631

TM31 6.38016189592398

TE51 6.41561637570024

TE22 6.70613319415846

TE02 7.01558666981562

TE61 7.50126614468415
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Table 5.5. The efficiency of web-spline method for circular waveguides (per cent)

n h Efficiency of nodes (per cent) Efficiency of computation time (per cent)

1

1/4

1/8

1/16

41.56

24.90

13.90

50

30

20

2

1/4

1/8

1/16

37.50

23.29

13.36

70

50

30

3

1/4

1/8

1/16

34.19

21.89

12.87

80

40

40
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Figure 5.26. The relative errors of k̃cr (TE11 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.27. The relative errors of k̃cr (TM01 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide

10
1

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

# of nodes

R
el

at
iv

e 
E

rr
or

Relative Error of k
c
r for TE

21
 mode

Figure 5.28. The relative errors of k̃cr (TE21 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.29. The relative errors of k̃cr (TM11 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.30. The relative errors of k̃cr (TE01 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.31. The relative errors of k̃cr (TE31 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.32. The relative errors of k̃cr (TM21 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.33. The relative errors of k̃cr (TE41 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.34. The relative errors of k̃cr (TE12 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.35. The relative errors of k̃cr (TM02 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.36. The relative errors of k̃cr (TM31 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide
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Figure 5.37. The relative errors of k̃cr (TE51 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for circular waveguide

5.3.3. Coaxial Waveguides

Figure 5.13(iii) shows the cross section of coaxial waveguide. The analytical

values of cutoff wave numbers of TE and TM modes, which are tabulated in Table 5.6,

are obtained with the nth roots of the Bessel-Neumann and its derivative combination

respectively given in [49] and compared with FEM results.

20-30 per cent less nodes are used to obtain relative errors 1.04e − 4, 6.3e − 7,

and 1.4e − 9 for the linear, quadratic, and cubic web-spline analysis of TM01 mode.

Table 5.7 shows the efficiency of web-spline method for coaxial waveguides.

Figures 5.38-5.43 show the relative errors of k̃cr1 for some TE and TM modes by

using FEM with triangulation and web-spline method for r2/r1 = 2. More accurate

results are obtained by using fewer nodes for linear, quadratic and cubic web-splines.
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Table 5.6. k̃cr1 for a coaxial waveguide (r2/r1 = 2)

mode k̃cr1

TE11 0.67733600513658

TE21 1.34060214333442

TE31 1.97887709391199

TM01 3.12303091959569

TM11 3.19657838081063

TM21 3.40692142656753

Table 5.7. The efficiency of web-spline method for coaxial waveguides (per cent)

n h Efficiency of nodes (per cent) Efficiency of computation time (per cent)

1

1/4

1/8

1/16

52.63

37.29

23.47

90

70

60

2

1/4

1/8

1/16

41.67

31.43

21.01

90

60

40

3

1/4

1/8

1/16

35.04

27.16

19.01

80

60

40
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Figure 5.38. The relative errors of k̃cr1 (TE11 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for coaxial waveguide (r2/r1 = 2)
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Figure 5.39. The relative errors of k̃cr1 (TE21 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for coaxial waveguide (r2/r1 = 2)
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Figure 5.40. The relative errors of k̃cr1 (TE31 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for coaxial waveguide (r2/r1 = 2)
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Figure 5.41. The relative errors of k̃cr1 (TM01 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for coaxial waveguide (r2/r1 = 2)



82

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

# of nodes

R
el

at
iv

e 
E

rr
or

Relative Error of k
c
r

1
 for TM

11
 mode (r

2
/r

1
=2)

Figure 5.42. The relative errors of k̃cr1 (TM11 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for coaxial waveguide (r2/r1 = 2)
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Figure 5.43. The relative errors of k̃cr1 (TM21 mode) using basis functions which are

linear Lagrange polynomial (N), linear (◦), quadratic (•), and cubic (¨) web-splines

versus the number of nodes for coaxial waveguide (r2/r1 = 2)
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Figure 5.44 shows the analytical weight function for coaxial waveguides

wA(x, y) = (r2
2 − x2 − y2) · (x2 + y2 − r2

1) (5.4)

and Figure 5.45 shows the Rvachev’s weight function

wR(x, y) = (r2
2 − x2 − y2) + (x2 + y2 − r2

1)−
√

(r2
2 − x2 − y2)2 + (x2 + y2 − r2

1)
2 (5.5)

in order to find the cutoff wave numbers of TM modes.

