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ABSTRACT

In recent years, achievements obtained in machine vision were on the way to
facilitate computers replace several tasks heretofore performed by humans. Among those
tasks, visual inspection of textile fabrics is one of importance. Inspection is performed by
detecting and recording the position of defected parts in a roll of textile web. Textile fabric
images carry textural properties. Therefore, texture analysis methods can be incorporated to
device algorithms for the solution of the defect detection problem. Wavelet transforms have
proven to constitute powerful means suitable for several image processing applications. In
this thesis, wavelet transform based feature extraction methods are investigated in detail.
Pyramid structured wavelet transform (PSWT), wavelet packet (WP) expansion and
multichannel features are compared with features derived from spatial domain co-
occurrence matrices in terms of defect detection capacity. Finally, a novel feature
extraction scheme called subband domain co-occurrence matrices is proposed and

compared computationally and performance-wise with the rest.



KISA OZET

Son yillarda yapay gormede elde edilen gelismeler bugiine kadar insanlarca
gergeklestirilen birgok gorevin yerini bigisayarlarin almasi yoéniinde olmustur. Bu
gorevlerden tekstil triinlerinin gorsel kontrolii ¢nemli birini teskil etmektedir. Kontrol
kumas topu tzerindeki hatali bolgelerin saptanmast ve kaydedilmesi seklinde olmaktadir.
Tekstil imgeleri doku 6zellikleri tagimaktadir. O halde, doku analiz metodlar hata saptama
probleminin ¢ozimii i¢in algoritmalar gelistirilmesinde kullanilabilirler. Dalgacik
doniigimiiniin  ¢esitli imge isleme uygulamalann igin uygun, etkin bir ara¢ oldugu
ispatlanmugtir. Bu tezde dalgacitk donisiimiine dayali oOznitelik bulma metodlan
derinlemesine incelenmektedir. Piramid yapili dalgacik doniigiimii, dalgacik paket agilimi ve
coklu kanal 6znitelikleri uzamsal alan co-occurrence matrislerinden elde edilen 6zniteliklerle
hata saptama kapasitesi acisindan kargilagtinlmaktadir. Son olarak, altband alan co-
occurrence matrisleri adi verilen yeni bir oznitelik bulma yontemi 6nerilmekte ve hesaplama

karmagikli§1 ve basarim agisindan kalanlarla kiyaslanmaktadir.
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1. INTRODUCTION

1.1. Problem Statement

Visual inspection, which constitutes an important part of the quality control of
industrial products, is a cumbersome task. Especially in plants, where the production line
speeds are high as paper, metal, and textile industries or involving processes which do not
enable human intervention during assembly this becomes a real problem. Until recent years,
this job was heavily relied upon human inspectors. Development of fast and specialized
hardware equipment however, facilitated the applicability of image processing and machine
vision tools for the solution of real world problems in a broad area of industry. Among
those where automated visual inspection has found great base was the textile industry.
Reasons for that are quite simple. Inspection of roll of web textile fabrics is time-
consuming and/or boring for humans to perform. Also, it has been reported that human
visual inspection is, at best, 80> per cent effective, and, furthermore this effectiveness can

only be achieved if a rigidly structured set of inspection checks is implemented [1].

- Visual inspection of textile fabrics is mainly concerned with the detection of any
defects or anomalies in the visual appearance of the outcoming rolling web product and
registration of the location and type of those imperfections and degradations in order to be
used when preparing the final product for the market. Therefore; an automated visual |
inspection system performing those tasks will- be made up of two major parts: (1) the

sensing part and (2) the processing part.

Sensing, although alternative strategies as laser scanning [2], or ultrasound
systems [3] have been applied, is most frequently performed with Charge Coupled Device
(CCD) cameras. But rﬁost important component of the sensing is illumination. For
appropriate image acquisition, lighting source and topology selection, especially in the

factory environment, often needs great care.



The processing part, on the other hand, depending on the complexity of the system
varies from general purpose computer to customized hardware and from a single block
system performing defect detection'only to more sophisticated one, as that proposed by

Brzakovic and Vujovic (Figure 1.1), performing defect type classification as well [4].

Input Output
. Defect Characterization/ |,
Sensing Detection Feature Extraction Classification
Data \ /l
Feature
Analysis

FIGURE 1.1. A general inspection system

This thesis is concerned with the defect detection problem of textured images.
During the last three decades, texture analysis problems have always been an active
research topic for the image processing society. Numerous algorithms have been devised in
the efforts of representation of textures. In the late seventies and early eighties, most of the
texture analysis methods were based on the first and second order statistics of the image
gray values. Features used were derived from co-occurrence matrices, run-length matrices
or obtained directly from the gray values as autocerrelation function. In mid-eighties, model
based methods have appeared as an alternative. Textures were considered as realization of
stochastic processes and parameters of the distribution estimated through pattern analysis
algorithms have served as features for the quantitative description of textures. Towards the
end of eighties, wavelet transforms have emerged as an efficient tool for
multiscale/multiresolution image representation. Advantages of multiresolution analysis
have been widely investigated. In this thesis, different texture analysis methods based on

multifrequency/multiresolution features which were used for classification, identification



and segmentation of textured images are applied to the solution of the texture defect
detection problem. Namely, features obtained from pyramid structured wavelet
decomposition, wavelet packet expansion and multichannel filtering of textured images are
compared with features derived from spatial domain co-occurrence matrices in terms of
defect detection capacity. Extensive experimental tests are carried on database provided by
Altinylldiz A.S. consisting of digital images of all possible defect types acquired in the real
factory environment where such an inspection system is ekpected to operate. Finally a
novel feature extraction scheme combining wavelet transform and co-occurrence matrices
and  called subband domain co-occurrence matrices is proposed and compared

computationally and performance-wise with the rest.

1.2. Outline of the Thesis

The organization of this thesis is as follows:

In chapter two the texture analysis methods are reviewed and the theoretical

background of the problem is established.

Chapter three starts with a brief survey on texture defect detection and continues
with a general description of the system that is used for evaluation of the feature extraction
algorithms which are presented each separately in the sequel. Implémentation details and
experimental results for five different algorithms based on pyramid-structured wavelet
transform, wavelet packet expansion, multichannel filtering, spatial domain co-occurrence
matrices and subband domain co-occurrence matrices are provided along with each method.

It concludes with the comparison of the presented detection schemes.

Chapter four concludes the thesis and comments about the possible directions of

future work on the subject.



2. TEXTURE ANALYSIS

2.1. Introduction

Before going into detail about texture analysis and discussing the methods
developed in so far, we think this is the right place to clarify what is meant by texture. It is
difficult to make a unique definition of texture. Since the early seventies, in the attempts to
describe texture, several definitions of texture has appeared in the literature. According to
Hawkins “The notion of texture appears to depend upon three ingredients: (i) some local
‘order’ is repeated over a region which is large in comparison to the orders size, (ii) the
order consists in the nonrandom arrangement of elementary parts, and (iii) the parts are
roughly uniform entities having approximately the same dimensions everywhere within the
textured region”[5]. Horn [6] considers texture to be “detailed structure in an image that is
too fine to be resolved, yet coarse enough to produce a noticeable fluctuation in the gray
levels of neighboring cells.” Another definition due to Sklansky is “A region in an image
has a constant texture if a set of local statistics or other local properties of the picture
function are constant, slowly varying, or approximately periodic” [7]. The difficulty in
providing a commonly accepted definition for texture is apparent from the diversity of the
mathematical models that has emerged in the past two decades. If we review the vision
literature we can find as many definitions for texture as many approaches to model it or as

many different applications it has found in the vision research world. -

From our point of view (i.e., visual inspection), we will define texture, very
informally, as “the tactile quality of the surface” since any disorder or anomaly in it is

meant degradation of quality and nonconformity of the product.

As texture is important characteristic of the images it is used in a number of
applications and has been a subject of intense study by many researchers. One such an

application is the recognition of image regions using texture properties. Psychophysical



studies prompt the importance of texture in identifying such homogeneous regions by the
human brain. Determining the class in which each uniform region in an image belongs to is
called texture classification. Finding the boundaries of the homogeneous regions however,
is the second type of problem that texture analysis research attempts to solve. This is called
texture segmentation. The goal of texture segmentation is to find the boundary map of the
textured regions in an image. Some other applications that use texture analysis as a means
are: image compression, extraction of 3D-shape from texture, and detection of the defective
regions in textured images which is the subject of this study. In this respect, in the
subsequent sections we review the texture analysis tools and develop the quantitative

measures of texture.

2.2. Texture Analysis Methods

In the preceding section, we tried to provide a qualitative description for texture.
Such descriptions, although seem to be reasonable and are essential as a starting point, they
do not immediately lead to quantitative measures. But, what they point out is that, in
describing textures, most often we refer to some perceivéd qualities as uniformity,
roughness, coarseness, density, regularity, linearity, directionality, frequency and phase.
Analysis of textures is an attempt of mathemaﬁcal formulation of those perceived qualities.
Methods developed for this purpose can be collected under four main categories:(i) -
statistical methods, (ii) geometrical methods (iif) model based methods and (iv) signal

processing methods [8].

