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ABSTRACT 

Face databases can consist of a few hundreds of face images to thousands, even 

millions. Because of storage and banwidth limitations, face databases are maintained 

under compressed domain. One of the related problems is the performance evaluation 

of traditional face recognition techniques on the compressed face images. 

In this thesis, we try to determine the effects of information loss due to the com­

pression on the performance of principal face recognition techniques. Besides, the 

most robust face recognition technique against compression, the extend to which face 

images can be compressed without a major performance deterioration and the most 

appropriate compression technique for face images are determined. 

Using the results of face recognition experiments on compressed face images, we 

conclude that the face images can be compressed to 100:1 with face-specific compres­

sion tecniques, 40:1 with SPIHT technique and 20:1 with VQ, JPEG and JPEG-2000 

techniques. Most robust face recognition techniwue against compression is " Fisherface" 

method. The eigenfaces generated from compressed face images at 0.4 bit/pixel rate 
- . 

performed better recognition than eigenfaces generated from non-compressed images 

for VQ, JPEG and JPEG-2000 techniques. 
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•• OZET 

Yiiz imgelerinin i~erdigi yiiz imgelerinin SaYlSl giin ge~tik~e artmaktadlr. Imgelerin 

saklanmasl i~in gereken disk Sigasl ve imge iletimi i~in gereken bant geni§ligi kIsltla­

malarmdan dolaYl yiiz veritabanlan slkI§trrIlml§ olarak saklanmaya ba§lanml§tlr. 

Slkl§tlnlml§ imgeler iizerinde ~ah§manm getirdigi problemlerden biri, soo§tlrmadan 

kaynaklanan bHgi kaybmm temel yiiz tanlma yontemlerinin ba§arIIDl iizerindeki etki­

sidir. Bu etkiyi incelerken, ba§arIml slkI§tlrmadan en az etkilenen yiiz tanIma yontemini, 

yiiz imgelerinin, tanlma ba§arIml dii§meden, degi§ik sIkI§tIrma yontemleri He ne karlar 

slkI§tlnlabilecegini ve yiiz imgelerini slkI§tlrmak i~in en uygun sIkI§tlrma yonteminin 

'hangisi oldugunu tespit etmeye ~ah§tlk. 

Bu ~ah§ma ile, yiiz imgelerinin, tanIma ba§arIml dii§meden, yiizlere ozgU slkI§tIrma 

yontemleriyle 100:1, SPIHT ile 40:1, vektor nicemleme, JPEG ve JPEG-2000 He 20:1 

oramna kadar sIkI§tlnlabilecegi goriildii. Temel yiiz tanIma yontemlerinden "Fish­

eryiizlerinin" sIkI§tmluu§ yiiz imgeleri iizerinde tanIma ba§arIml en yiiksek yontem 

olarak belirlendi. Aynca vektor nicemleme, JPEG ve JPEG-2000 He slkI§tmluu§ yiiz 

imgelerinden elde edilen ozyuz uzaymm oZgUn yiizlerden elde edilen ozyuz uzaymdaki 

tanIma ba§arImlndan daha fazla oldugu goriildii. 
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1. INTRODUCTION 

The remarkable human ability of recognizing hundreds of faces attracted the pyho­

physicist, neuroscientists and engineers on various aspects of face processing. A num­

ber of experiments were made by neuroscientists on uniqueness of faces, whether face 

recognition is done holistically or by local feature analysis, how infants perceive faces, 

organization of memory for faces, inability of recognition due to conditions such as 

prosopagnosia. These experiments contributed to the face recognition algorithms de­

signed by engineers. 

The problem of face recognition can be defined as identifying one or more persons 

in the scene of a given still image or a video sequence using a stored database of faces. 

In this thesis, we examine the performance of face recognition algorithms on different 

lossy compression algorithms. We also try to determine the appropriate compression 

scheme for face images and determine the extend to which face recognition algorithms 

can work within acceptable errors in recognition. The most robust algorithm against 

compression is also determined via a number of conducted experiments. 

Deprived of robust mathematical algorithms for feature extraction, this task was 

too daunting for the researchers. The development of powerful feature extraction tech­

niques in the early 1990s increased significantly the research interest on automatic face 

recognition problem. One can attribute the increasing interest in face recognition to 

several factors: An increase in emphasis on civilian/commercial research projects, the 

re-emergence of neural network classifiers with emphasis on real time hardware and the 

increasing need for surveillance-related applications due to drug trafficking, terrorist 

activities etc. 
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1.1. Applications of Automatic Face Recognition 

The conventional security technology, such as passwords, magnetic entrance cards etc. 

is becoming obsolete with the development of powerful computers and other technical 

equipments used for fraud. Therefore, new security systems based on the human bio­

metrics is needed. Human identification systems based on biometrics other than face 

have already led to commercial products with very high identification performances. 

The iris and fingerprints are widely used biometrics for human identification [1, 2]. 

However, these systems are not always appreciated by users, as they require some close 

interaction with the machin:e often perceived as invasive. Moreover, they require the 

user to stop at the device and be cooperative, which is acceptable for access control to 

, restricted areas, but not for other applications like surveillance. Therefore, new sys­

tems are being developed in which face recognition is integrated to traditional biometric 

identification systems [3]. 

In [4], a detailed survey of the automatic face recognition research and the appli­

cation areas of face recognition are described. A general face recognition application 

must consist of two parts 

• Detection and segmentation of faces from still images or video streams 

, 
• Recognition of the segmented faces 

In some of the applications only face detection is needed. In this task, still images 

and video streams are examined in order to determine if there exists a face or not. H 

there is one or more face objects, it must be segmented from its background. This 

is sometimes very tedious due to complex background, low image quality, faces with 

various scales and orientations. Typical examples of the face detection applications are 

automatic human counters in markets, in terminals etc., advanced alarm systems and 

many others. 
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Face detection is also the first step in the face recognition task in many cases. 

Furthermore, many of the face recognition algorithms cannot handle scale, illumination, 

and orientation variations in the scene. Therefore, they require a preprocessing stage, 

in which not only a robust face detection algorithm determines the location of the face 

in the image (if any), and segments it from the rest of the image, but also normalizes 

the face image to the desired scale, illumination and orientation. 

Typical face recognition applications can be listed as follows 

• Personal identification for. credit card, driver license, passport, etc. The face 

images in these type of documents are acquired in a controlled environment, 

ie. there is no complex background and no variations of scale and orientation. 

However, the potential database size may be huge. 

• Man-machine interface. Although one deals with a small or moderate face database, 

faces can have very large variations in scale, orientation and expressions. It may 

also requires the understanding of the human face gestures, ie. anger, happiness, 

disgust etc. 

• Identification for ATM machines and restricted access control. Varying databases 

from moderate to huge size and face images being acquired in uncontrolled envi­

ronments make this task more sophisticated than the previous ones. 

\ 

o Crowd surveillance. This is the most difficult in face recognition. Some appli-

cation instances can be given as, searching for specific individuals in an airport 

terminal or for terrorists in illegal demonstrations. All faces in a crowd must be 

segmented and recognized after normalization by the preprocessing stage. The 

associated face database can be moderate or large. 

There are many other specific applications such as recognition from UV images, 

recognition of witness reconstructed, hand drawn human caricatures, profile face im­

ages etc. Finally, the automatic determination of sex and race is another recognition 
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related application. The number of applications and their variety make automatic face 

recognition an attracting research field. From 60s many face-recognizing systems have 

been developed, and are still being developed with an increasing performance in the 

correct recognition rate and algorithmic robustness. 

Some of these applications have high commercial values, since they perform crucial 

tasks. In fact for effective law-enforcement in some countries, the research efforts and 

investment in this area have been intensified. A few of these applications are already 

been implemented and are commercially available. 

1.2. Face Recognition Paradigms 

1.2.1. Facial Feature Based Methods 

Early face recognition systems were semi-automatic. A human operator used to mark 

the facial features such as eyes, top of the noise, mouth comers etc. Then using the , 

geometrical relationship of these points such as distance, angle etc., the test faces were 

recognized. Gradwilly fully automatic face recognition systems have been developed 

[5, 6, 7, 8]. In these systems, 10-30 feature points are automatically extracted for 

recognition tasks. These points are chosen among the most fiducial ones, that do not 

change with expressions and face obstacles like beard, glasses etc, as shown -in FIGURE 

1.1. 

Although the first systems were not very succesfull, current systems give promising 

results with facial feature based algorithms. 
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FIGURE 1.1. Facial features selected for recognition 

1.2.2. Template Based Methods 

The research on face recognition has revealed that the information of a particular face 

is not only contained necessarily in the coordinates of facial features such as eyes, chin 

etc. From the view point of information theory, discriminating information is searched 

not only in the facial features but in the whole face [9]. 

Template-based methods extract global features of faces and generally represent 

faces in the lower dimensional feature spaces. To this effect one decorrelates human 

faces and transforms them to a new space in which their differences from ·person to 

person are emphasized. 

The most popular algorithms based on templates are correlation, "Eigenfaces" 

method, "Fisherfaces" method and their variants. However, these algorithms have 

some problems in common. First of all, they are very sensitive to scale variations and 

all other changes, which decrease the correlation between templates such as rotation, 

translation etc. Also since the images are treated as vectors, they cannot capture the 

local features, and cannot use the information coming from the known topology of 

human face. 

Despite these, they are fast (excluding correlation) enough for real-time applica-
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tions, and with proper pre-processing they can be quite robust. With adequate pre­

processing, to normalize the input image, these methods can perforIil with a 90-99% 

correct recognition rate [10, 11, 12, 13]. 

