
VLSI IMPLEMENTATION

OF AN

M-BANDWAVELETFILTER

by

K.Yavuz Atabek

B.S. in Electrical and Electronics Option, Naval Academy, 1988

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfilment of

the requirements for the degree of
,

Master of Science

in

Defence Technology Program, Electronics Option

Bogazici University Library

111111111111111111111111111111111111111 ~
39001100057770

Bogazi<;i University

1996

iii

ACKNOWLEDGMENTS

I ,,,,Tould like to express my deepest appreciation to Turkish Naval Forces and

Prof. Dr. Yorgo istefanopulos for starting such a program, thus ~llowing me to have

an invaluable educational and social opportunity in Bogazi~i University. I would
also like to express my gratitude to Prof. Dr. Emin Ananm for his continuous

support.

Also, I would like to thank to my thesis supervisor Assoc. Prof. Dr. Sina Balkrr

and Assist. Prof. Dr. Giinhan Diindar for their always being more than a teacher.

I am obliged for Assist. Prof. Dr. Cern Ersoy for his kind interest, great

understanding and invaluable guiding.

I am also gratified for the friendship among the department people; especially

for their help during my first year. In addition, I am grateful to the people in the

. ECAD laboratory, particularly, to our leader Prof. Dr. Orner Ce.rid and dear friends

Hakan Binici, ismet Bayraktaroglu and Alper Altmordu, for their patience and

support.

Special thanks to Assoc. Prof. Dr. Hakan C;aglar and Prof. Dr. Giilen Akta~ for

their kind supports.

I would like to thank my friends; Biltor Uluc;ay for encouraging me to attend

this program and Giircan Elbek for being a part of me like a family and to all my
friends, generating an "EKip spirit" in our lives.

Finally, I would like to appreciate my family for their invaluable, persistent

support for all my life and my wife Zeynep imre Atabek for being a color of my life

and great support especially during this thesis period.

iv

ABSTRACT -

In this thesis, an integrated circuit realizing M-Band wavelet transfqrm and its
perfect reconstruction (PR) counter part is designed. Although M is taken as 4 in the

design, the M-Band Wavelet Transform has all four filters.implemented with only

one filter by the help of the shuffling property. With this method, it is possible to

realize a VLSI design for the M-Band \Vavelet Transform.

The circuit is designed to process 8-bit input signals. So, the filter has 8x8

signed multipliers and 16 bit full adders. After synthesis and optimization of the
circuit, which was designed in a fully hierarchical manner in VHDL, its schematic

diagram is obtained. From the schematic diagram, the chip layout of the circuit is

created.

The circuit was designed, synthesized, optimized, simulated and its Ie layout

was created and prepared for Ie processing by using the :Mentor Graphics v.8.4.l

. tools running on a Sun Sparc2 workstation. In the design, EuroPractice ES2 1 J1m
CMOS target technology is used.

v

6ZET

Bu tez ~ah~masmda, M-Banth dalgaClk donii~iimiinii ve tam geri ~atmasml

ger~ekleyecek bir tiimle~ik devre tasarIanml~hr. Tasanmda kullamlan siizgec;

saYlsl, M=4 olarak almdlgmdan dolayl, 4 adettir. Buna kar~m, M-Banth Dalgaclk

Donii~iimiiniin devri~ime uygunluk ozelligi ile 4 siizgec; yerine tek bir siizgec;

kul1amlarak, tiimle~ik devre olmaya uygun bir yapl elde edilebilmi~tir.

Devre 8 bitlik giri~ ~aretleri ic;in tasarlanml~ olup, siizgec; i~~nde 8X8 i~aretli

c;arpma yapan <;arplcllar ile 16 bitlik toplaYlcIlar kul1amlml~hr. Tamaml.hiyerar~ik

olarak, en basit kapl elemanma kadar VHDL'de tasarlanan devrenin, sentezleme ve

eniyileme i~lemlerinden sonra ~ematik goriintiisii ortaya' ~lkml~hr. Bu ~emadan da

tiimle~ik devre serimi (layout) yarahlml~hr.

Tasanmm yazIlmasl, sentezlenmesi, eniyilenmesi, benzetiminin yapllmasl ve

tiimle~ik devre seriminin ~lkanlmasl i~in Sun Sparc2 i~ istasyonu iizerinde ~ah~an

Mentor Graphics yazlhmpaketi, sihiim 8.4.1'den yararlamhm~tl!. Aynca tasanmda

EuroPractice ES2 1 JlIll. CMOS ger~ekleme teknoloji~i kuIlamlml~hr.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iii

ABSTRACT : ... iv

OZET ... : v

LIST OF FIGURES yjj

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS .. : .. .ix

1. INTRODUCTION ... 1

2. BACKGROUND .. 3

2.1. Wavelets .. .' ... 3
2.2. Image Compression And Encoding Techniques .. 6

2.2.1. Image Data Requirements And Algorithm Performance Measures 6

2.2.2. Elementary Compression Approaches ... 7

2.2.3. Transform Approaches ... 7

2.2.3.1. Block Transform ... 7

2.2.3.2. Karhunen-Loeve Transform .. 8

2.2.3.3. Wavelet Transform .. : 8

3. ARCHITECruf.E ... 9
3.1. Coefficients And Quantization ? ••.•••••. : ••••••••••••...•••••...•••••.•••.•••••••••• 12

3.2. Filter Structure .. 15

3.2.1. Analysis Filter ; ... 16

3.2.1.1. Switching Circuit .. 17

3.2.2. Synthesis Filter 18

4. SIMULATION .. 20

5. CONCLUSION ... 28

REFERENCES ~ .. 29

APPENDIX A VHDL ... 32

APPENDIX B C and Batch Codes .. 35

APPENDIX C Schematic Diagrams ; ... 48

FIGURE 3.1.

FIGURE 3.2.

FIGURE 3.3.

FIGURE 3.4.

FIGURE 3.5.

FIGURE 3.7.

FIGURE 3.7.

FIGURE 3.8.

FIGURE 3.9.

FIGURE 4.1a.

FIGURE 4.1h.

FIGURE 4.2a.

FIGURE 4.2h.

FIGURE 4.2c.

FIGURE 4.3.

FIGURE 4.4.

FIGURE 4.5.

vii

LIST OF FIGURES

M-Band Coder and Decoder Structures .. 9

Frequency Responses of the Filters '" 10

Hierarchy Listing .. '" 11

Quantization Errors ; .. 13

Commonly Used FIR Filter Structure .. 15

FIR Filter Used in This Design .. : 15

Architecture With Single Filter 16

Switching Circuit .. 17

Inputs to the Synthesis Part ... 20

Timing of theAnalysis Filter (Part 1) : 21

Timing of the Analysis Filter (Part 2) .. 22

Timing of the Synthesis Filter (Part 1).. ~ 23

Timing of the Synthesis Filter (Part 2) ... : .. 24

Timing of the Synthesis Filter (Part 3) ... '" 25

Original Lenna input image .. 26

Reconstructed image ... : 26

Chip Layout of Synthesis Filter : 27

FIGURE Apx.A.1. A VHDL Sample (4-Bit Multiplexer) ... 34

viii

LIST OF TABLES

TABLE 3.1. Original Analysis Filter Coefficients ... 9

TABLE 3.2. Analysis Filter ... 14

TABLE 3.3. Synthesis Filter ... 14

TABLE 3.4. Switching Circuit Logic Table. : 17

TABLE 3.5. Synthesis Filter (21.. .. .19

PR

PR-QMF

VHDL

Is
Ie
b

eoe/max
qntzrnew

C

elk

elr

clr2

LIST OF ABBREVIATIONS

Perfect ReconStruction

Perfect Reconstruction Quadrature Mirror Filter

Very High Speed Integrated Circuit Descriptio~ Language
Sampling Frequency
Center Frequency

Number of Quantization Bits
Maximum Value of the Coefficients
New Quantizer Value used for coefmax

Multiplication Constant of the Filters

Clock inputs of the circuits
Clear signal for Synthesis part, generated in Analysis part

Clear signal for Analysis part

IN ANALYSIS PART (for Figure 4. 1 a-b)

MBAND_IN Data input

S13BUS(7:0) Coefficient input to the 1st tap of FIR filter

S11 BUS (7:0) Coefficient input to the 2nd tap of FIR filter

S9BUS(7:0) Coefficient input to the 3rd tap of FIR filter
S7BUS(7:0) Coefficient input to the 4th tap of FIR filter

S5BUS(7:0) Coefficient input to the 5th tap of FIR filter

S2BUS(7:0) Coefficient input to the 6th tap of FIR filter

S1BUS(7:0) Coefficient input to the 7th tap of FIR filter

S14BUS(7:0) Coefficient input to the 8th tap of FIR filter

S8BUS(7:0) Data input to the 1st tap of FIR filter

S15BUS(7:0) Data input to the 2nd tap ~f FIR filter

S16BUS(7:0) Data input to the 3rd tap of FIR filter
S10BUS(7:0) Data input to the 4th tap of FIR filter

S12BUS(7:0) Data input to the 5th tap of FIR filter

S3BUS(7:0) . Data input to the 6th tap of FIR filter

S6BUS(7:0) Data input to the 7th tap of FIR filter

SOBUS(7:0) Data inpuf to the 8th tap of FIR filter

N$72(15:0) FIR filter output (16 bit)

INGO(7:0) Output of the 1st band

ING1(7:0) Output of the 2nd band

ix

ING2(7:0)

ING3(7:0)

Output of the 3rd band

Output of the 4th band

IN SYNTHESIS PART ·(for Figure 4.2a-c)

INGO(7:0)

INGl(7:0)

ING2(7:0)

ING3(7:0)

X(7:0)

S12BUS(7:0)

SlOBUS(7:0)

S8BUS(7:0)

S6BUS(7:0)

S4BUS(7:0)

S2BUS(7:0)

SlBUS(7:0)

S14BUS(7:0)

S7BUS(7:0)

S15BUS(7:0)

S16BUS(7:0)

S9BUS(7:0)

SllBUS(7:0)

S3BUS(7:0)

S5BUS(7:0)

SOBUS(7:0)

sdout(15:0)

