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ABSTRACT

VARIABLE STRUCTURE SYSTEMS THEORY BASED TRAINING
STRATEGIES FOR COMPUTATIONALLY INTELLIGENT
SYSTEMS

Noise rejection, handling the plant-model mismatches and alleviation of structured or
unstructured uncertainties constitute prime challenges that are frequently encountered in
the practice of systems and control engineering. One way of reducing the adverse effects of
the stated difficulties and obtaining a good tracking precision is to utilize the techniques of

variable structure systems theory, which offers well formulated solutions particularly to

problems containing uncertainty and imprecision.

In this thesis, variable structure systems theory based training strategies of
computationally intelligent systems are discussed. Two approaches are developed for
alleviating the above mentioned difficulties. Additionally, the learning rate selection

problem is treated from the point of variable structure control.

In the first approach described, a dynamic parameter adaptation law is derived and
the applicability of the algorithm is discussed. The analysis presented aims to extract the
conditions for establishing equivalence between sliding mode control of the plant and
sliding mode learning in the controller. The second method is based on the selection of an
extended Lyapunov function, by the use of which the sensitivity of the cost measure to the
adjustable parameters are minimized together with the half squared error measure. Lastly -
the selection of the learning rate for three different gradient based parameter tuning
strategies are discussed. The objective of the learning rate selection is to drive the plant to

a sliding mode while the output of the controller is driven to a similar regime.

The performances of the methods developed are assessed on the dynamic model of a
two degrees of freedom direct drive SCARA robotic manipulator, whose dynamic
equations are assumed to be unknown throughout the results presented. In the simulations,
the alleviation of the adverse effecfs of observation noise and varying payload conditions

are studied.



OZET

ISLEMSEL AKIL ICEREN SISTEMLER ICIiN DEGISKEN YAPILI
SISTEMLER KURAMINA DAYALI EGITIM STRATEJILERI

Guirtiltii baglslkhgl,l sistem-model uyumsuzluklarimin asilmas: ve yapisal olan ya da
olmayan belirsizliklerin bertaraf edilmesi sistem ve kontrol miithendisligi uygulamalarinda
stkga kargilasilan ©nemli sorunlardir. Bahsedilen glicliikklerin olumsuz etkilerinin
azalt11ma§1mn ve iyi bir izleme hassasiyetinin elde edilmesinin bir yolu 6zellikle kesinlik
ve hassasiyet icermeyen problemler i¢in iyi yapilandirilmig ¢oziimler oneren degisken

yapili sistemler kuraminin tekniklerinin kullanimidir.

Bu ¢alismada islemsel akil igeren sistemlerin egitiminde degisken yapili sistemler
kuramina dayali stratejiler ele almmaktadlr. Belirtilen gligliikklerin asilmasi igin iki

yaklagim gelistirilmis ve 6grenme katsayis: se¢imi problemi kayma kipli denetim agisindan

incelenmisgtir.

ilk yaklasimda dinamik bir parametre uyarlama kural: tiiretilmekte ve algoritmanin
kontrol miihendisligi acisindan uygulanabilirligi tartisilmaktadir. Yapilan analiz, sistemin
kayma kipli denetimi ile denetleyici icerisinde kayma kipli 6grenme arasindaki denklik
kosullarinin ¢ikarsanmasini amaglamaktadir. Ikinci yontem genisletilmis bir Lyapunov
fonksiyonunun se¢imi ile olusturulmaktadir. Bu yontemde karesel hata Slgiitline ek olarak
maliyet olgiitliniin uyarlanabilir parametrelere duyarlilii da en aza indirilmektedir. Son
olarak tiireve dayali ii¢ degisik parametre uyarlama kural i¢in 6grenme katsayisinin se¢imi
tizerinde durulmaktadir. Buradaki se¢imin amaci sistemi bir kayma kipine siirerken

denetleyici gikisini da benzer bir rejime zorlamaktir.

Gelistirilen y6ntemlerin basarimi, iki hareket serbestisine sahip, dogrudan siirtimlii
bir SCARA robotunun dinamik modeli iizerinde degerlendirilmektedir ve sistem
denklemlerinin bilinmedigi varsayilmaktadir. Benzetimlerde gozlem giiriiltiisiiniin ve

degisken yiik kosﬁllarlmn olumsuz etkileri de irdelenrriistif.
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1. INTRODUCTION

Intelligence in the form of well-organized solutions to ill-posed problems has been
the primary focus of much of the recent engineering research and the field of
computational intelligence has thus emerged. Artificial neural nefworks and fuzzy
inference systems constitute the core approaéhes of computational intelligence, whose
architectures have extensively been used in the applications ranging from image/pattern
recognition to identification and control of nonlinear systems [1-5]. What lies behind this
wide application spectrum is the fact that architectures in the field of computational
intelligence have the capability of perceiving the operating environment and tolerating the
faults mostly stemming from ambiguities in the model of the problem in hand. The verbal
power of artificial learning and the numeric power of high-speed connectionist approaches
encourage the use of neuro-fuzzy techniques in solving computationally complex
problems. Since the structures considered are universal approximators, an architecture with
an appropriate learning strategy can realize any mapping with a predefined realization error
bound [6-8]. The most substantial problem in the use of computationally intelligent
architectures is the safety in training. When the extensive use of artificial neural networks
and fuzzy inference systems in the domain of systems and control engineering are taken
into consideration, the importance of training safety becomes more apparent. Safety in this
context is intimately related to the time behavior of the adjustable parameter vector. If a
constant solution for parameter vector exists, a convergent behavior is sought iteratively;
however, the problem in hand may impose a dynamic solution entailing a time-varying
behavior in the parameter vector. In the case of the latter, a major objective has to be the
maintenance of the boundedness of the parameter vector. The achievement of either the
parametric convergence or the bounded parameter evolution is dependent on the ability of
compensating the adverse effects of the disturbances. This could be provided by an

appropriate design of the training strategy.

In the theory of controlbengineering, one way of designing a robust and stable control
system is to use the Variable Structure Systems (VSS) approach, which enables the
designer to come up with a rigorous stability analysis. It is-a well-known fact that a

variable structure controller with a switching output will (under certain circumstances)



result in a sliding mode on a predefined subspace of the state space. This mode has useful
invariance properties in the face of uncertainties in the plant model and therefore is a
candidate for the tracking control of uncertain nonlinear systems. The theory is well
developed, especially for single-input systems in controller canonical form. The
philosophy of the control strategy is simple, being based on two goals. First, the system is
forced towards a desired dynamics; second, the system is maintained on that differential
geometry. In the literature, the behavior observed until the system enters into the
predefined subspace of the state space is named the reaching mode, while the behavior on
this subspéce is called the sliding mode [9]. The control strategy borrows its name from the

latter dynamic behavior, and is called Sliding Mode Control (SMC).

Earliest notion of SMC strategy was constructed on a second order system in the late
1960s by Emelyanov [10]. The work stipulated that a special line could be defined on the
phase plane, such that any initial state vector can be driven towards the line and then be
maintained on it, while forcing the error dynamics towards the origin. Since then, the
theory has greatly been improved and the sliding line has taken the form of a
multidimensional surface, called the sliding surface, around which a switching control

action takes place.

In Variable Structure Control (VSC), the existence of observation noise constitutes a
prime difficulty. This is due to the fact that pure sliding control requires very fast switching
on the input, which cannot be provided by real actuators. In other words, the input depends
on the sign of a measured variable, which is very close to zero. This makes the éontrol
signal extremely vulnerable to measurement noise and leads to unnecessarily large control
signals. To alleviate these difficulties, several modifications to the original sliding mode
control law have been proposed in the literature, some recent ones of which are based on
the use of fuzzy logic [11-12] and artificial neural networks [13-14]. These methodologies
provide an extensive freedom for control engineers to broaden their understanding of the

problem, to deal with problems of uncertainty and imprecision.

During the last two decades, numerous contributions to VSS theory have been made.
Some of them are as follows. Hung, et al. [9] has reviewed the control strategy for linear

and nonlinear systems. In [9], the switching schemes, putting the differential equations into
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canonical forms and generating simple SMC strategies are considered in detail. In [15] and
[16], applications of SMC scheme to robotic manipulators are studied and the quality of
the scheme is discussed from the point of robustness. One of the crucial points in SMC is
the selection of the parameters of the sliding surface. Some studies devoted to the adaptive
design of sliding surfaces have shown that the performance of control system can be
refined by interfaciné it with an adaptation mechanism, which regularly redesigns the
sliding surface [16-17]. This eventually results in a robust control system. The performance
of SMC scheme is proven to be satisfactory in the face of external disturbances and
uncertainfies in the system model representation. Another systematic examination of SMC
approach is presented in [18]. In this reference, the practical aspects of SMC design are
assessed for both continuous-time and discrete-time cases and a special consideration is
given to the finite switching frequency, limited bandwidth actuators ‘and parasitic
dynamics. In [19-21], the design of discrete-time SMC is presented with particular

emphasis on the system model uncertainties.

Studies demonstrating the high performance of the SMC scheme in handling the
uncertainties and imprecision have motivated the use of SMC scheme in the training of
computationally intelligent systems. The results presented in [22-25] have shown that the
convergence properties of the gradient-based training strategies can be improved by
utilizing the SMC scheme. The approach presented in these references is based on the
construction of a dynamic model for the leamihg strategy and the design of a sliding
motion in the parametric displacement space. Since the dynamics of a gradient-based
| strategy is kept under control, the method presented in [22-25] can be considered as an
indirect use of VSS theory. However, some studies on the direct use of SMC strategy are
reported in the literature [26-27]. The methods discussed in these references deal with the
dynamic adaptation of the parameters of a flexible model such that the error on the output
of the model tends to zero in finite time [26-27]. The first results discussed by Sira-
Ramirez, et al. [26] are on the inverse dynamics identification of a Kapitsa pendulum by
assuming the bounds of uncertainties constant. Yu, et al. [27] extend the results of [26] by
introducing adaptive uncertainty bound dynamics, and their work focuses on the same
example as the application. The ‘r,najor drawback in both of the approaches is the fact that
the dynamic adaptation mechanism needs the error on the output of the model. If the model

is to be used as a controller, this fact constitutes a difficulty because the use of the



approaches proposed in [26-27] for control applications requires the error on the applied
control signal, which is unavailable. In [28], a dynamic learning scheme based on SMC is
discussed for the training of Feedforward Neural Networks (FNN). The method has been
used for the identification of a periodic time signal. The potential difficulty in
implementing the algorithm is the fact that the time derivatives of the hidden neuron

outputs are differentiated for evaluating the value of the switching function.

This thesis is organized as follows. The second section introduces the commonly
used architectures of computational intelligence and their relevance to mechatronics.
Adaptive Linear Elements (ADALINE), FNN, Gaussian Radial Basis Function Neural
Networks (GRBFNN), Standard Fuzzy Systems (SFS) and Adaptive Neuro-Fuzzy

Inference Systems (ANFIS) are considered as the intelligent structures.

The third section is devoted to the background knowledge on VSS theory for SMC.
Standard procedure of designing a controller that drives the tracking error vector to a

sliding surface is presented and the extent of the relevant a priori knowledge in the design

is emphasized.

In the fourth section, a dynamic parameter tuning strategy is derived from the
negative definiteness requirement of a single-term Lyapunov function. An analysis of the
equivalence between the sliding mode controLl of the plant and the sliding mode learning
inside the controller is presented. Three conditions for the establishment of the equivalence
are elaborated. This is followed by the simulation results. Lastly in this séction, a

discussion is presented concerning the obtained results.

The derivation of a dynamic adaptation strategy from a two-term Lyapunov function
is presented in the fifth section. The first term of the Lyapunov function is as that adopted
in the fourth section. The second term in the Lyapunov function reflects the magnitude of
the sensitivity of the cost measure with respect to the adjustable. parameters. The
simulation results and a discussion are presented for the performance evaluation of the

method.



The sixth section is devoted to the learning rate selection problem in gradient-based
training strategies. The formulation presented is based on an ADALINE controller and
aims to evaluate a sequence of learning rate variable so that the plant under control enters
into a sliding regime. The conventional constraints on the learning rate are thus removed.
A discussion on the applicability of the algorithm, computational requirements and the

assessment of the results obtained are presented at the end of the section.

Conclusions constitute the seventh section of the thesis.



2. COMPUTATIONAL INTELLIGENCE IN MECHATRONICS

The primary focus of the technologic investments in the first half of the 20% century
was the development of abcurate mechanical components. In the second half, the
emergence of high-speed microprocessors enabled the technologisté to integrate the
mechanical systems with the software supported electronic hardware, the design and
implementation of which necessitate the knowledge of mechanical, electronics and
computer engineering backgrounds. The fusion of these disciplines was later on called

mechatronics displaying a larger operational spectrum than the overall concern of its

constituents when considered individually.

A number of definitions for mechatronics have been proposed in the literature,
differing in the particular characteristics that the definition is intended to emphasize. The

most commonly used one emphasizes the synergy:

“Mechatronics is the synerglstlc integration of mechanical engineering with
electronics and 1ntelhgent computer control in the design and manufacturing of
products ‘and processes. The embedded intelligence may vary from

programmed behavior to self-organization and learning” [29].

