

MICROPROCESSOR CONTROLIED
 DETECTION AND DRILIING OF PCB HOLES UTILIZING AN X-Y STAGE SCANNER

by
IERAHIM OZYALCIN

B.S. in E.E., Bogazici University, 1981

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of

Master of Science in

Electrical Engineering Bogazici University Library
 39001100315426

Bogaziçi University 1984

ACKNOWLEDGEMENTS

It is indeed a great privilege to acknowledge those people who have extended their utmost support to me throughout both my undergraduate and graduate careers.

I would especially like to express my sincere gratitude and deepest appreciation for the understanding, co-operation and the extremely helpful guidance provided by my thesis advisor Doc. Dr. Okyay Kaynak.

I would like to thank Doc. Dr. Ömer Cerid for his valuable suggestions concerning the hardware of the system and Doc. Dr. Yorgo Istefanopulos, my undergraduate advisor, for his guidance, which he has extended to me throughout my course.

I am also very grateful to Doc. Dr. Vahan Kalenderoglu for his indispensable assistance on behalf of the mechanical design and the realization of the thesis.

ABSTRACT

The purpose of the thesis is to design and realise a system to detect and simulate the drilling of drilling-hole positions in printed circuit board masks making use of a stepper motor driven mechanical moving stage scanner under the control of microprocessor.

Determination of the print outline and the effective frame length, detection of the dots at proper drilling-hole positions, scanning of the dot mask in a meander pattern, generation of switching sequence of the unipolar stepper motors are under the control of software and achieved by interfacing the stage scanner, drive circuitry of the steppers and the detection system to a $2-80$ microprocessor card.

Since all the control actions are performed by the microprocessor, the prototype can be considered as an intelligent system. The drilling part of the software minimizes the drilling process time making use of optimum path algorithm.

OZETGE

Günümüzde, baskıli devrelerin delik delme islemi devreler deneme safhasindayken miktarlarin azlığ nedeniyle önemli bir problem olusturmakta ve kallp-pin yöntemi masraflı oldugundan delikler el ile delinmektedir. Tezin amacı bu soruna cözüm getirmektir.

Yapilan prototipte baskilı devre üzerindeki delik yerleri işik geçiren bir filme işaretlenerek bu filmin mikro islemci denetiminde optik yöntemle taranmasiyla saptan makta ve delme islemi tir $1 \underset{\uparrow}{ } 1 \mathrm{kla}$ simuile edilmektedir.

Sistemde kullanilan mekanik tezgah X ve Y yönlerinde adimlayicı motorlarla hareket ettirilmekte ve tarama işleminde: satır yöntemi kullanılmaktadir. Optik sistemin ve motorların tüm kontrolu $2-80$ mikroiçlemcisi ile gerçekleştirilmis bir kart tarafindan saglanmaktadır. Geliṣtirilen sistemde yazilım, delme isleminde zamanı kisaltmak icin optimum yol algoritmasıni içermektedir.

TAELE OF CONTENTS

Page
ACKNOWLEDGEMENTS iii
ABSTRACT iv
OZZETCE v
LIST OF FIGURES vi
IIST OF TAELES vii
I. INTRODUCTION 1
II. STEPPER MOTORS 4
A. CONSTRUCTION AND OPERATION 5

1. STEP ANGLE 6
2. STEP ACCURACY 6
3. TORQUE 7
a. HOLDING TORQUE 7
b. RESIDUAL TORQUE 7
4. STEP RESPONSE 8
5. RESONANCE 9
6. TRANSLATOR 9
7. PRESET INDEXER 9
8. RAMPING 10
9. START/STOP WITHOUT ERROR 11
10. SLEW RATE 11
11. DAMPING 12
B. DRIVE METHODS 13
12. EIPOLAR 13
13. UNIPOLAR 13
14. I / R DRIVE 15
15. BI-IEVEL DRIVE 15
16. CHOPPER DRIVE 17
17. WAVE DRIVE 17
C. CHARACTERISTICS OF STEPPERS USED IN THE SYSTEM 17
III. SYSTEM HARDWARE 19
A. MECHANICAL ASSEMBLY 19
B. MECHANICAL DESIGN 20
18. BASE PIATE 20
19. Intermediate y-plate 20
20. INTERMEDIATE X-PLATE 21
21. LINEAR MOTION BEARINGS WITH CYIINDRICAL SHAFTS 21
22. LEAD-SCREW AND ITS NUT 22
23. MOTOR SHAFT--IEAD-SCREW COUPLINGS 23
24. GLASS PLATE 23
25. OPERATION 24
C. STEPPER MOTOR DRIVE CIRCUITRY 25
D. Z-80 MICROFROCESSOR BASED CARD 32
26. Z-80 CPU 32
27. Z-80 PIO 32
28. MEMORY 33
29. OTHER IC'S 34
E. POWER SUPPIY UNIT 36
30. HIGH VOLTAGE SUPPLY (42V) 36
31. LOW VOLTAGE SUPPLY (18V) 36
32. +5 VOLT SUPPLY 37
33. ADJUSTAELE VOLTAGE SUPPLY 37

Page

F. OPTIC DETECTOR 40
IV. SYSTEM SOFTWARE 43
A. DETECTION PROGRAM 43

1. IINE DETECTION PROGRAM 43
2. FRAME LENGTH DETECTION PROGRAM 46
3. SCANNING AND STORING PROGRAM 48
a. CONSTANT SPEED SCANNING AND
DETECTION 48
b. HIGH SPEED SCANNING AND
DETECTION 51
c. STORE PROGRAM 54
B. DRILIIING PROGRAM 56
C. SUBPROGRAMS 58
4. RESET ROUTINE 58
5. INTERRUPT SERVICE ROUTINE 59
6. ACCELERATION AND DECELERATION SUEROUTINES 61
7. CONSTANT SFEED SURROUTINES 62
8. DELAY SUBROUTINES 62
v. CONCLUSION 64
APPERDIX A (OPERATING INSTRUCTIONS) 67
APPENDIX B (STEPPER MOTOR SPECIFICATIONS) 70
APPENDIX C (MECHANICAL ASSEMELY) 71
APPENDIX D (Z-80 CPU) 74
APPENDIX E (Z-80 PIO) 78
APPENDIX F (NEGATIVE CIRCUIT LAYOUTS) 81
APPENDIX G (GIRCUIT SCHEMATICS) 84
APPENDIX H (FLOWCHARTS) 85
APPENDIX I (ASSEMBLER PROGRAMS) 105
RTPT.TOGRAPHY 151

IIST OF FIGURES

Page

FIGURE 1.1 System configuration 2
FIGURE 2.1 Schematic-4 step switching sequence 5
FIGURE 2.2 Single step response 8
FIGURE 2.3 Step rate/time 10
FIGURE 2.4 Speed/torque curve 11
FIGURE 2.5 Damped response 12
FIGURE 2.6 Schematic bipolar switching sequence 14
FIGURE 2.7 Schematic unipolar switching sequence 14
FIGURE $2.8 \quad \mathrm{~L} / \mathrm{R}$ drive 16
FIGURE 2.9 Unipolar bi-level drive 16
FIGURE 3.1 RI circuit transient 27
FIGURE 3.2 RI transient of the prototype 28
FIGURE 3.3 Stepper motor drive circuitry 31
FIGURE 3.4 Drill simulator circuitry 34
FIGURE 3.5 Address decoding 34
FIGURE 3.6 Power supply circuits 39
FIGURE 3.7 Detection circuitry 41
FIGURE 3.8 Detection mechanism 42
FIGURE 4.1 Dot dimensions 45
FIGURE 4.2 Line detection 63
FIGURE 4.3 Frame detection 63
FIGURE 4.4 Scanning pattern 63

I. INTRODUCTION

The automatic drilling machines for drilling holes in printed circuit boards at positions stored on cassettes are widely used, but the determination of the hole positions of ten has to be done by hand. For a small series of printed circuit boards, generating the list of drilling positions is a very substantial part of the total production time. Another method but far more primitive, is drilling holes manually, which consumes more time and is less accurate than the aforementioned.

On the other hand, in the near future, Computer Aided Design will become very important, at which time the drilling positions will be known from the design process. However presently many of the layouts are made by hand. So the best way of handling holes of printed circuit boards is by the automatic determination of drilling positions, which is very costeffective, where a small series of boards is concerned.

The developed prototype has mainly two aspects: One of them is the automatic scanning of the transparent layout with an optic sensor. The other is the simulation of the drilling procedure. For this purpose, a LED is used instead of a drill. Software provides all controls i.e, scanning, detection, the driving of the stepper motors and simulation of the drilling operation. Thus the system does not need any manual work for operation except pushing the start button and provides high accuracy due to precision stepper motors and high resolution optic sensor.

Figure 1.1

System has six main units. Those are :

1. Control panel
2. Z-80 microprocessor based card
3. Stepper drive circuitry
4. Mechanical assembly
5. Power supply unit
6. Optic detector

The above units will be explained in detail in the system hardware section.

II. STEPPER MOTORS

The stepping motor is a device which translates electrical pulses into mechanical movements. The output shaft rotates or moves through a specific angular rotation per each incoming pulse or excitation.This angle or displacement per movement is repeated precisely with each succeeding pulse translated by appropriate drive circuitry. The results of this precise,fixed and repeatable movement is the ability to accurately position.As opposed to a conventioal motor which has a free running shaft, the step motor shaft rotation is in fixed, repeatable,known increments. The stepping motor therefore allows load control ability of velocity, distance and direction.Initial positioning accuracy of a load being driven by a stepping motor is excellent. The repeatability(the ability to position through the same pattern of $: m o v e m e n t s$ a multiple number of times) is even greater. The only system error introduced by the stepping motor is its single step error,and this is generally less than five percent of one step. Most significantly this error is noncumulative, regardless of distance positioned or number of times repositioning takes place.

A. Construction and Operation

In a typical motor, electrical power is applied to two coils. Two stator cups formed around each of these coils with pole pairs mechanically displaced by half a pole pitch, become alternately energized north and south magnetic poles. Fetween the two stator-coil pairs the displacement is one fourth of a pole pitch.

The permanent magnet rotor is magnetized with the same number of pole pairs as contained by one stator-coil section. Interaction between the rotor and stator (opposite poles attracting and likes repeliing) causes the rotor to move one fourth of a pole pitch per winding polarity change. A two phase motor with 12 pole pairs per stator-coil section would thus move 48 steps per revolution or seven and a half per step.

The normal electrical input is a four step switching sequence as shown in figure 2.1

STEP	COILA	COILB
9	+	+
2	+	-
3	-	-
4	-	+
1	+	+

Continuing the sequence causes the rotor to rotate forward. Reversing the sequence reverses the direction of rotation. Thus, the stepper motor can be easily controlled by a pulse input drive which can be a two flip-flop logic circuit operated either open or closed loop.

Hereafter some specific names will be used for the stepper motors, so the below terminology will be needed :

1. Step Angle

The motor shaft rotates its specific angular increment each time the winding polarity is changed. This specific degree of rotation or increment is called the step angle. It is specified in degrees.
2. Step Accuracy

Defined as positional accuracy tolerance. This figure is generally expressed in percent and indicates the total error introduced by the stepping motor in a single movement. The error is noncumulative i.e it does not increase as additional steps are taken. In a linear positioning, with a resolution of . 001 inches a three percent motor would introduce a maximum of .00003 inches error into the system. This total error would not accumulate nor increase with total distance moved or number of movements made. A particular step condition
of the four step sequence repeatedly uses the same coil, magnetic polarity and flux path. Thus the most accurate movement would be to step in multiples of four since electrical and magnetic inbalances are eliminated. Increased accuracy also results from movements which are multiples of two steps. So, in positioning applications it is better to use two or four steps or multiples thereof for each desired measured increment.
3. Torque

The torque produced by a specific stepper motor depends on several factors :
i. The step rate
ii. The drive current supplied to the windings
iii.The drive design
a. Holding Torque. At standstill. (i.e zero steps per second and rated current) the torque required to deflect the rotor a full step is called the holding torque. Normally the holding torque is higher than the running torque and thus acts as a strong brake in holding a load. Since def lection varies with load, the higher the holding torque the more accurate the position will be held.
b. Residual forque. The non-energized detent torque of a PM stepper motor is called residual torque. Asresult of the permanent magnet flux and bearing friction, it has a value
of approximately one tenth the holding torque. This characteristic of permanent magnet steppers is useful in holding a load in the proper position even when the motor is deenergized. The position, however will not be held as accurately as when the motor is energized.
4. Step Response

When given a command to take a step, the motor will respond within a specific time period. This step response or time for a single step is a function of the torque to inertia ratio of the motor and of the characteristics of the electronic drive system. Ratings are given for no-load conditions with time generally expressed in milliseconds. Single step response is shown in figure 2.2

Figure 2.2
5. Resonance

Stepper motors are a spring-mass system and, as such, have certain natural frequency characteristics. When a motor's natural frequency or resonance is reached, an increase in the audible level of the motor's operation can be detected. In cases of severe resonant condition, the motor may lose steps and/or oscillate about a point. The frequency at which this resonance occurs varies, depending on the motor and the load. In many applications it may not occur to any perceptible degree; however, it is felt that the designer should realize that this condition can exist and specific facts about the resonant characteristics of an individual motor should be obtained from the manufacturer.

6. Translator

An electronic control with circuitry to convert pulses into the proper switching sequence, resulting in one motor step taken for each pulse received.
7. Preset Indexer

An electronic control which includes the translator function plus additional circuitry to control the number of steps taken as well as direction and velocity.

8. Ramping

The process of controlling pulse frequency to accelerate the rotor from zero speed to maximum speed as well as to decelerate the rotor from maximum speed to zero speed. Ramping increases the capability of driving the motor and load to higher speed levels, particularly with large inertial loads. A typical acceleration control frequency plot for an incremental movement with equal acceleration and deceleration time would be as shown in figure 2.3

Figure 2.3

Ramping acceleration or deceleration control time allowed :

$$
T_{j}(\text { Torque } m N m)=J_{t} \cdot \frac{\Delta V}{\Delta t} \cdot K
$$

Where

$$
\begin{aligned}
J_{t} & =\text { Rotor inertia }\left(\mathrm{g} \cdot \mathrm{~m}^{2}\right) \text { plus load inertia } \\
\Delta \mathrm{V} & =\text { Step rate change } \\
\Delta \mathrm{t} & =\text { Time allowed for acceleration in sec. } \\
\mathrm{K} & =\frac{2 \pi}{\text { Steps } / \mathrm{rev}}
\end{aligned}
$$

9. Start / Stop Without Error

The start without error curve shows what torque load. the motor can start and stop without loss of a step when started and stopped at a constant step or pulse rate. The running curve is the torque available when the motor is slowly accelerated to the operating rate. It is thus the actual dynamic torque produced by the motor. This curve is sometimes called the slew curve. The difference between the running and the start without error torque curves is the torque lost due to accelerating the motor rotor inertia. A typical torque versus step rate characteristics curve is shown in figure 2.4.

10. Slew Rate

An area of high speed operation where the motor can run unidirectionally in synchronism. However it cannot
instantaneously start, stop or reverse. A stepping motor is brought up to a slewing rate using acceleration and is then decelerated to a stop under conditions where no step loss can be tolerated.

11. Damping

The reduction or elimination of step overshoot is defined as damping. It is used in applications where settling down time is important. In figure 2.5 electronically damped response is shown.