1.2.3. Spatial Organization Based Methods 

The most common algorithm, which can make use of the spatial organization of faces 

is Hidden Markov Model. Because of the well-defined topology of faces, the HMM 

algorithm models the probability of transitions from one of the facial feature to another 

and the state probabilities. 

Each face is thus represented with a different HMM model and any test face can 

be recognized using the MAP (maximum a posteriori) estimate. 

The major drawback of this approach is its computational complexity. A fully 

connected HMM model is so complex that it cannot be used for practical applications. 

To reduce this complexity, 20 images can be converted into 10 temporal sequences or 

10 spatial sequences. In [14, 15], spatial sequences are preferred. The spatial sequences 

can be obtained by sampling the image using sliding window. This method converts 

the image into 10 sequence of windowed data, where each element of the sequence is a 
, 

vector made of a certain number of samples. It is determined that top-to-bottom line 

block sampling gives psychologically significant features [15]. 

1.2.4. Image-Feature Based Methods 

In contrast to hand-picked anthropometric features as in Section 1.2, spatial and/or 

spectral features can be obtained via various interest operators. The most discriminat­

ing information can then be searched for by feature selection or extraction methods. 
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Among such features one can mention DeT coefficients which can be applied on the 

whole image or face image blocks [16], speci81 wavelet decomposition [17] or Gabor 

filters [18]. 

In [17], the features of the face images are extracted using steerable filters [19] which 

exploits the information in the edges of facial features. According to the problem being 

addressed, a set of basis are selected. For example, for detection problem the steerable 

filters that cluster the coefficients of a face object at the output of the filters are chosen. 

In [18], the modulus of complex Gabor responses from filters with six orientations 

and three resolutions are used as features. 

1.2.5. Video Based Methods 

In surveillance applications, face recognition can be enhanced using video sequences 

rather than still shots. Video provides a succession of instances of the same face, 

correlated in time. Some of the advantages of video images for face recognition can be 

listed as follows: 

• Segmentation of moving objects (humans) from a video sequence is "easier given 

their change detection masks 

• Multitude of face instances can be fused to improve the recognition' rate 

• 3D models for faces and/or non-rigid motion analysis can be used 

• Speaker recognition can augment the biometric performance 
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1.2.6. Other Paradigms 

To increase the performance and robustness of the face recognitio~ systems, a few 

face recognition algorithms are cascaded. For example coefficient vectors for different 

facial features, obtained from a matched filter are discriminated once more to ensure 

maximum scatter in the new feature space [20, 21], as shown in FIGURE 1.2. 

Face 

Image 

Interior Face Interior Face 

Nose Tip Nose TIJI 

Nose Bridge Nose Bridge 

Left Eye Left Eye 

Right Eye Right Eye I 
I 
I 
I 
I 
I 
I -----------------------

MPFBases IDA Bases 

FIGURE 1.2. A novel MPF-LDA based face recognition system [21] 

Color information can improve the classification performance and robustness against 

illumination'variations in the scene [2]. Thus approaches have been developed that use 

hue of the facial complexion. 

Neural networks can instrument the construction of templates. They also perform 

transformation to low dimensional space as in the previous template based methods. 

Due to the inherent non-linearities, a more effective transformation of the face image 

and exploitation of nonlinear correlations are expected [2, 20, 22]. 

Some methods are based on the 3D structure of the face using deformable graphs, 
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wire meshes etc, which are more complex models [20]. 

1.3. Scope and Overview of the Thesis 

In this thesis, we concentrate on face recognition algorithms and compression schemes. 

We select the most commonly used template-based methods as face recognition algo­

rithms and prominent compression schemes. 

In Chapter 2, the theory and implementation aspects of face recognition algorithms 

considered in this thesis are explained with a critical review of their weakness and 

strengths. Thus we detail the "Eigenface" and "Fisherface" methods, Hidden Markov 

Models, and Projection Pursuit Filters. 

In Chapter 3, the compression algorithms used in this work, the reasons for selecting 

them are discussed. Their compression principles and resulting artifacts at low bit rates 

are described. 

In Chapter 4, the results of our experiments regarding the effects of compression 

on face recognition algorithms are described. 

In Chapter 5, we interpret and try to generalize these results. We have some 

concluding remarks along with suggestions for future work on this area. 

In this thesis, we address the following problems and try to determine: 

• The effects of compression schemes on the performance of face recognition algo­

rithms. 
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• The most robust face recognition algorithm against the face image deformations 

caused by lossy image compression schemes. 

• The entent to which face images can be compressed without a major deterioration 

in the recognition performance 

• The compression scheme that is the most appropriate for the compression of face 

images, which preserves the facial features and discriminating information in the 

face images. 

Overall, we examined on the one hand three template-based recognition algorithms, 

on the other hand four compression schemes in order to have an idea about the effects 

,of compression on classification problem. 
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2. FACE RECOGNITIQN TECHNIQUES 

2.1. Challenges of Face Recognition 

Test Pattern Ra:ognized Pattern Feature 

ExIr.ICIion 
Oassific:ation 

Feature Vector 

Feature VedIIS 
of 

Pattern Database 

FIGURE 2.1. A general pattern recognition scheme 

Face recognition is a very specific type of pattern recognition problem. The very 

large dimensions of face images and the specific topology of faces, which are highly cor­

related make this problem at the same time much harder and interesting as compared 

to usual pattern recognition problems. 

Face Variability: In the face recognition problem, a feature extraction method is 

needed, which, is capable of handling very high dimensional vectors and robust enough 

to counter the variations in the human face, ie., facial expressions, facial accessories 

(glasses, beard etc.), lighting, pose, scale etc. variations. 

In most of the face recognition applications human faces are acquired in, an uncon­

trolled manner. Therefore the incoming faces are generally very noisy and have many 

obstacles for recognition such as, 

• Complex Background 
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• Resolution (scale) of image 

• Illumination conditions of the scene 

• Orientation of the face 

To cope with these obstacles, a robust preprocessing stage must be included to the 

system. This stage must perform 

• Detection and localization.of the faces in the scene 

• Normalize its scale 

• Compensate for differing lighting conditions 

• Adjust face orientation and gaze 

• Align facial features 

To accomplish these task many methods have been developed. For' the detection 

and localization of faces multi-resolution template matching, use of color and texture 

information and neural network based methods have been proposed [2]. 

For the adjustment of head orientation and gaze, geometrical properties of certain 

points and neural networks are used. Mer the estimation of face orientation, complex 

face synthesis methods or other neural network tools are used to obtain a frontal face. 

To normalize the illumination variations, some low level image processing algo­

rithms are applied such as histogram equalization. Subtracting the mean of the image 

compensates the illumination variations, whereas adjusting the image for unit variance 

may compensate contrast variations between face images. 
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Another problem is the size of the database. Typical face databases may contain 

from tens to thousands and even millions of faces. Such a database may require very 

high capacity for storage and large bandwidth for transmission. For a database consist­

ing of 100,000 faces will require 80kbit/ face x 100,000face = 8Gbit and to transmit 

a face over a 9.6kbit/8 transmission line will require 8~~!!tMIs = 8.338, which is not 

acceptable for a real-time recognition task. 

To overcome these problems face databases must be maintained in compressed 

format. Concerning the compressed databases, there are two interesting problems to, 

be addressed: 

1. To design novel recognition techniques that work directly in the compressed do-

main 

2. To assess the effects of information loss caused by compression on the conventional 

techniques. 

The first problem is a challenging and an increasingly popular problem in the multi­

media signal processing. In the face processing context there have been a few attempts 

[16, 23}. For ,example in [16], a system is described where the incoming image is fed as 

input to a neural network structure that outputs of the connected component of the 

human face and perhaps also including background, shown in FIGURE 2.2. Once such 

a binary mask is extracted, the human face is isolated and normalized to a given scale, 

size and illumination and facial features are aligned. 

In the recognition stage the distance between block DCT coefficients of the indi­

viduals are used. These coeffici~ts are available directly from the bit stream without 

the need to recur to the IDCT. By allocating more DCT coefficients, the recognition 

performance is increased. 
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In this work, we investigate the second problem. In other words, we try to de­

termine to which rate the faces can be compressed without a major deterioration in 

recognition \ performance and which compression algorithm is a better choice for face 

image compression. 

, 

Since we investigate only recognition performance, we choose Oracle Face Database 

[24], where faces have already been preprocessed. In other words, we bypass any scaling, 

de-rotation, de-illumination etc. tasks and we concentrate solely on the classification 

task. In what follows we review the major face recognition techniques considered in 

this thesis. 
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2.2. Correlation-based Methods 

The simplest method of face recognition is to measure the correlation between test 

images and a set of training images. In (25], Brunelli and Poggio describe a correlation 

based method for face recognition from frontal views. Their method is based on the 

matching of templates corresponding to the facial features of relevant significance such 

as eyes nose and mouth. In order to reduce the complexity of the correlation approach, 

only the positions of these features are detected and their correlations are examined. 

The method proposed by Brunelli and Pogio uses a set of templates to detect the eye 

positions in a new image, by looking for the maximum absolute values of the normalized 

correlation coefficients of these templates at each point in the test image. To cope with 

'scale variations, a set of five eye templates at different scales was used. However, this 

method is also computationally expensive. To overcome this problem a hierarchical 

correlation was used. Once the eyes are located, the detection of other features can 

take the advantage of these previously estimated positions. 

Feature Extraction: Thus, a score matrix is obtained, which contains the score 

vectors (one score for each feature) of each face in the datab~e. 

Classification: The similarity scores of different features can be integrated to obtain 

a global score. The cumulative score can be computed in several ways: 

• Choose the score of the most similar feature 

• Sum the feature scores 

• Sum the feature scores, using constant weights 

• Sum the scores using person-dependent weights. 
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After the cumulative matching scores are comPllted, a test face is assigned to the face 

class for which this score is maximized. 

