il

FEQR REFERENCE |

07
ENHANCEMENT

ARCHITECTURES AND IMPL]FMENTATIBQ%ENERQ,BTH@WECH i

by
Gékhan Cosgilil
BS. in E.E., Bo§azici University, 1998

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in

Electrical and Electronics Engineering

Bogaz:m University Library

A |II INIIIII

*

i
?

\

Bogazigi University

2000

iii

ACKNOWLEDGMENTS

I would like to thank to my thesis supervisors Assoc.
Prof. Ginhan andar and Assoc. Prof. Levent Arslan for their

endless support and motivation.

I would also like to thank to Prof. Dr. Omer Cerid for

his support and being a jury member.

I would like to thank to Prof. Dr. Fikret Giirgen and
Prof. Dr. Avni Morgul for being jury members.

iv

ARCHITECTURES AND IMPLEMENTATIONS FOR SPEECH
ENHANCEMENT

ABSTRACT

Complexity of a high performance speech enhancement
algorithm has been reduced while retaining its quality. This
modification leads to faster implementation as well as lower

cost.

The reduced complexity speech enhancement algorithm has
taken as a typical digital signal processing application.
Thus, architectures and implementation techniques for blocks
involved in this algorithm have been studied. In addition,
thanks to the design methodology employed, these
implementations can easily be ported into other algorithms

involving the same blocks.

ARCHITECTURES AND IMPLEMENTATIONS FOR SPEECH
ENHANCEMENT

OzET

Yiuksek performansli bir ses iyilestirme algoritmasinain,
kalitesi korunarak karmasikligi dislirildii. Bu degisiklik

sayesinde daha hizli calismasi ve ucuzlamasi saglandai.

Bu disik karmasikliktaki ses iyilestirme‘ algoritmasa,
6rnek bir sayisal im igleme uygulamasi olarak segilerek
kapsadigi modiller igin mimariler ve gerceklemeler incelendi.
Ayraica, kullanilan tasarim metodu sayesinde, bu
gerceklemelerin, ayni modiilleri iceren baska elektronik

tasarimlarda da kolaylikla kullanilabilinmesi saglandi.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTScoiieitiieitreierirteetieseeesseesessessesssesesssenssessssssssssssssssssssmesseseesssssssn 1ii
ABSTRACT ..ottt stes s sste e oot et set e s e st et e st en s essesssasseess e s e e e s e e sees e iv
OZET oottt e s ettt et ae st et e st et e s e e e e et e st et \Y
LIST OF FIGURES ..oiiictiieieetsierinnsteeetestetesesestsaeeeeseeseessessssssssssesss s e e seeeseen viil
LIST OF TABLES ...cocvcvicisttreneeentstnseetesessceresestosesesssteesessessssesessnssssssesssss s esessssesseene X
LIST OF SYMBOLS ...ccoiieetrererentrineeetssessssescstesesessessessesesessesessesesssssssesssseeseseseseses s X1
1. INTRODUCTIONcuicutiteereentententeaisesseeseestessisstessesseessssssessesssssssessesssssesemsssesemesessesnn 1
2 ALGORITHM DESCRIPTION .ucovuvvenieeeererreeeeseeeeeesssesseesseesees e eeeeeeseesesees 4
2.1. WieNeT FLLlEEIING trririveririiieeeeeeeeeeeseesesessere e eeeeeeeeseeeseeoeo 4

2.2. Modified Wiener FilteTinG.u oo 5

2.3. Implemented ALGOTithmM .o 7

3 DESIGN METHODOLOGYccoitreerterreereerrestesreessereeesesssesssssssesesssssssssssmessessesssssen. 10
4 WINDOWING ...coertietisteitictiitteeeseessaestesssessestessessessesseeeseessesssssssensesssssseesesmeesesssessessoso 12
4. 1. TREOLY ettt ettt e e e e s ese e e e e et e 12
4.1.1. Hanning WInAOW.... oo ereeeeeereeeeeeeee oo 12

4.1.2. Hamming WindoW.....eo oo eerereoreeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeee 13

4.1.3. Blackman WINAOW ..o eeoeeereeeereseeeeeeeeeeeeeeeeeeeeseeseseeeno 13

4.2. ImPlementation e eeeeeee oo 13
4.2.0. Shift ReGISEOT oo eeeeeeeeeeeeeeeeeeeeeeeseeen 14

4.2.2. AAAress Generation ..o 15

4.2.3. Multiplier .eeeennnn, e et e e e b e ane e s saee e s enenaes 15

4.2.4. Overall Windowing and Overlapping 15

5. FET ANA TFFT ittt esesest e esee e et e e et 18

5.1, ThEOLY oottt ee e, et e e e rae e s sbaeeeateesnrenns 18

vii

5.1.1. Radix-2 ALGOTithMS wtiocciieeceeeeeeeeeeeeeeeeereeeeeeeee et e esseeeos 21

5.1.2. Non-radix-2 AlgorithmMS.. oo 23

5.1.3. Split-radix AlgOrithM. e ceeeeeeeeeeeeeeeeseeeenesnn. 23

5.1.4. Winograd ALGOTrithmM oo 23

5.2, IMPLemMentation i ieeeeeceereeeeeeseee e ee e e este e e eea 24
5.2.1. CONELOL LOGLC cotrorrrireiiierenteneeteeeeeeesreereseeesessessesssssese s 26

5 2.2 BULEEEE LY et 29

5.2.3. Overall FET/IFFT DeSigN cooouoooeoooeoeeeoeeoeoeoooeooons 30

6. FIR FLLE@T ciiiirtreieieeerereteee ettt ese e e e te e e s sene e e s s e e e e e e eseson 34
B L. TREOTY ettt eeae e e e e e s e et e 34

6.2. IMPLlemMeNTATION ettt 35
6.2.1. CONELOL LOGIC wtrmiiiieieiceeeeeeeeeeeeeeeeeeeeee e e et 37

6.2.2. COCEFICIONE L roooeeoooreeeeorereeeeeeeesesssesesosieeeess oo 3T

6.2.3. COEELICIONE 2 ittt 38

6.2.3. CoCELLICIONE 3 oo e 38

6.2.4. OVerall FIR Fill@T wooioeeoeeeeeeeeeeeeeoeeeoeeeeeeeeeeeeeeeeeeo, 39

7. DIVISION AND SQUARE-ROOT ...ccooivuierireieteeereeeeeereereeseeeeeses e eeeeseeeees e 41
T ol DaVAAOT ettt e oo 41

7.2, SQUALE=TOO0E ueeesiiieretirereteee ettt e e e ese e e e e e e 43

- 8. MULTIPLY ACCUMULATE UNIT ..oooioieieiireeremieneeereereessseesessessesseeeeeeeeeees s s 45
9. OVERLAP-ADD METHOD.....cccvetriereereeresrerirereseeseesessessessessesssss s eeseessess s 46
10. CONCLUSTION.....oiiterrrerreurereertetensseseseseseseeeseeesssseeessesess e s s s s eeeeeess e 48
APPENDIX......oititntititntnrntncieoit sttt esas st re et sae s eees e et e e s e e e e e s e e e 51
REFERENCES ...ooteiotititeetetcenirietcsecesesee st se s e e st s e e e s s s e e 52

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
' FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

[T~ S SN

N NN
Uk W N R

[O R S N

C-TRNe RN I S B N T S

CL I V2 B O N 2 B ¥ S S R & S S IS S ; BT NS NS RS

et T e e
O N W N Rk O

LIST OF FIGURES

Block diagram of the implemented algorithm.
Spectrogram of the original speech.

Spectrogram of the degraded speech.

Spectrogram of the enhanced speech with MWF.

Spectrogram of the enhanced speech with the

implemented algorithm.

viii

Page

o W 0 3

8

Block diagram of the windowing and overlapping. 14

Simulation results for the first input frame.

Simulation results for first inputs arrived.

16
16

Simulation results for the windowing function of

the first frame.

Decimation-in-time FFT algorithm.
Decimation—in—frequency FFT algorithm.
DIT data flow diagram of the 8-point FFT.
Butterfly unit.

Block diagram of the FFT unit.

Addressing of stage 1.

Transition from stage 1 to stage 2.
Transition between two pairs.

End of the FFT operation.

Addressing in reverse mode.

End of FFT in reverse mode.

QHDL simulation for butterfly unit.
Overall FFT simulation.

End of the 256 point complex FFT.

Overall FFT simulation in reverse order.
End of the 256 point complex FFT in reverse
order.

Data flow diagram of a FIR filter.

16
22
22
25
25
26
27
27
28
28
28
29
30
32
32
33

33
35

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE.

FIGURE
FIGURE
FIGURE

W O NN oYy OOy
B PR W N R oYy U W

Block diagram of the FIR unit.

VHDL simulation waveform for coefficient
VHDL simulation waveform for coefficient
VHDL simulation waveform for coefficient
Overall FIR filter simulation waveform.
Simulation results for divider block.

Flowchart of the square-root algorithm.

VHDL simulation waveform for square-root.

VHDL simulation waveform for MAC.

Simulation waveforms for the overlap-add.