B. Drive : Methods

1. Eipolar

The stator flux with a bipolar winding is reversed by reversing the current in the winding. It requires a push-pull bipolar drive. Care must be taken to design the circuit so that the transistors in series do not short the power supply by coming on at the same time. Properly operated, the bipolar winding gives the optimum motor performance at low to medium step rates.
2. Unipolar

A unipolar winding has two coils wound on the same bobbin per stator half. Flux is reversed by energizing one coil or the other coil from a single power supply. The use of a unipolar winding, sometimes called a bifilar winding allows the drive circuit to be simplified. Not only are half as many power switches required (four vs. eight). but the timing is not as critical to prevent a current short through two transistors as is possible with bipolar drive. For a unipolar motor to have the same number of turns per winding as a bipolar motor, the wire diameter must be decreased and therefore the resistance increased. As a result unipolar motor have 30 percent less torque at low speeds. However at higher rates the torque outputs are equivalent.

SCHEMATIC BIPOLAR SWITCHING SEQUENCE

Normal
4 Step Sequence

8 Step Sequence

1	$O N$	$O F F$	$O F F$	$O F F$
2	$O F F$	$O F F$	$O F F$	$O N$
3	$O F F$	$O N$	$O F F$	$O F F$
4	$O F F$	$O F F$	$O N$	$O F F$
1	$O N$	$O F F$	$O F F$	$O F F$

Wave Drive
4 Step Sequence

SCHEMATIC UNIPOLAR SWITCHING SEQUENCE

$S t e p$	Q_{1}	Q_{2}	Q_{3}	Q_{4}
1	$O N$	$O F F$	$O N$	$O F F$
2	$O N$	$O F F$	$O F F$	$O N$
3	$O F F$	$O N$	$O F F$	$O N$
A	$O F F$	$O N$	$O N$	$O F F$
1	$O N$	$O F F$	$O N$	$O F F$

Normal
4 Step Sequence

CW

1	$O N$	$O F F$	$O N$	$O F F$
2	$O N$	$O F F$	$O F F$	$O F F$
3	$O N$	$O F F$	$O F F$	$O N$
4	$O F F$	$O F F$	$O F F$	$O N$
5	$O F F$	$O N$	$O F F$	$O N$
6	$O F F$	$O N$	$O F F$	$O F F$
7	$O F F$	$O N$	$O N$	$O F F$
8	$O F F$	$O F F$	$O N$	OFF
1	ON	OFF	ON	OFF

$1 / 2$ Step
8 Step Sequence

Wave Drive
4 Step Sequence
3. I / R Drive

A motor operated at a fixed rated voltage has a decreasing torque curve as the frequency or step rate increases. This is due to the fact that the rise time of the coil limits the percentage of power actually delivered to the motor. This effect is governed by the inductance to resistance ratio of the circuit (I / R). Compansation for this effect can be by either increasing the power supply voltage to maintain a constant current as the frequency increases,or by raising the power supply voltage and adding a series resistor as is shown in Fig.2.8. As the I / R is changed, more total power is used by the system. The series resistors, R, are selected for the L / R ratio desired. For $L / 4 R$ they are selected to be 3 times the motor winding resistance with a:

Watts rating $=(\text { Current per winding })^{2} \times R$
The power supply voltage is increased to 4 times motor rated voltage so as to maintain rated current to the motor. The power supplied will thus be 4 times that of a I / R drive. The unipolar motor which has a higher coil resistance thus has a better I / R ratio than a bipolar motor.
4. Bi-Level Drive

The bi-level drive allows the motor at zero step per second to hold at a lower than rated voltage, and when stepping to run at a higher than rated voltage. The high voltage may be switched on through the use of a current
sensing resistor or a circuit which uses the inductively generated turnoff current spikes to control the voltage, is used.

I/R Drive
Figure 2.8

Unipolar Bi-Level Drive
Figure 2.9
5. Chopper Drive

A chopper drive maintains an average current level through the use of a current sensor which turns on a high voltage supply until an upper current value is reached. It then turns off the voltage until a low level limit is sensed where it turns on again. A chopper is best for fast acceleration and variable frequency applications. It is more efficient than a constant current amplifier regulated supply. The supply voltage of choppers is generally five to ten times the motor voltage rating.
6. Wave Drive

Energizing one winding at a time is called wave excitation. It produces the same increment as the four-step sequence. Since only one winding is on, the hold and running torque with rated voltage applied will be reduced thirty percent. Within.limits, the voltage can be increased to bring output power back to near rated torque value. The advantage of this type of drive is increased efficiency while the disadvantage is decreased step accuracy.
C. Characteristics of Steppers Used In The System

In the prototype system stepper motors are supplied
from Oriental Motor Company. Specifications of the motors are as follows :

The other characteristics and graphs are in Appendix \mathbf{B}.

III. SYSTEM HARDWARE

The developed system mainly consists of five units :

1. Mechanical assembly
2. Stepper motor drive circuitry
3. z-80 Microprocessor based card
4. Power supply unit
5. Optic detector system
A. Mechanical Assembly

The realization in recent times of the need to implement efficient usage of manpower through improvement in pro duction processes by automation has led to the development of devices such as the X - Y table.

The X - Y stage scanner facilitates the motion of the object to be positioned in either or both the X and Y axes. Obviously there are many methods to design a right angled motion table. Nany factors need becarefully considered before deciding on a particular design. The factors are important in the sense that they determine the accuracy and reliability of the equipment. The motions are controlled by motors and the precision required in this application is obtained by using stepper motors which are driven by pulses that can easily be
generated by drive circuits receiving single pulses from $Z-80$ microprocessor card.

Stepper motors give a very high precision motion depending on the lead - screw used to drive the table. The pitch of the lead - screw determines the amount of linear motion of the table per step of the motor. The main disadvantage of using lead - screw mechanism is backlash. Ofcourse there are some methods to prevent this disadvantage e.g using adjustable nut or spring system.

In the developed system backlash did not cause any problem so compensating methods were not applied.

B. Mechanical Desigr

1. Base Plate

The base plate supports the entire assembly. Aluminium is preferred due to strength and light property of this metal. Dimensions of this plate are : $260 \mathrm{~mm} \times 350 \mathrm{~mm} \times 4 \mathrm{~mm}$. The base plate supports two other plates at right angles and those plates have shafts and lead-screw mounted on them.
2. Intermediate Y - Plate

This is also made of aluminium. Its dimensions are as follows:
$330 \mathrm{~mm} \times 110 \mathrm{~mm} \times 4 \mathrm{~mm}$. This plate is placed on the linear motion bearings and the nut which are in turn mounted on shafts and lead-screw. This intermediate plate supports the other plate (Y - Table) which has dimensions : 420 mm x $195 \mathrm{~mm} \times 4 \mathrm{~mm}$ and this supports the other two plates at right angles which are connected to the shafts and the lead screw.
3. Intermediate X - Plate

This plate is gupported on the nut and the linear motion bearings which are mounted on shafts and the leadscrew. The dimensions of this plate are : $110 \mathrm{~mm} \times 195 \mathrm{~mm} \times$ 4 mm . This plate supports the top X-Plate which has dimensions $290 \mathrm{~mm} \times 220 \mathrm{~mm} \times 4 \mathrm{~mm}$.
4. Linear Motion Bearings with Cylindrical Shafts

The best way is to use linear bearings to provice smooth movements. These bearings move along their shafts and are designed to give a smooth movement, which has extremely low friction. The X and Y tables are straight away mounted on these bearings and the lead-screws move the tables on those bearings giving perfect motion.

In order to have a robust system two shafts for the Y - table and two shafts for the X - table are used. Four bearings support each table. This means two bearinge on
each shaft. The shafts are made out of steel. The length of the X-table shafts is 400 mm and that of the Y-table is 320 mm . The diameter of both shafts is 16 mm .

Iko linear motion bearings (No. D-16) were selected and placed inside of aluminium blocks to support the X and Y tables. The shafts of both the X and the Y tables are supported by two other blocks at each end.
5. Lead-Screw and Its Nut

The most significant part of the $X-Y$ table is the realization of the lead-screw and its nut. The pitch of the lead-screw determines the linear distance through which the $X-$-.Y stage scanner moves. The lead-screw moves in a nut and in the prototype, together they have virtually no backlash. The lead-screw has eight threads per inch, therefore the motor shaft needs to make eight revolutions to linearly displace the given $X-Y$ table by one inch. Every revolution of the motor is made as a series of 200 steps i.e 1600 steps of the motor produce a linear displacement of one inch or one step produces $1 / 1600$ inch displacement of the table 1.e 0.015875 mm . This is the resolution of the prototype X-Y positioning table.

The nut is fixed under both the X and Y tables and the rotating lead-screw will move through the nut. Since the lead-screw motion is restricted to rotation only, it will cause the nut and hence the table to move linearly along the axis of the lead-screw. Since the length of the lead-screw is too long it is safer to give it some kind of radial bearing
support. These bearings allow the lead-screws to rotate within them i.e the lead-screw will move within the bearing and at the same time will be supported by the bearing support. The lead-screw is suitably machined so that the support bearing fits on to the lead-screw perfectly. These bearings are fixed with some supports that are produced in the workshop of the university.
6. Motor Shaft, Lead - Screw Couplings

The power from the motor is transmitted to the leadscrew by coupling the motor shaft into the lead-screw and the combination is tightened by two screws which have housings on the lead-screw shaft.

The X and Y table motors are mounted to the block
where two shafts and lead-screw are mounted. For this purpose four screws for each motor are used through the metal spacing units. At this point the important thing is the adjustment of the levels of the motor shaft and the lead-screw. In the developed system this levelling did not cause any problem due to design.

7. Glass Plate

This is the top part of the X-Y table which is placed on the X plate by using metal spacing units at all the four corners of the X -table. The aim of this spacing is to install the light source under the sample film to be scanned. So, the
order of the units from top to bottom is : optic detector, sample film, glass plate and the X-plate. The distance between the glass plate and the X-table is 32 mm . The dimensions of the glass plate are $270 \mathrm{~mm} \times 220 \mathrm{~mm} \times 4 \mathrm{~mm}$.
8. Operation

Every pulse input from the microprocessor card to the drive circuit makes the stepper motor rotate through one step or 1.8 degrees. Hence a total of 200 pulses, input to the drive circuit cause the motor shaft to make one revolution.

The scanning area of the $X-Y$ table is defined by the length of the shafts. The developed system can scan an area which has an X-length of 220 mm and a Y-length of 150 mm .

The details related to the mechanical assembly are given in the appendix C.

C. Stepper Motor Drive Circuitry

The drive methods for stepper motors are explained in chapter 2 . It the second chapter. It can be easily understood that the drive circuitry affects the speed-torque characteristics of the steppers.

In order to have a proper drive, first the mechanical characteristics of the system must be considered, and then the selection of right stepper motors drive circuitry.

The best way to approach this problem, is to examine the speed-torque characteristics curves, and then settle the load specifications. If no acceleration is needed and the load is frictional, start-without-error curve should be used. The running curve, in conjunction with the equation :

$$
T=I \alpha
$$

where

$$
\begin{aligned}
& I=\text { Torque } \\
& \alpha=\text { Angular acceleration } \\
& I=\text { Inertia }
\end{aligned}
$$

must be considered when the load is inertial and/or acceleration control is needed.

In the prototype system, X-Y stage scanner moves on linear motion bearings which have very little friction, hence the system does not need large amount of torque output from the motor, except that it needs high speed due to time consuming high resolution scanning.

Since the stepper motors are supplied before the realization of $X-Y$ stage scanner, they are ordered from the powerful series. Thus it was a must to have a powerful drive
stage to run these steppers at the required high speed.
The speed versus torque characteristics show that the steppers used in this project have the highest torque output at approximately hundred pulses per second. In addition to this, from the inertia versus starting-pulse-rate characteristics, it is seen that the maximum starting-pulse-rate is around two hundred pulses per second, and sometimes it is advisable to start with half of this speed in order not to lose any steps.

Under these circumstances, when all the drive methods are examined, the most suitable drive type seems to be the chopper drive.

In the chopper drive, current is sensed by a current sensing resistor which turns on a high voltage supply as soon as the current reaches 0.7 amperes and turns it off when the current falls below this value.

The prototype system as mentioned above needs acceleration, high speed and deceleration to save time. For this purpose it is appropriate to give some explanation about stepper's behaviour at variable frequency applications.

The torque output of the stepper motors needed to move the X-Y table is directly proportional to the current that passes through the coils of stepper motor. So, at high speed applications current cannot easily reach its rated value when normal supply voltage is used. It is very logical from the basic equation $V=I Z$ that, in order to have high currents through a coil showing an impedance Z, voltage must attain higher values.

The rise of current depends on the I / R time constant. This can be expressed by the following formula :

$$
I=I_{f}\left(1-e^{-\frac{t_{1} R}{I_{1}}}\right)
$$

where
I shows the value of current at time t_{1}, and I_{f} represents the final value of current

Figure 3.1

Current reaches around 60 percent of its final value at time $t=I / R$ during charging. Discharge process can be viewed as the opposite of charging process. For example in the prototype the rated voltage of stepper motors is 14 V and their resistance per phase is 20 ohms and inductance per phase is 60 mH . According to these data, the current reaches its 60 percent of its final value at time $t=I / R$.

$$
\begin{aligned}
& I_{f}=\frac{V}{R}=\frac{14}{20}=0.7 \mathrm{~A} \\
& I=0.42 \mathrm{~A} \\
& \text { at } t=I / R
\end{aligned}
$$

On the other hand, if high voltage (e.g 42 V in the prototype) supply is used :

$$
\begin{aligned}
& I_{f}=\frac{42}{20}=2.1 \mathrm{~A} \\
& I=1.26 \mathrm{~A} \quad \text { at } t=L / \mathrm{R}
\end{aligned}
$$

It can be seen from these rough calculations that the current can reach three times high a value when it is driven from the higher voltage supply in spite the fact that the time interval does not change i.e $t=I / R$.

Considering all these advantages a modified version of chopper drive is used. It somewhat behaves like a bi-level drive which is also mentioned in chapter two.

In the developed system :

$$
\begin{aligned}
& \mathrm{V}=42 \mathrm{~V} \\
& \mathrm{R}=20 \mathrm{ohm} \\
& \mathrm{I}=60 \mathrm{mH} \\
& \mathrm{I}=0.7 \mathrm{~A}
\end{aligned}
$$

So the time required to attain a current of 0.7 A is 0.0012 s . As a result, a speed of 835 pulse per second is obtained.

Figure 3.2

Referring to the figure 3.3 where two different supply levels are seen, the high voltage supply (42 V) is connected to the stepper motor windings through Q_{1} and Q_{2} power transistors. These transistors stay on, till the final value of winding current (0.7 A) is reached. Then Q_{11}, Q_{12} conduct and Q_{1} and Q_{2} go into cut off and some power is dissipated through the R_{1} and R_{2}. At this time, the second low voltage (18 V) supply takes over the current and dissipation of Q_{1} and Q_{2} is avoided.

The diodes D_{1} and D_{3} are used to prevent the reverse biasing of Q_{1} and Q_{2}. There can be seen two fuses (F_{1}, F_{2}) to protect the system. D_{2} (zener), D_{4} (zener), $D_{5}, D_{6}, D_{7}, D_{8}$ are used for voltage suppression. Also $D_{9}, D_{10}, D_{11}, D_{12}$ prohibits the negative pulses that may come from the windings due to the magnetic field created by the rotating permanent magnet rotor. Whenever winding current is turned off, a high voltage inductive spike will be generated which could damage the drive circuit switching transistors.