Figure 5.44. Analytical weight function for coaxial waveguides

The supported b-splines for the coaxial waveguide are shown in Figure 5.46.

Table 5.8 shows the analytical values of k̃cr1 for various r2/r1 in order to compare

with the numerical solution for the given coaxial waveguide in Figure 5.46.

Figures 5.47 and 5.48 show the relative errors of k̃cr1 for TM01 and TE11 modes

using FEM with quadratic and cubic web-splines, while changing r2/r1 from 2 to 4 for

h = 0.1. The web-spline method is implemented easily and provides accurate results.
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Figure 5.45. Rvachev’s weight function for coaxial waveguides

−1 0 1

−1

0

1

96 outer, 256 extended inner, 76 standard inner b−splines for n=2, h=0.1

Figure 5.46. The standard (•), extended inner (N) and outer (◦) web-splines for

coaxial waveguide
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Table 5.8. k̃cr1 for a coaxial waveguide (r2/r1 ∈ [2, 4])

r2/r1 TM01 TE11

2.0 3.12303091959569 0.67733600513658

2.2 2.59814845372033 0.63705643879578

2.4 2.22320266075340 0.60121330544258

2.6 1.94200987592583 0.56905474087215

2.8 1.72334328339505 0.54000687063417

3.0 1.54845877828945 0.51362117246967

3.2 1.40542346707625 0.48953964470270

3.4 1.28627912101119 0.46747120951993

3.6 1.18551434706994 0.44717537336804

3.8 1.09919127148333 0.42845067387739

4.0 1.02442138481921 0.41112634431194

The condition numbers for the weighted b-splines and weighted extended b-splines

are shown in Figures 5.49 and 5.50. Web-splines use 20 − 25 per cent less nodes and

they are more stable than the weighted b-splines.

5.4. Waveguides For Arbitrary Domain

The last application studies the web-spline method for finding cutoff wave num-

bers of an arbitrary domain, shown in Figure 3.2.

The eigenvalue analysis is used to compare web-spline method with the standard

FEM. Figure 5.51 shows triangulation for an arbitrary domain using 8863 nodes and

15928 triangles. For web-spline FEM analysis, Figure 5.52 shows the relevant cubic

b-splines of the same domain using 62 outer, 172 extended inner, and 26 standard inner

web-splines. The distance weight function is used for TM mode analysis as shown in

Figure 3.6.
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Figure 5.47. The relative errors of k̃cr1 for coaxial waveguide using quadratic (N) and

cubic (¨) web-splines with wA (solid) and wR (dashed) weight functions versus r2/r1.
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Figure 5.48. The relative errors of k̃cr1 for coaxial waveguide using quadratic (N) and

cubic (¨) web-splines versus r2/r1.
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Figure 5.49. The condition numbers for weighted b-splines (solid) and web-splines

(dashed) using quadratic (N) and cubic (¨) b-splines versus r2/r1.

2  2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Condition number analysis for TE
11

 mode

r
2
 / r

1

C
on

di
ti

on
 N

um
be

r
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using quadratic (N) and cubic (¨) b-splines versus r2/r1.
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Figure 5.51. Triangulation for an arbitrary domain
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Figure 5.52. Web-spline method for an arbitrary domain (outer (◦), extended inner

(N), and standard inner (•) b-splines)
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The first three cutoff wave numbers of TM and TE modes are obtained as

{1.41, 1.42, 1.61} and {0.40, 0.47, 0.86} respectively.

Table 5.9. The efficiency of web-spline method for an arbitrary domain (per cent)

n Efficiency of nodes (per cent) Efficiency of computation time (per cent)

1 36.87 70

2 29.44 60

3 25.28 50

According to Table 5.9, the efficiency of using web-splines instead of weighted

splines for an arbitrary domain is shown. Secondly, Table 5.10 shows the number of

nodes used for triangulation and web-splines in order to get same results. The web-

spline method for an arbitrary domain provides accurate results with less computation

time.