Layout of the 16-bit adder circuit.

ix

37
37
38
39
40
42
43
44
45
46
51

TABLE
TABLE
TABLE
TABLE
TABLE

TABLE

TABLE

TABLE
TABLE

LIST OF TABLES

Speech algorithms and applications
Averages of MOS scores.

Standard Deviations of MOS scores.

TC S T R R
O T T

FPT.

Page

1
9
9

Computations involved in various FFT algorithms.24

Coefficients involved in each stage of 256-point

25

6.1 Representation of coefficients in various number

systems.
10.1 Computational Considerations in LPC solutions.
10.2 Comparison'of various FFT designs.

10.3 Summary of the designed blocks.

36
48
49
50

LIST OF SYMBOLS

Data point number in frequency domain

Stage number in FFT

k
m
n Data point number in time domain
N Number of the data points

p

Order of the predictor coefficients in LPC
e{} Expected value operator
z Summation operator
Y(n) Window function
S Mean squared error

o< Proportional to

Xi

1. INTRODUCTION

Digital signal processing (DSP) is used in numerous
applications such as video compression, digital set-top box,
digital audio, wireless communications, biomedical signal
processing and speech processing which is of interest in this
thesis. Table 1.1 shows some of the common speech related DSP

algorithms and corresponding applications [1].

TABLE 1.1. Speech algorithms and applications.

ALGORITHM APPLICATIONS

Speech coding and decoding Digital cellular phones, secure

communications, multimedia computers

Speech recognition Robotics and automotive applications,

personal communication systems

Speech Synthesis Advanced user interfaces, robotics

Noise Cancellation Professional audio, digital cellular
phones

Digital signal processing systems are implemented in two
basic ways: software in general purpose computers, and
special purpose hardware. The software approach is relatively

straight-forward.

Recently, the field‘ of DSP has found wider interest
through the advances in DSP applications and in VLSI (Very
Large Scale Integration) technologies. Real-time DSP
applications impose additional challenges on the
implementations of the DSP systems. This results in the need
for application specific integrated cifcuits (ASIC) to tackle

real-time implementations of DSP algorithms.

In many speech communication systems, the presence of
background interference causes the quality or intelligibility
of speech to degrade [2]. The quality of speech is extremely
important in data conversion, transmission, or reproduction.
The purpose of many enhancement algorithms is to reduce
background noise, improve speech quality, or suppress channel
or speaker interference. If one can enhance quality and/or
intelligibility of noisy speech, this also contributes to
improved performance in other speech applications, such as
speech coding, speech recognition etc. [2]. With the advent
of wireless digital communication systems, noise suppression
has become even more important. This is because coding
algorithms become less immune to background noise as bit
rates go down. If we examine the literature, it is clear that
most currently available algorithms can not tackle the
challenges implied by today’s speech applications [3], [4].
These are either simple FIR based algorithms whose
performances are insufficient [3] or too complex [5] to be
implemented in real-time with a general DSP or an ASIC when

low power is a requirement.

This thesis can be considered as having two aspects.
First part is the signal processing whereas the second is the

VLSI implementation part.

In the first part of the thesis, the complexity of a
powerful algorithm, modified Wiener Filtering [6], has been
reduced while retaining its quality. This enables real-time
implementation on a moderate programmable digital signal

processor as well as less cost for an ASIC approach.

In the second part, architectures and implementations
for blocks, which are also common in many DSP algorithms,
that are involved in the new algorithm are explored. Thanks
to the design methodology employed, these architectures as
well as implemented blocks can easily be ported to other VLSI

designs.

The organization of the thesis is as follows. Section 2
explains the speech processing part. In section 3, design
methodology used in implementation can be found. Sections 4,
5, 6, 7, 8, and 9 clarify the implemented blocks which are
windowing, fast Fourier transform (FFT), finite impulse
response (FIR) filter, square-root and division, multiply
accumulate unit, and output block, respectively. Section 10

concludes the thesis.

2. ALGORITHM DESCRIPTION

This section explains the speech enhancement algorithm

that is the concern of this thesis.

2.1. Wiener Filtering

In many practical applications we are given an input
signal, which consists of the sum of desired signal and an
undesired noise or interference, and we are asked to design a
filter that will suppress the undesired interference
component. In such a case, the objective is to design a
system that filters out the additive interference while

preserving the characteristics of the desired signal.

Short-term Wiener filtering is an approach in which a
frequency weighting for an optimum filter is first estimated
from noisy speech, y(n). The 1linear estimator of the
uncorrupted speech s(n), which minimizes the MSE (Mean Square
Error) criterion, is obtained by filtering y(n) with a non-
causal Wiener filter. The filter requires a priori knowledge
of both speech and noise statistics, and therefore must also
- adapt to changing characteristics. In a single-channel
framework, noise statistics must be obtained during silent
frames. Also, since noise-free speech is not available, a
priori statistics must be based upon y(n), resulting in an

iterative estimation scheme.

To obtain the transfer function of an iterative Wiener
filter, we begin with s, d, and y, which are stochastic
processes representing speech, noise, and noisy speech,

respectively. Let s(n), d(n), and y(n) represent random

variables from the respective processes, and s(n), d(n), and

y(n) denote realizations.
y(n) = s(n) + d(n) (2.1)

We want to formulate a linear filter with which to
produce an estimate of s(n), call s'(n) that is optimal in
the MSE sense. That is, we desirer a filter with impulse
response h(n) such that with input s{(n) the output is an

estimator s'(n) for which

£ = e{[s(n)-s'(n)1%} (2.2)

is minimized. In frequency domain, a Wiener Filter has the

transfer function shown below

P ()
H@)= |[———— (2.3)
P (o) +P(w)
where Ps(®) is the power spectrum of the estimated

uncorrupted speech and P,(®) 1is the power spectrum of the

noise.

2.2. Modified Wiener Filtering

Traditional Wiener filters are first proposed for speech
enhancement in [4]. Later, various modifications to the

algorithm were proposed by a number of other researchers [6].

In [6], a modified Wiener filter is proposed on which
our implemented algorithm is based. This filter uses a noise
suppression factor that is time-varying and is computed based

on the frame-by-frame signal-to-noise ratio (SNR). The lowest

Wiener filter gain is clamped to a preset minimum threshold.
The clean speech power spectrum estimate is calculated from

the linear predictive coding (LPC) model spectrum of the

noisy speech P,(®) with only a gain modification:

E —E '
P(®) =———"P () (2.4)
5 E y
y
where, E, and E, are, respectively, energies of the noisy

speech and noise and P;(®) is the power spectrum of the clean

speech. The Wiener filter expression then reduces to:

P
H(w) = ’P)
4 y(w) +ﬁaa(w)

n

(2.5)

Next, the factor multiplying P,(®) in the above
expression is made inversely dependent on SNR and is allowed
to change from frame to frame. This will ensure stronger
suppression during high-energy (e.g. vowels) frames which are
not corrupted as much to begin with. The desired SNR
dependence is achieved simply by replacing o (a constant
determining noise suppression factor) with E,0./Ey. Then, the

expression for H(®) becomes:

I (@)
P(@)+—L—op@) (2-6)
g E—-E "

y n

H(w) =

Unlike other Wiener filtering approaches, the MWF
(Modified Wiener Filter) method is non-iterative and hence
computationally attractive. The SNR-dependent noise
suppression factor gives MWF the ability to suppress those

parts of the degraded signal where speech is not likely to be

present, and not to suppress and hence not to distort the

voiced speech as much.

2.3. Implemented Algorithm

MWF algorithm is modified further to reduce the
complexity. First of all, instead of the LPC model spectrum,
a smoothed FFT spectrum is used. Secondly, the transfer
function is handled in nmgnitude domain, which results in
(2.7) for H(w). The final block diagram of the implemented
algorithm is shown in FIGURE 2.1.

FP(w)

E
P(w)+———oP (w
@)+ 2 ah (@)

(2.7)

H(w)=

In spite of these modifications, the quality of the
algorithm is retained by changing the method that is used for
updating the noise spectrum. Furthermore, o is chosen to be
high to achieve better performance. Spectrograms of a clean
speech signal, the degraded speech signal, MWF applied speech
" signal and the speech signal enhanced by the implemented
algorithm are shown in FIGURE 2.2, FIGURE 2.3, FIGURE 2.4,
and FIGURE 2.5, respectively.

Windowing FFT Smoothing) H(®) |——p| IFFT and
and framing B > filter output framing

'

Updating noise
spectrum

FIGURE 2.1. Block diagram of the implemented algorithm.

Sample e (Fomeflarslap (DR4_O RQA.WAV (WAV) 24STT samples 3.07 seconds Page: 10r 4 Printed: Thy §¢p 16 19:50:16

FIGURE 2.2. Spectrogram of the original speech.

SAmple flle PO IISIRDRE_DEQ. WAV (WAV) 24STTsamples 387 secoras Page: 1of1 Printos: Thu §¢p 16 10:51:01

FIGURE 2.3. Spectrogram of the degraded speech.

Gample Me:fhomerlarslan(DRA_E W n WAV (WAV) 245TT samples 307 56coras Page:1of 1 Prinee:Thy §ep 16 1050%3

FIGURE 2.4. Spectrogram of the enhanced speech with MWF.