The above mentioned inductive spike results as per the inductor voltage equation :

$$
V=L \frac{d I}{d t}
$$

where a high value of rate of change of current is encountered due to an extremely small switching time interval.

The normal method used to suppress these spikes is to put a diode (Free Wheeling diode) across each winding. This, however, will reduce the torque output of the motor unless the voltage across the switching transistors is allowed to build up to at least twice the supply voltage. The higher this
voltage the faster the induced field and current will collapse and thus the better performance. In the prototype circuit 120 V zener diodes are used for this purpose. Diodes D_{13} and D_{14} avoid the reverse currents to the low level supply ($18 . \mathrm{V}$). The second supply is set to 18 V , since there will be a 14 V drop on the motor windings, 0.7 V on the diodes $\left(D_{13}\right.$ and $\left.D_{14}\right), 2.5 \mathrm{~V}$ collector to emitter voltage drop on the transistors $\left(Q_{4}, Q_{5}, Q_{8}, Q_{9}\right)$ and 0.7 V on the current sensing resistors (R_{9} and R_{10}).

The pulse sequence from the microprocessor card taken as output from the peripheral device (PIO) is fed to the bases of $Q_{3}, Q_{6}, Q_{7}, Q_{10}$ through the base resistors R_{3}, R_{4}, R_{5}, and R_{6}.

Ofcourse there are some limitations due to the stepper motor characteristics beside the drive method. Increasing the voltage to a stepper motor at standstill or low stepping rates will produce a proportionally higher torque until the magnetic flux paths within the motor saturate. As the motor nears saturation, it becomes less efficient and thus does not justify the additional power input.

The maximum speed a stepper motor can be driven is limited by hysteresis and eddy current losses. At some rate, the heating effects of these losses limits any further effort to get more speed or torque output by driving the motor harder.

The realised driving cicuitry improved the speed characteristics of the stepper motors which are not very suitable for high speed applications. During scanning a speed of 835 pulse per second is reached by means of this modified chopper drive circuit.

Figure 3.3 Stepper Motor Driving Circuitry

D. Z-80 Microprocessor Based Card

This card consists of four main parts :

1. $2-80 \mathrm{CPU}$
2. $\mathrm{Z}-80 \mathrm{PIO}$
3. Memory Section
4. Other IC's
5. 2-80 CPU

All controls are carried out by this unit. It works with a 2 MHz clock. This frequency obtained from a D-type flip-flop which divides the 4 MHz crystal frequency. The Reset input of the CPU is used through a D-type flip-flop also. The non-maskable interrupt, Wait and Bus Request inputs are connected to the $V_{c c}$ by the pull-up resistors. The Halt state is shown by driving a PNP transistor which is used to turn on the LED.
2. Z-80 PIO

The $2-80$ parallel input-output circuit is a programmable, two port device which provides a TTL compatible interface between peripheral devices and the $\mathrm{Z}-80 \mathrm{CPU}$. The CPU can configure the $\mathrm{Z}-80$ PIO to interface with a wide-range of peripheral devices. In the prototype an 8 bit output is used to give the step sequence of motors, 4 least significant bits are controlling the X -motor, while the most significant

4 bits controlling the Y-motor.
The other port (B) is used as an input port during the scanning process and as an output port while simulation of the drill process. The circuit shown in the figure 3.4 is used for simulation making the LED flash when the detector (simulating the drill) comes on to the dot which should be drilled.
3. Memory

System uses three memory units. Two of them are $2 \mathrm{k} \times 8 \mathrm{bit}$ EPROMS (2716 type) and the other is a $2 \mathrm{k} \times 8$ bit static RAM (6116 P-3 type).

The storage size of the $2 k$ RAM limits the card size to $170 \mathrm{~mm} \times 140 \mathrm{~mm}$ despite that the maximum scanning area is $220 \mathrm{~mm} \times 150 \mathrm{~mm}(\mathrm{X}, \mathrm{Y})$ mechanically. Along with the hole position storage, a part of the RAM acts as a stack and also as a scratch-pad for the program.

The memory addresses of the system are decoded as follows :

This decoding is performed by one half of a 74IS139 (Decoder/Demux). Inputs of this IC are supplied from the address pins (A_{11} and A_{15}) and $\overline{\mathrm{MREQ}}$ pin of CPU. $\mathrm{Y}_{0}, \bar{Y}_{1}, \bar{Y}_{2}$ outputs of the decoder select the EPROM 1, EPROM 2 and RAM
respectively, as shown in the figure 3.5
The output enable pins of EPROMS and RAM are connedted to the $\overline{R D}$ pin of CPU. The RAM output enable pin has connection with the $W R$ pin of CPU to perform writing operations into the memory.

Drill Simulator
Figure 3.4

Address Decoding
Figure 3.5
4. Other IC's

The other IC's perform the interrupt action as follow System interrupt mode is set to 2 to have control inputs for
the $X-Y$ table movements. In mode 2 system creates 16 bit starting address of the service routine. The programmer maintains a table of 16 bit starting addresses for every interrupt service routine. This table may be located anywhere in the memory. When an interrupt is accepted a 16 bit pointer must be formed to obtain the desired interrupt service routine's starting address from the table. The upper 8 bits of this pointer are formed from the content of the I-register. The I-register must have been previously loaded with the desired value by the programmer. In the developed board, the lower 8 bits of the pointer are supplied by the interrupting switches. The point to note is that only 7 bits can be used leaving the least significant bit zero. This is needed since the pointer is used to get two adjacent byte to form a complete 16 bit service routine's starting address and the addresses must always start in even locations.

In the $\mathrm{Z}-80$ hardware layout given in the appendix, this interrupt mode works as follows : When one of the switche connected to interrupt inputs is drawn to ground, the NAND gate output goes high and sends a 1.3 microsecond interrupt pulse through the capacitor and resistor network, meanwhile the Octal Transparent Latch (74IS373) is enabled and it latches the data on its input. Meanwhile the CPU generates an INTA signal which enables the latch output, hence the data is loaded on the data bus. As mentioned before, this data form the lower 8 bits of the 16 bit starting address of the service routine. Then the CPU executes the program from that address on.

E. Power Supply Unit

This unit is made up of four main parts :

1. The High Voltage Supply

This supply uses 32 VAC input. After rectification and capacitive filtering, this unit is connected to the high voltage pin of the drive card. For this part of the supply no regulator is used since inductive spikes that are created due to high speed switching of the drive card, may damage the regulator circuit besides that there is no need for such regulation as far as drive cicuit structure is concerned. The output of this supply is 45 V at no load conditions, and at loading it falls to 42 V that is sufficient for the drive card.
2. The Low Voltage Supply

After rectification and capacitive filtering 25 VDC is fed to the input of integrated voltage regulator (7818). The output (18 VDC) is used as the low level supply and approximately 350 mA current is drawn by the drive circuitry. This second supply is needed to have bi-level drive for the stepper motors, so it provides current at low speeds (246pps) mostly and prevents the dissipation of transistors (Q_{1} and Q_{2}) due to high voltage, by keeping them at the cut off.

If the low voltage supply were not included in the power supply unit, then, after the inductor current reaches its rated value (0.7 A), there would be a voltage on the transistors $\left(V_{C E}\right) Q_{1}$ and Q_{2} which is equal to $42-17=25 \mathrm{~V}$ where
$42 \mathrm{~V}=$ The high voltage supply
$17 \mathrm{~V}=$ Voltage drop on the motor windings $+V_{C E}$ of switching transistors $\left(Q_{4}, Q_{5}, Q_{8}\right.$ and $\left.Q_{9}\right)+$ Voltage drop on the current sensing resistors (R_{9} and R_{10})
Thus this voltage (25 V) with the rated current of motor windings, would cause approximately 17.5 W power dissipation on the transistors Q_{1} and Q_{2}.
3. + 5 Volt Supply

The output of 18 V voltage regulator is also taken as the input for +5 V regulator (7805).
+5 V supply is used for the $\mathrm{Z}-80$ microprocessor card, for the drill simulator circuit and also for the detection : circuitry. The amount of current that is drawn from this supply is approximately 250 mA .
4. Adjustable Voltage Supply

This adjustable voltage regulator (723) also uses
18 V regulator output as input and gives output to the lamp
of the detection circuit. The voltage regulator is so set that its output can be adjusted from +5 V to +15 V . Adjustable sourc is needed because of the critical trigger levels of optic sense output. Lamp needs approximately 70 mA .

The related figures of the power supply unit are shown on the following page.

High Voltage Sunply

Iow Voltage $\&+5 \nabla$ Supply

Figure 3.6

F: Optic Detector System

The optic detection is one of the most important feature of this thesis. Presently, there are many different kinds of optical sensors. In the developed system, the resolution of two consecutive points is 1.27 mm . This is not a very small distance for the sensor which is chosen for scanning procedure.

The optic sensor is not sensitive to the side lights due to its lens. In application, a small light source is used and the detector is centered on top of it, keeping a distance for the glass plate and the film.

For detection process, the operator places the dark solid dots on the transparent film. Then this film is scanned line by line. The sensor which is a transistor changes its state depending on the intensity of the light. The transistor is used in the common emitter configuration and the collector voltage is taken as output. Due to the mechanical movement and other disturbances, the best results can be achieved by using a comparator. For this purpose, LM 324 is used in the prototype. So the triggering level can be determined by adjusting the potentiometer i.e comparator inverting input voltage level is adjusted.

The comparator is essential in the circuitry in order to generate.a +5 V signal for even a small input from the optical sensor. Direct coupling between the sensor and the microprocessor would not be appropriate because of the weak signal from the sensor, not being able to trigger the input port of the PIO of the $\mathrm{Z}-80$ microprocessor.

Consequently, the output switches between high (+5 V) and low (OV) levels. Those voltages are applied to the input port of the PIO of the $\mathrm{z}-80$ microprocessor card and this optical information is written to the memory, according to the scan program.

The detection circuitry and the detection mechanism are shown in figure 3.7 and figure 3.8 respectively.

Detection Circuitry

Figure 3.7

Detection Mechanism

Figure 3.8
IV. SYSTEM SOFTWARE

The software of the system consists of mainly two sections and each program contains subprograms.
A. Detection Program

1. Iine Detection Program
2. Frame-length Detection Program
3. Scanning and Storing Program
B. Drilling Program
C. Subprograms
4. Reset Routine
5. Interrupt Service Routine
6. Acceleration and Deceleration Subroutines
7. Constant Speed Subroutines
8. Delay Subroutines

A. Detection Program

1. Ine Detection Program

This routine searches the frame lines and locates the detector on the top right corner of the dot mask. Program
flow is shown below:

Continued in the next page

The number of steps written in the flowchart are found according to the dimension of dots and grid length i.e dots have a radius of 27 steps where each step is equal to 0.015875 mm . and the length of a grid is 80 steps. Thus, two consecutive dots have a spacing distance of 26 steps as shown in Figure 4.1 .

1 Grid=1/10 inc
$r: R a d i u s$ of dot

Figure 4.1

2. Frame Length Detection Program

This program measures the X and Y lengths of the frame of dot mask.

In this program the grid counter is compared with 21 since 11 grids are needed for acceleration and 10 for deceleration (1 grid $=80$ steps).

In the flowchart $A-H S-D$ is used to express the acce-leration-high speed-deceleration routine in short.

3. Scanning and Storing Program

This program scans the dot mask whose dimensions are specified in the previous programs, in a meander pattern i.e odd numbered lines are scanned from right to left while even numbered lines are scanned in the opposite direction.

The store routine tests the output of the detector at every grid-node where spacing between two grids is 80 steps which is equal to $1 / 20$ inch. Each test result (0 or 1) is stored in a temporary memory location and when 8 consecutive hole-position information is read (i.e one byte is filled) then this datum(byte) is stored in the memory starting from the address 8000 H .

The scan program can proceed with two different speeds. One of them is constant speed ($246 \mathrm{steps} / \mathrm{sec}$) scanning routine and the other is acceleration-high speed-deceleration routine. Those cases will be explained respectively.
a. Constant Speed Scanning and Detection. This routine is selected if the X -length of the dot mask is equal or smaller than the distance required for acceleration,high speed and deceleration. This distance is equal to $21 / 20$ inch. The flowchart of this routine is in the following pages.

b. High Speed Scanning and Detection. When the X-length of the frame of dot mask, is greater than 21/20 inch, this routine is selected, so a better performance (i.e a. shorter scanning time) is obtained due to acceleration--high speed (835 steps/sec)-deceleration profile instead of constant speed (246 steps/sec) scanning. Program flow is as follows :

Cont.

is used from (C) to (D)
c. Store Program. By this program data which hold the drilling-hole-position information, are stored in the memory sequentially. Flowchart of the program is shown below:

Expressions used in the above flowchart are:

Loc-1 : Holds the bit count. Initially Loc-1 contains 8 and decremented at each test of the output of detector (at each grid-node). Its content reaches zero when 8 data are taken i.e a byte of hole-position information is ready to be stored.

Loc-2 : Keeps the data till a byte of information is formed. Then that byte is stored in the memory.

STAM : Means starting address of memory. The data (byte) in Loc-2 is stored to the memory location that STAM shows. In the beginning STAM contains 8000 H which is the first RAF location in the memory unit. STAM is incremented after each byte-store.

B. Drilling Program

This program reads the hole-position data from the memory and drives the $X-Y$ stage scanner to perform the drilling process. Path optimization algorithm is used to minimize the drilling procedure time.

In the program, hole-position data is read from the memory as one byte at a time and every byte is tested bit by bit. A position counter (register) is set to X-length value and it is decremented at each bit test. If the tested bit contains'1' i.e that is a hole information then the value of position counter is stored in the memory starting from the address FirstIX $=8730 \mathrm{H}$. Zeroes which are encountered during bit test are not taken into consideration. When position counter reaches zero then it means that, line is finished and drilling of the holes on that line can be performed.

The flow chart in the following page is written for the odd numbered lines. In the even numbered lines holepositions are listed (stored) from left to right. This can be simply shown as follows:

Odd numbered line
FirstIX (The first hole location)
LastIX (The last hole location)

Left

Ieft

Flowchart of the drilling program for the odd numbered lines:

In the drilling program, OldX contains the last location of the X -motor. Locations of the holes are specified according to the distance from the left-frame-line i.e holeposition numbers increase from left to right.

After the execution of one line, the next line data are tested. If there is no data in any line then stage moves one grid (80 steps) in the positive-Y direction.

The movement of the stage from one hole position to another is performed due to calculation of relative distance between two subsequent hole-positions. If the distance between two hole-positions is greater than 21 grids then accelerationmaximum speed-deceleration routine is run otherwise the $X-Y$ stage scanner moves with constant speed.

At the end of drilling program, return routine takes place and moves the $\mathrm{X}-\mathrm{Y}$ table to its original zero position for another drilling operation.