2.2.1. Statistical Methods

In statistical methods, features are derived from the first or second order statistics

of the texture gray level values. Measures used are co-occurrence matrices, autocorrelation



function, run-length matrices, and neighboring gray level dependence matrices. They have

been primarily used for texture classification purposes. A review can be found in [8-10].

2.2.2. Geometrical Methods

Geometrical methods, assume texture to be composed of primitives, namely,
“texture elements” or as Julesz has called “textons” and analyze the geometrical properties
of these structured components. Textures are described either by features derived from the
statistical properties of those elements or the placement rule extracted from the texture
where the primitives are inherent using geometrical or syntactic methods. Studies of

Zucker et al. [11] and Tomita ef al. [12] are examples of structural texture analysis .

2.2.3. Model-Based Methods

Model based methods, assume textured images as realizations or samples from
parametric probability distributions on the image space, and try to fit simultaneous
autoregressive models (SAR), Markov random field (MRF) models [13-17], and fractal
models [18] to the textured image. Model parameters are used as features in Athe
classification and segmentation problems. Advantage of this method over other statistical
methods is that the model parameters can be used not only to describe the texture but also -
to synthesize it. They have been used for classification, segmentation and compression of

textured images.

2.2.4. Signal Processing Methods .

Signal processing methods, try to derive features from the filtered images which will
resemble certain textural properties. Psychophysical experiments has shown that methods

based on spatial-frequency domain features are plausible with the human visual system.



In recent years, by the development of the wavelet theory this method has received special
interest. Number of algorithms based on wavelet transform [19],[20] and gabor filters [21],
[22-27] have been proposed for classification and segmentation of textured images. In the
following sections we present the theory of the methods that we have applied to our

problem.

2.3. Spatial Gray Level Co-occurrence Matrices

Among all statistical methods, the most popular one which is based on the
estimation of the second order statistics of the spatial arrangement of the gray values, is the
gray level co-occurrence matrices (SGLCM). Julesz [28] was first to use co-occurrence
statistics in the human texture discrimination experiments. A co-occurrence matrix is a
square matrix with elements corresponding to the relative frequency of occurrence of pairs
of gray level of pixels separated by a certain distance in a given direction. Formally, the

GxG gray level co-occurrence matrix Py for a displacement vector d = (dx,dy) is defined as
Po(j)={ (@), tv)):I(rs)=i, 1t v)=]} (2.1)

where 7 (-,- ) denotes an image of size NxN with G gray values, (7, s) , (1, v) e NxN,

(tv)=(r + dx, s + dy)and |.|is the cardinality of a set.

As an example, lets consider the following 4x4 image with four gray values,

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

FIGURE 2.1. Example image



The 4x4 gray level co-occurrence matrix for that image with a displacement vector of

d=(1,0) is given by

2 2 1 0]
P_‘ozooll
"_'00311

lo o 0 1]

If we calculate the co-occurrence matrix for -d, which is nothing but the transpose of P,,
and add the two matrices, then we get a symmetric matrix and it contains spatial gray level
co-occurrences of pixels in the horizontal direction with separation distance one as it is

given below.

[4 2 1 01|
12 4 00
Py=P,+P, =Pd+PdT= [1 0 6 1‘!
0 01 2

Similarly by choosing appropriate displacement vector, one can calculate co-occurrence
matrices for different directions and pixel separation distances. Here in below we give
the co-occurrence matrices for the above example image calculated for distance one and

angles of 45, 90 and 135 degrees.

[41001 [60201 2 1 3 ol
P=l1220' ,P=|0420| P={1210|
4 0241J’ % |2222j’ 135 [3102J

{0010 lo o 20 002 0

These form an adequate set to extract features for most of the textures. Haralick,

Shanmugan and Dinstein [29] proposed 14 measures of textural features which are derived



from the co-occurrence matrices, and each represent certain image properties as coarseness,
contrast, homogeneity and texture complexity. Those that we used for extracting features

in the defect detection of textured images are:

1) Entropy : ENT = 2.2 p(i,)log p(i. /) 2.2)

Entropy gives a measure of complexity of the image. Complex textures tend to have higher

entropy.
2) Contrast : CON= . D.Gi-j)*pG,J) (2.3)
i

Contrast feature is a measure of the image contrast or the amount of local variations present

in an image.

3) Angular Second Moment: ASM = ZZ{ p(i, HY 2.4)
i

Angular second moment is a measure of the homogeneity of an image. Hence it is a
suitable measure for detection of disorders in textures. For homogeneous textures value of

angular second moment turns out to be small compared to non-homogeneous ones.

1 _ .
4) Inverse Difference Moment : IDM = z m p@,J) 2.9
i j =

In above Egs. (2.2) to (2.5), p(i,j) refers to the normalized entry of the co-occurrence
matrices. That is p(iy) = P(ij)/R where R is the total number of pixel pairs (i,f). For a
displacement vector d = (dx,dy) and image of size NxM R is given by (N-dx)(M-dy).

Co-occurrence matrices are from the oldest textural feature extraction methods.

They were used in various texture analysis and classification problems [30]. The most
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prominent disadvantage with this method is that there is no well established feature
selection algorithm. Certain features with certain displacement performing well in one type
of textures may fail in others. Most often in the application, features to be used are
determined experimentally. But, it has been reported by Weszka et al. [31] that co-
occurrence features performed better than features obtained from a 2-D Fourier power
spectrum. Ohanian and Dubes [32] also conducted a comparative study on Markov
Random Field parameters, Gabor multi-channel features, fractal based features and co-
occurrence features. They found co-occurrence features to outperform the former three. In

this thesis we performed an analogous study for texture defect detection.

2.5. Wavelet Transforms

Wavelets, although were known for many years, received the attention of the
image processing society only after the papers of Daubechies [33], who provided the
discretization of the wavelet transform, and Mallat [34] who established the connection
between multiresolution theory and wavelet transforms. In this section, we provide- the
theory about discrete wavelet transform and decomposition of a signal using wavelet

filters.
The wavelet transform is defined as a decomposition of a signal with a family of

real orthonormal bases ,,,(x) obtained through translation and dilation of a kernel

function /(x) known as the mother wavelet.

‘//m"'(x) = 2—"1/2 y/(z—mx _ n) (2,6)

where m and » are integers. Since ,, ,(x) form an orthonormal set, the analysis and

synthesis formula for a signal f (x) are, respectively, given by
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o = [P, (0 @7

FX) = D Wn(®) (2.8)

m,n

Here in, the formula we use are for wavelet transform coefficients discretized on a
dyadic scale. For continuous case and more about theory the reader may refer to [33] and
[34]. The mother wavelet can be constructed first determining a scaling function satisfying

the two-scale difference equation
#(x) =2 ;h(k)¢(2x -k) | (2.9)
and then relating w(x) to the scaling function via

w(x) =2 ng(k)¢(2x ~k) (2.10)

where

g(ky=(-1)k h(1-k). 2.11)

In order to have wavelet bases obtained through the above procedure be unique,
orthonormal and have desired regularity, the coefficients (k) have to meet certain
conditions. Here we do not go into details of designing those filters. Several set of .

coefficients satisfying those requirements can be found in the literature (see Table 2.1).

Nice thing about this decomposition scheme is that one does not need to calculate
explicitly the scaling and mother wavelet functions, but can obtain the transform
coefficients recursively using h(k) and g(k). Lets consider a J- level decomposition. This

can be written as

f(x)= ;Co,k Pox ()

EDIOMTANG +§0d,+,,k NE)) 2.12)
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where coefficients cox are given and coefficients ¢j,, ,, and dj,, » at scalej+1 are related

to the coefficients ¢; , at scalej via

Ciurn = ch,,kh(k —2n)

djrn = zdj,kg(k —2n) (2.13)
k

for 0<j<J.In signal processing terms operations in Eq. (2.13) is nothing but
convolving  coefficients cj;, and djp at resolution j with %(n) and §(n) and
downsampling by two (dropping every other sample) to obtain ¢j+,, and dj+, p, . Here

h(n) and g(n) are defined as
h(n)=h(-n), g(n) =g(-n)

and can be regarded as impulse responses of quadrature mirror lowpass and highpass
filters H and G, respectively. The output of J-level decomposition will contain the low-
resolution coefficient ¢, and detail coefficients dj , for each level (1< j<J) (Figure
2.2). In the synthesis, the procedure works opposite, i.e., the low-resolution coefficient
¢/n and ‘detail coefficients dj , are first upsafnpled by two (inserting a zero between

neighboring samples) and then filtered with /(») and g(n) respectively.

v

’];(n) » C j+1n |

A

cj,n
B O
= N e D
g —(—

FIGURE 2.2. Two-level wavelet decomposition shceme

A




TABLE 2.1. Wavelet Filter Coefficients

Coefficient Battle-Lemarie 16-tap Daubechies
h(0) 0.766130 0.054416
h(1) 0.433923 0.312872
h(2) -0.050202 0.675631
h(3) -0.110037 0.585355
h(4) | 0.032081 -0.015829
h(5) 0.042068 -0.284016
h(6) -0.017176 0.000472
h(7) -0.017982 0.128747
h(8) 0.008685 -0.017369
h(9) 0.008201 -0.044088

h(10) -0.004354 0.013981
h(11) -0.003882 0.008746
h(12) 0.002187 -0.004870
h(13) 0.001882 -0.000392
h(14) -0.001104 0.000675
h(15) -0.000927 -0.000117