Samphe Ala ard_n aw war (W AW]) S4T04 samples 3 00 soconas Page:1 of 1 Princeq: Frl Oce ¢1 16:25:43

FIGURE 2.5. Spectrogram of the enhanced speech with the
implemented algorithm.

In addition, a subjective MOS test is conducted with 11
listeners. Mean values of MOS scores are shown in TABLE 2.1

TABLE 2.2 shows the standard devia;ions for MOS scores. All

values are over 5.

TABLE 2.1. Averages of MOS scores.

Degraded | MWF | Implemented
Sample 1 2.18 2.54 4.09
Sample 2 2.00 3.09 2.63
Sample 3 1.91 2.45 2.72
Sample 4 1.91 2.63 2.54
Overall 2.00 2.68 2.99

TABLE 2.2. Standard Deviations of MOS scores.

Degraded | MWF | Implemented
Sample 1 1.07 0.93 1.13
Sample 2 0.77 1.04 0.92
Sample 3 1.22 0.52 0.64
Sample 4 0.94 1.02 0.82
Overall 1.00 0.88 0.88

10

3. DESIGN METHODOLOGY

Hardware design has recently undergone dramatic changes
in design methodology, especially with proliferation of
hardware description languages (HDLs) that promote the
integration of the design methodology into a unified

environment[7].

Several motivations to the use of VHDL (Very high speed
integrated circuits Hardware Description Language) are listed
below[7]:

e Completeness - Systems that are captured in VHDL can be
maintained and upgfaded for their lifetime period with no

need to switch to another modeling language.

e Technology Independence - VHDL models can be kept
technology independent until the very last stages of the
synthesis process, providing the capability to retarget
the same model to a variety of vendor technologies.

e Portability - Being a standard, VHDL allows the
portability and the reuse of VHDL models across a wide

range of design tools.

e Abstraction levels - VHDL supports a wide range of design
abstraction levels and hierarchy. Hence, the same language
is used for the entire design process, bridging the gap
between design teams.

e Excellent documentation - Documentation is a very
important issue with respect to future upgrades and
maintenance. VHDL allows the documentation to be done

during design process, reflecting the true design intent.

Besides, another important advantage of using VHDL is

parameterization of the design units. In other words, a

11

square-root unit can be written such that it can take the

square-root of any word length by changing generic map.

In this thesis, for the design of all the blocks, VHDL
is used. However before implementing the blocks, the original
algorithm (MWF) which was written in C programming language
is ported to MATLAB. Hence, original algorithm is modified
using MATLAB to achieve the same performance with reduced
complexity. Besides, MATLAB is used for functional modeling

of each block before implementing in VHDL.

Once functional verifications of each Dblock is
accomplished, hardware implementation is the next stage. For
this stage Mentor Graphics' tools are used. QuicksimII and
QHDL, are the tools for digital simulation and VHDL
simulation, respectively. AutologicII is used for
synthesizing, technology mapping and optimizing the blocks.

IC Station is the tool used for generating layouts.

Although most of the design units are parameterized in
this thesis, blocks are assumed to éperate on an 8-KHz 16-bit

- signed speech signal.

All the blocks presented in this thesis are mapped to
MIETEC O0.7um 3.3V process and all the area reports are
according to this technology. This technology has a 426.87
um? unit cell area that must be multiplied with the total

area number in the area report given for each block.

For simulation waveforms it must be noted that all
values are decimal and for the inputs negative numbers are
shown in two's complement decimal format due to the simulator

used.

12

4. WINDOWING

This section elaborates the windowing and overlapping

that is used as an input block for various algorithms.

4.1. Theory

In the design of FIR filters and in spectral analysis,
it is needed to apply time weighting to a function before
going into frequency domain. This is mostly due to smooth the
time domain function sharpened by the glitches. This is
achieved by the windowing functions. In mathematical terms,

windowing is nothing but the multiplication of the signal by

a "window" sequence of finite-length,y(n).

4.1.1. Hanning Window

The Hanning window is simply the raised cosine or sine-

squared function. It is defined as

. T.
¥ (1) = sin’ = ”1, n=0,1,...Nj-1. (4.1)

1

It has a -31dB peak sidelobe and a 18dB/octave rolloff.
The Hanning window is probably the most widely used window
function in spectrum analysis because of its excellent

rolloff rate.

13

4.1.2. Hamming Window

The Hamming window is designed to minimize the peak
sidelobe level while maintaining approximately the same
mainlobe width as the Hanning window. This window is defined

by

‘I’N(n)=l[1_0032”'"], n=0,1,....N;-1. (4.2)
2 N

1

It has a peak sidelobe of -41dB and a rollof rate of
6dB/octave. The low peak sidelobe level of the Hamming window
is of more importance in the design of FIR filters rather

than spectrum analysis[8].

4.1.3. Blackman Window

The ideas behind the Hanning and Hamming windows are

combined in the Blackman window, given by

¥y (n) = 042 - 05cos]\2[7rn “+0.08cos 4z.n , n=0,1,..,N;-1. (4.3)

1 1

It has a -57dB peak sidelobe and a 18dB/octave rolloff
rate. Use of this window sacrifices spectral resolution to

gain additional attenuation.

4.2. Implementation

Block diagram of the input block of the system is
depicted in FIGURE 4.1. This block is designed with the
assumption of input is parallel and applies the 256 point
Hanning window with overlapping to the input data. Shift

register is used to implement the overlap-add method,

14

coefficient ROM (Read Only Memory) acts as a look-up table

for the window function.

Address Coefficient
Generation ROM
Shift Register » Multiplier

FIGURE 4.1 Block diagram of the windowing and overlapping.

4.2.1. shift Register

A parameterized 128x16-bit wide shift register is
designed. This shift register is used to achieve the overlap-

add method which basically implements the (4.4).

frm(1:N/2)=frm(N/2+1:N)
frm(N/2+1:N)=input (N/2) (4.4)

where frm denotes the output of the shift register and N is

the length of the window function as well as the framing.

Synthesis results for shift register bank is as follows:

Number of nets : 259
Number of cells : 128
Number of operators : 0
Combinational area : 0 (0 %)
Buffer/Inverter area : 0O (0 %)
Sequential area : 811.52 (100 %)
Operator area : 0 (0 %)

Total area : 811.52

15

4.2.2. Address Generation

In order to implement a window function, Hanning window
in our case, it is required to mﬁltiply the input with the
appropriate window coefficient. This ©block addresses a
coefficient ROM and secures the right implementation of a

window function.

4.2.3. Multiplier

For a multiplier, an operator £from numeric_signed
library is used. This enables a signed multiplication in a

synthesizable manner.

4.2.4. Overall Windowing and Overlapping

VHDL simulation results for the overall windowing and

overlapping function are shown in FIGURES 4.2 , 4.3 and 4.4.

The signals shown in simulation waveforms can be listed

as follows:

/mout: Output of the multiplier.

/frout: Output of the shift register.

/hanrout: Output of the coefficient ROM.

/res: Data written to the RAM (Random Access Memory) .
/gx} ROM and RAM address.

/gwr: Read/write signal for RAM.

/atlast: Acknowledge signal for the end of operation.

16

O /cdk=0 e e e e e L r
O /frst=1 | [

/din = B85534 10 165534

/mout=0 ¥ o

ffrout =0 0

/hanrout = 820 X 14 119 44 178 Y127 ¥175_ 1239 1312 J395 1487 _Js588 {700

/res =0 () 4

/gx =13 011 12 3 4 15 16 ¥ 8 19 110 &K 112 13
O /fgwr=0

[/atlast=0

FIGURE 4.2. Simulation results for the first input frame.

O sdk=0 e r— I LI 1 LI
O /rst=1

/din = 65534

/mout=0 327650]-65530 1—-65610 1-65472 |-65414 [-65334 {
/frout =0 10 165534

fhanrout = 32619 |37667 132707 132736 32755 [32765 32765 132736 132707 32667 _}
fras =0 4 165535

fax =123 124 1125 1126 1127 128 1129 1130 131 1132 133 X
O /gwr=0

O /atlast=0

FIGURE 4.3. Simulation results for first inputs arrived.

O fdk=0 — o e e e
[frst=1

/din = 65534

/mout =-156 1-350___j-244 |-156 |-88 {-38] _ I-8 =38 1-88 X
/frout = 65534 :

/hanrout =78 1175 122 78 Yaq 119 i4a 19 a4 Iz8
fres = 65535 A

/ax =4 1251 1252 253 {7254 J255! }o)i 2 B3 14
O /fgwr=0

O fatlast=1 f

FIGURE 4.4. Simulation results for the windowing function of
the first frame.

FIGURE 4.2 shows ;che beginning of a new speech data,
denoted by /din. /mout is the output of the multiplier which
has the inputs /frout, output of the shift register, and
/hanrout, output of the Hanning window coefficient ROM. /res
is the truncated data of /mout that is written to a RAM,
which has addressed by /gx and has the read/write signal

/gwr.

17

FIGURE 4.3 verifies the overlapping of 128 samples and
FIGURE 4.4 shows that after 256 point windowing is

accomplished the unit acknowledges the end signal.

It must be noted that, for this architecture while the
odd numbered frames are correctly written to the RAM, even
numbered frames are written in reverse order. However this
not a very important problem. A design approach that tackles

this problem will be illustrated in the FFT block.

