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PREFACE

_The'figld of image processing especially digital picture processing has

grown considerably during the past decade with the increased utilization of
imagery in myriad applications cdupled with improvements in the size, speed

and cost effectiveness of'digitél-pbmputefs and related signal processing

technolqgies. Image pfoceSsing has found a significant role in scientific,

indﬁstriai, bidmedical, space énd governmental applications. Such

‘5pplicatiqh3'inc1ﬁde ;hé‘digitalftfansmissidn of space craft, imagery and
lpéféonal‘telephoné‘carrigr,'teiéviSion, the resolution improvement of
“eiectfonenmicrqscope, images and: the compensation sensor and transmission

i'errdrs &f piétu;es traﬁsmittea ffom déep—sﬁace—probes, the automatic

classification of terrain and detection of resources from earth resources

sateliite~pictures, the formation and enhancement of biomedical imagery,

inéluding radiographs, termograms and nuclear scanned images, automatic map

making from serial photographs and the detection of cracks and flows in

machine partsvfrom industrial radiographs. In the future image processing

will no doubt be utilized to a greater extend to aid medical practitions in

~

fhefdetettion and diagnosis of diseases from biomedical images. Industrial

application should abount, imagé ﬁrocessing systems will analize scenes from

the "eyes" of industrial automations to control their actions.

v'The'purpbsé,of:this study. is to review the techniques, tools and
I;applications of image_prbcessihg, Among them two major techniques have been

9;examined{ The first one is the picture compression and coding techniques




: Whiéh have a use of minimizing the number of bits required to transmit or

store an image as much as possible. The second one is the edge detection

techniques which give the description,. i.e.certain features, of images.

"This study is devided intd ghree,parts. phapter 1 deals with mathematical
- ﬁodels aﬂa representation of imaéés. Topics covered include the problems in
~imagé”prQCessing like image enhaqéeﬁent and methods to solve these problems.
'Unitary.transforms;'autpregreési§e‘or-staté variable models for images or
~lin;ar prediction @o&els ﬁééd iﬁ ¢aﬁ§ problems, etc.‘arevexamihea. Chapter 2

.deals with image data compression and coding technidﬁes. In this chapter

different alternatives to quantizers are given and Qarious Pulse Code
Modulation»(PCM), Differential PCM (DPCM). and adéptive DPCM (ADPCM) methods
are ‘examined. Their performances. are evaluated due to SNR. A package program

has been deVeloped to‘éimulate all these techniques. In the last part (Ch.3

: and’ Ch.4) edge detection techniques éfevexamined.'Three‘typical and the most

‘populéf preprocessing algorithms are chosén among various different ‘edge

detection‘schémes. Differentidecision and postprocessing élgorithms are

-édded to the configuration of the schemes. A package program has been

developed to simulate all these schemes. Evaluation and compérison is done

aCQording'to the eight qualitative'br quantitative performance criteria

'whiéh-newly &erived. In'chaptervﬁ_all evaluations and comparison results are

‘givenvby:graphics and simulation_reédlts.

,VIt:isvimpossible even 1n,this're1ativé1y long study to cover_all the aspect

?of image p:oceséing. The reader is féffered to the bibliography at the end

of this work for further study.
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ABSTRACT

Imége processing‘techniques find applications in many areas, chief among

which are image enhancement, picture compression, pattern recognition,

efficient.picture coding and image understanding. In this master thesis,
some important aspects of image plrocessing techniques which are listed

below are discussed

11 - The méthématical modéisgused;in'picture processing applications like
 £33£ ﬁﬁitary trahsfofms;'aqto;égféSSivejand4State variable models, linear
kvprediétibnvmbdels. Applications of these models in several image processing
'ﬁf6b1ém55?in¢ludiﬁg imége;reSforﬁgion,'smobthing, enhancement, data
ucbmﬁressibn‘and dé;ectibn;;_'

'ZZjIA 1afge vafiety of iﬁége datafCOmﬁressiéﬁrand coding techniques._Some

‘simple sampling,énd quantization{techniques,-Pulse Code Modulation (PCM),

e

Differential PCM (DPCM), predictiVe coding and adaptive coding techniques.
3-f.Major edge detection techniques and alternative élgorithms to the three
différentlleﬁels of edge detection schemes (preprocessing, labeling,

postpfocessing algbrithms).'ln addition to the discussion of these three

' aspects, two packége programs have been developed to simulate data

compression and edge detection techniques by using a microcomputer. For

evaluation of edge detection schemes, some qualitative and quantitative
» performance criteria are generated and comparison of three edge detection

schemes is also done due to these criteria.

vi



i
e

algoritmalar (Snisleme, degerleme, sonigleme).

OZETGE

Resim iletigimi teknikleri bircokialanda uygulénim olana¥1 bulmuslardar.

'5rne§in,'reSim vurgulama, reSim S1k1$t1rma, 8riintlii tanima, resim kodlama

veya resim anlama..Bu tezde resim iletigimi teknifi ile ilgili bazi noktalar

incelenmigtir.

1';.H;zli'bxlimsei_dBnﬁsﬁmler,_AR modéli, durum degiskeni modeli, dogrusal

6ng6rﬁéﬁ.modglleri gibi résim iletigimi konusunda ¢ok uygulamasi olan

matematiksel modeller ve bu modeilérin_résim iletigimi problemlerinde

~8rnefin, resim restorasyonu, diizeltme, vurgulama, veri sikistirma,-

dallérinda kullanilmasi.