C. Subprograms

1. Reset Routine

This subroutine :
a. Sets the stack pointer to $87 E 5 \mathrm{H}$
b. Chooses interrupt mode 2
c. Loads (I) interrupt page address register with $\emptyset 7$
d. Programs A-port of PIO as output port and, B-port of PIO as input port

$\varnothing \varnothing \varnothing \varnothing$	31. E5 87	ID SP, 87E5 H
$\varnothing \varnothing \varnothing 3$	ED 5E	
めøø5	3E $\emptyset 7$	LD A, $\varnothing 7$
¢фø7	ED 47	ID I, A
$\phi \varnothing \varnothing 9$	3E $\varnothing \mathrm{F}$	ID A, \varnothing F H
$\varnothing \varnothing \varnothing$ B		OUT ($\varnothing 2$), A
$\emptyset \emptyset \emptyset D$	3E 4F	ID A, 4F H
$\emptyset \emptyset \emptyset \mathrm{F}$	D3 $\varnothing 3$	OUT ($\varnothing 3$), A
$\phi \emptyset 11$	AF	XOR A
$\phi \not \square 12$	D3 $\varnothing \varnothing$	OUT ($\varnothing \varnothing$), A
¢¢14	FB	EI
$\not \varnothing \varnothing 15$	76	HALT

Table 4.1
2. Interrupt Service Routine

Control of the $X-Y$ stage scanner is provided by this routine. Start switch starts the scanning and then the drilling programs. The other four switches (pos-X, neg-X, pos-Y, neg-Y) are used to move the $X-Y$ table in both X and Y directions. Stop switch is used to break the above mentioned programs when they are running.

This routine utilizes the interrupt feature of $\mathrm{Z}-80$ microprocessor. The Z-80 CPU is so operated that an indirect call to any menory location can be achieved in response to an interrupt. For this purpose the I register is loaded with $\emptyset 7$ which is the high order 8 -bits of the indirect address. The
lower 8-bits of the address are provided by the interrupting switch.

Interrupt Service Routine Starting Addresses

Start	Switch	$\begin{aligned} & \varnothing 7 \mathrm{BE}: 1 \mathrm{~F} \\ & \varnothing 7 \mathrm{BF}: \varnothing \varnothing \end{aligned}$
Stop	Switch	¢7DE : 25
		$\emptyset 7 \mathrm{DF}$: $\emptyset 7$
Pos-X	Switch	$\emptyset 7 \mathrm{FC}$: $\emptyset \varnothing$
		$\emptyset 7 \mathrm{FD}: \emptyset 7$
Neg-X	Switch	$\emptyset 7 F A: 4 \varnothing$
		$\emptyset 7 \mathrm{FB}: \not \subset 7$
Pos-Y	Switch	Ф7F6 : 65
		$\emptyset 7 \mathrm{F7}: \emptyset 7$
Neg-Y	Switch	$\emptyset 7 \mathrm{EE}$: D \varnothing
		$\emptyset 7 \mathrm{EF}$: $\emptyset 6$

$$
\text { Table } 4.2
$$

3. Acceleration and Deceleration Subroutines

In the second section, driving conditions are examined for stepper motors. The necessary pulse sequences are supplied from the microprocessor card and the look-up table for bit patterns (shown in table 4.3) is created in the memory. Since stepper motors cannot start at high speeds, they are driven at low speed in the beginning and speed is increased step by step, changing the delays between pulse-patterns. For the above mentioned reasons, a specific distance is needed to accelerate and decelerate, which is 11 grids for acceleration and 10 grids for deceleration (1 Grid=80steps). In the prototype, by changing delay constants, speed is changed from 238 steps/sec to 791 steps/sec in 11 stages.

Stepper Look-up Takle

Memory Address	Bit Fattern	
$\emptyset 7 \mathrm{~A} \varnothing \mathrm{H}$	$\emptyset \mathrm{A}$ H	
$\emptyset 7 \mathrm{~A} 1 \mathrm{H}$	$\emptyset 9 \mathrm{H}$	
$\emptyset 7 \mathrm{~A} 2 \mathrm{H}$	$\emptyset 5 \mathrm{H}$	X-MO
$\emptyset 7 \mathrm{~A} 3 \mathrm{H}$	$\emptyset 6 \mathrm{H}$	
$\phi 7 B \emptyset$ H	$\mathrm{A} \emptyset \mathrm{H}$	
$\emptyset 7 \mathrm{B1} \mathrm{H}$	$9 \varnothing \mathrm{H}$	Y-MOTOR
$\emptyset 7 \mathrm{B2}$ H	$5 \varnothing \mathrm{H}$	
$\emptyset 7 \mathrm{~B} 3 \mathrm{H}$	$6 \not \subset \mathrm{H}$	

These bit patterns (shown in Table 4.3) are sent to drivers through PIO unit. For clockwise rotation, bit patterns are in the form of $A, 9,5,6$ and opposite order for the counterclockwise rotation.
4. Constant Speed Subroutines

These routines are used almost in all programs. They provide constant delay between pulse patterns to be sent to stepper motor drivers. Motors obtain a speed of 246 steps/sec by these routines, and a register of the processor is used as the step counter. At every 80 step routine repeates itself.
5. Delay Subroutines

In all programs those routines are used either in constant form or in variable form.

For the stepper motor's pulse sequence, a delay of 8017 T-cycles long, is used between two consecutive pulses. Where, every T-cycle takes 0.5 microsecond due to 2 MHz clock frequency.

For the variable delay, a constant,in the delay routine, is changed. This kind of delay is used in the acceleration-maximum speed-deceleration routine to provide different speeds.

Line Detection

Figure 4.2

Scanning (Meander Pattern)

v. CONCLUSION

Presently the automation has led : to the improvement in production processes, thereby needing minimum manpower. The advantages are, that the whole process once set up, can be executed repeatedly at higher speeds than is possible with an operator, mechanically doing the settings.

During the realization of the prototype, some problems were encountered but all of them were eliminated, for instance, for the mechanical assembly the most important thing was the backlash of the system, which was eliminated by a great deal of precision on the part of the mechanic. Also, in the same case certain methods: to prevent backlash (e.g spring system, adjustable nut) could be utilized. Keeping in mind that it was better if the bearings at each end of the lead-screws were of the type that can move in their housing freely, bearing of such a nature could have been used. In addition to these, the alignment of the mechanical assembly had to have some adjustment points to provide smooth movement. In the developed system this was solved by the expertise of the mechanic.

The other important thing was the selection of stepper motors. Since, prior to this selection it was not known how much torque, a mechanical assembly would need, the stepper: were chosen from powerful series which generally have low speed, high torque characteristics. This aspect resulted in success by means of the designed drive circuitry.

The designed system shows an effective use of microprocessors in the industrial field. The objective was to
realize a system that needs minimum interaction of the user and to give accurate results. The system performance provides the above mentioned properties.The user: can design his/her circuits freely and also due to system resolution, it can fit the mask pattern. The scan time, though, could be reduced considerably if motors of high speed (motors with a speed of upto $: 4000$ steps $/ \mathrm{sec}$, rather than the ones used with a speed of 835 steps $/ \mathrm{sec}$) more suitable,were selected. The scanning process for a Eurocard takes about 17 minutes, which is considerably short: a time due to the right and efficient usage of the software. By using the optimum path concept, this reduction in time is achieved.

The system can work as a drilling machine with some mechanical modifications such as the detector, the lamp and the glass plate can be replaced by a drill set to perform the drilling operation.

APPENDICES

APPENDIX A

OPERATING INSTRUCTIONS

1. How to Prepare The Dot Mask
i. After the printed circuit layout is drawn, it is placed on a paper which has 0.1 inch divisions (as shown below fig.). On these two, the clean transparency is located.

ii. The frame lines of the dot mask are drawn such that every side of the mask frame is 0.1 inch greater than the frame of the layout. Frame-line thickness of 0.1 inch is considered to be enough and it is advisable to use a drawingpen with black ink (e.g Rapido 0.5 mm).
iii. Hole positions are marked on the transparency by locating them at the nodes of the grid pattern. One more hole can be marked between each node of the grid pattern shown in the previous page, because the scanning resolution of the system is $1 / 20$ inch.

If there are any hole positions on the layout which do not coincide with the nodes of the grid pattern, they should be placed on to the closest node.

After the dot-mask is prepared, it is correctly placed onto the glass plate, matching the upper right corner of the dot-mask frame to the right-angled marker on the glass.
2. Running The System
i. System is switched on. Power on-reset runs the reset program and Halt IED is turned on at the end of this program. Then using the manuel control switches, the detector is placed somewhere in the dot-mask frame (ie X-Y table is positioned in such a way that Detector points somewhere in the dot-mask frame).

Control Panel

The functions of the buttons are as follows:
Button ST : START
Button STP : STOF
Button NMI : Emergency stop
Button 1 : X-Motor control (stage moves in neg-X direction)
Button 2 : X-Motor control (stage moves in pos-X direction)
Button $3:$ Y-Motor control (stage moves in pos-Y direction)
Button 4

1i. Pressing the $S T$ (Start) button starts the scanning and detection program and at the end, stage takes its original zero position (at the upper right corner) and HALT LED turns on.
iii. Now ST button commences the drilling program. At each drilling-hole-position, stage stops, a LED flashes for a few seconds to simulate the drilling operation.
iv. After completing the drilling process of all holes, stage moves to zero-position and stops. Drilling process can be repeated as desired by pressing the $S T$ button.
v. For a new dot-mask scanning process, RST (Reset) must be given to the system, then same order (from ii to iv) is followed.

In case of emergency, NNI button should be pressed.

scale 1:4, unit $=$ inch (mm)
20, 2

GREENO-

atolf

DECIFICATIONS (2-phase full-step)

Motor type		Voltage	Current per phase	Holding Torque		Resistance per phase	Induct per pl
Single Shafi	Double Shaft	V	A/phase	02-in	N-cm	ohm/phase	mH / p
PH296-01	PH296-018	1.8	4.5	174	123	0.4	1.4
PH296-02	PH296-028	5.5	1.25	174	123	4.4	14.
PH296-03	PH296-038	14	0.7	174	123	20	60

APFENDIX C

IEAD-SCREW

	A	B	C	D	E	F
X-Table	16	95	3	35	370	10
Y-Table	16	95	3	35	290	10

Cylindrical Shaft

i. Drawings are not to scale.
ii. All dimensions are in millimeters.

Part List of X-Y Stage Scanner

1. Stepper motors
2. Iinear motion bearings
3. Lead-screws
4. Base plate
5. Intermediate \mathbf{Y}-plate
6. Y-plate
7. Intermediate X -plate
8. X-plate
9. Glass plate
10. Support for lamp and photo-detector
11. Photo-detector system

2.80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in figure 2.0-1. The diagram shows all of the major elements in the CPU and it should be referred to throughout the following description.

- The Z.80 CPU contains 208 bits of R/S' memory that are accessible to the programmer Figure $2.00^{2} 2$ ullustrates how this memory is configured into eighteen 8 -bit registers and four 16 .bit registets All $2 \$ 0$ répisters are implemented using static RAM. The registers include wo seis of six generatpurpose regisers that may be used individually as 8 -bit registers of in pairs as 16 -bit registers. There ate als: two sets of accumulator and flat rezisters.

Special Pürpose Registers

1. Program Counier (PC). The program counter holds the 16 -bit addess of the current instrution being feiched from memory: The $P C$ is automatically incremented after its contents have been tianslerred to the address lines. When a program jump oicuis the new value is automatically placed in the PC. ovemdine the inctementer.
2. Stack Pointer (SP). The stack pointer holds the 16 -bit address of the current top of a stack focated anywhere in external system RAM memory. The external stack memory is organized as a last-in firstout (LIFO) file. Data can be pushed onto the stact: from specific CPU repisters or popped off of the stack inte specific CPU registers through the execution of PUSH and POP instructions The data popped from the stack is always the last data pushed onto it. The starh allows simple mplementation of multiple level interrupts, unlimited subroutine riesting and simplification of many types of data manipulation.

Z.80 CPU REGISTER CONFIGURATION

 FIGURE 2.0.23. Two Indea Registers (IX \& Y). The two independent index :egisters huld a 16 -bit base adress that
 region in memory from which jata is to be stored or retrieved. An addrional byte is insluded in indexed instructions to specify a displacement irom this base. This displacement is specified as a twops complement signed integer. This mode of addressing greathy simplifies many types of programs, especially where tables of data are used.
4. Interrupt Page Address Rezister (1). The Z-80 CPU can be operated in a mode where an indirect call to any memory location can be achieved in response to an intertupt. The i Register is used for this purpose to store the high order δ-bics of the indirect address while the internpting devie provides the Wuwe: 8 -hits of the address. This feature allow internupi roctines to be dy namically laiated anywhere in memory with absolute minimal access time to the routine.-
5. Memory Refresh Register (R). The Z-80 CPU coniains a memory refrest counter to eñable dynamic memories to be used with the same ease as static memories. Seven bits of this 8 bit register are automatically incremented aftes each instruction fetch. The eighth bit will remain as programmed as the resulf of an LD R, A instruction. The data in the refresh counter is sent out on the lower pertion of the address bus along with a refresh controt signal while the CPU is decoding and executing the fetched instruction. This mode of refresh is totally transparent to the programmer and does not slow down the CPU operation. The programmer can toad the. R register for testing purposes, but this register is normally -not used by the progammer. During refresh, the contents of the 1 register are placed on the uppor 8 bits of the address bus.

Accumulator and Fiag Registers

The CPU includes two independent 8 -bit accumulators and associated 8 -bit flag registers. The accumulator holds the results of 8 -bit anthmetic of logical operations while the flag register indicates specific conditions for 8 or 16 -bit operations, such as indicating whether or not the resul: of an operation is equal to zerg. The programmer selests the accumulator and flag pair that he wishes to work with with a single exchange instruction so that he may easily work with either pait.

General Purpose Registers

There are two matched sets of general purpose registe:s. each set containing six 8 -bit registers that mas be used induada:lly as 8 -bil registers or as 16 -bit registe: pans by the programmer. One set is cal:ed $B C, D E$ and HL while the complementary set is cailed $B C^{\prime}, \mathrm{DE}^{\prime}$ and HL^{\prime}. At any one time the programme: car select eithei set of registers to work with th:ough a sing:e exchange command for the entire set. In systems whete fast interrupt response is required. one set of general pu:pose registers and ar accumulator! flag register may be teserved for handling this ven fast routiar Only a simple exchange commands need be executed io go betu cen the routines. This greatly reduces irterrupt serice time by eliminating the requirement for saving and retrieving register contents ir the exterta' siack during interrupt or subroutine processing. These gencral purpose registers are used for 2 uide rangs of applications by the progammer. They also simplis pmgraming especially in ROM based sy stems uthe- hatle ex:emal read write memory is avilithle.

ARITHMETIC \& LOGIC UNIT (ALU)

The 8-tit anthmetic and logical instructions of the CPL are executed in the ALL'. Internally the ALL cominumicates with the registers and the externa! data bus or the intema! data bus. The type of functions performed by the ALU include:

Add

Subtract
Logival AND. Logical OR

- Legica! Exclusive OR
- Compare -

Left of right shifts or rotates (arithmetic and logical)
-Increment.
Deirement
Se: bi:
Rese: bis
Tes: bit

As easingernction is fetched from memory it is place in the instruction reghes: and devended The - contiol sections performs this function and then generates and supplies all of the control signals neiessary: to read or write data from or to the registers, con::of the All'and provide all required external contel sigrials.