Input of the 1 st band

Input of the 2nd band

Input of the 3rd band

Input of the 4th band

Mixed inputs, fed to the FIR filter

Coefficient input to the 1st tap of FIR filter

Coefficient input to the 2nd tap of FIR filter

Coefficient input to the 3rd tap of FIR filter

Coefficient input to the 4th tap of FIR filter

Coefficient input to the 5th tap of FIR filter

Coefficient input to the 6th tap of FIR filter

Coefficient input to the 7th tap of FIR filter

Coefficient input to the 8th tap of FIR filter

Data input to the 1st tap of FIR filter

Data input to the 2nd tap of FIR filter

Data input to the 3rd tap of FIR filter

Data input to the 4th tap of FIR filter

Data input to the 5th tap of FIR filter

Data input to the 6th tap of FIR filter

Data input to the 7lh tap of FIR filter

Data input to the 8th tap of FIR filter

FIR filter output (16 bit)

RCSTR_OUT Reconstructed output

x

1

1. INTRODUCTION

Wavelets are functions, like sines and cosines, that satisfy certain

requirements. These functions may be used as basis· functions in the

representation of an arbitrary function, in a manner similar to Fourier analysis

which uses sines and cosines as basis functions. VVe use this "wavelet transform"
to represent certain functions which do not respond well to traditional Fourier

analysis. For example, functions having sharp spikes or discontinuities will

require a large number of Fourier basis functions if they are to be accurately

represented. In contrast, if a wavelet basis is utilized, significantly fewer terms are

required. "Vavelets~ like sinusoids, integrate to zero, but wavelets are localized in

both. frequency and time, whereas Fourier basis functions are localized only in

frequency. This additional localization property of wavelets may be used to the

advantage of those who are faced with problems involving large and noisy data

sets. Such data sets can be transformed using wavelets so that the data is

preserved in the form of the wavelet basis coefficients. Processing may then be

carried out on the encoded data sets. The advantage of this approach is that it is

much less computationally expensive than Fourier analysis.

In addition to the advantages of wavelets,' recently, Perfect Reconstruction

Quadrature Mirror Filter's (PR-QMF) have gained popularity in applications that

involve multiresolution signal decomposition. Most significant ones have been

in subband coding of digitized speech, still images and video signals for a variety

of purposes such as encoding, efficient transmission, compression, and detection.

Especially in the last few years, thz relationship between subband coders

and the wavelet transform has been discovered. Mallat has shown the

multi resolution form of the orthonormal wavelet transform is functionally

equivalent to the analysis section of a subband coder with PR property [1].

For some applications it is desirable to see the wavelet transform as a signal

decomposition onto a set of basis functions. In fact, basis functions called

wavelets always underlie 'the wavelet analysis. They are obtained from a single

prototype wavelet by dilations and contractions (scalings) as well as shifts. The

prototype wavelet can be thought of as a bandpass filter and constant-Q property

of the other bandpass filters (wavelets) follows because they are scaled \.'ersions of

the prototype [2].

2

In traditional block coders, lengths of filters are taken to be the same as the

length of each block (N=M). From multiresolution point of view, this limitation

makes it difficult to achieve good time-frequency localization. An overlapping

block transform termed the Lapped Orthogonal Transform (LOT) has been

proposed by Cassereau [3]. Blocking effects at low bit rates are reduced through the

use of basis functions that overlap in adjacent blocks with N=2M. The existence

of PR-QMF solutions for two-band coders was shown by Smith and Barnwell [4].

In two band architectures, there are two types of filters; one is low-pass, the other

is high-pass. However, in M-Band, the first filter is low-pass, the last one is high­

pass and the others are band-pass filters.

Orthonormal M-channel wavelet bases can be obtained. by iterating on the

impulse response coefficients of the subband filters. Regularity of the basis

functions depends on the locations of zeros in the low-pass branch tran.sfer

function and thus affects the design process [1].

Most implementations of M-band coders use Finite Impulse Response (FIR)

filters. Although structures utilizing Infinite Impulse Response (IIR) filters have

also been proposed for this purpose, stability of these proved to be ?ifficult to

achieve.

In this design, only one single FIR filter i/s used as a replacement for four

filters representing the M=4 case by using the shuffling operation. Shuffling.

operation is performed by a group of switching circuits, which send one of four

coefficients to the taps of the FIR filter at each clock, representing each filter for

one clock cycle. This kind of shuffling operation results in downsampling by 4

automatically. A similar shuffling operation can make it possible for us to realize

the synthesis part with PR property with only one FIR filter instead of four.

These single filter operations are also easy to be represented in C code. After

shuffling operations being successful in e with real number filter coefficients,

quantization is done for coefficients to be used in digital integer FIR filter.

The design is made via VHDL codes, with a hierarchical bottom-up

methodology. After synthesis and optimization of the design, the whole circuit is

mapped onto the ES2 (an Ie vendor affiliate of the EuroPractice consortium) IJlm

CMOS target technology. Therefore, standard cells used in the subcircuits of the.

design are from the ECPDIO, IJlm. CMOS standard cell library of the ES2 foundry.

3

2. BACKGROUND

This thesis is on the VLSI design of a wavelet transformer. Wavelet

transformation is a kind of subband coding. The main goal in subband coding is

the compression and is widely used for image or speech data transfer. General

information about some special headlines, concerning these subjects will be
given in this chapter.

2.1. Wavelets

Fourier series, or expansion of periodic functio?s in terms of harmonic

sines and cosines, date back to the early part of the 19th century when Fourier

proposed harmonic trigonometric series [5]; The first wavelet (the only example
for a long time!) was found by Haar early in this century. However the

construction of more general wavelets to form bases for square-integrable

functions was investigated in the 1980's, along with efficient algorithms to

compute the expansion.

While linear expansions of functions are a classic subject, the recent

constructions contain interesting new features. For example, wavelets allow good
resolution in time and frequency, and should thus allow one to see "the forest

and the trees". This feature is important for non-stationary signal analysis. While

Fourier basis functions are given in clos~d form, many wavelets can only be

obtained through a computational procedure (and even then, only at specific

rational points). While this might seem to be a drawback, it turns out that if one

is interested in implementing a signal expansion on real data, then a

computational procedure is better than a closed-form express~on!

If we look deeper to this non-stationary signal analysis subject [2]; the aim of

the signal analysis is to extract relevant information from a signal by

transforming it. Some me!hods make a priori assumptions on the signal to be

analyzed; this may yield sharp results if these assumptions are valid, but is

obviously not of general applicability. In this paper, we focus on methods that are

applicable to any general signal. In addition, we consider .invertible

transformations. The analysis thus unambiguously represents the signal, and

4

more involved operations such as parameter estimation, 'coding and pattern

recognition can be performed on the "transform sfde," where relevant properties
may be more evident.

Such transforms have been applied to stationary signals; that is, signals

whose properties do not evolve in time. For such signals x(t), the natural

"stationary transform" is the well-known Fourier transform.

XC!) =' x(t) e-2 j 7r f t dt (2.1)

The analysis coefficients X(f) define the notion of global frequency f in a

signal. As shown in Formula 2.1, they are computed as inner products of the

signal with sinew ave basis functions of infinite duration. As a result, Fourier

analysis works well if x(t) is composed of a few stationary components (e.g.

sinewaves). However, any abrupt change in time in a non-stationary signal x(t) is

spread out over the whole frequency axis in X(fJ. Therefore, an analysis adapted

to non-stationary signals require more than the Fourier Transform.

The usual approach is to introduce time dependency in the Fourier analysis

while preserving linearity~ The idea is to introduce a "local frequency"'parameter

(local in time) so that the "local" Fourier Transform looks at the signal through a

window over which the signai is approximately stationary. Another equivalent

way is to modify the sinewave basis functions which are more concentrated in

time (but less concentrated in frequency).

The recent surge of interest in the types of expansions dIscussed here is due

to the convergence of ideas from several different fields, and the recognition that

tec1:miques developed independently in these fields could be cast into a common

framework.

The name "wavelet" had been used with its current meaning first by J ..
Goupillaud, J. Morlet and A. Grossman [6]. In the context of geophysical signal

processing they investigated an alternative to local Fourier analysis oased on a

single prototype function, and its scales and shifts. Th~ modulation by complex

exponential in the Fourier transform is replaced by a scaling operation, and the'

notion of scale replaces that of frequency. The simplicity and elegance of the

wavelet scheme was appealing and mathematicians started studying wavelet

analysis 'as an alternative to Fourier analysis. This led to the discovery of

wavelets which form orthonormal bases for square-integrable and other function

spaces by Meyer [7], Daubechies [8], Battle [9], Lemarie [10], and others. A

5

formalization of such constructions by Manat and Meyer created a frame\'\Tork for

.. wavelet expansions called muItiresolution analysis, a~d established links with
methods used in other fields. Also, the wavelet construction by Daubechies [11] is

closely connected to filter bank methods used in digital signal processing as we
shall see.

Of course, these achievements were preceded by a long-term evolution

from the 1910 Haar [12] wavelet (which, of course, was not called a wavelet back

then) to work using octave division of the Fourier spectrum (Littlewood-Paley

[13]) and results in harmonic analysis (Calderon-Zygmund operators [14]). Other
constructions were not recognized as leading to wavelets initially.·

Paralleling the advances in pure and applied mathematics we~e those in

signal processing, but in the context of discrete-time signals. Driven by

applications such as speed and image compression, a method called subband

coding was proposed by Croisier, Esteban, and Galand [15] using a special class of
filters called quadrature mirror filters (QMF) in mid 1970's, and by Crochiere,

Webber and Flanagan [16]. This led to the study of perfect construction filter

banks, a problem solved in the 1980's by several people, including Smith and

Barnwell [17], Mintzer [18], Vetterli[19], and Vaidyanathan[20].

In a particular configuration, namely when the filter bank has octave bands,

one obtains a discrete-time wavelet series. Such ~ configuration has been popular

in signal processing less for its mathematical properties than because an octave
band or logarithmic spectrum is more natural for certain applications such as

audio compression since it emulates the hearing process. Such an octave-band

filter bank can be used, under certain conditions, to generate \""avelet bases, as

shown by Daubechies [8].

In computer vision, multiresolution techniques have been used for

various problems, ranging from motion estimation to object recognition. Images

are successively approximated starting from a coarse version and going to a fine­

resolution version. In particular, Burt and Adelson proposed such a scheme for

image coding in the early 1980's, calling it pyramid coding [21]. The importance of

the pyramid algorithm wa~ not immediately recognized. One of the reviewers of

the original Burt and Adelson paper said, "I suspect that no one will ever use

this algorithm again" [5]. This method turns out to be similar to subband coding.

Moreover, the successive approximation view is similar to the multiresolution

framework used in the analysis of wavelet schemes.