Recognition Performance: The recognition performance reported in {25] using cor­

relation method for frontal faces is higher than 96%. But the face database used for 

this work was not indicated. 

This method is very sensitive to scale, rotation of the image and orientation of the 

face in the image. The autocorrelation of a face changes very rapidly with scale and 

rotations in the image plane and rotations in the axis perpendicular to image plane as 

shown in FIGURE 2.3, FIGURE 2.4 and FIGURE 2.5, given in (25]. In these figures, 

'D(J) denotes the illumination normalized face images. 

'leo 

C) 

80 C) .-
>C 
c 
0 

60 0;:: 
(U 

CG ... ... 
0 40 0 

O.B 1.0 
Scale 

1.2 

o Scale(l) 

=- seale(O{I)) 

FIGURE 2.3. Change of autocorrelation with scale variations of a face image 

The correlation method requir~s a robust feature detection algorithm to cope with 

variations in scale, illumination and rotations in image planes and image depth. Besides 

these the computational complexity of this method O(Kn2) for full face correlation. 
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2.3. Eigenface-based Recognition 

The "Eigenfaces" method proposed by Turk and Pentland [10] is based on Karhunen­

Loeve expansion and is motivated by the earlier work of Sirovitch and Kirby [4] for 

efficiently representing the picture of faces. The eigenface method presented by Turk 

and Pentland finds principal components (KL expansion) of the face image distribu­

tion, that is the eigenvectors of covariance matrix of the set of face images. These 

eigenvectors can be thought as a set of coordinates which together characterize the 

variation between face images. 

The faces if represented by the lexicographic ordering of their pixel values, can be 

thought as points in a huge dimensional space (eg., for an N x N image n = N2, 

when one can have N = 100, the space dimensions ~ecome n = 10,000). However, 

because of the high correlation caused by the similar topology of human faces, all 

faces are concentrated in a very small portion of this space, as illustrated in FIGURE 

2.6. Therefore, we seek a transformation to a new space, where faces are represented 

in a coordinate space adjusted to this scatter. "Principal Component Analysis" is 

an optimum method which maximizes the projection of the faces along the minimum 

number of coordinates in the transformed space. Those principal components in the 

face space, which may appear·as ghostly faces, are called "Eigenfaces". 

In the eigenface method, the faces are mapped to a new feature space of dimension 

m, from an n dimensional space, where m « n, that is 

(2.1) 

In this expression, Xk denotes the "face image" as a vector consisting of lexicographi­

cally ordered n pixels, shown in FIGURE 2.7, while Yk is the vector of the m eigen­

coefficients of the same image. 
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FIGURE 2.6. Scatter of faces in ORL face database before and after peA 

FIGURE 2.7. A lexicographically ordered face image 

New feature vectors Yk can be found by linear transformation: 

(2.2) 

where W lRnztn is a matrix with orthonormal columns. IT the scatter matrix ST is 

defined as 

K 

ST = L(Xk - lP)(Xk - lP)T (2.3) 
k=l 
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where K is the number of images in the training set and il!t:.'R,n is the mean of the 

images in the training set, then one can choose W opt such that 

(2.4) 

Columns of W opt correspond to the eigenvectors of the scatter matrix, which have 

the m largest eigenvalues. Then all faces in the database are projected to this new 

space and their feature vectors are calculated. 

Notice however that, maximized scatter contains not only interclass variations, but 

also intraclass variations, which is unwanted information for classification problems. 

The variations within a class may result from illumination conditions, facial expressions, 

poses and accessories. Because of the intraclass variations, classes may not well be 

clustered in the new feature space. 

Implementation: Let a face image I(x,y) be a two dimensional array of intensity 

values, or a vector of dimension n after lexicographic ordering. Let the training set of 

images be 11 ,12 , ... , IK. The average face image of the set is defined by 

1 K 
\It = - L:Ii 

K i=l 
(2.5) 

Each face differs from the the average by the vector CPi = Ii -\It. This set of vectors 

is subjected to the principal component analysis, which seeks a set of orthonormal 

vectors Uk, k = 1, ... , m and their associated eigenvalues Ak, which best describe the 

distribution of data. The vectors Uk and scalars Ak are the eigenvectors and eigenvalues 

of the covariance matrix: 



FIGURE 2.8. Mean face 

C = ~ 't<Pi<P! = AAT 
K i=l 
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(2.6) 

where the matrix A = [<PI, <P2, ... , <PN]. Finding the eigenvectors of matrix Cnxn 

is computationally too expensive. However, the eigenvectors of C can be determined 

by first finding the eigenvectors of a much smaller matrix of size K x K and taking a 

linear combination of the resulting vectors [10]. 

If C is defined as 

(2.7) 

and eigenvectors of C can be found easily by 

(2.8) 

by multiplying both sides of equation by A, we get 

(2.9) 
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(2.10) 

So, eigenvectors of the covariance matrix C, can be found using the weighted eigen­

vectors of C. 

K 

Ui = Lvikil>k 
k=l 

i= 1, ... ,K (2.11) 

The resulting eigenvectors, shown in FIGURE 2.9 resemble ghostly human faces, and 

they are called "Eigenfaces". 

FIGURE 2.9. First eight eigenfaces 

Feature E,xtraction: The space spanned by the covariance matrix C is called the 

"Face Space". The eigenvectors of matrix C, which are also called eigenfaces, form a 

basis set for the face images. A new face image x is projected onto face space by: 

k = 1,2, ... ,m (2.12) 

The projections Yk form the feature vector y = (Yll Y2, ... , Yrn] which describes the 

contribution of each eigenface in representing the input image. 
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Classification: Given a set of face classes and the corresponding feature vectors yq, 

the simplest method, for determining which face class the test image belongs to, is to 

find the face class k that minimizes the Euclidean distance in the feature space: 

(2.13) 

where y is the eigenfeature vector of the test image. 

If this distance is above a threshold €, then the test face is classified as an unknown 

face. 

In [10], Turk and Pentland used the concept of DistanCe From Face Space metric to 

decide about the nature of any new pattern. This metric is simply the squared distance 

between mean adjusted image ~ = x - lit and its reconstruction from the projection 

coefficients on the face space ~f = L~l Yilli. 

(2.14) 

They have described four possibilities for an input image and a pattern vector, 

shown in FIGURE 2.10. These possibilities are listed in TABLE 2.1. If a projected 

image is 

• Near to a face class and near to the face space, it is classified as the nearest face 

in the face space, 

• Far to a face class but near to the face space, it is a face image but it is not one 

of the faces in the database 

• Near to a face class but far to the face space, it is not a face image 
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TABLE 2.1. Interpretation of the projection of-an unknown image onto the face space 

I Face Space I Known Face Class I Result 

1 near near Recognized as the nearest face 

2 near far unknown face 

3 far near not a face 

4 far far not a face 

• Far to a face class and far to the face space, it is not a face image 

4 

FACE SPACE 

# Face Classes 

o Newlmages 

, FIGURE 2.10. Projection of an image onto face space 

Recognition Performance: The "Eigenface" method was tested on a relatively large 

database named FERET. Various groups of sixteen images corresponding to sixteen 

different subjects were selected and used as a training set. The reported recognition 

performances are 96% correct classification under illumination variations, 85% correct 

classification over orientation variation and 64% correct classification over size varia­

tions [12]; It can be seen that t~.approach is fairly robust to illumjnation changes 

but degrades quickly as the scale changes. This can be described by the low correlation 

between the different scales of face images. 
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2.3.1. The View-Based Approach 

Based on the eigenface decomposition, Pentland et al. [11] developed a "view-based" 

eigenspace approach for human face recognition under general viewing conditions. 

Given N individuals under P different views, shown in FIGURE 2.11, recognition 

is performed over P separate eigenspaces, each capturing the variation of the individ­

uals in a common view. The "view-based" approach is essentially an extension of the 

eigenface method, which best describes the selected input image. This is accomplished 

by calculating the residual description error (distance from face space: DFFS) for each 

view space. Once the proper view is determined, the image is projected onto appro­

priate view space and then recognized. The view-based approach is computationally 

more expensive than the normal eigenface method. 

FIGURE 2.11. Multiple views for rotation invariance 

Recognition Performance: The recognition performance of the view-based and para­

metric approaches was evaluated on a database of 189 images, nine views of 21 people 

[11]. The nine views of each person were tested by training on a subset of the available 

views of ±90o, ±45° and ±OO and testing on the intermediate views ±68°, ±23° (in­

terpolation performance). In TABLE 2.2, the performance of this approach is listed. 
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Column titles indicate the space used for recognition, whereas row titles indicate the 

nature of test image. 

TABLE 2.2. Performance of view-based eigenface method 

Frontal Half Left Half Right Profile Left Profile Right 

Frontal 99 ** ** ** ** 
Half Left ** 87 38 ** ** 
Half Right ** 38 82 ** ** 
Profile Left ** ** ** 70 32 

Profile Right ** ** ** 32 68 

2.3.2. Recognition Using Eigenfeatures 

In [11], Pentland et. al. discussed the use of facial features for face recognition. 

This can be viewed as either a modular or layered representation of the facer where 

a coarse (low resolution) description of the whole head is augmented by additional 

(high resolution) details in terms of salient facial features. 'The eigenface technique 

was extended to detect facial features. For each one of the facial features, a feature 

space is built by selecting the most significant eigenfeatures (eigenvectors corresponding 

to the largest eigenvalues of the features' correlation matrix). In the eigenfeature 

representation the equivalent "distance from face space" (DFFS) can be effectively 

used for the detection of facial features under different viewing geometries by using a 

view-based eigenspace. 