2-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual Ir-Line Package. The $1 / 0$ pins are diown in figure $3.0-1$ and the function of each is deseribed below.
$A_{0}-A_{15}$
(Address Bus)
$\mathrm{D}_{0}-\mathrm{D}_{7}$
(Data Bus)

\vec{M}_{1}

(Machine Cycle one)
$\overline{M R E Q}$
(Memory Reques:)

Tri-state oupput, ictive high. $A_{0}-A_{15}$ constitute a 16 -bitaddress bus. The address bur provide the address fo: memon (ap to 64 K bytes) data. exchanges and for 1'0 device data exchanges. $1 / 0$ addessing uses the 8 lowe: address bits to allow the uner terdarectly select up to 256 mpu: of 256 autp: ports. A_{0} is the leas: sigmficani address bit. During refrest, ume, the low f 7 bits contain a valud refresh address.
 data bus. The datz bus is used for data exchanges with mernory and 1/0 devises.

Output, active low $\overline{M_{1}}$ indicates that the current machine cyele is the O P code fetch cycle of an instruction execution. Note that during execution of 2 -byte op codes $\bar{M} 12$ genetaied as each op code byte is fetched These two byte op codes always begir with CBH DDH, EDH ot FDH. $\overline{M 1}$ also occurs with $\overline{I O R Q}$ to indsicte an interrupt acknowiedge cycle.

Tri-state output, active low. The memory request sigral indizates that the address bus holds a vald eddes for a memory read or memory write operation.

APPENDIX E

INTRODUCTION

The Z-80 Paralle! I/O (PIO Circuit is a programmable two port device which provides a TTL compatible interface between penpheral devices and the $\mathbf{Z 8 0 - C P L}$. The CPL can configure the Z80.PIO 10 interface with a wide range of peripheral devices with no other external logit required. Typiaa! perphera! devices that are fully compatible with the Z80.PIO include most keyboards, papet tape readers and punches, printers, PROM programers, etc. The Z80-P1O utilizes N channel silicon gate depletion load technology and is packaged in a 40 pin DIP. Majo: features of the 280 .PIO include:

- Two independent 8 bit tidirectional peripheral interface ports with 'handshake' data transfer control
- Interrupt driveri "hands-inc' for fast response
- Any one of four distinc: modes of operation may be selezted for a port including

Byte outpur
Byte input
Byite bidireational ble (Available on Port A only)
Bit control mode
All with interrupt controlled handshake

- Daisy chain priority interrupt logic included to provide for jutomatic interrupt vectoring without external 1ogic
- Eight outputs àre capable of driving Darlington transistors
- All inputs and outpurs fully TTL compätible
- - Single 5 volt supply and angle phase slock are required

One of the unique freatures of the $Z 80$-PiO that-separates it fron other interface controllers is that all

 transfers All logic necessary to implement a fully nested internupt structure is miluded t: the PIO se tha: additionat circuits are net require ${ }^{-}$A inle:rupt the CPL on-the occurreate of sperifici status conditons in the pernpherat device. For example. the PIO can be programmed to intecups if arit specified peripheral alarm conditions should ociur:-This intertupt capabilhty reduces the arwunt of time that the proaessol must spend in polling peripheral status.

PIO ARCHITECTURE

A block diagram of the 280-PIO is shown in Fifure 2.0-1. The internal structure of the Z80.P1O consists of a Z80-CPL bus interiaee, interna' contro! logic, Port A $1 / \mathrm{O}$ logic. Port B I/O logic, and internupt control logic. The CPU bus interiace logic allows the PIO to interface directly to the Z8O-CPU with no other extemal logic. However, adress decoders and or line buffers may be required for large systems. The internal control logic synchronizes the CPL data bus to the peripheral device interfaces (Pori A and Port B). The two $1 / O$ ports (A and B) are virtually identical and are used to interface directly to peripheral devices.

- The Port I/O logic is composed of 6 registers with "handshake" control logic as shown in $\dot{\text { Figuce }} 2.0$ 2.
- The registers include ari 8 -bil dz:a input regster, an ε tit data outputregster, a 2 bil mode control registei, an δ bit mask registet, ar ε bit inputioutput sket. register, and a 2 bit mask control_register.

figure 202
PORT I/O BLOCK DIAGRAM

(Component side)

Constant speed scanning (CSCAN) Routine

Store Routine

LASTST ROUTINE

SRTNZ2 Routine

(SFRTL)

(SLEFT)

(SFLTR)

The same flowchart (which is written for odd lines) can be used, with certain changes, for the even lines also. These changes can be understood by looking at the related sections of the drill program listing.

Acceleration Routine

$\varnothing \varnothing 29$
$\phi \varnothing 3 \varnothing$
$\varnothing \varnothing 31$
$\varnothing \varnothing 32$
øф33
$\varnothing \varnothing 34$ NGY
$\varnothing \varnothing 35$
Фф36 OUT
$\varnothing \varnothing 37$
$\varnothing \varnothing 38$
$\varnothing \varnothing 39$
$\varnothing \varnothing 4 \emptyset$
$\varnothing \varnothing 41$
$\emptyset \emptyset 42$
$\varnothing \varnothing 43$
$\varnothing \emptyset 44$
$\varnothing \varnothing 45$
$\emptyset \varnothing 46$
$\not \varnothing \varnothing 47$
$\emptyset \varnothing 48$
фф49 IN工
$\varnothing \varnothing 5 \varnothing$
$\emptyset \emptyset 51$
$\varnothing \varnothing 52$
$\emptyset \varnothing 53$
$\not \emptyset \emptyset 54$
$\emptyset \emptyset 55$ STOP : XOR A
$\not \emptyset \emptyset 56$
$\not \varnothing \varnothing 57$
CALL DLY
DEC HI
DJNZ OUT
JP NC,INI
DEC C
JP 2,STOP
$B I T \varnothing, A$

CCF
JP NGY
$B I T \emptyset, A$

SCF
JP NGY

ID B, FFH

ID IX,87F5H
ID (IX $+\varnothing \varnothing$),$\varnothing 8 \mathrm{H}$
$I D(I X+\varnothing I), \varnothing \varnothing \mathrm{H}$
ID $\mathrm{HI}, 8 \varnothing \varnothing \varnothing \mathrm{H}$
ID (STAM),HI
ID HL, YSTEP4 ; Frame Detection Program
ID B,COUNT
: ID $\mathrm{A},(\mathrm{HI})$; Move in 4-step sequence OUT (PORT \varnothing), A ;and input data

IN A, (PORTI)

JP NZ, NGY'
: IN A, (PORTI)

JP Z,NGY ;If input is zero continue
ID $\mathrm{C}, 11 \mathrm{H} \quad$; to move, if not move 68 mol

OUT (PORT \varnothing), A

$\not \emptyset \emptyset 58$	DELI	: CALI DIY	
¢ø59		DJNZ DELI	
Фø6ø		ID C, 29 H	;Move out from the upper frame
$\not \varnothing \emptyset 61$	PSY	: ID HL, YSTEPI	
¢¢62		ID B,COUNT	
$\not \varnothing \emptyset 63$	OUP3	: ID A, (HL)	
øø64		OUT (PORİ), A	
$\not \emptyset \not 065$		CALL DIY	
øø66		INC HL	
$\not \emptyset \emptyset 67$		DJNZ OUT3	
øø68		DEC C	
$\not \varnothing \varnothing 69$		JP NZ,PSY	
$\varnothing \varnothing 7 \varnothing$		XOR A	
¢¢71		OUT (PORT¢), A	
$\not \emptyset \emptyset 72$		ID B, FFH	
$\not \varnothing \varnothing 73$	DEL2	CALI DIY	
øø74		DJNZ DEL2	
$\not \varnothing \varnothing 75$	NGX	: LD HL, XSTEPI	; Search for the right side
øø76		ID B,COUNT	;frame line
$\not \varnothing \emptyset 77$	OUT?	: LD A, (HL)	
$\not \varnothing \varnothing 78$		OUT (PORTD), A	
¢ø79		Call diy	
$\varnothing \varnothing 8 \varnothing$		INC HL	
¢¢81		DJNZ OUT2	
$\varnothing \varnothing 82$		IN A, (PORTI)	
$\emptyset \emptyset 83$		BIT \emptyset, A	
$\emptyset \varnothing 84$		JP 2, NGX	
$\varnothing \varnothing 85$		XOR A	
$\emptyset \emptyset 86$		OUT ($\operatorname{PORT\phi),A}$	

$\not \varnothing \varnothing 87$		ID B, FFH	
¢ø88	DEL3	: CALI DIY	
¢¢89		DJNZ DEL3	
\$ $¢ 90$		LD C, $2 \emptyset \mathrm{H}$;Move out from the right side
$\emptyset \emptyset 91$	PSX	: LD HL, XSTEP4	;frame
¢ $\varnothing 92$		LD B,COUNT	
中1093	OUT4	: LD A, (HL)	
¢ $¢ 94$		OUT (PORTD),A	
¢ $\varnothing 95$		CALL DLY	
¢ $\varnothing 96$		DEC HL	
¢ $\varnothing 97$		DJNZ OUT4	
¢¢98		DEC C	
¢ $\varnothing 99$		JP NZ, PSX	
$\phi 1 \varnothing \varnothing$		XOR A	;Stop on the zero position
ø1ф1		OUT (PORTD), A	;location
¢1ф2		ID B,FF	
¢1 183	DEI4	: CaLl diy	
¢1ф4		DJNz DEL4	
\$105	FRIG'TH	: LD L, \varnothing ¢	;Frame length program
ø1ø6	FPSX	: ID A, STEP	; Measure x -leng'th
¢1¢7		ID (WAY), A	
¢1ø8		CALL MVINXL	
¢1 109		INC I	
$\emptyset 11 \varnothing$		IN A, (PORTI)	
¢171		BIT \varnothing, A	
$\emptyset 112$		JP 2, FPSX	
¢113		XOR A	
¢114		OUT (PORTø), A	
$\phi 115$		LD B,FFH	

$\phi 116$	DEL5	: CALI DLY	
¢117		DJNZ DEL5	
Ø118		DEC I	
¢119		DEC L	
$\phi 12 \emptyset$		ID DE,XINGTH	
¢121		ID A, I	
$\phi 122$		ID (DE), A	
¢123		INC L	
¢124		INC L	
¢125		ID A, L	
¢126		SUB A+DSTP	
$\varnothing 127$		ID (XPATH), A	
¢128		ID (PATH), A	
¢129		ID A, L	
¢13 \varnothing		ID (WAY), A	
¢131		CALI Z, MVINXR	
¢132		JP Z, DLX	
$\varnothing 133$		CALI C, MVINXR	
¢134		JP C, DIX	
$\varnothing 135$		CALL XRACC	
ø136	DLX	: $\mathrm{LD} \mathrm{B}, \mathrm{FFH}$	
$\emptyset 137$	DEL6	: CALL DIY	
\$138		DJNZ DEI6	
¢139		LD L, $\varnothing \varnothing$	
ø14ø	FPSY	: ID A,STEP	; Measure y-length
¢141		ID (WAY), A	
¢142		CALL MVINYD	
$\phi 143$		INC L	
Ø144		IN A, (POR'PI)	

$\varnothing 145$			BIT \varnothing, A
$\emptyset 146$			JP Z,FPSY
$\varnothing 147$			XOR A
¢148			OUT (PORTめ), A
Ø149			ID B, FFH
¢15¢	DEL7	:	CALI DIY
$\varnothing 151$			DJNZ DEL7
$\varnothing 152$			DEC I
$\emptyset 153$			DEC I
¢154			ID DE,YINGTH
$\varnothing 155$			ID A, I
$\emptyset 156$			ID ($D E$), A
$\emptyset 157$			INC I
$\emptyset 158$			INC I
ø159			ID A, I
$\emptyset 16 \emptyset$			SUB A+DSTP
$\emptyset 161$			ID (YPATH), A
$\emptyset 162$			ID (PATH), A
$\emptyset 163$			ID A, I
$\varnothing 164$			ID (HAY), A
$\emptyset 165$			CAIL 2,MVINYU
¢166			JP:Z,DIYY
$\emptyset 167$			CALI C,MVINYU
$\emptyset 168$			JP C,DIYY
中169			CALI YUACC
¢17ф	DIYY	:	ID B,FFH
$\emptyset 171$	DEL8	:	CALI DLY
$\emptyset 172$			DJNZ DEL8
$\emptyset 173$			ID $\mathrm{A},(\mathrm{XPATH})$

$\not \subset 174$		DEC A	
¢175		DEC A	
$\varnothing 176$		ID (XPATH), A	
$\emptyset 177$		ID A, (YPATH)	
¢178		DEC A	
¢179		DEC A	
¢18¢		ID (YPATH), A	
¢181		ID $\mathrm{A},(\mathrm{XLNG} T \mathrm{H})$	
¢182		INC A	
$\emptyset 183$		ID (XINC), A	
$\varnothing 184$		INC A	
Ø185		LD (XL2), A	
¢186	SCANPR	: ID A, (XLLNGTH)	;Scanning Program
$\varnothing 187$		SUB A+DSTP	; Test Ior constant speed scanr
$\varnothing 188$		JP Z, CSCAN	; or by acceleration
$\varnothing 189$		JP C, CSCAN	
ø19ø		ID A, (YLNGTH)	
$\emptyset 191$		ID L, A	
¢192		CALL STORE	
$\varnothing 193$	SXPA	: ID IY, ACONS	;Start scanning the first line
$\varnothing 194$		ID C,ACOUNT	; by acceleration
$\varnothing 195$	SXPAH	: LD H, $\varnothing \varnothing$	
$\varnothing 196$	SXPAR	: LD IX,XSTEP4	
$\varnothing 197$		LD B,COUNT	
¢198	SXPAM	: ID $A,(I X+\varnothing \varnothing)$	
¢199		OUT (PORT¢), A	
$\not \subset 2 \varnothing \varnothing$		LD E, (IY+ $\dagger \varnothing$)	
$\phi 2 \emptyset 1$		CALL VDIY	
$\phi 2 \phi 2$		INC H	

$\emptyset 232$		DEC C	
$\emptyset 233$		JP NZ, SXAPH	
$\emptyset 234$	SXPD	: ID IY,DCONS	;Start to decelerate
¢235		ID C,DCOUNT	
$\emptyset 236$	SXPDH	: ID H, $\varnothing \varnothing$	
$\varnothing 237$	SXPDR	: ID IX,XSTEP4	
$\emptyset 238$		ID B,COUNT	
$\emptyset 239$	SXPDM	: ID A, (IX $+\varnothing \varnothing$)	
¢24ø		OUT (POFTD), A	
¢241		$I D E,(I Y+\emptyset \varnothing)$	
$\emptyset 242$		CALI VDLY	
$\emptyset 243$		INC H	
¢244		ID A,GRID	
$\emptyset 245$		CP H	
$\emptyset 246$		JR 2, +9	
$\emptyset 247$		DEC IX	
$\phi 248$		DJNZ SXPDM	
$\emptyset 249$		JP SXPDR	
$\emptyset 25 \emptyset$		INC IY	
¢251		CAIL STORE	
$\not \chi^{\prime 2} 2$		DEC C	
¢253		JP NZ, SXPDH	
$\emptyset 254$		EXX	
$\emptyset 255$		EX AF, AF'	
$\emptyset 256$		ID HL,LOCl	
$\emptyset 257$		ID $\mathrm{C},(\mathrm{HI})$	
$\emptyset 258$		ID $\mathrm{A}, \mathrm{BYTE}$	
$\varnothing 259$		AND C	
$\emptyset 26 \emptyset$		JP NZ, SXI	