It is rational to explain that the multifunctionality and versatility of the mechatronic
- products are fed by the increasing standards of the daily life. Similarly, the pursuit of
increased productivity and improved product quality eﬁcourages the utilization of
mechatronic devices in industry. Therefore there is a great need for methodologies that
enable the designer to handle the complexity of real-world systems, the complexity of
which limits a detailed understanding of the overall structure, and leads to a design based
on imperfect models. Particularly, in the field of systems and control engineering, the
design of controllers for sophis_tiéated systems is a challenge because of the essentiality of
a priori knowledge, which can be in the form of mathematical equations, observed data or
physicai laws. The chasm between the theory and practice is felt strongly in the cases

where the mathematical equations describing the system dynamics are intractable. or



incomplete, or the observed data are corrupted. The difficulties stated are the typical

problems frequently encountered in the design and implementation of control schemes.

Although a considerable amount of progress has been made in the field of
conventional systems theory since 1950s and the resulting outcomes have been used in
many industrial applications, there still exists ﬁany difficulties. Depending on the
requirements of the design problem, the conventional framework offers various
approaches, most of which assume the availability of the governing equations of the
system urider investigation [30-31]. This is usually not the case in practice. Even when the
form of the system dynamics is known, the uncertainties are assumed to satisfy certain
conditions, which imply the availability of a nominal dynamics [32], or the availability of
the statistical properties of the disturbances [33-34]. The existence of uncertainty and
impreciseness has therefore made it obligatory in many cases to integrate the automatic

control routines with some manual actions, which exploit the knowledge of the human

expert.

The driving force for devising the strategies that replace the human expert with
autonomous machines has led to the emergence of computationally intelligent systems, the
use of which enables the representation and implementation of decision making procedures
of the human brain in a systematic manner. More explicitly, the known microscopic
models of the process under investigation are taught to an intelligent system, which
gradually refreshes its content to reach a sufficiently detailed representation and keeps
maintaining the satisfaction of the objectives of the design by adding the extracted

information to the a priori knowledge.

The breakthrough in 1960s by Prof. Zadeh [35], who is the founder of Fuzzy Logic
(FL), stimulated the community to seek for unconventional methodologies that are not
subject to the constraints of the conventional approachés. At about the same time, Widrow
and Hoff [36] demonstrated the use of Adaptive Linear Elements (ADALINE) in control.
These two incidents were the stimulants of a new trend in control engineering and have led
to a radical departure from the conventional control techniques. Therefore, the idea of

coping with the uncertainty and impreciseness resulted in the birth of the field of



computational intelligence, the models of which have the structural flexibility, e.g.

artificial neural networks or fuzzy inference systems.

Artificial neural networks are well known with their property of representing
complex nonlinear mappings. Earlier works oh the mapping properties of these
architectures have shown that neural networks are universal approximators [6-8]. The
mathematical power of intelligence is commonly attributed to the neural systems because
of their massively interconnected, fault tolerant architecture. Various architectures of
neural syétems are studied in the literature. Feedforward and Recurrent Neural Networks
(FNN, RNN), Gaussian Radial Basis Function Neural Networks (GRBFNN) [1,3],

dynamic neural networks [37], and Runge-Kutta neural networks [38-40] constitute typical

structurally different models.

Fuzzy inference systems are the most popular constituent of the soft computing area
since they are able to repres‘ent human expertise in the form of IF antecedent THEN
consequent statements. In this dorhain, the system behavior is modeled through the use of
linguistic descriptions. Although the earliest work by Prof. Zadeh on fuzzy systems [35]
has not been paid as much attention as it deserved in the early 1960s, since then the
methodology has become a well-developed framework. The typical architectures of fuzzy
inference systems are those introduced by Wang [4-5], Takagi and Sugeno [41] and Jang,
Sun and Mizutani [3]. In [4], a fuzzy system having Gaussian membership functions,
product inference rule and weighted average defuzzifier is constructed and has become the
standard method in most applications. Takagi and Sugeno change the defuzzification
procedure where dynamic systems are used in the defuzzification stage. The potential
advantagé of the method is that under certain constraints, the stability of the system can be
studied. Jang, et al. [3] propose an adaptive neuro-fuzzy inference system, in which a
polynomial is used as the defuzzifier. This structure is commonly referred to as ANFIS in
the related literature. The choice concerning the order of the polynomial and the variables

to be used in the defuzzifier are left to the designer.

In this section, the architectures of artificial neural networks and fuzzy inference
systems studied in the thesis are introduced and the data flow through the architecture is

discussed for each structure. At the end of the section, a discussion on the concept of



learning in computational intelligence and connections to control engineering applications

are established.

2.1. Adaptive Linear Elements

Adaptive linear elements are frequently used components of computationally
intelligent systems. The structure of an ADALINE is illustrated in Figure 2.1 for an (m+1)-

input case.

Um+1

Figure 2.1. Structure of an Adaptive Linear Element

The parameter vector and the input vector of the ADALINE structure are defined as
T
b=l b2 - bl @.1)

ug=fy wy - U] 2.2)

The input-output relation of the structure can be defined as
T= ¢T Uy ’ (23)

Without loss of generality, the u,+ could be chosen as unity, which acts as a bias value,

and u, can be termed as the augmented input vector.

In the applications of computationally intelligent systems, ADALINE architecture is

used either in the output layer of neural networks or in the defuzzification stage of fuzzy
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inference systems. For this reason, it is important to keep the definitions in (2.1)-(2.2) and

the relation in (2.3) in mind.

2.2. Feedforward Neural Networks

Feedforward neural networks constitute a class of neural network structures in which
the data flow is from input to the output and no feedback connections are allowed. Because
of the structural diversity of neural models, this discussion is devoted to the architecture

and the mathematical representation of FNN structure, which is discussed from the point of

control engineering.

The architecture of a FNN utilized in this study is illustrated in Figure 2.2, in which
the neural network has three layers implying the sufficiency for realizing any continuous
mapping to a desired degree of accuracy as long as the hidden layer contains sufficiently
many neurons [6-8]. The number of neurons in the hidden layer is a design variable and is

mostly determined either by trial and error or by empirical results.

Input . Hidden Output
Layer Layer Layer

Figure 2.2. Structure of a Feedforward Neural Network
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The overall realization performed by the structure depicted can be expressed in the

vector form as described below.

r=QL QM u+v;)+v,) 2.4

In the above equation, if the number of hidden neurons is denoted by hj, the matrix
connecting the input vector and the hidden layer (T';) is of dimension A;xm, and that
connecting the hidden layer output vector and the output vector (I') is of dimension nxh;.
The vector of neuronal activation functions is denoted by Q, which is a #;x1 vector
function. Similarly, the dimensions of the bias vectors v; and v, can be obtained as A;x1

and nx1 respectively. It is straightforward to generalize the formulation for structures

having more than one hidden layer.

It should be noted that the neurons in the output layer, in this thesis, employ linear
activation functions (i.e. ADALINESs are used), nevertheless they could have a nonlinear
behavior. The selection of the neuronal nonlinearity is also a design flexibility exploited by
the designer. Although there are many variations, the widespread choice for the entries of

the vector function Q is the hyperbolic tangent function, which is adopted throughout the
thesis [1,42-44].

The control applications of artificial neural networks have extensively been analyzed
in the existing literature [13-14,24,26-28,37,32-47]. The central question for the
exploitation of the versatility of these systems for the fulfillment of a specific task is how
the parametersrof the structure are selected. Practically, the best parameter set is reached
iteratively rather than by a direct assignment. The search for achieving the best parameter
set i.e. the entries of the matrices I'; and I'; and those of v; and v, for the structure in
Figure 2.2, a number of techniques are frequently utilized. These are based on the

minimization of a quadratic cost function as

.fQﬁ-szQﬁ—zb) @5)

p=l1

J =

N =
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The cost measure described above is differentiable with respect to each element of
the entire parameter set. The operation of searching for the best parameter combination in a
multidimensional space is called “learning”. The terms “parameter tuning”, “parameter

>

adjustment” or “parameter adaptation” can be used for the same purpose interchangeably.

In (2.5), P is the total number of training pairs included in the tréining data set. For
the on-line training strategies, the parameter adjustment mechanism processes the instant
values of the observed quantities and the training data set includes only one pair for each

time instant. The modified form of the cost function in (2.5) can be reformulated as

I=2ea-2f ea=2) 2.6)

‘PARAMETER
ADJUSTMENT
MECHANISM

N
CONTROLLER

I

> PLANT

Iy

Y

Figure 2.3. Structure of the feedback control system as imposed by the theory

The use of the FNN architecture depicted in Figure 2.2 as a controller is illustrated in
Figure 2.3, in which the plant under control is in an ordinary feedback loop. The controller
uses the discrepancy between the reference and observed state vectors and produces a

control signal. In the outer loop, a parameter adjustment activity is performed to reduce the

instantaneous value of the cost function in (2.6).

The parameter adjustment block in Figure 2.3 uses the error vector (e;) on the
produced control signal and evaluates some parametric displacement values, which are to

be added to the current values of the parameters. The difficulty in implementing such a
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mechanism is the unavailability of the desired values of the controller outputs denoted by
17 [48]. Therefore the measure of the controller performance is practically constructed

using the tracking error vector, which leads to the following cost function.

1
(R3]

Q.7

N

In Figure 2.4, the modified structure of the feedback control system is sketched, and
is used tﬁroughout the thesis. It is to be noted that the adjustment mechanism block in
Figure 2.3 may include the information about the plant, e.g. Jacobian or an identified
model, or an estimator for the desired output of the controller [3,49-51]. In the fourth and
fifth sections, an in-depth consideration is given to the training strategies for the

architectures discussed in this section.

PARAMETER
3| ADJUSTMENT
MECHANISM
66— 3 4 FNN Y PLANT g
e CONTROLLER [ _

P

Figure 2.4. Structure of the feedback control system as imposed by the practice
2.3. Gaussian Radial Basis Function Neural Networks

The fundamental operation in most neural network architectures existing in the
literature is the evaluation of a dot product of an input vector and a parameter vector, and
then passing the evaluated quantity through a nonlinear activation function. The yield of
the described process is the output of the neuron. However, in another class of neural
networks the neuron output is evaluated by combining the values of some appropriately

defined basis functions. The networks using basis functions constitute several number of
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hidden neurons, the activation level of which depend on the distance between the input
vector and a prototype vector [1-3]. The structure of a m-input, h-hidden neuron and

single-output GRBFNN is illustrated in Figure 2.5.

Figure 2.5. Structure of a GRBFNN

Gaussian radial basis function neural networks constitute a special class of the
structures described above. A hidden neuron in GRBFNN uses a Gaussian nonlinearity as

the activation function, namely

2
,Uij(“j)= exp —(uj —CU} (2.8)

In this definition, i indexes the neuron order in the hidden layer while j is for input

vector ordering. The prototype vector is comprised of the c; variables, which characterize
 the centers of the Gaussian functions. The variable o determines how the function (z4)
spreads over the domain of its input space (u;). The output of the i™ neuron in the structure

is denoted by w' and is evaluated through the use of
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w = ﬁyij (uj) (2.9)
j=1

The overall output of the structure depicted is_evaluated by a weighted sum of the

responses of the neurons contained in the hidden layer and is described by
L i i T
T=Yyw =y w (2.10)

In (2.10), y denotes the weight determining the effect of the i hidden neuron output on the

overall network response.

What makes the use of GRBFNN attractive for control engineering applications is
that the expert knowledge can be used in the initialization of the parameters of the basis
functions. More explicitly, a hidden neuron is fired if the input vector is close to the
prototype vector of this neuron. If the designer knows roughly what the GRBFNN structure
must perform when the input vector is close to the prototype vector of each one of the

hidden neurons, the entries of the y vector can be assigned by using this knowledge.

Obviously, by setting the parameters of the structure randomly and implementing a
suitable learning algorithm can also lead to the achievement of the design specifications.
‘But the utilization of the expert knowledge will shorten the time during which an undesired

transient response is likely to arise.

The applications of GRBFNN for the identification and control purposes are

considered in [38-39,52] and those for image/pattern recognition are discussed in [2].
2.4. Standard Fuzzy Systems

Contrary to what is done in the realm of prediéate logic, representation of knoWledge
by fuzzy quantities can provide extensive degrees of freedom if the task to be achieved can
better be expressed in words than in numbers. The concept of fuzzy logic in this sense can

be viewed as a generalization of binary logic and refers to the manipulation of knowledge
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with sets, whose boundaries are unsharp [53]. Therefore the paradigm offers a possibility
of designing intelligent controllers operating in an environment, in which the conditions

are inextricably intertwined, subject to uncertainties and impreciseness.

Understanding the information content of fuzzy logic systems is based on the
subjective judgements, intuitions and the experience of an expert. From this point of view,
a suitable way of expressing the expert knowledge is the use of IF antecedent THEN

consequent rules, which can easily evaluate the necessary action to be executed for the

current state of the system under investigation.

Knowledge
Base

A 4

Input : : Output
P —»| Fuzzification j---- » Infert?nce ---------- P Defuzzification
Engine

I

Rule Base

Figure 2.6. Structure of a fuzzy controller

Structurally, a fuzzy controller is comprised of five building blocks, namely,
fuzzification, inference engine, knowledge base, rule base, and defuzzification as shown in
Figure 2.6. Since the philosophy of the fuzzy models is based on the representation of
knowledge in fuzzy domain, the variables of interest are graded first. This grading is
perforrhed through the evaluation of membership values of each input variable in terms of
several class definitions. According to the definition of a membership function, how the
degree of confidence changes over the domain of interest is characterized. This grading
procedure is called fuzzification. In the knowledge base, the parameters of membership
functions are stored. Rule base contains the cases likely to happen, and the corresponding
actions for those cases through linguistic descriptions, i.e. the IF-THEN statements. The
inference engine emulates the expert’s decision making in interpreting and applying

knowledge about how the best fulfillment of the task is achieved. Finally, the defuzzifier
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converts the fuzzy decisions back onto the crisp domain [54]. As depicted in Figure 2.6,

the outputs of the fuzzifier and the outputs of the inference engine carry fuzzy information.