18

5. FFT and IFFT

This section explains the basics of the FFT and inverse

FFT and elaborates the hardware implementation.

5.1. Theory

In many areas of science and engineering, the
representation of signal or other functions by sums of
sinusoids or complex exponentials leads to convenient
solution to problems and often to greater insight into
physical phenomena than is available by other means. Such
representations- Fourier representation as they are commonly
called- are useful in signal processing for two basic
reasons. The first is that for linear systems it is very
convenient to determine the response to a superposition of
sinusoids or complex exponentials. The second reason is that
the Fourier representation often serves to place in evidence
certain properties of the signal that may be obscure or at
least less evident in the original signal. A common example
is the interference from domestic power lines, which, though
masked in the time domain, appears clearly as discrete

harmonics of 50-60 Hz in the frequency domain [9].

Therefore, Fourier transform based signal processing,

which is often simply termed "spectral analysis", 1is used
extensively for modern-day engineering tasks, including
speech recognition, vibration analysis, and biomedical
engineering.

The Discrete Fourier Transform (DFT) plays an important

role in many applications of digital signal processing,

19

including 1linear filtering, correlation analysis, and
spectrum analysis. A major reason for its importance is the

existence of efficient algorithms for computing the DFT.

In essence, the DFT is simply a mapping of one ordered
set of N complex numbers to a different ordered set-the
former conveying time domain information, the latter
frequency domain information. The precise definition of the

DFT is

=z

X(k)=Y x(n)-e>™¥ (5.1)

n

1]
o

where n is used as the sequence member index (sample number)
in the input discrete signal and k as the index for the

transformed signal.

On the other hand, inverse DFT (IDFT) has the equation

shown below

N-1
x(n)=—1%r—2 X (k)-e*™ (5.2)
n=0 .

Thus, a DFT processor may be used to calculate the IDFT
by simply conjugating the input samples, and then conjugating

the result [9].

The DFT expression can be expressed in matrix form as:

X0 1 [Woo WOD .. WOm .. WON-D][x0)]
X wao W o .. Wn) o .. WOLN-D x(1)
_ (5.3)
X(k) Wk0) WED .. Wkn) .. WkN-D x(n)
X(N-D)] W=D WN-LD ... WN-Ln) .. WN-LN=D)] L x(N=1)

20

where n and k are used for the matrix column and row indices
respectively. W(k,n) is termed the twiddle factor and 1is

usually denoted as
W(k,n) = Wy (i = nk). (5.4)

It is a unit-magnitude complex number whose real and

imaginary parts are the cosine and sine of the angle (-27i/N)

radians. Thus,

W, = e7>™N = cos(2mi/ N)— jsin(2mi/ N). (5.5)

To compute DFT as defined in (5.1), we must do N2
complex multiplication assuming table look-up method for
twiddle factors is employed. This requirement makes DFT
algorithms based on the (5.1) prohibitively expensive except

for very small N.

On the other hand, number of multiplications can be
reduced by 25 percent using a well-known trick for
multiplying complex numbers [10]. Although we are looking for
much better speed-ups than this, this technique will be
reviewed here, since it is the first and simplest. The
product of (a+jb) (c+jd) is normally written as (ac-
bd) +j (ad+bc). Let P = d(a-b), Q = a{c-d) , and R = Db(c+d).
Finding P, Q, and R requires only three multiplications, and
the product is (P+Q)+Jj(P+R). However, it must be noted that
saving in multiplications is boﬁght at the price of an
increase in the number of additions; this trade-off 1is

typical of these fast algorithms.

The TFast Fourier Transform, developed originally by
Cooley and Tukey in 1965, is a significantly less

computationally intensive method of evaluating the DFT, and

21

thus particularly attractive for real-time spectral analysis
using DSP technology. The FFT reduces the number of complex
multiplications involved N? for the DFT to order of Nlog;(N)
[9, 10, 11]. There are number of types of FFT algorithm, but
all share the common constraint of only working for certain
values of N. If this constraint is unacceptable, the full-
blown DFT must be implemented. Some of the well known FFT
algorithms are radix-2 algorithms, non radix-2 algorithms,

split radix algorithms, and Winograd algorithm [9, 10, 11].
5.1.1. Radix-2 Algorithms

The FFT algorithm is based on the principle of computing
a large transform via a number of smaller, more manageable
transforms. There are in fact two methods to achieve this
result. The first, which is called decimation-in-time (DIT),
implements the tWo N/2-point transforms using the even and
odd elements of the input sequence respectively. These two
transforms are then merged by a further N/2 two-point DFT to
generate the desired output elements. The second method,
called decimation-in-frequency (DIF), performs the same two
sets of operations, but in reverse order. The input samples
are first processed in pairs by N/2 two-point transforms,
followed by the two N/2-point transforms which generate odd
and even components of the output sequence directly. Both
methods are in-place, that is the same memory locations used
for storing the DFT inputs can be overwritten, first with
intermediate results, and then with the output results.
FIGURE 5.1 and FIGURE 5.2 illustrate the DIT and DIF

decomposition algorithms respectively.

22

0 — 0
2 — 1 4point

DFT 1
4] 2
6 3
1| | Wo 4
3 — | 4point Wi 5
5 —] DFT | W, 6
7 —] Wy 7

FIGURE 5.1. Decimation-in-time FFT algorithm.

In the DIT algorithm the input is out of sequence
(scrambled) and the'output is in correct order. In the DIF

reverse is true.

Normally the two-point DFT and twiddle multiplication
are combined in a single processing operation, which is

termed "butterfly".

0
1 4 point | 0
DFT [—— 2
2 —— 4
3)
Wo
4 W, 4 point 1
5 DFT [—— 3
6 A —— 5
W
7 7

FIGURE 5.2. Decimation-in-frequency FFT algorithm.

23

In the DIT butterfly the input data is twiddled before

the DFT. In the DIF butterfly, the data is twiddled after the
butterfly.

5.1.2. Non-radix-2 Algorithms

Radix-2 is by far the most commonly used FFT algorithm,
despite the fact that it suffers from the significant
limitation of only working for sequence lengths that are
integer powers of 2. The FFT algorithm can be expanded for

other N s that are pbwers of other natural numbers [9, 10,

11].

5.1.3. Split-radix Algorithm

If we investigate the radix-2 decimation-in-frequency
flow graph shown in FIGURE 5.2., it can be seen that the
even-numbered points of the DFT can be computed independently
of the odd-numbered points. This suggests the possibility of
using different computational methods for independent parts
of the algorithm, with the objective of reducing the number
of calculations [11]. The split-radix FFT (SRFFT) algorithm
exploits this idea by using both a radix-2 and a radix-4
decomposition in the same FFT algorithm. In this

implementation, the even-numbered points require no complex
multiplications at all; hence a four-point butterfly at the
cost of two complex multiplications. For further information

{10, 11, 12, 13] can be referred.

5.1.4. Winograd Algorithm

Winograd presented an algorithm that reduces the number
of multiplications below the number required for the FFT. His

24
algorithm builds on Rader's prime-N transform and the Good-

Thomas mixed-radix transform [10]. Further information can be

found in [14, 15].

Comparison of operations involved in various algorithms

are shown in TABLE 5.1 [12, 16].

TABLE 5.1. Computations involved in various FFT algorithms.

Radix-2 Radix-4 Split-radix WFTA

Length | Mul Add Mul Add Mul Add Mul add

16 28 148 24 144 20 148

63 198 1394

64 332 964 264 920 196 964

252 792 6584

256 2316 | 5380 1800 5080 1284 5380

512 5644 | 12292 3076 | 12292

5.2. Implementation

Tn the implementation of 256-point complex FFT, radix-2
decimation-in-time algorithm is used. Data flow diagram of
the implemented DIT algorithm for an 8-point FFT is shown in
FIGURE 5.3. In this diagram, each square denotes a butterfly
unit. The butterfly unit is depicted in FIGURE 5.4. Each
arrow in FIGURE 5.4. means a multiplication. Furthermore,
TABLE 5.2 outlines a detailed analysis of the coefficients of
a 256-point complex FFT. In TABLE 5.2 m is the stage number

and ERF is the repeat factor for each coefficient.

25

x(0) __, . I . X(0)
x(4) | 1 1 . X(4)
x(2) . 5 1 — X(1)
x(6)—| 1 [|Ws We |, x(5)
x(1)—., I o — X(2)
x(5)— 1 1 Wel . x(6)
%(3)— 9 3|— X(3)
x(7)—| 1 AWe L I Ws | . x(7)
FIGURE 5.3. DIT data flow diagram of the 8-point FFT.
Xl(k) /‘\ X(k)
+
X2 (k) | X (k+N/2)
> > &
Wy -1

FIGURE 5.4. Butterfly unit.

TABLE 5.2. Coefficients involved in each stage of 256-point
FFT.