¢261		CALL LASTST	
¢261		JP SPI	
¢262	SXI	: EX AF, AF'	- . -
¢263.		EXX	
¢264	SPI	: XOR A	;Stop at the end of the line
$\varnothing 265$		OUT (PORTD), A	
ø266		ID B, 1FH	
$\emptyset 267$	SDELI	CALL DLy	
¢268		DJNZ SDELI	
¢269		ID A,STEP	
$\varnothing 27 \varnothing$		ID (WAY), A	
¢271		CALL MVINYD	;Move one grid down
¢272		LD B, IFH	
¢273	SDEL2	: CALL DIY	
$\emptyset 274$		DJNZ SDEL2	
¢275		DEC I	;Test whether the card is
$\varnothing 276$		JP Z, SRTNZ1	;finished, if yes, return to
$\varnothing 277$		CALl store	;zero position
¢278	SXNA	: ID IY,ACONS	;if not,scan the next line
¢279		ID C,ACOUNT	
ø28め	SXNAH	: LD H, $\varnothing \varnothing$	
ø281	SXNAR	: ID IX,XSTEPI	
¢282		ID B,COUNT	
$\emptyset 283$	SXNAM	: LD A, (IX $+\varnothing \varnothing$)	
$\varnothing 284$		OUT (PORT \dagger), A	
¢285		ID E, (IY $+\varnothing \varnothing$)	
¢286		CALL VDIY	
¢287		INC H	
$\not ¢ 288$		LD A,GRID	

¢289		CP H
¢29ø		JR 2, 9
$\emptyset 291$		INC IX
ø292		DJNZ SXNAM
¢293		JP SXNAR
¢294		INC IY
¢295		CALL STORE
¢296		DEC C
ø297		JP NZ, SXNAH
$\varnothing 298$		PUSH HL
$\emptyset 299$		ID HL, XPATH
$\phi 3 \varnothing \varnothing$		ID $\mathrm{C}, \mathrm{(HI})$
$\phi 3 \varnothing 1$		POP HL
$\phi 3 \phi 2$	SXDPH	: ID H, $\varnothing \varnothing$
$\phi 303$	SXDPS	: LD IX,XSTEPI
$\phi 364$		ID B,COUNT
¢305	SXDPM	: ID $\mathrm{A},(\mathrm{IX}+\varnothing \varnothing$)
$\phi 366$		OUT (PORTD),A
¢ $9 \varnothing 7$		ID E,MAXSPD
¢ $9 \varnothing 8$		CALI VDIY
$\phi 309$		INC H
¢31ø		ID A,GRID
¢311		CP H
$\phi 312$		JR Z+9
¢313		INC IX
¢314		DJNZ SXDPM
$\phi 315$		JP SxDPs
$\phi 316$		CALL Store
¢317		DEC C

б318

ф32ф
ф321

ф326
ф327
ф328
ф329
ф33 6
\$331
ф332
ф333
ф334
ф335
ф336
ф337
ф338
ф339
ф34б
\$341
ø342
ф343
ø344

ф346
\$319 SXND : LD IY,DCONS

Ø322 SXNDR : ID IX,XSTEPI
ф323 ID B,COUNT
ф324 SXNDM : LD A, (IX+ $\varnothing \varnothing$)
$\emptyset 325$ OUT (PORIめ),A

ф345 JP N2,SX2
JP NZ, SXDPH

ID C,DCOUNT
SXNDH : ID H, $\varnothing \varnothing$

LD $E,(I Y+\varnothing \phi)$
CALL VDLY
INC H
ID A,GRID
CP H
JR 2,+9
INC IX
DJNZ SXNDM
JP SXNDR
INC IY
CALL STORE
DEC C
JP NZ,SXNDM
EXX
EX AF,AF'
LD HL,IOCl
LD C, (HL)
LD A,BYTE
AND C

CALL LASTST

¢347		JP SP2	
¢348	sx2	: EX AF,AF'	
¢349		EXX	
¢35 \varnothing	SP2	: XOR A	
¢351		OUT (PORTD),A	
¢352		ID $\mathrm{B}, 1 \mathrm{FH}$	
¢353	SDEL3	: CALL DIY	
¢354		DJNZ SDEL3	
¢355		LD A,STEP	
Ø356		LD (WAY), A	
¢357		CALL MVINY	
¢358		CALI Store	
¢359		ID B, 1 FH	
¢36ø	SDELR	: CALL DLy	
¢361		DJNZ SDEIR	
¢361		DEC I	
¢362		JP 2, SRTNZ2	
$\phi 363$		JP SXPA	
\$364	CSCAN	: ID A, (YLNGTH)	;Constant Speed Scanning Prog
Q1365		ID L, A	
¢366		Call store	
¢367	CSTART	: LID A, (XLNGTH)	
¢368		ID C,A	
\$369	LCONT	: ID A,STEP	
¢37 \varnothing		ID (WAY), A	
\$371		CALL MVINXL	
$\varnothing 372$		CALI STORE	
¢373		DEC C	
¢374		JP NZ,LCONT	

¢375		EXX
¢376		EX AF:AF'
¢377		LD HL,LOCl
¢378		ID C, (HL)
¢379		ID A, BYTE
¢38¢		AND C
¢381		JP NZ, CXI
$\phi 382$		CALL LASTST
$\phi 383$		JP CPI
$\phi 384$	cxI	: EX AF,AF'
\$385		EXX
¢386	CPI	: XOR A
¢387		OUT (PORT) , A $^{\text {a }}$
$\phi 388$		ID B, IFH
$\phi 389$	CDELI	: CALL DLy
¢39¢		DJNZ CDELI
¢391		ID A,STEP
$\varnothing 392$		ID (WAY),A
\$393		CALL MVINYD
¢394		ID B, 1 FH
$\varnothing 395$	SDEL3	: CALL DLY
$\varnothing 396$		DJNZ SDEL3
$\varnothing 397$		DEC I
$\varnothing 398$		JP Z,SRTNZI
$\phi 399$		CALL STORE
$\phi 4 \phi \varnothing$		ID A, (XINGTH)
$\not \subset 4 \varnothing 1$		ID C,A
$\phi 4 \phi 2$	RCONT	: ID A, STEP
$\emptyset 4 \emptyset 3$		ID (WAY), A

$\varnothing 4 \varnothing 4$			CALL MVINXR	
$\emptyset 4 \varnothing 5$			CALU STORE	
$\emptyset 4 \emptyset 6$			DEC C	
¢4 407			JP NZ, RCONT	
$\phi 4 \varnothing 8$			EXX	
$\emptyset 4 \varnothing 9$			EX AF,AF'	
$\varnothing 41 \varnothing$			ID HL, IOCl	
¢411			ID $\mathrm{C},(\mathrm{HL})$	
$\emptyset 412$			ID $A, B Y T E$	
$\varnothing 413$			AND C	
¢414			JP NZ, CX 2	
$\emptyset 415$			CALI LASTST	
$\varnothing 416$			JP CP2	
$\emptyset 417$	CX2	:	EX AF, AF'	
$\emptyset 418$			EXX	
$\emptyset 419$	CP2	:	XOR A	
$\varnothing 42 \varnothing$			OUT (PORT \varnothing), A	
$\emptyset 421$			ID B, 1 FH	
$\emptyset 422$	SDELR	:	CAIL DIY	
¢423			DJNZ SDELR	
$\varnothing 424$			ID A,STEP	
$\emptyset 425$			ID (WAY), A	
$\phi 426$			CALL MVINYD	
$\phi 427$			DEC I	
$\emptyset 428$			JP 2,SRTN 22	
$\phi 429$			CALL STORE	
$\phi 43 \varnothing$			JP CSTART	
$\emptyset 431$	STORE	:	EXX	;Store Program
$\varnothing 432$			EX AF, AF'	

¢433		IN A, (PORTI)	
$\phi 434$		ID HL, IOC2	
\$435		ID B, (HL)	
¢436		RRC B	
¢437		OR B	
$\varnothing 438$		ID HL, IOCl	
¢439		LD C, (HL)	
¢44ф		ID (LOC2), A	
¢441		DEC C	
$\emptyset 441$		ID (HL), C	
¢442		JP Z, STM	
$\emptyset 443$		EX AF,AF'	
¢444		EXX	
¢445		RET	
$\varnothing 446$	IASTST :	: ID A, (LOCl)	; Last store
$\phi 447$		ID B, A	
¢448		ID $\mathrm{A},(\mathrm{IOC2} 2)$	
$\phi 449$	ROT :	: RRC A	
¢45 \varnothing		DJNZ ROT	
¢451		ID (LOC2), A	
\$452	STM :	: ID A, (LOC2)	;Store to memory
$\emptyset 453$		RRC A	
¢454		ID HL, (STAM)	
¢455		ID (HL), A	
¢456		INC HL	
$\phi 457$		ID (STAM), HL	
\$458		ID $\mathrm{A}, \mathrm{BY} \mathrm{PE}$	
\$459		ID (IOCI), A	
¢46ø		ID $A, \varnothing \varnothing$	

¢49¢		CALI YUACC	
$\phi 491$	END	: XOR A	
¢492		OUT (PORT¢), A	
¢493		ID B, FFH	
¢494	SDEL5	: CALL DLY	
$\varnothing 495$		DJNZ SDEL5	
¢496		LD B, $9 \not 0 \mathrm{H}$;DRILLING Frogram
¢497		LD HL, 872DH	
$\emptyset 498$	ZER \varnothing	: INC HL	
¢499		ID (HL), $\varnothing \varnothing$	
$\phi 5 \varnothing \varnothing$		DJNZ ZERめ	
¢5ø1		LD A, (XINC)	
ф5¢2		ID C,A	
¢5¢3		ID (OLDX),A	
$\phi 5 \varnothing 4$		SRL A	
¢5 ${ }^{\circ} 5$		ID (HALFX), A	
¢5 $¢ 6$		ID A, (YLNGTH)	
$\emptyset 5 \varnothing 7$		ID D,A	
¢5ø8		ID HI, STRAM	
$\phi 5 \phi 9$		LD IX,FRSTIX	
$\phi 51 \varnothing$		JP STR	
¢511	FTRACE	: BIT $\emptyset,(\mathrm{HL})$;Routine to trace an
$\phi 512$		JP NZ, FID \varnothing	
¢513	FTR \varnothing	: DEC C	
$\emptyset 514$		JP Z,NXTLIN	
¢515		BIT 1, (HI)	
$\varnothing 516$		JP N2, FLDI	
¢517	FrRI	: DEC C	
$\not ¢ 518$		JP 2,NXTLIN	

$\$ 548$			INC IX
. $\$ 549$			JP FTR \varnothing
¢56ø	FIDI	:	ID $\mathrm{A},(\mathrm{XL2}$)
$\$ 561$			SUB C
¢562			ID ($1 \mathrm{X}+\varnothing), \mathrm{A}$
$\emptyset 563$			INC IX
¢564			JP FTRI
ゆ565	FID 2	:	ID $\mathrm{A},(\mathrm{XL} 2)$
¢566			SUB C
$\emptyset 567$			ID $(I X+\varnothing), \mathrm{A}$
$\emptyset 568$			INC IX
$\emptyset 569$			JP FTR2
$\emptyset 57 \emptyset$	FID 3	:	LIJ A, (XI2)
$\emptyset 571$			SUB C
$\varnothing 572$			ID $(I X+\varnothing), A$
\$573			INC IX
$\emptyset 574$			JP FTR3
¢575	FID 4	:	ID $\mathrm{A},(\mathrm{XL} 2)$
$\varnothing 576$			SUB C
$\varnothing 577$			$\omega D(I X+\varnothing), A$
$\varnothing 578$			INC IX
$\phi 579$			JP FTR4
$\emptyset 58 \emptyset$	FID5	:	ID A, (XL2)
$\emptyset 581$			SUB C
$\emptyset 582$			ID $(I X+\varnothing), A$
\$583			INC IX
$\emptyset 584$			JP FTR5
$\emptyset 585$	FID 6	:	ID A, (XI2)
$\emptyset 586$			SUB C

$\not)^{587}$		ID ($\mathrm{IX}+\varnothing), \mathrm{A}$.	
$\emptyset 588$		INC IX	
¢589		JP FTR6	-
¢59ø	FID7	: ID A, (XL2)	
¢591		SUB C	
$\varnothing 592$		ID ($\mathrm{IX}+\varnothing), \mathrm{A}$	
¢593		INC IX	
¢594		JP FTR7	
¢595	NXTLIN	: DEC IX	
¢596		ID (IASTIX), IX	
¢597		INC HL	
¢598		ID (SAVEHL), HL	
¢599		ID IX, FRSIIX	;Test whether there is a hole
$\varnothing 6 \varnothing \varnothing$		ID $\mathrm{A},(\mathrm{IX}+\varnothing)$;on this line
$\varnothing 6 \varnothing 1$		ID E, (IX+1)	
$\emptyset 6 \varnothing 2$		OR E	
$\emptyset 6 \varnothing 3$		CALL Z, MOVINY	
¢6¢4		JP Z,STRACE	
ø6ø5		ID $\mathrm{A},(\mathrm{IX}+1)$;Test whether there is only
ø6ø6		$L D E,(I X+2)$;one hole
$\varnothing 6 \varnothing 7$		OR E	
$\varnothing 6 \varnothing 8$		JP Z,FIEFT	
¢609		ID A, (OIDX)	
¢61ф		ID E, A	
$\varnothing 611$		ID IX, (LASTIX)	
$\varnothing 612$		ID $A,(I X+\varnothing)$	
$\not ¢ 613$		SUB E	
$\not \varnothing 614$		JP Z,RZERO	-
¢615		JP C,LRM	

¢616		ID B,A	
¢617		ID A, (FRSTIX)	
$\emptyset 618$		ID E,A	
$\emptyset 619$		ID A, (OIDX)	
$\phi 62 \varnothing$		SUB E	
¢621		JP Z, LZERO	
$\varnothing 622$		JP C, RN	
$\varnothing 623$		SUB B	
¢624		JP NC, FRIGHT	
$\emptyset 625$		JP FLEFT	
$\varnothing 626$	FRIGHT :	ID A, (OLDX)	;Routine to move right
¢627		ID E, A	
¢628		ID IX, (IASTIX)	
$\emptyset 629$		ID $A,(I X+\varnothing)$	
$\emptyset 63 \emptyset$		SUB E	
¢631		JP Z,RZERO	
$\emptyset 632$		JP NC,RMOVE	
$\varnothing 633$	IRM	ID $A,(I X+\emptyset)$	
$\varnothing 634$		ID E,A	
$\emptyset 635$		ID A, (OLDX)	
$\emptyset 636$		SUB E	
¢637		ID (KAY), A	.
$\emptyset 638$		ID H, $\mathrm{A}+\mathrm{DSTP}$	
$\emptyset 639$		SUB H	
¢64¢		CAII R,MVINXI	
¢641		JP 2,RZERO	
$\varnothing 642$		CAIL C, MVINXI	
$\varnothing 643$		JC C,RZERO	
$\emptyset 644$		ID (PATH), A	.