13

Decomposition in the conventional wavelet transform scheme which is also called
pyramid structured wavelet transform is carried recursively on the output of filter (n).
This, in signal processing terms, is equivalent to splitting each time the low-frequency
band (Figure 2.3.a). For signals with most of their energy concentrated in the low
frequency regions this is suitable. For analyzing signals with dominant energy at the
middle frequencies, however, the cpncept of wavelet bases was generalized to contain a |
set of modulated waveform orthonormal bases, called wavelet packets. The library of

wavelet packets {/,}~_, can be generated from a given function W} as follows:
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W () = N2 WK, (25— k) 2.14)
k :

Wyt () = N2 D g(K)W, (2% — k) (2.15)
k .

where W, (x)=¢ (x) and W, (x)=y (x) . Therefore the library of wavelet packets bases can
be defined as collection of orthonormal bases composed of functions of the form
Wy, (2P x-k)  where p€ Zis scale index , k € Z localization index, and n € N is

oscillation index.

w8 nlh w2 s aR WA w2 3k nf
a b

FIGURE 2.3. Split of frequency band for 4-level décomposition with (a)

Pyramid structured wavelet transform and (b) wavelet packet bases.

Extension of wavelet transform  (or ‘wavelet packets) to 2-D is achieved by
expressing the 2-D basis functions as tensor product of two 1-D wavelet (or wavelet
packet) basis functions along the horizontal and vertical directions. The corresponding

filter coefficients can be computed via

by (e, D=hOR (D), s (k, D=h()g(d)

Mo (e, D=0 (), hyy (k,D=g(®)g0) -
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Wavelet packet expansion, algorithmically corresponds to subband decomposition
and is numerically as fast as the FFT [35]. This makes them appealing for many image
processing applications. Laine and Fan [19] used energy and entropy calculated from
wavelet packet expansion of images for classification of textures. They compared different
subsets of the wavelet packet bases in terms of performance and reported classification
rates of 99-100 per cent. Chang and Kuo [20] used a tree-structured wavelet
decomposition (which is equivalent to wavelet packet expansion) to classify textures.
They reached up 98 to 99 per cent classification accuracy on a database consisting of 30

textures from Brodatz’s texture album.

The important point in wavelet packet expansion of an image is the selection of
the best basis set that will capture as much information about texture spectral properties as
to achieve the desired performance. Measures proposed to extract the optimal quadtree are

channel energy [20], entropy [35], class separability [36], and subband coding gain [37].

Finally, we will mention some of the virtues of wavelet transform (WT) over other
transforms as discrete cosine transform (DCT), discrete sine transform (DST) and discrete
fourier transform (DFT). This will explain why W:l", though new compared to the latter,
become so popular and used in such a wide range of image processing applications
ranging from segmentation to classification problems and from compression to detection
algorithms. The wavelet transform of an image generates a data structure known as‘scale-
space representation. In this representatién, spatial/spatial-frequency resolution is not fixed
as in DCT, DST and DFT, but change in an optimal way. Namely, the spatial resolution
increases with frequency, and spatial-frequency resolution becomes narrower as frequency
decreases. So high frequency signals are preciéely located in spatial domain, while the
low-frequency signals are preéisely located in the frequency domain. Sharp edges, which
are well localized spatially and have a significant high frequency content, can be
represented more compactly by WT than the other transforms. Furthermore, WT is
computationally attractive, and does not introduce redundancy. An image can be
represented in multiple resolutions by the same amount of data with the original form

(Figure 2.4).
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FIGURE 2.4. A textile fabric image (left) and its wavelet transform (right )

2.6. 2-D Gabor Filters

A Gabor function is a complex sinusoid grating of a certain frequency and
orientation modulated by a Gaussian envelope. It was introduced by Gabor [38] in 1-D and
later extended to 2-D by Daugman [39]. Formally, a 2-D complex Gabor function is

expressed as:

h(x,y)=g(x',y")exp[j27 (Ux + Vy)) (2.16)

where (x',)") =(xcos¢ + ysing,~x sin ¢ + ycosg) are rotated spatial domain rectilinear

coordinates, and g(x,y) is a 2-D Gaussian function as:

1 (x/ 2)? +y*
glx,y)= (W) e (2.17)
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with aspect ratio 4, and scale parameter o and ¢ angle from the x-axis. The spatial

frequency response of the Gabor function (2.16) is

H(u;v) = exp{—27r20'2 [(w-v)? 2 + (v - V')Z]} (2.18)

where (u',v")=(ucosg +vsing,~using +vcosg) and (U',V’) is a similar rotation of
the center frequency (U, V). Thus H(u,v) is a bandpass Gaussian with minor axis oriented
at an angle ¢ from the u-axis aspect ratio 1/4 radial frequency F = W (measured
in cycles/image-width ) and orientation 8 =tan™ (V/U) (degrees or radians from the u-axis).
Generally it is considered to be more convenient to let modulating Gaussians have same

orientation with the complex sinusoidal grating [23] (i.e ¢=6 ). Then (2.16) and (2.18)

reduce to

h(x,y)=g(x',y")explj2nFx")] (2.19)

and

H(u,v) = exp{-27°0|(w - F)' £ +(v)’]}. (2.20)

The filter given by (2.19) has a bandpass nature. Its half-peak radial and orienta.tion
bandwidths are defined as: B = log,[(#FActa)/(nFAo-c)] and Q = 2 tan” [ a /(nFo )]
respectively, where a = JIn2/2 and measured in octaves and radians or degrees. By
proper selection of the free parameters B, F, Q and & Gabor filters can be tuned to any
arbitrary frequency and orientation. In Figure 2.5 we provide the impulse and frequency

responses of a Gabor filter tuned to (B,€2, _F, o=(1, /4,8,0).

Therefore, since the Gabor function is of bandpass nature, passing an image
through a Gabor filter amounts to suppressing image patterns with frequency and
orientation content other than those at which filter has been tuned. For a demonstration of

the spatial/spatial-frequency selectivity of Gabor filters see Figure 3.12 in section 3.5.
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(a)

®)

FIGURE 2.5. (a) Impulse and (b) frequency responses of an even
symmetric Gabor filter with (B,Q, F, 8)=(1, /4, 8, 0)
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Gabor function since its extension to 2-D, was used in a number of image
processing applications. This is due to the unique properties it possesses. Some of those

properties which make it especially suitable for texture analysis are:

1) Gabor functions are the only functions to achieve the lower bound of the space-
bandwidth product as specified by the uncertainty principle [39]. This means they can
simultaneously be optimally localized in spatial and spatial-frequency domains. Thus, they
make possible design of filters showing high frequency selectivity while possessing good

spatial localization.

2) Gabor functions resemble the receptive field profiles of the simple cells in the

human visual system [40], [41].

3) They are bandpass filters. Thus, they can be configured to extract specific band

of frequency contents from an image.
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3. TEXTURE DEFECT DETECTION

. 3.1. General Overview

Texture defect detection, in its own, is a broad field. It has two variables. The
underlying texture’s characteristic and the type of the defects. Most often methods that
perform well in one type of textures or defects fail in others. Therefore before developing an

algorithm these two variants should be well defined.

Texture defects can be classified into three categories: geometrical defects, intensity
defects and a mixture of both. A geometrical defect is a distortion which results from a
spatial arrangement of pixel values and does not considerably change the local gray level
histogram. So for such defects methods based on the local first order statistical features
does not work. Intensity defects on the other hand, are those which induce remarkable
change in the local intensity. Further, texture imperfections can be classified according to

their extend as localized and extended. For a complete study reader may refer to [42].

Majority of the existing texture defect detection schemes are in the domain of
textile inspection. Detection of defects in textile fabrics is a difficult problem. This has two
reasons. First, textile fabric images are characterized by complex textures. Second, the
defect types occupy a wide spectrum. They vary from intensity defects to geometrical and
from localized ones to extended. So for such textures simple thresholding techniques do
not yield satisfactory results. Algorithms used for defect detection of this type of textures
involve more sophisticated methods. Dewaele ef al. [43] used signal processing methods to
detect point and line defects in texture images. Their technique used convolution filters
whose spatial form adapted to the textures for inspection. Specifically the filter size was
based on an estimate of the repetitiveness of the pattern. Filter coefficients were computed
using the eigenvectors of a covariance matrix for several image points. Cohen et al. [44]

inspected textile fabrics for defects through the use of stochastic texture model, namely the
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Gaussian Markov Random fields. Defects were detected using likelihood ratio tests in
nonoverlapping windows within the image. To improve the execution time they have used
sufficient statistics of the model parameters. Neubauer [45] developed a segmentation
algorithm to be used for detection of defects in textile fabrics. His method involved first
filtering the image and then evaluating the filtered images using a histogram calculated in
windows within the image. Finally, textures were classified using a perceptron net which
was trained by backpropagation on the sample images containing defects. Chen and Jain
[46] on the other hand, used a structural approach to detect defects in textured images.
They extract a skeletal structure from images and by detecting the anomalies in certain
statistical features in these skeletons, defects in the texture are identified. A complete
review and taxonomy of texture defect detection schemes are discussed in [47] and [48] (a

recent survey on automated visual inspection by Newman and Jain ).