The architecture used in this thesis is a Standard Fuzzy System (SFS) proposed by
Wang [4-5] and illustrated in Figure 2.7. Among many other alternatives existing in the

literature, this system uses algebraic product operator for the aggregation of the rule

premises and bell-shaped membership functions described as

1
Hij (“j ) = 2b;
1+ Uj;—cy, (2.11)
ajj
Rule #1
23] Hil
uz M2
Um Him
HR1

LR |

HRm ,
Rule #R |

Figure 2.7. Structure of a Standard Fuzzy System

In (2.11), ¢y defines the center of the membership function; a; and b characterize the
slope and flatness of the function respectively. For the fuzzy system illustrated in Figure

2.6, the i rule in the rule base has the following structure.

IF uy is Ul AND uyis US AND ... AND up is U,

THEN Fi=yf
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In the IF part of this representation, the lowercase variables denote the inputs and the
uppercase variables stand for the fuzzy sets corresponding to the domain of each linguistic

label. The THEN part is comprised of the prescribed decision in the form of a scalar
number denoted by y'.

The data flow through the architecture discussed entails the ‘evaluation of the
activation level (or the firing strength) of each rule contained in the rule base. For the i

rule, this quantity is denoted by w' and is given as
. m N
w' =] Hij (uj) (2.12)
J=1

in which the rule premises are aggregated with the algebraic product operator. Without loss
of generality, one should notice the similarity between (2.9) and (2.12), which establishes a
functional connection between the hidden neuron outputs in GRBFNN and aggregation of

rule premises in SFS with product aggregation operation [3].

If the rule base is assumed to have R rules, the vector of firing strengths can be

normalized and the i" entry of the resulting vector can be described as

§ Lk (2.13)
k=

R
—_—— Z y,lwn = :)—) _}Y_n (2.14)

which determines the crisp output of the ﬁJzzy system.
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It should be noted that the output of the fuzzy system discussed is scalar. Since the

aim is to use the structure in control applications, it is straightforward to design such a

structure for each control input of the plant.

It has been discussed in the section 2.2 that adaptive fuzzy controllers in most
applications suffer from the unavailability of the desired values of the control signal.
Therefore, the feedback control structure depicted in Figure 2.4 is utilized in the

applications of fuzzy control strategies, which adapt the parameters to reduce some norm

of the tracking error.

2.5. Adaptive Neuro-Fuzzy Inference Systems

Autonomy is one of the most important characteristics required from an intelligent
system. A basic requirement in this context is the ability to refresh and to refine the
information content of the dynamics of the system. It therefore requires a careful
consideration in the realm of engineering practice. From a systems and control engineering
point of view, the designer is motivated by the time-varying nature of structural and
environmental conditions to realize controllers that can accumulate the experience and
improve the mapping precision [3,55]. Fuzzy methodologies are good in achieving the
former and neural networks the latter. The integration of these methodologies that exploit
the strength of each collectively and synergistically is therefore a natural way to follow.
The éarly works in the direction of synthesizing hybrid neuro-fuzzy systems consider the
neural networks having fuzzy weights and biases [56], uncertainty processing by different
components of a network [57] and structurally hybridized architectures [58], all seeking a

suitable integration of neural and fuzzy systems.

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) aim to utilize the verbal power of
fuzzy systems and the numerical power due to neural nefworks by an appropriate
combination. Such a combination also enables a biased assignment of the initial values of
the parameters of the structure utilizing the expert knowledge on the system under

investigation.
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This thesis considers the ANFIS structure with first-order Sugeno model containing

R rules as shown in Figure 2.8.

Uy Uy
Uy ——’ Hi Wy + + 1
: 3 (R )—» L
Um P Lim
Uy Um
L— P L2 ~ w% fz
: I N T
P Hom
Uy Uy
1 Urs : w,lf + fR
i I N

Hrm

Figure 2.8. Structure of an Adaptive Neuro-Fuzzy Inference System

Bell-shaped membership functions as defined in (2.11) with product inference rule
are used at the fuzzification level. The inference engine outputs the firing strengths for
each rule, which is described in (2.12). The vector of the firing strengths is normalized
through the use of (2.13), the function of which is depictéd as circles with N in Figure 2.8,
and the resulting vector is defuzzified by utilizing the first order Sugeno model [5]. An m-
input one-output ANFIS architecture is depicted in Figure 2.8, for which the rule structure
is described below. When the input vector u is constrained to the t:uzzy range characterized

by the IF part of the i™ rule, the output is a linear function of the input variable.

IF uy is Ul AND uz is Uy AND ... AND uy, is U},

THEN fi = Yi,1u1+---+ Yi,mum+Yi,m+l
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The overall realization performed by the ANFIS structure is described in (2.15), in
which Y is an Rx(m+1)-dimensional matrix used in the defuzzification stage and u, is the

vector of augmented inputs described explicitly in (2.2) with 4+ being unity.
R i i_.T |
=2 fwa=w, Y uy (2.15)
i i=1

The use of ANFIS structure for control purposes is illustrated in Figure 2.4, where
ANFIS takes the place of FNN controller. If the input vector is composed of the error and
the rate of the error as discussed in [25,59-60], ANFIS structure can be viewed as an
analogue of a collection of PD controllers operating on local regions of the phase space. A
soft switching between the local regions takes place because of the fuzzy boundaries of the

activation region of each local controller.
2.6. Learning, Computational Intelligence and Control Engineering

Although there is not a standard definition, the process of improving the future
perfofmance of a flexible structure by tuning the parameters can be described as learning.
The approaches. existing in the literature employ various techniques in achieving the
désired parameter set, which is unknown and which require an iteratively evolving search
mechanism. It is to be noted that the most common technique that can be used in
performing a suitable search operation in a multidimensional parameter space is based on
the use of an appropriately defined cost function. Alternatively, the search procedure can
be ifnplemented without using the derivative information; such as is done by the use of

methods adapted from the evolutionary computation or random search methods [3].

Error Backpropagation (EBP) technique [61] and Levenberg-Marquardt (LM) |
optimization technique [62] are the frequently used techniques for adapting the parameters
of a computationally intelligent architecture. Both of the approaches are based on the
utilization of gradient information and necessitate the differentiability of the nonlinear

activation functions existing in the architecture with respect to the parameter to be updated
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[63], and include some heuristics for improved realization performance. These typically
concern the selection of learning rate, momentum coefficient, and adaptive learning rate
strategies in EBP or stepsize considerations in LM. However, the problem of convergence
or that of maintaining the bounded parameter evolution is still there. More explicitly, the
learning strategy is not protected against disturban;:es, which may excite the undesired
internal modes of EBP or LM approaches. The multidimensionality of the problem is
another difficulty in coming up with a thorough analysis distinguishing the useful training

information and disturbance related useless information.

Apart from the algorithmic problems, the training of the computationally intelligent
controllers entails the target outputs of the architecture. From the control engineering point
of view, as illustrated in Figure 2.3, the unavailability of the target control sequence and
the existence of an inexact or a simplified model of the plant constitute a difficulty. A
suitable way of obtaining the equivalent error on the applied control inputs is to use
another computétionally intelligent system identifying the dynamics of the plant on-line as
shown in Figure 2.9 [38-39,47,50,64-66]. However, this operation increases the
computational burden because of the considerable amount of floating point operations to
be performed at each control period. Therefore, obtaining a suitable transformation from
the tracking error vector to the control signal error is impossible without making
concessions from the point of computational complexity. In this respect, the structure
depicted in Figure 2.4, which is used in practice, implies that the uncertainties stemming
from an imperfect transformation are to be alleviated through an appropriate learning

process, which utilize the tracking error vector.

~ Since the ultimate goal of the design is to achieve a good tracking precision, reducing
the adverse effects of the disturbénces and those of the approximate transformation
between the tracking error vector and controller output requires that the adopted learning
dynamics should be robustified. This steers the designer to seek for methods known in the
conventional design framework. From this point of view, a learning strategy based on
Variable Structure Systems (VSS) theory constitutes a good candidate for eliminating the
adverse effects of disturbances. An in-depth analysis for the use of VSS theory in tuning

the parameters of intelligent controllers is presented in this thesis.



Figure 2.9. Use of an identifier for obtaining the equivalent torque error (e.)
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3. ANINTRODUCTION TO VARIABLE STRUCTURE SYSTEMS
THEORY FOR SLIDING MODE CONTROL

Design of a controller for a system, whose salient features are represented in the
model, which the design is to be based upon, requires the alleviation of plant/model
mismatches. These mismatches can be classified into two categories, namely, structured
and unstructured. In the former, uncertainties are on the values of the parameters, while the
latter concerns the unmodeled dynamics existing in the plant [67]. For the structured
uncertainties, the framework of adaptive control offers well formulated solutions based on
the estimation of slowly varying unknown parameters. The design of the controller can
then be done using the estimates. However, an oversimplified or an imperfect model of the
plant necessitates a very robust controller to maintain the tracking performance. Use of

VSS theory is one particular approach for achieving this task [17,68].
In this section, an introduction to VSS theory for Sliding Mode Control (SMC) is

discussed briefly. Although the theory scrutinizes various conditions that are likely to

happen in practice, the discussion in this section is confined to what constitutes a basis for

the subject of this thesis.

3.1. Variable Structure Control with Lyapunov Function Approach

Consider a nonlinear and non-autonomous system represented as

Ms

o) = £, 0)+ S dyr;  Fln (3.1)

I

Jj=l1

The system under control is a multi-input multi-output one driven by the nx1-dimensional

input vector z. The state vector and the input vector of the system in (3.1) are defined as

. - . T
o=lo, 6 .. o' .. 6, 6, - O (3:2)
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r=[r; 79 - T,,]T (3.3)

respectively. The system in (3.1) can be rewritten as

6=7,©0)+Dz | (3.4)

in which D denotes the input gain matrix. Without loss of generality, the vector of sliding

surfaces is chosen as a linear function of the components of the tracking error vector

described as

=l e - e, =664 6-6y - 6,-6n4) (3.5)

which is the discrepancy between the values of the measured state vector g and the desired

state vector 8. The sliding surface s,(e) is a nx1 vector and is defined as
s,(e)=Ge=G(6-6,) (3.6)

The widespread selection of the matrix G is such that the i sliding surface function has the

form

d ri—1 . :
sp,.(e,-)=(5t-+.ﬂq-) e; 3.7)

in which, 4; is a strictly positive constant. Let ¥, be a candidate Lyapunov function given

as

Vplsp)=355s, 69

If the prescribed control signal satisfies

BOGAZIGH ONIVERSITES] KOTOPHANE®S]T
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. T .
Vp (§p)= —$p¢ sgn(gp) (3.9)
the negative definiteness of the time derivative of the Lyapunov function in (3.8) is

ensured. In (3.9), & is a positive definite diagonal matrix of dimension nxn. If the time

derivative of the Lyapunov function in (3.8) is eveiluated, the quantity obtained must be

equal to the expression in (3.9). This can be stated as

T . T
Spsp =—£pfsgn(~_vp) (3.10)

From (3.4) and (3.6), one can write the time derivative for s, as

gp=—GQd+G(£p(Q)+D1) 3.11)
Substituting (3.11) into (3.10), the control signal can be constructed as

T=Te+I, (3.12)

in which the first term is the equivalent control term and the second term is the corrective
control term. Both terms are explicitly given as in (3.13) and (3.14) respectively. For the

existence of the mentioned components, the matrix GD must not be rank deficient.
z'eq =_(GD)"1(G£p(Q)—GQd) - (3.13)

. =—(GD) " esenls ,) | (3.14)

In the literature, equivalent control is considered as the low frequency (average)
component of the control signal. Because of the discontinuity on the sliding surface, the

corrective term brings a high rate component [69-70].
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If ¢(0)=0, the tracking problem can be considered as keeping e on the sliding surface,
however, for nonzero initial conditions, the strategy must enforce the state trajectories
towards the sliding surface, which is ensured by imposing the equality iﬁ (3.9). For the
case of nonzero initial conditions, the phase until the error vector hits the sliding surface is
called the reaching mode, the dynamic characteristics of the system during which is

determined by the control strategy adopted. Application of the control input formulated in

(3.12) imposes the dynamics describes as

s, ==¢sgnls,) (3.15)

which clearly enforce the error vector towards the sliding surface. Once the sliding surface

is reached, the equality in (3.7) becomes equal to zero; and this enforces the error vector to

move towards the origin.

Lastly in this section, it is beneficial to mention the problems associated with the
SMC strategy in devising variable structure controllers. The first problem stems from the
discontinuity of the control signal about the sliding surface. After the reaching phase, the
constructed form of the control signal enforces the system states to lie on the sliding
s;urface, along which a discontinuous control action is of interest. This fact introduces high
freqﬁency components into the prescribed form of the control signal, the application of
which may excite the undesired high frequency dynamics of the plant under control and
can lead to unpredictable instabilities. The problem of having such high frequency
components in the control signal is referred to as chattering in the related literature
[9,18,68]. For the alleviation of the chattering phenomenon, various techniques have been
reported in the literature, which postulate the form of the control signal for the plantsv,

whose goveming equations are linear in the control term [71-78].