"2 - Degigik resim sikigtirma ve kodlama ydntemleri. Basit Srnekleme ve

niceleme. ydntemlerinin yanisira PCM, DPCH, Ongdriiciili kodlama ve uyarlamali

" kodlama ySntemleri

QNf 5nemli'ayr1t sezme ydntemleri ve bu ydntemlerin u¢ islemi igin degisik

/

Bir mikro bilgisayar kullanilarak resim slkigtirma ve ayrit sezme yontemleri

ile 1lgili iki ayri paket program gelistirilmistir. Ayrit sezme

\ y6ﬁtém1¢rihiﬁ~deﬁerlendirilmesi-ve birbirleri ile kargilagtirilmasi yapilmisg

ve ‘bu amécafY6nelik bagari kriterleri tanimlanmigtir.

C il
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I.  APPLICATIONS AND MATHEMATICAL MODELS FOR IMAGE PROCESSING .

1.1 ‘INTRODUCTION

IThe.steadv growth of modern communication requirements has resulted in a
_steadv increase in the volume of pictorlal data that must be transmltted

Ulfrom -one locatlon to another. In some cases, although image transm1551on to

a.remote location is notinecessary,;one does need to store the images for -

- future retrieval and analysis,'_

“The-function‘of an image transmiésion[system is to convey to an observer a
- "pest" reproduction of-a'diStant%scene or document, subject to limitations

" which may be imposed byvthe cost and/or technical characteristics of the

channel and-the-terminal-equipment; In a broad sense, the field of image

‘proceesingvdeals with the manipulation of data which are inherently

two—dinen81onal in nature. The techniques of image processing find

applications in many areas, notably: image enhancement, pictorial pattern

recognition,'snoothing, image understanding and the efficientfcoding of

,pictures:for:transmission'or storage.

 Mathenatical’mode1s>are'becoming;increasingly important because of their
~'role in the development of useful algorithms for image processing. Virtually

.'Uall applications of image process1ng utilize some sort of mathematical
»models. The common questions underlying these areas are:

- How do we describe or characterize images ?

-~ What mathematical_operations do we want to use on the images ?



P
T

©. = How do“wé implement: (in hardwate) these mathematical operations ?

— How.do we evaluate image_quality_?g

‘[In this chapter a brief discussion about problems in image processing

techniques, mathematical models and applications for image transmission will

, be given. The details of formulations of the mathematical models are beyond

the subject of this study.’ Some - detailed studies have been performed on this

matter by A K.Jain [1], [9] [11], T.S.Huang [4], W.F.Schreiber [2],[4],

0.7 Tretiak [4] and W.K.Pratt [10].

In Sec.l.2, typical problems'in_image processing and desirable properties of

'image processing algorithms will be given. In Sec.1.3 the idea of

tw0fdimensional signal processing will be summarized. In Sec.l.4

v'linear—transform processing of images will be examined. In section 1.5 image
'representation-by'one—dimensional:stochastic models as autoregressive
'representations will be consideredﬁbriefly. Then, linear prediction‘models
‘ﬂin'two dimensions.Will be-examined;‘éection'1,7 will deal with image quality

'y?apd-infthe last sectiOn:applications.in image processing will be summarized.
1. TYPICAL PROBLEMS IN IMAGE PROCESSING /

'As;mentioned above, all applications of image processing utilize some sort

of.mathematiCal model. The continuing advances in high-speed digital
prbcessors, digital memories and very large scale integration have led to

succesful algorithms for‘many difficult problems. Table (l.1) gives a

.'description of some of the typical problems in image processing and their

associated modeling requirements. A typical algorithm requires a model such

as bandwidth, power spectrum, etc., of the data (input to the algorithm)



While most of the problems listed in Table (1.1) also occur in
-one-dimensional signal processing, special care.is needed in the development

‘ofxtWOf and higher dimensional algorithms. The major difference besides the

higher dimensionality is‘that of;causality. A large number of
oneidimensional signal processing methods are based on the fact th;t the
ObServed_data is the output of a causal system. For two-dimensional images
the data coordinates are_spatial and any causality associated with an image

is purely due to its scanning or acquisition technique. Therefore it is not

lsurprising that: a large number 6f image processing algorithms for edge

- extraction, enhancement, restoration, data.compression, etc., are noncausal.

The computational'efficiency:offalgorithms is often measured by their memory

and operation countﬂrequirements; The'most'efficient algOrithms would be

such that the required number offoperations,per pixel would be independent
of the sizeiof'the image.-Unfortunately,-a large number of algorithms

‘require an.operation count whichtis-proportional to log N or higher for N *

N images. Table (1.2) lists some of the desirable properties of \

_two-dimensional models and algorithms which tend to minimize their

computational complexity.