Table 5.10. The results of FEM analysis for an arbitrary domain

number of nodes FEM method mode first three cutoff wave numbers time(sec)

8663 standard TE 0.40 0.47 0.86 2.9

125 linear web-spline TE 0.41 0.47 0.87 0.1

163 quadratic web-spline TE 0.40 0.47 0.86 0.2

198 cubic web-spline TE 0.40 0.47 0.86 0.3

10061 standard TM 1.41 1.42 1.62 4.9

125 linear web-spline TM 1.43 1.45 1.66 0.1

163 quadratic web-spline TM 1.41 1.42 1.62 0.2

198 cubic web-spline TM 1.41 1.42 1.61 0.3
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6. GUI TOOLBOX

6.1. B-splines and Their Derivatives

Graphical User Interfaces (GUI) are used to analyze b-splines and their derivatives

in one, two, and three dimensions. All plots are based on the integer degree n and grid

witdh h.

Figure 6.1. 1D b-spline and its derivative by changing n and h

Figure 6.2 shows the first order derivatives of nth degree b-spline with respect

to x and y. Then, Figure 6.3 shows the derivatives according to x, y, and z. These

graphical interfaces are easy to use.

6.2. The Classification of B-splines for Web-splines

This section shows the classification of b-splines. According to Figure 6.4, while

changing the degree and grid width, the user can see how to determine b-splines in

one dimension. Moreover, the number of outer, extended inner, and standard inner

b-splines are shown.
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Figure 6.2. 2D b-spline and its derivative with respect to x and y

Figure 6.3. 3D b-spline and its derivative with respect to x, y, and z
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Figure 6.4. 1D classification of b-splines (inner (•) b-splines)

Figure 6.6 shows the classification of b-splines in two dimensions according to the

given domain. The degree and grid width are changed easily. Input file as text file

shown in Figure 6.5 is written for the following rule:

First line can be ’rect’, ’ellipse’ or ’arbit’. For rectangle, the second and third

line gives the lower left corner of domain and side lengths on x and y respectively.

For ellipse, the second line must be semi minor and major axis values. The third line

must be center points of ellipse. For arbitrary domain, each line shows the points

which passes on the boundary. If there are more than one boundary, same procedure

is written for the given rule. The number of outer, extended inner, and standard inner

b-splines are shown.

6.3. Calculation of Extension Coefficients

The extension coefficients are used to adjoin outer b-splines to inner b-splines.

One dimension and two dimensions extension coefficients are obtained by using Equa-

tion (3.2). This section shows how to find extension coefficients for the given degree of

b-splines. The one dimension extension coefficients for n = 1, 2, 3, 4, 5 are tabulated in

Table 6.1.
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Figure 6.5. Input file for 2D web-splines

Figure 6.6. 2D classification of b-splines (the outer (◦), extended inner (N), and

standard inner (•) b-splines)
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Table 6.1. Extension coefficients for 1D

degree(n) Extension coefficients

1 (2,−1)

2 (3,−3, 1)

3 (4,−6, 4,−1)

4 (5,−10, 10,−5, 1)

5 (6,−15, 20,−15, 6,−1)

Table 6.2. Extension coefficients for 2D

degree(n) Corner Extension coefficients

1
−2 1

4 −2

2

3 −3 1

−9 9 −3

9 −9 3

3

−4 6 −4 1

16 −24 16 −4

−24 36 −24 6

16 −24 16 −4

Figure 6.8 shows the extension coefficients in two dimensions. The extended inner

b-splines for the outer b-splines are identified according to the boundary curve. The

shortest distance from the centers of outer b-splines to the boundary determines which

inner b-splines are affected. (n + 1) or (n + 1)2 inner b-splines are affected.

Four gray regions show the extension coefficients for the corner conditions. The

two dimensions extension coefficients for n = 1, 2, 3 are tabulated in Table 6.2.
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Figure 6.7. 1D extension coefficients

Figure 6.8. 2D extension coefficients
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6.4. 1D Electromagnetic Applications

This section shows graphical user interfaces for one dimensional electromagnetics.

First GUI, which is shown in Figure 6.9, finds the reflection coefficient from a metal

dielectric slab while changing degree, grid width, and relative permittivity. Then, the

program shows analytical reflection coefficient and numerical solution for comparison.