6

In computer graphics, a method called stlccessive refinement iteratively
interpolated curves or surfaces, and the study of such interpolators is related to
wavelet constructions from filter banks.

Finally, many computational procedures use the concept of successive
approximation, sometimes alternating between fine and coarse resolutions. The

multigrid methods used for the solution of partial differential equatipns are an
example.

2.2. Image Compression And Encoding Techniques

Image compression techniques basically involve the processing of the

image prior to transmission or archiving [22]. The image data is then transmitted

(or stored, in the archival application) and decoded, decompressed, or

reconstructed prior to use. The heart of any of the image compression techniques
centers on two entities:

1. . The development of an image representation that removes a significant

amount of the inherent redundancy in the Jmage 'data. From a statistical

viewpoint, we seek a·transformation of the image data such that the transformed

image consists, ideally, of uncorrelated data.

2. The achievement of a reconstruction scheme that 'undoes' the

compression or encoding scheme. Most important, this reconstruction scheme,

together with the chosen compression technique, is chosen to minimize

subjective distortion in the resulting image.

2.2.1. Image Data Requirements And Algorithm Performance Measures

As a preliminary example, consider an image with 512 x 512 pixel spatial

resolution and 8 bits (256 -levels) intensity resolution. This represents 0.25 Mbyte

(1M byte = (1 K byte)2; 1 K = 1024) of image data, At what is sometimes referred to

as "real-time II rates (Le., the R-170 frame rate) this amount of data over time

represents a data rate of almost 63 million bits per second. Compression

techniques seek to reduce this data rate.

7

Measures of compression algorithm performance are basically cOp1posed of
three entities:

1. A quantitative measure of the amount of data reduction expressed in terms

of memory bits per image or bits per pixel (e.g., reduced to 1 bit/pixel, etc.).

2. A quantitative or qualitative assessment of the degrad~tion (if any) of the
image data.

3. A measure of the algorithm complexity, particularly with respect to
compression/ expansion processing speed.

2.2.2. Elementary Compression Approaches

An obvious approach for the reduction of image data is to undersample the

image. The implicit assumption in subsampling is that adjacent lines or adjacent

pixels contain information that is so highly correlated it may be assumed to be

replicated and that the replication of this data during the reconstruction phase

results in an image that is, subjectively speaking, close to original. Subsampling

methods exist in several forms; the most popular is to sample one of the image

frame fields and discard the other. Most home videocassette recorders (VCRs)

employ this technique.

2.2.3. Transform Approaches

2.2.3.1. Block Transform

If the majority of the image content could be represen.ted using relatively

few of (some) transform basis functions, the image could be transmitted or

archived in transformed form, with a significant data reduction. This type of

approach was considered in Chapter 3. Other approaches partition the image into

smaller regions, or blocks, -and encode these blocks of local data. Block coding of

data usually results in greater success, since the likelihood of a small block

containing highly correlated data is probably greater in a local region than over

the entire image. [22]

8

2.2.3.2. Karhunen-Loeve Transform

Another popular transform is known as the Karhunen-Loeve (KL)

principal component, or Hotelling transform. In contrast with the deterministic
approaches treated previously, the KL transform is based on the statistical

characterization of the image data. The KL transformation is based on

representation of a sampled image function as a vector and statistical

characterization of his vector to determine ("principal") components which

represent most of the image intensity variation. [22]

2.2.3.3. Wavelet Transform

Perhaps the biggest potential of wavelets has been claimed for signal

compression [2]. Since discrete wavelet transforms are essentially subband coding

systems, and since subband coders have been successful in speech and image

compression, it is clear that wavelets will find immediate application in

compression problems. The only difference with traditional subband coders is the

fact that filters are designed to be regular (that is, they have many zeroes at z=O or
z=" "). Note that although classical subband filters are not regular, they·have been

designed to have good stopbands and thus are close to b.eing "regular", at least for

the first few octaves of subband decomposition. /

It is therefore clear that drastic improvements of compression will not be

achieved so easily simply because wavelets are used. How~ver, wavelets bring

new ideas and insights. In this respect, the use of wavelet decompositions in
connection with other techniques (like multiscale edges or vector quantization

[23]) are promising compression techniques which make use of the elegant theory

of wavelets.

9

-
3. ARCHITECTURE

Single filter architecture is the only way to make a· VLSI design for a

wavelet filter. Simple ideas make it possible to design the circuit with one filter,

instead of four. Otherwise silicon area will be too large and this will increase the

cost considerably. In this chapter, the architecture of the design will be explained
in detail.

Vve can separate the architecture into two parts; analysis (coder) part;

m-band subband coder structure and synthesis (decoder) par.t; perfect

reconstruction structure. Architectures are basically, the realization of the block

diagrams proposed in [24]. As in the Figure 3.1. , the structures consist of 4 filters.
HO; which stands for '¥lin Table 3.1. is a low pass filter, HI; which stands for '¥2,

is a band pass filter with small fe, H2; which stands for '¥3, is also a band pass

filter but with a higher Ie ancl'H3; which stands for '¥ 4, is high pass filter. The

frequency responses of the filters are presented in Figure 3.2 ..

n

0
1
2
3
4
5
6
7

L--------'r~··~i 74;~~Yo(n)
Yl(n) Yl(n)

Y2(n) Y2(n)

----)3(n))3(n)
'-----....

M-Band coder and decoder structures

Table 3.1. Original Analysis Filter Coefficients

'I'l(v) \}l2(v) 'I'3(v)

-0,067371764 -0,094195111 -0,094195111
0,094195111 0,067371764 -0,067371764
0,40580489 0,56737176 0,56737176
0,56737176 0,40580489 -0,40580489
0,56737176 -0,40580489 -0,40580489
0,40580489 -0,56737176 0,56737176
0,094195111 -0,067371764 -0,067371764

-0,067371764 0,094195111 -0,094195111

'I'4(v)

-0,067371764
-0,094195111
0,40580489

-0,56737176
0,56737176

-0,40580489
0,094195111
0,067371764

10

In such a sub-band filtering application, fi1ter~ acting as M-band coders must

have certain properties. The analysis filter generates overlapping terms during

. the coding operation and the synthesis filter must be able to decode these terms.

Only by . this way, input of the analysis (coder) part u(n) can be obtained at the

output of the synthesis (decoder) part as u(n) (Figure 3.1\ PR property. Because of
that, the coefficients of the synthesis filter can be derived from the coefficients of

the analysis filter [24]. Therefore the structures of the filters used either in the

analysis or the synthesis are identical.

2.-=---~------~----~------~----~

0.5

100 200 300 400 500
Frequency (fs*5OO)

Figure 3.2. Frequency Responses of the Filters

Architecture consists of 37 modules; written in VHDL, synthesized and

optimized by Mentor Graphics AutoLogic software package. These modules have

a hierarchical order among themselves and hierarchy listing is presented in

Figure 3.3 .. In design process, we synthesized and optimized modules from very

bottom to topmost level one by one. If you happen to optimize the topmost

module directly, AutoLogic will optimize a lower level module as much as the

number of times it's used in the circuit. Since AutoLogic. does not close the

optimization file of the lower level module before the optimization of all design

is finished, the program needs to open another optimization file for that module

during its next usage. For example; after synthesizing an FIR filter, you can face

368 synthesis versions of an AND gate. Certainly this takes a lot more time and a

lot more hard disk space. VHDL listings for all of the modules used in the design

is represented in Appendix A directory of floppy disk.

rcstr(!) / opt_s
eight2_tap_signed_fir(I$286) / schematic

eight_bit_signed_mul(I$31) / schematic
dfCpositive(G108) / opCs
eight_bit_pipelined_mul(G4) / opt_s

dfCpositive(G2S) / opt_s
four_bit_cla_adder(GS) / opCs

and2(G8) / opt_s
and3(Gll) / opt_s
and4(G10) / opt_s
andS(G14) / opt_s
fulUidder_special(GS_4) / opt_s

and2(G3) / opt_s
xor2(Gl) /opt_s

or2(G6) / opt_s
or3(G9) / opt_s
or4(G13) / opt_s
orS(G18) / opt_s

four_biCpositive_latch(G20) / opt_s
radix16_cell(Gl) / opt_s

foucbit_cla_adder(Gl) /opCs
arid2(G8) / opCs
and3(Gll) / opt_s
and4(G10) / opt_s
andS(G14) / opt_s
full_addecspecial(GS_4) / opt_s

and2(G3) / opCs
xor2(Gl) /opCs

or2(G6) / opt_s
or3(G9) / opCs
or4(G13) /opt_s
orS(G18) /opt_s

foucbit_wallace_mul(G2) /opt_s
arid2(GO) / opCs
full_adder(G20) / opt_s

and2(G3) / opCs
or2(GS) / opCs
xor2(Gl) / opCs

eight_bit_twoscomp(G177) / opCs
dfCpositive(G2) / opt_s
four_biCcla_adder(G10) / opt_s

and2(G8) / opt_s
and3(Gll) / opCs
and4(G10) / opt_s
andS(G14) / opt_s
fulLaddec special(GS3) / opCs

ancl.2(G3) / opt_s .
xor2(Gl) / opCs

or2(G6) / opCs
or3(G9) / opCs
or4(G13) / opt_s

orS(G18) / opCs
foucbit_positive_latch(Gl) / opCs
twobyone_mux(G3S) / opt_2_s
xor2(G6) / opt_s

sixteen_bit_twoscomp(G14) / opt~s
sixteen_biCcla_adder(G1S) / opt_s

and2(GS) / opt_s
four_bit_cla_adder(Gl) / opCs
. and2(GS) / opt_s

and3(Gll) / opt_s
and4(G10) / opt_s
andS(G14)· / opCs
full_addecspecial(GS3) / opCs

and2(G3) / opCs
xor2(Gl) / opt_s

or2(G6) / opt_s
or3(G9) / opCs
or4(G13) / opCs
orS(G1S) / opCs

four_biCmux(G1S) / opCs
or2(Gll) / opCs

sixteen_bit_positive_latch(G19) / opCs
xor2(Gll) / opt_s

xor2(I$34) / opt_s
four_bit_positive .. Jatch(G33) / opt_s
sixteen_biCcla_adder(G26) / opt_s

and2(GS) / opCs
foucbiCcla_adder(Gl) / opCs

'and2(GS) / opt_s
and3(Gll) / opt_s

. and4(GlO) / opt_s .
andS(G14) / opCs
fulLadder_special(GS3) / opt_s

and2(G3) / opt_s
xor2(Gl) / opCs

or2(G6) / opt_s
or3(G9) / opCs
or4(G13) / opt_s
orS(G1S) / opCs

four_bicmux(G1S) / opt_s
or2(Gll) / opt_s

sixteen_biCpositive_latch(G12) / opCs
eight_bit_positive_latch(G14) / opt_s
m_band_switch_l(I$1912) / opt_s

eighCbit3in_or(G7) / opt_s
. eighCbit_tgate_2sel(G3) / opt_s
m_band_dfCpositive(Gl) / opt_s

Figure 3.3. Hierarchy Listing

11

12

3.1. Coefficients and Quantization

As represented in Table 3.1., original filter coefficients consist of the

combination of 8 real numbers. To use them in this design, we have to quantize

them. Quantization for integer FIR filters is usually done by rounding the
number [25] which is calculated by Formula 3.1 where coe/max is the
maximum

coe/quant = «2b-1)-1) * (eoe/orig) / (eoe/max) (3.1)

value among the coefficients, coe/orig is the original coefficient to be quantized, b

is the number of bits to quantize and coe/quan t is the resulting quantized

coefficient. We wrote a C code for deciding the value of b (Appendix B). In this

program, first we quantize both the synthesis and analysis part coeffi.cients and

the channel between these parts by the same number of bits. Then analyze the

difference between the original input to the analysis' part and the output of the

synthesis part and calculate the RMS and percentage errors [26]. We repeat this

procedure for numbers between 5 and 20. Calculated values are analyzed and

represented in Figure 3.4 ..