1.3 TWO DIMENSIONAL SIGNAL PROCESSING

' Let us consider a picturevas a two-dimensional signal A(x,y) of the two

»,spatialkcoordinates X andlyajThe extension of signal processing theory from

a one-dimensional time—varying signal is straightforward. Sharp changes in

'brightness which require a high resolution optical system for accurate
reproduction give ‘rise to high spatial frequenc1es, thus, the spatial

i:frequency spectrum can play the same role for pictures as the temporal



frequency spectrum does for time—varying signals. One can speak of the
two—dimensional Fourier Transform of A(x,y) which represents its spatial

frequency spectrum‘

-AFW,; »Wy)f’_és- AGLYIexpl—3(x + ¥ )] dxdy . (1.1)

Whefe\A#(W&,ﬁ;) represents;rhe,Foerier:Transform of A(x,y).

The impulse response in pwd dimeeeions, sometimes called the point spread
,funétion in bpties, is also very'useful.'In a time-domain filter, let H(x~X

: ,y'[D,'the output is some weighted average of the past hlstory of the input

where the weighing functlon is the impulse response. The output of a spatial

i filter, let Ao (x,y), is some weighted average of the surrounding points in

.the input:

Bo () = § AlwDuGx-04y-Brdoap (1.2) -

- Just as avtiﬁe—ﬁarying»signel eee‘be sampled, A(x,y) can be sampled by a
.tWO*dimeﬁéipnaliarray,in Vhich the spacing between the sample points is
;jgmall.eeepgh{so;that the éicrﬁre,ﬁay be reproduced without aljiasing.
r‘élearly,‘rﬁebmaximum:allowable epéce_between samples depends on how rapidly

?:the-brightﬁess‘chaﬁges;'ornin;other:words, on the spatial bandwidth.

_Thefsampling theorem [7],v[81 hoids“in two or more dimensions, and is useful

to ‘indicate that a bandlimited picture mayebe represented by the brightness
at_é finite number of points. This allows the digital computer to be used

for.the simulation of various image processing systems by discrete

\beperations on the value of brightness at the sample points.



1.4 LINEAR TRANSFORM PROCESSING OF IMAGES

A classical way of analyzing a function is by its series expansion in terms
of a set of complete orthonormal functions. The advantage of this method is
the capability to obtain a relatively uncorrelated new set of variates by
transforming the correlated ones. This new set of variates will have a

varying degree of significance in contributing to both the information

. content and the subjective quality of the resulting picture. Then one can

disregard the less significant of these variables without affecting the
‘statistical information content of the picture or causing a severe

degradation in the subjective quality of the resultant picture.

In the context of image processing a general orthogonal series expansion for

an N * N image {uxy} is a pair of UNITARY TRANSFORMATIONS of the form

; g oysk,D) o (1.3)
u. = v & (x,y;:k, ) )
XY kGia kl o ‘
N N | .
) Y 1.
ki 218y Uy X vk, D) (

where {x(x,y;k,1)} usually called the IMAGE TRANSFORM, is a set of complete

orthonormal basis functions satisfying the properties

. o :
S So(x,yik,1) a(x ¥ 3k,1) = & 28, . (orthonormality)  (1.5)
kel 1< : a2 .

N N X o

SO a(x,yik, D) o (x,y3k" ,1' ) = § 6 (completeness) (1.6)
x=1 y=1 ‘ . kk L6

" The elements v are called the TRANSFORM COEFFICIENTS and {u, } the
l : :




'PROBLEM

DESCRIPTION

'&,/ﬁnesis, v

rspuca of that imsge,eg, textura synhesis

MODELS
‘ " et Giver noisy imege dats filter it to smooth noise and  image
.1 SﬂOOtnlng out the noxse variation power spectra
21 : Bring cut or ernence certain festures of the
Enhancement . imege, g, edge enhancement, contrast streching Featurees
’ ate
Sl . | Restore sn image known (or unknown) .
3 Restoration and filtering | degrssstion ss close o its original forn pEdredations
R - | s pesible,eq, imsge deblurring, inege e loeaman ST
“reconstruction, etc 1052n2ss
4 : Minimize the number of bits required to Distortion criterian
, Data Compression store/transmit an imsge for & given lavel Inege & an
of distortion infornation source
' : Extract certain features from en imsge Features, detection
f - . g .
5 Feature Extraction £g, edges criterisn
6 Detection and Detect 2nd identify the presence of sn Datention oriterisn
, identi fication ob jact from & scene,eg,matched. filter, b ect Ed SGenE
A , pattern recognation, inege seguentstion,etc J 18 =bEh
; Given imege data at certain pnts in & region fEstimate criterien
7 Interpolation and estimate the value of all other pnts inside {snd deqres of
Extrapolation this reglon(lnterpol » and also st pnts smoothness of the
' outside this ragion.(extrepol.) data
: , : L B PR — . . . Criterion of estima~
8 " spectral estimation Gé:g? i”:g?rgﬁta I a reqion, estimate 1tS | vion eoviary model
‘ ' P P for data
‘ |
- . Given the msg. of the frequerncy response N |
9 ‘Spectral factorization | of a filter-design a resiizable filter, Cifaqflg?f?i, ‘
S . © | eg.stebla causal filter realizebliity
P | Given a description or some features of an . o
10 ineqe, design a system which reproduces & Features, criterion

Of reprodustion

Table 1.1 Typidal:p.roblgms in -lmage processing by

&K Jain [1)

