MICROPROCESSOR BASED STEPPING MOTOR

CONTROL
by

Ali ÖZKAYA

BS. in EE Boğaziçi University, 1982

Submitted to the Institute For Graduate Studies in Science and Engineering in partial fullfillment of the requirements for the degree of Master of Science in

Electrical Engineering Bogazici University Library

39001100314692
Boğaziçi University
1985

ACKNOWLEDGEMENTS

I would like to thank those people who have extended their utmost support to me throughout the realization of my thesis.

I would especially like to express my sincere gratitude to my thesis advisar Dr. Ahmet DENKER for his understanding co-operation and guidance.

I would also like to thank Assistant Sami SARPTÜRK for his valuable suggestions and the photographs which have been taken by himself.

I am also very grateful to Yilmaz GU̇NEYLİOĞUU fōr his help in developing printed circuit boards.

ABSTRACT

The purpose of this thesis is to design and realize a microcomputer based education kit which is used to control a stepping motor in all conditions, such that its capabilities can be studied under software control by the kit's user.

The operation principle and types of the stepping motors have been studied and given in the first two chapters. The performance of the stepping motor is determined, to a large extent, by the type of the drive circuit, so various drive systems have been studied and compared with each other. As a new approach "multi-level drive with programmable power supply" has been developed and tested.

Monitor and motor drive program provide the user to run the stepping motor with his own program which is developed with the use of monitor facilities or with motor drive program by entering all motor related conditions from the keyboard.

ÖZETCE

Adımlayıcı motorlar gïnümizzde gittikçe yaygınlasmaktadır. Bunların mikrobilgisayarlarla kullanımı ise bilgisayar kontrollu takım tezgâhlarınan ve robot teknolojisinin gelişimine yol açmıştır. Bu tezin amacı mirkro işemci kullanan bir adımlayıcı motor eğitim kiti gelistirmektir.

Adımlayıcı motorun çalışma prensibi, tipleri ve olanakları incelenerek, ayrıntılı bir şekilde sunuldu. Adımláyıcı motorların yetenekleri onları sürmek için kullanılan devreler ile oldukça rilgilidir. Çeşitli sürücü devreler incelendi, yeni bir yaklaşımla çok seviyeli programlanabilir giç kaynaklı sürücui geliştirildi, denendi ve sonuçlar sunuldu.

İsletim ve motor sürücia programları, kullanıcıya motoru kendi programı ile sirme olanağı sağladığı gibi, kullanıcı dilerse motoru yalnızca gerekli koşulları (hız, ivme, adım tipi, adım sayisi) klavyeden girerekte motoru suirebilir.

TABLE OF CONTENTS

Page
ACKINOWLEDGEMEITS iii
ABSTRACT iv
ÖZETCE v
TABLE OF CONTENTS vi
IIST OF FIGURES ix
LIST OF TABLES x
LIST OF SYMBOLS xi
I. INTRODUCTION 1
II. THE STEPPING MOTOR 3
2.1. General Information About Stepping Motor 3
2.1.1. Multi-Stack Variable-Reluctance Stepping Motor 4
2.1.2. Single-Stack Variable-Reluctance Stepping Motor 6
2.1.3. Hybrid Stepping Motors 7
2.1.4. Comparison of Motor Types 9
2.2. How to Drive a Stepping Motor. 10
2.2.1. Unipolar Drive Circuit 11
2.2.2. Bipolar Drive Circuit 12
2.2.3. Bifilar Windings 13
2.3. Some Important Characteristics of the Stepping Motor 14
2.3.1. Static Torque Characteristics 15
2.3.2. Torque/Speed Characteristics 18
Page
III. THE SYSTEM USED TO DRIVE THE GIVEN MOTOR 19
3.1. The Stepping Motor Which is Used 19
3.2. How to Design a Proper Drive Circuit 21
3.2.1. Bilevel Drive 24
3.2.2. Chopper Drive 25
3.3. Drive Circuit and Related Calculations 27
3.4. Programmable Power Supply. 29
3.5. How to Control the Stepping Motor 32
3.5.1. Time Optimal Control 33
IV. MICROCOMPUTER PART OF THE CONTROL CIRCUIT 36
4.1. Selected CPU and Information About It 36
4.1.1. Why 280 ? 36
4.1.2. Internal Structure of the 280 36
4.1.3. Interface Signals and Timing of the 280 38
4.2. Hardware of the Microcomputer. 40
4.2.1. Clock and Reset Circuit 40
4.2.2. Memory and I/O Decoding Circuits 41
4.2.3. Interrupt Circuit 43
4.2.4. Keyboard and Display Interface 43
V. EXPERIMENTAL RESULTS, DISCUSSION AND CONCLUSION 45
5.1. Drawbacks of The Microprocessor Based Stepping Motor Control 45
5.2. About Drive Circuit Which is Used 48
5.3. Step Response Related Considerations 49
5.4. Conclusion 55
APPENDIX A (MONITOR PROGRAM OF THE M. COMPUTER) 57
APPENDIX B (THE DRIVE PROGRAM OF THE STEPPING MOTOR) 69
APPENDIX C (CONNECTION DIAGRAM OT THE MICROCOMPUTER) 92
APPENDIX D (USER MANUAL OF THE KIT) 93
APPENDIX E (Z80 MACHINE CODE IISTING). 97
APPENDIX F (8255 PIA SPECIFICATIONS) 100
APPENDIX G (PCB LAYOUTS) 103
BIBLIOGRAPHY 105

LIST OF FIGURES

FIGURE 2.1. Cross-section a three-stack VR stepping motor 5Page
FIGURE 2.2. a. Series b. Series/parallel c. Parallel interconnection of pole windings 5
FIGURE 2.3. SS-VR Stepping Motor 6
FIGURE 2.4. a. Cross-section of a hybrid motor parallel to the shaft 7
b. Cross-section of hybrid motor perpendicular to the shaft 8
FIGURE 2.5. Unipolar Drive Circuit 11
FIGURE 2.6. One phase of transistor bridge bipolar drive circuit 12
FIGURE 2.7. Comparison of conventional and bifilar windings 14
FIGURE 2.8. Static torque/rotor position characteristics at various phase currents. 15
FIGURE 2.9. Static torque/rotor position characteristics for a hybrid motor 17
FIGURE 2.10. Pull-Out Torque Speed Characteristic 18
FIGURE 3.1. DC Stepping Motor Connection Diagram 20
FIGURE 3.2. Circuit model for one phase of a H motor 22
FIGURE 3.3. The bilevel drive and the effective circuit during the excitation interval 24
FIGURE 3.4. The chopper drive and the effective circuits during the excitation interval 26
FIGURE 3.5. Chopper drive current waveform and transistor switching times 26
FIGURE 3.6. Unipolar drive circuit for one phase of the motor 28
FIGURE 3.7. R-2R Ladder D/A Converter 30
FIGURE 3.8. Programmable Power Supply 31
FIGURE 3.9. A microprocessor based open loop control 32
FIGURE 3.10. Time optimal positioning and piece-wise acceleration 35
FIGURE 4.1. Internal structure of the 280 37
PIGURE 4.2. Interface signals of the $Z 80$ 38
FIGURE 4.3. Timings of the read and write operations 39
PIGURE 4.4. Clock and reset circuits 41
FIGURE 4.5. Memory and I/O ports decoding circuits 42
FIGURE 4.6. Keyboard and display circuit 42
FIGURE 5.1. Step response photographs at various conditions 50FIGURE 5.2. Regions of the single step response in whichphase switching leads to resonance 54
LIST OP TABLES
PAGE
TABLE 3.1 Ratings and Spefications of the M092-FDO9 Motor 19
TABLE 3.2 Drive Sequences 21
TABLE 5.1 Stepping Rate and Delay Count Value Relationship 46
TABLE 5.2 Step Response Test Results 49

IIST OF SYMBOLS

CNC Computerized Numerically Controllëd
VR Variable-Reluctance
H
Hybrid
SS-VR Single-Stack Variable-Reluctance
MS-VR Multi-Stack Variable-Reluctance
mc Microcomputer
mp Microproccessor
CTC Clock-Timer Chip

I. INTRODUCTION

Accurate positioning is a common mechanical control problem. For positioning, an actuator should exist. This actuator is commonly a motor. DC or AC motors are widely used when the settling points are far from the starting points. But, if the positioning requires very small movements, conventional motor capabilities fail.

Accurate positioning with very small movements have been achieved after the development of the stepping motors. The earliest forms of the stepping motors appeared in the 1930s as elements in remote positioning systems of the naval vessels and later in the control mechanism of torpedeos. Commercial exploitation of these motors began in 1960's when transistor technology is improved such that they are capable of switching large D.C. currents in motor windings. The rapid growth of digital electronics in 1970's assured the stepping motor's future and today there is a world wide interest in its manufacture and application.

Nowadays the stepping motors are widely used in CNC
(Computerized numerically controlled) machine tools. Developing robotics technology cause to more demand for the stepping motor. In both CNC machine tools and robots there are more than one motors and related positional control is achieved in more than one axis. Some applications for one axis control may be direction control of aenials and valve controllers.

The aim of this work is to develope a microcomputer based education kit which is designed to control a stepping motor in one axis such that its capabilities can be studied under software control by the kit's user. All conditions related to stepping motor can be entered from the key-board and the user can run the motor with this preentered conditions. The user can also develop his own motor control program and drive the motor with a RUN command. By using this capability of the system, the user can see the responses of motor to various conditions and test the motor's specifications.
II. THE STEPPING MOTOR

2.1. General Information About Stepping Motor

The stepping motor is a form of syncronous motor which is designed to rotate a specific number of degrees for each eleatrical pulse.

Stepping motors are usually designed with a multipole, multiphase stator windings. The rotors are either of the variable reluctance type or the permanent magnet type. Although there is wide range of stepping motor designs, the two most important types are variable-reluctance (VR) and hybrid (H). The iron teeth on the stationary and rotating parts of the motor are magnetically aligned such that an accurate positioning of the rotor is achieved. In the case of H motor, the main source of magnetic flux is a permanent magnet and d.c. currents flowing in one or more windings direct the flux along alternative paths. For VR motor, the magnetic field is produced solely by the winding currents. (l)

2.1.1. Multi-Stack Variable-Reluctance Stepping Motors

The MS-VR stepping motor is divided along its axial length into magnetically isolated stacks, each of which can be excited by a separate winding (phase). Each stack consists of a staionary and a rotating element. The rotor elements are single unit (rotor). The rotor position relative to the stator in a particular stack is accurately defined, such that the stator and rotor teeth are fully aligned the circuit reluctance is minimised and the magnetic flux in the stack is at its maximum value.

For MS-VR motor, there is a simple relationship between the step length and the number of stacks and stator/rotor teeth. If there is N stacks(and phases), each stack is excited in turn, producing a total rotor movement of N steps. The same stack is excited at the beginning and end of the sequence and the rotor meves one tooth pitch. Since one tooth pitch is equal to $360 / \mathrm{p}$ degrees ($\mathrm{P}=$ the number of rotor teeth) the step length should be

$$
\text { Step Length }=360 / \mathbb{N}_{P} \text { degrees. }
$$

The motor shown in Figure 2.1. has three stack and eight rotor teeth, so the step length is $360 / 3 \times 8=15$ degrees. For the MS-VR motor, typical step lengths are in the range of $2-15$ degrees.(1)

Smaller step lengths are obtained with additional
stacks and rotor teeth but more stacks (phase) require more drive circuits and drive costs gets higher.

Figure 2.1. Cross-section a three-stack VR stepping motor.

There are four poles and four pole windings in each stack. These all four windings are interconnected to form one phase. The four pole of the three stack motor and the interconnection of pole windings are shown in Figure 2.2. (1)
$?$

Figure 2.2. a. Series b. Series/parallel c. Parallel interconnection of pole windings
2.1.2. Singlerstack Variable Reluctance stepping motors.

This motor is constructed as a single unit and the cross-section perpendicular to the shaft shown in figure 2.3 reveals the essential differences between the MS and SS types. As it can be seen, each stator tooth has a separate winding which produces radial magnetic field. The windings on opposite teeth are connected together to form one phase. Since there are six stator teeth, there are three phases in this motor. Another important difference from MS-VR motor is that the rotor has a different number of teeth to the stator. The step length calculation is the same with the MS-VR motor. N, number of phases, p number of rotor teeth. The tooth pitch is $360 / \mathrm{P}$ degrees corresponding to a movement of N steps, so:

Fig. 2.3. SS-VR. Stepping Motor

2.1.3. Hybrid Stepping Motors

Since the motor which is used in the thesis application is a hybrid type motor, the explanation about this type will be more detailed.

This type of motors have a permanent magnet on their rotor. The main flux path for the magnet flux is illustrated in Figure 2:4(a). There are typically eight stator poles, as in Figure 2.4 (b), and each pole has between two and four teeth. The stator poles have windings which are used to direct the flow of magnet flux through certain poles according to the rotor position required. There are two windings (phases), winding A is placed on poles $1,3,5,7$ and winding B is on $2,4,6,8$. Successive poles of each phase are wound in the opposite sense,

(a) Cross-section of a hybrid motor parallel to the shaft

b) Cross-Section of hybrid motor perpendicular to the shaft.

Figure 2.4. Cross sections of an H motor

Sequential excitation of phase windings provides continous rotation of the motor. If the excitation of A is removed and B excited with positive current then alignment of the stator and rotor teeth has to occur under poles 4 , 8 of section X and poles 2,6 of section Y in the Figure 2.4(b). The rotor moves one step clockwise to attain the correct position. Clockwise rotation can be obtained by the sequence $A-, B-, A+, B+, \ldots \ldots$ The $A+, B-, A-, B+, A+, B-, \ldots$ sequence cause the motor to turn in the direction of anticlockwise.

The step length is related to the number of rotor teeth, p. A complete cycle of excitation for the hybrid motor consists of four states and produces four steps of rotor movement. The excitation sequence is the same before and after these four steps, so the alignment of stator/rotor teeth must occur under the same stator poles. Therefore four steps correspond to a rotor movement of one tooth pitch ($=360 / \mathrm{P}$ degrees) and for the hybrid motor:

$$
\text { Step Length }=360 / 4 \cdot \text { p degrees. }(1)
$$

The motor which is given in the Figure 2.4.b has 16 rotor teeth resulting a step length of 5 degrees. H motors are usually produced with smaller step lengths than this. For example, a H motor having 50 rotor teeth takes a step with 1.8 degrees.

As being different from these two types of stepping motor discussed in previous sections, there are available some other type of motors capable of stepping action. These are permanent magnet stepping motor and electrohydraulic stepping motor. The detailed information about these rarely used motors can be found in the reference "l".

2.1.4. Comparison of Motor Types

It is not possible to specify any type of motor which
is proper for all type of applications. The system designer should detect the requirements of his particular application. H motors have small step angles (typically 1.8 degrees) which is very important when high resolution angular positioning required. The torque producing capability for a given motor volume is greater in the H than in the VR motor. (I) For applications requiring small step length and hi'gh torque, an H motor is natural choice. In the case of H motor, the unexcited magnet flux produces a small detent torque which is useful in applications where the rotor position must be preserved during a power failure.

Since VR motors has longer step lengths and lower mechanical inertia than H motors, they should be chosen where the applications require longer distance movements and faster acceleration.

When a stepping motor is to be chosen, the following information should be determined. Operating speed, torque and load inertia, required step angle, time to accelerate, time to decelerate, type of drive system to be used, size and weight considerations.

2.2. How to Drive a Stepping Motor

It is well known that the performance of the stepping motor is determined, to a large extent, by the type of the drive circuit. There are two main types of the drive circuits.

The VR motor phase currents need only be switched on or off, so a simple unipolar drive circuit is suitable for this type of motors. For the H motors, there are only two phases, but the current polarity is important and a bipolar drive is required to give bidirectional currents.

2.2.1. Unipolar Drive Circuit

The simplest system is the resistance limited (R / L) drive, the essential of which is shown in Figure 2.5.

Figure 2.5. Unipolar Drive Circuit

The phase winding is excited when related transistor is saturated. The phase winding has a considerable inductance, so the natural time constant (I / R) is long. At high speed,
the phase current can not attain the rated phase current. For satisfactory result, a forcing resistance should be added to reduce electrical time constant. ($L /\left(R+R_{P}\right)$) of course, a proportional increase in supply voltage V_{s} is required.

Because of the finite phase inductance, the phase current cannot be switched off instantaneously. When transistor is turned off, the current decays through a free wheeling diode and resistor, so that the transistor may be protected from the inductive voltage spikes.