Secondly, if the observed state variables are noisy, the control signal is adversely
affected by this parasitic dynamics. Since the form of control signal entails the sign of a
measured quantity, which is very close to zero, the problem can be solved by introducing a

thin boundary layer, in which the control signal is smoothed out [67].
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3.2. Visualization of Sliding Mode Control for Second Order Systems

For a single-input single-output second order system (n=1, r;=2) of the form (3.1),
the error and the rate of error define the sliding surface, which passes through the origin
with slope equal to —~4,. The surface for this case is a line in fact, and is explicitly given in

(3.16) and depicted in Figure 3.1.

sple)=¢é+4e (3.16)
é(r)
A
< » (1)
Sliding
/ surface
A\ 4
é+die= 0

Figure 3.1. Sliding surface for a second order system

It should be noted here that the form of the sliding surface does not have to assume a
linear function of its arguments. The selection shown in Figure 3.1 ensures that once the
tracking error reaches the sliding surface, it remains on it forever and converges to origin.
Additionally, although the surface shown in Figure 3.1 is a locus in the phase space, itisa

dynamics characterizing the behavior of the error [68].

3.3. A Discussion on Computational Intelligence and Sliding Mode Control

Relevance

Sliding mode control is a specific approach for designing a controller, whose most

popular form and the problems associated with it have been discussed in the preceding
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discussion. In the literature, methods of computationally intelligent systems have widely

been used for compensating the problems arising in SMC applications. These can be

classified into two groups.

In the first group, the standard procedure of SMC design is followed and the
parameters of the desfgn or the uncertain terms in the plant dynamics are constructed by

the use of computationally intelligent systems [12,77-82].

In fhe second group, a computationally intelligent architecture is used as the
controller and the parameters of the controller are adjusted such that the plant enters into a
sliding mode [78-79,83].

A third possible and novel class of combining the methods of computational
intelligence and SMC is to drive the system to a sliding mode while enforcing a similar
dynamics on the parameters of the computationally intelligent system acting as the

controller. In the next two sections, an analysis and design aiming such a combination is

discussed.
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4. PARAMETER TUNING BASED ON A SINGLE-TERM
LYAPUNOYV FUNCTION

In this section, a novel method for driving the dynamics of a single-input, second
S T PTL, StEOmE

order nonlinear system to a sliding mode is discussed. The approach is based on SMC

methodology, i.e., the system under control is driven towards a sliding regime by tuning
the parameters of the controller. In this tuning loop, the parameters of the controller are
adjusted such that a zero learning-error level is reached in one-dimensional phase space
defined on the output of the controller. For the purpose of tuning the controller parameters,
it is shown that there exists a relation between the sliding line defined for the plant under
control and the zero learning-error level for the controller. The relation between these two
quantities is analyzed and the conditions for observing an equivalent sliding regime on the

controller parameters are discussed.
4.1. Definitions and the Formulation of the Problem Using ADALINE Structure
Consider the three-input one-output ADALINE structure, which is to be used as the

controller, depicted in Figure 2.1. The adjustable parameter vector and the input vector of

the structure are described as

p=lo & &I | (4.1)

uy=le ¢ 1 =fy u 1 4.2)

In (4.2), the symbol e denotes the tracking error, which is the discrepancy between the
response of the system under control and the reference signal (e = 6 - ;). The input output

relation of the controller is given as

T =y + gy +¢s (4.3)
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The structure of the control system is an ordinary feedback loop as illustrated in Figure 4.1.

The definitions of the sliding surface s, (e,¢) and that of zero learning-error level

s¢(z,74), which are seen in this figure, are given as
sple.¢)=é+e < (4.4)
where, A is the slope of the sliding surface and

sc(r,rd)= T—Tyg 4.5)

where, 7y is the desired output of the controller and is unknown.

Sp PARAMETER @

b4 —P TUNING
MECHANISM

l PLANT

CONTROLLER

Evaluate

V=

. ]
G=f(8)+Dz [

Figure 4.1. Structure of the control system

In order not to be in conflict.with the physical reality, the designer must impose the

following inequalities, the truth of which states that the parameters of the controller (g), the
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time derivative of the input signal (% 4) and the time derivative of the desired output of the

controller (7,) remain bounded.

- 54 )m e
| 4] < Ba, @4.7)
| Z4l<B:, 4.8)

Theorem 4.1, For a multi-input single-output flexible structure, whose output is a linear

function of the adjustable parameters, the adaptation mechanism described as

. U
§ = ——4—Ksgn(s,) 4.9)
U Uy

" enforces the parameters to values resulting in zero learning-error level in one-dimensional
phase space, whose argument is defined by (4.5). In the adaptation rule described above, K

is a sufficiently large constant satisfying the inequality given as
K>ByB; 4+ Bz, (4.10)

The adaptation mechanism in (4.9) drives an arbitrary initial value of s. to zero in finite

tiﬁe denoted by t, satisfying the inequality

Isc(o)l

h<
K—(B¢B,2A _+B.i.d)

(4.11)
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Proof: Consider the Lyapunov function candidate as

1
v, =5s§ (4.12)

In order to reach the zero learning-error level (s.~0), the time derivative of (4.12) must be

negative definite, which is given as
Ve =$c5
= (i- —74d )S c

=(¢_5T4A ey —r'd)sc

(4.13)
= _ngn(sc)sc +(éT7'lA —i'd)Sc

= Klso|+g7d g~ 74 )5e

S(—K+B¢Bi‘A +Bz'-d )lSc!

Since ¢T U —7q4 < ByBy , +B;, holds always true, it is apparent that the condition in

(4.10) ensures the negative definiteness of the time derivative of the selected Lyapunov

function. If one evaluates §, with the aid of (4.9), one obtains

§p = —-ngn(sc)+;1_5TL_'l i-td (4.14)

The solution to the differential equation in (4.14) can be given as
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sc(r>—sc(o>=-Ktsgn(sc<o»+:{(f(am(a)—fd(a)da @.15)

Att=1ty, s(ty) = 0;

t

—5,(0)=-Kt;sen(s.(0))+ ;[ (QT (o) 4(0)-24 (O'))dO' (4.16)

By fnultiplying both sides of (4.16) by —sgn(sc (0)) , one obtains

|sc )= Ktj, - (tg[ (QT (0)i 4(0)-%4 (a))da} sgn(s.(0))

(4.17)

> Kty, —-(B¢Bi‘A +Bi’d )th
which implies hitting in finite time as described by the inequality in (4.11). O

Theorem 4.2. If the system enters the sliding mode s,=0 and remains in it thereafter, then

the parameters of the flexible controller, @, will evolve boundedly.

Proof: In the sliding mode, s.=0 and §.=0. Based on this, the following derivation can be

made.

S¢ =T=Tg (4.18)
Substituting (4.3) into (4.18),
uy—17=0 (4.19)

which implies the following relations.
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U 4 (4.20)

The above equality can be rewritten as follows.

; u .T u .
uﬁ{gﬂ Sty g-—4 fdj=0 (4.21)
U Uy Uy

Since the entries of the vector uy cannot be linearly dependent for all time [67], the

equality in (4.21) imposes the following differential equation form in the sliding mode.

w3

p=-42A 4 A g, (4.22)
UUy U Uy
The solution to the above equation is
! Vv Y4 (U ) .
8(t)= (,0)p(0)+ [0t 0)—=4———=74(c)do (4.23)
0 u (o) u4(0)

where, @ denotes the state transition matrix corresponding to the differential equation in
(4.22), namely,

| @(r,o)=exp{—’“A(")‘-*A(")T da} 24

ou 4(0) u (o)



Because of (4.2), one can

relations can be induced.

|(z,0)| =

36

write 1<|u,|<B, , - For the first term in (4.23), following

exp{ uA(G)uA(U) do-}
0u4(0) u4(0)
ey t uA(O' (o)
P{ 6‘. AO') uA(O'dA( )}
<lex [ 4l0) u (o)
: p{ iy }
' b uylo) T}
< exp{j————T——dﬂA(U)
ou4(o) ZA(‘?') (4.25)
< exp{tﬂb_lA(O‘XéiﬂA(a)T}
0

<

ol e
0

—fexe, () (07 )]

<B

where, B, is some positive constant. For the second term in (4.23), the analysis proceeds as

given below.
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t O'\ ZA(O-) i o < t_—g&f o
({(D(l‘, /y_A(G)TgA(a) d( )d By (')[yA(O')Tl_IA(O') 4(o)d
<B tIHA(O')‘i'd(O')dO'
0 (4.26)
<88, | feuloVio
0

<ByBy |ra(t)-74(0) < B,

where, B, is some positive constant. Since the two components of the solution in (4.23)

‘evolve boundedly, the sum of them will trivially be bounded as

[66)] < B, + B, (4.27)

Note that in (4.6) the parameters of the flexible controller (@) are required to be bounded.
However, Theorem 4.2 states that once the system enters the sliding mode s.~=0, the

boundedness of ¢is guaranteed. That is to say that (4.6) is automatically satisfied.

In the view of the analysis presented, the parameters of the controller are adjusted as

H e

¢1 = —m ngn(sc) (428)
. e

¢y = —mngn(sc) - (4.29)
. 1

#3 =———5—Ksgn(s;) (4.30)

e“ +e” +1
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The main problem in applying the design presented is the unavailability of the desired
value of the control signal (7). If this quantity is not available, one cannot construct s, and

the approach cannot be used for control purposes. In section 4.2, the relation between the s,
of (4.4) and s of (4.5) is analyzed.

4.2. Analysis of the Equivalence between Sliding Mode Control and Sliding Mode

Learning

Consider the sliding line s, and the zero-learning-error level s. described by (4.4) and

(4.5) respectively. The relation between these two quantities is assumed to be as

se="¥s,) (431)

Qualitatively, if the value of s, tends to zero, this means that s. goes to zero.
‘Theoretically, the system achieves perfect tracking because the controller produces the
desired control inputs or vice versa. Conversely, as the value of s, increases in magnitude,
indicating that the error vector is getting away from the origin, the same sort of a divergent
behavior in s, is observed or vice versa. In this section, three conditions that ‘¥ must satisfy

are discussed.
4.2.1. Region Condition

It should be clear that as the control input approaches the desired value for the
current conditions, the state tracking error vector of the plant is driven towards the sliding
manifold. In other words, the desired control signal drives the state tracking error to the

. shdmg manifold. These two statements are clarified below.

As r—->rd,sp—->0<:>As Sp—>0,7>7y (4.32)

By utilizing s, and s., the two equivalent statements and their consequences can be

rewritten as
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lim s, =02 o> —ge= 1 " 433
so—0 P ¢—0 (4.33)

and

lim s, =0=i{r—>7
5,0 ¢ ty (4.34)

The two statements above require the following condition on \P.
¥(0)=0 (4.35)

Furthermore, as indicated in Figure 4.2, the relation ¥ must use the first and the third

quadrants of the ¥(s,) vs. 5, coordinate system.

P .

sp>0e=r>75.>0

« > e

sp<0¢>r<rd<:>sc<0

\ 4

Figure 4.2. Signs of s, and s, on different sides of s,=0 line

positive s, >0

LI’(sp)= zero  s,=0 (4.36)
negative sp<0.
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4.2.2. Compatibility Condition

In order to measure the tracking performance of the control system; define the

. Lyapunov function as

1 |
V,==55 (4.37)

The measure of the realization performance of the controller (V) has already been defined
in (4.12). In Figure 4.3, two sets are illustrated. If one selects a ¥ relation such that ¥, < 0
and Vp < 0 are achieved simultaneously, then this selection can be considered as a suitable
candidate. Since W candidates from the regions other than the shaded set causes the

violation of at least one of the design objectives, one has to find a ‘¥ relation from the

intersection set.

Neither ¥, <0 nor ¥, <0 is enforced

V,<0is V,.<0is

enforced enforced

Both Vp <0 and V, <0 are enforced

Figure 4.3. Sets of possible four cases
4.2.3. Invertibility Condition
As depicted in Figure 4.4, if the family of lines described by s,=¢ (¢ >0) are drawn

for varying values of ¢, the tracking error vector will fall into one of these subsets of the

phase space at each instant of time. However, each one of the members of this family
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corresponds to a different situation entailing different s. values. Furthermore, as ¢ increases
in magnitude, the value of the relation W must increase in magnitude, because of the

increasing distance to the sliding line. Therefore the relation ¥ must be invertible. In other

words, there must be a unique 5, € R for V s, € R.

\; sp=\P-l (5¢)

axis

AN

Figure 4.4. The family of lines formed as the value of s, varies

.

These three conditions clearly stipulate that the ¥ relation must be such that the
horizontal axes of the two subplots shown in Figure 4.5 must be mapped onto each other

for achieving negative time derivatives for ¥, and V..

§

>

4

\P—l

Figure 4.5. The relation ¥ performs a mapping between two horizontal axes shown
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Theorem 4.3. All monotonically increasing continuous functions passing through the
origin satisfy the region, compatibility and invertibility conditions, and can serve as the ¥
relation for the establishment of an equivalency between the sliding mode control of the

plant and the sliding mode learning inside the controller.

Proof: Tt must be noted that the partial derivative 8% ™(s.)/@s. is pbsitive due to the
monotonically increasing behavior of ¥, and \P'l(sc)sgn(sc) 2 0 since V¥ is defined on the

first and the third quadrants of s; vs. W(s.) coordinate system.