PROPERTY DESCRIPTION
Linearity Linesr operation on data
Seperebility Independent row and column cperations

shift invarisnce

natrix menipulations

Operations leading to Toeplitz end circulant

vMarcouian or finite memory

pixel,eq,FIR filters

only local and/or sparce operations required in esch

Table 1.2 Desirable prc:pertlec, of image proce;smg algr»rlthms
by AK.Jain [1]
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transformed image. It is readilylséén from Eq (1.3) and (1.4) that the

general unltary transformation would requlre O(N ) operations, one operation

_ being a multipllcatlon and a- summatlon. For typical size (N = 256) images

thlS means over a billion operatlons would be needed to compute the

transform coefflcients. To reduce dimensionality, the unitary transforms in

~ Eq (1. 3) ‘and (1 4) are restr1cted to the PRODUCT SEPARABLE CLASS, satlsfylng

-the condltiont

b

o(x,y3k,1) = a (1.7)

xk "yl

:
‘where A = {f3, } and B = {¥,, } are UNITARY MATRICES. (i.e., A =£ ). Often

in image processing one chooses A = B so that Eq (1.3) and (1.4) yield

V=AUATV. (1.8)
U=y & o (1.9)

Now the ‘transformations require column operations followed by row operations
“on the result, reducing the compiutations to O(N”) operations. Even this

‘reduction is insufficient and the choice of image transforms is further

restricted to FAST TRANSFdRNS;,TYpiéélly, these transform matrices have
Stfuctural properties thch iead't§ Fast Fourier Transform (FFT) type
algofithms. Hence a transfprmatidn of the type y = Ax, for an N * 1 vector x
couid Be pérformed in O(NiogN) obefations, so that for images the operation
count is’O(NZlOgN) or LogN pér pel. Examples of fast unitary transforms are

the discrete Fourier (DFT), cosine (DCT), sine (DST), Walsh-Hadamard (WHT)

 transforms [9], [10], [12], [14]. Other fast transforms include the Haar,

::51ant [91, [10], [14], and a family of sinusoidal transforms [15}. A useful

property of all unitary transforms is their energy conservation property




. ‘NN 2
: = 3 v (1.10)
1 ‘Y! k=1l§1 | kL |

known as PARSEVAL's relation. This follows from the fact that ' a unitary

transform is simply a rotation of the image viewed as a vector in an N

. dimensional vector space so that the length of the vector remains unchanged.

'KARHUNEN-LOEVE TRANSFORM

.0f partidplar significance among unitary transforms is the so-called
_Kafhunéh—Loeve transform (KLT) for random fields. Generally, one could

. consider the autocorrelétion function itself. It is the complete orthonormal

set of images‘¢(x;y;k,l):determined from the Eigenvalue equation

N N S |
mzll ng’ r(k,l;m,n)¢(X,Y;m,n)=A.x‘y¢(x,y;k,1) : (1.11)

where r(:;‘) is the image'covariance function. For separable covariance
functions, the KLT is also separable. Two significant properties which make

the KLT very desirable are as follows [1], [9], [16]:

1 = It completely decorrelates the transform coefficients

2 — Compared té all other unitary transforms, the KLT packs the maximum
expected energy in a given number.bf samples. It has been shown in [13] and
[15] that a suitable fasﬁ sinuéoidal transform such as DCT or DST could be

found as a good approximation to the KLT. The sinusoidal transforms have

1'equivalent_performance to KLT as N->®. In image processing N can be quite
.'1arge,,and’one'oftén proceéses smaller blocks (typically 16 * 16) of an

-image at .a time. The performance differences between the various transforms



are significant. enough to warrant the use of the KLT or a reasonable
substitute of it. It has been shown by A.K.Jain [17] that the separable DCT
is a good substitute for the nonseparéble KLT of other stationary random

fields also. Image transforms have been applied extensively in data

.compression, noise Smoothing and ‘restoration of images.

1.5 IMAGE REPRESENTATION BY ONE-DIMENSIONAL STOCHASTIC PROCESSES

Often it is desired to design imége‘processing algorithms for an ensemble of
images. For practical reasons this ‘ensemble is generally characterized by
the covariance and mean functions. These functions could be specified by a

mathematical formula or simply as arrays of numerical values.

A simple way to characterize an image is to consider it as a collection of

'~ one-dimensional signals, e.g., as an output of a raster scanner, or as a

sequence of rows (or columns) ignoring the interrow (or column)

dependencies. This approach will be explained in chapter 2 for simulation of

. DPCM and PCM systems. (See CH:2, section 2.5) For such cases,
_onefdimeﬁsional representations of stochastic processes are useful.
One—dimehéiqnal.stocastic mode1s have been applied in line by line

processing of images for DPCM coding, hybrid coding, recursive filtering and

réétoration etc.[18] - [22]. Some examples for image representation by

" one—dimensional stochastic processés will given below.




1.5.1 AUTOREGRESSIVE REPRESENTATION

If»{uk} is ‘a zero-mean stationary gaussian random sequence then a causal

representation of the type
P ‘
G = 3 A, +E (1.12)

is .called a (one-sided) AUTOREGRESSIVE (AR) representation. The sequence {Ek}
" is a zero-mean white-noise-rahdom-sequence process independent of the past
outputs. AR models have the following important properties.