In Figure 3.4., the lines represent the percentage errors for the whole design

(from analysis part to synthesis part) for different bit numbers of quantization;

the solid line, close to the bottom, represents the errors for no compression case.

In this case, all four channels are used in the reconstruction. The dashed line, in

the middle, represents the perc~ntage error generated when 25% compression is

applied (high-pass filter is omitted). And as the last case, 50% compressIon'is

applied· (high-pass filter and band-pass filter with higher frequency response are

omitted) and the error for this case is represented in sm~ll dashed line, at the top.

J I I I I - I

I !

-

\
I
I

l- I , I
I l ,
I

I
I I
I I
I l
I I
I
I

I
I \
I I
I I
I I
I
I

l
I l
I I
I l
I

,
I l
I I
I
I

I
I I
I l
I I .
I

l
I

I
I I
I I
I I
I I
I
I

I
I l

I I I I I I

c;JI N rl Ir,) ...0 c;JI N
:-I :-I 0 0 0 0

0
0 0 0 0 0 0

Percentage Error

Figure 3.4. Quantization Errors for Different Bit Numbers

i
0

-

o
N

Ir,)
:-I

_ ...0
:-I

_ c;JI
:-I

-

_ 0
:-I

13

14

The aim of proper operation with less count of transistors drove us to
implement the design with the minimum number of bits. So that, we decided to

take b as 8. As it can be seen from the graph in Figu~e 3:4., at 50% compression in

8 bit case, the percentage error does not exceed the value of 10.5%. This error
value is really comparable for such a case.

C = (2b-1)-1 / (coe/max)

C = (27)-1/ 0.56737176

C=223.839

(3.2a)

(3.2b)

(3.2c)

After quantization, each coefficient is multiplied by a constant number

(3.2c). However, the output has to be scaled by this number at the end. If this

number is not a power of two, this scaling can be problematic and we -cannot get

the same input, but a scaled one, after the PR stage. Therefore, the number is

chosen as the closest power of two by using the Formula' 3.3a-d, so that scaling can

be done only by a shift right by 7 operation. The coefficients quantized by this

method are represented in Table 3.2. and Table 3.3. and are used in the design.

C = (2b-1)-1 / (qntzrnew) (3.3a)

qntzrnew > coe/max (3.3b)

for C=256 => ql1tzrllew = 0.49609 (not acceptable) (3.3c)

for C=128 => qntzrnew = 0.99218 (acceptable) (3.3d)

Table 3.2. Analysis Filter Table 3.3. Synthesis Filter

n \}II (n) qt2(v) qt3(n) qt4(v) n \}II (n) \f2(v) \f3(n) \}I4(v)

0 F7 F4 F4 F7 0 F7 DC F4 09
1 DC 09 F7 F4 1 DC F7 F7 DC
2 34 49 49 34 2 34 B7 49 CC
3 49 34 CC B7 3 49 CC CC 49
4 49 CC CC 49 4 49 34 CC B7
5 34 B7 49 CC 5 34 49 49 34
6 DC F7 F7 DC 6 DC 09 F7 F4
7 F7 DC F4 09 7 F7 F4 F4 F7

15

3.2. Filter Structure

With an FIR filter structure like the one in Figure 3.5., inputs should wait

for the output belongs to the previous input. This structure slows down the

operation speed of all the system and so FIR filter becomes the bottleneck of the

system. In this design, the structure shown in Figure 3.6.; which depicts the
pipelining-scheme, is used. In this structure inputs do not need to wait output of

the previous input. All operations are being done while the inputs are flowing

through the pipeline. The pipeline depth of the filter should be so that it runs

properly with clock frequency of the circuit. Therefore, the FIR filter is not the

system speed defining element anymore, but the multipliers are.

Since the circuit is designed for 8 bit operation, Radix:"'2n multipliers [27]

performing 8x8 signed multiplication are used. Although single clock is used
throughout the design, an inverted (with 180 0 phase shift) clock is used in the

multipliers to avoid setup and hold violations at data read times. These

multipliers have a pipeline depth of 8 and they are capable of running in excess

of 33 MHz.

The adders are 16 bit carry look ahead adders. Finally, eight and 'sixteen bit

D-flip flops with reset are used as delay elements., Both of these elements

introduce an additional pipeline depth of one clock pulse to the circuit.

--~'}---il't:Tl--J
Figure 3.5. Commonly Used FIR Filter Structure

y

Figure 3.6. FIR Filter 1,Jsed in this Design

16

3.2.1. Analysis Filter

According .to the actual algorithm, inputs are fed to the filters with a delay
sequentially (multiplying by Z-l) (Figure 3.1.). After filtering, downsampIing by 4

operation is performed for the outputs. This makes the filtering operations

useless by 3 in 4 time. Actually, filter rests for 3 cycles in a 4 cycle op~ration and

this situation is valid for all filters (again) with a cycle delay sequentially. This

means, at one cycle only one of the filters can have a valid output. Therefore,

operation of only that filter can be performed while the others are resting

(performing downsampling). This situation is led us to accomplish the whole
operation with a single filter, instead of four.

The analysis part is designed with a single FIR filter as in the architecture in

Figure 3.7., representing the coder structure in Figure 3.1. [28]. The input signals

are fed to the filter, through a D-flip flop which controls the flow of inputs.

The switching circuit in Figure 3.7., designed with four transmission gates

and two D-flip flops as shown in Figure 3.8., sends a different set of coefficients of

filters on each clock cycle to make the filter acts as four filters. Consequently, with

this technique, the chip area is reduced by a factor of 4. All of these shuffling

operations, being done by the switching circuit ill Figur'e 3.7. will be described in

detail in the next subsection.

u(n) filter)ken)

clock

Figure 3.7. Architecture with single filter

The outputs can be separated by knowing that the first output belongs to the

first FIR filter and others follow it sequentially. Therefore, we can apply

compression by omittin~ some of the channels before transmission; 25% by

omitting the last high pass filter outputs, 50% by omitting the last two channels

(high pass and band pass).

17

3.2.1.1. Switching Circuit

clock

coefficients

Figure 3.8. Switching Circuit

As it has been introduced before, switching circuit consists of four 8-bit

transmission gates and two 8-bit D-flip flops. Actually, the function of this circuit

has the greatest importance among all submodules. Switching circuit perfoms the

synchronization of inputs and coefficients to meet each other properly.

The design has 8 switching circuits (one for each filter tap). Two D-flip flops

"runs as counter for transmission gates, such that at each clock pulse, one of four

coefficients (a, b, c, d) for each band are sent to the FIR filter. Logic table for
transmission gate selection is on the following Table 3.4 ..

Table 3.4. Switching Circuit Logic Table

elk outl outl out2 Xgate
1 1 0 1 a
0 1 0 1 a
1 0 1 1 b
0 0 1 1 b
1 1 0 0 c
0 1 0 0 c
1 0 1 0 d
0 0 1 0 d

18

3.2.2. Synthesis Filter

-
An FIR filter working as the inverse of analysis filter, like in Table 3.3., acts

as the synthesis filter. As shown in the decoder part of Figure 3.1., four channel

inputs coming from the analysis part are upsampled 'by 4 since M=4 and fed

through the corresponding filters. Then the outputs of the filters are to be added

to each other with a time shift backward (multiplying by Z). A similar chip area

saving, like in the analysis part can be accomplished here as. well; the operation

procedure mentioned above, is equivalent to the case where inputs are delayed

properly (for 1st filter 3 clock cycles, for 2nd 2, for 3rd 1 and for 4th 0) and filter

outputs added simultaneously as shown in step 1 of the Figure 3.9 .. In this
representation, there are four filters.

The inputs will be processed in the filters only at 1st, 5th""/(4n+1)th clock

cycles where n is the number of, the input. During three clock cycle peri.ods, filters

will become idle. To overcome this drawback, the delay elements in front of the

filters can be neglected and coefficients can be shifted right by that amount (Step 2

of the Figure 3.9.). Now there are four filters with shifted coefficients, but at most

two of the coefficients for each filter will be functional while only two of the filter

taps are with data. Therefore, those functional ones at one time can be put

together and form four different filters (Table 3.5.).

Step 1 . Step 2

o o

Figure - 9 Inputs to the synthesis part

19

Table - 5 Synthesis Filter (2)

n 'I'l(n) 'I' ~(n) 'I' 3(n) 'I' 4(n)

0 09 OC CC 49
1 F4 F7 49 CC 1st filter Coeff. 3 rdFilterCoef!.
2 OC F7 137 CC
3 F7 DC 34 49
4 B7 34 F4 F7 5 CC 49 F7 F4
6 34 49 09 F4 7 49 34 DC F7

nd h
2. FilterCoeff. . 4t ·Filter. Coeff.