Stability in the Lyapunov sense requires the negative definiteness of the time
derivative of the Lyapunov function in (4.37), whose argument can be rewritten by using

the invertibility condition as

sp=¥""(s;) (4.38)

Utilizing (4.38) leads to the time derivative in (4.39). In order to proceed comfortably, one

should remember that the time derivative of s, is defined in (4.19) and the parameter
update rule is described in (4.9). Furthermore, the inequality ¢_5TL_'1 A~TdSByB; , +B:,

holds always true as the right-hand side is composed of the bound values, which are strictly

positive quantities.

Z 0% lse)g gy, (4:39)
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-1
= —aia#(— ngn(sc)+éT2A -T'd)‘f'-l(sc)

¥ (s,)

= ——ar—(\y-l(sc)(?TL_.‘A —7q )_ K(LI{-I (sc)sgn(sc)))

< aLP-l(Sc)(
05,

"P_l(scj(ngBﬂA +B;, )“ K(LP-I (sc)sgn(sc)))

=6‘P'1(sc)(

5 WJGJ@MQA+&H%Kh”@J)

_ 0w (se)

7. (-K+ByB;, +5;,)

¥(s.)

Apparently from (4.39), choosing the bound parameter as given in (4.10) enforces the
value of s, to zero level, or equivalently, s, to zero. It is straightforward to prove that a

hitting occurs in finite time (See Proof 4.1). O

4.3. Simulation Results for the Computationally Intelligent Architectures
4.3.1. Dynamic Model of the Plant

In this thesis, the two degrees of freedom direct drive SCARA robotic manipulator,
which is illustrated in Figure 4.6, is used as the test bed. Since the dynamics of such a
mechatronic system is modeled by nonlinear and coupled differential equations, precise
output tracking becomes a difficult objective due to the strong interdependency between
the variables involved. Additionally, the ambiguities on the friction related dynamics in the
plant model and the existence of noise on the measured quantities make the design much
more complicated. Therefore the control methodology adopted must be capable of

handling the difficulties stated.
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Figure 4.6. Physical structure of the manipulator

The general form of the robot dynamics is described as
M@ +Cl0.8)=z-1 (4.40)

where, M(8), C(6,0), z and f; stand for the state varying inertia matrix, the vector of

Coriolis terms, the applied torque inputs and the Coulomb friction terms respectively. The

plant parameters are given in Table 4.1 in standard m-kg-s units.

If the angular positions and angular velocities are described as the state variables of
the system, four coupled and first order differential equations can define the model. In

(4.41) and (4.42), the terms seen in (4.40) are given explicitly.

' P +2pscos (6,) po + ps3cos (6,)
M) = .
© [pz + p3cos (6,) %) } (41)
5\ _ _ge(zéb +ée)p3 Sin(ae)
V(Q’Q)‘[ 62pssin0,) “52

In the above equations, p; = 3.31655+0.18648M,, p, = 0.1168+0.0576M, and p; =
0.16295+0.08616M,,. Here M, denotes the payload mass. The details of the plant model
can be found in Direct Drive Manipulator R&D Package User Guide [84].
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Table 4.1. Manipulator parameters

Motor 1 Rotor Inertia 0.2670 Payload Mass (M) 2.0000
Arm 1 Inertia 0.3340 Arm 1 Length 0.3590
Motor 2 Rotor Inertia 0.0075 Arm 2 Length 0.2400
Motor 2 Stator Inertia 0.0400 | [Arm1CGDistance | 0.1360
Arm 2 Inertia 0.0630 Arm 2 CG Distance 0.1020
Motor 1 Mass 73.000 Axis 1 Friction 4.9000
Arm 1 Mass 9.7800 Axis 2 Friction 1.6700
Motor 2 Mass 14.000 Torque Limit 1 245.00
Arm 2 Mass 4.4500 Torque Limit 2 39.200

4.3.2. Simulations for ADALINE Controller

In the simulations presented throughout the thesis, the reference trajectory depicted
in Figure 4.7 is used. The links of the manipulator are named as base and elbow, the
relevant variables of which are the vectors §; and &, respectively. In the results given in
various figures, the parameters relevant to these links are indicated by ‘b’ or ‘e’ subscripts
that follow the variable names. Initially, the links have been moved to 8,=n/50, and &.=-

7/50 radians respectively. Apart from these, what apply to all tests performed are the

following.

First, the payload is varied during the simulations as illustrated in Figure 4.8. The
payload variation graph implies that the motion starts with no payload. At time /=2 sec., a
payload of 2 kg is grasped and released at time =5 sec. The same variation is repeated at

time =9 sec. and =12 sec. After the time =135 sec., the manipulator is kept motionless.

The second common factor in the simulations is the noise sequence corrupting the
observed state variables. Each state variable is corrupted by a different noise sequence,
having zero mean and Gaussian distributed with variance approximately equal to

0.3333x10°®. The peak magnitude of the signal is within +107 with probability very close
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to unity. The simulations have the stepsize 2.5msec, and the final time has been set to 20

sec.

The third parameter common in all results is the slope of the sliding line, which has

been'set to minus unity (1=1).

Fourthly, the processing of the known bounds of the noise sequence is common in all
results. Since the value of the bound denoted by 1, can be known in most applications, by
appropriately utilizing this knowledge, the parameter adjustment activity excited solely by

the noise sequence can be eliminated to some extent. For this purpose, the threshold

function given as

Tylsp )= [+ expl-10% (s =) (4.43)

is used in the parameter tuning mechanism and in the results discussed, n, has been set to
2x107. Furthermore, in order to reduce the adverse effects of chattering phenomenon [70],

the sign function in the parameter update rule has been replaced with a smooth function

given as

\P(Sp) 444
‘Psp +& (4.44)

sen(¥s, )~ l

where o has been selected as 0.05. Together with these, the modified form of the update

law can be described as

Ty (Sp) | (4.45)

Lastly, the uncertainty bounds denoted by Kj and X, have been set to 10* and 10> for
the simulation results presented in this section, and W relation has been selected as

¥(sp)=sp.
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The state tracking errors depicted in Figure 4.9 demonstrate that the prescribed
sliding mode is achieved. Since the initial errors are nonzero, after a short reaching phase

the components of the error vector come close to zero quickly, i. e. an accurate tracking is

achieved with a simple controller architecture.

Figure 4.10 illustrates the applied torque signals, the sharp changes on which can be
interpreted as follows. Since the controller has only three adjustable pafameters, the lack of
structural redundancy shows its effect as an increase in the task load on each adjustable
parametef, and this necessitates a very fast tuning mechanism. Apparently, this makes the
tuning strategy very sensitive to disturbances. A way to alleviate this drawback is to
increase the number of adjustable parameters and to adopt a controller structure, which
constructs the global behavior by combining the information from several subspaces of the

phase space. The examples of such controller structures will be considered in the following

sections.

In Figure 4.11, the phase plane behavior for both links is illustrated. In conjunction
with the discussion above, the performance of the ADALINE controller during the

reaching phase is good but it results in several number of hittings until the sliding mode

takes place.

To understand the time behavior of the Lyapunov function defined in (4.37), one
should refer to Figure 4.12. In order to make the transient behavior distinguishable, the
horizontal axes of the subplots are selected as logarithmic. Parallel to the discussion on

Figure 4.10 and Figure 4.11, during the early phases of the simulation, some fluctuations

are observed on the Lyapunov function of (4.37) for both links.

Furthermore, the bounded parametric evolution claim of the derivation has been
confirmed as depicted in Figure 4.13. One should notice here that the expressions in (4.28)
- and (4.29) have the error vector components in the numerator and the evaluated time
derivative is therefore small in magnitude compared to that in (4.30), in which the
corresponding term is equal to unity. This causes the parameter ¢s to respond quicker than

the first two parameters.
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Briefly, the disturbance rejection ability is gained through the use of proposed

learning law and accurate tracking is achieved with the structure used.

A, AN
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Figure 4.7. Reference state trajectories
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Figure 4.8. Time behavior of the payload mass
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Figure 4.9. State tracking errors for ADALINE controller using (4.45)
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Figure 4.10. Applied torque signals for ADALINE controller using (4.45)
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Figure 4.12. Time behavior of the Lyapunov functions for ADALINE controller

using (4.45)
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Figure 4.13. Evolution of the parameters of the ADALINE controllers using (4.45)
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4.3.3. Formulation and Simulations for GRBFNN Controller

In using a GRBFNN structure as the controller, the c; and oy parameters of the
Gaussian functions defined in (2.8) are kept constant. The view of these functions over the

relevant input domain is depicted in Figure 4.14. According to the adjustment law in
(4.46), the entries of the y vector in (2.10) are adjusted as follows. |

(4.46)

Initially, the entries of the y vector have been set to zero and 9 hidden neurons are used.
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Figure 4.14. Appearance of the Gaussian functions covering the input space

The state tracking errors obtained with the GRBFNN controller are illustrated in
Figure 4.15. Since the structure used has nine adjustable parameters being responsible for
different subspaces of the phase space characterized by the radial basis functions, the

tracking performance is slightly better than the ADALINE controller (See Figure 4.9).
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A similar improvement is also observed in the applied torque signals, which are
depicted in Figure 4.16. The increase in the structural redundancy introduces better
handling of the local regions. When the applied elbow torque for ADALINE controller in
Figure 4.10 and that for GRBFNN controller in Figure 4.16 is compared, a considerable

improvement in the sense of torque smoothness is seen.

The behavior in the phase space depicted in Figure 4.17 clarifies the improvement
introduced by the use of GRBFNN controller too. It must be noted that the activity during
the reaching phase does not require as much hittings as in the case of ADALINE

controller.

The time behavior of the Lyapunov functions for GRBFNN controller is illustrated in

Figure 4.18, which confirm the results of the analysis.

The parameter evolution graphs for the base and the elbow link controllers are given
in Figures 4.19 and 4.20 respectively. One can easily see that a parameter drift problem is
- of interest for the base link controller, but the parameters of the elbow link controller

evolve reasonably.

The results obtained confirm the prominent features as claimed at the analysis level

except the parameter drift problem.

A last remark on the use of GRBFNN controller must be on the ,boﬁndaries of the
operating region. Since the value of a Gaussian function decreases as the distance between
the argument and the center increases, the coverage of the input space, i.e. the phase space
in this case, deserves a careful consideration. Unless the designer ensures that the error
vector lies within input universe of discourse illustrated in Figure 4.14 for all the time, the
adjustable parameters of the structure will not be excited at all. Since it is difficult to
ensure such a situation, the designer must either enlarge the input space reasonably or
enforce other conditions, which, in fact, are the driving forces for using fuzzy controllers

having open ended membership functions.
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4.3.4. Formulation and Simulations for SFS Controller

The results presented in this part concern the use of a SFS structure depicted in
Figure 2.7 as the controller. The ¢; and oy parameters of the bell-shaped membership
functions déﬁned in (2.11) are not adapted but kept as constant. The coverage of the input
universe of discourse is as depicted in Figure 4.21. According to the adjustment law in

(4.45), the entries of the y vector in (2.14) are adjusted as follows.

T, (Sp) (447

Initially, the entries of the y vector have been set to zero. The results obtained for this

structure are depicted in Figures 4.22 through 4.27.
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The state tracking errors obtained using SFS controller is illustrated in Figure 4.22,
from which it can clearly be seen that the behavior for all four entries is better than those of

ADALINE and GRBFNN controllers, which are depicted in Figures 4.9 and 4.15
respectively.

The applied torque signals illustrated in Figlire 4.23 do not differ very much from
those produced by GRBFNN controllers but a significant smoothness comparably to the

case of ADALINE type controller is apparent. From this point of view, the performance of

the SFS controller is very good.

© Similarly, the behavior in the phase space for both links is illustrated in Figure 4.24,
from which it is clearly seen that the number of hittings during the reaching phase is not so
excessive as in the case of ADALINE and GRBFNN controllers (See Figures 4.11 and

4.17). Therefore the performance during both the reaching mode and the sliding mode is

very good.

In Figure 4.25, the time behavior of the Lyapunov function of (4.37) is depicted for
both links. Unsurprisingly, the superior quality of the behavior observed in the phase plane
is verified here. The fluctuations during the reaching phase are dampened out very quickly
vand a sliding mode takes place. During this mode the cost measures for both links are

almost equal to zero, i.e. the tracking error components are in the vicinity of the origin.

Figures 4.26 and 4.27 illustrate the evolution of the parameters of the base and the
elbow link controllers respectively. As in the case of GRBFNN controller, a parameter
drift problem is still there and is because of the noise driven parameter tuning activity

around the origin.

An overall assessment of the SFS controller should state the very good performance
during the reaching and the sliding modes and the smoothness of the torque signals as the
advantages. On the other hand, a slowly evolving parameter drift is the only problem

associated with the structure.
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4.3.5. Formulation and Simulationé for ANFIS Controller

As in the previous part considering the use of SFS structure, the parameters of the
bell-shaped membership functions for the ANFIS structure have been selected as the same

constant values with zero initial values for the entries of the ¥ matrix of (2.15). The entries

of the ¥ matrix in (2.15) are adjusted using

] |
Kl T o) (448)

Since the approach entails 54 adjustable parameters (27 for each link), the time
behavior graphs for the parameters are not given for the case of ANFIS strategy but the

reader should keep the slowly evolving parameter drift problem in mind.

The results obtained are illustrated in Figures 4.28 through 4.31. The state tracking
errors indicate the good tracking performance obtained in the face of strong external
disturbances. However, it must be noted that the behavior obtained with the SES controller

is almost the same as that depicted in Figure 4.28.