1) The quantity

.
Y% Tl F%en

.meah[ukluh,.Vhfg k-1] (1.13).

n

is .the best mean—square pfedictdr of u .based“oniéll of its past. and depends

k
only on the past p samples.‘Thus;'Eq (1.12) becomes

% 7% Tk ¢ )

which says the sample at k is the sum of its minimum variance causal

predictioh estimate plus the prediction error. The sequence {uk} defined by

}:Eq (1+12). is called a pth order Markov process.

2) The AR process is stationary and causally stable if and only if the roots

of the polynomial

P .
AP(Z) =1- é; ahz?” , ‘ . (1.15)

10



lie inside the unit circle. Applications of autoregressive representations

::will be given in chapter 2. The algebra of this algorithm is not the subject

of this study. The details of formulations are studied in [1], [18] - [22].
1.5.2 STATE VARIABLE MODELS

State variable models have been used to represent two—dimensional images

-considered as the output of a raster scanner. The scanner output is modeled

as a one-dimensional random process and is characterized by a set of state

4véfiable'eqUationé of the form,

ext A(t)x(t) + B(t)E(tj'

y(t) = C(t)x(t) ' \ | (1.16)

. where y(t) is the scanner output at time t, and x(t) is an n*l vector, £(t)

is a p*1 zero-mean white-noise vector such that.
P ‘

mean(€(t) €(t')] = RS (t-t') | (1.17)

- A,B,C,K are appropriate matrices which are determined such that y(t)

satisfies (approximately, if,not‘éxactly) the statistics of the scanner

. output.

The first attempt - to modei images by state variable techniques was made by
.Naﬁi and Asseffi [20]. Although their final model has limitations because of

‘'several approximations, their modeling procedure does expose several

11



.whereVﬁk is. the best linear mean square predictor of u

;;variancevcausal predictor of u

. difficulties in representing two—dimensional random field by one-dimensional

.models.

. 1.5.3 NONCAUSAL MODELS [21], '[23]

In section 1.5.1 we saw that-a causal AR representation is of the type

u =

‘ ﬁk +Ek_ T mean[Ek] =0 - (1.18)

K based on the past

values {u , 1 < k} and {EQ is a .white-noise sequence. Thus, 4, is a minimum

k

K* In an analogous fashion, we can define a

minimum variance noncausal predictor U, which depends on the past as well as

k

the future values of u, . Let {uk} be any zero-mean gaussian random sequence

and let ﬁk denote the best linear mean-square estimate of uk based on all {ul

., 1.# k}. Writing

|
>

Yy 13@ kel (1.19) .

We'determine.'coefficientsvakl by minimizing the mean-square error

e 32
JICHER Wi
1.6 LINEAR PREDICTION MODELS IN TWO DIMENSIONS

One important property of many one—-diménsional systems is that of causality.

For two—dimensional images, causality is not inherent in the data. Moreover,

_the .data could be such that a causal realization by a finite-—order linear

system is not possible. This is because it is generally not possible to

“factorize a two—dimensional polynOmlal as a product of- 1ower order

12



::sequeﬁCe.{u(k)}. Then T

polynomials. In general, one can think of causal, semicausal and noncausal

representations for two-dimensional images. These representations are the

discrete equivalent of the classical categories, initial-value (or
hypgrbolic), initial-boundary value (or parabolic) and boundary value (or

.eliptic) represetations of two—dimensional linear systems characterized by

partial differential equations.

~ Linear prediCtiqn‘models in two dimensions are useful in image data

Ve

transmission and storage via DPCM coding, and hybrid coding, design of

- recursive, semirecursive and nonrecursive filters for image estimation,
. restoration and filtering and in image analysis. For these purposes, three
main ‘prediction schemes have been developed which are briefly outlined

"tbelow.

1.6:1 CAUSAL PREDICTION

Let {u } be an arbitrary zero—mean gaussian random field and let u

%Y

denote a'prediction estimate of the random variable u

XYy

X,y * Some examples foF

lineér‘prediction-models will be given below. Suppose the samples of the
random field h;xy} are arranged in any desired, one-dimensional ordered

is defined as a causal prediction of u Cif it

%Yy X,y

depends only on the elements that occur before the element Uy y A common
I . . ’

‘example occurs when an.image raster scanned, say column by column, and ﬁxy
. g

is ‘a linear estimate based on all the elements scanned before arriving at

(X,Y), i-é-',

,—uxy. =m.?E(5 va(x;y;m,n)um’h ' | (1.20)
where - 6‘='{m,n : n'<-y_for all m}u{m,n : n =1y, m < x}



field ,4e3cépt u,

1.6.2 SEMICAUSAL PREDICTION = . . | '

If ;he estimate ﬁx is causal in one of the coordinates and noncausal in the
; 3 \ ' _

b

other, it is called a semicausal predictor. For example, a linear semicausal

.prediptor which is causal in "y" and noncausai in "x" would be of the form

= 3 a(x,y;m,n)umn

Uy “mpg 5 ; .(1'21)

where 6= {m,n : n<y for all m}U {m,n : n =y, for all m # x}
1.6.3 NONCAUSAL PREDICTION

‘The quantity'ﬁx yis definéd as a’'causal prediction of u if it can be

Xy

written as a linear combination of possibly all the variables in the random

yitself. For.ekample, a linear noncausal predictor would

3

 ‘~be:df-thg‘type'

a(x’y;m)h)u

uxiy =mn256 m,n

vwhéfe‘-bl | ‘ ' 6= {m,n; (ﬁ,n) # (x,y)} . (1.22)