2.2.2. Bipolar Drive Circuit

Bipolar drive circuits are developed for use with H and PM stepping motors. One phase of a transistor bridge bipolar drive circuit is shown in Figure 2.6. The transistors are switched in pairs according to the current polarity.

Figure 2.6. One phase of transistor bridge bipolar drive circuit

For positive phase current, transistor $\mathbb{T l}$ and $T 4$ are turned on. In the opposite case the transistors $\mathbb{T} 2$ and $\mathbb{T} 3$ are turned
on so that the current direction in the phase winding is reversed.

A bridge of four diodes, connected in reverse parallel with the transistors provides the path for freewheeling currents. Freewheeling currents in the bipolar drive decay more rapidly than in the unipolar drive, because they are opposed by the de supply voltage. (1)

In the case of H and $P M$ stepping motors, the drive circuit cost is very high. The bridge configuration base drive circuits has the additional complication since they need optical isolation for the pair of transistors cannected to the positive supply rail. As far as drive costs are concerned, the H and PM motors have considerable disadvantage. To overcome this drawback, motor manufacturers have developed "bifilar wound"hybrid motors, which can be operated with a unipolar drive.
2.2.3. Bifilar Windings

A bidirectional field should be produced in the H motor for stepping. By using bifilar windings, the same result can be obtained with a unidirectional current on the two pole windings in opposite senses, as illustrated for one pole in Figure 2.7. The effect of the negative current in the conventional winding is then achieved by positive excitation of the bifilar (-) winding. The bifilar (t) winding is in the place
of conventional winding. Bifilar windings increase the manufacturing cost but simplfy the drive circuit and reduce the cost of it. Because the motor which is used for the application of the thesis has bifilar windings, the drive circuit which is developed is for this type. The detailed information about drive circuits used with bifilar winding H motors will be given in the next chapter.

ewinding $\left.\right|_{1} ^{\text {direclion of field }} \underset{2}{- \text { winding }}$

Figure 2.7. Comparison of conventional and bifilar windings

2.3. Some Important Characteristics of the Stepping Motors

As it is known, the stepping motor is developed for the accurate positioning of a mechanical load. Since a mechanical load is concerned, static and dynamic torque characteristics of these motors are very important to use them accurately.

2.3.1. Static Torque Characteristics

External load torques cause small positional errors when the motor is stationary. This type of position error is non-cumulative, i.e. it is not dependent on the number of steps previously taken.

The maximum allowable static error should be determined, before the choice of motor. Manufacturers generally give the static torque/motor characteristics as shown in Figure 2.8. These characteristics shows the torque developed by the motor as a function of rotor position for several values of winding currents.

Figure 2.8. Static torque/rotor position characteristics at various phase currents

The peak static torque is a torque which is developed by the rated current. The maximum load which can be applied under static conditions should be equal to the peak static torque. If the load exceeds the peak static torque the motor cannot hold the load at the position demanded by the phase excitation. A static position error produced by any load can be deduced directly from the static torque/rotor position characteristics.

For a motor with P rotor teeth and a peak static torque $T_{p k}$ at a rotor displacement θ from the step position the torque produced by the motor: $T=T_{p k} \sin p \theta$. When a load torque. TL is applied the rotor is displaced from the demanded position by the angle θe at which the load and motor torques are equal: $T_{I}=T=-T_{p k} \operatorname{Sinp} \theta e$ and the static position error is:

$$
\begin{equation*}
\theta_{\mathrm{e}}=\sin ^{-1}\left(-\mathrm{T}_{\mathrm{L}} / \mathrm{T}_{\mathrm{pk}}\right) / \mathrm{p} \tag{I}
\end{equation*}
$$

As it can be seen, the static position error can be reduced by increasing the peak static torque. This improvement can be achieved by using multi-phase excitation.

In the case of H motor, If the motor is bifilar. wound there are four phases. For each phase, the static torque/ rotor position characteristics are shown in Figure 2.8. The characteristics can be approximated by the sinusoidal functions.

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{A}}+=-\mathrm{T}_{\mathrm{pk}} \sin (\mathrm{p} \theta) & \mathrm{T}_{\mathrm{B}}+=-\mathrm{T}_{\mathrm{pl}} \sin (\mathrm{p} \theta-\pi / 2) \\
\mathrm{T}_{\mathrm{A}^{-}}=-\mathrm{T}_{\mathrm{pk}} \sin (\mathrm{p} \theta-\mathbb{\mathbb { C }}) & \mathrm{T}_{\mathrm{B}^{+}}=-\mathrm{T}_{\mathrm{pk}} \sin (\mathrm{p} \theta-3 \pi / 2)
\end{array}
$$

Figure 2.9. Static torque/rotor position characteristics for a hybrid motor
a. one-phase-on excitation
b. two-phases-on excitation

When a pair of phases are excited, the peak static torque is improved by a factor 1.4 over one phase-on excitation.

$$
\begin{align*}
\mathrm{T}_{\mathrm{A}}+\mathrm{B}^{+} & =\mathrm{T}_{\mathrm{A}+}+\mathrm{T}_{\mathrm{B}+}=-\mathrm{T}_{\mathrm{pk}} \sin (\mathrm{p} \theta-\pi / 4) \cos \pi / 4 \\
& =-1.4 \mathrm{~T}_{\mathrm{pk}} \sin (\mathrm{p} \theta-\pi / 4) \tag{1}
\end{align*}
$$

The static positional error can be reduced by connecting the motor to the load by a gear or a leadscrew.

2.3.2. Torque/Speed Characteristics

The nost important characteristic of the stepping motors is the pull-out torque/speed (step rate) characteristic showing the maximum torque which can be developed at each operating step rate. As the stepping rate is increased the motor can provide less torque because the rotor has less time to drive the load from one position to the next as the stator winding current is shifted.

Figure 2.10 Pull-out Porque Speed Characteristic

In the start range, the load position follows the pulses without losing steps. The slew range is that in which the load velocity follows the pulse rate without losing steps, it can not start, stop or reverse on command.
III. THE SYSTEM USED TO DRIVE THE GIVEN MOTOR
3.1. The Stepping Motor Which is Used

The motor used in this thesis application is a slo-Syn M092-FD09 Stepping Motor. The related ratings and specifications of this type motor is on the following table.

ELECTRICAL SPECIFICATIONS		
Step Angle	1.8	Degrees
Step Accuracy	干 5%	Percentage
Typical Time for Single Step	3.9	M. Second
Nominal DC. Voltage	2.5	Volt
Rated Current Per Winding	4.6	Amperes
Nominal Resistance Winding	0.55	Ohms
Nominal Inductance Winding	2.76	M Henries
MECHANICAL SPECIFICATIONS		
Minimum Holding Torque	21.6	$\mathrm{Kg} . \mathrm{Cm}$
Minimum Residual torque	0.29	$\mathrm{Kg} . \mathrm{Cm}$
Typical Torque to Inertia Ratio	17.2	
Number of Leads 8		
Shaft Diameter	9.53	mm
Max Overhang Load	11.3	Kg
Max Thrust Load	22.7	Kg
Approximate Weight	2.5	Kg
Nominal Rotor Inertia	1.23	$\mathrm{Kg} . \mathrm{Cm}^{2}$

The rated time for single step is measured with 24 V . DC. drive. These type of motors have permanent magnet rotors and eight pole stators. They have bifilar windings.

Using the full step drive mode on Table 3.2 , the motor step angle is 1.8^{0} with $\mp 5 \%$ precision. The half step drive mode gives a step angle 0.9°. The motor shaft advances 200 steps per revolution (1.8° per step) when a four-step input sequence (full-step mode) is used and 400 steps per revolution (0.9° per step) when an eight step input sequence (half-step mode) is used. The four-step and eight-step input sequences is given on the Tables 3.2. Connection diagram given by the manufacturer is in Figure 3.1.

Unipolar type connection

Figure 3.1. D.C. Stepping Motor Connection Diagram

Four Step Sequence (Full-Step)

Table 3.2. Drive Sequences

3.2. How to Design a Proper Drive Circuit

As it is known from previous chapter, the performance of motor is very much affected by the drive system which is used. Especially it is difficult to drive the stepping motor in a wide range of speed. Because high speed requires small time constant meaning high forcing resistance and to obtain rated current with this resistor requires high D.C. voltage, but this circuit at low speeds causes unstable operation. The induced voltage on every phase is propertional to the frequency of the fundamental component of phase current.

This induced voltage which increases with increasing speed means that increasing speed requires more voltage than the value only required for rated current and time constant calculated for a specific speed.

In calculating the induced voltage, first a suitable model is to be established and then using this model the phase currents varying with speed can be calculated. The phase circuit model must include the resistance and inductance of each winding. In the H motors phase inductances of the windings is independent of the rotor position. The circuit model also includes the voltages induced in the phase winding by the rotor motion. Because the permanent-magnet flux linking each winding varies sinusoidally with the position of the rotor, these voltages are induced. If a motor has p rotor teeth, then the flux linking $A+$ and $A-$ can be expressed like that

$$
\psi_{\mathrm{A}+}=\psi_{\mathrm{M}} \sin (\mathrm{p} \theta) \quad \psi_{\mathrm{A}-}=\psi_{\mathrm{M}} \sin (\mathrm{p} \theta)
$$

ψ_{M} is the maximum flux linking each winding

Figure 3.2. Circuit model for one phase of a H motor

When the rotor is at the speed of $d \theta / d t$, the induced voltages in the phase windings are:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}+}=\mathrm{d} \psi_{\mathrm{A}} / \mathrm{dt}=\mathrm{p} \psi / \mathrm{M} \operatorname{Cosp} \theta \mathrm{~d} \theta / \mathrm{dt} \\
& \mathrm{E}_{\mathrm{A}-}=\mathrm{d} \psi_{\mathrm{A}} / \mathrm{dt}=\mathrm{p} \psi / \mathrm{Cosp} \theta \mathrm{Cos} \theta / \mathrm{dt}
\end{aligned}
$$

As it can be seen easily from above equations, the opposing induced voltages E_{A} and E_{A-} are proportional to the speed $\mathrm{d} \theta / \mathrm{dt}$. In order to overcome this speed dependent induced voltage, the d.c. drive voltage should be increased proportionaly. The applied voltage must be considered:
$U_{A+}=R i_{A}+(L / 2) d i_{A} / d t+(L / 2) d i_{A-} / d t+E_{A+}$
where R is one phase total resistance (including forcing) and $L / 2$ is one phase self inductance, the mutual inductance between bifilar windings is also L/2.

This argument reveals that the most important factor in determining the speed range is the phase voltage. The forcing resistance can be regarded as current-limiting resistance. At high speeds the phase current is low, so the voltage drop on the resistance is also law and the remaining voltage from applied voltage balances the induced voltage which increases with increasing speed.

The drive circuit requirements are now clear: a large
d.c. voltage is necessary at high speeds, but the phase current at low speeds must be limited to prevent power wastage on the series resistance with the same high d.c. voltage.

There are some circuit configurations providing the above requirements. The two best-known types are bilevel and chopper drive circuits.
3.2.1. Bilevel Drive

In this type of drive there are two supply voltages. A high voltage is applied when the phase current is turned on or off, during continuous excitation a lower voltage is applied to maintain the rated phase current. The circuit diagram is shown in Figure 3.3.

Figure 3.3. The bilevel drive and the effective circuits during the excitation interval
a) At turn-on
b)Continuous Excitation
c) At turn-of:

The main advantage of the bilevel drive is its simplicity. A simple one-shot can control the transistor T_{2} at the begining of the each excitation interval for a fixed time. One disadvantage of this type drive is that, during excitation interval the winding current may not overcome the induced voltage.

3.2.2. Chopper Drive

This type of drive circuit has only one supply voltage being high. This voltage is applied to the phase winding whenever current falls below its rated value.

The operating principle of the circuit which is shown in Figure 3.4 can be easily understood by studying this circuit and the diagrams shown in Figure 3.5.

The chopper drive requines more sophisticated control circuitry which increases the cost of the drive circuit. The T_{2} base drive requires a Schmitt triggering of the voltage V_{c} to determine transition levels. If these levels are not well separated the transistor T_{Q} switches on and off at a very high frequency, causing interference with adjacent equipment and additional iron losses in the motor. However the chopper drive have the advantage that the available supply voltage is fully utilized, enabling operation over the widest possible speed range and the power losses in forcing resistors are eliminated, giving a good system

Figure 3.4. The chopper drive and the effective circuita during the excitation interval;a.Current less than rated b.Current greater than rated.

-igure 3.5. Chopper drive current waveform and transistor switching times.
efficiency.(1)
At this stage, it should be asked which configuration is used in this thesis. None of them. A new appoach is developed and used to obtain a wide range of speed with the given motor.

A dedicated microcomputer is developed to control the motor operation. Since there is a microcomputer for control purpose, it is considered that the d.c, drive voltage can be adjustable with speed. So, a programmable power supply is developed and used in stead of bilevel and chopper drives. Then a cost effective conventional drive circuit shown in Figure 3.6. is designed.
3.3. Drive Circuit and Related Calculations.

A unipolar drive circuit is used because the given H motor is a bifilar wound motor. Forcing and freewheeling resistances are shared by two windings of the same phase since the only one of them is activated in both drive modes. The resistance values should be calculated for desired speed range. The desired speed range is $2-2000$ step/second. The d.c. drive voltage can be programmed in the range of $5 \mathrm{~V}-47$. volts.

Nominal phase resistance: 0.55
Nominal phase industance: 2.76 mH
Rated Current per Winding: 4.6 Amperes

In the case of 2000 step/s. sum of the turn-on and turn off electrical time constants should be at least $1 / 1000 \mathrm{sec}$.

Figure 3.6. Unipolar drive circuit for one phase of
the motor.

Turn-on time should not exceed 0.5 mS . Then total winding resistance R_{T} can be calculated like that:

$$
\begin{aligned}
T=L / R_{T} & =0.5 \mathrm{mS} \\
R_{T} & =2.76 \cdot 10^{-3} / 0 \cdot 5 \cdot 10^{-3} \\
R_{T} & =5.520 \mathrm{hms}
\end{aligned}
$$

Since the winding resistance R_{w} is 0.55 ohms the forcing resistance R_{f} should be:

$$
\begin{aligned}
& R_{f}=R_{T}-R_{w}=5.52-0.55 . \\
& R_{f}=4.97 \text { ohms. }
\end{aligned}
$$

A 5 ohms 30 watts resistor is used for this purpose.

If the power dissipated on this resistor at the rated current is considered, it is calculated as $W_{R}=R I^{2}=5 \times(4.6)^{2}=$ 105.8 Watts. This is very high than it is required, but at low speeds the voltage is decreased. For example, at 2 step/sec. the voltage is adjusted to 5 Volts. Then the power dissipated is approximately 5 watts. At high speeds the current is switched with a high frequency and so, the average power dissipated is two times lower than the calculated value for continous operation at the same d.c. drive voltage.

The freewheeling resistance may be omitted, then turn-off time constant is equal to turn-on time. But the absence of this resistance : overloads the freewheeling diode, so a powerfull switching diode (BY297) is used.

Since the drive transistors are darlington type, they can be driven directly from PIO output.

3.4. Programmable Power Supply.

A simple 6 digit D / A converter is designed and the output of the D/A converter is boosted to be able to supply rated current of the motor.

A hex. D type latch chip is used to latch the digital input of the D / A converter. The D / A converter is a simple $\mathrm{R}-2 \mathrm{R}$ ladder network. The converter-resistor array of Figure 3.7. a uses resistors only two sizes, R and 2R. It is to be understood that when $\mathrm{Sk}=1$, the corresponding resistor
is connected to a voltage V_{R} and when $S_{R}=\varnothing$, the resistor input is grounded. If the simplest situation is considered where $S o=1$ and the others $S_{1}, S_{2}, S_{3}=0$. Applying Thevenin's theorem, the Figure 3.7.c is obtained. At the output, each digital input contributes its proper relative binary weight. For the circuit shown in Figure 3.7.a, the output analog voltage will be:

$$
V o=V_{R} / 2^{6}\left(s_{5} 2^{5}+S_{4} 2^{4}+S_{3} 2^{3}+S_{2} 2^{2}+s_{1} 2^{1}+s_{0} 2^{0}\right)
$$

More generally:

$$
\begin{equation*}
V o=\frac{V_{R}}{2^{n}}\left(S_{n}+2^{n-1}+S_{n_{1}}-2^{2^{n-1}}+\right. \tag{}
\end{equation*}
$$

a)

c)

Figure 3.7. R-2R Ladder D/A Converter.