3.2. System Description

Any machine vision system whether this attempts to accomplish recognition, or
identification , segmentation or classification tasks very generally can be thought to consist
of two blocks. The first block is the so called feature extraction part. This is the place
where data is transformed from higher dimensional space into lower dimensional form
suitable for subsequent processing. Feature extraction is the most important part since
the overall performance of a system primarily depends on the performance of this section.
The second part, involves some kind of decision based on the data obtained in feature
extraction phase. In recognition and identification, this is the block that makes matching
against data gathered in advance and generates a decision whether the object under
concern is among those known a priori. In classification the decision generated involves
grouping of the data into classes under certain similarity measure. If the number or
characteristics of classes are shpplied beforehand this is called supervised classification.

Thus, a defect detection system will be made up of those two blocks we mentioned above.
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In this work, we mostly deal with the first block. We use different methods to
extract features to detect defected regions in textured images. Before discussing each
method separately here in below we describe, briefly, the general structure of our defect

detection system and outline the common part for each method.

I(n,m) Feature X;
Extraction

) d;
Detection —

FIGURE 3.1. Defect detection system block diagram

Raw images I (1,m) of size 256x256 acquired by a CCD camera are fed through
the feature extractor as seen in Figure 3.1. Feature vectors are calculated within local
nonoverlapping subwindows (S; ) of size Nx¥. The choice of subwindow size depends
mainly on two factors: 1) how localized the defects are; and 2) for a nondefective sample
how representative of the texture is the data in a window of such size [44]. Experiments we
carried have shown that for the textures in our database size of 32x32 was the best
selection (see Figure 3.2). Thus, each feature vector ( x; ) represents a certain distinct

region of image I (n,m).

The second block in Figure 3.1 named “detector” is a sort of classifier utilizing
mahalanobis distance measure to assign each feature vector (i.e., each sub-region of the
image) a label (class) as defective or nondefective. Formally , the classification is performed

as follow:

A. Learning phase
1) Given k samples (subwindows) of defect free fabric images calculate feature
vectors s; for each sample ( 1< j<k) using the feature extraction scheme fhat
is to be used by the classifier.

2) Compute mean vector m and covariance matrix C for the feature vectors s; .
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FIGURE 3.2. A defective textile fabric image and its partitioning. ‘X’ denotes

defective subwindows as labeled by a quality inspector.

B. Classification phase
1) Divide a fabric image into nonoverlapping subwindows S; and calculate features
x; for each subwindow.

2) Compute the mahalanobis distance d, between each feature vector x; and m
d; = (x;-m)'C" (x;-m) G.1)

where m and C are mean vector and covariance matrix determined in the
learning phase.
3) Classify a subwindow S; for which d; exceeds a threshold value (&) as

defective else identify it as,‘ nondefective. i.e.,

defective if d, >«

nondefective otherwise
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The threshold value is determined by the formula
0= Dpn+1 (Dq-Dn). (3.2)

D, is the sample median of the order statistics D; ( distances d; arranged in ascending
order ). For an 256x256 sized image partitioned into subwindows of size 32x32 Dy, and D,
are given by: Dn= (Dxn+ D53 ) /2 and Dy= (Dsg+ Dyo ) / 2 respectively. 1| is a constant

determined experimentally.

3.3. Pyramid Structured Wavelet Transform

‘Wavelets were shown [34] to form a complete basis for the representation of images
in multi-resolution. Any signal can be decomposed into multiple frequency bands using a
s:ingle set of filter coefficients. Furthermore wavelet transforms have good spatial/spatial-
frequency localization. Directional information is inherent in wavelet coefficients. Namely
the LH, HL and HH bands contain details in horizontal, vertical and diagonal directions
respectively. Wavelet transform analysis facilitates inspection of spatial/spatial—freqﬁéncy
contents of a signal in a unified framework. All these properties constitute the background

for their use in texture analysis.

In pyramid structured wavelet transform™(PSWT), decomposition in each scale is
carried throughout the low-low band whereas in tree-structured - -wavelet transform,
decomposition can be applied into an); band (Figure 3.3). Chang and Kuo [20] used
irregular tree structure to represent tektures. For textures with their energies concentrated
in the middle frequencies this approach is reasonable. But when defect detection is
concerned, this, most of the time due to the low-pass nature of textures reduces to the case
of regular wavelet transform (i.e., pyramid structured wavelet transform). Our motivation in

choosing pyramid structured wavelet transform can be explained by this observation.
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A; B; C3 D3

(a) (b)

FIGURE 3.3. Pyramid-structured (a) and tree-structured (b) wavelet decomposition.
(Branches from left to right indicate LL, LH, HL and HH frequency bands.)

3.3.1. The Algorithm

The feature extraction algorithm for texture defect detection with pyramid-

structured wavelet transform is as follows:

i- Given a textured image I (n,m) divide it into nonoverlapping sub-windows S; of
size 32x32. For image size 256x256 1<i<64 .
ii- Decdmpose subimage S; using 2-level pyramid-structured wavelet transform.

iii- Calculate the energy e;; of the decomposed subimage (children node) as:

S;

e;; = Nl; ;;lSU (n, m)' | (3.3)
J

where N;=8for 0<j<3and

N;=16for 4<j<6.
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iv- Construct feature vector for subimage S; as :

_ T
Xi = [ei0 €1 €2 - €i6] -

v- Repeat steps (ii) to (iv) for all i.

3.3.2. Implementation and Results

Implementation of the algorithm is performed on a database consisting of 36 real
fabric images obtained from the job site. Each image is of size 256x256. Seventeen of those
images are defect free and the remaining 19 each contains defects of different type (class). A
complete list of those images are provided in Appendix-B. Sixteen of the defect free images
form the training set. The test set contains 19 defective and one defect-free image.
Therefore total number of subwindows in the training and test sets are 1024 and 1280
respectively. The total number of subwindows labeled by a trained quality inspector as

defective 1s 140.

Same feature extraction scheme is used in both training and test phases.
Classification is done as described in section  (3.2). During feature extraction
decomposition is performed using Battle-Lemarie filter coefficients. For energy calculation

we use /, -norm (Eq. 3.3). The gain in the computations by using /; -norm instead of / -
norm is in the order of the image data. Moreover, final results does not change much with
the form of energy computation. Thus, our choice is fair. In the Table below, we provide
the detection rates for each defect class (type) and the overall performance of the algorithm

for our database.



TABLE 3.1. Performance of the PSWT based defect detection algorithm

Defect Class Detection Rate (%)
dcl 89.06
dc2 87.50
dc3 85.94
dcd 93.75
dcs 79.69
dc6 81.25
dc7 90.63
dc8 92.19
dc9 92.19

dcl0 87.50
dell 89.06
dcl2 85.94
dc13 90.63
dcl4 87.50
dcls 84.38
dcl6 92.19
dcl7 87.50
dcl8 90.66
dcl9 82.81
Average 88.98
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The constant 1| which maximized the detection rates for most of the defect types

except few was 9.5. System can be tuned to individual defects by appropriate selection of

constant 7. This is demonstrated in Figure 3.4 where we plot the detection rates for

average T () and 7 tuned for each defect type individually (i.e., 1} optimum per defect

MNopt) -
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3.4. Wavelet Packet Signatures

Decomposing images with PSWT or using wavelet packet (WP) bases, as we
already discussed, does not differ much. Both can be implemented with a filter-bank by
using same cbeﬂicients. The only difference is in building the tree seen in Figure 3.3. In
WP expansion, the decomposition is carried through all branches of the tree whereas in
PSWT only the leftmost branch (low-low band) is succes‘siv-ely decomposed. Each node
corresponds to the component of the signal along a basis. WP expansion is also closely
related to subband decomposition. For example, outputs of 16-band decomposition of an
image coincide with the leaf nodes in the 2-level WP expansion. The structure of the tree
can be adapted to the signal characteristics by prIming the nodes that do not carry much
information using certain measures. Such a scheme was used by Lee et al.[37] for surface
defect classification and they called it adaptive wavelet packet (AWP) decomposition.
Certainly, deriving the optimum tree'structure is a subject of second interest. It can be
considered once the appropriateness of the wavelet packet features to the problem at hand

is asserted. In the following section, we list the algorithm for extracting features using

wavelet packet expansion.
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3.4.1. The Algorithm

For an image / (n.m) the wavelet packet signatures (WPS) can be computed via the

following steps:

i- Partition image / (#7.m) into nonoverlapping subwindows 32x32 S (1<i < 64).
ii- Apply 2-level wavelet packet expansion into each subwindow S; .

iii-Compute energy e;; of the decomposed subimage as :

ZZISi,j (n, m)l ' (3.4)

n n

eu =

1
Nj-

where Nj=16for1<j<4and N;=8for 5<j<20.

v- Construct feature vector for subimage S; as :

x; =[eis eig €7 -~ €]

Sia Si2 Sis Sia

Sis Sie Sy Sis Sie Siuo Sin Suz Sz Sus Sus Sus Sur o Sus S Sizo

FIGURE 3.7. Wavelet Packet expansion of subimage S;
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3.4.2. Implementation and Results

Implementation is carried out on the same database and setup outlined in section
(3.3.2). For the feature vector we selected the energy values of the outmost level that is the

leaf nodes in the full expansion tree. Results are shown in the following Table and Figures.