Figure 6.9. Reflection coefficient from a dielectric slab

Second GUI shows electric field between parallel plates, which is shown in Fig-

ure 6.11. The points show the approximated results and the line shows the analytical

results. Input files (Figure 6.10) are written according to the following rule: The first

two lines show the degree and grid width respectively. The third line shows the number

of points for integration.

Then, the functions of PDE are entered (p(x), q(x), f(x)). For the end point, the

position, boundary condition (0 for Dirichlet, 1 for Neumann), parameters for boundary

condition (BNq, BNg for Neumann, u for Dirichlet) are entered on the fifth line. The

same parameters are written for the starting point. If exact solution exists, it can be

put on the last line for comparison.

The maximum errors, condition numbers, and L2 errors for weighted b-splines

and web-splines are shown for comparison.
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Figure 6.10. Input file for parallel plate application

Figure 6.11. Electric field between parallel plates
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6.5. 2D Electromagnetic Applications

This section shows graphical user interfaces for two dimensional electromagnetics.

First and second GUIs, which are shown in Figures 6.12-6.13, show the electric fields

using FEM with web-splines. The degree, the grid width, the square of wave number,

and direction angle are changed easily. The user can see the effects of parameters for

square and for circular domains.

Figure 6.12. The web-spline application for square domain

The two dimensional rectangular, circular, and coaxial waveguide applications

are shown by using GUI. Figures 6.14, 6.16, 6.18 show the analytical values of wave

numbers. Other Graphical User Interfaces show the relative errors of wave numbers

for various modes.
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Figure 6.13. The web-spline application for circular domain

Figure 6.14. The analytical wave numbers for rectangular waveguide
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Figure 6.15. The relative errors of wave numbers for rectangular waveguide

Figure 6.16. The analytical wave numbers for circular waveguide
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Figure 6.17. The relative errors of wave numbers for circular waveguide

Figure 6.18. The analytical wave numbers for coaxial waveguide
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Figure 6.19. The relative errors of wave numbers for coaxial waveguide
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7. CONCLUSIONS

Electromagnetics studies the behavior of electric and magnetic fields in different

mediums. These mediums can be homogeneous or inhomogeneous, with or without

losses. The Maxwell’s equations form the foundations for the mathematical analysis of

elecromagnetics. However, such analytical solutions to the Maxwell’s equations are not

trackable for many cases. Therefore, numerical approximation techniques have been

developed and computational electromagnetics has been a popular field of study. Such

approaches are based on numerical solutions of the partial differential equations that

govern the electromagnetic properties, such as the wave equations.

The numerical computational electromagnetics in scattering, biomedical prob-

lems, and antenna design are taken into consideration in various journals and confer-

ences. There are several numerical methods, which are given attention. One of the

popular numerical methods is Finite Element Method, which is very effective for inho-

mogeneous materials and allows representing complex geometries very precisely. It is

a versatile and flexible numerical technique that is often used in the analysis of geo-

metrical complex structures. It is also used for scattering, radiation, and propagation

problems.

This thesis proposed the use of extended and weighted extended b-spline method

to numerically study the electromagnetic models. To our best knowledge, it is the first

time that this method is considered in the context of electromagnetic computing. One

and two dimensional solvers have been developed for simulations of electromagnetics.

The wave equation has been solved easily and accurate results have been obtained by

increasing the degree of basis function. Web-spline graphical user interface for Matlab

has been completed. We have found that the approximation solution of waveguide

applications using web-splines is possible at low computational cost. By increasing

the degree of web-splines, the numerical solutions for electromagnetic problems can be

easily obtained.
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First, the finite element method using web-splines has been applied to one-

dimensional electromagnetic problems. The simulation results have been compared

with the literature and excellent agreement was found.

The finite element method which uses web-splines has then been extended to

two-dimensional electromagnetic problems such as waveguides. The simulation results

have been compared with the literature and excellent agreement was obtained. More

accurate results have been obtained with fewer nodes using web-splines compared to

the standard FEM. It has been observed that web-spline method is versatile and can

be implemented easily for electromagnetic applications. Highly accurate results have

been obtained without using mesh generation. 20-30 per cent improvement has been

observed as compared to standard FEM. Therefore, it has been concluded that the

web-splines based FEM is a successful computational method for electromagnetic sim-

ulations.