This D/A converter output is amplified with the use of op-amp. The output current of the op-amp is also boosted to provide the rated current to the drive circuit. The complete circuit diagram of the programmable power supply is given in Figure 3.8.

Figure. 3.8. Programmable Power Supply.

A careful study of the above D / A converter reveals that it is an active low converter. The circuit especially designed because TTL IC's low output levels are more consistent than the high output levels. The output current of the op-amp drive a BDI37 transistor which forms a darlington pair with parallely connected pass block. The pass block consists of two 2N3055 power transistors.

3.5. How to Control the Stepping Motor

In previous chapter and sections, the choice of stepping motor and design of a proper drive circuit is carefully studied to obtain a good performance. At this stage, the question which will be answered is how the motor and the drive system are to be controlled. Since the aim of the thesis is to study the capabilities of the stepper motor, a microprocessor based control system is designed such that software capability provides required flexibility for research and development.

A block diagram for a typical open loop mp based control system is given in Figure 3.9. Digital phase control signals are generated by the mp. and applied to the drive circuit. In an open-loop control scheme there is no feed back of load position to the controller and therefore it is important that motor responds correctly to each excitation change. If the load parameters are constant with time, the optimum open loop performance can be easily obtained. However, in most applications.the load is not constant and so an optimal control can not be obtained easily.

Figure 3.9. A microprocessor based open-loop control.

3.5.1. Time Optimal Control

The main function of any stepper motor control circuit is to generate phase control signals at correct sequence with a correct timing. Generally in most applications the task of the motor is to run in the given direction with the given step size. This given step size can be run in any time, but the desired running is to complete required step size in a minimum time interval.

In general the maximum starting rate of a stepping motor system is much lower than its slew rate (pull-out), so positioning time can be reduced by accelerating the motor over several steps until the maximum slew rate is reached. As the target position is approached the speed is decelerated to the maximum starting/stopping rate in order to be able to stop the motor at target position.

Acceleration and deceleration are necessary to improve move time and setling. Thus timings of the phase control signals are generated by a microprocessor using stored acceleration/deceleration tables, where acceleration/deceleration profiles are linear or piece-wise linear segments determined experimentally. The mp. control acceleration up to the maxinum frequency (Na steps) or deceleration from the maximum... frequency to the settling (\mathbb{N}_{D} steps), for motor move lengths shorter than $N_{A}+N_{D}$, the program must look a head and change from acceleration to deceleration at the proper point.(2)

In order to study the acceleration/deceleration capability of any given stepper motor under various conditions, the microcomputer control program provides to the user to enter all stepper motor related conditions; direction, step mode, start speed, step size, acceleration, intermediate half stepping. If any impossible condition is entered, related error messages informs the user. Por example, acceleration must not be wanted without entering a finite step size. (Error 2) For error messages look at the appendix D which is microcomputer user manual.

Since acceleration could be given in the range of I-7F stepfsec ${ }^{2}$ and any external timer (CTC) is not used, acceleration could be piecewise. If a programable external timer could have been used acceleration profile might be more linear. In the calculation routine, the given step size (N) is divided by two and $N_{A}=N_{D}=N / 2$. If the maximum slew speed rate is reached-starting from the given start rate-with the entered acceleration in a step length (n) smaller than N_{A}, the motor attain the maximum slew speed rate along the step length of $\left(N_{A}-n+N_{D}-n=N_{A}+N_{D}-2 n\right)$ and then decelerate along the step length of n. Then, the entered step size is completed; $N=n+N_{A}+N_{D}-2 n+n=N_{A}+N_{D}$. If the maximum slew speed rate is not reached, the given step size is completed by changing acceleration to deceleration at the end of the N_{A} step.

The acceleration is taken into account at every second, e.g. if a acceleration is $3 \mathrm{step} / \mathrm{sec}^{2}$ and the starting speed rate is 20 step/sec then in the first one second the motor runs at 20 step/s., in the second one second the motor runs at 23 step/s and so on.

The above explanations are summarized in Figures 3.10.a.b.c and a detailed information about this subject is given in the control program of the stepping motor.

Figure 3.10. a,b) Time optimal Positioning c) Piece-wise
IV. MICROCOMPUTER PART OF THE CONTROL CIRCUIT

4.1. Selected CPU and Information About It

4.1.1. Why 280?

The ZILOG Z8OA microprocessor has been used as a CPU of the microcomputer unit. The choice of 280 is on purpose. It has a very powerful instruction set which makes program development easy and Intel 8080, 8085 instruction set is subset the 280^{\prime} s, providing that Intel CPU users can operate the microcomputer and also the programs developed for these Intel CPUs can be run directly on 280 .
4.1.2. Internal Structure of the 280

The 280 is an 8 bit processor. Its address bus is
16 bits wide and specifies an external memory address
O to 65535, since the 280 has no memory mapped I/O. In memory mapped I/O, a position of the memory address must be dedicated to addresses of I / O devices.

The 280 has 14 general purpose 8 bits registers designated A, B, C, D, E, H, L and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}, L^{\prime}$. Only one set
of seven registers and related flag registers F and F ' can be activated. A special instruction selects AF or A'F' while another instruction selects B, C, D, E, H, L or $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}, L^{\prime}$. There are four possible combinations which provide process switching and more register storage in CPU. The remaining CPU registers $I, R, I x, I Y, S P$ and $P C$ are special purpose. The index registers $I x$ and II are two 16 bit registers that provide indexed addressing. The interrupt vector register I is an 8 bit register that can be loaded with 8 bit of data specifying a memory address. This address is combined with lower order 8 bits of address supplied by the interrupting device. The I register is used with one of three interrupt mode which the 280 may utilize under program control. The R register is the 8 bit memory refresh register. When external memory is made up of dynamic memories, the R register allows automatic refreshing. (4)

Pigure 4.1. Internal structure of the 280
4.1.3. Interface Signals and Timing of the $Z 80$

Address Bus is 16 bits wide, and 64 Kbytes of memory can be addressed directly. When I/O instruction executed lower 8 bits AO-A7 contain I/O address. During refreshing, contents of R register appears on AO-A7.
 purposes. $\overline{M R Q}$ is tristate active low signal indicating that the address bus holds a valid memory address. The $\overline{\mathrm{RD}}$ and $\overline{W R}$ signals are tristate active low outputs indicating that whether the memory or I / O operation is to be read or write. The $\overline{R F S H}$ is not used with normal memory operation. When $\overline{\mathrm{RFSH}}$ and $\overline{M R Q}$ are both active, R register content is on the lower pontion of address bus, and external dynamic memory use the AO-A7 to implement one of the refresh cycles.

Figure 4.2. Interface Signals of the 280

ligure 4.3. Timings of the read and write operations.

The $\overline{\text { IORQ }}$ signal is a tristate active low output, indicating that the address bus now contains a I/O address. TORQ is also used together with $\overline{M I}$ for interrupt responses. The $\overline{M I}$ signal is active low output signal that indicates the microprocessor is in the fetch cycle of the instruction. The WAIT signal is an input signal associated with slow memories or I/O devices. The HALT signal is an active low output signal that goes low during the execution of halt instruction.

The KESET signal is an active low input that is used as a master CPU reset.

The NMI is a negative-edge triggered input that specifies a non-maskable interrupt is to be performed. The main interrupt request signal $\overline{\text { INT }}$ is an active low input signal that is supplied by external devices to cause an interrupt. The CPU accepts the interrupt if it is not masked and acknowledges the interrupting device by sending out an $\overline{\text { IORQ }}$ during the fetch (MI) time of the next instruction.
4.2. Hardware of The Microcomputer

The hardware of the microcomputer consists of following main parts. Clock an reset circuit, interrupt circuit, memory and I/O decoding, keyboard and display circuit.
4.2.1. Clock and Reset Circuit

A crystal controlled circuit is used to maintain consistant execution time. There is a 390 ohms pull up resistor
that the clock signal satisfies both AC and DC clock signal requirements of the $\mathrm{Z80}$. The reset circuit allows the computer to start program execution immediately after power is turned on. The program execution can be stopped and restarted by using reset button.

Figure 4.4. Clock and Reset Circuits

4.2.2. Memory and I/O Decoding Circuits

Eight different $\overline{C S}$ signals for memory devices are obtained by using a 1 of 8 decoder chip. (74LS138). Each $\overline{\mathrm{CS}}$ signal selects 2 K bytes memory devices being 2716 as EPROM and 6116 as RAM. Then, there are 8 memory chips on board. Another 1 of 8 decoder chip is used for the purpose of I/O decoding. Each I/O $\overline{\mathrm{CS}}$ signal includes three successive internal port addresses, i.e. when one of these three internal ports is addressed, related $\overline{C S}$ signal is activated automatically.

Figure 4.5. Memory and I/O Ports Decoding Circuits

To stepping motor drive circuit

4.2.3. Interrupt Circuit

In order to detect some slow mechanical displacements, interrupt facility of the CPU can be used. But slow, i.e. a long active low pulse on CPU interrupt pin can cause multiple interrupt because of the automatic masking of the interrupt. To overcome this problem a dual One Shot IC is used to shorten the long interrupting pulses for both INT and NMI.

4.2.4. Keyboard and Display Interface

A Keyboard consists of pressure or touch activated switches. A combination of hardware and/or software means are required to detect which key has been pressed. Encoded and nonencoded keyboards are available. Encoded keyboards include the hardware necessary to detect which key was pressed and to hold that data until a new key stroke. The encoded ones are very easy to use but they are expensive. Non-encoded keyboards have no hardware and must be analyzed by a software routine. (5)

A non-encoded keyboard is used on this microcomputer. As a display, six 7 segment display. digits are used. Key columns and display digits are scanned together. Whenever a digit is selected, an input operation is made from port C upper whether there is a key stroke on the related column or not. If there is no key pressed on the selected digit column, CPU reads all 0 from the port C upper. Common anode digits (columns) are scanned by a walking one. If there is a key
pressed, the related one ils read from one of the rows of port C upper. Keyboard routine recognizes the key which is pressed. This key identification tecnique is known as "row scanning". After this first key stroke detection; monitor waits untill the same column (digit) is activated such that this next detection and check provides key-debounce time ($6 x$ delay time between each digit selection $=10 \mathrm{mS}$). This is a software solution to key bounce problem which causes multible data entry. After the second detection, required key operation is made and monitor waits for release of the same key. Release detection of the key is also verified in order to prevent key bounce problem.

Release detection and verification provides n key lock out facility. Rollover is the problem caused when more than one key is pressed at the same time. The two main techniques used to solve this problem are the n-key rollover and n-key lock out. N-key rollover either ignore all keys pressed until only one remains down. N-key lock out takes into account only one key pressed. The first key pressed generates the code, the other ones are ignored. Each key should be released before the next one is pressed down.

Transistor buffer stages are used in the keyboard display circuit. This is because, when multiplexing, each display must be 6 times bright as when it operates alone, since it is an $1 / 6$ times as long. Thus, currents needed for each digit are 6 times as large. PIO IC can not provide this current, so external discrete transistors are used.
V. EXPERIMENTAL RESULTS, DISCUSSION AND CONCLIISION

5.1. Drawbacks of The Microprocessor Based Stepping Motor Control

Microprocessor based control can be achived by using two different approach: software-intensive, hardware-intensive. In software-intensive system (the system which is used) phase control signals are generated by a dedicated microprocessor, but in the case of hardware-intensive system, there is a hardware controller which operates only with given target position information and start command by the microprocessor. In applications involving the real-time control of several other devices the hardware-intensive approach is the more realistic choice because of programming constraints.

The software intensive control provides accurate and detailed timing. If the time taken to execute one cycle of delay routine is T_{I} and the time occupied in changing excitation, step count and delay pointing is \mathbb{T}_{2}, then, for a
deley count "d", the time between excitation changes is:

Step Interval: $\mathrm{dT}_{1}+\mathrm{T}_{2}$
T_{I} and T_{2} are fixed by the number of processor instruction cycles required to execute the corresponding section of software. The Table 5.1. illustrates the weakness of the software based system. As it can be seen from the table, at low speeds a double decrement of delay count value corresponds one increment at step rate, but at high speeds a double decrement of delay count corresponds more and more increment at step rate with increasing speed.

Stepping Rate(Step/s)	Delay Count Value.
240	0222
241	0220
-	-
512	$00 F E$
517	$00 F C$
899	-
1023	0082
	0080

[^0]Constant and nonavoidable T_{1} and T_{2} creates the above problem. In order to overcome this drawback, hardware-inten-
sive approach should be chosen and used. In the case of hardware-based control, the maximum operating speed of the motor is no longer restricted by its ability to jump between discrete stepping rates. So, the maximum operating speed of the motor can be increased by using hardware-based control.

The acceleration profile for given conditions is calculated and stored in a look-up table. Since a real-time timing is necessary and this is also provided by microprocessor, each delay count is used along 1 sec. then the next delay count is used along the second 1 sec . So acceleration and deceleration is performed with 1 sec. intervals.

The speed condition entered from keyboard can not be realized at the given value because of the time (T_{2}) occupied by the drive routine itself. T_{2} disturbes a wide range real time timing. To optimize this effect, an average speed (600 step/sec.) is selected and speed timing is adjusted to this value. The speed values higher and smaller than this optimized value do not correspond to real speed. When the difference between the given speed value and the optimized speed value (600 step/s.) increases, the difference given and realized speed rates also increases.

If an external programmable timer is used to generate real timing, then more linear acceleration and deceleration can be achieved.

5.2. About Drive Circuit Thich is Used

In order to run a stepping motor in a wide range of speed, bi-level and chopper drives are generally used, as it: is mentioned in Chapter III. As a new approach, a conventional drive circuit with programmable power supply is designed, developed and tested. Although the desired speed range is reached with this type of drive circuit, the result is worse than the result obtained from the use of chopper drive, better than bi-level drive. This is because the D/A converter bit number is restricted by the time occupied by drive routine. An 8 bit D/A converter provides 256 different supply voltage level, but it requires a long comparison routine to obtain proper power code for given delay (speed) count. This increments the drive routine time and speed adjustment becomes more difficult. So, in order to optimize time and power requirements, only 10 level adjustment is provided although the D/A is designed as 6 bit.

Actually this type of drive system may be called as multi-level drive and it operates better than bi-level, but worse than chopper drive systems.

Chopper drive action can be obtained by using a power supply having current limit facility as the main supply of the drive system.

5.3. Step Response Related Considerations

Since stepping motors run step by step, step response of the motors have great importance as far as correct positioning is concerned. When a step signal is taken by a stepping motor, the motor makes the single step angular rotation within a period of time which is called "step response time". This time is a function of the torque to inertia ratio of the motor and of the characteristics of the drive circuits.

DC drive voltage level has the most important effect on the step response. The photographs given in the next page reveals that, there is no overshoot with 7 Volt DC drive level, but overshoot increases and rise time decreases with increasing DC drive level(12V, 17V). First three photographs are taken at different DC voltages without load. The last one is taken with load at 17 V DC drive voltage. With load, as it can be seen from last photograph; overshoot decreases and rise time increases.

The results obtained from above tests are summarized in the Table 5.2.

DC level Load Overshoot \% Rise Time Settling Time (5 \% of st

7 Volt	No	3	6 ms	25 ms
12 Volt	No	20.4	4 ms	24 ms
17 Volt	No	55.5	2.5 ms	30 ms
17 Volt Yes	9.3	8 ms	35 ms	

Table 5.2. Step Response Test Results.

STEP RESPONSE PHOTOGRAPHS AT VARIOUS CONDITIONS

a. $\quad V_{c c}=7$ F., No load

b. $\quad V_{c c}=12$ V., No load

c. $\quad V_{c c}=17 \mathrm{~V}$, No Ioad

d. $\quad V_{c c}=17$ V., With load

As it can be seen from photographs, the single step response is very oscillatory. In applications requiring frequent accurate positioning, this poorly-damped response can be a great disadvantage. The photographs reveals that the stepper motor-load combination can be represented by second order differential equation. The torque generated by the motor should be equal to;

$$
\begin{equation*}
T_{g}=T_{I}+D W+J d w / d t \tag{5.1}
\end{equation*}
$$

where T_{L} is load torque, D is coefficient of viscous friction, J is total moment of inertia, W is angular velocity.