N m| ERF Radix-2 Twiddle Factor Exponents

256 1] 128] O
2 64 0 64
3 32 0 32 64 96
4 16] 0 16 32 48 64 80 96112
5 8] 0 8 16 24 32 40 48 56 64 72 80 88 96
6 4 0 4 8 12 16 20 24 28 32 36 40 44 48 124
7 2l 0 2 4 6 8 10 12 14 16 18 20 22 24 126
8 i] 0 1 2 3 4 5 6 7 8 9 10 11 12 127

The powers of Wy involved in computing the mth stage

from the (m-1)th stage are given by

BOGAHU‘UNNEhSﬂESiKUTUPHANESf

26

W(N:m: Nk [r™;0) = WyH™ k=0,1,2,...,2"" -1 (5.6)

t=0,12,.,(N/2) -1

where t is the butterfly index for each stage. There are

2™1_.1 distinct twiddle factors per stage, which are repeated

according to
R = "™ Mop r™* (5.7)
where M = log,(N).

Block diagram of the FFT block is shown in FIGURE 5.5.

Coefficient
ROM
v A

Control Logic
and Address Generation Unit p

Butterfly
Units

v A

Data
RAM

FIGURE 5.5. Block diagram of the FFT unit.

5.2.1. Control Logic

This unit has designed based on Moore type FSM (Finite
State Machine). We can summarize the operation in six phases

where each phase lasts one clock cycle.

¢ Reads the first input to the butterfly from RAM and reads

coefficient from the ROM.
e Reads the second input to the butterfly from RAM.

e Send inputs to the butterfly unit.

27

e Waits for butterfly operation to be concluded.

e Writes one of the outputs of the butterfly to the RAM.

e Writes other output to the ROM.

According to the scheme explained above it can be seen

that the period of one clock cycle is limited by the half of

butterfly operation, which is specifically half of delay of

one 16x16 bit multiplication and a 16-bit addition.

k=1
frst=1
/mode =0
frw=0
fram =0
from =1
fre1=0
fre2=1
/wel =0
fwe2=0
framout = X
/romout =0
/next_s =51

gooREOO00OOOO0O00o0

/atlast =0

fak=1
frst=1
/mode =0
frw =1
Jfram =1
from=1
/re1=0
fre2=0
/wel =0
fwe2=0
framout =2
/romout = 64
/next_s =52

oJoOoEEO0O000000000

/atlast =0

/state_var = write

/state_var =read

T LT L LT LT T rererrriI
|
| 1 _ /s
| E—— I I,
1 1 1
1 — 1 1
11 1
. — —
0 1128 X 10 1128 11 1129 _1¥ 1 1129]2 1130 X
6]
s1
read \bfy Twrite fread {bfy {wilite Iread {bfy R

FIGURE 5.6. Addressing of stage 1.

WMMMJ
— 11 N r
| L T 1
11 1

| T — 1

1 N I
N 1 11
X (127 1255 J0 164 X 6 JE6a 31| 165 X I G I §

{64
Ys2
Twrite Iread Jbf fwrite Iread 1bfy Twrite {read

FIGCURE 5.7. Transition from stage 1 to stage 2.

28

O /dk=0 18 e e T T e 1 e Ny T oy oy Y
O frst=1
0 /mode=0
O /rw=0 L 1 1 N D I
O /ram=0 D e L | []
O /rom=1 -
O /ret=0 — 1 7
O fre2=1 I R] —
O /wel=0 1 1
O /we2=0 B 1 1
framout = ¥ 163 127 1¥ {63 [127 Y128 {192 [X 1128 J197 1129 [193 ¥
Jromout =0 Y64 1o
O /next_s=s2
O /state_var = write Ibfy Twiiite fread [bfy {write {read {bf 1
[rsatlast=0
FIGURE 5.8. Transition between two pairs.
O /lk=0 1 Y T Y e e T Y Y Y R S
8 /rst=1
O /mode=0
O Hw=0 1 1 — 11
O /ram=1 1 || L [|
0O /rom=1
O /frel=0 1 1 1 1
O /re2=0 L 11 1 1 L
O /wel=0 1 1 1
O /we2=1 1 1 l—"
/ramout = 255) £ Y250 {251 §252 {253 IX ¥252 1253]254 Y255 [1254 _]255
fromout = 127 1126 1127
O /next_s=s8
O /state_var =read Twhite fread Jbfy Twrite {read Ibf Twrite fread
O /atlast=1 -
FIGURE 5.9. End of the FFT operation.
O /lk=0 Iy Ty N s N T 1 T T e S Y 0 I
O /rst=1 18
O /mode=1
O /rw=1 | P I
O fram=0 I N L ! i
0O /rom=1
O fret=0 1 [| f |
O /frez=1 I/ I 1 I
] /wel=0 11 f]
O /we2=0 1 [|
Jframout = X 01128 O | £ 1128 o 1128 11 ™ 129 1 1130 2 X
J/romout=0 0
O /next_s =51 51
[0 /state_var =write fread _jbfy Twrite [read Ibfy Twilite {read 1bfy b
O /atlast=0

FIGURE 5.10. Addressing in reverse mode.

29

O /scdk=1 (N T Ty 1 Y Y P T VY T Yy Ty Uy B
0O /frst=1

O /mode =1

O /rw=1 1 I ' | — 1

O /ram=1] | 1| I L.
O from=1

O fre1=0 1! 1 B

0O /re2=0 I T 1 B [
O /weil=0 1 1 1

O /we2=0 1 _ I l—_
/ramout = 1 2501 {251 7250 12531252 1% (253 1252 {255 1254 [X 1255 254
fromout = 127 1125 126 {137

O /next_s=s8

0 /state_var =read {bfy {wiite__jread __ ibtv write __Jread b write__ Iread
O /atlast=1 [

FIGURE 5.11. End of FFT in reverse mode.

Optimization results for control unit of FFT:

Number of nets 632
Number of cells 581
Number of operators 7
Combinational area 691.51
Buffer/Inverter area 87.1
Sequential area 578.95
Operator area 283.86
Total area 1641.42

Critical path is 7.69 nsec.

5.2.2. Butterfly

(42 %)
(5 %)
35 %)
17 %)

The implemented butterfly unit is exactly same as the

FIGURE 5.4. The simulation results are shown in FIGURE 5.12.

30

Jcoeff =45 336 2 {E5531)45

/in1 = 65528 3467 1o 165528

/in2 = 62080 5678 14 V65537 4667 162080
Joutl =65535 [i5 i) 10 65534 Y65535
Jout2 =1 55521 6] {65534 {65534 0)&
/post_in2 = -1 V7964568 I8)] 20 —23335 _ }—155520
/pre_outl =1~ [01968055 1018 102 630 012 153343 11-155528
Jpre_out2 =01% [1-1961121102 fo18 1-10 1-28 023327 10155512

FIGURE 5.12. QHDL simulation for butterfly unit.

Synthesis results are as follows:

Number of nets : 148
Number of cells : 1036
Number of operators : 3
Combinational area : 1809.21 (46 %)
Buffer/Inverter area - : 142.04 (4 %)
Sequential area : 0 {(0 %)
Operator area : 1947.25 . (50 %)
Total area : 3898.5

Critical path is 20.8 nsec.

5.2.3. Overall FFT/IFFT Design

For the overall FFT simulation a test bench is written
that instantiates all the blocks needed. The design consists
of two butterfly units to calculate real and imaginary parts
concurrently. Twiddle factors are generated using MATLAB in
16-bit two's complement format and included in the simulation
as ROM's that are addressed by /romad and has the outputs
/t_rrom_dout (real part) and / t_irom_dout (imaginary part).
The overall FFT design concept can be explored in FIGURES
5.13, 5.14, 5.15, 5.16.

31

The signals shown in simulation waveforms can be listed

as follows:

t_mode: Mode of the operation.

t_cs_ram: Chip éelect signal for RAMs.

t_cs_rom: Chip select signal for ROMs.

t_atlast: Acknowledge for the end of operation.

t_rram dout: Output of RAM of the real part of data.
<t_iram_dout: Output of RAM of the imaginary part of data.
t_rrom_dout: Output of ROM of the real part of twiddle
factor.

t_irom_dout: Output of ROM of the imaginary part of twiddle
factor.

t_rram_din: Input to RAM of the real part of data.
t_iram_dout: Input to RAM of the imaginary part of data.
t_ramad: Address of the RAM.

t_romad: Address of the ROM. _

t_bfyl_inl: First input of the butterfly unit of the real
part.

t_bfyl_in2: Second input of butterfly unit of real part.
t_bfy2_inl: First input of the butterfly unit of imaginary
part.

t_bfy2_in2: Second input of the butterfly unit of imaginary
part.

t_bfyl_outl: First output of butterfly unit of real part.
t_bfyl_out2: Second output of butterfly unit of real part.
t_bfy2_outl: First output of the butterfly unit of imaginary
- part.

t_bfy2_out2: Second output of the butterfly unit of imaginary
part.