Web-splines have then been applied to coaxial waveguides. The numerical ap-

proximations have been compared with the analytical results. Accurate results have

been obtained by using web-splines for different ratio of coaxial waveguides. Web-

splines and extended b-splines have been used to find the wave numbers of TM and

TE mode respectively. The relative errors for the TM modes are more accurate than

those of the TE modes according to the error analysis. Finally, web-splines have been

obtained more stable than normal basis splines functions in this work.

It was found that, FEM with web-spline is suitable for obtaining electromagnetic

solution for different frequencies. The theoretical and simulation results have been

compared with the literature and the model agrees very well with published results.

These comparisons show that the method is valid when k0h < 0.79 where k0 is the free

space wave number, h is the grid width for numerical computation. The simulation

results have been tested with 0.198 < k0h < 0.79 and 0.792 < k0a < 12.64 where a

is the maximum diameter of circle circumscribing domain. The criteria for choosing h

depends on the domain and frequency. The necessary step, which has given attention,

is to take k0h value smaller than 0.8. This means, for high frequencies it is noted
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that the grid width should be selected as small compared to wavelength. In addition,

the maximum diameter of circle circumscribing domain should be small for higher

frequencies in order to provide fast calculation. Figure 7.1 shows the effect of frequency

on parameters using web-spline method.

Figure 7.1. The effect of frequency on size parameters using web-spline method

This new approach for electromagnetics can be applied to various structures and

more complex electromagnetic problems such as biomedical modeling and scattering

problems. The results of this study show that the developed method is suitable for

three dimensional electromagnetic problems as well.
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APPENDIX A: GRADIENT AND CURL

A.1. Cartesian Coordinates

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(A.1)

∇×A =
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∂Az

∂y
− ∂Ay

∂z

)
ax +

(
∂Ax

∂z
− ∂Az

∂x

)
ay +

(
∂Ay
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− ∂Ax

∂y

)
az (A.2)

∇V =
∂V

∂x
ax +

∂V

∂y
ay +

∂V

∂z
az (A.3)

∇2V =
∂2V

∂x2
+

∂2V

∂y
+

∂2V

∂z2
(A.4)

A.2. Cylindrical Coordinates

∇ ·A =
1

r

∂(rAr)

∂r
+

∂Aφ

r∂φ
+

∂Az

∂z
(A.5)

∇×A =
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∂Az

r∂φ
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∂z

)
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− ∂Az

∂r

)
aφ +

1

r

(
∂(rAφ)
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− ∂Ar

∂φ

)
az (A.6)
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∂V

∂r
ar +

∂V

r∂φ
aφ +

∂V

∂z
az (A.7)
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∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2

∂2V

∂φ2
+

∂2V

∂z2
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A.3. Spherical Coordinates

∇ ·A =
1

R2

∂(R2AR)

∂R
+

1

R sin θ

∂(Aθ sin θ)

∂θ
+

1

R sin θ

∂Aφ

∂φ
(A.9)

∇×A =
1

R2 sin θ

∣∣∣∣∣∣∣∣∣
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∇2V =
1

R2

∂

∂R
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R2∂V

∂R
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1

R2 sin θ

∂

∂θ

(
sin θ
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)
+

1

R2 sin2 θ

∂2V

∂φ2
(A.12)
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APPENDIX B: VECTOR IDENTITIES AND INTEGRAL

THEOREMS

∇× (ab) = ∇a× b + a∇× b (B.1)

∇×∇× a = ∇∇ · a−∇2a (B.2)

∫

Ω

∇2uv +

∫

Ω

∇u∇v =

∫

∂Ω

∂u

∂n
v (B.3)
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APPENDIX C: PROGRAM CODES

C.1. ONE DIMENSION

main1D:

This program considers FEM using web-splines for Electromagnetic problems.