‘Figures 4.29, 4.30 and 4.31 illustrate the applied torque signals, trajectories in the
phase plane and the time behavior of the Lyapunov function of (4.37) for ANFIS
controller. A fair comparison between these figures and those obtained with SFS controller
leads to the fact that the two structures do not differ in terms of the performance measures
discussed before. The designer must therefore pay attention to the cost of implementing the
two structures. As mentioned above, the defuzzification stage of ANFIS controller
possesses 27 adjustable parameters for each controller, while this number for the SFS
controller is nine for the application discussed in the thesis. Therefore, the computational

complexity now acts as the factor influencing the choice.

In brief, the structural redundancy of the ANFIS architecture having R rules in the
rule base is more than that of a SFS architecture having the same number of rules in the

rule base or a GRBFNN structure having R neurons in the hidden layer. This fact stipulates
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that the ANFIS controller needs a structural optimization to reduce the unnecessary

redundancy contained in the defuzzification stage.
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4.4. A Discussion on the Results

The simulation studies presented in this section consider the application of a dynamic
parameter tuning strategy to computationally intelligent architectures. The method
discussed has originally been proposed for applications in which the target output of the
computationally intelligent structure is available [26-27]. However, in control engineering
applications, unavailability of the target control signal makes it impossible to implemént
such algorithms directly. For this purpose,‘ the relations between the sliding surface s, and
the zero learning-error level of s, are analyzed, and it is demonstrated that a suitable
relafion between fhem can make it possible to use the algorithm for control applications
[85].
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The application of the algorithm for FNN structure deserves a careful interpretation,
If an open form of Figure 2.2 is redrawn as illustrated in Figure 4.32, it can clearly be seen
that the quantities entering into the logistic functions are realizing the necessary controller
outputs, i.e. the torque values, which are identical to each other in the average sense. More
explicitly, each one of the linear combiners in the hidden layer corresponds to an
ADALINE structure, whose output tends to the necessary torque value as imposed by the
learning strategy. However, the hidden layer performs a nonlinear transformation, which is
because of the logistic function, and a final linear combination takes place for the

evaluation of the output of the FNN controller.

Logistic
€ Function [\|
T
. / A Logistic /
€ /y\%/ ™ Function

+1

Hidden Layer
+1

Figure 4.32. An open form of the FNN structure for an architectural

interpretation of the parameter tuning algorithm

The problem in applying the learning strategy for FNN structure stems from the fact
that at an intermediate stage, the approximate values of the necessary controller output is
produced. But the hidden layer transforms this value to some other value, using which the
structure is expected to produce necessary torque values, which are already available at the
output of the linear combiners. Therefore, with the proposed learning strategy, the
structural redundancy of FNN architecture causes a meaningless architecture-learning

strategy pair.

Furthermore, since the logistic functions introduce nonlinearity, the linearity

requirement of Theorem 4.1 on the adjustable parameters is violated and one cannot
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guarantee that the structure produces the necessary torque values at the output node.

Therefore, in the simulation studies presented in this section, FNN structure has not been
implemented.

What should be emphasized as the last remarks on the results are the good tracking
performance and the robustness against the disturbances. In the view of what have been
observed, the approach is a good candidate for tracking control of nonlinear systems,

whose responses are robustified by an intelligent controller.
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5. PARAMETER TUNING BASED ON A TWO-TERM
LYAPUNOV FUNCTION

In this section, an analysis of the sliding mode creation problem, which is based on a
two-term Lyapunov function, is given. The approach presented is elaborated speciﬁcally
for second order systems having a single input; nevertheless, the extension to higher order
systems is possible. The proposed form of the update dynamics constructs the time
derivative of the parameter vector, the use of which results in the observation of a sliding
dynamics on the phase plane. For the purpose of tuning the controller parameters, the
analysis presented in the preceding section, which considers the relation between the

sliding line defined for the plant under control (sp) and the zero learning-error level for the

controller (s.), is utilized.

5.1. Definitions and the Formulation of the Problem Using ADALINE Structure

As discussed in the section 4.1, the parameter vector, the vector of augmented inputs
and the input-output relation of a three input one output ADALINE structure are given in
(4.1), (4.2) and (4.3) respectively. Defining the sliding surface of the plant and the zero

learning-érror level of the controller as in (4.4) and (4.5), one can construct the following

cost function.

J=%(r—z‘d)2 = (5.1)

Based on the cost measure in (5.1), an augmented switching manifold can be designed as

Sec

sq=|9 (5.2)
og

The interpretation of the selection in (5.2) is of special importance because of the

following facts. If a parameter adjustment mechanism results in a motion taking place in a



66

subspace characterized by s4 = 0, the controller achieves the zero learning-error level due

to the enforcement of s.= 0. However, the contribution of the second component is not so

trivial and is related to the gradient descent technique [61]. In the conventional gradient

descent technique, the prescribed form of the parameter vector is

P g )
¢= raé (5.3)

in which the parameter yis called the learning rate and is chosen from the interval (0,1).

Apparently, the rule in (5.3) uses the gradient of the cost in (5.1) and extracts the
direction information, the optimality of which is questionable. As is clearly seen in (5.3),
the second term of (5.2) determines the rate of change in the parameter vector ¢. The
rationale behind the addition of the second term now becomes clearer. If the switching
manifold is augmented with.this term, the motion on s, = 0 subspace will still entail s, = 0,

which is the goal of the design. The importance of 070g term is seen if the rule in (5.3) is

rewritten as
b=—ps. e =_ys OF
==y caé Y Sc ‘ (5.4)

The information contained in 879¢ term is a measure of a parameter’s effect on the
output, i.e. the parameters having high values in the corresponding entries of the vector

07/0¢ are dominantly determining the output of the controller and deserve adjustment

priority.

In view of this, the motion in the phase plane can be organized such that a shorter
path to s4 = 0 subspace could be extracted by an appropriate selection of the parameter
adjustment law alternative to that in (5.3). For this purpose, consider the Lyapunov

function candidate as

Ve=55uPs 4 (5.5)
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where, P is defined as follows,

M leL :l
P= 5.6
[OLxl Pl ' -6)

where, L is the number of adjustable parameters and, #and p are positive constants. Based

on the selection in (5.6), the open form of the Lyapunov function in (5.5) can be written as

: 2
Vc=:u‘]+p%

oJ

5 5

in which, the selection of the weight parameters u and p must be done by comparing the
magnitudes of the time-varying two terms of (5.7). The definition of the norm in (5.7)is as

in (4.6). Aside from the bound conditions given in (4.6) through (4.8), the following

assumptions are needed for the derivation.

" H=s | 5.8

leal< B:, (5.9)
W By, (5.10)

Theorem 5.1. For a controller structure, in which the output is a linear function of the
adjustable parameters, the adaptation of the controller parameters as described in (5.11)
ensures the negative definiteness of the time derivative of the Lyapunov function candidate
in (5.5). |

-1
2
¢5=—K[m+p 07 J sgn(a—J-J (5.11)



68

where, K is a sufficiently large constant satisfying

K>uBs+pB,, ;9 (5.12)

Proof: Evaluatmg the time derivative of the Lyapunov function in (5.7) yields the
following.

5 (8JJ¢- p[aJ] 2% ¢;+ﬂ(a_J]T . aJ) &
" %) opog” - \ouy) “* A\ %6 ) spoul,

(5.13)
T T T
o opog” )= \oug) "1\ 08) apoul;
Since 7= ¢'u,, following terms can be calculated by using (5.1).
aJ r
(@] = 5ol . (5.14)
0oJ d
( ) =507 (5.15)
du 4 - |
LI, (5.16)
=uuly .
opogT
2%J
=1 (5.17)
0f Ou y

The time derivative in (5.13) can be rearranged as
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- T . . .
Ve =Scl—‘A(ﬂf+PﬂA£f4)té+#sc£TzA +pscz£t_u

(5.18)
Ssczﬁ(;d+pzAzﬁ)é+(ﬂ By+pB,, )Bu,, Ise|

If the parameter adjustment rule in (5.11) is substituted into the last inequality of (5.18),
the expression below is obtained.

Ve <—Ksou’, sgn(scyA)+(,u By+pB,, )B,;A Ise|

=_K|SCIEZ Sgn(EA)'*'(# B¢ +'OBuA )BI'IA lscl

(5.19)
= _ISCI(K 22 sgn(z_zA)— (4” By+p B,, )BuA )
<AscllK (e Bs+ B, )i, )
The last inequality in (5.19) follows from the expression given as
m
22 Sgn(l_‘A)= U 41 580 (W1 )+ 'Zl uj sgn(uj)
. L Jj=
m
=1+ Zluj sgn(uj) (5.20)
=
m
=1+ Z |ujl 21
j=l

The selection of the parameter X as in (5.12) ensures the negative definiteness of the time

derivative of the Lyapunov function in (5.5) and proves Theorem 5.1 0.
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Estimating an upper value for the hitting time (#5,) is not as a mathematically tractable

problem as that in the case of single-term Lyapunov function based approach. For this

purpose, following differential equation can be written.

S .
d| 25 1 0
Sa= % SCLJHCLJ (5.21)

On the switching manifold s, is equal to zero, i.e. the second term in 5.21)
disappears. Therefore, one has to analyze dynamics introduced by §,, the solution to

which at time ¢, is given as

s.(0)] 17

l CI(<)]= j(sgn(yg)(y1+pz_4/4g£)- Y +£5T1_2A—T'de0' (5.22)
0 .

Since the available knowledge on the time derivative of the input vector and the

desired output are limited to the bounds, it is difficult to give an analytic estimate for the

hitting time. Therefore, the question of whether there exists a positive #, value satisfying

the above equation is an open question.

5.2. Simulation Results for the Computationally Intelligent Architectures

5.2.1. Simulations for ADALINE Controller

In the simulations presented, the dynamic model of the plant introduced in the
section 4.3.1 has been used. The reference trajectory used is as depicted in Figure 4.7 and

the time behavior of the payload mass is as illustrated in Figure 4.8.

The initial conditions of the robot, the noise sequence, the simulation stepsize, the
simulation endtime,; the sliding line _parameter, the noise bound parameter, and the
approximated sign function given in (4.44) are the same as those discussed in section 4.3.2.

The parameters 4 and p are both selected as unity for all simulations presented in this
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section. Furthermore, the uncertainty bounds K; and K, have been set to 10* and 10°
respectively for ADALINE controller.

The form of the update law used in the simulations for ADALINE controller is
described as

p=-K (#1 + pu 4uy TlgaTQ (sp) (5.23)

in which, the 7 entry of the term S,, which is an (m+1)x1 vector, and the scalar term Tg(sp)
are defined in (5.24) and (4.43) respectively.

s - LP(SP)EA
I\P(sp)z_zAi|+5

(5.24)

In Figure 5.1, the state tracking errors are illustrated. The nonzero initial errors
quickly converge to zero by the applied torque signal depicted in Figure 5.2. If the results
that obtained with ADALINE controller using the single-term Lyapunov function based
tuning strategy are compared with those given in Figures 5.1 through 5.4, one cannot see
any major difference. However, the method discussed in this section extends the cost

measure with the sensitivity terms and the magnitude of fluctuations in the parameters gets

relatively small.

The illustrated results stipulate that the proposed form of the update law is an

appropriate alternative to the conventional training strategies.
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5.2.2. Formulation and Simulations for GRBFNN Controller

The application of the algorithm for tuning the Y parameters of a GRBFNN structﬁre
necessitates the following update rule. The vector S, in (5.25) is defined in (5.24), in which

the application for GRBFNN structure requires the replacement of uy; term with w' of (2.9).
. T Y1
y=—K\ud + pww §aT¢(sp) (5.25)

where, w vector contains the hidden layer neuron outputs. In the simulations, the ¢y and oy
parameters of the Gaussian functions are kept constant. Figure 4.14 illustrates how these

functions cover the relevant input space. Furthermore, K, and K. parameters have been

chosen as 10* and 10 respectively.

The simulation results for GRBFNN controller are presented in Figures 5.6 through
5.11. It should be clear from Figure 5.6 that unlike the positional errors, at the early phases
of the simulation; the velocity errors carry instantaneous spikes, whose effect is also
apparent in Figures 5.8 and 5.9. On the other hand, the tuning strategy entails the
minimization of the norm of the sensitivity vector because of the second term in the
Lyapunov function of (5.7). The achievement of this together with a good tracking ability
is characterized by the weighting coefficients 4 and p. As the two terms of (5.7) are of

close orders in magnitude, one can set 4= p =1, and the decision lies in between the

. minimization of the first and the second terms of (5.7); and the strategy makes concessions

when required.

If the parameter evolution graphs in the Figures 4.19 and 5.10 are compared, one can
directly infer that the parameter drift problem is alleviated by the use of the method

discussed in this section.

Finally, the applied torque signal graph in Figure 5.7 clarifies that the smoothness of
the control signals is improved considerably when compared to the result in Figure 4.16,

which is based on the single-terrri'Lyapunov function based tuning law given in (4.46).
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5.2.3. Formulation and Simulations for SFS Controller
In using the SFS structure as the controller for the robotic manipulator, the

parameters of the defuzzifier are adjusted and the parameters of the membership functions

 are kept constant. For this purpose, the update rule can be expressed as

Z=—K(M+pwnw£T1§aTg(sp) - (5.26)

The definition of the vector S, in (5.26) is given in (5.24), the use of which for SFS

structure requires the replacement of uy; term with w,’ of (2.13).