TABLE 3.2. Performance of the WPS based defect detection algorithm

Defect Class Detection Rate (%)
del 93.75
de2 89.06
de3 85.94
de4 92.19
de5 79.69
de6 , 85.94
de7 90.63
de8 92.19
de9 92.19

dcl10 87.50
dell o 89.06
dcl2 89.06
del3 90.63
dcl4 87.50
del5 | 84.38
del6 - 92.19
del7 : 87.50
dc18 90.63
dc19 82.81
Average 89 14
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3.5. Multichannel Spatial Filtering

In chapter two while defining the texture analysis tools, we have seen Gabor
functions to possess important properties facilitating texture analysis applications.
Especia]ly the optimal spatial/spatial-frequency localization they have and the degreé of
freedom they offer in designing filters for a particular purpose are two main criteria which
made us to consider their use for texture defect detection problem. They were successfully
used by a number of researchers for segmenting and classifying textured images [21-27].
The texture defect detection, in its nature, is a problem in between. One has to locate (in the
strict sense) or (at least) inform about the exis';ence of regions in an image that visually

appear to differ from the rest.

It is experimentally verified that early visual processing mechanism in the striate
cortex of mammals make use of spatial-frequency information. Hence modeling that will
incorporate frequency measure will serve for mimicking the human visual system in

discriminating and detecting defected regions in a textured image. Although the entire visual
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system can not be simplified to a linear mathematical model, it is believed that using
frequency information is more appropriate than features derived from the first or second

order statistics of the gray levels bearing certain shortcomings as conjectured by

Julesz [28].
3.5.1. The Algorithm

Feature extraction algorithm for the gabor filtering based system is as follows:

i- Given an image I (n,m) decompose it into multiple frequency channels using a

bank of gabor filters {h, (n,m);1<i<L}.
Ii (n9m) = hi (n:m) * I(nsm)

ii- Divide output image of each channel I, (n,m) into 32x32 sized nonoverlapping

subimages I, (n,m)

iii- Calculate energy for each subimage I;, (n,m) as :

ik = Fl; ZZII ik (1, m)| (3.5)

n m

where N=32.

iv- Construct feature vector for subimage k as :

— T
X = [ €x €3x eL,k] .
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FIGURE 3.11. Multichannel feature extraction

3.5.2 Implementation and Results

Experimental validation of the algorithm is performed using the same database
and test setup described in section (3.3.2). Textured images are decomposed using 28
complex 2-D gabor filters tuned at seven radial frequencies (F) each one octave apart
(142, 242, 442, 82, 1642, 3242, 6442 c;'cles/image-width) and four orientations
(0, 45, 90 and 135 degrees). Selection of radial bandwidth as one octave (B) was motivated
by psychophysical findings which have shown this to be a good approximate for the cells
in the early visual system of mammals [40],[49],[50]. Orientation bandwidth (Q) was
chosen to be 45 degrees. These | 28 filters form a nearly orthogonal set and provide
uniform coverage of the frequency plane. »(for details see ref. [25] ). For numerical

implementation of filtering operation we used FFT algorithm.
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Classification is done as outlined in section (3.2). The constant n (7,,,) yielding
maximum detection rate was determined to be 4.5. Results are summarized in Table 3.3.
and Figﬁres 3.13, 3.14, 3.15. Comparing with the PSWT based features and WPS, the
improvefnent in the detection performance obtained by multichannel features is apparent.
The advantage of this scheme is that it can serve as an initial step for a more general
system (Figure 1.1) performing defect type classification in addition to detection of
defects. Structure of such a system would be as follow. First, inspect fabrics for defects
using the algorithm we presented in the previous section. Upon detection of defects switch
to off-line mode and using available feature images obtained by Gabor filtering
(Figure 3.12) segment the defective regions and using certain shape moments classify

defects.

FIGURE 3.12. (a) Defective fabric image ‘dc1’ and (b) the feature image obtained by
Gabor filtering with filter parameters (B,€2, F,8) = (1,71/4,32,0). ‘X’ shows

defective blocks.



TABLE 3.3. Performance of the Gabor filtering based defect detection algorithm

Defect Class Detection Rate (%)
del . 96.88
dc2 89.06
dc3 90.63
dc4 95.31
dc5 87.50
dc6 - 89.06
dc7 89.06
dc8 92.19
dc9 92.19
dcl0 85.94
dell 87.50

dcl2 98.44
del3 92.19
dcl4 90.63
dcl5 89.06
dcl6 - 98.44
dcl7 100.00
dc18 96.88
dcl9 84.38
Average 92.03

43
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FIGURE 3.15. (continued)

3.6. Spatial Domain Co-occurrence Matrices

Co-occurrence matrices since their first usage by Julesz [28], were applied into
several texturé analysis problems. Performance of features computed from co-occurrence
matrices has become a subject of debate. In some applications it was argued that co-
occurrence features outperformed frequency and model based features [31],[32], while in
others just the opposite. Our sole purpose of studying co-occurrence features here was not
to introduce a new debate but to make better assessment of the wavelet transform based
algorithms as compared to this well known method. Therefore, this part brings nothing new
than application of co-occurrence features to our database. For the sake of completeneés

we give the algorithm in the section to follow.
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3.6.2. The Algorithm

Given a textile fabric image 7 (n,m) :

i- Partition the image into nonoverlapping subwindows S§; each of size 32x32. For
image size 256x256 : 1<i < 64

ii- Derive the co-occurrence matrices P, for d =1 ( pixel separation distance) and
angles 0 = (0, /4, 7t/2, 3n/4) radians.

iii-Calculate ENT, CON, ASM, IDM for each co-occurrence matrix as in equations
(2.2)-(2.5).

iv-Compute mean |ix and standard deviation 6 x for each feature of four angles.

v- Construct the feature vector as :

— T
X, = [Uenr O ent Heon O con Masm O asv Umom O mu] -

vi-Repeat steps (ii) to (v) for all 1.

3.6.2. Implementatibn and Results

As it was previously mentioned, the applicaﬁon of all algorithms presented
heretofore was carried on a database consisting of 36 real textile fabric images each of
size 256x256 and 8-bits long. During the implémentation, to keep the size of the co-
occurrence matrices in a moderate level we quantized the raw imagés into 8 levels using
uniform scalar quantizer. Such a reduction in the order of the co-occurrence matrices is
vital if this algorithm is to operate in a real time system. Furthermore the degradation in
the performance is insignificant when compared with the order of computational saving.
Results obtained for 19 defect types and overall test set are summarized in Table 3.4.
Figure 3.16 shows the best achievable detection rates and average detection rates per

defect type. While the false alarm versus correct detection rate plots (i.e., SOC curves as
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we called) are presented in F igureé 3.17 and 3.18. Concluding, what can be addressed for

the sake of comparison with the wavelet transform and gabor filtering based features is that

. ! .
performancewise co-occurrence features fail in between.

TABLE 3.4. Performance of the SDCM based defect detection algorithm

Defect Class Detection Rate (%)
dcl 95.31
dc2 87.50
dc3 85.94
dc4 100.00
dc5 81.25
dc6 84.38
dc7 90.63
dc8 93.75
dc9 90.63
dc10 87.50

dcll 90.63
dc12 93.75-
dcl13 90.63
dcl4 - 90.63
dcl5 82.81
dcl6 93.75
dc17 89.06
dc18 90.63
SE 79.69
Average 89.92




51

L} T L) T
| I !
1 ! l m
|||||| R R e et R o
! ! | )
| £, | 1
|||||| e it SR SR I &
) ! ' |
1 4 i 1
xxxxxx P U S Y
] ) ) !
¢ —E ) ) )
...... i U U X
| 1 I !
| 1 , B |
|||||| R S U TR Y D
) 1 | ]
1 L auaft 1 1
111111 R Y T DU
| ] ! '
1 -1 | )
R R - PR I I
- 1 | 1 1
Q. —r8 1 1 1
o | ____. T B oL
! [ ) ]
¢ IR ou 2 {1 ) !
...... T e _oa__._}
1 1 ) i
1 + o—F1 1 1
..... S S P S S
T i e e
! | ) !
2 U S ol
1 7 i e Bt o
w R 1 t 1
{ i | !
O F-—--- (it T - B Ealatiaiadie o
! ! 1 |
) B ! |
|||||| R B e R
| ) ) 1
| ) L 1
xxxxxx R i e e e o
| ! i 1
| > ) 3
uuuuuu R e it SIS B
. | 1 ! !
M ) | !
||||||| Jm e m —fm e e m g —— = — L
| ! 1 |
1 ! M, 1
|||||| TP B
) ! ! !
) , B )
|||||| G N S St
i ) )
g | ! !
| 1 1 l
1 T | L)
[ " (e ) < "
m (o)) (=) o0 [~} e~

djey uondvlag

16 17 18 19

5 6 7 8 9 10 11 12 13 14 15
Class

4

3

FIGURE 3.16. Average and best achievable detection rates using SDCM features.