Motor torque (T_{g}) at a rotor position θ is - T : where T^{V} is the stiffness of the static torque/position characteristic. Stiffness is the slope of the mentioned characteristic at the equilibrium position. (Figure 2.8). θ is angular displacement and $\mathbb{W}=d \theta / d t$. Then the equation 5.1 will be:

$$
\begin{align*}
& -T^{\prime} \theta=T_{L}+D W+J d w / d t \tag{5.2}\\
& -T^{\prime} \theta=T_{L}+D d \theta / d t+J d^{2} \theta / d t^{2}
\end{align*}
$$

At no Ioad conditions:

$$
\begin{equation*}
J d^{2} \theta / d t+D d \theta / d t+T^{\prime} \theta=0 \tag{5.4}
\end{equation*}
$$

Frequency of oscillation and the damping ratio can be derived from above equation.
$f=\left(\mathbb{T}^{1} / J\right)^{1 / 2} / 2 \pi$; the undamped natural frequency of oscillation
$\delta=D / 2\left(T^{\prime} \cdot J\right)^{1 / 2}$; damping ratio
The value of the damping ratio is important. It
shows whether the oscillation dies or not.
If $\delta<I$; oscillation will not die (undamped)
If $\delta=1$; critically damped
If $\mathcal{\delta}>1$; oscillation is overdamped.
In order to obtain damped step response, \mathcal{S} should be equal to or greater than unity and this means; D should be equal to or greater than $2(T!J)^{1 / 2}$ Damping ratio can be increased by increasing the coefficient of viscous friction (D) and by decreasing total inertia (J) and the stiffness (T').

D can be increased by introducing additional viscous friction, so that the rotor oscillations decay at a faster rate. If motor and load have been chosen, decreasing total inertia is impossible.

T' (stiffness) is very much affected from the drive system which is used. This parameter provides to the user to run the motor with steps heving no overshoot. As it can be seen in Figure 2.8, the \mathbb{T}^{\prime} 'decreases with decreasing phase current. If a specific load is to be driven at a specific speed, it is possible to obtain a step response without any oscillation by adjusting the drive circuit to give proper
current to the motor. It is the case in photographs
For the damping purpose, electrical and mechanical means are used. One mechanical method of damping is to increase viscous friction. However the use of straight forward viscous friction is undesirable because the operation of the motor at high speeds is severely limited by the friction torque. More detailed information about damping can be found in references (1,7).

When a stepping motor is operated at its natural frequency, an increase in the audio and vibration level of the motor may occur. The resonant behavior of the motor causes the loss of torque at specified stepping rates, as it can be seen with the dips in the Figure 2.10. Resonance usually occur when the motor is excited where the rotor is in advance of the equilibrium position and has a positive velocity, as indicated in Figure 5.1.

Figure 5.1. Regions of the single step response in which phase switching leads to resonance.

5.4. Conclusion

If it is summarized, the important points to drive a stepping motor are the followings.
a. Drive system has very much effect on the behaviour of the motor. If the motor is to be driven in a wide speed range, chopper drive system should be used. It doesn't need any software and short software means more reliable speed adjustment. If the load and speed is constant and the speed is in the range of start/stop speed of the motor, then a conventional unipolar drive system with a constant $d C$ supply can be used.
b. If a software-intensive microprocessor control is to be used, control program should be shortened. It provides more reliable timing in a wider speed range. If it is possible external clock-timer chip (CTC) should be used then acceleration and deceleration will be more linear and the control software will be also shortened since the delay counts will be omitted.

In application requiring control of several other devices the hardware-intensive approach should be preffered. c. In applications requiring frequent accurate positioning the step response of the motor is very important and the poorly damped response can be a big problem. For example, if a stepping motor is used to drive the carriage of a teletype then the system must come to rest for the printing
of each letter. The operating speed of the teletype is limited by the time taken for the system to settle to within the required accuracy at each letter position. For this applications, either a motor having some type damping should be selected or a carefully designed drive system (for that load-speed combination) should be used.

Stepping motors offer many advantages as an actuator in a digitally controlled positioning system. It is easily interfaced with a microcomputer or microprocessors to provide opening, closing, rotating, reversing, cycling and highly accurate positioning in a variety of applications. Robots and CNC machines use the stepping motor. Then, we can say that " stepping motors have the future!.

APPENDIX A

MONITOR PROGRAM OF THE M. COMPUTER

IINE	LOC.	IABEL	OBJ .CODE	MNEMONIC	COMMENTS
0000	0000	$S T$	$\phi \varnothing$	NOP	; Start here after RESET
0001	0001		C3. 5001	JP INT	; Jump to initilization
0002					routine
0003	0004		CØ F9 A4	0,1,2	; Display Look Up Table
0004	0007		B0 9992	3,4,5	
0005	000A		82 F8 80	6,7,8	
0006	OOOD		908883	9, A, B	
0007	0010		C6 Al 86	C, D, E	
0008	0013		8 EA 38 C	$\mathrm{r}, \mathrm{O}, \mathrm{P}$	
0009	0016		$\begin{array}{ccc}\text { AF } & \mathrm{Cl}\end{array}$	r, U, L	
0010	0019		AB 9110	$\mathrm{n}, \mathrm{y}, \mathrm{O}$	
0011			This routine output the seven segments		
0012			code of the data which will be displayed:		
0013	0020	ODC	1A	ID A, (DE)	DE holds the data add.
0014	0021		010400	IDBC, SADC	Disp. Code Tab. Start Ad
0015	0024		81	ADDC	is on BC.
0016	0025		4F	LD C, A	; Code Add. is found and
0017	0026		OA	LD A, (BC)	then it is outputted.
0018	0027		D3 00	OUT OQ, 4	
0019	0029		C3 20 01	JP NLP	; Jump to main . disp.loop.
0020			The following routine provides a delay bet-		
0021			ween successive digits providing nonflashing		
0022			display.(there will be also no ghost from		
			previous digit):		

LINE	LOC.	LABEL	OBJ.CODE	MNEMONIC	COMMENTS
0023	0030	DISDL	3E BF	ID A, DCON	; DCON = Delay Constant
0024	0032	IP	3D	DECH	
0025	0033		C2 $32 \quad 00$	JP NZ IPI	
0026	0036		C9	RET	; Ret if DCON $=0$
0027			Multible	ey input is	prevented with the
0028			use of n	ey lock out	facility.
0029	0030	LOUT	3 A FB OF	ID $\mathrm{A},(\mathrm{PKINP}$) Check whether there
0030	003F		B7	OR A	is a previous key input
0031	0040		CA 3D 01	JP Z DISP	or not.
0032	0043		3A EF OF	ID $\mathrm{A},(\mathrm{KIC})$	
0033	0046		E1	POP HL	; Whether the key pressed
0034	0047		BD	CP I	is the same with previou
0035	0048		CA 4F 00	JP Z RKINP	detection or not.
0036	004B		E5	PUSH HL	
0037	0040		C3 3D DI	JP DISP	
0038	004F	RKINP	E5	PUSH HL	
0039	0050		3E 00	ID A, 00	; reset previous key input
0040	0052		$32 \mathrm{FB} \emptyset \mathrm{F}$	ID PKINP, A	register (PKINP)
0041	0055		C3 3D 01	JP DISP	; to display routine
0042			HL is ad	cess pointer,	(HI) is data which
0043			will be	isplayed. The	content of HL and (HL)
0044			are firs	y loaded in	to temporary register and
0045			then, th	are outputt	ed from here and
0046			displaye		

LINE LOC. LABEL OBJ.CODE , MNEMONIC COMNENTS
00470070 LDIMP 32 FA OF $\operatorname{ID}($ (TIMP), A ; the data on A is

00480073
00490075
$0050 \quad 0078$
0051 007B
0052 007D
0053 007F
00540081
00550083
00560085
00570088
0058
00590096 INC
00600099
0061 009A
0062 009D
0063
0064 OOAO DEC
0065 OOA 3
0066 OOA 4
0067 00A7
0068
0069 OOBO ODPC
OO70 00B1

E6 OF AND OF loaded to temp. regis-
DD $7700 \mathrm{LD}(\mathrm{IX}+\varnothing), \mathrm{A}$ ters as two 4 bit data
$3 A$ FA OF LD A, (TMMP) being H nibble and
E6 FO AND FO L nibble
CB 3F SRL A
CB 3F SRL A
CB 3F SRL A
CB 3F SRL A
DD 77 OI LD(IX+OI),A
C9 RET
The function of the key (+) is provided.
RA F6 OF LD HL, (HTMP)
23 INC HL ; the address pointer is
22 F6 OF LD(HTMP),HL incremented.
C3 E5 01 JP DISPR
The function of the key (-) is provided.
2A F6 OF LD HL, (HTMP)
2 B DEC HL ; the address pointer is
22 F6 OF LD(HTMP),HL decremented.
C3 E5 Ol JP DISPR
The cursor is added to the related data.
1A LD A, (DE) ; data from temp.registers
0104 00 LD BC,0004 ; BC=start address of codi

LINE	LOC.	LabeL	OBJ .CODE	MNEMONIC	COMMENTS
0071	OOB4		81	AOD C	
0072	OOB5		4F	LD C,A	
0073	Оов6		OA	LD $\mathrm{A}, \mathrm{BC})$	
0074	00B7		CB BF	RES A,7	; put the point (cursor)
0075	00B9		D3 00	OUT 00, A	; output the data
0076	OOBB		C3 2D O1	JP MLP	
0077			Main disp	lay and key recos	cognition routine.
0078	00c0	PON	210000	LD HL, 0000	; some temporary registers
0079	0003		22 FD OF	LD(EPC), HL	; are initialized
0080	0006		22 FB OF	LD (CURSOR) ${ }^{\text {H }}$	
0081	0009		22 FB OF	LD (KINP), HL	
0082	OOCC		31 EO OF	LD 3P,OFD \varnothing	; initialize stack pointer
0083	OOCF		3E 88	LD A, 88	; Control word of PIO
0084	OODI		D3 03	OUT 03, A	
0085	00D3		210008	LD HL, H (800	; reset value of add.disp.
0086	OOD6		$22 \mathrm{F6}$ OF	LD(HTMP) , HL	
0087	00D9	DISP	2A F6 OF	ID HL, (HTMP)	
0088	OODC		3A F9 OF	LD A, (EP)	
0089	OODF		B7	OR A	
0090	OOEO		C2 EB 00	JP INZ LPX	
0091	O0E3		DD 21F20F	LD IX, TMP ${ }^{\text {d }}$	
0092	OOE7		7 E	LD A, (HL)	
0093	OOE8		CD 7000	CALL LDIMP	
0094	OOEB	IPX	7 D	LD A, L	

LINE LOC. LABEL OBJ.CODE MNEMONIC COMMENTS

0095 OOEC 0096 OOFO

0097: OOF3
0098 OOF4
0099 00F8 0100 OOFB EBSTA 2E 20 0101 OOFD

01020100 OD
01030101
01040102
01050104
01060107
0107.0109

0108 OlOC
0109 OlOF
01100110
01110113
01120116 LP1
0113 Oll9 IPO
0114 011B
0115 OllE
01160121
01170123
01180124

DD 21 F2 OF LD IX,MMPIL
CD 7000 CALL LDTMP
$7 C \quad$ LD A, H
DD 21 F4 OF LD IX, TMP2H
CD 7000 CALL LDTMP
LD L, $2 \varnothing$; L is digit pointer.
11 F6 OF LD DE, OFF6
1D DEC E
7B LD A, E
FE EF CP EF ; Whether the 6 digit disp
CA D9 OF JP Z DISP is completed or not.
E6 OF AND OF
C2 1901 JP NZ LPO
DD 4604 LD $B,(I X+04)$
BO OR B
C2 1601 JP NZ LPI
C3 BO 00 JP ODP
C3 2000 JP ODC ; jump to output data
FE 02 CP 02 code.
C2 2A 01 JP NZ LP
DD 4604 LD B, (IX+04)
3E 00 LD A, 00
BO OR B
CA 2A 01 JP Z LP2

LINE	LOC.	Label	OBJ.CODE	MINEMONIC	COMMENTS
OR19	0129		C3 во 00	JP ODP	
O120."	012A	LP2	C3 2000	JP ODC	
0121	O12D		7 D	LD A, L	
0122	012E		2 F	CPL	
0123	012F		D3 01	OUT OL, A	; out digit select code
0124	0131		3A FD OF	LD A, (EPC)	
0125	0134		B7	OR A	
0126	0135		C2 4701	JP NZ DECA	
0127	0138		D5	PUSH DE	; preserve DE data pointer
0128	0139		E5	PUSH HL	; p preserve HL digit pointer
0129	013A		C3 8001	JP KR	; jump to key recognition
0130	013D		E1	POP HL	
0131	013E		D1	POP DE	
0132	013F		CD 3000	CALI DBPDL	; call disp. delay
0133	0142	SRL	CB 3D	SRL L	; new digit
0134	0144		C3 0001	JP OD	
0135	0147	DECA	3 D	DEC A	
0136	0148		C8	RET z	
0137	0149		32 FD OF	LD(EPC), A	
0138	$014 C$		C3 3F 01	JP SRL	
0139			This routine checks whether there is a key		
0140			stroke or not. If there is, related func-		
0141			tion is	rovided.	
0142	0180	KR	DB 02	INA, 02	; port C is checked.

LINE	LOC.	LABEL	OBJ.CODE	MNEMONIC	COMMENTS
0143	0182		E6 OF	AND OF	
0144	0184		CA 3C 00	JP Z KINPC	; jump if zero to key inp.
0145	0187		CD 3000	CALL KDL	check routine.
0146	018A		DB 02	IN A, 02	; check for multible entry
0147	018 C		E6 FO	AND FO	
0148	018E		CA 3000	JP z KINPC	
0149	0191		06.00	ID B, 00	
0150	0193	LX	04	INC B	
0151	0194		B7	OR A	; clear carry
0152	0195		CB 07	RLC A	; check which row
0153	0197		D2 9801	JP NC LX	
0154	019A		E1	POP HL	
0155	019B		7D	LD A, L	; find which column
0156	019C		E5	PUSH HL	
0157	019D		OE 00	LD C, 00	
0158	Q19F	LY	OC	INC C	
0159	01a0		B7	OR A	; clear carry
0160	0lal		CB 07	RLC A	
0161	01a3		D2. 9F 01	JP NC LY	
0162	01A6		CB 20	SLA B	
0163	01a8		CB 20	SLA B	
0164	01AA		CB 20	SLA B	
0165	01ac		CB 20	SLA B	
0166	OIAE		78	LD A, B	

LINE	LOC.	LABEL	OBJ .CODE	MNEMONIC		COMMENTS
0167	olaf		BI	OR C		
0168	01B0		4F	LD C, A		the key code add on C
0169	O1BI		038602	JP KPV		check the key with
0170	O1B4		0607	LD B, 07		the previous one.
0171	01B6		3E 17	LD A, 17		check whether the key
0172	01B8		B9	CP C		is a function key or data
0173	01B9		CA 9600	JP Z (+)		INC key.
0174	01BC		3 C	INC A		
0175	OlBD		B9	CP C		
0176	O1BE		CA AO 02	JP Z CON		conditions key.
0177	01C1		3E 27	ID A, 27		
0178	0103		B9	CP C		
0179	OlC4		CA AO 00	JP Z, (-)		DEC key.
0180	0107		3 C	INC A		
0181	0168		B9	CP C		
0182	0109		CA 0705	JP Z,CAL		calculation key.
0183	01CC		BE 37	LD A, 37		
0184	OlCE		B9	CP C		
0185	O1CF		CA 7002	JP 2 CUR		cursor memory/data change
0186	01:D2		3 C	INC A		
0187	01 D 3		B9	CP C		
0188	O1D4		CA 8206	JP 2 DRIVE	;	drive key
0189	01D7		3E 47	LD A, 47		
0190	01D9		B9	CP C		

LINE	LOC.	Label	OBJ.CODE	MVEMONIC	COMMENTS
0191	OldA		CA 6002	JP Z RUN ;	RUN key
0192	O1DD		3 C	INC A	
0193	O1DE		B9	CP C	
0194	01DF		CA 9E 06	JP Z INT	inititalize motor pos.
0195	O1E2		CD FF 01	CALI RDA	replace data or add.
0196	O1E5	RETKR	C3 3D O1	JP DISIPOP.	portion of the display.
0197			The follo	wing routine rep	places first data
0198			or add. did	igit by shifting	g previous digit
0199			values to	the left.	
0200	01FF	RDA	3A F8 OF	LD A, CURSOR;	determine whether the
0201	0202		B7	OR A	data or address digit
0202	0203		CA 4402	JP Z RD	values are dreplaced
0203	0206		DD 21 F2:OF	LD IX,OFF2	replace address digit
0204	020A		DD 7E 02	ID $A,($ IX +02$)$	content. In order to
0205	O20D		DD 7703	$\operatorname{LD}(\mathrm{IX}+03), \mathrm{A}$	replace first digit,shif
0206	0210		DD 7E 01	ID $\mathrm{A},(\mathrm{IX}+01)$	all digit values to
0207	0213		DD 7702	LD ($\mathrm{IX}+02$), A	the left ones.
0208	0216		DD 7E 00	ID A, ($\mathrm{IX} \pm 00$)	
0209	0219		DD 7701	LD (IX+01), A	
0210	021 C		OA	LD A, (BC)	
0211	021D		DD 7700	LD ($\mathrm{IX}+00$) , A	
0212	0220		DD 4601	LD B, ($\mathrm{IX}+01$)	
0213	0223		CB 20	SLA B	
0214	0225		CB 20	SLA B	

LINE LOC. LABEL OBJ.CODE MNEMONIC COMMENYS

02150227 02160229

0217 022B
0218 022C
0219 022F 02200232 02210235 02220237 02230239 0224 023B 0225 023D 0226 023E 02270241 02280244 RD 02290247 02300248 0231 024A

0232024 C 0233 024E 02340250

02350251
$0236 \quad 0252$
02370253
02380254

CB 20 SLA B
CB 20 SLA B
BO OR B
DD $7704 \mathrm{LD}(\mathrm{IX}+04), \mathrm{A}$; now new data is placed
DD 7E 02 LD A, (IX+02) in to first digit of the
DD 4603 LD $B,(I X+03)$ address diplay.
CB 20 SLA,B
CB 20 SLA B
CB 20 SLA B
CB 20 SLA B
BO OR B
DD 7705 LD (IX+05),A
C3 5602 JP PET
2A F6 OF LD HL, (HIMP); Replace the first digit
7E
CB 27 SIA A
CB 27 SLA A
SLA A
SLA A
EX AF
LD A, (BC)
LD B, A
EX AF
OR B

LINE LOC. LABEL OBJ.CODE MNEMONIC COMMENTS
$02390255 \quad 77 \quad$ LD (HL), A

| 0240 | 0256 | RET |
| :--- | :--- | :--- | :--- | :--- |

0241 This routine provides program run facility
0242 to the user; starting from the displayed

0243
02440260 RUN $2 A F F 6$ OF LD HL, (HIMP)
02450263 E9 JP (HL)

The following routine changes the corsor's place.