¢645		CAII XIACC	
$\emptyset 646$		JP RZERO	
¢647	FLEFT	: ID A, (FRSTIX)	;Routine to move lert
$\varnothing 648$		ID E,A	
$\emptyset 649$		ID A, (OIDX)	
¢65 \varnothing		SUB E	
$\emptyset 651$		JP L2ERO	
$\emptyset 652$		JP NC, LMOVE	
$\emptyset 653$	RNi	: ID A; (OLDX)	
$\varnothing 654$		ID E,A	
$\emptyset 655$		ID $\mathrm{A},(\mathrm{FRSTIX})$	
$\emptyset 656$		SUB E	
$\emptyset 657$		ID (WAY), A	
$\emptyset 658$		ID H, $\mathrm{A}+\mathrm{DSTP}$	
¢659		SUB H	
ф66ø		CALI Z,MVINXR	
$\varnothing 661$		JP Z,LZERO	
ø662		CAIL C,MVINXR	
¢663		JP C,LZERO	
$\varnothing 664$		ID (PATH), A	
$\varnothing 665$		CAII XRACC	
¢666		JP LZERO	
¢667	RMOVE	: ID (WAY), A	
¢668	RATEST	: LD H,A+DSTP	
$\emptyset 669$		SUB H	
¢67¢		CAII Z, MVINXR	
$\emptyset 671$		JP Z,RZERO	
$\emptyset 672$		CAIL C, MVINXR	
$\emptyset 673$		JP C, RZERO	

ф674
ф675
ф676
ф677
ф678
ø679
ф68ø
ф681
ф682
ø683
ф684
ø685
ø686
$\varnothing 687$
$\varnothing 688$
$\emptyset 689$
$\varnothing 69 \varnothing$
$\not \subset 69$
ø692
ф693
ф694
ø695
ф696
$\varnothing 697$
ø698
ø699
$\varnothing 7 \varnothing \varnothing$
$\phi 7 \varnothing 1$
$\not \subset 7 \varnothing 2$

ID (PATH),A
CAIL XRACC
: NOP
CALL DRILI
ID IX, (IASTIX)
ID $A,(I X-I)$
OR A
JP Z,STRAC
FRRTL : LD $E,(I X-1)$:Routine to move from right
III $A,(I X+\varnothing)$; to left on an evenline
ID (SAVEIX),IX
SUB E
ID (WAY),A
ID $\mathrm{H}, \mathrm{A}+\mathrm{DSTP}$
SUB H
CALL Z, MVINXI
JP Z,DI
CALL C, MVINXL
JP C,DL
ID (PATH),A
CALI XIACC
: NOP
CALI DRILI
ID IX, (SAVEIX)
DEC IX
ID $\mathrm{A},(\mathrm{IX}-\mathrm{I})$
OR A
JP Z,STRAC
JP FRRTL

$\phi 7 \phi 3$	Lmove	: ID (WAY), A	
$\varnothing 7 \varnothing 4$	LATEST	: $\mathrm{ID} \mathrm{H}, \mathrm{A}+\mathrm{DSTP}$	
$\phi 7 \varnothing 5$		ID A, (WAY)	
¢7 $¢ 6$		SUB H	-
$\varnothing 7 \varnothing 7$		CALI Z,NVINXL	
$\varnothing 7 \varnothing 8$		JP Z,LZERO	
$\phi 7 \phi 9$		CALI C,MVINXI	
$\phi 71 \varnothing$		JP C,LZERO	
¢711		ID (PATH), A	
¢712		CALI XIACC	
¢713	LZERO	: NOP	
$\emptyset 714$		CALI DRILI	
$\emptyset 715$		ID IX,FRSTIX	
¢716		LD $\mathrm{A},(\mathrm{IX}+\mathrm{I})$	
$\emptyset 717$		OR A	
¢718		JP Z, SIRAC	
¢719	FRLITR	: LD E, $(1 X+\varnothing)$;Routine to move from left
$\phi 72 \varnothing$		ID $\mathrm{A},(\mathrm{IX}+1)$; to right on an evenline
¢721		ID (SAVEIX), IX	
$\phi 722$		SUB E	
¢723		LD (WAY), A	
ф724		LD H,A+DSTP	
¢725		SUB H	
\$726		CALL Z, MVINXR	
ф727		JP Z, DR	
\$728		CALI C, MVINXR	
¢729		JP C, DR	
¢73ф		ID (PATH),A	
$\emptyset 731$		CALL XRACC	

$\varnothing 732$	DR	: NOP	
$\emptyset 733$		CALI DRILI	
¢734		ID IX, (SAVEIX)	
¢735		INC IX	
$\varnothing 736$		LD $\mathrm{A},(\mathrm{IX}+\mathrm{I})$	
$\emptyset 737$		OR A	
$\varnothing 738$		JP Z,STRAC	
¢739		JP FRITR	
$\varnothing 74 \varnothing$	DRILI	EXX	; Drill simulatine routine
¢741		EX AF,AF'	
¢742		XOR A	
¢743		OUT (PORT \varnothing), A	
¢744		LD A, 8¢ H	
¢745		OUT (PORTI), A	
$\varnothing 746$		ID E, 7 FH	
$\varnothing 747$	DR2	: CALI DIY	
$\phi 748$		DJNZ DR2	
¢749		XOR A	
¢75¢		OUT (PORTI), A.	
$\not \subset 751$		EX AF,AF'	
¢752		EXX	
¢753		RET	
¢754	STRAC	: ID A, (IX $+\varnothing$)	
¢755		LD (OLDX),A	
$\varnothing 756$		CALL MOVINY	
¢757	STRACE	: DEC D	
$\varnothing 758$		JP 2,RETURN	
¢759		LD $\mathrm{B}, 9 \not \mathrm{H}^{\prime}$	
$\varnothing 76 \varnothing$		ID HL, 872DH	

¢761	SZERO	: INC HL
$\phi 762$		ID (HL), $\varnothing \varnothing$
¢763		DJNZ SZERO
¢764		LD A, (XINC)
$\varnothing 765$		LD C,A
¢766		ID HE, (SAVEHL)
$\emptyset 767$		ID IX,FRSTIX
¢768	STR	: BIT \varnothing, HL
¢769		JP NZ, $\mathrm{S} \varnothing$
$\phi 77 \varnothing$	$R \varnothing$: DEC C
¢771		JP Z, SECLIN
$\phi 772$		BIT 1, (HL)
$\phi 773$		JP NZ, ${ }^{\text {Sl }}$
¢774	RI	: DEC C
¢775		JP 2, SECLIN
$\emptyset 776$		BIT 2, (HI)
¢777		JP NZ, S^{2}
¢778	R2	: DEC C
$\phi 779$		JP 2, SECLIN
$\phi 78 \varnothing$		BIT 3, (HL)
$\emptyset 781$		JP NZ, 33
¢782	R3	: DEC C
$\emptyset 783$		JP 2,SECLIN
$\not \subset 784$		BIT 4, (HI)
¢785		JP N2, S4
¢786	R4	: DEC C
¢787		JP 2,SECLIN
$\emptyset 788$		BIT 5, (HI)
$\emptyset 789$		JP NZ,S5

$\not \varnothing 79 \varnothing$	R5	: DEC C
$\varnothing 791$		JP 2, SEGLIN
$\varnothing 792$		BIT 6, (HL)
¢793		JP NZ, 56
¢794	R6	: DEC C
\$795		JP Z,SECLIN
\$796		BIT 7, (HL)
¢797		JP N2, S 7
$\emptyset 798$	R7	: DEC C
¢799		JP Z,SECLIN
$\varnothing 8 \varnothing \varnothing$		INC HL
ø8ø1		JP STR
$\phi 8 \varnothing 2$	Sø	: ID ($\mathrm{IX}+\varnothing$), C
¢8¢3		INC IX
$\emptyset 8 \emptyset 4$		JP Rø
¢8ø5	S1	: ID (IX $+\varnothing$), C
¢8ø6		INC IX
$\varnothing 8 \varnothing 7$		JP RI
¢8ø8	S2	ID ($I \mathrm{X}+\varnothing$), C
$\not \varnothing 8 \varnothing 9$		INC IX
ø81ф		JP R2
¢811	S3	IU ($\mathrm{IX}+\varnothing$), C
$\emptyset 812$		INC IX
$\emptyset 813$		JP R3
¢814	S4	: ID $(I X+\varnothing), C$
¢815		INC IX
¢816		JP R4
$\phi 817$	S5	: ID ($\mathrm{IX}+\varnothing), \mathrm{C}$
$\not ¢ 818$		INC IX

$\not 8819$
$\varnothing 82 \varnothing$
$\varnothing 821$
$\not \subset 822$
$\not \varnothing 823$
ø824
ф825
ø826
$\varnothing 827$
ø828
ф829
$\varnothing 83 \varnothing$
ø831
ф832
ø834
ø835
ø836
$\not \subset 837$
ø838
$\not 839$
$\varnothing 84 \varnothing$
ø841
ø842
$\emptyset 843$
ф844
$\emptyset 845$
$\not 846$
$\phi 847$
$\varnothing 848$

JP R5
56 : ID $(I X+\varnothing), c$

- INC IX

JP R6
S7 : ID (IX $+\varnothing$), C
INC IX
JP R7
SECLIN : DEC IX
ID (IASTIX),IX
INC HL
LD (SAVEHL), HL
ID IX,FRSTIX
ID $\mathrm{A},(I X+\varnothing)$
ID $E,(I X+1)$
OR E
CALL Z,MOVINY
JP Z,FTR
ID $A,(I X+1)$
ID $A,(I X+2)$
OR E
JP Z,SRIGHT
ID A, (OLDX $)$
ID E, A
ID A, (FRSTIX)
SUB E
JP Z, SRZERO
JP C, HLMOVE
III B, A
ID IX, (LASTIX)
$\not \subset 849$
ø85ø
$\not \subset 51$
$\emptyset 852$
ø853
$\varnothing 854$
$\varnothing 855$
$\not \subset 856$
$\not \subset 857$
$\varnothing 858$
$\varnothing 859$
ø86ø
ф861
ø862
ф863
ø864
ø865
ф866
ф867
ф868
$\emptyset 869$
$\varnothing 87 \varnothing$
$\not \subset 871$
$\not \varnothing 872$
$\emptyset 873$
$\not \varnothing 874$
ф875
$\emptyset 876$
$\emptyset 877$

ID $E,(I X+\varnothing)$
ID A, (OLDX)
SUE E
JP Z,SLZERO
JP C,RLM
SUE B
JP C,SLEFT
SRIGHT : ID A, (OIDX)
;Foutine to move right on
ID E,A
;an odd-line
ID A, (FRS'IX)
SUB E
JP Z,SRZERO
JP NC, SRMOVE
HLMOVE : ID A, (FRSTIX)
LD E, A.
ID A, (OLIX)
SUB E
LD (WAY),A
ID H, A+DSTP
SUB H
CALL Z, MVINXL
JP Z,SRZERO
CALI C,MVINXI
JP C,SRZERO
ID (PATH),A
CALI XLACC
JP SREERO
SRMOVE : ID (WAY),A
LD $\mathrm{H}, \mathrm{A}+\mathrm{DSTP}$

ф878
ø879
$\varnothing 88 \varnothing$
$\emptyset 881$
ф882
ø883
ø884
ø885
ø886
ф887
ф888
$\emptyset 889$
ø89ø
ø891
$\varnothing 892$
ø893
ф894
ф895
$\emptyset 896$
ø897
$\emptyset 898$
$\emptyset 899$
$\varnothing 9 \varnothing \varnothing$
$\emptyset 9 \varnothing 1$
ф9ф2
\$9ф3
$\varnothing 9 \varnothing 4$
ф9 $\varnothing 5$
$\phi 9 \varnothing 6$

SUB H
CALL Z,MVINXR
JP Z,SRZERO
CALL C,MVINXR
JP C,SRZERO
ID (PATH), A
CALL XRACC
SRZERO : NOP
CALL DRILI
ID IX,FRSTIX
ID $A,(I X+1)$
OR A
JP Z,FTRAC
SFRTL
LD E, (IX+1)
ID $A,(I X+\varnothing)$
; Routine to move from richt
; to left on an oda-line

ID (SAVEIX), IX
SUB E
ID (WAY),A
LD $\mathrm{H}, \mathrm{A}+\mathrm{DSTP}$
SUB H
CALL Z, MVINXL
JP Z,SDI
CALL C,MVINXL
JP C,SDL
ID (PATH),A
CALL XLACC
SDI
: NOP
CALI DRILL
ID IX,(SAVEIX)
$\not{ }^{\circ} \not \varnothing 7$
$\not \varnothing 9 \varnothing 8$
ф91ø
ф911
¢912
$\varnothing 913$
$\varnothing 914$
$\emptyset 915$
$\varnothing 916$
ф917
ø918
ф919
ф92ø
ø921
ø922
ø923
ф924
ø925
$\varnothing 926$
ø927
$\varnothing 928$
ø929
. $93 \varnothing$
ф931
$\varnothing 932$
ф933
$\varnothing 934$
$\varnothing 935$
$\not \subset 936$

INC IX
ITi $\mathrm{A},(\mathrm{IX}+1)$
OR A
JP 2, FTRAC
JP SFRTI
SIEFT
: ID IX, (LASTIX)
ID $A,(I X+\emptyset)$;an oda-Iine
Lid E, A
ID A, (OIDX)
SUB E
JP Z,SLZERO
JP NC, SLMOVE
RLM
ID A, (OIDX)
ID E,A
ID $A,(I X+\varnothing)$
SUB E
ID (WAY),A
ID H,A+DSTP
SUB H
CALI Z,MVINXR
JP Z,SLZERO
CALI C,MVINXR
JP C,SLZERO
ID (PATH),A
CALL XRACC
JP SLzero
SLMOVE : ID (V'AY),A
ID H, A+DSTP
LD $A,($ WAY $)$

ф937
ø938
ф939
$\varnothing 94 \varnothing$
申941
ø942
ф943
ф944
ф945
ф946
ø947
ø948
ゆ949
申95ø
申951
ф952
ф953
ф954
$\varnothing 955$
ø956
ф957
ø958
ф959
ф96申
ф961
ф962
ф963
ф964
$\emptyset 965$

SUB H
CALI Z，MVINXL
JP Z，SLZERO
CALI C，MVINXI
JP C，SLLERO
ID（PATH），A
CALI XLACC

SLZERO ：NOP
CALL DRILI
LD IX，（LASTIX）
ID $A,(I X-I)$
OR A
JP 2，FTRAC
SFLTR
：ID E，（IX $+\varnothing$ ）
ID $A,(I X-1)$
ID（SAVEIX），IX
SUB E
ID（WAY），A
ID $\mathrm{H}, \mathrm{A}+\mathrm{DSTP}$
SUB H
CALI Z，MVINXR
JP Z，SDR
CALL C，MVINXR
JP C，SDR
ID（PATH）；A
CALI XRACC
：NOP
CALL DRILI
ID IX，（SAVEIX）

$\varnothing 966$		DEC IX	
¢967		ID $\mathrm{A},(\mathrm{IX}-\mathrm{I})$	
¢968		OR A	
ø969		JP 2, FTRAC	
$\varnothing 97 \varnothing$		JP SFITR	
$\emptyset 971$	FTRAC	: ID A, (IX $+\varnothing$)	
¢972		ID (OIDX),A	
¢973		CAIL MOVINY	
¢974	FTR	: DEC D	
¢975		JP Z,RETUKN	
¢976		LD B,9øH	
¢977		ID HL, 872DH	
¢978	2R	: INC HL	
¢979		ID (HL), $\varnothing \varnothing$	
¢98ф		DJNZ ZR	
¢981		ID A, (XINC)	
ø982		ID C, A	
¢983		ID HL, (SAVEHL)	
¢984		LD IX, FRSTIX	
¢985		JP FTRACE	
$\emptyset 986$	RETURN	: LD A, (OIDX)	;Return to zero-position afte
$\emptyset 987$		ID E,A	;arilling of the whole card i
$\emptyset 988$		ID A, (XINC)	;finished
$\emptyset 989$		SUB E	
$\varnothing 99 \varnothing$		JP Z,SRTNZ2	
$\not \subset 991$		ID (WAY), A	
$\not ¢ 992$		CALI MVINXR	
$\varnothing 993$		JP SRTNZ2	