NEEEEEEEEEEREEEEO000000

EEEEEEEEEEEEREEEOO000O

/t_mode =0

ft_cdk=1

/t_rw =0
Jt_cs_ram=0
ft_cs_rom =1
/t_atlast=0
/t_rram_dout = 32769
Jt_iram_dout =1 '
/t_rrom_dout = 32767
/t_irom_dout=10
Jt_rram_din = 8189
/t_iram_din=0
ft_ramad =X
ft_romad =0
/t_bfyi_in1 = 32767
/t_bfy1_in2 = 32769
Jt_bfy2_in1 = 32767
/t_bfy2_in2 =1
Jt_bfy1_outl =57345
/t_bfy1_out2 =81390
/t_bfy2_out1 =0
Jt_bfy2_out2 =0

/t_mode =0
Jt_dk=1

ft_rw =1
ft_cs_ram=1
Ht_cs_rom =1
/t_atlast =1
Jt_rram_dout =5
ft_iram_dout=5
ft_rrom_dout = 32778
Jt_lrom_dout = 64731
ft_rram_din =8178
Jt_iram_din = 201
ft_ramad =0
Jt_romad =127
Jt_bfy1_in1 = 32678
ft_bfyl1_in2 = 32727
Jt_bfy2_in1 = 32678
Jt_bfy2_in2 =32727
Jt_bfy1_outl =57357
ft_bfy1_out2 =8178
/t_bfy2_outl = 65335

' O D s O s U e A s T ISV Iy S |
I L
—— I L
X _I5 132778 132767 132769
X 15 §10) 32767 11
32767
0
X {57347 18183
¥ o
0 1128 X o {128)il 129 T
0
X s 32767
¥ 32778 i
X g 32767
X 10 %
X 57347)
X 8189 8188 |
X 0
¥ 0
FIGURE 5.13. Overall FFT simulation.
| L L1 L 11 1 | 1
[]
A i
—
Y32678 132727
{32678 132727
{32748
164731
{57392 18143 57357 |8178
165136 1400 55335 1201
1252 253 {254 {255 X 254 1255
1127
¥32678
132727
132678
132727
157386 {57357
{8150 18178
165334 [65335
{201

Jt_bfy2_out2 =201

FIGURE 5.14. End of the 256 point complex FFT.

NEFEEEEEEREEEEEEO000000

FEEEEEEEEEEREREEOO0000O0

Jt_mode =1

ft_clk=1

forw =1
Jt_cs_ram=0
ft_cs_rom =1
/t_atlast=0
ft_rram_dout = 32767 _
/t_iram_dout = 32767
Jt_rrom_dout = 32767
Ji_irom_dout =0
Jt_rram_din = 65535
Jt_iram_din=0
Jft_ramad =¥
/t_romad =0
/t_bfy1_in1 =32769
/t_bfy1_in2 = 32767
ft_bfy2_in1 =1
ft_bfy2_in2 = 32767
Jt_bfy1_out1 =8191
/t_bfy1_out2 = 57344
ft_bfy2_out1 =0
ft_bfy2_out2 =0

/t_mode =1

fi_ck=1

ftrw =1

ft_cs_ram =1
ft_cs_rom=1
/t_atlast =1
ft_rram_dout = 32767
/t_iram_dout = 32767
/t_rrom_dout = 32778
ft_irom_dout = 64731
ft_rram_din = 8167
Jt_iram_din = 201
ft_ramad =1
ft_romad = 127
ft_bfy1_in1 =32727
/t_bfy1_in2 = 32678
ft_bfy2_in1 = 32727
/t_bfy2_in2 = 32678
ft_bfy1_out1 =57369
Jt_bfy1_out2 =B167
Jt_bfy2_outl =65334

33

]] f]] L 1 1 | T
] [
. [L
X 13277815 32769132767
%110 IS i 32767
37767
0
X] {65535
X) (3]
01178 1o X {128 1) {123 i 1
0
X 32778 32769
¥ 5 X
X 1o i
X 5 X
X 1 I
¥ 55535 by
% 0
X 0
FIGURE 5.15. Overall FFT simulation in reverse oxder.
A o AN SO R o N R IS N I
]]
| [i
B
132727 137648
132727 132678
(32778
{64731
[57416__[8120 57369 8167
1651371399 65334 201
253 752 {255 254 £ 255 254
1127
(32727
132678
32727
(32678
{57409 {57369
{8128 8167
165337165334
{138 1701

Jt_bfy2_out2 = 201

FIGURE 5.16.

End of the 256 point complex FFT in reverse

order.

34

6. FIR Filter

This section elaborates the constant coefficient finite

impulse response filter implementation without multipliers.

6.1. Theory

In general, an FIR system is described by the difference

equation
ym) =Y " bx(n—k) (6.1)
or, equivalently, by‘the system function
H@)=Yr bz™ (6.2)

Furthermore, the unit sample response of the FIR system

is identical to the coefficients {bg}, that is,

................ 0<n<M-1
h(n):{b"’ " (6.3)

It must be noted that the length of the filter is M.
There are several methods for implementing an FIR system.
Four methods are as follows: direct form, cascade-form,

frequency sampling realization, and lattice realization[1l1l].

We can represent the FIR filter in block diagram form as

shown in FIGURE 6.1.

35

x(n) x(n-1) x(n-2) x(n-3) x(n-M)

y(n)

FIGURE 6.1. Data flow diagram of a FIR filter.

Such a diagram, often called a digital filter structure
depicts the operations required to compute each value of the
output sequence from values of the input sequence [17]. The
basic elements of the diagram depict means for addition,
multiplication of sequence values by constants (constants
indicated on the branches imply multiplication), and storage
of past values of the input sequence. Thus the block diagram

gives a clear indication of the complexity of the system.

6.2. Implementation

As it can been seen from (6.1) and (6.2) realization of
FIR filters requires multiplications. However, multipliers
occupy huge areas. If the FIR system is a constant filter, it
is usually implemented without multipliers where
multiplications are represented by a series of adders and/or
"subtractors and shifters. This kind of multiplier
répresentation is very effective in terms of area, delay, and

power compared to general multipliers [18].

Even though systems without multipliers are cost

effective than general ones, it is always required to make

36

these systems even more effective. In these systems, numbexr
of "one's" in the representation of the constants determines
the number of adders required in the implementation. Thus, if
one can reduce the number of "one's" in the representation,
it is possible to reduce the number of adders, which
generally achieved by using Canonic Signed Digit (CSD)
representation. It is proved that CSD representation
requires, on average, 33 percent fewer adders than standard
binary representation [19]. Also, CSD representation has the

nice property of standard binary representation that is

uniqueness [20].

A 6-tap symmetrical coefficient FIR filter that can be
used for smoothing the FFT spectrum, was designed using
MATLAB. TABLE 6.1 summarizes the representations of the
coefficients normalized to signed 16-bit input format. For

CSD representation 1 denotes -1.

TABLE 6.1. Representation of coefficients in various number

systems.
Coefficient Decimal 2's complement CSD
1 -236 1111111100010100 0000000100010100
2 -436 1111111001001100 0000001001010100
3 17056 0100001010100001 0100001010100000

Block diagram of the FIR filter is illustrated in FIGURE
6.2.

37

Control logic and Address
Generation Unit

v v v

Coeffcient 1 Coefficient 2 Coefficient 3

FIGURE 6.2. Block diagram of the FIR unit.

6.2.1. Control Logic

Control 1logic in FIR maintains the correct address
generation for RAM and scheduling the dataflow of the inputs

to the coefficient units in order to achieve (672).

6.2.2. Coefficient 1

Coefficient 1 as well as other two coefficients are
implemented using CSD representations of the coefficients
without multipliers. FIGURE 6.3. shows the QHDL simulation

result for coefficient 1 in decimal.

O /rst=0 [
/din=1 1 165535 |3 (65533 1345 165191
Jdout =¥ X 1-236 J236 =708 708 1-81420 181420

FIGURE 6.3. VHDL simulation waveform for coefficient 1.

Optimization results are as follows

Number of nets : 86
Number of cells : 167
Number of operators : 2

38

Combinational area : 235.02 (45 %)
Buffer/Inverter area : 40.87 {(8 %)
Sequential area : 3.67 (1 %)
Operator area : 244 .63 (47 %)
Total area) : 524.19

Total combinational delay is 8.68ns.

6.2.3. Coefficient 2

QOHDL simulation result is shown in FIGURE 6.4 for this

coefficient.

O /rst=0 0

/din=1 1 165535 [5 {65531 |67 65469 127
Jdout =¥ ¥ 1-436/436 —2180 (2180 {—29212 29212 -55372

FIGURE 6.4. VHDL simulation waveform for coefficient 2.

Optimization results are as follows

Number of nets : 109
Number of cells : 208
Number of operators : 3
Combinational area : 313.75 (44 %)
Buffer/Inverter area : 54.27 (8 %)
Sequential area : 3.67 (1 %)
Operator area : 335.43 (47 %)
Total area : 707.12

Total combinational delay is 11.752 nsec.

6.2.3. Coefficient 3

QHDL simulation result can be shown in FIGURE 6.5. which
is exactly same as the one listed in TABLE 6.1 since there is

no 1 in the CSD representation.

39

O /rst=1 [
/din = 65508 1 65535 13 65533127 (65508
[/dout=-4B0512 [17056__J—17056 J51168 | J-51168 1460512 {—460512

FIGURE 6.5. VHDL simulation waveform for coefficient 3.

Optimization results are as follows

Number of nets : 110
Number of cells : 221
Number of operators : 3
Combinational area : 309.26
Buffer/Inverter area : 32.16
Sequential area : 0
Operator area : 306.84
Total area : : 648.26

Total combinational delay is 11.012 nsec.

6.2.4. Overall FIR filter

o~~~

For overall FIR filter simulation a test bench entity is

used. FIGURE 6.6.