0248	0270	CRSOR	3A F8 OF
0249	0273	B7	LD A, CURSOR
0250	0274	OR A	
0251	0277	CA 02	JP Z ADD ; cursor to first add dig.
0252	0278	3D F8 OF	LD CURSOR,A

0253 027B
0254 027E ADD
30 INC A
0255027 F
02560282
0257
0258
0259
02600286 KPV
02610289
0262 028A

32 F8 OF LD CURSOR,A
C3 E5 OI JP RETKR
This routine holds the key value pressed if there is a key release detection before it.

3A FB OF LD A, KINP
B7 ORA
CA 9202 JP Z SKINP

IINE	IOC.	LABEL	OBJ .CODE	MNEMONIC	COMMENTS
0263	O20D		El	POP HL	
0264	020E		D1	POP DE	
0265	020F		034201	JP DISP	
0266	0212	SKIMP	3C	INC A	
0267	0213		32 FB OF	ID (KIMP) , A	
0268	0216		El	POP HL	
0269	0217		7D	ID A, I	; holds column address.
0270	0218		32 EF OF	LD (KPV), A	in KPV temporary RAM
0271	021B		E5	PUSH HI	register
0272	021C		C3 B4 O1	JP	

APPENDIX B

THE DRIVE PROGRAM OF THE STEPPINGMOTOR
IINE LOC̣. TABEL OBJ.CODE MNEMONICCOMMENTS
The following routine accepts the conditions required to drive motor.
0001 O2AO CON 210101 LD HL, CONST; condition status
0002 02A3 $\because \quad 22 \mathrm{FB}$ OF $\mathrm{ID}(\mathrm{CSOR}), \mathrm{HL}$

0003	02A6	3A TC OF	ID A, (ADD)	; which condition
0004	02A9	B7	OR A	
0005	O2AA	C2 BB 02	JP NZ SP	: if NZ to speed

0006 02AD 2112 OD ID HL, ODI2
0007 02BO 22 FO OF LD(TMPOI), HI
00080233 3E O1 ID A, O1
0009 02B5 32 FC OF $\mathrm{ID}(\mathrm{ADD}), \mathrm{A}$
0010 02B8 C3 E5 01 JP RET/DISP
$001102 B B$ SP 3D DEC A
$001202 \mathrm{BC} \quad \mathrm{C} 2 \mathrm{D} 302 \mathrm{JPNZ} \mathrm{SP}$; if NZ to step size
$001302 \mathrm{BF} \quad 2 \mathrm{AF}$ OF LD HI, (HMMP)
0014 02C2 $22 \mathrm{E9}$ OF $\operatorname{LD}(D R), H L$; load direction and
$0015 \quad 02 C 5$
00160208
22 FO OF LD(TMPDU), HL
0017 02CB
3E 02 ID A, 02
0018 O2CD
32 FC OF $\mathrm{LD}(\mathrm{ADD}), \mathrm{A}$
C3 E5 O1 jP RET/DISP
0020 02D3 SS
3D DEC A
0021 02D4 C2 EB 02 JP NZ

IINE	LOC.	IABEL	OBJ .CODE	MNEMONIC COMMENTS
0022	02D7		2A F6 OF	LD HL, (HTMP)
0023	02DA		22 EB.OF	ID (SP), HL ; load speed (step/s)
0024	O2DD		210505	LD HL, 0505
0025	02E0		22 FO OF	LD (TMPOL), HL
0026	02E3		3E 03	LD A, 03
0027	02E5		32 FC OF	LD (ADD) , A
0028	02E8		C3 E5 01	JP RET/DISP
0029	02EB	EDR	3D	DEC A
0030	O2EC		C2 0603	JP NZ ACC
0031	02EF		2A FB OF	LT HL, (HTMP)
0032	02F2		22 ED OF	LD(SS), HL ; load step size
0033	02F5		22 D6 OF	LD ($\mathrm{S}^{\prime} \mathrm{S}^{\prime}$), HL
0034	02F8		21 OC OA	LD HL, OAOC
0035	02FB		22 FO OF	LD (TMPOL), HL
0036	O2FE		3E 04	LD A, 04
0037	0300		32 FC OF	LD(ADD), A
0038	0303		C3 E5 O1	JP RET/DISP
0039	0306		2A F6 OF	LD HL, (HIMP)
0040	0309		22 ET OF	LD (AC), HL ; load acceleration
0041	030C		210000	LD HL, 0000
0042	030F		22 FB Of	LD (Cursor), HL
0043	0312		22 FC OF	$L D(A D D), H L$
0044	0315		C3 5501	JP RET/DISP
			The following routine decides whether the	

IINE	IOC.	IABEL	OBJ .CODE	MNEMONIC	COMMENTS
0045			reset act	n is due to	power on or the
0046			result of	the pushed res	set button.
0047	0151	RST	2105 OA	LD HL, OAO5	; test location start
0048	0153	SRCH	2 D	DEC 1	address.
0049	0154		7E	LD $\mathrm{A},(\mathrm{HL})$	
0050	0155		B7	OR A	
0051	0156		C2 6001	JP NZ PON	; to power-on action.
0052	0159		BD	CP I	
0053	015A		CA 7401	$J P \mathrm{Z}$ RBT	; jump if zero to reset
0054	015D		C3 5301	JP SRCH	button action.
0055	0160	PON	3E 00	ID A, 00	
0056	0162	ID	77	Ind (HL) , A	
0057	0163		2D	DEC L	
0058	0164		C2 6201	JP NZ LD	
0059	0167		21 DA OF	ID HL, OFDA	; initialize temporary
0060	016A		3E 00	ID A, 00	registers.
0061	016 C		77	ID (HL) , A	
0062	016D		2C	INC I	
0063	016E		77	LD (HL) , A	- "
0064	016F		2 C	INC I	
0065	0170		77	LD (HL), A	
0066	0171		C3. 0000	JP DISP	; to display routine.
0067	0174	RBT	3E TF	ID $A, F F$; prog. power supply is
0068	0176		D3 08	OUT 08	adjusted to "O"volt.

IINE LOC. LABEL OBJ.CODE MNEMONIC COMMENTS

00690178
0070
0071
0072
0073 05C7 CAL
0074 05CA
0075 O5CD
0076 05D0
0077 05D3
0078 05D6
0079 05D9
0080 05DC
0081 05DF
0082 05E2
0083 05E5
0084 05E8
0085 05EB
0086 O5EE
0087 05F1
0088 05F?
0089 05F5 LOOP
0090 05F8
$009105 \mathrm{F9} 9$ 0092 05FC

C3 CO 00 J JP DISP
This routine calculates delays related with given step rates and places them in to proper tables.

2A D6 OF LD HL, (S'S')
22 ED OF LD ($\mathrm{S}^{\prime} \mathrm{S}^{\prime}$), HI
CD 2903 CAL工 ERROR ; call error search routil
2100 OB LD HL, OBOO
22 FE OF LD (DELAD).,HL
210000 LD HL,0000; initialize some tempo-
22 El OF $\mathrm{LD}(\mathrm{S}), \mathrm{HL}$ rary registers.
22 E5 OTH: LD (S'), HL
22 E3 OF LD (SS'), HL
22 DF OF LD (T), HL
CD 01. 04 CAIL DELCL ; call delay calculation
CD OF 04 CALI LDADD ; call delay loading
CD 3104 CALL TOTAL ; call step summing
3A E7 OF ID A, (ACC)
B7 \quad OR A
CA CO 00 JPDISP ; jump if zero to display
2A ED OF $\mathrm{LD} H \mathrm{H}$, (SS) routine
C5 PUSH BC

CD 6003 CALL DVDB2 ; call division routine
Cl POP BC to calculate N_{A} and N_{D}

IINE	LOC.	TABEL	OBJ.CODE	MNEMONIC	COMMENTS
0093	O5FD	LOOP	2A E7 OF	LD HL, (ACC)	
0094	0600		09	ADD BC ;	speed + acc.
0095	0601		44	ID B, H	
0096	0602		4D	ID C, H	
0097	0603		ED.5B ED OF	ID DE, (s)	
0098	0607		2A DF OF	LD HI, (T) ;	check $T>S$
0099	060A		00	NOP	if $T>S$, calculation
0100	060B		CB 7A	BIT 7,D	is over; if $T<S$, conti
0101	O60D		С2 1B 06	JP NZ OP-	nue calculation.
0102	0610		7 C	ID A, H	
0103	0611		BA	$C P D$	
0104	0612		CA 6006	JP 2 CPI	
0105	0615		F2 1903	JP P MONITOR	
0106	0618		C3 20.06	JP ROUT ;	$\mathrm{H}\langle\mathrm{D}$ then check L$\rangle \mathrm{E}$
0107	061B	CP-	CB 7C	BIT 7, H	or not
0108	061D		F2 1903	JP P MONITOR;	jump to monitor
0109	0620	ROUT	CD 0104	CALI DELCLI	
0110	0623		CD OF 04	CAII LDADD	
0111	0626		CD 3104	CAIL TOTAL	
0112	0629		3E 03	ID A, PMAX ;	- check with max.speed
0113	062B		B8	CP. B	
0114	062 C		F2 FD 05	JP P LOOP	
0115	062F		CD 3D 04	CAIL SS	
01.16	0632		C319 03	JP MONITOR ;	- jump to monitor

LINE	LOC.	LABEL	OBJ.CODE	MNEMONIC	COMMENTS
0117	0660	CPI	7D	LD A, L	
0118	0661		CB 7D	BIT 7, L	
0119	0663		C2 6E 06	JP NZ CHK	
0120	0666		CB 7B	BIT 7, E	
0121	0668		CA 7A 06	JP $2 \mathrm{CMP}+$	
0122	066B		C3 2006	JP ROUT	; continue to calculate
0123	066E	CHK	CB 7B	BIT 7, E	
0124	0670		CA 1903	JP MONITOR	
0125	0673		BB	CP E	
0126	0674		FA 1903	JP MONTTOR	
0127	0677		C3 2006	JP ROUT	; continue calculation
0128	067A	CMP+	BB	CP E	
0129	067B		F2 1903	JP P MONITOR	
0130	067E		C3 2006	JP ROUT	
0131			The follo	wing routine i	is used to obtain N_{A}
0132			(S, accel	rating step s	ize) and $N_{D}\left(S^{\prime}\right.$, decele-
0133			rating st	ep size)	
0134	0360	DVDB2	110000	LD DE,0000	
0135	0363		010200	LD BC,0002	
0136	0366		2 A ED OT	LD HL, (SS)	
0137	0369		CB 45	BIT \varnothing, L	
0138	036B		CA 7C 03	JP z EVEN	
0139	036E		2D	DEC L	
0140	036F		CD 5800	CALL DIV	

LINE	Ioc.	LABEL	OBJ.CODE	minemonic	commenis
0166	043D	SS	2A EI OF	LD HL, (S)	; N_{A} is on HL
0167	0440		ED 4B DF OF	LD BC, (T)	; n is on BC
0168	0444		ED 43 El OF	LD (S), BC	; (S) and (S^{\prime}) is loaded
0169.	0448		ED 43 E5 OF	LD (S^{\prime}) , BC	with n.
0170	044C		B7	OR A	; clear carry
0171	044D		ED 42	SUB BC	; $\mathrm{N}_{\mathrm{A}}-\mathrm{n}=(\mathrm{SS})$
0172	044F		2 B	DEC HL	
0173	0450		22 E3 OF	LD (SS) , HL	
0174	0453		C9	RET	
0175			The follow	ing routine	checks the conditions
0176			entered fr	om keyboard	and if there is impossibl
0177			condition,	related erro	or message is displayed.
0178	0329	ERROR	ED 4B EB OF	LD BC, (SPEE	
0179	032D		79	ID A, C	
0180	032E		Bо	OR B	
0181	032F		CA EB Ol	JP Z Error	0 ; if speed is zero
0182	0332		78	LD A, B	
0183	0333		B7	OR A	
0184	0334		C2 3D 03	JP NZ CON	
0185	0337		79	LD A, C	
0186	0338		FE 01	CP O1	
0187	033A		CA EB Ol	JP z Error	O; if speed is smaller
0188	033D	CON	78	LD A, B	than 2 step/sec.
0189	033E		FE 05	CP 05	
- 0190	0340		F2 F4 Ol	JP P Error	1 ; if speed is higher
0191	0343		CB 7F	BIT 7, A	than 04FF step/sec.