In the simulations, the uncertainty bound parameters denoted by K}, and K, have been
chosen as 10* and 2x10° respectively. The results obtained with SFS controller are depicted

in Figures 5.12 through 5.17.
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In Figure 5.12, the differences between the measured state variables and the desired
state variables are illustrated. The performance in terms of the velocity tracking is better

than those observed in the cases of ADALINE and GRBFNN controllers, which are
depicted in Figures 5.1 and 5.6 respectively.

The torque signais produced by the SFS controller are given in Figure 5.13, from
which the smoothness of the applied control signal is an outstanding feature of the
approach with SFS type controller structure.

In vFigure 5.14, the trajectories followed in the phase plane are illustrated.
Apparently, during the reaching mode, the algorithm drives the state vector to the shown
sliding manifold after just a few hittings. However, the augmented sliding manifold has
nine more dimensions (R=9) because of the sensitivity terms. Therefore the small
magnitude deviations during the sliding mode, which is visualized in two dimensions,
should not mislead the reader. It must be emphasized that the algorithm is enforced to

extract the path to the target by suitably minimizing the cost in (5.7), which is a weighted
sum of two different terms.

The time behavior of the Lyapunov function of (5.7) for both controllers is depicted
in Figure 5.15. A comparison between Figures 5.4, 5.9 and 5.15 recommends the use of the

SFS structure in terms of the magnitude of the cost measure.

- In Figures 5.16 and 5.17, the evolution of the adjustable parameters is illustrated. The
observed results demonstrate that the effect of noise driven parameter adjustment activity

is reduced and no parameter drift is observed.
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5.2.4. Formulation and Simulations for ANFIS Controller

Utilizing the ANFIS structure as the controller for the robotic manipulator, the
defuzzifier parameters, i.e. the entries of the Y matrix of (2.15) are adjusted and the
parameters of the membership functions are kept constant. It should be noted that, the ¥
matrix is Rx(m+1) dimensional, with R being the number of rules contained in the rule
base; Based on this, the entries of the jth column of ¥ matrix, which is denoted by Y; vector,

have the dynamic behavior described as

g =‘K(%”+/5‘1’(Sp)231, wnwﬁlﬁaﬁg(sp) J=L,., mtl (5:27)

The variable S, for ANFIS controller is a matrix of dimensions Rx(m+1). The definition of

the entry S ay is given as
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s (5.28)

In the simulation studies, the uncertainty bound. parameters denoted by K, and K,
have been chosen as 10* and 10° respectively. The simulation results are illustrated in

Figures 5.18 through 5.21 except the graphs displaying the time behavior of the
parameters, which would require 54 subplots in total.

The state tracking errors are illustrated in Figure 5.18, from which it can be inferred
that objective of precise tracking is met. One should also notice that the velocity errors

carry some small magnitude deviations because of the aim of the devised parameter tuning

strategy.

In Figure 5.19, the produced control signals are depicted. The smoothness of the

signals illustrated is a prominent feature of the approach.

The behavior in the phase space is illustrated in Figure 5.20, in which it is apparent
that a sliding mode takes place after a few hittings to the sliding manifold. As discussed
before, since the switching function is augmented with the sensitivity terms, the original
sliding manifold denoted by s4 for the ANFIS controller has 27 more dimensions for each
controller. In terms of the tracking precision, one can conclude that the strategy is able to

achieve tracking precision, which is also confirmed by the time behavior of the Lyapunov

functions depicted in Figure 5.21.

If the results obtained with the SFS controller is compared with those of the ANFIS
controller, one cannot see any major difference. However, as each one of the ANFIS
controllers possesses 27 adjustable parameters, a total of 54 parameters are adjusted during
one sampling period, whereas this number for the SFS type and the GRBFNN type
controllers is 18 in total. Therefore, the use of ANFIS structure is not recommended for the
purpose of achieving the design objectives of the problem in hand with less computational
cost. Nevertheless, the introduced learning strategy applies to the ANFIS architecture for

its applications other than the one studied here.



0.08
0.06
0.04
0.02

ey, (rad)

-0.02
0

0.1

0.05

éb (rad/sec)
o

-0.05

0.1

Time (sec)

[

5

10
Time (sec)

15

20

ee (rad/sec)

0.02

-0.02
o -0.04

€. (rad)

-0.06

-0.08
0

0.15

0.1

0.05

-0.05

83

Time (sec)

5 10 15
Time (sec)

20

Figure 5.18. State tracking errors for ANFIS controller using (5.27)

40

20
.
g

é 0
o
[

-20

-40

|

|

5

10

" Time (sec)

15

20

10

5 10 15

Time (sec)

20

Figure 5.19. Applied torque signals for ANFIS controller using (5.27)

0.02

0 .0.02
-0.04

(rad/se

o -0.06
)

-0.08

-0.1

-0

0.02 0.04
ey (rad)

0.06

o

0.1

0.08
Q' 0.06
0.04

(rad/se

o 0.02
)

-0.02

0.06 -0.04 -0.02
e, (rad)

0

Figure 5.20. Trajectories in the phase plane for ANFIS controller using (5.27)



84

I
0.5 0.5 b \/\A
0 W 0 o
0.5 -0.5
10° 10’ 102 10°
Time (sec) Time (sec)

Figure 5.21. Time behavior of the Lyapunov functions for ANFIS controller using (5.27)

5.2.5. Formulation and Simulations for FNN Controller

The formulation of the algorithm for FNN structure deserves a special care, because
the output of the structure is not linear in some of the parameters. It should be clear that the
terms in (5.14) and (5.16) are the ordinary gradient vector and the Hessian matrix
respectively. However, the design needs the terms in (5.15) and (5.17), the evaluation of
which is quite tedious, and once evaluated, processing of which will be a sort of bound
extraction. In the simulations, the effect of the last two terms of (5.13) is absorbed into the
uncertainty bound parameters K, and K,, which have been selected aS 10* and 10°
respectively. Besides, a FNN structure having two inputs, two hidden neurons with
hyperbolic tangent nonlinear activation functions and one-output is used as the controller
for each axis. The structure and the labeling of the adjustable parameters have explicitly

been illustrated in Figure 5.22. Clearly, for such a simple FNN structure, a total of nine

adjustable parameters are of interest.

According to the simulation studies performed with FNN controller, as illustrated in
Figure 5.23, the tracking precision is not found to be satisfactory. Although the positional
errors tend to remain in the vicinity of the origin, this is not the case in velocity errors,

which display a considerable amount of instant spikes.

As illustrated in Figure 5.24, the produced control signal does not have as much

amount of sharp changes as the ADALINE controller produces (See Figure 5.2), the values
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produced by the controllers are apparently not the values to drive the system to a sliding
mode.

In Figure 5.25, the behavior in the phase plane is illustrated for both links. Because
of the fluctuations in the velocity errors, a desired sliding mode is not observed in the

phase space. The time behavior of the Lyapunov functions depicted in Figure 5.26 also
justifies the poor performance with FNN structure.

It must be noted that the parameters of the FNN controller do not have drifts because

of the noise driven adjustment activity in the vicinity of the origin, but the observed time

evolution of the parameters is not the sought one.

A final remark on the use of FNN structure as the controller and the observed poor
performance must account for the terms in (5.15) and (5.17). Since the output of the FNN
controller is not linear in some of its parameters, the tuning law described in (5.11) cannot
compensate the deficiencies caused by this nonlinearities and needs modifications taking
care of the parameters influencing the output nonlinearly. An important result of these

remarks explains why the adjustment law in (5.11) is postulated solely for the structures,

whose outputs are linear functions of the adjustable parameters.

uj

Uz

Figure 5.22. The configuration of the FNN used as controller
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5.3. A Discussion on the Results

The results obtained using the dynamic parameter adaptation law in (5.11)
demonstrate that the method is successful as far as the controller structures in which the
output is linear are concerned. For the FNN structure, the nonlinear dependence of the
output and some of the adjustable parameters makes it difﬁcﬁlt to manipulate the terms in
(5.15) and (5.17). For the particular application example cOnsidered, numerous simulations
carried out with this strategy have shown that if the uncertainty bound is increased for an
improvement on the base link velocity error behavior, the elbow link is adversely

influenced because of the interdependency between the variables involved.

Another important point that should be commented upon is the computational
requirements of the algorithm. It is apparent that as the number of adjustable parameters
increases, the necessity to matrix inversion causes more computations between the
successive control periods. This aspect of the algorithm may be a restrictive factor for real-

time applications. Because of the matrix inversion at each control period, the time required
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for the evaluation of the relevant time derivatives for the adjustable parameters is more
than the method based on a single-term Lyapunov function discussed in the fourth section.

Nevertheless, the performance of the algorithm is good in the sense of robustness and
tracking performance.

A comparison between the tuning strategies discussed in the fourth section and this
section stipulates that the effect of noise driven parameter adjustment activity observed
using the tuning law in (5.11) is less than that of the tuning law in (4.9). The simulations

carried out clarify that the parameter drift problem is alleviated by the use of the method
discussed in this section.
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6. LEARNING RATE SELECTION IN GRADIENT BASED
TRAINING STRATEGIES FOR SLIDING MODE CONTROL

One of the major problems in training of computationally intelligent architectures is
the extraction of the parameter tuning information, the construction of which is generally
achieved by utilizing the gradient based methods. Error backpropagation technique is the
most popular method employed in parameter adjustment. The application spectrum of the
algorithm covers a wide variety of areas extending from speech and pattern recognition to
identification and control of nonlinear dynamic systems [38-39,47,50,86-104]. Once the
designer decides on the form of the parameter update rule, selection of an appropriate
learning rate sequence arises as a problem. When the Iearﬁing rate assumes small values
convergence takes a long time, while large values can increase the speed of convergence at
the cost of introducing an oscillatory behavior, which may ultimately result in divergence.
In the literature, several modiﬁcations to the original form of gradient based parameter
adjustment rules are proposed. Namely, the adaptation of the learning rate, introduction of
a momentum term or assigning an individual learning rate to each adjustable parameter are
the mostly used ones [1]. Nevertheless, utilizing these precautions transfers the ambiguity

on the learning rate to the selection of the parameters of learning rate adaptation

mechanism or to the selection of momentum term coefficient.

In this section, three different forms of the gradient technique are considered and the
analyﬁc form of the learning rate is extracted. The form of the learning rate for each case is
formulated for ADALINE structure. The modifications for GRBFNN, SFS and ANFIS

structures are also presented.

6.1. Standard Gradient Rule and the Proposed Learning Rate Selection

Consider the Lyapunov function in (4.12). If this measure is assumed as the cost
function, tﬁe ordinary gradient based parameter update rule prescribes the parameter
derivatives as given in (6.1) in which, A is an (m+1)X(m+1) matrix and Ny is as defined in
(6.2). The procedure explained in (6.1) and (6.2) is also known as MIT rule in the literature
[34]. ’
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p=AN, (6.1)
ot
Ny= S oh 6.2)

The time derivative of the Lyapunov function can be evaluated as follows.

Vo=35.5,

=(éTﬂA+¢_5T2A—T'd)Sc

(6.3)
T \T T. .
=]_V¢A U 4S; +(? U4 —rd)sc
<NEATu 45, +(BsBy  +B;,)
SNGA u s +\ByBi, + Bz, Jls
Selecting a strictly positive scalar x and enforcing the equality
$cSc =—K]s| ‘ (6.4)

guarantees the negativeness of the time derivative of the Lyapunov function and leads to

the equality described as
NGAT u gs, ={ic+ BsBy , + Bz, Jsc| 6.5)
Or, more explicitly;
NgA u 4 =~Ksen(sc) (6.6)

where, X is as defined as



92

K=x+ByB; +B; (6.7)

The solution to the equation in (6.6) is

ZANZ;

——————Ksgn(s,) ’ (6.8)
T T ¢
Ny Nyuyuy

A=-

which is the form of the learning rate matrix for the structures, whose outputs are linear in
adjustable parameters. The use of the above quantity as the learning rate enforces the
differential equation in (4.9), a detailed analysis of the implications of which is given in the
fourth section. The explicit form of the selection described in (6.8) for ADALINE,

GRBFNN and SFS structures require the learning rates formulated in (6.9), (6.10) and
(6.11) respectively.

( T
KuAuA SC %0 .
A= L wflod 6.9)
L O(m+1)x(m+1) 5¢=0

r Kww!
a=! W ufls (6.10)
Lo(h+l)x(h+l) 5¢=0

.

K

s, #0

W
A= ( )zlsc (6.11)

| O(R+1)x(R+1) 8¢ =0
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For the ANFIS architecture, as discussed in section 5.2.4, the /™ column of the defuzzifier

matrix Y is defined as ¥} and the learning rate matrix multiplying the gradient information

for this column is denoted by A; (7=1,...,m+1) and defined as

,

Kw,w, “
' Se#0andu 4 #0
A PN /
Aj=q ‘=n=n] Z4;Pec (6.12)
Orxr sc=00rgAj =0

in which, A; is RXR dimensional for each column of Y,

In the simulations the ADALINE structure has been used as the controller and the
learning rate variable (A) is a (m+1)x(m+1) matrix. The plant and the simulation settings
are as those discussed in section 4.3.2. The aim here is to demonstrate that the phase plane

behavior depicted in Figure 4.11 could be obtained by adopting the adjustment rule in (6.1)

and the learning rate formulated in (6.9).

As pointed out above, if one uses a GRBFNN structure with 4 hidden neurons or a
SES structure with R rules, the corresponding dimensions of the learning rate matrix would
be hxh and RXR respectively. Similarly, for ANFIS structure, if the rule base contains R
rules, for each column of the defuzzifier matrix ¥, a RxR dimensional matrix would be
required to describe the learning rate matrix of Y. Therefore, the results presented in this

section are confined only to the application to ADALINE controller structure.