——— -

e

L P

1,0

uonosle

05 f----

(&

I O e s e

0,
03 t7/---

1081100

0.4 0,6 0,8 1,0

0,2

False Alarm

FIGURE 3.17. Average SOC curve for SDCM based system.



52

1
|
- - ==
|
!

de2 17~

1,0

t
6 il SIS S
d

0
0,
8 05 }---

uonoale

I

]

'
«©
o

04 |--

10841070

02 -/-

1
i
1
t
t

1
I
1
1
I

e e d e - - -

i
1
i
t

TTTrTT SIS TTTITSTTAaT T A

1

P o L TV U JRER
1
t

1
1
'

|

1
i

Lo__
'
1

1
T -7 """ "a°77
1

i

1.
1 K

dei

1,0
0,9
08 f|---

0,7
0,6

uoioele

O 05 ---

I R R i B

04 ---
0,

1981100

02 F---

1,0

00 02 04 06 08

1,0

00 02 04 06 08

False Alarm

False Alarm

T T T T T T T T T
1 ' ' [ i 1 | i !
| [ ' ) ) | 1 ) )
| ) ) | 1 1 ' ) 1
i Bafiak mialh i Relied bt ol Bt ety
1 ) ) 1 1 ) 1 1
1 ) ) | [ [ 1 M 1
1 1 | 1 | | | k=
et et B il e R LR I L
| | | 1 ' | t ) |
t ' ! [ 1 ' t | |
t ' ! [ ! t 1 ! |
LR e R R R N L
| 1 1 ! | ! | t [
[ ! 1 1 ! | | i )
| | | ! ' ' | ) )
I T B i ) Tty Gy S VR 0
[ [ 1 1 | ) ) 1 |
! ! ! | | [ 1 1 '
| ! ! | | [ ) | 1
1 1 1 1 1 1 ] l 1
p S s SR S N =]
—TO0O OO0 OO0 O0O0O0 0o
uonasie(g 1994100
T T T T T T T T T
! ' 1 ! | | ' ) 1
! 1 ) ) 1 1 1 ! |
! | | | ' 1 ! | [
i e el i S Bl L e T
| 1 i 1 ! | |
' t 1 | | ' ﬁ [
) t 1 1 | [ = I
e e e e 1=
| | | ' [ 1 t
1 | 1 t ' | |
' | [ 1 [ ) | '
L o i Tt R FAP S NP S
1 ) ) | ! | '
| 1 1 | | | )
| 1 ' )
8 PR I G I P DY W %
1 | ' 1 | 1 !
t ' [ ' ' ! ) 0
) ' ) ) ) 1 1 !
1 ] 1 ] 1] ] 1 1
Q b e A R A N
-~ O O O O 0O O o O
uol}98}a(Qg 1081100

1,0

6 08

False Alarm

00 02 04 O

1,0

00 02 04 06 08

False Alarm

T T T T T T T T 1
1 1 1 | 1 | 1 |

b | 1 ) t ) l | 1

t | ) [ 1 t 1 |
F=-1-"1~ i it et it mlidie Tt It

' ' 0 1 ) | 1 oo !

[ 1 ' 1 l 1 O ¢

| ! ' b | i 1 O
i SR Sl S Rl il RN el of

1 ) ) ' ) | 1 )

1 1 ) t 1 1 [ 1

| | | | ) 1 1 t |
it B e e e R il Sl It Ll o

1 1 1 [ 1 ! [ 1 l

[ ) 1 | | V 1 t

) ! ) i ' | 1 | )
I B B T e

| | | ) 1 | 1 | 1

1 | | 1 ) | | i '

' [ 1 [ 1 ! ) ’

1 1 1 1 1 1 1 1 1
Q0@ O T 0N O
-0 0 0000000 Oo

uono9}aQ 1081100
—T T T T T T T T
| 1 | | ) | | |
| ' ' ' ) ' 1 |
| f | ' 1 ' ' '
e Sl Bk el S Bt it mils Shadies Bt
1 ) ' ) | [T
) ! ) ) ' [ [A3]
1 ) | 1 1 1 T
e Tl et Sl T B
| ' ! 1 1 ' t |
| ' | [ 1 1 ' 1
t H ! [ | ) ) l
B e e e i T S e
) ! [ ! 1 1 | 1
1 1 | 1 | 1 | '
| 1 | 1 1 | 1 1
T O T
1 ' t ' ) ) |
1 t i 1 | 1 |
t ' ) 1 | ' |
t 13 1 1 Il | D
ON©OWT RN O
O 0O 00000 o0 OO
uoljosle 10a110)

1,0

00 02 04 06 08

1,0

00 02 04 06 08

False Alarm

False Alarm

FIGURE 3.18. SOC curves for SDCM based system under each defect type.



53

< T ) T T 1 T T T 01 T T T T T T T

T T T T T T bl T T T

I T T T - 2 T T T T T T A T R N

| ' ' | 1 1 ] | | 1 | | 1 1 1 ¢ 3 1 1 ) 1 | 1 1

| S S T B | 0" [ T S T T S SR SR © R L

R el ol S R el o - 0 N i S s St St e P -t —d-~F=~fr-—4~--1m-t=-1--l

) 1 ) 1 | o ' t ' [ t 1 © | 1 t | 1 1 1 N

1 1 | | @ m A m 1 1 | 1 | 1 T

o ! = ) N [ o ! = 1 ©

! ! ! [ = A ©o ) ) T ) ) Vg © ' un "| .+ |u ” ". L] “

B e e -t e of i Sl Bl Sl R, Y C R A R il o S R - —
1 [ R T T B o < [ T Y T o c < [ S T T TR T B B
1 [ ) [ [ [ 1 [T 1 1 Q P T T T T I D B |
1 ] ' H ] ] 1 <t .nln“ 1 ] 1 ] ' 1 H 4 1 < m ] I ] L_' tu " ”. nu “
+ Rt el e e R o - et Sedies Rl Al S Y e SRR D T R 5 - A e e R e L e Tl Ll o e
1 I o uw [ T T T N T SR T T o uw [ T e S S
' [ T T T S| [ N e R L R R T [ S T " " “ ”
' L [ T T T T T T T Yo 0
-4 [T SR TR ) | T DU T G NI EOU U IS R | . - Y TR TR N DY S [N [y B
1 [ too o [ e T T B T T N o Y rooy v by
[ T T T oo [ N T T R S . I N " " "

[ T T
R I o R R R o i I N
o o .

Qo NOnYTnNT O CooNOUYONSO QG oNOn TN O
- O O 0O 0O 0O O OO0 o — 00O 00000 oo o oo -0 000000 OO0 oo
uolosleq 103l1lo) uoljoalaq 1081100 uoI0d1a( 1991100

o (o)
T 1 T T T T T T T T - T T T T ¥ T T T T
J_ ' ) ) ] ' 1 ! ' - " t t “ “ " “ u " A 1 1 1 1 1 1 ' | 1
A U R R A
{ 1 1 t ] 1 1 1 I [} I ] 1 ] ] ] )
R Il DAl ot By il el St Bl ety of M, ot R Nl e S it I A Rl e of Mv it Satint et ol St Al ik Sl Bl et o
| i | ) ) | ! ~ g = 1 1 1 ' | | o ! £ § | ) 1 ) ) ' 4...||. 1
1 ) | 1 1 ' | o ! = | ' t ' ' | | O ! 1 | 1 ] ) ] i |
= 1 o 8
| ) | | 1 [ | o0 ! 7o) h ] | t 1 [ | o | © « .“ " v .“ A - S .
— ===k -t - ===+ - R el o d -t = == = s et Rl ol e - e - - - - b
h 1 ot i i ] | o Annu i 1 1 ' 1 ) ) ] ' o M \ “ " " " “ “ " "
1 ] I ] ] ] | i 1 1 ] 1 | 1 ] 1
. —~_t - b e <+ 5 e et <+ g A R S
11;. 1 t T " 4|u|.._....v| S ;|.”||"||w.|._f||__||"..|_ |_|.."o|1| o ' | 1 | ! ) i '
| I ' ' T | i | 1 t ) t [ ' " : ” “ " " " "
[ T T T 1 | T T T T R S A |
R [ e R S | 4 L. n/-y flLll_llrl.»lLllrI.—.!l_Il_llll 2. L = 4w e b L [ PNy RIS J SR [ MO B
1 1 1 1 1 1 1 ) t Q 1 1 1 | | \ ) \ ) o i i ) | 1 | ) [ i
1 I 1 ] 1 1 t 1 t | 1 ] ] | 1 1 ] I ] ) __ | ] “ __ __ “
| 1 1 | | i ) ) 1 | t 1 | | 1 1 | ) ! !
| 1 1 1 1 ] 1 ) ] nU.. 1 1 1 " 1 1 1 1 1 0.. ] 1 L 1 1 + 1
(=} . O
SO N©OYTONTT O SCnoN©OYTONT O Q@O NQWTON=O
- 0O 0 0 0O 0O 0O OO0 o - 0O 00D OO O OO 0O Oo - 0O 0O 00000 OO0 oo
uolidajaQ 1081409 uofjoaje( 1091100 : uoyosia( 1081100