LINE	LOC.	IABEL	OBJ.CODE	MNEMONIC	COMMENTS
0192	0345		c2 F4 01	JP NZ Error 1	
0193	0348		3A E7 OF	ID $A,(A C C)$; check acceleration
0194	034B		B7	OR A	
0195	034C		C8	RET Z	
0196	034D		FE 7 F	CP 7F	; if acc.is higher
0197	034F		F2 5702	JP P Error2	then 7E step/sec ${ }^{2}$,
0198	0352		CB 7F	BIT 7,A	display Error2 message
0199	0354		C2 5702	JP NZ Error 2	
0200	0357		2A ED OF	LD HI, (SS)	; if an acc. is
0201	035A		7 D	LD A, I	given without giving
0202	035B		B4	OR H	step size, display
0203	035C		CA 6702	JP 2 Error 3	Frror 3 message.
0204	035F		C9	RET	
0205	0		This rout	e calculates	speed related delay
0206			contants.		
0207	0401	DELCAI	B7	OR A	; clear carry.
0208	0402		21 FFFF	ID HE, FTFF	
0209	0405		110000	LD DE,0000	
0210	0408	LP	ED 42	ZBC BC	; speed constant is
0211	040A		D8	REI ©	on BC.
0212	O40B		13	INC DE	; delay constant is on
0213	O40C		C3 0804	$J P$ LP	DE register pair.
0214			This rout	ne loads the	delay constants into
0215			related	bles.	
0216	O40F	IDADD	EB	EX DE,HL	; dauble the calculated

LINE	LOC.	LABEL	OBJ .CODE	MnEmonic	comments
0242	Olee		38-00	LD A, 00	; ERROR 0 message.
0243	01FO		77	LD(HL), A	
0244	01Fl		C3 8C 03	JP ERROR	
0245	O1F4	ERI	21 FO OF	LD HL, OFFO	
0246	01F6		3E O1	LD A, Ol	; ERROR 1 message.
0247	01F8		77	LD (HL), A	
0248	Offa		C3 8C 03	JP ERROR	
0249	0257	ER 2	2 FFO OF	LD HL, OFFO	
0250	025A		3E 02	LD A, 02	; ERROR 2 message.
0251	025C		77	LD(HI), A	
0252	025D		C3 8C 03	JP ERROR	
0253	0267	ER3	21 FO OF	LD HL, OFFO	
0254	026A		3E 03	LD A, 03	; ERROR 3 message.
0255	026c		77	ID (HL), A	
0256	026D		C3 8c 03	JP ERROR	
0257			ERROR wor	is loaded in	the following
0258			routine.		
0259	038C	ERROR	2 C	INC I	
0260	O38D		3E 12	LD A, "r"	; "r" is loaded to
0261	038F		77	LD (HL) , A	display table.
0262	0390		2 C	INC L	
0263	0391		3E 10	ID A, "O"	; "O" is loaded to
0264	0393		77	LD (HL) , A	display table.
0265	0394		2 C	INC L	
. 0266	0395		3E 12	LD A, "r"	; "r" is loaded to

LINE	LOC.	TABEL	OBJ.CODE	MNEMONIC	COMMEITTS
0267	0397		77	LD (HI), A	display table.
0268	0398		2 C	INC I	
0269	0399		77	$\mathrm{LD}(\mathrm{HL}), \mathrm{A}$	
0270	039A		2C	INC L	
0271	039B		3E OE	LD A, "E"	; "E" is loaded to
0272	039D		77	ID (HL) , A	display table.
0273	039E		C3 BD 03	JP LP DISP	; Jump to display
					"ERROR" message.
0274			"READY" word is loaded in to the display		
0275			look-up table and displayed three times.		
0276	03A3	READY	21 FO OF	ID HL, OFFO	
0277	03A6		3E 17	ID A, "."	
0278	0348		77	ID (HL) , A	; point is loaded into
0279	03A9		2 C	INC I	display look-up table.
0280	03AA		3E 16	LD A, "Y"	
0281	O3AC		77	ID (HL) , A	; "y" is loaded into
0282	O3AD		2 C	INC I	display look-up table.
0283.	03AE		3E OD	LD A, "d"	
0284	03B0		77	LD (HI) , A	; "d" is loaded.
0285	03B1		2 C	INC L	
028.6	03B2		3 EOA	LD A, "A"	
0287	03B4		77	ID (HI) , A	; "A" is loaded.
0288	03B5		2C	INC L	
0289	03B6		3EOE	LD A, "E"	
0290	03B8		77	ID (HL), , A	; "G" is loaded.

LINE	LOC.	LABEL	OBJ.CODE	MNSENONIC	COMMENTS
0291	03B9		2 C	INC L	
0292	03BA		3E 12	LD A, "r"	
0293	O3BC		77	ID (HL), A	; "r" is loaded.
0294	O3BD	LPDSP	3E 03	LD A, 03	; flashing repeat
0295	03BF	IPX2	32 DE OF	LD (RC) , A	number.
0296	03C2		3E FF	LD A, PF	; error display delay.
0297	03 C 4	LPX	32 DD OF	ID (ERC), A	
0298	0307		3E 06	ID A, 06	; digit counter.
0299	0309		32 FD OF	LD (EPC), A	
0300	030C		CD FB 00	CAIL EPS	; display message.
0301	O3CF		CD 3000	CAIL DISP D	L
0302	03D2		$C D$ DD OF	LD A, (ERC)	
0303	0305		3D	DEC A	
0304	03D6		C2 C4 03	JP NZ LPX	
0305	03D9	LPXI	32 DD OF	LD (ERC), A	
0306	03DC		CD 3000	CALI DISPD	; display blank.
0307	030 F		3A DD OF	ID A, (ERC)	
0308	03 E 2		3D	DEC A	
0309	03 E 3		C2 D9 03	JP NZ LPEX	
0310	03E6		3 A DE OF	ID A, (ERC)	
0311	$03 \mathrm{E9}$		3D	DEC A	
0312	O3EA		C2 BF 03	JP NZ IPX2	
0313	O3ED		3E FFr	ID A, TP	;adjust power to zero.
0314	03EF		D3 08	OUT 08,A	

LINE	LOC.	IABEL	OBJ .CODE	MIVEMONIC	COMMENTS
0315	O3F1		C3 CO 00	JP MONITOR	; after three flashing.
0316			"RUN" rou	ine outputs	the drive codes accor-
0317			ding to	given cond	tions.
0318	0456	RUN	3E 03	LD A, 03	; start power code.
0319	0458		D3 08	OUT 08,A	; to programmable
0320	045A		1607	LD D, 07	power supply.
0321	045C		CD A4 04	CALI LCD	; DE register pair is
0322	045F		3A DC OF	ID A, (LCA)	the pointer of the
0323	0462		5 F	ID E, A	drive codes.
0324	0463	DR	3A EA OF	ID $A,(D R)$; Check direction.
0325	0466		B7	OR A	
0326	0467		CA 8304	JP Z CW	; if zero, clock wise.
0327	046A		1D	DEC E	
. 0328	046B		3A E9 OF	LD A, (SM)	; check step mode.
0329	046E		B7	OR A	
0330	046F		027304	JP NZ ROUT1	; if NZ, half stepping.
0331	0472		1D	DEC E	; counter clock-wise.
0332	0473	ROUT 1	3E PF	LD A, FF	; check start of drive
0333	0475		B8	CP E	table.
0334	0476		CA 7E 04	JP Z TOUT	
0335	0479		3D	DEC A	
0336	047A.		BB	CP E	
0337	047B		029904	JP NZ OUT	
0338	047E	TOUT	1E 08	LD E, 08	
. 0339	0480		C3 6304	$J P \mathrm{DR}$	

LINE	Loc̃.	LABEL	OBJ .CODE	MNEMONIC	COMMENTS
0340	0483	CW	1 C	INC E	; clock-wise.
0341	0484		3A E9 OF	LD A, (SM)	; check step mode.
0342	0487		B7	OR A	
0343	0488		C2 8C 04	JP NZ ROUT2	
0344	048B		1 C	INC E	
0345	048C	ROUT2	3E 08	LD A, 08	; check end of drive
0346	048E		BB	OP E	table.
0347	048F		CA 9704	JP 2 INT 2	; if zero, initialize
0348	0492		3C	INC A	pointer.
0349	0493		BB	CP E	
0350	0494		C2 9904	JP IVZ OUT	
0351	0497	INT2	1E OD	LD E, 00	; initialize pointer.
0352	0499	OUT	CD D5 04	CALI OUT	
0353	049C		C3 AO OZ	JP 1HS	; check intermediate half stepping.
0354			Previous	step mode and	last code address
0355			are found	in the follow	ving routine.
0356	04A 4	LCAD	3 A DB OF	LD A, (PSM)	
0357	04A7		DD BE OE	CP (IX+OE)	
0358	04AA		C8	RET 2	
0359	04AB		B7	OR A	; half step after
0360	O4AC		C8	RET 2	full step.
0361	04AD		3A DC OF	LD A, (LCA)	; full step after
0362	04BO		CB 4F	BIT 1, A	half step.
0363	04B2		C8	RET 2	

IINE	LOC.	IABEL	OBJ .CODE	MNEMONIC	COMMENTS
0364	04B3		3A EA OF	ID A, (DR) .	; check direction and
0365	04B6		B7	OR A	correct the LCA.
0366	04B7		CA BE 04	JP Z DLCA	
0367	04BA		DD 3401	INC (IX +01)	
0368	04BD		c9	RET	
0369	O4BE	DICA	DD 3501	DEC (IX+OI)	
0370	04C1		C9	RET	
0371			The followi	ing routine	outputs the code
0372			pointed by	(DE) and dec	crement the step
0373			size to che	eck whether	it is completed or
0374			not.		
0375	04D5	OUT	1A	ID A, (DE)	; drive code is on A .
0376	04D6		D3 02	OUT 02,A	
0377	04D8		7B	LD A, E	; LCA $=\mathrm{E}$ (last code
0378	04D9		32 DC OF	$\operatorname{ID}(\mathrm{LCA}), \mathrm{A}$	address), reserve LCA.
0379	04DC		3A ET OF	ID $\mathrm{A},(\mathrm{ACC})$; check acceleration.
0380	04DF		B7	OR A	; set flags.
0381	04EO		CA. 4006	$J P$ Z SSDEC	; no acceleration.
0382	04E3		ED 4BEL OF	ID $B C,(S)$; there is acceleration.
0383	$04 E 7$		79	ID A, C	; checks is zero.
0384	04E8		B0	OR B	
0385	04E9		020405	JP NZ SDEC	; if not, decrement S.
0386	O4EC		ED 4B E3 OF	ID BC, ($S^{\prime} S^{\prime}$)	; check $\mathrm{S}^{\prime} \mathrm{S}^{\prime}$ is zero.
0387	O4FO		79	ID A, C	
. 0388	O4Fl		B0	OR B	

LIINE	LOC.	IABEL	OBJ .CODE	MNEMONIC	Commenis
0389	04P2		C2 OA 05	JP NZ SSDC	; if not, decrement SS'.
0390	04F5		ED 4BE5 OF	LD BC, (S^{\prime})	; check S^{\prime} is zero.
0391	04F9		79	LD A, C	
0392	04FA		B0	OR B	
0393	O4FB		C2 1005	JP Z SVST	; if it is zero, then
0394	04FE		$O B$	DEC BC	go to save status
0395	04Fr		ED 43 E5 OF	$L D\left(S^{\prime}\right), B C$	routine, if not,
0396	0503		C9	RET	decrement S^{\prime} :
0397	0504	SDEC	OB	DEC BC	; decrement "S".
0398	0505		ED 43 El OF	LD (S), BC	
0399	0509		C9	RET	
0400	050A	SISDC	OB	DEC BC	; decrement "S".
0401	050B		ED 43 E3 OF	LD (SS), BC	
0402	050F		C9	RET	
. 0403	0510	SVST	7 B	ID A, E	; save LCA.
0404	0511		32 DC OF	LD (LCA) , A	
0405	0514		3A E9 OF	LD A, (SM)	; save step mode.
0406	0517		32 DB OF	LD(PSM), A	
0407	051A-E		00	NOP	
0408	051F		CD C5 04	CALL STOP	; stop power is given.
0409	0522		3E 00	ID A, 00	
0410	0524		32. F8 OF	LD (OURSOR),	
0411	0527		C3 A3 03	JP READY	; display "ready".
0412	0640	SSDEC	ED 4B ED OF	LD BC, (SS)	; there is no
0413	0644		79	LD A, C	acceleration.

LINE LOC. LABEL OBJ.CODE MNEMONIC COMMENTS
04140645 BO OR B
04150646 C8 RET Z
$04160647 \quad$ OB DEC BC

04170648
0418 064C
0419 064D
0420 064E
0421 064F
0422
0423
04240534
04250537
04260538
0427 053B
0428 053F
04290542 LP OE
04300543
04310544
04320545
04330548
04340549
0435 054D
0436 054E
0437 054F
04380552

ED 43 ED OF 79 LD A,C it is not zero. BO CO RET NZ C3 1005 JP SVST ; jump to same status. The following routine is delay routine which provides timing of drive codes. DELAY 3 A E7 OF LD A, (ACC) ; check, there is acc. B7 ORA or not. C2 4905 JP NZ CHKS
ED 4B OO OB ID $B C$, (OBOO); delay constant on BC. CD 50.07 CALL PWCD ; call power code rout. $O B$ DEC BC ; without acceleration. 79 LD A, C

BO OR B
C2 4205 JP NZ LP
C9 RET ; return from non-acc.rou
CHKS ED 4B EI OF LD BC, (S) ; with acceleration.
79 : LD A, C
BO OR B .
C2 7005 JP NZ ACCR ; if $\mathrm{S} \neq 0$, go to ACCR. ED 4B E3 OF LD BC, (SN')

LINE	IOC.	IABEL	OBJ .CODE	MNEMONIC		COMMENTS
0439	0556		79	ID A, C .	;	check $\mathrm{SS} \stackrel{?}{=} 0$.
0440	0557		BO	OR B		
0441	0558		CA 9605	JP NZ DECR	;	if $S S^{\prime} \neq 0$, jump DECR.
0442	055B		$013 F 00$	LD BC, SPM		
0443	055E		CD 5007	CALI PWCD		
0444	0561	LPXX	OB	DEC BC	;	decrement SPMAX
0445	0562		79	ID A, C		until SPMAX $=0$.
0446	0563		BO	OR B		
0447	0564		C2 6105	JP NZ LPXX		
0448	0565		C9	RET		
0449			This ro	follows		accelerating
0450			profile.			
0451	0570	PCCR	4 E	ID C, (HIL)	;	Hoad delay constant.
0452	0571		23	INC HIT	;	increment table
0453	0572		46	LD B, (HL)		pointer.
0454	0573		CD 5007	CALL PWCD	;	adjust power.
0455	0576	LPY	OB	DEC BC	;	decrement delay
0456	0577		79	ID A, C		constant.
0457	0578		BO	OR B		
0.458	0579		C2 7605	JP NZ LPY		
0459	057c		23	INC HL		
- 0460	057D		4E	ID C, (HL)	;	check repeat number.
0461	057E		23	INC HI		
0462	057 F		46	LD B, (HL)		
0463	0580		OB	DEC BC		decrement repeat

LINE	LOC.	LABEL	OBJ.CODE	MNEMONIC	COMMENTS
0464	0581		79	LD A, C	number.
0465	0582		Bо	OR B	
0466	0583		CA 8C 05	JP Z.INTCHL	
0467	0586		70	LD (HL), B	; reload repeat number.
0468	0587		2 B	DEC HL	
0469	0588		71	LD (HL) , C	
0470	0589		2B	DEC HL	; restrore the table
0471	058A		2B	DEC HL	pointer value.
0472	058B		C9	RET	
0473	058C		23	INC HL	
0474	058D		3E 00	LD A, 00	
0475	058F		3209 Or	LD DCRI,A	
0476	0592		C9	RET	
0477			This rout	ne follows the	e decelerating
0478			profile.		
0479	0594		OE 08	ID C, 08	
0480	0596		3A D8- OF	LD A, (DR60)	; check decrement
0481	0599		B7.	OR A	
0482	059A		C2 AF 05	JP NZ RT	
0483	059D		3E OB	ID A, OB	; first deceleration.
0484	059F		32 D8 OF	LD(DR60), A	; correct delay pointer
0485	05A2		BC	CP H	value on BC for dece-
0486	05A3		CA AB 05	JP z INC	leration.
0487	05A6		3 C	INC A	
0488	05A7		BC	CP H	

LINE	LOC.	LABEL	OBJ .CODE	mammonic	comments
0514	0760	CPI	BE	CP(HL)	; Compare DC with table
0515	0761		F2 9A 07	JP P HPWR	; jump high power
0516	0764		2 C	INC L	subroutine.
0517	0765		C3. 6007	JP CPI	; continue to compare
0518	0768	CM	79	ID A, C	; C minus subroutine
0519	0769		2 F	CPL	
0520	076A		$4{ }^{1}$	LD C, A	; now C is positive
0521	076B	DECL	2 D	DEC L	; decrement power table
0522	076C		3E DO	LD A, DO	pointer and continue
0523	076E		BD	CP L	to compare.
0524	076F		CA 9A 07	JP Z HPWR	
0525	0772		79	LD A, C	
0526	0773		BE	CP (HL)	; Compare DC with table
0527	0774		FA 9A 07	JP M HPWR	
0528	0777		C3 6B 07	JP DECL	
0529	077A	LPWR	CB 7F	BIT 7,A	; check DC O7FF
0530	077c		C2 8907	JP NZ OA	; JP power code OA.
0531	077F		PE O1	CP 01	; if $\mathrm{DC}=01 \mathrm{XX}$,
0532	0781		CA 9007	JP 208	power code is 08.
0533	0784		FE 02	CP 02	; if $\mathrm{DC}=02 \mathrm{XX}$,
0534	0786		CA 9507	JP 209	power code is 09
0535	0789	OA	3E OA	LD A, OA	
0536	078B	OUT	D3 08	OUT 08, A	; out power code to sup
0537	078D		E1	POP HL	; restore delay pointer
0538	078E		Cl	POP BC	; restore delay count

APPEIDIX D

IUSER MANUAL OF THE KIT

The kit has 24 keys on keyboard. 16 of them are for hexadecimal data, 8 of them are function keys. The first four of function keys are related with operating system and the others are related with motor drive program.

0	4	8	C	+	Con.
1	5	9	D	-	Cal.
2	6	A	E	Cur.	Drv.
3	7	B	F	Run	Int.