As mentioned at the beginning of this chapter, these mathematical models are
becomihg increasingly important because of their role in the development of

useful algorithm for image processing. Virtually all applications of image

processing utilize some sort of mathematical models. In sectioﬁ 1.8, we

" .consider applications of these algorithms in several image processing

problems, but before that, an important concept in image processing will be

‘discussed in the following section.
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1.7 IMAGE QUALITY CRITERIA
The effects of varlous parameters .on plcture quality have been discussed by
Schreiber [2] In most applicatlons, ‘picture quality is defined in

subJectlve terms, and can only be. measured in terms of observer response.

hThere is no good reason to suppose that sub1ective quality is a
'one—dimensional quantity, hoWever if-it is multi-dimensional, it cannot be
.ranked.’ In practice, it'is_treafed-aS'a scalar, and is defined in terms of

the protocol used to measdre it. It is usually specified in terms of a

foor—to—six'scale'running from "excellent" to "unacceptable". A more
attractiVe'scale is graded in just noticeable differences in image quality,
but in this case subjective measurement of relevant system parameters is

quite a difficult and ‘tedious procedure. Measurement of subjective image

'quality is very difficult; one can see this by reflecting on the fact that a
30% increase in bandwidth produces a just noticable difference increment in

appearance.

The practical problems in the measurement of subjective quality and the

desire to design systems'analyticaily brought forth several objective

measures of subJectlve image quallty. The most popular measures proposed to

date are the mean-square error and its variants, such as the welghted

hmean—square error. These measures have the distinct advantage that they are

.mathematically tractable, They dlso appear to agree reasonably well with

subjective ‘evaluation in . many cases.
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'1.7.1 MEAN-SQUARE ERROR' CRITERIA

_Let'uay'be the input image aﬁd'g*lythe,output image where (x,y) are the
SRR , ; iy . .

. spatial coordinates, and u and g-are brightness. We define the error as:

Exy™ Uy "By | (1.23)

and denote its Fourier transform by E,, where (u,v) are spatial frequencies.
LA .

Then ;he7mean—s§uare error is
. - -] 2 o] 2 ’
,Dl (u,g) = SS dxdy £ (x,y) = SS dudv|E\(u,v)| (1.24)
- E -& _
and the weighted mean-square error ié'

Dz'(u.gi =_§§dud'vVW(u',v;>.' IE(u,V)I2 : (1.25) -

where W(d;v) is called the weighting function. The weighting function:

reflects the sensitivity of the -eye to various spatial frequency components

in,the'image. : S e : /

The mean-square error criteria have at least two disadvantages. First, the
éubjective quality of a degraded image ng depends not only on the error E*y
o . . . 1 ’
but- also on the original image uxy;hence context dependent. Second, some
: . ) .

image degradation are geometrical in nature - for example, block

| '.quéntization using Hadamard transform (Ch:2, section 2.1.3), sometimes

yields pictures, containing "staipcases“ along the edges. The mean—sqare

" error.criteria do not seem appropriate for geometrical distortions. A more

16



'where‘W reflects the eye sensitivity, and W

satisfactory criterion should be based on some kind of edge error.

1.7.2 A DISTORTION MEASURE

In order to make up at least partially for the two defects of MSE criterion,

in'[4]; the distortion measure is proposed

D(u,g) = A D (u,g) + B Dy (u,g) | | (1.26)

here A and B are positive constants, D, is a weighted mean-square error,

‘modified to take care of the dépéndénce on the original image and D is a

b

' measure of edge error. One possible choise for Da is

Da(u,g) qs dudv |E(u v)| W (u, v)W (u, v) - (1.27)

-0

reflects the dependence on the

1 2.

“original image (and is a function:of u). Much experimentations need to be

done to determine suitable forms for'Db,and W&..

1.8 IMAGE PROCESSING PROBLEMS AND APPLICATIONS /

The models which were dicussed have.applications in most of the image

'processing problems llsted in Table l. As mentioned before the choise of a

partlcular model depends not only on the accuracy of the model but.also on

the: assoc1ated algorithm archltecture.
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1.8.1 SMOOTHING

‘Smopthing is a method.whichvds used'to suppress the noise that mav be

lpresentlin the picture. The basievdifficulty with the smoothing techniques
‘”his that; if applied 1ndiscr1m1nately, tend to blur the plcture, whlch is

'usually obJectlonable. In partlcular, one usually wants to avoid blurring

sharp edges or lines that occur in the plcture. The common smoothing problem

is to find the best linear mean—Square estimate of the image uxy given the

noisy’ observations

g =u, +€ , (1.28)

where_{E; } is a white-noise field independent of {u__}. Causal models have

Y to X,y

been'used by several authors [22],{24]—[27] to develop recursive filter
implenentations. Semicausal modeis.have been considered in [22] and [28] to
develop senirecursive or line to:line recursive algorithms. Noncausal models
haﬁe been shown to yield.fast transfdrm based nonrecursive algorithms [22]

and'[29]-and have also been fonnd_useful in developing moving average FIR

. filters. ' o o : /

p‘1.8.2A;iMAGE'ENHANCEMENT:

Image enhanéement processes ednsdst of a collection of techniques that seek
to'improve.the visiual. appearance of an image, or to convert the image to a
form better suited tp human or machdne analysisl In.an image enhancement
system there is no cons1ous effort to improve the fidelity of a reproduced

1mage with regard to some ideal form of the image, as is done in image



restoration. Aétuélly, fhere is some evidence to indicate that often a
';distofted'image, for example, an image with edge overshoot, is actually

‘more subjectiﬁely pleasing than a perfectly reproduced original.