Feature Eztraction: After the facial features in a test image were extracted, a score 

of similarity between the detected features and the features corresponding to the model 

images is computed. The technique used to determine this score is an extension of the 

eigenface method. 
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Classification: A simple approach for recognition is to compute a cumulative score 

in terms of equal contribution by each of the feature scores. Once the cumulative score 

is determined, the test face is classified so as to minimize this score. 

Recognition Performance: The eigenfaces and eigenfeatures was combined and 

tested on a set of 45 individuals with two views per person corresponding to differ­

ent facial expressions (neutral vs. smiling). The neutral set of images was used as a 

training set and the recognition was performed on the smiling set. Since the difference 

between these particular facial expressions is primarily articulated in the mouth, this 

feature was discarded for recognition purposes. The recognition results showed that 

the eigenfeatures alone were sufficient in achieving a recognition rate of 95%, equal to 

that of the eigenfaces. When a combined representation of eigenfaces and eigenfeatures 

was tested a recognition rate of 98% was reported, shown in FIGURE 2.12. 
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FIGURE 2.12. Performance of the eigenfeature technique [11] 
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2.4. Fisherfaces 

In [13], a new method for reducing the dimensionality of the feature space by using 

Fisher's Linear Discriminant(FLD) is proposed. The FLD uses the class membership 

information and develops a set feature vectors in which variations of different faces are 

emphasized while different instances of the same face due to illumination conditions, 

facial expressions and orientations are de-emphasized. 

- - 2.4.1. Fisher's Linear Discriminant 

Given c be the number of classes, let Ni be the number of samples in class i, i = 
1, 2, ... , c. Obviously K used in Section 2.3. is related as K = E~=l Ni . Then the 

following positive semidefinite scatter matrices are defined as: 

c 
SB = ~)lJti - lJt)(lJti - lJt)T (2.15) 

i=l 

c c 

Sw = E E(xi _lJtl)(xl _lJtl)T (2.16) 
i=l 

where xl denotes the z-th n dimensional vector, and lJti is the mean of class i: 

(2.17) 

and lJt is the overall mean of sample vectors: 
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(2.18) 

Sw is the within-class scatter matrix and represents the-average scatter of sample 

vector class i; SB is the between-class scatter matrix and represents the scatter of the 

mean q,i of class i around the overall mean vector q,. H Sw is non-singular, the Linear 

Discriminant Analysis (LDA) selects a matrix W optfRnxm with orthonormal columns 

which maximizes the ratio of the determinant of the between-class scatter matrix of 

the projected vector samples to the determinant of the within-class scatter matrix of 

the projected samples: 

IW7'SBWI 
W opt = argm~ IWTSwWI = [Wl, W2, ••• , wm] (2.19) 

where [Wl, W2, ••• , Wk] is the set of generalized eigenvectors of SB and Sw corresponding 

to the set of decreasing eigenvalues of 

i = 1,2, ... , m (2.20) 

Since there are at most c - 1 nonzero eigenvalues, the upper bound of mise - I. 

2.4.2. Face Recognition Using Linear Discriminant Analysis 

Let a training set of K images represent c different subjects. Different instances of a 

person's face (variations in lighting, pose or facial expressions) are defined to be in the 

same class and faces of different subjects are defined to be from different classes. 

Feature Extraction: The scatter matrices SB and Sw are defined in(2.IS)and (2.16) 

However, the matrix W opt cannot be found directly fromtl.19) because the matrix Sw 
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is generally singular. This stems from the fact that the rank of Sw is less than K - c, 

and in general, the number of pixels in each image is much larger than the number of 

images in the learning set. To overcome this problem, a method is proposed in [13], 

which was called Fisherfaces method. The problem of Sw being singular is bypassed by 

projecting the image set onto a lower dimensional space so that the resulting within­

class scatter matrix is nonsingular. This is achieved by using Principal Component 

Analysis (PCA) to reduce the dimension of the feature space to K -c and then applying 

the standard linear discriminant defined in (2.19) to reduce the dimension to c - 1. 

(2.21) 

where 

(2.22) 

and 

(2.23) 

where ST is the covariance matrix of the set of training images computed in 2.3. The 

columns of W opt are orthogonal vectors, which are called Fisherfaces. Unlike the 

Eigenfaces the Fisherfaces do not correspond to face-like patterns. 

Classificat~on: The classification is based on the Euclidean distance between the 

coefficient vectors in the feature space. 

In [26], a weighted distance metric was proposed. The weights for each principal 

axis is determined based on the reliability of the axis. The weight of axis i, eli was 

calculated as 

(2.24) 
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then, the distance between two feature vector is 

m 

d(y, y') = L Qi(Yi - y~)2 (2.25) 
i=l 

Recognition Performance: The reported recognition performance of this scheme in 

[13] is 99.4% under variations in lighting, facial expressions and eye wear (glasses, no­

classes), using Yale Database [27]. This database consists of 10 different views from. 

16 individual, with high variations in lighting and facial expressions. On the same 

database, the recognition rate reported when using the eigenface method was 80%. The 

database did not include images with variations in pose or orientation. The training 

. set contained five set of ten face images taken under strong variations in illumination, 

facial details but no variations in pose. 

2.5. Hidden Markov Models 

2.5.1. Hidden Markov Models 

Hidden Markov Models (HMM) are a set of statistical models used to characterize the 

temporally ~r spatially varying properties of a signal. Rabiner [28] provides an extensive 

and complete tutorial on HMMs. HMM are made of two interrelated pracesses: 

1. An underlying, unobservable Markov chain with finite number of states, a state 

transition probability matrix and an initial state probability distribution. 

2. A set of probability density functions associated to each state. 

The elements of a HMM are: 



32 

• N, the number of states in the model. If 8 is the set of states, then 8 = 

8b 82, ••• , 8N • The state of the model at time t is given by qt€8,1 ::5 t ::5 T 

where T is the length of the observation sequence. 

• M, the number of different observation symbols. If V is the set of all possible ob­

servation symbols (also called the code book of the model), then V = Vb V2, ••• , VM. 

• A, the state transition probability matrix, ie. A = D.;.j where 

1 <i,j< N (2.26) 

with the constraint, 

. 0 < a·· < 1 
- '.:J-

(2.27) 

and, 
N 

~a;J = 1 (2.28) 
j=1 

• B, the observation symbol probability matrix, B = bj(k) where 

(2.29) 

and Ot is the observation symbol at time t. 

• n, the initial state distribution, n = 1ri where 

(2.30) 

Using a shorthand notation, a HMM is defined as: 

,\ = (A,B,n) (2.31) 
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The above characterization corresponds to a discrete HMM, where the observations 

are characterized as discrete symbols chosen from a finite alphabet V = Vb V2, ••• , VM 

In a continuous density HMM, the states are characterized by continuous probability 

density function (pdf) is a finite mixture of the form: 

M 

bi(O) = L CikN (O,J1.ik, Uik) (2.32) 
k=l 

where Cik is the mixture coefficient for the kth mixture in state i. Without loss of 

generality N(O, J1.ik, Uik ) is assumed to be a Gaussian pdf with mean vector J1.ik and 

covariance matrix Uik. 

2.5.2. Face Recognition Using HMM 

HMMs have been used extensively for speech recognition, where data is one dimen­

sional along the ID axis. However, the equivalent fully connected two dimensional 

HMM would lead to a very high computational problem. Attempts have been made 

to use multi-model representation that lead to pseudo 2D HMM [14]. These model are 

currently used in character recognition. 

Samaria et. al. proposed the use of the ID continuous HMM for face recognition 

[14]. Assuming that each face is an upright, frontal position, features will occur in a 

predictable order, i.e. forehead, eyes, nose etc. This ordering suggests the use of a 

top-bottom model, where only transitions between adjacent states in a top to bottom 

manner are allowed [14] if the images are taken under small rotations. The states of 

the model correspond to the significant facial regions, forehead, eyes, nose, mouth and 

chin. Each of these facial regions is assigned to a state in a left to right ID continuous 

HMM. The state structure of the face model and the non-zero transition probabilities, 

0.;; given in 2.26, are shown in FIGURE 2.13. 
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Forehead Eyes Nose Mouth Chin 

31)') --

FIGURE 2.13. Left to right HMM for face recognition 

The observation sequence 0 is generated from an X x Y image using an X x L 

sampling window with X x M pixels overlap, shown in FIGURE 2.14. Each observation 

vector is a block of L lines. There is an M line overlap between successive observations. 

The overlapping allows the features to be captured in a manner which is independent of 

vertical position, while a disjoint partitioning of the image could result in the truncation 

of features occurring across block boundaries. With no overlap and a small height of 

the sampling window is used, the segmented data may not correspond to significant 

facial features. However, as the window height increases there is a higher probability 

of cutting across the features. 
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x 

FIGURE 2.14. Image sampling technique for HMM recognition 

Training: Each individual in the database is represented by a HMM face model. A 

set of images representing the same face are used to train each HMM. First, the HMM 
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A = (A, B, D) is initiated. The training data is uniformly segmented from top to bot-
~ 

tom in 5 states and the observation vectors, obtained from neT coefficients, associated 

with each state are used to obtain initial estimates of the observation probability ma­

trix B. The goal of the training stage is to optimize the parameters Ai = (A, B, D) 

to "best" describe, the observations 0 = 011 D2, ... , OT in the sense maximizing P(OIA). 

The general HMM training scheme is a variant of K-means iterative procedure for 

clustering data: 

1. The training images are collected for each subject in the database to generate 

the observation sequence. 

2. A common prototype model is constructed with the purpose of specifying the 

number of states in the HMM and the state transitions allowed. 