Keyboard Layout

FUNCTION KEY:

+ Key: The address value which is displayed is incremented by one and data belongs to the new address value.
- Key: The address value which is displayed is decremented by one, and data belongs to the new address.

Cur. : It operates the CURSOR. If the cursor is on the first digit of data, then the data keys are used to change the data portion of the display. Cur. key changes the place of the cursor point.

Run : When it is pushed, the address value on the display is loaded to the program counter.

CON. : All conditions related with motor drive are entered with the succesive use of this key.
$1^{s t}$
STROKE: dr is demanded

X	X	X	X

d	x

Direction
Clock-Wise: 00
Counter Clock-Wise: XX. Half Step: Xx
$3^{r d}$ STROKE: Previous condition is entered, $S S$ is demande

$2^{\text {d }}$ STROKE: $S S$ is entered, $S P$ is demanded.

X	X	X	X

speed

Condition

0002-04FF Step/sec.
O4PF Step/sec. is the maximum start-stop speed in half step mode. For full step mode, it is about 0280 step/sec.

$\mathrm{a}=0000-007 \mathrm{~F}$ Step/sec.
$5^{\text {th }}$ STROKE: Acceleration value is entered and program returns to monitor.

CAI.: Delay counts and acceleration table is caloulated and after calaulation program returns to initial state.

DRV :Motor is started to run according to the previous calculation values.

INT :Initialize the motor position by running it 16 steps and then, computer knows the step position of the motor at that moment.

MESSAGES:

READY. : After given step size is completed, motor is stopped and "ready" message is displayed three times by flashing.

Error 0 : If the given speed is smaller than 0002 step/sec. then, Error 0 message is displayed three times by flashing.

Error 1 : If the given speed is greater than $04 F F$ step/sec. then, Error 1 message is displayed three times by flashing.

Error 3 : : If acceleration is given with no limit (Step:' size $=0000$) then, Error 2 message is displayed three times by flashing.

RESET KEY: Reset can be also used as an emergency stop switch of the motor drive system. REVERSE KEY:This key is used to rex̀erse the direction of the motor. It is connected to INT pin of the CPU via a one shot chip (interrupt circuit) .

$\begin{gathered} \text { CBJ } \\ \text { CODE } \end{gathered}$	－－SOURCE statement		$\begin{aligned} & \text { OBI } \\ & \text { CODE } \end{aligned}$	SCURCE STATEMENT		$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		$\begin{gathered} \text { OBJ } \\ \text { CODE } \end{gathered}$	SOURCE STATEMERT		
BE	ADC	A．IHLI	E620	AND	n	C363	319	$4 . E$	EDB1	CPIF		
DCSE05	ADC	A．$\\|(1 \mathrm{X}+\mathrm{Cl} \mid$	CB46	EIT	0.1 HL ）	CE54	517	A．H	EDA1	CPL		
fC2E05	$A D C$	A．$\\|$（IY－d）	DDCB0546	E！T	$0.11 \mathrm{X}+\mathrm{d})$	C865	B19	4，1	2 F	CPL		
8F	$A D C$	A，A	FDCEO546	EIT	$0.11 Y+d)$	Cbíe	Sit	5， HL ）	27	cAA		
88	$A D C$	A，B	CPa7．	8： 7	0.4	Docses6e	EIt	$5.11 \mathrm{X}+\mathrm{d})$	35	CEC	1H2：	
89	$\triangle D C$	A，C	Ce40	eit	$0 . E$	focrosbe	515	$5.11 Y+d)$	D03505	OEC	：ix－a	
BA	$A D C$	A．D	C341	Bit	O．C	C85F	Bit	5．A	FD3505	OEC	（1Y－d）	
88	$A D C$	A， $\mathrm{E}^{\text {A }}$	CE42	ert	$0 . \mathrm{D}$	cees	917	5.8	30	CEC	$\stackrel{\text { a }}{ }$	
8 C	ADC	A．H	C343	git	0 E	cees	B19	$5 . C$	05	OEC	${ }^{\text {P }}$	
80	$\triangle D C$	A．L	CB44	$3: T$	0.4	CS5A	Bit	5.0	C8	こEC	$\stackrel{\square}{6}$	
CE20	ADC	A，${ }^{\text {a }}$	C345	eit	0.1	CESb	B： 7	E．E	00	SEC	$\stackrel{\square}{0}$	
ĖD4A	ADC	HL，BC	CBSE	Sit	1 （ HL ）	CBEC	att	5.4	15	DEC	0	
ED5A	ADC	HL．DE	U0CBJJ5E	8：5	i． $118 \mathrm{x}+\mathrm{d})$	C360	B：T	51	18.	DEC	DE	
ecga	$A D C$	HL．HL＇	FDCEOS4E	SIT	$1.11 Y+d 1$	CB76	B1T	6．：H1	10	DEC	E	
EDTA	ADC	HL．SP	C8SF	Eit	1．A	DOC30570	$3 i 5$	$6.19 x+d)$	25	DEC	H	
$\varepsilon 6$	ADD．	A．（HL）	C3－8	EIT	1.3	FOCE0576	Eir	$6.11 Y+d)$	2 B	DEC	H： IX	
D03605	$A D D$ ．	A．（1X (1)	CES9	SIT	1．C	C377	E！	$6 \pm$	DO2B	DEC	$1 \times$	
FO8605	AOD	A．$(1 Y+d)$	C84A	EIT	1.0	cs 70	E1T	6.5	FD：8	ご兵	IY	
87	400	A．A	cEse	git	$1 . E$	C371	elt	EC	20	DEし	L	
80	ADD	A．S	csac	Bit	$1 . \mathrm{H}$	C372	$8 i t$	5.0	38 5 7	$\begin{aligned} & \text { DEC } \\ & \text { Di } \end{aligned}$	SP	
81	AOD	A．C	Cest	815	1：	C573	315	－ 5	102E	EJuz	\square	
82	AOD	4.0	C55a	315	2 HL	CB74	Bit	6.4	FB	El		
83	ADO	A． 5	O0CE0556	Eit	$2.14 \mathrm{x} \cdot \mathrm{d})$	C375	ait	6.1	E3	Ex	1SP：HL	
84	ADD	A．H	FOC305s6	E：T	$2.14 \mathrm{Y} \cdot \mathrm{d}$	Cs7e	EIt	7.142	DOE3	Ex	1SPI．1x	
85	ADD	A．L	C557	515	2．A	ODCB057	B！t	7． $11 \mathrm{X} \cdot \mathrm{d}$（	FDE3	Ex	15Pi．14	
C620	ADO	A，n	CBEO	515	2.3	Feca057e	Sit	7．11Y＋d）	08	EX	AF．AF＇	
09	ADD	HL，EC	Ces：	515	2.6	Cs 7 F	Bit	7.4	ES	EX	DE．HL	
19	ADD	HL．DE	CE52	E：T	2.0	CB78	315	7.5	09	ExX		
29	$A D D$	HL．HL	C553	E：T	2.5	CE79	B：7	7．C	76	Halt		
39	$A C D$	HL．SP	CS54	E1T	2.4	CE7A	517	7.5	E046	$1: 9$	0	
C009	ADD	1X， 3 C	C355	Bit	2．L	C®7B	SIT	$7 . \mathrm{E}$	E056	189	1	
DD19	ADO	IX．DE	C25E	B：T	3．1HL）	CB7C	eit	7.11	Eose	1：9	2	
0029	ADD	1x．1x	DCCSOS5E	S！T	$3.11 \mathrm{X}+\mathrm{d})$	ce70	St	7.1	EO78	［ N	$\therefore \mathrm{C}$,	
D039	$A D D$	IX，${ }^{\text {P }}$	FDCB055E	8：T	$3.17 \mathrm{Y}+\mathrm{d}$	DC3405	Call	C．nn	E0， 0	： ：	S．Cl	
F009	$A D D$	1Y．EC	CSSF	EIT	3.4	FC3405	cali	A．nn	E048	in	C．Cl	
FD19	ADD	ir．de	C85s	EIT		D48405	call	ne．nn	ミ0s0	in	O．Cl	
FO29	$\triangle D O$	irir	C859	BIt	3.6	C¢E405	CALL	N2．nn	E058	is	E．（C）	
f039	200	iY．sp	CB5A	8it	3.0	$F: 3405$	call	P．nn	edeo	：N	$\mathrm{H}: \mathrm{Cl}$	
A6	AND	（HL）	C356	BIT	3.5	EC3405	call	PE．nn	EC58	i．v	L．C．	
doages	and	$(1 x+d)$	CB5C	BIT	3.4	E45405	cail	PO．nn	34	INC	${ }_{(H L)}$	
FDA605	AND	（IY－d）	CE5D	EIT	3.1	CC8405	call	$2 . n n$	D03405	Ific	（11P－d）	
A7	AND	A	C866	BII	4．1＋： $\mathbf{4}^{1} 1$	CO8405	call	nn	F03＊05	$1 \therefore \mathrm{C}$	$(1 Y+d)$	
AO	AND	B	DDCe0566	EIT：	$4.11 x+d \mid$	3 F	CCF	＇	3 C	INC	A	
AI	AND	c	FDCE0566	eit	$4.11 y+d \mid$	BE	CP	（ HL ）	04	INC	8	
A2	AND	0	C867	BIT	4．A	coeeds	$\mathrm{CP}^{\text {P }}$	（1x－di	03	inc	EC	
A3	AND	E	CE60	BIT	4， 8	FDEES	CP	（1Y＋d）	0 C	NiNC	${ }^{C}$	
A4	AND	H	C361	SIT	4．C	BF	CP	A	14	inc	0	
A5	ANO	L	CB62	BIT	4.0	E8	CP	8	13	INC．	DE	
C339	SRL	c	C82B	SRA	E	89	CP	c	1 C	INC	E	
CBia	SRL	0	CB2C	SRA	H	8A	$C P$	0	24	INC	H	
С83B	SRL	E	CB2D	SRA	L	BB	CP	E	23	INC	HL	
С83С	SAL	H	CB3E	SRL	（HL）	8C	$\mathrm{CP}^{\text {P }}$	H	D023	INC	1X	
CB30	SRL	1	ODCB053E	SRL	（1x．d）	BO	CP	L	F023	inc	iY	
96	Sus	（HL）	focbe5je	SRL	$(1 Y+d)$	FE20		n	2 C	INC	SP	
009605	sub	$(11 x \cdot d)$	C83F	SRL	A	EDA9 EDFg	CPD CPDR		33. 0820	INC	SP A．	

280 MACHINE CODE IISTING

$\begin{gathered} \text { OBJ } \\ \text { CODE } \end{gathered}$	$\begin{aligned} & \text { SOURCE } \\ & \text { STATEMENT } \end{aligned}$		$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOUACE STATEMENT		$\begin{aligned} & \mathrm{OBJ} \\ & \mathrm{CODE} \end{aligned}$	SOURCE STATEMENT		
EDLA	IND		D07E05	LD	A. $(1 \times+\mathrm{c})$	5 B	10	E.E	EDE3	Otir		
EDBA	INDR		FDTE05	LD	A.(1Y-d)	5 C	10	E.H	ED79	OUT	(C).A	
EDA2	livi		348405	LD	A. (nn)	5 D	- LD	E. 1	ED41	OUT	101.8	
EDE2	INIT		7 F	LD	A.A	1 E20	10	En	ED49	OUT	ICIC	
C38405	JP	${ }^{n n}$	78	10	A.B	66.	LD	E.n	EDA9	-ut	(c).c	
E9	JP	(HL)	79	LD	A.C	D06605	LD	H.ML)	ED5	OUT	(c).0	
ODE9	JP	(1x)	7 A	LD	A. 0	FD6605	10	H.lix of	ED69	Out	(CIE	
FDE9	JP	\|r		78	LD	A.E	67	10	H,11Y-d)	ED69	Out	(C).
DASA05	JP	C.nn	7 C	LD	A.H	67	LD	H.A	ED69	OUT	$1 \mathrm{Cl}, \mathrm{L}$	
f48405	JP	M, nn	ED57	10	A. 1	61	LD	${ }_{\text {H. }} \mathrm{C}$	EDAB	OUTD	Ini.A	
028405	JP	NC.nn	7 D	LD	A.L	62	LD	H.D	EDA3	OUTI		
C 26405	JP	N2.nn	3 E 20	LD	A.n	63	LD	H.E	F1	POP	AF	
F28405	JP	P.nn	EDSF	LD	A.R	64	LJ	HH	C)	PGP	BC	
EA2405	JP	PE,nn	46	LD	E.IH:-	65	10	H.L	D1	POP	DE	
E28405	JP	PO.nn	OD<605	LD	B.(1)-0)	2620	10	H.n	E1	POF	HL	
Cfís05	JP	2.nn	FD6605	LO	B.IIY-Cl	248405	10	HL.(nn)	DDE 1	POP	1 X	
382 E	JR	C.e	47	LD	E..	218405	LD	HL.nn	FDE:	POP	IY	
. 302 E	JR	NC.e	40	10	E. 8	ED: 7	10	I.A	F5	PUSH	AF	
$202 E$	JR	NZ.4	41	\therefore -	E.C	DD2A8405	10	\|x.inn)	C5	PUSH	BC	
282E	JR	$2 . e$	42	10	E. ${ }^{\text {c }}$	D02:8405	10	1 x .nn	D5	Push	DE	
1825	JR	e ..l	43	10	E, E	FD285405	L.	IY.(nn)	ES	PUSH	HL	
02	10	18CI,A	44	10	E H	F ${ }^{\text {2 } 218405}$	L!	IY.nn	DDES	FUSH	IX	
12	L0	IDEIA	45	10	E.L	6 E	LD	2.thl)	FDES	PUSH	IY	
77	10	(HIT.A	0020	LD	E.n	DO6E05	L0	L. $11 \times$ - d)	CBEE	RES	O.thli	
20	LD	(HLI, ${ }^{\text {c }}$	ED4E84C5	L0	BC, man)	F06E05	25	L.(1Y-d)	DDCE0586	RES	$0.11 \mathrm{X}+\mathrm{d}$	
71	LD	IHLIC	018405	10	BC.nm	6 F .	10	L.A	FDCB0586	RES	$0.11 \mathrm{Y} \cdot \mathrm{d})$	
72	LD	1HLI.D	4 E	10	C.:HLI	68	LD	L.e	CE87	Res	0.2	
73	LO	IHLIE	DO4E05	LD	C. $11 \mathrm{X} \cdot \mathrm{dl}$	69	L0	L.C	CEEO	RES	0.8	
74	LD	(HL).M	FDES05	10	c.ilred)	6 6	LD'	1.0	CE8:	RES	O.C	
75	LD	(HC)L	4 F	LO	C.A	6 B	LD	L.E	C882	RES	0.0	
. 3620	LO	(HL).n	48	LD	C. $\mathrm{E}_{\text {c }}$	6C	Lo	1.4	CB83	RES	$0 . E$	
D07705	L.	$11 x \cdot d 1.4$	49	LD	C.C	60	10	L.L	C884	RES	0.H	
DD7C05	LD	$11 \mathrm{x}+\mathrm{d!}$. 8	44	LD	C. 0	2E20	LD	L.n	C885	RES	0.1	
007105	10	(11x-d). ${ }^{(1)}$	46	LD	C. ${ }^{\text {c }}$	ED4F	10	R.A	CB8E	RES	1.(HL)	
007205	L0	(1x-d) D	4 C	10	C. ${ }^{\text {c }}$	EDTBEAO5	15	SP.(nn)	ODCB058E	RES	1.(1x-c)	
D07305	LO	(1x-d.E	40	LD	C.L	F9	LD	SP.H:	fDCB058E	RES	$1 .(17 \cdot 0)$	
D07405	10	$11 \mathrm{x}+\mathrm{d} 1 . \mathrm{H}$	OE20	LD	C.n	DDF9	10	SP.IX	CB8F	RES	1.A	
007505	LO	(11x-d).	56	10	C.1H:	FDF9	10^{-}	SP.IY	Cess	RES	1.8	
D0360520	LD	IIX-di.n	DD5605	10	D.ilx-d	318405	LD	SP.nn	CB69	RES	1.C	
FD7:05	LD	(IY-d). ${ }^{\text {(i) }}$	FD5E05	L0	D. $11 \mathrm{Y} \cdot \mathrm{d}$)	EDA8	LDD		CE8A	RES	1.0	
FD7005	LO	(iY-d).B	57	L0	D.A	EDes	LDDR		CEBB	RES	1.6	
foilos	LO	IVY-c!.c	50	LD	D.E	EDAO	LDI		CBSC	RES	1.4	
FD7205	10	IV-d). ${ }^{\text {IVP}}$	51	LD	D. 0	EDBO	LDIR		CBBD	FES	$1 . L$	
F01305	10	IY-dI.E	52	LD	0.0	ED44	NEG		C896	RES	$2 .(\mathrm{HL})$	
FD1405	10	(IY-d).H	53	10	D.E	00	NOP		DDCB0596	RES	$2.11 \mathrm{x}+\mathrm{d})$	
FD7505	10	(IY-d).L	54	LD	D.H	86	OR	(HL)	FDCS0596	RES	$2 .(1 Y+d)$	
FD360520	LD	(1Y-d).n	55	LD	D.L	DD8605	OR	$(1 x+d)$				
323405	10	(nn).A	1 ¢20	LD	D.n	FDB605	. OR	(1Y+d)	Ces	PES	$2 . \mathrm{B}$	
ED438405	LD	(nn). BC	ED5684C5	LD	DE.(m)	57	OR	A	C891	RES	2.8	
E0538405	Lo	(nn).DE	11840E	LD	DE.nn	eo :	OR	日	CB92	RES	$2 . \mathrm{D}$	
226405	10	(nn).HL	5 E	LD	F.\|HI)	81	OR	C	CB93	RES	$2 . E$	
00225405	LD	(nn).1X	DOEEOS	LD	E. $11 \lambda+\mathrm{c})$	日2		D	C894	RES	2.H	
FD228:05	-LD	(m).ty	FD5E05	LD	E.(IY-d)			H	C895	RES	2.1	
ED738405	60	(nal.SP.	5 F	10	E.A	85	OR	1	cbie	RES	3.1 HL)	
OA	10	A. 18 Cl	58	LD	E.B			n	DDCB059E	RES	$3.11 x+d)$	
14	LO	A. OES_{1}	59	10	E.C	ED8B	OTDR		FDCE059E	RES	$3 .(1 Y+d)$	
7E	LD	A. (HL)	54	LD	E. 0							