The signals shown in simulation waveforms can be listed

as follows:

t_ram_dout: Output of the data RAM.

t_ram_adres: Address of the data RAM.

t_result: Result of the filtering.

t_coeffl: Result of multiplication with first coefficient.

t_coeff2: Result of multiplication with second coefficient.

t_coeff3: Result of multiplication with third coefficient.

40

Optimization results are as follows

Number of nets
Number of cells
Number of operators

Combinational area
Buffer/Inverter area
Sequential area
Operator area

Total area

Delay on

output data

984
1260
11

.53 (
.17 (
.41

.44 (

is 26.03 nsec.

%)
%)
%)

O /tck=0 Onnnnnphhipnppnniihipigigiyigigigegsy
F /t_ram_dout=3 BEBTFEAE PHPEI7IEN B 213175 5027
Jt_ram_adres =5 B GERH El7Ei5dai312 JriBlzi6lsia)3 919876}
/t_result =079432 [{15-33554432 10201748 0167036 1475432
/t_debug =012280 |00 T 0 oo TP I 1 oo Y 7 ¥ ido) 0
/t_coeffl = —2596 1372 [=708 1236 {=1180 ¥=2596
/t_coeff2 =-2180 [|¥ {=1308 j-434 1872 |—2184¢ {436 _]—3052 J=2180
Jt_coeff3 = 34112 X 1 185280 T 1119392 {51188 R
/t_count=5 IR IR VAEET R R A ORI R R R A R iR A CRCECRACH VA CH TR B EREN
FIGURE 6.6. Overall FIR filter simulation waveform.

41

7. DIVISION AND SQUARE-ROOT

In general computation systems, the fregquency of
division and square-root operations tends to be considerably
lower than that of addition and multiplication. Hence, many
arithmetic processors do not include hardware support for
these operations [21]. Software routines for division and
square-root can be up to an order of magnitude slower than
multiplication and addition and as a result, the time
weighted impact of division and square-root on processor
utilization can be significant [21]. However, therefore it
may be needed to implement these units in hardware for some

applications.

7.1. Divider

Division of two binary numbers can be easily implemented
by using shifters and a subtractor. However, this approach is
rather slow and inconvenient for many DSP applications. Real-
time digital signal processing requires high performance
implementation of division. This can only be achieved by the
design of fast and efficient algorithms which address

practical VLSI architectural design issues [21].

There are basically two kind of division algorithms,
restoring and non-restoring. If we assume two numbers A and B
then the implementation of the restoring division 1is as
follows:

e Always do A - B, and add B back again if the result is
negative.

e On the next step subtract B/2 (shifted B).

42

However an optimization can be applied to this scheme in
the way that instead of adding B back, add B/2 if the
dividend A is negative. This is called non-restoring
division. It must noted that the quotient gets a "1" bit when

the result is positive, a "0" bit otherwise.

To illustrate the non-restoring division, following

example can be used.

130 / 11: A = 130 = 10000010, B = = 00001011
A B' A-B' or A+B' 0
10000010 10110000 11010010 00000000
11010010 01011000 00101010 00000001
00101010 00101100 11111110 00000010
11111110 00010110 00010100 00000101
00010100 00001011 00001001 00001011

Q = 00001011 = 11, R = 00001001 = O

For the division algorithm the one presented in [22] is
used. It is specifically a non-restoring two's complement

division algorithm.

O /t_ck=0] i |] |]] | | | 1] L | L

O /t_rst=1

ft_divisor =516 516 (133217752 [<5147481576___]—199213048 ¥

/t_dividend = 8200 §200 Y=1073741816____ 112146958327 __ 11074331659 ¥

ft_integer = 1111111010 16000001111 [i111111000 6600000000 {1111111010

Jt_fraction = 100110 {11i001 1060000 (111111 100110
FIGURE 7.1. Simulation results for divider block.
Optimization results are for divider:

Number of nets : 1268

Number of cells : 2554

Number of operators : 17

Combinational area
Buffer/Inverter area
Sequential area
Operator area

Total area

4039.17
388.6
101.44
3157.59

Critical path is 3.2 nsec.

7.2. Square-root

%)

%)

%)

43

We have implemented a novel square-root algorithm. This

algorithm is iterative

represent an m bit binary number in the form

Clear both SP and NSP -

Rotate NSP

and multiplication

Add NSP to SP

v

Square the sum

Higher Compare the
result with

original number

Move NSP to SP

FIGURE 7.2 Flowchart of

the square-root algorithm.

Let's
(NSP) m/2 (SP) /2.
Then, algorithm has the flowchart shown in FIGURE 7.2.

44

This square-root algorithm has been implemented in a
parameterized manner to be used with variable input word

lengths. FIGURE 7.3. shows some of the results for some

square-root operations.

O /lk=0 RN R Rpipi Ay ipipupRpipipipupupupRpagigugupny

O /srst=0 | 1 1]

Jin_number =6080 {80 144 {5080

/result =0 0 8 10 12 fo 77}

/pre=0 0 8 o 2 o 1z7)

/drega =0 (YT dsfa2ifo ¥ 1 T T fefaf2iijo Y L ¥ ¥8{ay211i0

fdregh =0 0 I8 i) 181z fo y64 {1I7e {77)

OO /ready=1 L] l | L1

R R LI L R A R R R N R T A R R R T A E A A R AR RN RN RN S RANA R LR BRI AR IR L
) 500

FIGURE 7.3. VHDL simulation waveform for sguare-root.
Below optimization results can be found.

Number of nets : 3490

Number of cells : 1265

Number of operators : 3

Combinational area : 1953.42 (41 %)

Buffer/Inverter area : 247 .9 { 5 %)

Sequential area : 488.54 (10 %)

Operator area : 2055.2 (43 %)

Total area : 4745.06

Total combinational delay is 8.02 nsec.

45

8. MULTIPLY ACCUMULATE UNIT

Multiply accumulate unit (MAC) is one of the most
critical units in a multi-purpose digital signal processor as
well as in a digital signal processing ASIC due to the nature
of the DSP algorithms. Hence, we have implemented a
parametric signed MAC that can be used with variable input

widths. FIGURE 8.1 shows the QHDL simulation results.

O /cdk=0 AN |y TR e A S ey I oy Y N oy SO SN S D
O /reset=1 |

/in1 = 65534 1 120 165534

/in2=8 g {65535 i8

ftotal =30 X]S 110 110 130 192 194)78 62 146 130

FIGURE 8.1. VHDL simulation waveform for MAC.

Synthesis and optimization results for the MAC are as
follows: '

Number of nets : 162
Number of cells : 967
Number of operators : 2
Combinational area : 1682.09 (45 %)
Buffer/Inverter area : 101.17 (3 %)
Sequential area : 202.88 (5 %)
Operator area : 1783.26 (47 %)
Total area : 3769.4

Critical timing path is 4.72 nsec.

46

9. OVERLAP-ADD METHOD

In practical applications involving linear filtering of
signals, the input sequence x(n) is often a very long
sequence. This is especially true in some real-time signal

processing applications concerned with signal monitoring and

analysis [11].

However in digital domain, it is not possible to process
very long sequence of data due to hardware limitations.
Therefore, to cope with the block processing of the data
there are several methods. The two common methods are

overlap-add and overlap-save [11, 17].

In our implementation, overlap-add method is wutilized

which basically performs (9.1).
outbuf (N/2) = outbuf(N/2) + input_to_block(1l:N/2). (9.1)
FIGURE 9.1. shows the simulation result for this block.

/final: Output of the block.

/frout: Output of the shift registers.
/dout: Output of the RAM.

/gx: Address of the RAM.

/gwr: Read/write signal for the RAM.

O /ldk=1] 1]]] |] r
O /rst=1

ffinal = 65535 132926 (32857 {32808 15 {32768 Ti
/frout = 32757 5 132767 &
/dout = 32778 32926 {32857 {32808 10)] &
/g% =130 1125 {128 27 128 1129 T
O /owr=1

FIGURE 9.1. Simulation waveforms for the overlap-add.

47

Optimization results for this block is as follows:

Number of nets : 87

Number of cells : 2141 .

Number of operators : 2
Combinational area : 123.19 (1 %)
Buffer/Inverter area : 10.72 (0 %)
Sequential area : 13035 (98 %)
Operator area : 118.6 (1 %)
Total area : 13287.6

Another method to implement overlap-add method can be to
address the data that is resident in the RAM in an

appropriate way to avoid shift register which consumes a lot

of silicon area.

48

10. CONCLUSION

In this{ thesis, a high qué.lity reduced complexity
speech enhancement algorithm that is suitable for both
software and hardware implementation is introduced. In
additioh, common DSP blocks, which are also involved in the

proposed algorithm are implemented wusing VLSI design

techniques.

The complexity of the MWF algorithm is successfully
reduced. This modification, which consists of replacing LPC
with a smoothing low pass filter, results an important
advantage on software and hardware implementation if the
computational burden of LPC shown in TABLE 10.1 considered
[17] where N is the number of data points in the analysis and
p is the order of predictor coefficients. In addition, a
floating point operation count is made using MATLAB on a
Pentium-III 500MHz computer running Linux and 17396 flops
obtained for LPC method whereas 3072 flops for FIR filter
method.