3. A set of initial parameter values using the training data and the prototype model 

are computed iteratively. The goal of this stage is to find a good estimate for the 

observation model probability B. Good initial estimates of the parameters are es­

sential for rapid and proper convergence (to the global maximum of the likelihood 

function). On the first cycle, the data is uniformly segmented, matched with each 

model state and the initial model parameters are extracted. On successive cycles, 

the set of training observation sequences are segmented into states via the Viterbi 

algorithm. The result of segmenting each of the training sequences is that for 

each of the N states, a maximum likelihood estimate of the set of observations 

that occur within each state according to the cmrent model is obtained. 

4. Following the Viterbi segmentation, the model parameters are re-estimated using 

Baum-Welch re-estimation procedure. This procedure adjusts the model param­

eters so as to maximize the probability of observing the training data, given each 

corresponding model. 

5. The resulting model is then compared to the previous model (by computing a 

distance score that reflects the statistical sirniJarity of the HMMs). H the model 

distance score exceeds a threshold, then the old model A is replaced by new model 
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.x, and the overall training loop as repeated. IT the model distance falls below a 

threshold, then the model convergence is assumed and the final parameters are 

saved. 

Recognition: Recognition is carried out by matching the test image against each of 

the trained models. To do this, the image is converted to an observation sequence and 

then model likelihoods P(Ote6tl.Ai) are computed for each .Ai i = 1,2, ... , c. The model 

with highest likelihood reveals the identity of the unknown face, as shown in FIGURE 

2.15. 

(2.33) 

FIGURE 2.15. HMM recognition scheme 

Recognition Performance: The recognition performances were tested, on a small 

database of 50 images that were not part of the training dataset of 24 images [15]. 

The images in the test set contain faces with different facial expressions, facial details 

(glasses,no-glasses) and variations in lighting. On this database the reported recogni­

tion rate was 84%. On the same database the recognition rate obtained by running 

the eigenface method was 73%. 
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2.6. Matching Pursuit Filters based Methods 

2.6.1. Matching Pursuit Filters 

The original pursuit idea of Mallat and Zhang [29] uses a greedy heuristic to iteratively 

construct a best-adapted decomposition of a function f on n. The algorithm works 

by choosing at each iteration i the wavelet 9 in the dictionary 1) that has maximal 

projections onto residue of f. The best-adapted decomposition is selected by the 

following greedy strategy. Let RfJ f = f j then gi is chosen such that 

(2.34) 

where 

(2.35) 

for i ~ 1. 

Each wavelet in the expansion is selected by maximizing' the right hand term in 

(2.341 This equation allows for an expansion on a single function, and minimizes the 

reconstruction error. 

In order to extend this algorithm to pattern recognition, the right hand term in 

2.34 must be replaced with a cost function Og, which allows for 

• The simultaneous expansion of multiple templates (functions) 

• Incorporates knowledge of the pattern recognition problem being addressed 

Also a two dimensional wavelet dictionary must be used to extend from f on 'R, to 
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2.6.2. Matching Pursuit Filters for Detection 

In this scheme, a particular image object (eg. face or facial features) is represented as 

an m-dimensional vector (Yo, Yl, ... , Yn-l) called a coefficient vector. One computes the 

coefficient values Yi by projecting the object image onto a basis set (go, gl, ... , gm-I), 

which need not be orthogonal. When the basis is not orthogonal, an iterative projection 

algorithm can calculate the coefficient vector. The projection algorithm adjusts for the 

nonorthogonality by using residual images. If t is an image or template, then Rot = t. 

The, coefficient Yi is the projection of the residual image Ri onto the basis element gi 

(2.36) 

where (.,.) is the inner product between two functions. The residual image is 

updated after each iteration by 

i i-I R t = R - Yi-lgi-I (2.37) 

for i ~ 1. 

After the nth iteration, an image t is decomposed into a sum of residual iriIages: 

n-l 
t = I: (Rit - Ri+It) + Rnt (2.38) 

i=O 
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Rearranging 2.37 and substituting in 2.38 yields 

n-l 

t = L Yigi + R nt (2.39) 
i=O 

and the approximation of the original image after n iterations is 

n-l 

t = LYigi (2.40) 
i=O 

The approximation need not be accurate, because only enough information is en­

coded to allow detection or classification. 

The goal of the algorithm is to determine whether an observed pattern belongs to a 

particular class. Hence, there must be a way of measuring the similarity between two 

patterns. With matching pursuit filters, one compares the coefficient vectors from two 

patterns, where coefficient vectors are generated using the same basis. The similarity 

measure between two patterns is the angle between their coefficient vectors, [17]. This 

measure is invariant to linear changes in the contrast of the image. Furthermore, if . 

the basis is composed of wavelets, then the similarity measure is also invariant to the 

illumination level in the image [17]. 

Consider the nose object in images. Ideally all noses would have the same coefficient 

vector, and all occurrences of this vector would. be a nose. Unfortunately this does not 

occur due to variability of noses. Therefore in [17], all nose instances are clustered 

and the centroid of the cluster is selected as the basis. The vector in the center of the 

cluster is called proto-feature, and it represents an average feature. 

The matching pursuit filter is trained on K different examples of an object. Let 

tb ... , tK be the K examples of objects, where ti represents the ith example of the object. 
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The objects are aligned in the templates so that the center of the object is origin. T~e 
~ 

algorithm selects the basis elements from the dictionary 1J, where 1) -is composed of 

2-D directional wavelets. These wavelets were chosen because they encode information 

locally.at different scales and orientations. The basis elements in the dictionary do not 

span the space of all possible images. The dictionary excludes high-frequency wavelets 

to reduce the effect of high-frequency noise. Low-frequency wavelets are also excluded 

in order to avoid the encoding the information in the background. For face recognition, 

a dictionary derived from the second partial derivatives of Gaussian densities and their 

~. Hilbert transforms due to their directional edge detection ability. 

A greedy algorithm is used to select the basis elements. In iteration i, the basis 

function gi is selected. The choice being a function of the residual image Ritl and 

coefficients a} from previous iterations. Let the coefficient a} = (RJtJ, gi), that is, the 

jfh coefficient for object l. The set of coefficients generated through the ith iteration is 

denoted by OJ = U,(a~, ai, ... , aD, i > 0 and 0_1 = 0. 

Each iteration of the basis selection algorithm consists of three steps. In the first 

step, a new basis function gj is selected, as in(2.4~. In the second step, the coefficient 

vectors for each object t, are updated. In the third step, th.e residual- images are 

updated by Ri+1tl = Rit1 - ~gi' The ith basis function is selected by the following 

cost function 

(2.41) 

where C9 measures how well the coefficient vectors cluster when the ith basis is g,. The 
. . , 

function C9 is evaluated for each ge1J, and the 9 that minimizes C9 is selected as the ba-

sis element gj. In [17], C9 for agiveng, the cluster is the mean of (a~, ... , aLl' (Jlitz,g», 1 < 
l ~ m. Once the cluster vector is determined, C9 computes the average distance from 

the coefficient vectors to the cluster vector. This distance is a measure of scatter (vari­

ance) of the coefficient vectors about the cluster vector. H the dispersio~ is small, then 
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9 is a good candidate for gi; on the other hand, if the dispersion is large, then 9 is a 

poor choice. 

The algorithm is iterated until n basis elements are selected. The choice of the 

number of basis elements depends on the performance level desired and is usually 

determined experimentally. If n is too small, then false-alarm rate is too high; if n is 

too large, the filter will not generalize to features outside the training set. 

The output from the matching pursuit filter design algorithm is an ordered list of 

n basis elements and a list of n coefficients. If the filter design algorithm generates 

k proto-features, the matching pursuit filter consists of the basis elements and the k 

coefficient lists. The location of the basis elements encodes the geometrical structure 

of the object. The centers of the basis elements are usually not aligned, whenever the 

feature is larger than the support of the basis element. 

A detection filter consists of 

• Ordered list of basis elements (gl'~' ... ; gm) 

A matching pursuit filter detects a feature by scanning the feature detection filter 

across the image, which results in a response image, F. The response at pixel (Ul, U2) 

measures the similarity between the region centered at (Ul, U2) and the proto-feature. 

The maxima in the response image above a threshold is reported as feature' occurrence. 

The algorithm computes the image coefficient vector Y(Ul, U2) by expanding the 

image about the pixel (Ul, U2), and projects the image on the translated basis elements. 

Let Yi(Ul, U2) be the response for the shifted position of the ith basis function. 
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(2.42) 

and 

(2.43) 

After the image coefficient vectors have been determined, the next step computes 

the response image. Let 0 = (al! ... , am-l) be the cluster vector that represents the 

protofeaturej then F(Ul, U2) = do(O, a(ul! U2)), where do is the cosine of the angle 

between two vectors, Le., the -response is cosine of the angle between 0 and a( Ul, U2)' 

The last step searches this response image F(Ul, U2) for feature occurrences, by using 

some appropriate threshold. 

2.6.3. Face Recognition using Matching Pursuit Filters 

In the detection problem, the matching pursuit filter design procedure selected a basis 

in which the coefficient vectors clustered, and only one coefficient vector 0 represented 

a class of objects. For the purpose of detection, 0 is simply compared to the image 

coefficient vectors. Obviously, for detection only one coefficient vector suffices. How­

ever, for the identification problem, that is in order to distinguish among all the people 

in the database, there is a different coefficient vector for each individual. Person l is 

represented by coefficient vector O' = «." ... , a!,-l' To measure the similarity between 

an unknown face and individuall, their coefficient vectors are compared. 

A face centered at (Ul, U2) is identified as person l if the distance between a( 1.&1, 1.&2) 

and O' is minimized. 