Outputs of the analysis part can be fed through the synthesis part without
separating to 4 channels. Initially, synthesis part will not respond for 4 clock

cycles, till the first input of the 4th filter arrives. After that, the inputs

corresponding to the taps of the filter will be held for 4 clock cycles and operated

on by all the corresponding filters at each clock cycle sequentially. Here, different
from other FIR filter operations, inputs are not flowing through the filter at each

. clock cycle, but they stay at the corresponding taps for four clock cycles while the

coefficients for four different filters are shuffling at the taps of the filter. This

coefficient shuffling operation is like inputs have been upsampled by 4 and

flowing through the filters related to the ones they had' been generated by in the

analysis filter. While this process is being executed, the inputs coming from the

analysis filter are also fed through the filter without touching the taps. After 4

clock cycles, corresponding inputs will be held at the taps and the similar

operation will continue. As a result, upsampling by 4 is being done automatically

and all reconstruction operation is being realized with a single filter.

These operations are done by the help of two switching circuits as it's been

mentioned in analysis part. One of the switching circuit is in front of the input
\

buses; to keep inputs for 4 clock cycles at the taps of the filter while actual inputs

flowing through the circuit. The second one acts as the same of the an.alysis part

switching circuits and like in the analysis part we have 8 this type of switches

here as well.

20

4. SIMULATION

First, a C program (Appendix B and Appendix B directory of floppy disk) is
written to simulate the operation of the filters in Figure 3.1. (mb.e and re.e) with

coefficients represented by real numbers. After achieving Perfect Reconstruction
with real coefficients, quantization process begins. Again a C program is written

to quantize the coefficients (qnt.c) and the channel between analysis and synthesis

parts (channel.c) and another to calculate the value of error (ca1c.c). A couple of

batch codes are written to run all these programs automatically for different

conditions (complO, compU, comp15). Results for these steps are represented in
section 3.1.

After C language steps, similar operations representing the originals, as
mentioned earlier, are written in VHDL (Appendix A) and simulated to observe

that these operations ~re performed properly. Logic synthesis and optimization

are done using the 111m ES2 target technology from botto~ to top. After each

resulting schematic circuit a simulation is done to check the functions of the

module. And finally two resulting top-level schematics (analysis and synthesiS
parts) are simulated to verify the proper operation. In all these steps, Mentor
Graphics tools (Design Architect, Autologic, Quicksim, ...) and a C compiler

running on a Sun Sparc2 work station are used. If we overall the steps;

• Writing and running C program

• Writing VHDL codes
• Simulating VHDL codes
• Synthysizing and optimizing VHDL codes

• Simulating resulting schematic circuit

• Creating the chip layout

In simulation of the analysis filter, first, a small part of an image is fed

through the filter. A clock with 33 MHz frequency is used during the simulations .

. The analysis circuit gives out four channel separated outputs and a clear signal

(Appendix C), just before the first output comes, to activate the synthesis filter

(Figure 4.Ia-b). This output is in suitable format for the input of the synthesis

filter (AppendiX C). The inputs and outputs of the synthesis filters are shown in

Figure 4.2.a-b-c.

21

IClK

IClR2
~ + + + + + + + + + + +

,ISAND_IN(7;0)

IS13BUS(7:0)

ISllBUS(7:0)

IS9BUS(7:0)

IS7BUS(7:0)

ISSBUS(7:0)

IS2BUS(7:0)

IS1 BUS(7:0)

IS146US(7:0)

ISa6US(7:0) 8 so + + + X54 + + + X50+ + + X« +

IS lSBUSl7:0) {oo + + + X42+ + + X56+ + + X5& +

1S16BU5(7:0) {oo + + + X44+ + + X52+ + + X41l +

/S10BUS(7:0) {oo + + + X48+ + + X5~ + + X5! +

15128US(7:0) {oo + + + X50 + + + X54+ + + X5& +

153BU5{7:0) -{oo + + + + + + X42+ + + X5& +

IS68US(7:0) {oo + + + + + + X44+ + + X5'l +

ISOBU5(7:0) {oo + + + + + + X~ + + X5& +

INS72(15:0)
{{ 0000 + + + + + + + +~FC40 + ~FD3e I

IINGO(7:0) ~oo + + + + + + + + XFD %-00 + +;[

IING1(7:0) «00 + + + + + + + + IFC ~()()i- +

IING2(7:0) ~oo + + + + + + + + + ~
IING3(7:0) i oo + + + + + + + + + + ~

IClR ~ + + + + + + + + I

0.0 130.0 260.0 390.0 520.0 650.0

Timc(ns)

FIGURE 4.1a. Timing of theAmilysis Filter (Part 1)

22

IClK

IClR2 + + + + + + + + + + +

I.BAND_IN(7:0)
+ + + + + + +

IS13BUS(7:0)

IS11BUS(7:0)

IS9BUS(7:0)

IS7BUS(7:0)

IS5BUS(7:0)

IS2BLJS(7:0)

151 BUS(7:0)
F7

IS 14SUS(7:0)
F4

ISSBU5(7:0)
44 + X54 + + X~3 + + + + + +

IS15BUS(7:0)
50 + X46 + + Xf>J + + + + + +

IS 16BUS{7:0)
48 + X4f6 + + Xf>8 + +)(53 + + +

IS 1 OBLlS{7:0)
52 + X4'l + + Xt;2 + +)(53 + + +

IS126US(7:0)
50 + X44 + + X~ + + / ~ + + +

lS3BUS(7:0)
56 + X50 + + X*,S + +)(53 + + +

lS6BUS(7:0)
52 + X46 + + -X46 + + E + + ~53

lS0BUS(7:0)
58 + XS2 + + X*,2 + + J2 + + 1(53

INS72(15:0) 394C~ 1026 X EE421 OASC){ 5CFC~1 05A21~ABA){ OGFC 1506&){ FD4S1 FF24 1 F£)62 14596. A FCA61 0286 I
IINGO(7:0) ~oo + + 8 00 + + 8 00 + + 8 00 +

liNG 1 (7:0) ~oe + ~eo + +;[FD~O + +~OO

IING2(7:0)
00 + ~oo + Eloo+ + EEJoo+ EQC

IING3{7:0)
00 + + ~oo + +)10& + + ~OO + + >[

IClR

7S0.0 910.0 1040.0 1170.0 1300.0 1430.0

Time(ns)

FIGURE 4.1b. Timing of the Analysis Filter (Part 2)

23

iCLR

+~~---+-------+-------+-------+-------+-------+-------+------~+------~+----~~+~-----+~-----+-------+~-----+~----~+----­
leLK +

/INGO(7:0) + + + + + + + + + +

+ <~F:C==:+===:+====+===~+ XIO + + + + X05 + + + + XFO>

;::==:+===:+===:+===~+ Xee + + + + XFA + + + + XFF+ +
/ING2(70)