TABLE 10.1. Computational considerations in LPC solutions.

METHOD
Covariance | Autocorrelation| Lattice
Data N N 3N
]
g ; 2
i Matrix oc p°/2 < p -
&
Window - N -
8 Windowing - - -
P
o
'E': Correlation o< Np < Np -
21
-l
] Matrix 3 . 2 5
oc N
£ Solution = P p P

49

In the design methodology,

new tools 1like OQHDL and

AutoLogicII are introduced. In addition, parameterized VHDL

coding techniques as well as synthesizable IEEE libraries are

employed for most of the blocks.

In the design of a window function and overlap-add

method, a novel but a simple architecture that uses a shift

register is introduced. The generic design of these blocks

enables these implementations to be used in various designs.

Since being one of the major building blocks of many DSP

algorithms, many implementations of FFT can be found.

Although we did not try to make it very fast since our blocks
are mostly concentrated on speech processing it may be useful
to compare our design with some others. TABLE 10.2 summarizes

the characteristics of some FFT processor designs.

TABLE 10.2. Comparison of various FFT designs

DESIGN Technology | Datapath Execution Equivalent Area

wWidth Time (1024 pt) Gates (mm?)

PDSP16510A 1.4um 16 98usec ~26k 22
(Plessey)

ETH, Zurich 0.5um 32 80usec =250k 167

Inventra 0.7um 20 90usec 27K =20

Mentor
Our FFT 0.7um 16 =400usec =12K =9

In the implementation of the FIR filter multiplierless
design techniques to exploit the constant coefficients are

illustrated.

A fully generic divider in terms of input word length

and output format has been accomplished. This implementation

50

gives great flexibility to division, thus can be used in many

various applications.

A novel square-root algorithm is designed. The
optimization results show that a full custom design will be

able to compete with many proposed fast square-root

architectures.

The summary of all the implemented blocks in this thesis
can be found in TABLE 10.3.

TABLE 10.3. Summary of the designed blocks.

Number of Area
Block Method
cells used (mm?)
. . Shift register and
Windowing 3042 7.5
multiplier
FFT 12k 9 Radix-2 DIT
) Constant coefficient
FIR filter 1260 2
without multipliers
Divider 2554 3.8 Non-restoring
Sqguare-root 1265 2.4 Multiplicative
MAC 967 1.9 -
Overlap-add 2141 6.5 Shift register and adder

As stated in section 3 layouts of the designed blocks

are generated using IC Station.

Consequently, this thesis addresses important points in
the wireless communication and system-on-a-chip era. While
the proposed algorithm can be used in many demanding mobile
communication applications, the designed blocks can be part

of any embedded application specific integrated circuit.

APPENDIX

EXAMPLE LAYOUT

51

;
)
'_j =
0l
R i
I r
1 I LT

FIGURE A.l. Layout of the 16-bit adder circuit.

52

REFERENCES

. Parhi, K. K., VLST Digital Processing Systems, Wiley, New
York,1999.

. Lim, J. S. (editor), Speech Enhancement, Prentice Hall,
NJ, 1983.
. Boll, S.F., “Suppression of acoustic noise in speech using

spectral subtraction,” IEEE Trans. Acoust., Speech, Signal

Processing, Vol. ASSP-27, No. 2, pp. 113-120, April 1979.

. Lim, J. and A. V. Oppenheim, “All-pole modeling of
degraded speech,” IEEE Trans. Acoust., Speech, Signal
Processing, Vol. ASSP-26, No. 3, pp. 197-210, June 1978.

. Ephraim, Y., “A Minimum mean square error approach for
speech enhancement,” Proc. IEEE Int. Conf. Acoust, Speech

Signal Processing, pp. 829-832, 1990.

. Arslan, L., A. McCree, and V. Viswanathan, “New methods
for adaptive noise suppression,” IEEE Proceedings of

Icassp, Vol. 1, pp. 812-815, 1995.

. Romdhane, M. S. Ben, Madisetti, K. Vijay, john W. Hines,
Quick-Turnaround ASIC Design 1in VHDL, Kluwer Academic

Publishers, Boston, 1996.

. Jackson, Leland B., Digital filters and signal processing
with MATLAB exercises, Kluwer Academic Publishers,

Boston, 1996.

10.

11.

12.

13.

14.

15

16.

17.

53

. Bateman, Andrew, and Warren Yates, Digital Signal

Processing Design, Computer Science Press, New York, 1989.

Haddad, Richard A., and Thomas W: Parsons, Digital signal

brocessing : theory, applications, and hardware, Computer

Science Press, New York, 1991.

Proakis, John G., and Dimitris aG. Manolakis, Digital
signal brocessing : brinciples, algorithms, and

applications, Macmillan, New York, 1992.

Richards, Mark A., “On Hardware Implementation of the
Split-Radix FFT,” IEEE Trans. on Acoust, Speech, and
Signal Processing, Vol 36, No. 10, pp. 1575-1581, 1988.

Duhamel, P., and H. Hollmann, “Split radix FFT algorithm, *
Elect. Letters, Vol. 20, No. 1, pp. 14-16, 1984.

Winograd, S., “On computing the discrete Fourier

transform, ” Math. Comput., Vol. 32, pp. 175-199, 1978.

. Macleod, M. D., N. L. Bragg, “Fast Hardware Implementation

of the Winograd Fourier Transform Algorithm,” Elect.

Letters, Vol. 19, No. 2, pp. 363-365, 1983.

Burrus, C. Sidney, and Peter W. Eschenbacher, “An In-
Place, In-Order Prime Factor FFT Algorithm,” IEEE Trans.
on Acoust, Speech, and Signal Processing, Vol. Assp-29,

No. 4, pp. 806-811, 1981.

Rabiner, Lawrence R., and Ronald W. Schafer, Digital
Processing of Speech Signals, Prentice Hall, New Jersey,

1978.

18.

19.

20.

21.

22.

54

Yurdakul, Arda, “Development of a High Level Synthesis
tool Speciallized on FIR-Based Multirate Systems,” PhD.

Dissertation, Bogazig¢i University, 1999.

Garner, H. L., “Number systems and aritmetic,” Advanced

Computers, Vol. 6, pp 131-194, 1965.

Hwang, K., Computer Arithmetic: Principles, Architectures

and Design, John Wiley & Sons, NY, 1979,

McCanny, J. V. and S. E. McQuillan, “Fast VLSI Algorithms
for Division and Square Root,” Journal of VLSI Signal
Processing, Vol. 8, pp. 151-158, 1994.

Keshab K. Parhi, “A systematic Approach for Design of
Digit-Serial Signal Processing Architectures,” IEEE Trans.

on Circuits and Systems, Vol. 38, No. 4, April 1991.

55

REFERENCES NOT CITED

Borgatti, M., Felici, M., Ferrari, A., and R. Guerrieri, “A
Low-Power Integrated Circuit for Remote Speech
Recognition,” IEEE J. of Solid-State Circuits, Vol. 33,
No. 7, July 1998.

Wang, C.-C., Huang, C.-J., and G.-C. Lin, “A Chip Design of
Radix-4/2 64b/32b Signed and Unsigned Integer Divider
Using Compass Cell Library,” Electronics Letters, Vol. 32

No. 17, pp. 1526-1527, 1996.

7

El-Sharkawy, Mohammed, Real Time Signal Processing
Applications with Motorola's DSP56000 Family, Prentice
Hall, Englewood Cliffs, New Jersey, 1990.

Hansen, J.H.L. and M. A. Clements, “Constrained iterative
speech enhancement with application to speech
recognition,” IEEE Trans. on Signal Processing, Vol. 39,

No. 4, pp. 795-805, 1991.

Despain, A. M., “Very fast Fourier transform algorithms
hardware for implementation”, IEEE Trans. on Computers,

Vol. C-28, No. 5, pp. 333-340, May 1979.

Baas, B. M., "“A Low-Power, high-performance, 1024-Point FFT
processor”, IEEE Journal of Solid-State Circuits, Vol. 34,
No. 3, pp.380-387, March 1999

Cooley J. W. and J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Math. Computing,

Vol. 19, pp. 297-301, April 1965.

	Tez419001
	Tez419002
	Tez419003
	Tez419004
	Tez419005
	Tez419006
	Tez419007
	Tez419008
	Tez419009
	Tez419010
	Tez419011
	Tez420001
	Tez420002
	Tez420003
	Tez420004
	Tez420005
	Tez420006
	Tez420007
	Tez420008
	Tez420009
	Tez420010
	Tez420011
	Tez420012
	Tez420013
	Tez420014
	Tez420015
	Tez420016
	Tez420017
	Tez420018
	Tez420019
	Tez420020
	Tez420021
	Tez420022
	Tez420023
	Tez420024
	Tez420025
	Tez420026
	Tez420027
	Tez420028
	Tez420029
	Tez420030
	Tez420031
	Tez420032
	Tez420033
	Tez420034
	Tez420035
	Tez420036
	Tez420037
	Tez420038
	Tez420039
	Tez420040
	Tez420041
	Tez420042
	Tez420043
	Tez420044
	Tez420045
	Tez420046
	Tez420047
	Tez420048
	Tez420049
	Tez420050
	Tez420051
	Tez420052
	Tez420053
	Tez420054
	Tez420055