The algorithm for selecting the ith basis element in the identification case has a 

different cost function C9 , which is designed to reveal the differences among the features; 
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selects the ith basis function. The function dg(k, I) equals the cosine of the angle be-

tween (a~, ... , af-2' (Ri-1tk, g» and (at, ... , ~-2' (Ri-1th g». Obviously, the coefficient 

vector (a~, ... , a~_2) represents person k after the i-I iteration. If g were selected in 

iteration i, then (a~, ... , ~-2" (~-ltl" g» would represent person k after this iteration. 

The first term in 2.44 forces the coefficient vectors as disparate as possible, while the 

second term searches for sets of coefficient vectors with the largest average magnitude. 

The parameter >. sets the relative importance of these two terms. If the second term 

is not included, the filter becomes too sensitive to patterns in the background. For 

identification, the output from the matching pursuit filter design algorithm is a list of 

n basis elements and a coefficient vector for each person in the training set. 

For identification, a response image for each person, ;:k must be computed. The 

estimated identity of the person in the image is k, which is found by a search for the 

maximum response over all the ;:k images. 

(2.45) 

where (U17 U2) is the estimated center of the face in the image. 

Recognition Performance: In [17], a portion from FERET database ~onsisting of 

311 individuals were used. 58 of these were used for training 5 facial features; interior of 

the face, eyes, top of the nose, bridge of the nose. 30 coefficients were generated for each 

of these objects. 95.4% correct recognition performance was reported for identification 

of faces, and 95.2% for the location and identification of the faces [17]. 
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Each recognition algorithm has different properties, as given in TABLE 2.3. A com­

monality between these is that, they are sensitive to head size, lighting conditions, 

facial expressions, complex background etc. So they all need preprocessing stages be­

fore extracting features. However, while some of these algorithms are very sensitive to 

these distortions such as correlation, and template-matching algorithms, some others 

of them can handle these imperfections in the face image to some extent. 

As it can be seen from TABLE 2.3, 

• correlation is very sensitive to scale, lighting conditions, facial expressions, rota­

tions. It is also computationally very complex, O(Kn2). Furthermore, it requires 

the storage of all faces in their raw formats. 

• Eigen/aces are very sensitive to scale, but it can handle the rest to·some extend. 

This method is easy to train and easy to update the training set. Also it is fast 

enough for real-time applications. 

• Fisher/aces are sensitive to scale, but it is robust against variation in illumination, 

facial accessories and expressions. It is also fast as "Eigenfaces". 

\ 

• HMM is robust against rotation, facial expressions and accessories. Major draw-

back of this approach is its computation complexity. 

• Matching Pu.rsu.it Filter is robust against translations of faces in the scene, but 

sensitive to the rest. It is not complex as HMM but requires higher recognition 

time than "Eigenfaces" and "Fisherfaces" methods. 

Among these algorithm we choose the "Eigenfaces" and "Fisherfaces" methods to 

see how compression effects their performances. These algorithms are the most com-
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TABLE 2.3. Comparison of the sensitivities and complexity of face recognition algo­

rithms 

Nonuniform Facial Facial 

Scale Lighting Rotation Expressions Accessories 

Correlation High High High Medium High 

Eigenfaces High Medium High Medium Low 

View-based High Medium Low Medium Low 

Feature-based High Medium High Medium Low 

Fisherfaces High Low High Low Low 

HMM Low Medium Medium Low Low 

Matching 

Pursuit Low Low High Low Low 

Filters 

monly used algorithms in the face processing (and also in pattern recognition) problems. 

They have been experimented on large databases [11, 12, 13] with high performance. So 

they are easy to train, robust enough against some of the imperfections, not complex, 

and results can be compared with results of other studies. 

As it can be seen from TABLE 2.4, every face recognition algorithm is tested 

using different sizes of face databases. Among these recognition algorithms, view­

based approach is tested on the largest face database [11] consisting more than 3000 

individuals with 7562 images. The highest recognition performance is achieved by 

Fisherface-based method reported as 99.4% on a small face database. 

Correlation, HMM and Matching Pursuit Filters are computationally complex meth­

ods, whereas eigenface and Fisherface methods are less complex. 



46 

TABLE 24 C .. ompanson 0 ff: ace reCOgnI110n me th ds 0 

Method Training Testing Recognition Type of 

Set Set Results Database 

Frontal faces, small 

Correlation [25] NA NA over 96% variations in 

illumination, scale 

96% Lighting Variations 

Eigenfaces [10] 16 2500 85% Orientation Variations 

64% Variations in Scale 

Eigenfaces FERET 

view-based 128 7562 83% Database 

approach [11] 

Eigen Variations in head 

Features [11] 45 NA 95% orientation 

and shifting 

Strong variations in 

Fisherfaces [13] 16 16 99.4% lighting and 

facial expressions 

HMM[14] 24 24 84% Variations in 

facial expression 

Matching Portion of 

Pursuit 58 253 99.5% FERET Database 

Filters [17] 
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3. COMPRESSION ALGORITHMS 

Although there is a plethora of lossy compression algorithms, we chose three com­

pression algorithms for comparison purposes in this work. The selected compression 

schemes are "Vector Quantization", JPEG and SPIRT algorithms, which hopefully 

forms a good representative set for the rest of compression algorithms. 

3.1. Vector Quantization 

Vector quantization (VQ) is a commonly used compression algorithm in clustering, 

compression, palette design, detection etc. It can incorporate certain low-level image 

processing tasks like interpolation and the coding can be coupled with classification 

[30, 31]. 

In VQ, initially a codebook, which is needed both for en~oding and decoding is 

generated. To get a codebook, we used 40 faces (one from each individual in the face 

database) as training data. For training, we used the common block size 4 x 4, so there 

were 40 x (92 ~ 112)/(4 x 4) = 25,760 blocks available. The codebook is initiated uSing 

the splitting method, and then generated using the LBG algorithm [32]. 

Codebooks with different sizes are generated to enable compression at different 

rates. The images in the face database are encoded and decoded using these codebooks, 

as shown in FIGURE 3.1. 

Vector quantization causes unpleasant blocking effects and stair-casing of edges in 

the encoded images, especially at very low bit rates. 
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FIGURE 3.1. Overview of vector quantization 

3.2. JPEG 

We selected the JPEG scheme, because it is one of the most widely known standards 

for lossy image compression. Despite the increasing number of its close competitors, 

it is still used as the industry standard. The approach recommended by JPEG is a 

transform coding approach using the DOT [33]. 

The input image is divided into 8 x 8 blocks. These blocks are "level shifted" by 

128 (for 8 bit greyscale images) and transformed using forward DOT. If the image size 

is not a multiple of 8, the last column or row is repeated until -the nearest multiple of 

8. 

The JPEG' algorithm uses uniform midtread quantization to quantize the various 

coefficients. The quantizer step sizes are organized in a table called quantization table. 

The recommended quantization table is shown in TABLE 3.1 

In the quantization table, it is seen that the step size increases from the DC coeffi­

cients to higher-frequency coefficients. Because the quantization error is an increasing 

function of the step size, more quantization error will be introduced in the higher­

frequency coefficients than in lower-frequency coefficients. The decision on the relative 

size of step sizes is based on how errors in these coefficients will be perceived by the 
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TABLE 3.1. Recommended luminance quantization table for JPEG 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

human visual system. Different coefficients in the transform have widely different per­

ceptual importance. Quantization errors in the DC and lower AC coefficients are more 

easily detectable than quantization errors in the higher AC coefficients. Therefore 

larger step sizes for perceptually less important coefficients is used. 

Because the quantizers are all midtread quantizers, the quantization process also 

functions as the thresholding operation. All coefficients with magnitudes less than half 

the corresponding step size will be set to zero. Because the step size at the tail end of 

the zigzag scan are larger, this increases the probability of finding a long run of zeros 

at the end of the scan. The entire run of zeros at the tail end of the scan can be coded 

with a special code after the last nonzero label, resulting in substantial compression. 

Furthermore, this effect also provides us with a method to vary the compression 

rate. By making the step sizes larger we can reduce the number of nonzero values, and 

get a lower bit rate. 

At the output of the quantizer, the coefficients are entropy coded (generally Huffman 

or arithmetic coding). 
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The JPEG scheme has also the blocking problem at the low bit rates as vector 

quantization scheme. 

3.3. JPEG-2000 

This novel compression scheme is intended to create a new image coding system that 

for different types of still images (bi-Ievel, gray-level, color, multi-component) with 

different characteristics (natural images, scientific, medical, remote sensing imagery, 

text, rendered graphics, etc:) .. This coding system also provides low bit-rate opera­

tion with rate-distortion and subjective image quality performance superior to existing 

standards, without sacrificing performance at other points in the rate-distortion spec­

trum. 

Although JPEG-2000 standards are not completely determined, its advantages over 

current JPEG compression scheme can be listed as: 

• Low bit-rate compression performance: Current standards, such as standard 

JPEG, offer excellent rate-distortion performance in the mid and high bit-rates. 

However, at low bit-rates (e.g., below 0.25 bpp for highly detailed gray-level im­

ages) the distortion, especially when judged subjectively, becomes unacceptable. 

• Lossless and lossy compression: There is no current standard that can provide 

superior lossless compression and lossy compression in a single codestream. 

• Large images: Currently, the JPEG image compression algorithm does not allow 

for images greater then 64K by 64K without tiling. 

• Single decompression architecture: The current JPEG standard has 44 modes, 

many of which are application specific and not used by the majority of the JPEG 

decoders. Greater interchange between applications can be achieved if a single 

common decompression architecture encompasses these features. 
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• 7'Tansmission in noisy environments: The current JPEG standard has provision 

. for restart intervals, but image quality suf!'ers dramatically when bit errors are 

encountered. 

• Computer generated imagery: The current standard was optimized for natural 

imagery and does not perform well on computer generated imagery. 