+

+

/ING3(7:0)
+ + ~ _____ + _______ + ________ + ______ ~+ XFO + + + + XOA + + + + X~

~~~~==~~~~~~==~~~~~= /X(7:0) 

j'2BUS(7:0) 
j'OaUS(7;O) 
'SaSUS(70) 
'ScBUS(70) 

''ScBUS,7;O) 

1S7BUS,7:0) i 00 + + + + X-r:o + + + .XOA + 
;!~BUS(70) {;:oo==:+===:+===:+===+==~X~~:c==:+===:+===+===:::+Xee + 

+ 

+ 

;'6BUS(7·0) i 00 + + + + X~C + + + +XIO + + 

lSsaUSi7:O) i 00 + + + + X~D + + + +X39 + + 

SIIBUS{7·0) { 00 + + + + + + + + +XFO + + 

',S39US(7·0) { 00 + + + + + + + + +XFC + + 

',S!5U5i7'C) { 00 + + + + + + + + .~_ + 

'IS~EUSi7:0) i 00 + + + + + + + + +XFD + + 

+ 

+ 

'+ 

+ 

+ 

+ 

+ 

+ 

+ Xoo + 

+ XFA + 

+ X05 + 

+ X50 + 
+ XOA + 
+ Xee + 

+ XIO + 

+ X39 + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

15~""l(:5:0) {4~::'G=oo==+===:+===:+===:+===:+===:+===:+===:+===:+===~+===~======:::===;==~== 
CR_OUT\7;~ ~tl:;O~ __ +~ _____ +~ ____ ~+ ______ ~+ ______ +~ ______ + _______ + _______ + _______ + _______ + _______ + _______ + _______ + _______ + __ ------+----

+ + + + + 

0.0 95.0 190.0 2850 380.0 475.0 5700 665.0 

Tome(ns) 

FIGURE 4.2a. Timing of the Synthesis Filter (Part 1) 



24 

ICLA .. .. .. .. .. .. .. 
IClK 

IINGOI7.0) 
so· .. .. + + + .. + .. 

nNG'(7:0) F[)o. Xr;c .. + .. 1(07 + Xoo + .. .. + + + .. . .. .. 
IING2(7:0) 

FF+ X&2 .. + + 1(FC + XFF .. .. .. .. .. .. .. .. 
nNG3(7;O) 

00· XfIO .. .. .. .. .. .. .. + .. .. .. .. 
IX(7:0) 

126U5(7.0) 

lC6U5i7:0) 

;88U5(7.0) 

;66U5(7;0) 

;46U5(7:0) 

;28U5(7.0) 

;18U5(7:0) 

"8U5(7"O) 

'78U5(7:0) 
00· .. XFD+ .. .. .. XFE .. .. .. .. .. .. + ·Xoo .. 

58U5(7:0) 
F ...... .. XFF+ + .. .. XO~ + + .. ~ + + + +XFF .. 

68U5(7;0) 
os+ .. XFD" + .. + XF6 + + + )€7 + + + +Xoo .. 

38U5(7:0) 
50· .. .. + + .. X4S + .. .. iE + + + +X52 + 

18U5(7:0) 
OA-- + Xoo + + + + XFfJ + + + ~ + + + + + 

38U5(7:0) 
EEo- + XFA+ + + + XFF .. + + X02 .. .. + +XFC + 

58(,,5(7:0) 
10 .. + Xos + + .. + XFfJ .. + .. )€C .. .. + "X07 + 

:8U5(7:0) 
39+ + Xso + .. .. + + + + + )ES + .' . + -X56 .. 

dO~!:15 0) ooac + .. 
_OUTi7-Q) 

00+ + + 

760.0 855.0 950.0 1045.0 1140.0 12350 . 1330.0 lQ5.0 

Time(ns) 

FIGURE 4.2h. Timing of the Synthesis Filter (Part 2) 



25 

ICLR 
+ + + + + + 

IClK U 
nIllGO\7·0) 

~ + + + + + + + + + + + + 
nNG~(7 0) 

00 + + + + + + + + + + + + + + + + 
nNG2:7·0) 

00 + + + + + + + + + + + + + + + + 
nIIG3(70) 

00 + + + + + + + + + + + + + + + + 
1X(7:0) 
~oe + + + +. + .+ + + +, + + + + 

2BUS(70) 

OBUSi7·O) 

SBUSi7·O) 

6BUS,7:0) 

4BUS(7·0) 

2BUS(7'0) 

lBUS,7'0) 

43USi7:O) 

7BUSi7:O) 
00 + + + + + + + + + + + + + + + + 

5BUS(7·0) ~F + + + Xoo + + + + + + + + + + + + + 

SBUSi7:O) 
00 + + + + + + + + + + + + + + + + 

~BlISi7:0) 52 + + + X53 + + + + XOO + + + + + + + + + 

lBUS(7·0) 
FE + + + Xoo + + + + + + + + + + + + + 

lBUS(7:0) 
!C + + + XFF + + + + XOO+ + + / + + + + + 

SBUS(70) 
:07 + + + Xoo + + + + + + + + + + + + 

iBUSiN) !6 + + + X52 + + + + X53 + + + + Xoo .. + + + 

d~ut(15·0) 

_OUT(70)· 

1520.0 1615.0 1710.0 1805.0 19000 1995.0 209C.0 211150 

Tome(ns) 

FIGURE 4.2c. Timing of the Synthesis Filter (Part 3) 



26 

In this simulations, it is observed. that, if both circuits are functioning 
properly and perfect reconstruction can be achieved at the output of the synthesis 
part. After success in this step (MBAND_IN in Figure 4.1a-b vs. RCSTR_OUT in 
Figure 4.2a-c), a gray scale "Lenna" image (Figure 4.3.) (8-bit data for each pixel) in 

size of 128x128 is fed to the analysis filter as a stream, since this design is 1D (one 

dimension). Then, the outputs of the analysis filter are fed to the synthesis filter 

and the final reconstructed output is obtained as in Fig~re 4.4. with 6.67 RMS and 
2.6% Percentage errors. 

Figure 4.3. Original Lenna input image 

Figure 4.4. Reconstructed image 

Latency of the overall system is 31 clock cycles; from the input of the 

analysis filter to the output of the synthesis filter. Circuits for both analysis and 
synthesis parts are capable of running with 33 Mhz. clock. 

As mentioned in Section 3.1 quantization is done by a quantizer value of 

0.99218, for having the inputs multiplied with a number in power of 2, and 128 

(27) is found. This shows that, if we shift outputs of both analysis and synthesis 

. parts right by 7 then we will not have a problem. However, if we shift the output 

of the analysis part right by 7 then we can possibly miss the sign of the resulting 

number. Since the input for the analysis part has no sign, the sign for analysis 
. output stands on the MSB. Therefore, we should shift the output right by 8 for 



27 

the analysis part and shift the output right by 6 for the synthesis part. In this way 

we may only eX'Pect for a sign missing at the output of the synthesis part. 

After all these simulation steps, IC layout creation begins. Like all previous 

hardware steps, IC creation is done by "bottom-up" methodology, but with bigger 

groups. First a multiplier's, an adder's and switches' chip layouts are prepared, 

then the FIR filter's and finally the topmost level circuit's chip layout are created 
(Figure 4.5.). 

• I 

riiiiiE~' • ' I P T &$Ui rc 1- fiR alE .,. IE ~, II§IFI#¥¥M Ii 
I I • . r I 

III_iii! ,.".r ' •. - . ..--- --
.. 5$". -'t _= 

. "= ------... --=- .. 
kSF .. 

I 
_ .. .. 

-J" ...... -
'I .. 

Figure 4.5. Chip Layout of Synthesis Filter 



28 

5. CONCLUSION 

The biggest potential of wavelets is on applications for signal compression. 

Since this 1D design is prepared for speech compression, the operatio.n speed is 
very high for speech or any other type of data elsewhere the image. To observe 
real 'operation error level, simulations should be done with image. Speech 

samples would not give an idea about real error level, because of slower 
variations in speech signal than image. 

As it's mentioned before, even with 50% compression rate in 8 bit 

operation total percentage error does not exceed 0.0105 for our image sample 

(Figure 3.4.). Besides, this design is completely suitable for channel coding 
applications requiring subband coded signal [29]. 

Because of creating the Ie in such a hierarchical way, as mentioned in 

Section 4, resulting chip layout appears to be bigger than the one created from a 

flat hierarchy. But the transistor count of the topmost circuit and the 

configuration of the design platform are major bottlenecks for the process with 

flat hieararchy. In this design transistor counts for analysis part is 145,795 and for 

synthesis part is 151,499. Therefore, in this design the method with tree 
structured hierarchy is prefered. 

This design has been made for 8 bit words. Although this seems to provide 

adequate accuracy for speech processing applications, most of the music and 

image signals are represented with 16 bits. To use this design for 16 bit operation, 

a small change on VHDL codes and running the steps mentioned earlier will be 
enough. But for a good operation in 16 bit, multipliers which happen to be the 

bottleneck of the circuit should be changed to full custom or semi-full custom 

design from VHDL based ones. In 8 bit operation this bottleneck doe~ not make 

that much sence. 

The future work for this design will include design of 16 bit version with 

full custom multipliers and 2-D architectures for image compression 

applications. 



29 

REFERENCES 

[1] S.Mallat, "A Theory For Multiresolution Signal Decomposition: The 

Wavelet Representation," IEEE Trans. on Pattern Analysis and Machine 
InieU. , Vol.11, No.7, pp. 674-693,July 1989. 

[2] O.Rioul and M.Vetterli," II Wavelets And Signal Processing," IEEE Singal 
Processing Magazine, pp. 14-38, October 1991. 

[3] P.M.Cassereau, D.H.Staelin and G.Jager, "Encodign of Images Based on 

Lapped Orthogonal Transform," IEEE Trans. C0111111., vo1.37, no.7, pp. 189-

193, Feb. 1989. 

[4] M.Smith and T.P.Barnwell, "Exact Reconstruction For Tree-Structured 
Subband Coders," IEEE Trans. Acoust.,Speech, Signal Processing, vo1.34, pp. 

434-441, June 1986. 

[5] M.Vetterli and J.Kovacevic, "Wavelets and Subband Coding," Prentice Hall 

PTR, pp. 1-3, 1995. 

[6] P. Goupillaud, A. Grossman and J. MorIet, "Cycle-Octave and Related 
Transforms in Seismic Signal Analysis," Geoexploration, Vo1.23, pp. 85-

102, Elsevier Science Pub., 1984. 