1,0

2 04 06 08
False Alarm

00 O

1,0
FIGURE 3.18. (continued)

2 04 06 08
Faise Alarm

¥

00 0



54

1,0

00 02 04 06 0,8

1,0

False Alarm

FIGURE 3.18. (continued)’

False Alarm

Q
T T T T T w. T T T T T T T T 4|7 7 1 _. 1
[ T R T | I T [ “ : A
[ T S [ ' “ " X | [
] e IS O SO S |
| :_||1-44n_1| o Voo [T (- | © 9
' ! ' ' ) ! 1 ' ¢ [ | £ -
B = Pt i8] o § |8
o © 8 e - I - - -~ = - -t
Sl Il Ll T e < [ [ T o < ﬁ [ u
" " " " ” o)) [ ) ) [ | t [ t % ) \ \
Lo < a I bebcaead T w B
.:;||_||"...+||_|I o % [ | o o u ﬁ v
" “ 1 “ oo oot vt
[ T B [ T R
! 87} S S T TS bedm oo |h||n||" _1
[ - S
o o v et o
l Vo I R T Vo
e 1 o [ I R ,
: : ' o 1 1 f ! : ' ' o “ 7 !
1 Ov. 0
0t N - e S N ) T AN o R =}
cocoo o -0 ooo ©oooo - oo o
Q 1994100 uonoelaQ 1981109 uoyoaleq 1081109
T T T T T T T T m, T T T T T T T T T 0.. T T T T T T T T
) | | [ l 1 1 l [ T T T S T S S AR [ T T T S S SR B |
IR NG L A R
) 1 l ' ! 1 l ' [} I
-1 [ S A et Py nl.“l Lt e Radiad R Rl I Dt M’ i et il sl I S Bt il ol
! ! ! ' ' (52 £ 1o [ T T N Yo B £ | S T T TR SR B S
| | t t Mlu_ = I ' ' 1 1 T c | $ t t ! | | ﬂ |
! I - © o ) ot 8 © © A SR U RS - B
b e 4= -1 e b m e e — e — AN - - - = -y = e = =
! ! ' 1 © “ | ] 1 ] | ] 1 ] o M " “ " “ " "
" . | " <« 2 Voo Ny <« 2 G
T A = s RS e S il Ry B~ S e
! ! ! ! [ T T T N T | 1 " “ “ “ " "
1 ] ] 1 ] 1 | | I I I 1
- — e = + -1+ -4 - — n/m. U G R U I Y Y I . N R n/_y |||||| PG TR AN | PG R
[ R T o [ R T T R T N o Voo o
! ! i ! ! ) ' ! 1 1 ] i | 1 T ! | | | | [ 1 n "
t | 1 [ i i ! | | [ i 1 | t t ! ! ! !
Il ] t 1 3 ] 1 1 nUy " 1 " i ) 3 t n 1 nU.. 1 1 1 L 1 I N 1 It
0 \ 0
aQrraomwmTAN=Q Q@O NQWYON- O Q@ QWY NNT O
O O O O O 0O O O o o T OO0 OO0 00 OO0 o - O 00O 00O 000 O O
uoljosiaQ 080D uonosla(q 1021100 uolj08)a( 108100

00 02 04 06 08



S5

1,0 —— ; :

1 t ] ]
09 [---b---tom-tomi Ay
I e S G
§ 07 b-m-toobo et
Y SR 4R T

(D 1 ] ¥ ]
B 05 F---t---ifontoaotooo
I N SR S S
02 F---t-F-t--- de1gt---

) I . ]

0,1 b

0,0 t } t l

00 02 04 06 08 1,0
False Alarm

FIGURE 3.18. (continued)

3.7. A New Approach : Texture Defect Detection Using Subband Domain Features

Tests with wavelet transforms and co-occurrence features have shown two things.
Lowpass characteristic of the textile images known by observation up to that moment
were approved numerically with the examination of wavelet decomposed images. Energy
contentment of the low-low band was around 60 per cent while high-high band had only
the 5 per cent. Second co-occurrence features compared with wavelet transform features

were more powerful in capturing defects.

These two observations made us to consider extracting co-occurrence features from
subband images. Advantage of such an approach would have been twofold : First, dealing
with smaller images would mean improvement in the computational efficiency since the
calculation of co-occurrence matrices is directly proportional to the image data points (see
Appendix A ). Second, elimination of higher frequency bands which most of the time had a
noise-like appearance and defects were barely noticeable if at all, and focusing on the lower
resolution images would mean enhancement of defects relative to the background texture.

Moreover discarding high frequency details which did not contribute for the detection of
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defects visually, and concentrating on lower frequency bands carrying most of the

information is in compliance with the theory since, as-we have seen in the study of the

Gabor filters, theory is based on the optimality of the human visual system and attempts to

discover mathematical models to imitate it.

To demonstrate the idea we did two experiments. First was based on features

extracted from co-occurrence matrices computed from all four bands. In the second test we

used features derived from only the low-low frequency band (i.e., a subset of the features

used in the first test). The results we obtained were in compliance with the assumptions we

made. Using subband domain features (as we called) increased the detection rates compared

to the features derived from spatial domain co-occurrence matrices. Using only the low-low

band features improved the performance further. In the following we give in a formal

language what we have discussed in hitherto.

3.7.1. The Algorithm

Given an image 7 (n,m) of size 256x256 to extract subband domain features apply

the,fbllowing steps.

i- Decompose image I (77,m) into four bands using wavelet filter coefficients to

obtain images Iy, in, lm and Iy .

+—128—>
ii- Calculate energy e of each decomposed T
. o 128 1133 Iy
image as: " l
1 | Ly, Lim
ey = —322|Ix(n,m)|
N n m
< 256 —

where N =128 and x denotes LL, LH, HL. and HH bands.




iii-If energy of a decomposed image is significantly low than the energy with
maximum value discard this band and consider only the remaining. That is,

consider bands with e, > Cemnax . C is a constant less than one.

iv- Divide each subband image into nonoverlapping subwindows Sy; of size 16x16.

Indices x and idenote subband and subwindows respectively (1<i <64 ).

v- Derive the co-occurrence matrices P, for d =1 ( pixel separation distance) and

angles 0 = (0, /4, nt/2, 3n/4) radians .

57

vi-Calculate ENT, CON, ASM, IDM for each co-occurrence matrix as in equations

(2.2)-(2.5).
vii-Compute mean ix énd standard deviation ¢ x for each feature of four angles.
viii- Construct the vectqr
foi= [HENT G ent Heon O con Masm O asv Umom © mml-

ix-Repeat steps (v) to (viii) for all bands (x) being retained according to the

argument in step (iii) .

x- Feature vector for i’th subwindow corresponding to a region of size 32x32 in

the original image is constructed as :

X =[ fLL,i fLH,i ]T

xi- Repeat steps (V) to (x) for all i.
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3.7.2. Implementation and Results

We applied the given algorithm to our database. For decomposing the raw image we
used Battle-Lemarie wavelet filter coefficients. Before computing the co-occurrence |
matrices we quantized each subimage into 8-levels. Value of constant C was chosen to be
0.35. For this value all bands except the LL band were discarded. We repeated the tests
decreasing C such that all four bands are considered. In Table 3.5 we give the detection
rates for each defect type for these two extreme cases (i.e., single band and all bands).
Results as we outlined show that using only lower resolution images is sufficient. Hence
0.35 is a good selection. When compared with the spatial domain co-occurrence features we
observe one-three per cent increase in the overall detection rate. But it should be noticed
that one-three per cent improvement in the detection rate corresponds to 10-30 per cent
increase in the correct detection rate (see Figure 3.22) or by the same amount decrease in
the false alarm rate since amount of defective subwindows is only one-tenth of the total
regions tested. Figure 3.19 contains the plot of average and best achievable detection rates
for each defect type. While in Figure 3.20 SOC curves for both spatial domain co-
occurrence matrices (SDCM) and subband domain co-occurrence matrices (SBCM) are

shown on the same graph. Finally Figure 3.21 illustrates SOC curves at the presence of each

defect type separately.
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TABLE 3.5. Performance of the SBCM based defect detection algorithm

Detection Rates (%)

Defect Class ALL 4-BANDS LL-BAND
dcl 96.88 96.88
dc2 89.06 87.50
dc3 8438 85.04.
dcd 96.88 9531
dcs 81.25 81.25
dc6 81.25 85.04
dc7 85.94 90.63
dc8 93.75 93.75
dco 92.19 92.19
dc10 87.50 80.06
dell 90.63 92.19
de12 89.06 93.75
del3 92.19 92.19
dcl4 92.19 90.63
dels 84.38 85.94
dcl6 98.44 98.44
dc17 100.00 100.00
dc18 5063 85.94
dcl19 82.81 779.69

Average 90.31 90.78
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3.7. Comparison of the Algorithms in terms of Computational Complexity and

Performance

Examining the results, what they imply is that 2-level decomposition does not seem
to be adequate to extract features with good discrimination power for a defect detection
system based on partitioning of an image into subregions and searching for defects within
those subimages. The reason is that as the image size gets comparable with the filter length,
the averaging effect of the filter becomes so dominant as to smooth out the image. To
overcome this problem, the subwindow size should be increased. But this results in
missing of defects when they occupy only a small portion of the window. Resolution of
this dichotomy seems to lie on selection of different strategy in locating defected parts (e.g.,

in pixel base).