• Compound documents: Currently, JPEG is seldom used in the compression of 

compound documents because of its poor performance when applied to bi-Ievel 

(text) imagery. 

We used "JPEG-2000 Verification Model 4.0" to compress the faces in the database. 

It is chosen because of its prominent features and the high possibility of becoming the 

future standard in image compression. 

The wavelet-based coding technique used in JPEG-2000, the severe blocking effects 

at the very low bit rates are prevented. 

3.4. Set Partitioning in Hierarchical Trees 

SPIHT is a rather new compression scheme, which use embedded and zero three coding 

techniques [34]. ,It deserves special attention because of its superior properties, which 

can be listed as 

• Image quality: Extensive research has shown that the images obtained with 

wavelet-based methods yield very good visual quality. At first, it was shown 

that even simple coding methods produced good results when combined with 

wavelets. SPIHT belongs to the next generation of wavelet encoders, employ­

ing more sophisticated coding. In fact, SPIHT exploits the properties of the 

wavelet-transformed images to increase its efficiency. 



52 

• Progressive image transmission: SPIHT was designed for optimal progressive 

transmission. It achieves this optimality b~ producing a fully embedded coded 

file, in manner that at any moment the quality of the displayed iuiage is the best 

available for the number of bits received up to that moment. 

• Optimized Embedded Coding: In embedded coding, two encoded streams of size 

M and N (M > N) produced by the encoder from the same data, first N bits of 

both streams are same. For example, an image will be compressed at 3 different 

qualities for three remote users, and the minimum encoded streams will be 8 

Kb, 30 Kb, and 80 Kb. If a non-embedded encoder like JPEG is used, three 

different files must be prepared for each image quality. On the other hand, if an 

embedded encoder is used a single 80 Kb stream is generated and the first 8 Kb 

of this stream correspond to the encoded image at lowest quality and the first 30 

Kb corresponds to encoded image at higher quality. 

• Compression Algorithm: Improvements in compression techniques result in more 

complex methods. However, SPIHT can achieve superior results using a simple 

uniform scalar quantization method. 

• Encoding/Decoding Speed: A straightforward consequence of the compression sim­

plicity is the greater coding/decoding speed. The SPIHT algorithm requires ap­

proximate time amount for encoding and decoding, where. as complex methods 

tend to have encoding times much more than decoding times. 

• Rate Control; Image compression schemes do not provide strict control on rate 

and distortion. For example, with a specified target rate, some of these com­

pression schemes try to generate an approximate rate. The embedded coding 

property of SPIHT allows exact bit rate control, without any penalty in perfor­

mance (ie. no bit wasting with padding). The same property also allows exact 

mean-squared-error (MSE) distortion control. 

• Error Protection: It is much easier to design error-resilient schemes for SPIHT. 

The information in SPIHT is sorted according to its importance and the require­

ment for powerful error correction codes decreases from the beginning to the end 

of the encoded stream. 
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Besides embedded coding, zero tree structures are used for efficient representation 

of the significance map. They are based on th~ following hypothesis: If a wavelet 

coefficient at a coarse scale is insignificant with respect to a given threshold T, then all 

of the coefficients of the same orientation in the same spatial location at finer scales 

are very likely to be-insignificant with respect to T, shown in FIGURE 3.2. A zerotree 

root is encoded with a special symbol indicating that the whole tree is insignificant 

[35]. 

FIGURE 3.2. Zero tree data structures 

SPIHT has more efficient significance map coding than EZW because of the set 

partitioning algorithm (rule for partitioning sets of trees and coefficients shared by 
, 

encoder and decoder). 

We use SPIHT scheme as it is one of the best representatives of the wavelet-based 

compression schemes. 

Although its superior quality properties, SPIHT scheme causes blurring effect in 

the images at very low bit rate coding. 
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In order to obtain consistent results, which can be compared with other papers, we se­

lect a well-known face database. This database is the Oracle Face Database [24], which 

is commonly used in the face processing related papers in the literature. This database 

consists a set of images of 40 people with 10 different views, taken between April 1992 

and April 1994 at the Olivetti Research Laboratory in Cambridge, UK. The size of 

images is 92x112, 8 bit grey levels. Some of the face images are taken at different times 

with varying lighting conditions," facial expressions (open/closed eyes/non-smiling) and 

facial details (glasses/no-glasses). Images have a dark homogeneous background, and 

they are in up-right, nearly frontal position. We choose this database because of its 

desirable face images and the adequate number of views per person. Our primary fo­

cus in this work is determining the effects of compression on recognition performance, 

therefore the following problems were not addressed: 

• Detection and segmentation of faces from the image. 

• Normalization of head size 

• Handling large variations of lighting and head orientations 

Therefore, we select the "Oracle Face Database" as· the most appropriate database 

for our problem. We also set a procedure, stated below, in each experiment for the 

consistency and comparability of the results. 

• 15 feature elements are used to represent a face, 

• 5 views for each of the 40 face images are used for training, 
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• The remaining 5 views for each person are used for testing the algorithm. There­

fore, the test set and training set are entirely different. 

4.1. Correlation 

The effects of compression on the autocorrelation of a face image can be seen in FIG­

URE 4.1. The effects of SPIHT scheme on the autocorrelation of a face image is less 

than the effects of other schemes. JPEG-2000 and JPEG schemes affect autocorrelation 

more than SPIHt and less than VQ scheme. 
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FIGURE 4.1. Effects of compression on the autocorrelation of a face image 

The correct recognition performance of face images using correlation of whole faces 

can be seen in FIGURE 4.2. Face images compressed with all schemes can be rec­

ognized within an acceptable recognition rate down to 0.4 bit/pixel. Below this rate, 

recognition performance of face images compressed with VQ, JPEG and JPEG-2000 

schemes degrades. The performance curve obtained from SPIHT scheme is still ac­

ceptable. The recognition performance of compressed faces with SPIHT breaks at 0.2 

bit/pixel rate. 
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FIGURE 4.2. Effects of compression on recognition rate of correlation method 

4.2. Database of Original Images 
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In the first set of experiments, we generate the training feature space using the original 

images, as shown in FIGURE 4.3. Test images are compressed, decompressed and 

their features are extracted. Thus, we employ the classification algorithm using the 

feature vectors of the compressed face images and the feature space generated by the 

non-compressed images. We call this the "Uncompressed Training" approach. This 

scheme is shown in FIGURE 4.4. 

It had been shown that using more than 15-20 feature coefficients for "Eigenfaces" 

method does not improve the system performance by a large amount[25]. This could 

also be seen from FIGURE 2.12 that after only 4 feature coefficients the performance 

curve reaches its peak and additional features improves the performance only slightly. 

FIGURE 4.5 depicts that first 15 principal components are relatively more important 

than the higher components. Therefore, we use 15 feature coefficients for the represen­

tation of the faces for "eigenfaces" method and for other recognition algorithms, we do 
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FIGURE 4.5. Sorted eigenvalues corresponding to principal components 

not change the number of feature coefficients. 

In order to visualize the effects of compression on the "Eigenfaces" method, we 

plotted the scatter of the face class centers on the first two eigenfeature vector before 

the compression and after the compression. From FIGURE 4.6 and FIGURE 4.7, we 

can see that the scatter of the face class centers on the first two components shrinks 

under the compression using "Vector Quantization" at 0.4 bit/pixel. This implies 

that, the power to discriminate the faces decreases with loss of information due to 

compression. 

4.3. Compression with Vector Quantization 

Using "Vector Quantization" for compression, we see that the face images can be 

recognized down to 0.4 bit/pixel, a 20:1 compression ratio without any noticeable 

deterioration. Also it is seen that the performance of "Fisherfaces" method is higher 
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FIGURE 4.6. Scatter of face class centers on first two principal components without 

compression 

than "Eigenfaces" method by about 2-4% all throughout and down to 0.4 bit/pixel 

rate. This is to be expected, since the "Fisherfaces" method is a class-specific method 

and optimum for recognition, when more than one view per person is available. 

It can be noticed that, after 0.4 bit/pixel rate, a break point occurs in the correct 

recognition rate in the eigenface method while the decrease in performance of the 

Fisherface method is simply accelerated. From FIGURE 4.8, it is seen that the 

breakpoint of "Fisherfaces" method is not as sharp as "Eigenfaces" method. From this 

figure we also see that the performance of "Fisherfaces" method resembles the SNR 

curve, whereas the curve of "Eigenfaces" method is parallel to both curves down to 0.4 

bit/pixel rate, but abruptly drops down below this rate. 
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FIGURE 4.7. Scatter of face class centers on first two principal components after 

compression with vector quantization at 0.4 bit/pixel 
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niques 
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4.4. Compression with JPEG 
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From FIGURE 4.9, it is seen that the results of the JPEG compression scheme is similar 

to the VQ scheme. Faces can also be compressed with JPEG 'down to 0;4 bit/pixel 

(20:1) with both recognition algorithms, beyond which the drop is accelerated. Again 

"Fisherfaces" method gives 1-3% better results than "Eigenfaces" method. In contrast 

to VQ results, the performance curve of "Eigen{aces" algorithm is parallel to that of 

Fisherfaces algorithm. It can easily be noticed that the recognition rate curves is not 

parallel to SNR curve at every rate of compression. 

After 0.4 bit/pixel rate, the correct recognition rate of both recognition algorithm 

decrease. Both VQ and JPEG schemes are convenient for compressing the human faces 

without a performance loss of recognition down to 0.4 bit/pixel. Below this rate, these 

schemes deteriorate the performance of "Eigenfaces" and "Fisherfaces" methods. 
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FIGURE 4.10. Effects of wavelet based SPITH compression on "Eigenface" and "Fish­

erface" techniques 

4.5. Compression with SPIHT 

From FIGURE 4.10, the SPITH algorithm, which is better than other schemes in 

terms of SNR, yields also better results in recognition perform~ce as compared to 

JPEG and VQ. Both "Eigenfaces" and "Fisherfaces" method can recognize the faces 

without degradation of performance down to 0.2 bit/pixel (40:1). Although the SNR 

of the image decrease, the recognition performance stays nearly constant down to 0.2 
, 

bit/pixel and begins to degrade only after this rate. 