In Figure 6.1, the entries of the learning rate matrix for the base link controller (Ap),
and in Figure 6.2, those for the elbow link controller (A.) are illustrated. It is seen that the

quantities can assume values larger than unity and less than zero.
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6.2. A Modified form of the Gradient Rule and the Proposed Learning Rate Selection

The approach analyzed in section 6.1 considers that the quantity in (6.2) carries the
necessary information for tuning the parameters. However, the important part of the
information contained in this quantity is the direction knowledge, i.e. at each instant of

time, the direction to a better parameter vector is pointed by the sign of Ny Therefore, a

modified form of the update dynamics can be constructed as

d=Asgn(vy) (6.13)

Performing the mathematical manipulations as in (6. 3), and imposing the condition in (6.4)
for stability leads to the equality

sgn(ﬂg)/\TgAsc =—(K+B¢BﬂA +B;, )|sC| (6.14)
which determine the form of the learning rate for the law in (6.13). Or, more explicitly;
sgn(ﬂ;w )/\TgA =—Ksgn(s,) | (6.15) “
| v;here, .K is as defined in (6.7). The solution to the quation in (6.15) is

sgn(N%
A=— ZTA enily) = Ksgn(s,) - (6.16)
sgn(Ny)sgn(N y) uu 4

which is the form of the learning rate matrix for the models in which the output is a linear
function of the adjustable parameters. The explicit form of the learning rate matrix for
ADALINE, GRBFNN and SFS structures are described in (6.17), (6.18) and (6.19)

respectively.
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- T
A=— IEEA Sgn(ﬂA)
sen(u)sen(u o) ulju ,

(6.17)

A =_K}1’11xh

thzv_ (6.18)

Kwn lixg
A=-—=% (6.19)

T
Rw,w,

For the case of ANFIS structure, the learning rate matrix denoted by A; multiplying the j™
column of ¥ matrix is described as

- Kw,1
(_ WnllxR u, #0
Rwywouy |
Aj=1 / (6.20)
U uy =0
L J

The purpose of obtaining the behavior in the phase illustrated in Figure 4.11 is
maintained in this section too. The proposed form of the learning rate for the adjustment
mechanism in (6.13) is given in (6.17) for the ADALINE controller structure. The

| dimensionality of the A matrix for SFS, GRBFNN and ANFIS structures is as those
discussed in the section 6.1 and the visualization them of are skipped because of the

necessity to illustrate the entries of an 4xA or RXR dimensional matrices.

The corresponding learning rate sequences for the base and the elbow links are
illustrated in Figures 6.3 and 6.4 respectively. What the reader should notice in these
figures is again the removal of the conventional boundaries of the definition interval of the

learning rate.
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6.3. Learning Rate Selection in the Gradient Rule Using the Absolute Value of the

Error as the Cost Function

A third alternative of parameter tuning as discussed by Astrém and Wittenmark [34]

assumes the absolute value of the zero learning-error level as the cost function, which is
defined as

J=|s | (6.21)
The form of the parameter adjustment for this sort of a choice is formulated as
0s,

5 sgn(s,) (6.22)

However, the ambiguity concerning the learning rate A is still a problem in practical

applications. If the mathematical manipulations of (6.3) are carried out, one ends up with

T
Os
_(@} Nuy=—{c+ByB, +B;,) (6.23)

which is a result of imposing the condition in (6.4) for stability. Or, more explicitly;

T
[@g} ATy, =K (6.24)
op

where, K is as defined in (6.7). For the ADALINE structure, the solution to the equation in
(6.24) can be given as

(6.25)
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which states that the learning rate is a scalar quantity. The explicit form of the learning rate
for GRBFNN, SFS and ANFIS structures are described in (6.26), (6.27) and (6.28)
respectively. For the case of ANFIS structure, the scalar learning rate denoted by Aj should

be understood as the multiplier of the /" column of ¥ matrix of the defuzzifier.

K
A== (6.26)
K
A=
T (6.27)
g K O
£
whway
A= J
j = (6.28)

The simulation results presented in this section concern the derivation of a learning
rate sequence for the adjustment law described in (6.25), which is for ADALINE structure.
In contrast to the sections 6.1 and 6.2, the extracted learning rate parameter in this section
is a scalar for each controller structure including the GRBFNN, SFS and ANFIS
architectures. Only in the ANFIS structure, each column of the defuzzifier matrix utilize an
individually quantified learning rate sequencé, i.e. the number of A parameters is equal to

the number of the columns of the ¥ matrix.

The aim is as discussed in the sections 6.1 and 6.2. Briefly, the learning rate in the
training strategy of (6.22) has been reformulated such that the motion in the phase plane
depicted in Figure 4.11 is obtained. The simulation settings discussed in this section are the

same as those discussed in section 4.3.2.

In Figure 6.5, the obtained learning rate sequences are depicted. As is clear from the
definition of u4 given in (2.2) and the definition of A in (6.25), the final value of the

sequences are the relevant uncertainty bound values denoted by X.
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6.4. A Discussion on the Results

The performance of the training strategies of the computationally intelligent systems

is intimately related to the selection of the design parameters. Selection of an appropriate

learning rate is one of the factors influencing the learning performance. In the cases where

the target behavior is defined, it is a difficult problem to construct an appropriate learning

rate sequence leading to the desired behavior.

In this section, three different forms of parameter adjustment laws are studied in the

sense of formulating the learning rate sequence resulting in the achievement of the zero

learning-error level at the output node of a computationally intelligent controller. The

constructed form of the learning rate sequence drives the controller parameters to values

such that the produced control signal drives the plant under control to a sliding regime.
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What should be emphasized on the obtained results are the magnitude and the sign of
the learning rate coefficients. Apparently, as opposed to what is discussed in the standard
practice, the studied forms of the learning rates can assume values greater that unity and
less than zero. A fair comparison between the conventional approaches and the approaches
presented in this section should distinguish the cases in which the target behavior is well

defined as postulated in this section. However, the conventional selection is still valid for

the cases where the path to the target is not clearly defined.

1

The application area of the approaches presented in this section is limited to on-line
parameter adjustment strategies for flexible structures whose outputs are linear in the
adjustable parameters. Furthermore, contrary to the heuristics of the conventional leafning
rate selection, the learning rate parameter is a matrix for the first two approaches and the
use of which is an increase in the computational complexity. The computational burden for
simple structures, e.g. ADALINE model, can be negligible but for the structures having a
considerable number of adjustable parameters, the cost attached to the learning rate

construction may be inefficient and one might choose the conventional procedures.

Among the three different forms of the parameter adjustment strategies, the last one

seems to be the simplest one with less computational cost comparably to the others.
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7. CONCLUSIONS

Solutions to problems having complicated mathematical representations, uncertain
terms and mismatches with real time counterparts are difficult to achieve with conventional
approaches. The field of computational intelligence offers practical alternatives to handle
the stated difficulties with the help of expert knowledge. There is a continual progress in

the design and the development of computationally intelligent systems and the applications

reported in literature display the strengths of such approaches.

Artificial neural networks and fuzzy inference systems are the main constitueﬁts of
the area of computational intelligence, the structures of which have extensively been used
for solving problems having the stated difficulties. A substantial problem associated with
the utilization of computationally intelligent systems is the parameter tuning strategy to be
adopted for achieving a specified task. In this thesis, the problem is studied in the form of
two subtasks. These are namely the use of variable structure control methodology in
parameter tuning and sliding mode control of a nonlinear plant. The former enforces the
paraméters of the neuro-fuzzy structure to values satisfying a criterion defined on the
output of the structure, while the latter results in the observation of a sliding mode in the
dynamics of the plant. The achievement of the two subtasks clearly leads to the acquisition

of the invariance properties of sliding control both in the parameter adjustment and in the

control loops.

The plant considered in the simulations is the dynamic model of a two degrees of
freedom direct drive robotic manipulator. The approaches discussed throughout the thesis
assume that the governing equations of the plant dynamics are unknown, which is in

contrast to the case of conventional variable structure controller design methodology.

The controller structures analyzed in the study are the Adaptive Linear Elements,
Gaussian Radial Basis Function Neural Networks, Standard Fuzzy Systems, Adaptive

Neuro-Fuzzy Inference Systems and Feedforward Neural Networks.



103

The first approach for parameter tuning is based on the adoption of a dynamic
adjustment mechanism, which is applied to the controller structures, whose outputs are
linear in adjustable parameters. The method presented extracts the parameter tuning
information from a single term Lyapunov function. It is shown that the negative
definiteness conditions of the time derivative of the selected Lyapunov function can be
converted to an equivalent Lyapunov function defined on the output of the controller. The
procedure establishes a relation between the sliding surface of the plant and the zero
learning-error level of the controller. The adopted form of the adjustment mechanism
ensures that the parameters of the controller evolve boundedly and that the sliding surface
is reached in finite time. The simulations presented confirm the claims of the approach. In
Table 7.1, the method is evaluated for several comparison criteria, which are Reaching

Mode Performance (RMP), Sliding Mode Performance (SMP), Bounded Parameter
Evolution (BPE) and Computational Complexity (CC).

Table 7.1. Overall assessment of the single-term Lyapunov

function based parameter tuning strategy

ADALINE GRBFNN SFS ANFIS FNN
Good | VeryGood | Very Good Not

RMP Adequate 00 ery Goo ery Goo Applicable
p Very Good | Very Good Not

SMP Good oor ery Goo ery Goo Applicable
il a d | Guaranteed Not

BPE Guaranteed | Guarantee uarantee uarantee Applicable
Not

CC (flops) 25 117 218 312 Applicable

As can be inferred from the above table, ADALINE structure offers the
computationally simplest solution, however, SFS and ANFIS structures exhibit very good
‘performance in terms of tracking precision. The performance of the GRBFNN structure
during the sliding mode is poor because of the deviations around the sliding line.
Therefore, for control systems having fast microcomputers or DSP hardware, the use of

SFS and ANFIS structures is recommended.
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The second method of parameter tuning is based on a two-term Lyapunov function.
Ensuring the negative definiteness of the time derivative of the adopted form of this
function leads to a parameter adjustment law, which anticipates an appropriate path to the
target. The sliding surface of the first method is augmented with> the direction vector,
which constitutes the basis of the widely used error backpropagation based training
strategy, and the extracted form of the adjustment mechanism enforces the parameters to
values which maintain the motion in the vicinity of the sliding surface. The simulation
results presented confirm the achievement of the objectives of the approach. In contrast to

the first method, the bounded parameter evolution is not guaranteed in the second method.

An assessment of the second method is given in Table 7.2.

Table 7.2. Overall assessment of the two-term Lyapunov

function based parameter tuning strategy

ADALINE | GRBENN SFS ANFIS FNN
Highly
RMP Good Poor Very Good | Very Good Unsatisfactory
Highly Highly
SMP Good Unsatisfactory Good Good Unsatisfactory
Not
BPE Not Mot o ron N

Guaranteed Guaranteed Guaranteed Guaranteed Guaranteed

CC (flops) 198 2701 2758 7116 2872

In the case of the second method for parameter tuning, the computational
requirement of each structure is more than the corresponding entry given for the first
method. This fact is intimately relevant to the matrix inversion at each control period. A
comparison of the SFS and ANFIS structures suggests that the SFS structure is
computationally simpler than the ANFIS structure. As shown in the comparison table, the
tracking performance that can be achieved with GRBFNN and FNN is far from

satisfactory.
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Lastly, the problem of learning rate selection has been addressed. The well-known
heuristics of the conventional approaches suggest the selection of a learning rate between
the interval (0,1). However, the analysis presented in the sixth section shows that if the task
is well defined, an equivalence between the single-term Lyapunov function based approach
and the standard gradient based approaches can be established by appropriately setting the
learning rate sequence. Because of the high computational cost, the derivations presented
in the sixth section are simulated only for the ADALINE type controller structure,
nevertheless the formulation for the other structures is included. The results obtained
stipulate that the learning rate can assume values outside the interval (0,1j. In Table 7.3, a
comparison among the three different forms of the parameter update rule and the properties
of the extracted learning rate formulations are given. In this table, the abbreviations LR and

HF stand for the Learning Rate and High Frequency respectively, and the variable m
denotes the number of inputs of the ADALINE structure.

Table 7.3. Overall assessment of the learning rate extraction

approaches for ADALINE controller

First Method Second Method | Third Method
Eqn. (6.9) Eqn. (6.17) Eqn. (6.25)
LR Dimension (m+1)x(m+1) (m+1)x(m+1) Ix1
LR HF Spectral High Medium Low
Components  Magnitude Magnitude Magnitude
CC (flops) 112 106 23

As indicated by the results, the simplest method of constructing an appropriate
learning rate sequence is the third method, by the use of which the high frequency
deviations in the learning rate sequence are kept at admissibly low magnitudes and the
quantity is a scalar. It should be clear that the computational complexity depends on the
‘value of the variable m, the increase of which will clearly demonstrate the efficiency of the

third approach.
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The results presented and discussed throughout the thesis demonstrate that the use of
VSS theory in the training of computationally intelligent systems introduces the desired
properties of the VSS approach into the training process, so that a robust training of a
computationally intelligent system is achieved. The analysis presented has also
demonstrated that the task could be transformed into the selection of an appropriate
learning rate sequence for achieving the zero learning-error level on the output of an

intelligent controller with a given parameter adjustment law. The results presented confirm

the applicability of the approaches in control systems.
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