Consider two-point boundary value problem for one dimension (1D)

−d/dx (p(x) du/dx) + q(x) u = f(x) xi < x < xe

Boundary Conditions (BC)

u = ud at x = xi or x = xe Dirichlet BC

du/dx + BNq ∗ u = BNg at x = xiorx = xe Cauchy BC

input1D:

INPUT DATA

name: Application name

n: degree (1 for linear, 2 for quadratic, 3 for cubic etc.)

h: grid width

NP: number of points for integration

−d/dx (px du/dx) + qx u = fx

Boundary Conditions (BC)

u=bound.u at x = xi or x = xe Dirichlet BC

du/dx + bound.BNq ∗ u = bound.BNg at x = xi or x = xe Cauchy BC bound.BC: 0

for DRICHLET, 1 for NEUMANN

bound.x: position

bound.BNq: for NEUMANN

bound.BNg: for NEUMANN

bound.u: for DRICHLET

uexact: exact solution

duexact: derivative of exact solution

weight: weight function
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weightt: derivative of weight function

deternode:

determination of the nodes

xx : position of nodes

xi,xe : initial and end points

detbspln:

determination of the classification of b-splines for 1D

D : all b-splines supporting the region

bb : inner(2) and outer(1) b-splines

gi : inner b-splines

gj : outer b-splines

showinoutmid:

plotting of the classification of b-splines for 1D

splines are marked in the middle of of their support

the inner and outer b-splines for w=1

the extended,normal inner and outer bsplines for w=2

detext:

determines the extended inner bsplines, computes coefficients

D=[i xx(i)]: all b-splines supporting the domain

bb: extended(3), inner(2) and outer(1) b-splines

gi, gj: inner and outer b-splines

E: extended matrix
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webassemb:

assemble PDE for 1D

xx: position of grid cells

TH: the direction angle of wave

k: square of wave number

K,M,F,DNq,DNg: Matrices for assembly

webanal:

solve and plot results

webnorm:

maximum, L2 error norm analysis

gnodewt:

Gaussian Integration points and coefficients

bsplfunc:

loads data (up to degree 5)

(*) inner integral coefficients of b-splines for inner cells

(*) b-spline equations to compute integrals for boundary cells

splninteg:

find the finite element stiffness, mass, load coeff.

pbicgstab:

solves the linear system Ax=b using the BiConjugate Gradient Stabilized Method with
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preconditioning

C.2. TWO DIMENSIONS

main2D:

This program considers FEM using web-splines for Electromagnetic problems.

input2D:

determines the region to be applied

C:boundary positions

xx yy:grid positions

h:grid width

n:degree

name:project name

boun:boundary data

bound.cont :’0’ rectangle, ’1’ ellipse, ’2’ unarbitrary region

bound.con :’0’ Dirichlet, ’1’ Neumann

detbspln:

determines the classification of b-splines for 2D

xx,yy, x,y(gridded): position of grid cells

D=[i j xx(i) yy(j)]: all b-splines supporting the region

bb: inner(2) and outer(1) b-splines

gi: inner b-splines

gj: outer b-splines

detext:

determines the extended inner bsplines and computes coefficients
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bb: extended(3), inner(2) and outer(1) b-splines

E: extended matrix

webassemb:

assembles PDE for 2D using WEB-method

TH: the direction angle of wave

k2: square of wave number

K,M,F,DNq,DNg: Matrices for assembly

isinpoly:

Finds whether points with coordinates X and Y are inside or outside of

a polygon with vertices XP, YP. Returns matrix ISIN of the same size as

X and Y with 0 for points outside a polygon, 1 for inside points and

0.5 for points belonging to a polygon XP, YP itself.

showinoutmid:

plots the classification of b-splines for 2D

splines are marked at the center of their support

the inner and outer b-splines for w=1

the extended and normal inner and outer bsplines for w=2

showinout:

plots the classification of b-splines for 2D

splines are marked at the lower left position of their support

the inner and outer b-splines for w=1

the extended and normal inner and outer bsplines for w=2
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C.3. OTHER NUMERICAL METHODS

FDM:

programming code which uses Finite Difference Method

applied to two-point boundary value problems

FEM:

programming code which uses Finite Element Method

applied to two-point boundary value problems

FVM:

programming code which uses Finite Volume Method

applied to two-point boundary value problems

bsplinecubic:

programming code which uses B-spline Cubic Interpolation Method

applied to two-point boundary value problems
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