¢994	MOVINY :	: LD A,STEP	; Routine to move one grid i
ø995		LID (WAY), A	;y-direction downwards.
ø996		CALL MVINYD	
$\emptyset 997$		RET	
$\varnothing 998$	DIY :	: ID D, 7 DH	; Constant delay routine.
¢999	LOOP :	: ID E, $¢ 3 \mathrm{H}$	
$1 \varnothing \varnothing \varnothing$		DEC E	
$1 \not \emptyset \varnothing 1$		JR NZ,-1	
$1 \not \varnothing \emptyset 2$		DEC D	
$1 \varnothing \varnothing 3$		JP NZ,IOOP	
$1 \varnothing \varnothing 4$		RET	
$1 \not \varnothing \varnothing 5$	VDIY	: LD D, $¢ 8 \mathrm{H}$;Variable delay routine.
$1 \varnothing \varnothing 6$	IND	- DEC D	
$1 \not 1 \varnothing 7$		JP NZ, IND	
$1 \varnothing \varnothing 8$		DEC E	
$1 \varnothing \varnothing 9$		JP NZ, VDIY	
$1 \varnothing 1 \varnothing$		RET	
$1 \phi 11$	MVINXI :	: EXX	; Routine to move left in
1812		EX AF,AF'	;x-direction with constant
1913		ID $A,\left(V^{\prime} A Y\right)$;speed.
$1 \not 174$		ID C,A	
$1 \not 175$	RH	: ID H, $\emptyset \varnothing$	
$1 \varnothing 16$	RLINE	: LD IX,XSTEP4	
1917		ID B, COUNT	
1618	RNEXT	: ID $A,(I X+\emptyset \varnothing)$	
$1 \varnothing 19$		OUT (PORI的), A	
$1 \varnothing 2 \varnothing$		CALI LIy	
1ø21		INC H	
$1 \not 122$		ID A,GRID	

1ヵ23		CP H	
$1 \varnothing 24$		JR Z, +9	
$1 \not 025$		DEC IX	
$1 \not 126$		DJNZ RNEXT	\cdots
$1 \not 27$		JP RIINE	
1ø28		DEC C	
$1 \not 129$		JP NZ, RH	
$1 \phi 3 \emptyset$		EXX	
1931		EX AF, AF'	
1932		RET	
1633	MVINXR	: EXX	;Routine to move right in
1634		EX AF, AF'	; x -direction with constant
1835		ID A, (HAY)	;speed.
$1 \varnothing 36$		ID C, A	
$1 \varnothing 37$	IH	: ID H, $\varnothing \varnothing$	
$1 \varnothing 38$	LIINE	: ID IX,XSTEPI	
1039		ID B,COUNT	
$1 \varnothing 4 \varnothing$	INEXT	: LD A, (IX $+\varnothing \varnothing$)	
$1 \varnothing 41$		OUT (PORTめ), A	
$1 \emptyset 42$		CALI DIY	
$1 \varnothing 43$		INC H	\cdots
$1 \varnothing 44$		ID A,GRID	
$1 \not 045$		CP H	
$1 \varnothing 46$		JR $\mathrm{Z},+9$	
$1 \varnothing 47$		INC IX	
$1 \not 148$		DJNZ LNEXT	
$2 \emptyset 49$		JP LIINE	
1ф5 \varnothing		DEC C	
1951		JP N2, LH	

$1 \varnothing 52$		EXX	
$1 \$ 53$		EX AF, AF'	
$1 \not 054$		RET	
1955	ACONS	: EQU $\varnothing 7 \mathrm{C} \varnothing \mathrm{H}$; Acceleration constants
$1 \varnothing 56$	DCONS	: EQU \varnothing TD $\varnothing \mathrm{H}$; Deceleration constants
$1 \not 157$	YUACC	: EXX	; Routine to move the detect
$1 \not \subset 58$		EX AF,AF'	;up in y-direction by accel
$1 \not \subset 59$		ID IY, ACONS	;tion.
$1 \varnothing 6 \emptyset$		ID C,ACOUNT	\cdots
1961	YRTH	: II H, $\varnothing \varnothing$	
1962	YARTN	: ID IX,YSTEP4	
$1 \varnothing 63$		LD B,COUNT	
$1 \varnothing 64$	BMOVE	: ID $A,(I X+\emptyset \emptyset)$	
1ф65		OUT (PORT¢),A	
$1 \varnothing 66$		LD E, (IY+ $\varnothing \varnothing$)	
1967		CALI VDLY	
1968		INC H	
$1 \varnothing 69$		ID \cdot A, GRID	
$1 \varnothing 7 \varnothing$		CP H	
$1 \varnothing 71$		JR Z, +9	
1ф72		DEC IX	
1ф73		DJNZ BMOVE	
$1 \varnothing 74$		JP YARTN	1
1675		INC IY	
$1 \not 776$		DEC C	
$1 \varnothing 77$		JP NZ, YRTH	
$1 \varnothing 78$		ID HL,PATH	
$2 \varnothing 79$		ID C, (HL)	
$1 \varnothing 8 \varnothing$	YMAXH	: ID H, $\varnothing \varnothing$	

$1 \not \subset 81$	YMAX	: LD IX,YSTEP4
$1 \not 182$		ID B, COUNT
$1 \varnothing 83$	YAMV	: ID $\mathrm{A},(\mathrm{IX}+\varnothing \varnothing)$
$1 \not 184$		OUT (PORT \varnothing), A
$1 \not 185$		ID E,MAXSPD
$1 \varnothing 86$		CALL VDLy
$1 \not 187$		INC H
$1 \varnothing 88$		ID A,GRID
$1 \not 189$		CP H
$1 \varnothing 9 \varnothing$		JR $\mathrm{Z},+9$
$1 \varnothing 91$		DEC IX
$1 \not 192$		DJNZ YAMV
$1 \varnothing 93$		JP YMAX
$1 \varnothing 94$		DEC C
$1 \varnothing 95$		JP NZ, YMAXH
1996	YDEC	: LD IY,DCONS
$1 \not 997$		ID C,DCOUNT
$1 \varnothing 98$	YDRrin	: LD H, $\varnothing \varnothing$
$1 \not 999$	YDRTN	: LD IX, YSTEP4
$11 \varnothing \varnothing$		ID B, COUNT
$11 \not 11$	YDMV	: ID A, (IX $+\varnothing \varnothing$)
$11 \phi 2$		OUT (PORTめ),A
1183		ID E, (IY $+\varnothing \varnothing$)
$11 \not 64$		CALI VDIY
1165		INC H
1166		ID A,GRID
1197		CP H
1198		JR 2, +9
$11 \not 19$		DEC IX

$111 \varnothing$	DJNZ YDMV
1111	JP YDRTN
1112	INC IY
1113	DEC C
1114	JP NZ, YDRTH
1115	XOR A
1116	OUT (PORT申), A
1117	EX AF,AF'
1118	EXX
1119	RET

$112 \emptyset$	NiVINIU	: EXX	; Routine to move the detect
1121		EX AF, AF'	;up in y -direction with
1122		ID A, (WAY)	; constant speed.
1123		ID C, A	
1124		ID H, $\varnothing \varnothing$	
1125	ULINE	: ID IX,YSTEP4	
1126		ID B,COUNT	
1127	UNEXT	: ID $A,(I X+\emptyset \varnothing)$	
1128		OUT (PORTめ), A	
1129		CALL DIY	
1130		INC H	
1131		ID A,GRID	
1132		CP H	
1133		JR Z, +9	
1134		DEC IX	.
1135		DJNZ UNEXT	
1136		DEC C	
1137		JP NZ, UIINE	
1138		EXX	-
1139		EX AF, AF'	
$114 \emptyset$		XOR A	
1141		OUT (PORT \varnothing), A	
1142		RET	

1143	MVINYD : EXX	; Routine to move the detec
1144	EX AF, AF'	; down in y -direction with
1145	ID A, (WAY)	; constant speed.
1146	ID C, A	
1147	ID H, $\varnothing \varnothing$	
1148	DLINE : LD IX, YSTEPI	
1149	ID B,COUNT	
$115 \emptyset$	DNEXT : ID $A,($ IX $+\varnothing \varnothing)$	
1151	OUT (PORID), A	
1152	CAIL DIY	
1153	INC H	
1154	ID A,GRID	
1155	CP H	
1156	JR $\mathrm{L},+9$	
1157	INC IX	
1158	DJNE DNEXT	
1159	DEC C	
116ø	JP NZ, DIINE	
1161	ExX	
1162	EX Af, AF'	
1163	XOR A	
1164	OUT (PORTD), A	
1165	RET	

1166	XRACC	:	EXX	;Routine to move the detec
1167			EX AF,AF'	;right in x -direction by
1168			ID IY,ACONSI	;acceleration.
1169			ID C,ACOUNT	;Acceleration starts.
1176	XRTH	:	ID H, $\varnothing \varnothing$	
1171	XARTN	:	ID IX,XSTEPI	
1172			LD B,COUNT	
1173	AMOVE.	:	ID. $\mathrm{A},($ IX $+\varnothing$)	
1174			OUT (PORT¢), A	
1175			ID E, (IY $+\varnothing$)	
1176			CALL VDLY	
1177			INC H	
1178			ID A, GRID	
1179			CP H	
$118 \emptyset$			JR $\mathrm{Z},+9$	
1181			INC IX	
1182			DJNZ AMOVE	
1183			JP XARTN	
1184			INC IY	
1185			DEC C	
1186			JP NZ, XRTH	
1187			ID HL, Path	
1188			ID C, (HL)	
1189	XNMXH	:	ID H, $\emptyset \emptyset$; Maximum speed is reached
$119 \varnothing$	XIMAX		ID IX,XSTEPI	; the stage moves with the
1191			ID B,COUNT	; speed PATH long.
1192	XAMV		ID $A,(I X+\varnothing)$	
1193			OUT (PORTD),A	

1194		LD E,MAXSPD	
1195		Call vdiy	
1196		INC H	
1197		ID A,GRID	
1198		CP H	
1199		JR 2,+9	
12øø		INC IX	
$12 \not 1$		DJNL Xamv	
$12 \emptyset 2$		JP XNmax	
$12 \not 03$		DEC C	
$12 \not 64$		JP NS, XNNXH	
$12 \not 15$	XDEC	LD IY,DCONSI	;Deceleration begins.
1296		ID C,DCOUNT	
$12 \not 07$	XDRTH	ID H, $\varnothing \varnothing$	
$12 \varnothing 8$	XDRTN	ID IX,XSSEPI	
1299		LD B,COUN'	
$121 \varnothing$	XDMV	IJ $A,(I X+\varnothing)$	
1211		OUT (PORT¢), ${ }^{\text {a }}$	
1212		ID $\mathrm{E},(\mathrm{IY}+\varnothing$)	
1213		Call vily	
1214		INC H	
1215		IL $A, G R I D$	
1216		CP H	
1217		JR $\mathrm{Z},+9$	
1218		INC IX	
1219		DJNz XDHV	
$122 \emptyset$		JP XDREN	
1221		INC IY	

1222
1223
1224
1225
1226
1227
1228
1229
$123 \varnothing$
1231
1232
1233
1234
1235
1236
1237
1238
1239
124ø
1241
1242
1243
1244
1245
1246
1247
1248
1249

DEC C
JP NZ,XDRTH
XOR A ;Deceleration lasts, and the
OUT (PORID), A ;x-stage stops. Then the routine
EXX ;returns to where it is called.
EX AF,AF'
RET
XLACC : EXX
EX AF,AF'
ID IY,ACONSI
ID C,ACOUNT
SXPAH
SXPAR
: LII .IX,XSTEP4
LD E,COUNT
SXPAR: : ID $A,(I X+\varnothing)$
OUT (POFID),A
ID E, $(I Y+\varnothing \varnothing)$
CAIL VDLY
INC H
ID $\mathrm{A}, \mathrm{GRID}$
CP. H
JR Z, +9
DEC IX
DJNZ SXPAF
JP SXPAR
INC IY
DEC C
JP NZ,SXPAH
;Routine to move the detector
;left in x -direction by
;acceleration using the same.
;procedures described in XRACC ;routine.

125ø		LD HL, PATH
1251		LD C, (HL).
1252	SXAPH	: LD H, $\varnothing \varnothing$
1253	SXAPS	: LD IX,XSTEP4
1254		LD B, COUNT
1255	SXAPM	: IL $A,(I X+\varnothing)$
1256		OUT (PORT \varnothing), A
1257		LI Fi, MAXSPD
1258		CAIL VDIY
1259		INC H
$126 \varnothing$		LD A, GRID
1261		CP H
1262		JR $2,+9$
1263		DEC IX
1264		DJNZ SXAPM
1265		JP SXAPS
1266		DEC C
1267		JP NL, SXAPH
1268	SXPD	: LD IY, LCONS 1
1269		ID C, DCOUNT
$127 \varnothing$	SXPDH	\because ID H, $\varnothing \varnothing$
1271	SXPDR	: LD IX,XSTEP4
1272		LD B, COUNT
1273	SXPDM	: ID A, (IX $+\varnothing$)
1274		OUT (PORT \varnothing), A
1275		ID E, (IY $+\downarrow$)
1276		CALL VDIy
1277		If CH

1278	ID A,GRID
1279	CP H
$128 \emptyset$	JR $\mathrm{A},+9$
1281	DEC IX
1282	DJNZ SXPDM
1283	JP SXPDR
1284	INC IY
1285	DEC C
1286	JP NZ,SXPDH
1287	EXX
1288	EX AF,AF'
1289	RET

BIELIOGRAPHY

1. Ieventhal, Iance A. Introduction to Microprocessors Erentice/Hall, Inc., 1978.
2. Mano, M.Morris. Computer Logic Design , Prentice/Hall Inc. 1978.
3. H.Taub/D.Schilling. Digital Irtegrated Electronics NicGraw-Hill, Inc., 1977.
4. Millman/Halkias. Electronic Fundamentals and Applications McGraw-Hill, Inc.,1976.
5. George M.Chute/Robert D.Chute. Electronics In Industry McGraw-Hill, Inc., 1979.
6. Edminister, Joseph A. Electric Circuits, McGraw-Hill, Inc. 1972.
7. Earle, James H. Design Drafting , Addison-Wesley press, 1972
8. Telefunken Optoelectronic Devices data book, 1976.
9. Philips Electric Motors and Accessories data handbook, 1977.
10. Gilder, Jules H. "Focus on Stepping Motors" , Electronic Design , Vol.25,No.22, pp. 48-57, 1977.
11.: Superior Electric handbook "Design Engineer's guide to DC stepping motors", 1976.
11. Airpax Stepper Motor Handbook, 1979.
12. National Linear Data Book, 1978.
13. Notorola Transistor Data Eook, 1975.
14. Motorola TPL Data Manual, 1981.
15. Intel Component Data Catalog, 1982.
16. Zilog $Z-80$ technical manual, 1977.
17. Motorola Memory Data Manual, 1981.
18. Intel Feripheral Design Handtook, 1979.