[7J Y. Meyer, "Ondelettes et Operateurs, Tome I.," Ondelettes, Herrmann Ed., 

1990. 

[8] 1. Daubechies, "Orthonormal Bases of Compactly Supported Wavelets," 

Comm. in Pure and Applied Math., Vo1.41; pp. 909-996, 1988. 

[9] G. Battle, "A Block Spin Construction of Odelettes. Part I: Lemarie 

Functions," C071lm. Math. Phys., Vol.ll0, pp. 601~615, 1987 

[10] P. G. Lemarie and Y.Meyer, "Ondelettes et bases Hilbertiennes," Rev. Math. 

Iberoamericana, Vo1.2, pp. 1-18, 1986. 

[11] 1. Daubechies, "The Wavelet Transform, Time-Frequency Localization and 
Signal Analysis," IEEE Trans. Oll Info. Theory, Vo1.36, No.5, pp .. 961-1005, 

Sept. 1990." 



30 

[12] A. Haar, "Zur Theorie der Orthogonal en Funktionen-systeme," [in 
German] Math. Annal., Vo1.69, pp. 331-371, 1910. 

[13] J. Littlewood and R. Paley, "Theorems on Fourier Series and Power Series," 
Proc. London Math. Soc., Vo1.42, pp. 52-89, 1937. 

[14] A. Calderon, "Intermediate Spaces and Interpolation, the. Complex 
Method," StZldia Math., Vo1.24, pp. 113-190, 1964. 

[15] A. Croisier, D. Esteban arid C. Galand, "Perfect Channel Splitting by Use of 

Interpolation, Decimation, Tree Decomposition Techiniques," Int. Conf on 
Information Sciences/Systems, Patras, pp. 443-446, Aug. 1976. 

[16] R. E. Crochiere, S. A. Weber and J. 1. Flanagan, "Digital Coding of Speech in 

Subbands," Bell Syst. Tech. J.; Vo1.55, pp. 1069-1085, Oct. 1976. 

[17] M. J. T.Smith and T. P. Barnwell, "Exact Reconstruction for Tree­

Structured Subband Coders," IEEE Trans. on Acollst., Speech and Signal 
Proc., Vol.34, pp. 434-441, June 1986. 

[18] F. Mintzer, "Filters for Distortion-Free Two-Band Multirate Filter Banks," 

IEEE Trans. on Acoust., Speech and Signal Proc., yo1.33, pp. 626-630, June 
1985. 

[19] M. Vetterli, "Filter Banks Allowing Perfect Reconstruction," Signal 
Processing, Vo1.10, No.3, pp. 219-244, April 1986. 

[20] P. P. Vaidyanathan, "Quadrature Mirror Filter Banks, M-Band Extensions 

and Perfect Reconstruction Techniques," IEEE ASSP Magazine, VolA, No.3, 

pp. 4-20, July 1987. 

[21] P. J. Burt and E. H. Adelson, "The Laplacian Pyramid as a Compact Image 
Code," IEEE Trans. on Com., Vo1.31, No.4, pp. 532-540, April 1983. 

[22] R.J.Schalkoff, "Digital Image Processing and Computer Vision," John 

WILEY & Sons INC., pp. 188-189, 1989. 

[23] M.Antonini, M.Barlaud, P.Mathieu and I.Daubechies, "Image Coding Using 

Vector Quantization in the Wavelet Transform Domain," in Proc. of IEEE 
Int. Conf Acollst. Speech Signal Proc. Albuquerque, NM, pp. 2297-2300, 

Apr.3-6, 1990. 



31 

[24] O.Alkm and H.<::aglar, "Design of Efficient M-Band Coders With Linear­

Phase And Perfect Reconstruction Properties," IEEE Trans. ACOllst., Speech, 
Signal Processing, Vo1.43, No.7, pp. 1579-1590,~ July 1995. 

[25] P. M. Embree and B. Kimble, "C Language Codes For Digital Signal 

Processing ," Prentice Hall PTR. , pp. 157-161, 1991. 

[26] G.Dundar and K.Rose, "The Effects of Quantization on Multilayer Neural 
Networks" 

[27] M.K.ibrahim, "Radix-2n Multiplier Structures: A Structured Design 

Methodology," lEE Proceedings-E, Vol.140, No.4, pp. 185-190, 1993. 

[28] Y.Atabek, G.Diindar, S.Balklr, H.<::aglar, E.Ananm "M-Bantlr Dalgaclk 

D5nii~iimlerini Gen;ekleyecek Mimarilerin Tasanml," 3.Sinyal I?leme ve 
Uyglliamalarz KurultaYl Sinyal I?leme Bildiri Kitahl (B), pp. 286-290, 26-28 
Nisan 1995 (in Turkish). 

[29] M.Schilpp, A.Netter, W.Rupprecht, E.Bogenfeld "Parallel And Serial 
Concatenated Codes For Digital HDTV," Proceedings of International 

Conference On Telecommunications ICT'96, Vo1.2, pp. 616-619, 14-17 April 

1996. 



APPENDIX A 

VHDL 

32 



33 

VHDL 

In the first half of 1980's, MC68000 had been designed on a wall with paper 

and pencil. Today's increasing demand on digital IC's that are smaller in size but 

larger in complexity, pushes designers to use computer aided design (CAD) tools. 

As the size and complexity increases, drawing circuits by a CAD tool and keeping 
the program under control gets harder. Besides, this kind of design may take long 

time. At this point, thought of a higher level programing language has brought a 

description language into the electronic design area. In VHDL (Very high speed 

Ie Hardware Description Language), designers describe behaviors or structures of 

their hardware with very simple commands (Le. Figure Apx.A.1.), fitting the 

standard hardware description format (IEEE 1076). By the help of this format, 

designers can synthesize their VHDL codes with a VHDL Synthesis program and 

obtain the schematic diagram of their design. Available s~ftware for VHDLs 

include simulators and hardware synthesis programs. A simulation program can 

be used for design verification, while a synthesizer is used for automatic 
hardware generation. 

In VHDL, the designer can build up a huge chip by describing the 

components from the bottom to the top hierarchically. By this way, designer 

describes a component only for once, even it may be used many tiI?es in the 
circuit. If that component needs to be changed, then applying that change only for 

one of them effects the others also. 

In this thesis, the whole design is made in VHDL, totally hierarchically and 

simulated to test its functionality. Afterwards, it is synthesized to generate the 

schematic diagram and finally optimized to map the design into the target 

technology library. 



LIBRARY mgc_portable ; 
USE mgc_portable.qsimJogic.ALL ; 

entity four_biCmux is 

port(a, b: in qsim_state_vector(3 downto 0); sel: in qsim_state; 
xout: out qsim_state_ vector(3 downto 0»; 

end foucbit_mux; 

architecture behavioral of foucbiCmux is 

begin 
mux:process(sel, a, b) 
begin 
case sel is 
when '0' => xout <= a; 
when '1' => xout <= b; 
when others => xout <= "XXXX"; 
end case; 

end process mux; 

end behavioral; 

Figure Apx.A.1. A VHDL Sample (4 Bit Multiplexer) 

34 



35 

APPENDIXB 

C & BATCH CODES 



36 

INPUT COEFFICIENTS AND BATCH FILES 

ANALYSIS COEFFICIENTS FOR NO COMPRESSION CASE (inl) 

-0.067371764 0.094195111 0.405804890.567371760.567371760.405804890.094195111-0.067371764 
-0.0941951110.067371764 0.56737176 0.40580489 -0.40580489 -0.56737176 -0.067371764 0.094195111 
-0.094195111 -0.067371764 0.56737176 -0.40580489 -0.40580489 0.56737176 -0.067371764 -0.094195111 
-0.067371764 -0.094195111 0.40580489 -0.56737176 0.56737176 -0.40580489 0.094195111 0.067371764 

ANALYSIS COEFFICIENlS FOR 25% COMPRESSION CASE (inlnO) 

-0.067371764.0.094195111 0.405804890.567371760.567371760.405804890.094195111 -0.067371764 
-0.0941951110.067371764 0.56737176 0.40580489 -0.40580489 -0.56737176 -0.067371764 0.094195111 
-0.094195111 -0.067371764 0.56737176 -0.40580489 -0.40580489 0.56737176 -0.067371764 -0.094195111 

ANALYSIS COEFFICIENTS FOR 50% COMPRESSION CASE (inl100) 

-0.067371764 0.094195111 0.40580489 0.567371760.567371760.405804890.094195111 -0.067371764 
-0.094195111 0.067371764 0.567371760.40580489 -0.40580489 -0.56737176 -0.067371764 0.094195111 

SYNTHESIS COEFFICIENTS (in2) 
-0.067371764 0.094195111 0.405804890.567371760.567371760.40580489 0.094195111 -0.06;371764 
0.094195111-0.067371764 -0.56737176 -0.40580489 0.40580489 0.56737176 0.067371764 -0.094195111 
-0.094195111 -0.067371764 0.56737176 -0.40580489 -0.40580489 0.56737176 -0.067371764 -0.094195111 
0.067371764 0.094195111-0.40580489 0.56737176 -0.56737176 0.40580489 -0.094195111 -0.067371764 

cp in1 inputs cp in1110 inputs cp in1100 inputs 

qnt qnt qnt 
cp coeffs coeffs.mb cp coeffs coeffs.mb cp coeffs coeffs.mb 

cp in2 inputs cp in2 inputs cp in2 inputs 

qnt qnt qnt 
cp coeffs coeffs.rc cp coeffs coeffs.rc cp coeffs coeffs.rc 

JIb rrb rrb 

channel channel channel 

rc rc rc 

calc calc calc 



QNT.C 
#include <stdio.h> 
#define ROUND(a) «(a) < 0) ? (int)«a)-O.5) : (int)«a)+O.5» 

FILE *fp,*fq,*fr,*fs; 

mainO 
{ 

int b,c,d,e,f,g,h,n,r,s,t,bits,qcoef[32];. 
float z,v[32],y[32],coef[32]; 

b=O; 
c=O; 

d=O; 
h=O; 
r=O; 
z=O; 

for (g=O; g<32; g++) 
{ 
v[g]=O; 
y[g]=O; 
coef[g]=O; 
qcoef[g]=O; 
} 

if«fp=fopen("bitnum","w"»==NULL) 
{ printf("file cannot be opened \n"); 
exit(O); } , 

if«fq=fopen("coeffs","w"»==NULL) 
{ printf("file cannot be opened \n"); 
exit(O); } 

if( (fr=fopen("inputs", "r") )==NULL) 
{ printf("file cannot be opened \n"); 
exit(O); } 