~An-image enhancement system might emphasize the edge outline of an image

By”high—frequency‘filtering.rThié edge enhanced image would then serve as an

"input to a system that would trace the outline of the edges, and perhaps .

make measurements of the shape and size of the outline.

The prediction operatbr denoted by A(Z],Zz

) generally performs some sort of

' differeﬁtiation, When applied tola real world image, the prediction error
"genérally contains a ndnstationafy'Component which generally represents high

" spatial freduencies e.g,.edges. Thus the operator

(2 ,Z,) =1 +’)\A(z'1 ) 5 ‘, (1.29)

"wouid add to the image a quantity préportional to high spatial frequencies

(or gfadiénts). 
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1.8.3 IMAGE RESTORATION

Image models have also been used in restoration of images blurred due to

motion, atmospheric turbulence etc. Image restdra;ion may be viewed as an

~estimation process in which operations are performed on an observer or

measured field to estimate thé:idéai~image field that would be observed if

- no’ image degradation were present in an‘imaging system.

There éréntwd basic'apprdaches tofthé modelling of image degradation

.effects: a priori modelling aﬁd a;postériorivmodelling. In the former case,

measurements are made on the physical imaging system, digitizer and display

to‘determipé'their.response for an arbitrary image field. In some instances,

it yill,bé.possiblg to model the sySﬁem response: deterministically, while in

'6thér-situations it will only be possible to determine the system response

in a stochastic sense. The posteriori modelling approach is to develop the

model for the image dégradations based on measurements of a particular image

. to be restored. Basically, these two. approaches differ only in the manner in

which information is gathered to describe the character of the image

degradation.

'1.8.4 IMAGE DATA COMPRESSION — PICTURE CODING

'The“trénd'in”image transmission éﬁd storage is to use digital instead of

énalog technidues.,Thié”ié‘because of the many inherent advantages of

digital communication systems. in the case of transmission and the

'flexibility of digital computersfin'the case’ of storage. An encoding scheme

'\widely used- for the transmission’of digital signals is pulse code modulation
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‘(PCM). Suphian encoding scheme geqerélly‘involves the sampling of the analog
.fihput'signalfét a uniform rate-and‘encoding the samples in a binary

‘ pode;(see Ch:2) PCM teéhniques fedUire a high data rate for the transmission

Of,images{ Tﬁerefbre, many digitai schemes have been explored in order to

reduce the capacity requirements of the digitél image communication systems.

In,picture compression one needs_tovrepresent a pictufe by uncorrelated
data, and this can be achieved by using some reversible linear

tfanéfprmations; The data then mustbe_ranked according to the degree of

significance of their contribution to both the information content. and the
subjec;ive quality of the picture. Once such a ranking is achieved then

those elements of the data that are unimportant from the point of view of

.

the gfgf scale»and the spatiai resalution capability of the receiver caﬁ be
heglected (see section. 1.4).

Transfofm coding techniques uée fFT,:KLT or other orthogonél transform
ﬁbdeié.lf.ﬁé-do not limit oursélvés';o linear orthogonal transformations,

fhere are other techniques which achieve the same result. One such technique

"ﬁhiqh haé-the advantégé of easy implementation is predictive coding (The
_mddéls'héve-been-dicussed;inf1.6)fDifferentia1 Pulse Code Modulation or
- DPCM, or Adaptive DPCM are ﬁséd most fréquently (see Ch:2). A DPCM encoder

uses a linear prediction to generaté a differential signal, then quantizes.

thefsighal.with a quantizer that‘is_deéigned for the probability density

function of this signal. Both DPCM_aﬁd”transform coding techniques have been

,ﬁSed with some success in coding pictorial data. A study of both these-

systems has indicated that each technique has some attractive

chatacteristics and some limitations. The transform coding systems achieve

superior coding performance at lower bit rates, they distribute the coding

“degradation in a manner less objectable to a human viewer and show less
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- enable it to reproduce these contours.

sensitivity to data statistics. DPCM systems on the other hand, when

" designed to take advéntage.of spafial correlations of the data, achieve a
. . L . : A

‘Bette;'coding pérformance at a higher bit rate. The equipment complexity and

the;delay:due to the coding operétions‘afe minimal. Perhaps the most

‘desirable characteristic of this system is the ease of design and the speed

of operation. .