$\begin{gathered} \text { OBJ } \\ \text { CODE } \end{gathered}$	SOURCE STATEMENT		$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT		$\begin{aligned} & O B J \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { SOURCE } \\ & \text { STATEMENT } \end{aligned}$		$\begin{aligned} & \text { OBJ } \\ & \text { CODE } \end{aligned}$	SOURCE STATEMENT	
CB9F	RES	3.4	ED4D	RETI		DDCB05E6	SET	$4 .(11 \times+d)$	9 E	SBC	A. ${ }^{(H L)}$
CB98	RES	3,B	EDA5	RETN		FDCB05E6	SET	$4 .(1 Y+d)$	D09505	SBC	A. $(1) \mathrm{X}+\mathrm{d})$
CB99	RES	$3 . \mathrm{C}$	CB16	RL	(HL)	CBE7	SET	$4 . \mathrm{A}$	FO9E05	SBC	$A .(1 Y+d)$
Ce9a	Res	3.0	DDCB0516	RL	$(1 X+8)$	CBEO	SET	4.8	9 F	SBC	A.A
C698	RES	$3 . E$	FDCB0516	RL	($17+d$	CBE1	SET	4.C	98	SBC	A, B
C89C	RES	3.4	CB17	RL	A	CBE2	SET	4.0	99	SBC	A.C
C890	RES	3.1	CE10	RL	B	CBE3	SET	$4 . E$	9 9	SBC	A.D
CBA6	RES	4.(HL)	CE11	RL	c	CBE4	SET	$4 . \mathrm{H}$	98	SBC	A.E
docbosas	Res	4. $(11 \mathrm{x}+\mathrm{d})$	CB12	RL	D	CBE5	SET	4.L	96	SBC	A.H
FDCBoSá	fes	A, (1Y+a)	CE13	RL	E	CBEE	SET	5.(HL)	90	SBC	A.L
CBAT	fes	4, A	CB14	RL	H	DDCSO5EE	SET	$5 .(1 X+d)$	ED42	SBC	HL.BC
CbAO	RES	4.B	CB15	RL	1	FDCB05EE	SET	$5 .(1 Y+d)$	E052	SBC	HL, DE
CBAI	PES	4.C	17	fla		CBEF	SET	5.A	ED62	SSC	HL.HL
CEA2	RES	4.D	CsOs	flc	(HL)	CBEB	SET	5.8	ED72	Sac	HLSP
CBA3	RES	$4 . \mathrm{E}$	DDCB0505	RLC	(IX Cd]	Cbeg	SET	5.C	37	SCF	
CBA4	fes	4.H	FDCE0506	RLC	\| $\mid Y+\mathrm{d\mid}$	CBEA	SET	5.0	CBC6	SET	0.9 HL
CBA5	fes	4, L	CE07	FLC	A	Cbeb	SET	$5 . \mathrm{E}$	DDCE05C6	SET	$0 .\left(1 x^{-d)}\right.$
CeaE	FES	5.1HL)	C300	FLC	B	CBEC	SET	5.H	FDC305C5	SET	$0 .(1 Y+0)$
DDCB05AE	Res	$5 .(1 X+d)$	CEO1	RLC	C	CBED	SET	5,L	CBC7	SET	O.A
FDCBO5AE	Res	$5 .(1 Y+d)$.	CBO2	RLC	D	CBF6	SET	6,(HL)	csco	SET	0, B
ceaf	FES	5.4	CEO3	RLC	E	DOCB05F6	SET	$6.11 x+d\}$	CBCl	SET	O.C
CBAB	RES	5.8	CED 4	fle	H	FDCB05F6	SET	$6 .(1) Y+d)$	CBC2	SET	0.0
CEA9	RES	5.C	CB05	RLC	L	CBF7	SET	6.4	C8C3	SET	O.E
cbat	feS	5.D	07	RLCA		CBFO	SET	6.81	CBC4	SET	O.H
CBAB	feS	$5 . E$	EDGF	FLD		CBF 1	SET	6.6	CBC5	SET	$0 . L$
CEAC	fes	5.4	CEIE	R ${ }^{\text {a }}$	(HL)	CBF2	SET	6.0	CBCE	SET	1.14 L
CEAD	fes	5.1	DDCE051E	FR.	$11 \times+01$	CEF3	SET	$6 . E$	DOCB05CE	SET	$1 .(1 x+d)$
CES6	feS	6.1HL)	FDCEOSTE	RR	(IY+d)	CBF4	SET	6.4	FDCSO5CE	SET	$1 .(1 Y+d)$
DOCB05B6	FES	$6 .(11 x+d)$	CE1F	RF	A	CBF5	SET	6.1	CBCF	SET	1.A
FDCB05E6	Res	$6 .(1 Y+d)$	CE18	RR	B	CBFE	SET	7.1HL)	CBC8	SET	1.8
CBE7	RES	6.4	CB19	RA	C	DOCBOSFE	SET	7, $11 \mathrm{X}+\mathrm{d}$)	CbC9	SET	$1 . \mathrm{C}$
CBEO	RES	6, $\mathrm{B}^{\text {c }}$	CbiA	RR	D	focbosfe	SET	7. $11 \mathrm{Y}+\mathrm{d})$	CBCA	SET	1.0
Cesi	RES	6.C	CBib	RR	E	CBFF	SET	7.A	CBCB	SET	$1 . E$
CBE2	RES	6,D	CBic	RR	H	CBF8	SET	7.8	CBCC	SET	1.H
CBE3	RES	6.E	CBiD	FR	1	CBF9	SET	7.6	CBCD	SET	1.2
CBB4	RES	E. H	1 F	RRA		CBFA	SET	7.0	C8C6	SET	$2.15 \mathrm{~L})$
CEB5	RES	6.1	CEOE	RRC	$(H L)$ $(1 X+d)$	C8FB	SET	7.6	ODC80506	SET	$2 .(1 X+d)$
CbBE	RES	$7.1 \mathrm{HL})$	DOCBO50E	RRC	$(1 X+d)$	CBFC	SET	7. H	FDCB05D6	SET	2, $11 Y+d)$
DDCb05se	fes	$7 .(1 X+d)$	FJCB050E	RFC	($1 Y+d)$	CBFD	SET	7.1	CBD7	SET	$2 . A$
FDCB053E	RES	$7.11 Y+d)$	CBOF	RRC	A	CB26	SLA	(HL)	CBDO	SET	2.8
CESF	RES	7.A	C808	RRC	8	DOC30526	SLA	(IXPd)	CBDI	SE	2,C
CEs8	RES	7.8	C809	RRC	C	FDC80526	SLA	$(19+d)$	C802	SET	2.0
CEE9	fes	$7 . \mathrm{C}$	C80a	RRC	D	CB27	SLA	A	CBO3	SET	$2 . E$
Cbsa	RES	7.0	C80e	RRC	+	CE20	SLA	8	C9D4	SET	2.4
CBEB	RES	$7 . \mathrm{E}$	CBOD	RRC	H	C821	SCA	C	C305	SET.	2.1
CEBC	RES	7.4	OF	RRCA		CB22	SLA	0	C808	SET	3.8
CEBD	RES	7.1	ED67	PRD		CE23	SLA	E	CBDE	SET	3.14 LL
C9	RET		C7	RSt	OOH	C824	, SLA	H	CJCBOSDE	SET	$3.11 \mathrm{X}+\mathrm{d})$
D8	RET	c	CF	RSt	O8H	CB25	SLA	L	FDCBO5DE	SET	$3.11 Y+d)$
FE	FET	N	D7	RSt	10 H	CB2E	SRA	(HL)	CBDF	SET	3,4
. CO	RET	HC	DF	FST	184	ODCB052E	SRA	$(1 X+d)$	CBD9	SET	$3 . \mathrm{C}$
CO	FET	Nz	E7	RST	20 H	F.DCB052E	SRA	$(1 Y+d)$	CBDA	SET	3.0
FO	RET	P	EF	RST	2 EH	CB2F	SRA	A	CEDB	SET	$3 . E$
E8	RET	PE	F7	RST	3 CH	CB2B	SRA	B	CBDC	SET	3.M
EO	RET	PO	FF	RST	3 EH	C829	SRA	C	CEDO	SET	3.1
CB	RET	2	DE20	SEC	A.n	CB2A	SRA	D	CBE6	SET	4.1HL)
94	SUB	H	90	sub	B	AA	XOR		DDAE05	XOA	(11X-d)
95	SUB	$\stackrel{\text { L }}{ }$	91	sub	c	AB	$\times \mathrm{XOR}$		FDAEOS	$\times 1$	(1Y-d)
D620	sub	n	92	sub	0	$A C$	\times XOR		AF	$\times O R$	A
AE	XOR	(HL)	33	sub	E	AD	XOR $\times O R$	n	48	$\times \mathrm{XOR}$	B

intel

8255A/8255A-5
 PROGRAMMABLE PERIPHERAL INTERFACE

- MCS-85 ${ }^{\text {TM }}$ Compatible 8255A.5
- 24 Programmable I/O Pins
- Completely TTL Compatible
- Fully Compatible with Intel ${ }^{*}$ Microprocessor Families
- Improved Timing Characteristics
m Direct Bit Set/Reset Capability Easing Control Application Interface
- 40-Pin Dual In-Line Package
- Reduces System Package Count
- Improved DC Driving Capability
\because \& Intel* 8255A is a general purpose programmable $1 / O$ device designed for use with Intel** microprocessors. It has * 4 O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first mode (MODE O), each group of $121 / O$ pins may be programmed in sets of 4 to be input or output. In MODE 1 , the secona - de, each group may be programmed to have 8 lines of input or output. Ot the remaining 4 pins, 3 are used for hand4ing and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8

Figure 1. 8255A Block Diagram
Figure 2. Pin Configuration

8255A FUNCTIONAL DESCRIPTION

General

The 8255A is a programmable peripheral interface (PPI) device designed for use in Intel* * microcomputer systems. Its function is that of a general purpose l/O component to interface peripheral equipment to the microcomputer system bus. The functional configuration of the 8255A is programmed by the system soffware so that normally no external logic is necessary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8 -bit bulfer is used to interface the 8255A to the system data bus. Data is transmitted or received by the buffer upon execution of input or outpul instructions by the CPU. Control words and status information are also transferred through the data bus bulfer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the CPU Address and Control busses and in turn, issues commands to both of the Control Groups.

(CS)

Chip Select. A "low" on this input pin enables the communiction between the 8255A and the CPU.
($\overline{\mathrm{RD}})$
Read. A "low" on this input pin enables thẹ " "- " send the data or status information to the c. m data bus. In essence, it allows the CPU to "ins. the 8255A.
($\bar{W} \bar{B}$)
Write. A "low" on this input pin enables the CPU '-. data or control words into the 8255A.
(A_{0} and A_{1})
Port Select 0 and Port Select 1. These input sicab. conjunction with the RD and WR inputs, con. selection of one of the three ports or the contr: ... registers. They are normally connected to the... significant bits of the address bus (A_{0} and A_{1}).

8255A BASIC OPERATION

A_{1}	A_{0}	$\overline{\text { ¢0 }}$	$\overline{\mathrm{WR}}$	CS	INPUT OPERATION(4),
0	0	0	1	0	POAT A \rightarrow DATA BUS,
0	1	0	1	0	PORT B - DATA BU:
1	0	0	1	0	PORT C \rightarrow DATA BIF.
					OUTPUT OPERATION (WRITE)
0	0	1	0	0	DATA BUS \rightarrow PORTA
0	1	1	0	0	DATA BUS \sim PORT H
1	0	1	0	0	DATA BUS = PORT C
1	1	1	0	0	DATA BUS - CONTHC
					DISABLE FUNCTION
x	x	\times	X	1	DATA BUS-3-STATI
1	1	0	1	0	ILLEGAL CONDITIT:,
x	X	1	1	0	DATA BUS - 3-STATI

Figure 3. 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

8255A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can be selected by the system software:

Mode 0 - Basic Input/Output
Mode 1 - Strobed Input/Output
Mode 2 - Bi-Directional Bus
When the reset input goes "high" all ports will be set to the input mode (l.e., all 24 lines will be in the high im. pedance state). After the resel is removed the 8255A can remain in the input mode with no additional initialization required. During the execution of the system program any of the other modes may be selected using a single output instruction. This allows a single 8255A to service a variety of peripheral devices with a simple solfware maintenance routine.

The modes for Port A and Port B can be separately defined, while Port C is divided into two portions as required by the Port A and Port B definitions. All of the output registers, including the status flip-flops, will be reset whenever the mode is changed. Modes may be combined so that their functional definition can be "tailored" to almost any 1/O structure. For instance; Group B can be programmed in Mode 0 to monitor simple switch closings or displav computational results, Group A could be programmed in Mord 1 to monitor a keyboard or tape reader on an interrupt-driven basis.

Figure 5. Basic Mode Deflnitions \because and Bus Interface

Figure 6. Mode Definition Format

The mode definitions and possible mode combinal... may seem confusing at first but alter a cursory revir a the complete device operation a simple, logical $/ / 0$, proach will surface. The design of the 8255A has ta. . into account things such as efficient PC board lay. control signal definition vs PC layout and comp.. functional llexibility to support almost any periptin. device with no external logic. Such design repres.-. the maximum use of the available pins.

Single BII SeUReset Feature

Any of the eight bits of Port C can be Set or Reset usin:, single OUTput instruction. This feature reduces softw, requirements in Control-hased applications.

BIBLIOGRAPHY

I．Acarnley P．P．，Stepping Motors，Peter Peregrinus Itd．， 1982

2．Miyamoto H．，Goeldel C．，A Microproccessor－Based Time Optimal Control of A Variable－Reluctance Step Motor ，IEEE Transactions on Industrial Elect．，Vol．29．No．3，pp 190－196 August 1982

3．Acarnley P．Po，Gibbons Po，Closed Loop Control of Stepping Motors ：Prediction and Realization of Optimum Switching Angle ，IEEE Proc．Vol．129，No．4，pp 211－216 ，july 1982

4．Barden W．，The 280 Microcomputer Handbook，Tabs， 1981
5．Zaks R．，Microproccessor Interfacing Techniques，Sybexs， 1982

6．Bailey D．A。，Stepper Motor Drive Circuit，Wireless World pp 76－81，February 1983

7．Vraets W．J．，French D．，Minor Closed Loop Control of Step－ ping Motors For Use In High Speed Positioning ，Int。J。Mach． Tool Des．Res．，Vol．21，No．314，pp．217－223， 1981

[^0]: $\because \quad$ Table 5.1. Stepping Rate and Delay Count Value Relationship.