4.6. Compression with JPEG-2000 

Although more efficient coding methods have been proposed for JPEG-2000, both 

"Eigenface" and "Fisherface" methods can perform down to 0.4 bit/pixel without a 
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FIGURE 4.11. Effects of JPEG-2000 compression on "Eigenface" and "Fisherface" 

techniques 

performance loss, as shown in FIGURE 4.11. "Fisherface" method is again performed 

1-3% better than "Eigenface" method. 

4.7. Database of Compressed I~ages 

Generation of the face space using the compressed faces is an alternative approach. We 
\ 

call this the "Compressed Training" approach. In this case as shown in FIGURE 4.12, 

the face space is generated from the features of compressed training samples at 0.4 

bit/pixel and from the features of compressed training samples from different bit rates. 

Recall that in contrast in FIGURE 4.3 original images were used for the generation 

of the feature space. 

We tried this approach for the "Eigenfaces" method. For Vector Quantization 

scheme, we see that this approach give 1-2% better performance down to 0.4 bit/pixel. 
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FIGURE 4.12. Generation of the face space from compressed face images 

As shown in FIGURE 4.13, below this rate it prevents the abrupt performance drop 

as compared to the uncompressed training. The eigenfaces generated from compressed 

face at different bit rates performs better than compressed faces at 0.4 bit/pixel. 

"Eigenfaces" generated from the compressed training images also give better results 

for JPEG scheme. It can be seen from FIGURE 4.14 that "Eigenfaces" generated from 

original training face images perform 1-2% worse than the "Eigenfaces" generated from 

the compressed training face images at 0.4 bit/pixel and at different bit rates. Despite 

the improvement in the recognition performance, this approach do not contribute to 

the lower bound of compression. 

As it can be seen from FIGURE 4.15, eigenfaces generated from compressed face 

images at 0.4 bit/pixel rate and at different bit rates performs 1-4% better than eigen­

faces generated' using original face images for JPEG-2000 compression scheme. The 

breaking point in the performance curve does not change. 

For the wavelet based SPIHT scheme, this approach gives worse result than the 

"Eigenfaces" generated from original face images, as shown in FIGURE 4.16. 

Finally, to grasp the effects of compression schemes on the facial features, the 

"DFFS" metric is used. The "Distance From Face Space" is computed for the images 
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for VQ. Eigenfaces generated from (a) Compressed face images at different bit rates. 

(b) Compressed face images at 0.4 bit/pixel. (c) Original face images 

~ 
CD 
iii a: 
c:: 
0 

~ 
§ 
a: 

JPEG RESULTS 
90 

85 

80 

75 

._ ........... _._ .. __ ... _--.-._._. ~.~ 
... _ ...... _...................... ~-:::; 

··· .. (c) 
......•.... 

70 

65 

6O'----'-----L_-'--_____ '----'-----L_-'--____ ---.J 

0.8 0.75 0.7 0.85 0.6 0.55 0.5 0.45 0.4 0.35 0.3 
Compression Rate (bit/plxel) 

, 

FIGURE 4.14. Comparison of eigenfaces generated from original and compressed faces 

for JPEG. Eigenfaces generated from (a) Compressed face images at different bit rates. 

(b) Compressed face images at 0.4 bit/pixel. (c) Original face images 
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FIGURE 4.15. Comparison of eigenfaces generated from original and compressed faces 

fqr JPEG-2000. Eigenfaces generated from (a) Ccmpressed face images at different bit 
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FIGURE 4.18. Original face and faces compressed at 0.4 bit/pixel rate with VQ, JPEG 

and SPIHT respectively 

compressed at various bit rates. Recall that the "DFFS" is a metric, and it shows the 

faceness of an image. It can be used to measure how well the features of a face are 

preserved. From FIGURE 4.17, DFFS of the faces compressed with VQ is higher.than 

that of others. DFFS of the faces, compressed with JPEG is less than that of VQ but 

higher than the one for SPIHT and JPEG-2000 algorithm. This measure shows that 

SPIHT algorithm preserves the features of a face better than other schemes. From 
, 

FIGURE 4.18, it can be seen that the features of the faces compressed with VQ, JPEG 

and JPEG-2000 at 0.4 bit/pixel rate are damaged by the blocking effect, whereas 

SPIHT can preserve the features better than other schemes. 
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5. CONCLUSIONS AND FUTURE RESEARCH 

With the enlarging human face databases, face recognition in the compressed domain 

and effects of compression on the performance of existing algorithms are becoming 

important problems. In this work, we try to determine the effects of well-known com­

pression schemes on widely used face recognition algorithms. 

We choose vector quantization, JPEG, JPEG-2000 and wavelet based SPIHT schemes 

for their popularity and their prominent features. Among these VQ is a widely used 

low-level image processing tool and JPEG is one of the industrial standard. JPEG-2000 

is a novel compression method (which is still being developed) with superior coding 

properties, and seems to be the future standard for image compression. The SPIHT al­

gorithm is a rather new scheme based on the wavelets with embedded zero-tree coding. 

It is the closest competitor of the JPEG-2000. 

Among a number of face recognition proposed algorithms, we select the most com­

monly used ones. The correlation, "Eigenface" and "Fisherface" methods are used in 

this work. These methods are widely used in face recognition tasks and they are quite 

robust against variations in the head orientation and illuminatiOll variations. They are 

easy to train and has an easy update rule during training. 

, 
The segmentation of the face from the image and normalization of the face is not 

addressed in this work. Therefore, we select "Oracle Face Database" consisting of 

40 individuals with 10 different views, which do not contain wide variations in the 

illumination, head orientation and head scale. 

We tried these algorithms on compressed and decompressed faces at different bit 

rates to determine to what extend the faces can be compressed without a major per­

formance deterioration. We generate the feature space using original (non-compressed) 
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face images. We see that faces compressed with VQ, JPEG and SPIHT can recognize 

the faces with a little loss of performance down to 0.4 bit/pixel (20:1) rate. But at lower 

bit rates than 0.4 bit/pixel, the performance of the face recognition algorithms begin 

to degrade with VQ and JPEG schemes. Using the SPIHT algorithm faces can be com­

pressed below this rate down to 0.2 bit/pixel (40:1). Below this rate the performance 

of this method also degrades. 

For these compression schemes, "Fisherfaces" method give 2-5% better results than 

"Eigenfaces" method as we expected. The difference between the performance of these 

two schemes is lower than the reported difference in the literature. This is due to the 

near-normalized face database we use. Despite the improved performance of "Fisher­

faces" method, it does not change the breaking point rate in the performance curves. 

Since VQ and JPEG are block based compression schemes, they destroy the facial 

features at low bit rates. The blocking effect on the compressed faces can be seen 

visually. On the other hand, wavelet based compression schemes can. preserve the facial 

features at lower bit rates. Only blurring occurs in the edges. The lower information 

loss in the SPIHT algorithm enables this scheme to outperform other three schemes. 

To generate the feature space from the compressed face is another approach, we 

tried. Instead of running training algorithms on original images, we use compressed 

faces at 0.4 bit/pixel rate and at different bit rates as trainjng samples, ie., we generate 

eigenfaces from the faces compressed with VQ for testing the VQ compressed faces. 

This approach worked well in VQ and JPEG compression where information loss is 

high. Even more in VQ scheme, it prevents the abrupt performance drop below 0.2 

bit/pixel. At high bit rates, this approach increased the performance 1-2% for VQ and 

JPEG. In the lower rates, the performance gain for VQ is higher. For SPIHT scheme 

this approach give 1% worse results than feature space generated by original faces. 

Below 0.2 bit/pixel the performance difference is even less. 
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The faces can be compressed down to 0.4 bit/pixel with VQ, JPEG and SPIHT 

compression schemes with a little loss of performance. Below this bit rate VQ and 

JPEG cannot preserve the discriminative information of the faces. For lower bit rates 

(lower than O.4bit/pixel) it is convenient to use SPIHT algorithm. Face images must 

not be compressed below 0.2 bit/pixel rates with these compression schemes, which 

are optimized to minimize the reconstruction error. To compress the faces at much 

lower bit rates, ie. 0.1-0.01 bit/pixel, a specific compression method for faces must be 

used. For example, the "Eigenfaces" method can represent a face with 10-30 coefficients 

without loss of performance, which means 0.1-0.3 bit/pixel. 

Finally, we conclude that face images can be compressed to 100:1 ratio using face­

specific compression methods, 40:1 using SPIHT method and 20:1 using VQ, JPEG 

and JPEG-2000 methods, without a major deterioration in recognition performance. 

The enlargement of the face database will move the breaking point in the recognition 

performance curves to a slightly higher bit rate compression. 

5.1. Future Research 

Compression of the faces is the only way to cope with storage and bandwidth limi­

tations. Therefore, research for the recognition with compressed face images will be 
, 

active in the following years, with increasing attention. Some of the interesting prob-

lems, which may be addressed include; 

• Robust recognition algorithms, working on the compressed domain 

• The optimization of compression algorithms for pattern recognition problem 

• Manipulation of classification algorithms to perform better on compressed pat­

terns 
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• Development of more powerful feature extraction algorithms, which selects the 

features that do not change much with compression. 

The research on these problems requires establishments of an extensive face database, 

for the compatibility of research results. 
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