Comparing pyramid structured wavelet transform with the wavelet packet
sighatures, we observe that inb terms of performance they are almost the same. This, as we
have shown, is due to the lowpass nature of the defected textures. Additional
decomposition of the high frequency bands does not bring any advantage than increase in
the computational requirements (see Table 3.6). This is verified also with the case of
subband domain co-occurrence matrices. Where selecting a smaller feature set computed
considering only the lower resolution image gives better detection rates than that obtained

using all four bands.

Multichannel Gabor filters have been once more proven to be the optimum in term
of spatial/spatial-frequency localization. Detection capacity of multifrequency energy
features derived from Gabor filtered imageé is apparent in the SOC curves (Figure 3.15). In
the experiments we carried out, most of the defects were detected with relatively small false
alarm rates. However, when computational and storage requirements are concerned one can
not talk about the same optimality. The computational demand is approximately as much
as 100 times that of wavelet transform based method. A possible remedy is to reduce the
filter set by incorporating feature selection or parameter tuning algorithm as suggested in

[25]and [27]. But even if using a single filter, the computational requirement can not be less
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than that of WPS based system. Moreover, the experiments we did by selecting different
subsets from the 28 filters that we used have all resulted in a drop of considerable amounts

in the detection rates.

Alternative for multifrequency features we proposed subband domain co-occurrence
matrices (SBCM). Computationally, this method is superior to the first three that we
discussed above (i.e., PSWT, WPS and Gabor). In.terms of false alarm and correct
detection rates it is ranked immediately after the Gabor filtering rﬁethod (Figure 3.23). The
sole disadvantage is the selection of feature set. The features we used may not yield good
results for textures with very unlike characteristics. Nonetheless, our purpose here was to
make an initial study to assess wavelet transform features for texture defect detection and
not to design a complete system therefore we did not deal with fine tuning of the algorithm.
In a sense we compared (in terms of defect detection) features derived using two
approaches to texture modeling: statistical (SDCM) and signal processing (PSWT, WPS,
Gabor) and a hybrid of both (SBCM). Finally to achieve completeness we included test
results of the application of Markov Random Fields (MRF) to our database as a
representative of the model based methods and to test the idea of subband domain features
we applied MRF’s to subband images. Since here is not the place to introduce a new
algorithm what we can say is that we just applied the method discussed in [44] to extract
features and used our own classifier to detect defective subregions each of size 32x32
represented by a feature vector of length 25 computed from the sufficient statistics of a
ninth order MRF model. For subband MRF’s (SBMRF) on the other hand we used 16x16
subwindows to extract ninth order MRF features from low-low band images obtained by
decomposition of the original 256x256 sized fabrics into four bands using Battle-Lemarie
filters. SOC curves and detection rates about alt methods are plotted in the Figures 3.25
and 3.26 respectively. Computational requirements of each method are summarized in

Table 3.6. Derivation of the formulas are provided in appendix-A.



TABLE 3.6. Computation requirements for feature extraction

in an image of size 256 by 256.

METHOD ADDITIONS | MULTIPLICATIONS
(x 10%) (x 109
PSWT 2.52 2.62
WPS 4.00 4.20
Gabor 383.51 763.36
SDCM 0.46 0.18
SBCM 0.96 0.92
MRF 1.64 1.64
SBMRF 1.15 1.20

Correct Detection

FIGURE 3.25.

06 08 1.0

False Alarm

SOC curves for all methods
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4. CONCLUSION -

~

In this thesis we investigated the defect detection problem in textured images. As we
pointed out texture analysis is a difficult yet rich subject with many fields of application.
One such a field is the visual inspection of industrial products. So we concentrated on the

defect detection of textile fabric images.

We applied five different methods for the solution of this difficult problem. The
results we obtained differ from 85 to 92 per cent. Slight variants of these methods can
be found in the literature [19],[20],[36],[51] applied for the texture classification problem ,
with performances ranging from 95 to 100 per cent. In the classification and identification
problems features are derived from local windows with single class so the feature space
tends to form clusters, whereas in the defect detection, due to the nature of the problém,
most of the time the features derived from the defective subwindows are not clustered but
split around or even within the feature space of nondefective windows, depending on the

type and size of the defect.

From all the five methods we implemented, the best results were obtained with the
features derived from the gabor filtered images. Gabor filters as we mentioned, have been
shown [39] to be optimal in terms of spatial/spatial-frequency localization, and
experimentally, found to be the best approximate of the cortical receptive field models of
mammals [40],[52]. But their huge computational and storage requirements makes their use
in real time systems almost impossible. Most interesting and attractive method was the one
based on the subband domain features. This af first side appears to be strange when
compared with the performance of spatial domain features. One  expects decrease in
performance, since features are derived from lower resolution images. But if we consider
textures with frequency content mostly concentrated on a single band focusing on that
particular band and discarding the others which carry information with low discriminatory
power improves the detection performance, which can be considered as a case of what is
called selective attention in psychology. This makes them appealing not only due to the

remarkable computational improvement they provide over the gabor filtering based
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method but also due to their performance which is very close to that of the gabor filtering

based method found to be the best.

In this respect, as future work, we think a more elaborate study of model based
methods as Markov Random Fields or Higher Order Statistics, in the subband domain
would be reasonable since it will enable reduction in the model order which means
improvement in the computational complexity and at the same time improvement of the
performance. Our first experiments, which we did include here, with the Markov random

field models were supporting this claim.

Concluding we could say, among all methods we have studied, the one that we
proposed, based on subband domain features seems to be the most suitable for the
automated inspection of the textile fabrics against majority of the defects. Finally, we hope,
by the improvement of the texture analysis methods, in the near future, algorithms of
academic interest today will be part of real time inspection systems in industry and

consumer products in the market.
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APPENDIX A : COMPUTATIONAL COMPLEXITY CALCULATIONS

For an image 7 (1,m) of size NxN the computational requirements for the following

signal processing operations are as follows :

A- Quantization : Scalar quantization of an image /(n,m) into G levels simply can be

approximated by the following operations :
A= (]max‘ min)/G ) IQ (n,m)= L{] (n,m)- min}/ A J’

where I, and /i, are maximum and minimum gray values in / (7,m)) and are assumed to
be known and | X ] denotes maximum integer less than or equal to X;

Total # of additions = N? +1; Total # of multiplications = N* +1;

B- One-Level Decomposition : In one-level decomposition of an image (i.e. splitting into
four bands) with separable filters of length L for a single band total number of additions
and multiplications are as following :

Total # of additions = (3/4) N* (L - 1) ; Total # of multiplications = (3/4) N* L ;

C- 2D- Discrete Filtering : Filtering of an image /(n,m ) of size NxN with a filter A(z2,m)
of size LxL requires N? L* multiplications and N* (Z*-1) additions when this is performed
with 2-D circular convolution. However, the computational complexity, when FFT routines
are used becomes: O*[3log,{Q*}+1] complex multiplications or  4Q*[3log,{Q*}+1] real
multiplications and 20Q°[3log,{Q*}+1] additions with Q satisfying Q > N + L[> -1 and
QO =2" where v is integer. |

( Recall that 2D-FFT of an MxN sized data matrix requires MNlog:MN complex
multiplications [53],[541,[55]).

D- Co-occurrence Matrices : Computation of GxG gray level co-occurrence matrices

for a displacement vector d=(d¥,dy) requires (N-dx)(N-dy) additions.



E- Texture Features :
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Computational requirements for textural features derived from

image gray levels directly or calculated from the co-occurrence matrices are summarized in

Table A.1.
TABLE A.1. Computational Complexity of Textural Features

FEATURE EXPRESSION ADDITIONS | MULTIPLICATIONS

Energy A}’ zz (I(n,m)¥* N1 N+ 1
1 2.

Energy 7\,—{22,1 (n,m)| V-1 !

(ll-noml ) n m .

Entropy -2 2.0, )logpG, ) G*1 G* +1

i

Contrast 220 - 7Y’ pG.J) 2G*-1 2 G?
i

Angular

Second Moment | 2, 2. {pG, /)Y G*1 G?

: i .
Inverse
Difference 3G*-1 3G?

Moment

L
DI
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APPENDIX B: DEFECTED TEXTURE SET
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