if( (fs=fopen("ou t.qn t", "w") )==NULL) 
{ printf("file cannot be opened\n"); 
exit(O);} 

printf(" \n"); 
printf(" # of bits for the coefficients to be quantized ... :\t"); 
scanf("%d",&e); 

bits=e-l; 
t=32; 
z=0.9921876; 

37 



} 

for (f=O; f<t; f++) 
fscanf(fr,"%f",&coef[f]); 

r=(l«(bits»-l; 
fprintf(fp,"%d \ ttl/e); 

for (f=O; f<t; f++) 
{ 
qcoef[f]=ROUND(r*coef[f]/z); 
y[f]=(z*qcoef[f]/r); 
v[f]=coef[f]-y[f]; 
fprintf(fs,"%f => %x\t",coef[f],qcoef[f]); 
fprintf(fq,"%1.8f ",y[f]); 

} 
fc1ose(fp ); 
fc1ose(fq); 
fdose(fr); 
fc1ose(fs); 

38 



MB.C 
#include <stdio.h> 
FILE *fp,*fq,*fr,*fs,*ft,*fu; 
mainO 

{ 
int b,c,d,e,f,g,h,I,m,n,r,s,t,v,y,bits,o[5000],p[5000],x[5000],a[5000][7],qcoef[4}[7]; 
£loa t z,coef[4l[7],q[5000], u[5000l[7]; 

b=O; 
c=O; 
d=O; 
h=O; 
r=O; 
t=O; 
z=O; 
for (f=O; £<5000; f++) 
for (g=O; g<16; g++) 

for (c=O; c<4; c++) 
{ a[f][g]=O; 
u[f][g]=O; 
coef[c][g]=O; 
qcoef[c] [g]=O; 
x[f]=O; 
p[f]=O; 
q[f]=O; 

} 

if«fp=fopen("errorl","w"}}==NULL) 
{ printf("error file cannot be opened\n"); 
exit(O); } 

if( (fq=fopen("coeffs.mb", "r") )==NULL) 
{ printf("coeffs file cannot be opened \n"); 
exit(O); } 

i£«fr=fopen("bitnum","r"}}==NULL) 
{ printf("bitnum file cannot be opened \n"); 
exit(O); } 

i£( (fs= fopen("mbandin", "r") )==NULL) 
{ printf("mbandin file cannot be opened \n"); 
exit(O); } 

i£( (ft=fopen("out.mb ", "w") )==NULL) 
{ printf("output file cannot be opened\n"); 
exit(O); } 

i£( (fu=fopenC"link","w") )==NULL) 
{ printfC"link file cannot be opened \n"); 

exit(O); } 
1* Number of coefficients in each filter * / 
t=8; 

39 



} 

/* four filters * / 
fscanf(fr,"%d",&e); . 

for (g=O; g<4; g++) 
for (f=Oi f<t; f++) 
fscanf(fq,"%f',&coef[g] [f]); 

fclose(fq); 

fscanf(fs,"%d",&d); 
for (f=O; f<d; f++) 

fscanf(fs, "%d" ,&x [fJ); 
fc1ose(fs); 

for (g=O; g<4; g++) 
{ 

for (f=O; f<ti f++) 
fprintf(fp ,"%1.8f\ t",coef[g] [f]); 

fprintf(fp,"\n"); 
} 
fprintf(fp,"\n"); 

y=t+d-1; 

for (f=O; f<y; f+=4) 
{ 

} 

for (h=0; h<4i h++) 
{ 
b=f; 
m=f+h; 
for (g=O; g<8; g++) 
{ 
q[m ]+=(x[b ]*coef[h][g)); 
fprintf(fp,"%f\ t%d \ t%f\n",q[m],x[b J,coef[hJ[g]); 
b--; . 
if (b<0) 

break; 
} 

fprintf(fp,"\t%2d.output :%3.8f\n",m,q[mJ); 
} 

fprintf(fu, "%d \ t%d \n",e,d+t-1); 
for (f=O; f<y; f++) 

fprintf(ft," %f\ t",q[f])i 
fprintf(ft,"\n"); 

fc1ose(fr); 
fc1ose(fp); 
fc1ose(ft); 
fc1ose(fu); 

40 



#include <stdio.h> 

FILE *fp ,*fq,*fr,*fs,*fti 

mainO 
{ 

int b ,c,d,e,f,g,h,I,m,n,T,s,t,v,w,y ,bits,a[5000]'p[5000],qcoef[ 4] [7]; 
float z,coef[4] [7],u[SOOO] [7],q[5000],x[5000],o[4] [5000],filout[4 ][5000]; 

b=O; 
c=O; 
d=O; 
h=O; 
r=O; 
t=O; 
z=O; 

for (f=O; £<5000; f++) 
for (g=O; g<16; g++) 

for (c=O; c<4; c++) 
{ a[£1=O; 
u[f][g]=O; 
coef[c] [g]=0; 
qcoef[c] [g]:::Oi 
filout[ c][ £1=0; 
o[c][f]=O; 
x[£1=O; 
p[£1=O; 
q[£1=O; 

} 

if( (fp=fopen{"error2", "w") )==NULL) 
{ printf{"error file cannot be opened \ nil); 
exit{O); } 

if«fq=fopen("coeffs.rc","r"»==NULL) 
{ printf("coeffs fi1e cannot be opened \n"); 
exit(O); } 

if{(fr=fopen("link","r"»==NULL) 
{ printf("link file cannot be opened \n"); 
exit(O); } 

if{ (fs=fopen{"out.rc" ,"w") )==NULL) 
{ printf("rcstrout file canno.t be opened \n"); 
exit(O); } 

if( (ft= fopen("out.mb", "r") )== NULL) 
{ printf("output file of mband cannot be opened\n"); 
exit(O); } 

41 



fscanf(fr, "%d ",&e); 
/* Number of coefficients in each filter * / 
t=8; 

/* four filters * / 

for (g=O; g<4; g++) 
for (f=O; f<t; f++) 
fscanf(fq,"%f',&coef[g] [f]); 

fclose(fq); 

bits=e; 
printf("%d \n",bits); 
fprintf(fs,"%d\t",bits); 

/* "The number of inputs you're going to enter" * / 
/* --Inputs (values varies between 0 & 255)-- * / 

fscanf(fr,"%d ",&d); 
for (f=O; f<d; f++) 

fscanf(ft,"%f",&x[f]); 

fprintf(fp,"\n \t INPUT MATRIX AFTER UPSAMPLING\n"); 
for (c=O; c<4; c++) 
{ 

fprintf(fp,"\n"); 
for (h=c; h<d; h+=4) 

{ 
o[c] [h]=x[h]; 
fprihtf(fp,"%f\t",o[c] [h]); 

} 

fprintf(fp,"\n"); 

for (h=O; h<d; h++) 
{ 

fprintf(fp,"\n"); 
for (c=O; c<4; c++) 

fprintf(fp,"%f\t",o[c][h]); 

fprintf(fp,"\n \t AFTER FILTERING\n"); 
for (c=O; c<4; c++) 

for (f=c; f<d; f++) 
{ 

b=f; 
g=f-c; 

42 

. \ 



} 

for (h=O; h<8; h++) 
{ 
fi1out[ c ][g]+=o[ c] [b ]*coef[ c] [h]; 
b-; 
if (b<O) 
break; 

for (f=O; f<d; f++) 
{ 

fprintf(fp,"\n"); 
for (c=O; c<4; c++) 

fprintf(fp,"%f\ t",fi1out[ c] [f]); 

for (f=O; f<d; f++) 
{ 

for (c=O; c<4; c++) 
q[f]+=fi1out[c][f]; 

fprintf(fs,"%f\ t",q[f]); 

fclose(fp ); 
fclose(fr); 
fclose(fs); 
fclose(ft); 

43 



CHANNEL.C 
#include <stdio.h> 
#define ROUND(a) «(a) < 0) ? (int)«a):-O.5) : (int)«a)+O.5» 

FILE *fp,*fq,*fr,*fs; 

mainO 
{ 

int b,c,d,e,f,g,h,n,r,s,t,y[5000],z,bits,qout[5000]; 
float v[5000],out[5000]; 

b=O; 
c=O; 

d=O; 
h=O; 
r=O; 
z=O; 

for (g=O; g<5000; g++) 
{ . 
v[g]=O; 
y[g] =0; 
out[g]=O; 
qout[g]=O; 
} 

if( (fp=fopen("hitnum","w") )==NULL) 
{ printf("file cannot he opened \n"); 
exit(O); } 

if«fq=fopen("out.chn","w"»==NULL) 
{ printf("file cannot be opened \n"); 
exit(O); } 

if( (fr=fopen("out.mb","r") )==NULL) 
{ printf("file cannot be opened \n"); 
exit(O); } 

if( (fs=fopen("Iink", "r") )==NULL) 
. {printf("file cannot he opened \n"); 

exit(O); } 

printf(" \n"); 
printf(" # of bits for the channel to be quantized ... :\t"); 
scanf("%d",&e); 

fscanf(fs,"%d",&b ); 
fscanf(fs,"%d",&t); 

bits=e-l; 

44 



} 

z=255; 

for (f=O; f<t; f++) 
fscanf(fr,"%f',&out[f]); 

r=(l < <(bits »-1; 
fprintf(fp,"%d\t",e); 

for (f=O; f<t; f++) 
{ 

qout[f]=ROVND(r*out[f]/z); 
y[f]=(z*qout[f]/r); 
\T[f]=out[f]-y[f]; 
fprintf(fq,"%d ",y[f]); 

} 
fclose(fp ); 
fclose(fq); 
fclose(fr); 
fclose(fs); 

45 



CALC.C 
#inc1ude <stdio.h> 
#inc1ude <math.h> 
#define ROUND(a) «(a) < 0) ? (int)«a)-O.5) : (int)«a)+O.5» 

mainO 
{ 

FILE *fa *fb *tc *fp. I I , I 

int b,c,d,e,f,g,h,n,r,s,t; 
float z,v,y,q[5000],o[5000]; 
double i,j,k,l,p[5000]; 

b=O; 
c=O; 
d=O; 
h=O; 
r=O; 
t=O; 
i=O; 
j=O; 
k=O; 
1=0; 
z=O; 

for (f=O; f<5000; f++) 
{ 
0[£1=0; 
p[£1=O; 
q[£1=O; 

} 

if«fa=fopen(nmbandinn,nrn»==NULL) 
( printf(nfile cannot be opened \nn); 
exit(O); } 

if«fb=fopen(nout.rcn,nrn»==NULL) 
( printf("file cannot be opened\nn); 
exit(O); } 

if«fc=fopen(nratio","a"»==NULL) 
( printf("file cannot be opened\nn); 
exit(O); } 

if( (fp= fopen(n error", "w"»=. = NULL) 
( printf("file cannot be opened \n"); 
exit(O); } 

fscanf(fb,"%d",&e); 

46 



} 

fscanf(fa,"%d ",&d); 
c=d-4; 
for (h=O; h<c; h++) 
{ 

fscanf(fa,"%f',&q[h ]); 
fprintf(fp,"%d\t%f\n",h,q[h]); 

} 
g=d+3; 
for (h=O; h<g; h++) 
{ 

fscanf(fb,"%f',&o[h»;· 
fprintf(fp,"%d \ t%f\n",h,o[h]); 

fprintf(fp,"\n \n"); 
fprintf(fp,"errors : \n--------- \n"); 

for (f=O; f<c; f++) 
{ b=f+7; 
p[f]=q[f]-o[b]; 
fprintf(fp,"between %f and %f =%1.9f\n ",q[f],o[b],p[f]); 

} 
for (f=O; f<c; f++) 
v+=q[f]; 

z=v/c; 

fprintf(fp,"\n \n"); 

i=O; 
for (f=O; f<c; f++) 
i+=(p[f]*p[f]); 

k=i/c; 
j=sqrt(k); 
y=j/z; 
fprintf(fp,"input avr.= %f\n",z); 
fprintf(fp,"RMS error = %1.9f\n",j); 
fprintf(fp,"Percentage error = %1,9f\n",y); 
fprintf(fc," %d\t",e); 
fprintf(fc," %1.9f\n",y); 

fclose(fa); 
fclose(fb); 
fclose(fc); 
fclose(fp); 

47 



APPENDIXC 

SCHEMATIC DIAGRAMS 

48 



49 

ANALYSJS FJLTER 



SYNTHESIS 'FILTER 

.. ··.11 'f" Will"";"" 1111 I' ,t;'· .. ~ .. -••. , .1-, - I ~. ,~ .J 

'1IIiiiji!:;IIj!lil!jli!l!!il;. 

~ 
~ • I . 
l 
t! 

Ii 

!.;.;.; .. 
•• _!J .. - d d 

ii~!~& 

. 
I~ 

i$ 
1 
I 

/ 

50 

i 

I 
I • , 

I 
I 
~ 



Sl 

FIR FILTER 

C ... I:;~ 
-::::::t-:1 

I T ~--1 



52 

SWlTCHI~G ClRCUIT 

:>.L a.: 
..J ..J 0 C> = 
(,J u .. 

r- r- r-.-
"'oJ' ~ 

U Cl <::0 


	Tez4351001
	Tez4351002
	Tez4351003
	Tez4351004
	Tez4351005
	Tez4351006
	Tez4351007
	Tez4351008
	Tez4351009
	Tez4351010
	Tez4351011
	Tez4351012
	Tez4351013
	Tez4351014
	Tez4351015
	Tez4351016
	Tez4351017
	Tez4351018
	Tez4351019
	Tez4351020
	Tez4351021
	Tez4351022
	Tez4351023
	Tez4351024
	Tez4351025
	Tez4351026
	Tez4351027
	Tez4351028
	Tez4351029
	Tez4351030
	Tez4351031
	Tez4351032
	Tez4351033
	Tez4351034
	Tez4351035
	Tez4351036
	Tez4351037
	Tez4351038
	Tez4351039
	Tez4351040
	Tez4351041
	Tez4351042
	Tez4351043
	Tez4351044
	Tez4351045
	Tez4351046
	Tez4351047
	Tez4351048
	Tez4351049
	Tez4351050
	Tez4351051
	Tez4351052
	Tez4351053
	Tez4351054
	Tez4351055
	Tez4351056
	Tez4351057
	Tez4351058
	Tez4351059
	Tez4351060
	Tez4351061
	Tez4351062