A hybrid coding system that combines the attractive features of both

transform:codiﬁg'and DPCM:systems has also been used. This system exploits

tthe,cortelation‘bf'the data in the horizontal direction by taking a
: one-dimensional transform.of each of line of the picture, then operating on-
- .eéch'COlomn5of the transformed déta using a one-element predictor DPCM

] SysﬁemfA

lFor.pictures,in which the ﬁumber bf:possib1e grey levels is small and which

are composed of only a few regions each having a constant grey level,
anefficient . method of compression is contour coding [33]. This involves
tracing of the contours or. boundaries. between the constant grey level.

regions and sending only that informations. to the receiver which would

’

Another method of compressioﬁ for pictures composed of few regions each.

having constant or slow1y varyingigrey level is run—length coding [30],

[31], f32], Here raster scanning of the picture followed by quantization

will give'fise to a reiatively'sﬁall number of “"runs" of constant grey

1

'iével, andlphe picture cah Beenchéd by.specifying lengths, dp equivalently

thé positions, of these runs.
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Another method of picture compression seperates a picture into "highs" and

. ™ows"™ [33]. The "lows" picture is obtained by low-pass spatial filtering of
'thg,ﬁicture. This results in essentially an out-~of-focus picture with no

sharp edges, i.e., a.blﬁrred'picture. By the two dimensional sampling

+

theorem, this "lows" picture can be represented by much fewer samples than
would have been needed for. the original picture. The "highs" signal is

obtained by taking either the gradiénp or the Laplacian of the -picture and

, consists;of'esséntially the edgeé in the picture. A two-dimensional

n_'high—freduency'picture, 3156 called the "synthetic highs'", can be

synthesized .from this edgé'information. This high-~frequency information,

' jwhen-combiﬁéd with'the."lows"pictufe gives back essentially the original

' ”hicture. The "highs" pigtu;e{may-be'efficiently transmitted by contour

éoding edge informafion [33]., o

Roberts [34] haS suggested a pseﬁdo—random'noisebmodulation technique for

picture cqmpression. If a continuous picture is sampled at an array of
poihﬁs, the samples usually need to be quantized to between 16 and 256 grey

levels depending on the requirements of the user of the picture. 1f an

',attgmpt ié méde to,reducé the number of bits by making the quantization too
;:coafsé; the result is the appearance of artificial discontinuities (false

: contoﬁrs)‘in the picture. These diééontinuities are a result of the
»quaﬁtizaﬁidn poisé, which is correléted'with the picture samples. If

uncorrelated random noise of the same rms value as the quantization noise is

added to'thegoriginalvcontinuousipiCture, these discontinuities do not

_appear. Roberts used this observation in his pseudo-random noise modulation

techniqué;in which.noise'of'unifdrm”amplitude distribution, and peak—to—péak

value equal to one quantum step, is added to the picture samples before

-quantization, and the identical noise:.is subtracted at the receiver. The
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result looks like an-unqﬂantized-output, in which random noise of the same

rms value has replaced the quantization noise (Dithering).:Usable pictures

r

are produced at 2 bits per picture element, fair ones at 3 bits andigood

‘ones at 4 bits..Roberts"Sysﬁem also has excellent performance in the

presence of ‘channel noise.

Another method of pictufe;compreSSion;‘which is known as interframe coding,

haszbeen widely dsed>f6f télévision'signals. In a television signal a large

fraction of picture elements correspond to the background material and do

not change from one frame to the next. On the other hand a relatively small

number of‘picutré elements change from one frame to the next to. convey the

new.infdrmétion'that is generated by a relative movement of camera with the

objéct in ‘each frame. From a statistical viewpoint, the similarity of pixels
from one frame to the next COrreSponds to a high level of interframe
correlétion. Thus the statistical cdding techniques exploiting the spatial

;" - correlation of the data which'we:e_ébnsidered for coding singles frames of

déta, could be extended to take advantage of the frame-to—-frame correlation,
further reducing the bit rate required to transmit the data. The design of

these-sjétéms is based:onxthe‘fact that only a small percentage of'picture

' poiﬁts_infa;television signal change in successive frames [35], [36], [3],

EY

.Picture_éomptéssion is the most important application where image models

- have probably had the.mostAsiénifiéanﬁ.impagt. Causal prediction models (see

section 1.6) have been used moét{widely in the design of interframe and
interframe predictive or the soécailed DPCM coders. Semicausal models have
been empioyed in transform DPCM coding. Noncausal models give rise to

transform coding algorithms which have been found to give high performance.
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'Thé prediétion_mode1'parameters’determine the coder design details such as
”quantiigf'design, bit allqcation,;pptimﬁm transform, etc. In chapter 2, the
~.most common picture coding techniques, PCM, DPCM, ADPCM, will be given in

more detail.

- 1.8.5 EDGE EXTRACTION, PATTERN RECOGNITION

iﬁ"

In éxamining a picture, one is very often interested only in exracting from

it ? description of what it depicts; this is the problem of pictoriai

: péttern recognition. The desired description may be merely a classification

of the picture into one of a small'set'of’prespecifiéd classes, in this case

‘it can often be accomplished by measuring various properties of the picture

as a whole.

‘  An.imége feature or an edge is a distinguishing primitive characteristic or
‘attriButr'of:an image fieid. Some features are natural in the sense that

: such~fe3tureé are definédfby the5vi$qa1 appearance of an image, while other

so—called artificial feétures':e3ﬁ1t=from specific manipulationssor

meaSurementé-of-an imége. Natural edges include the brightness of a region

!

of piﬁels,-édge'outlines of objects, and grey scale textural regioﬁs. Image
amplitude histograms and spatial frequency spectra are examples of

artificial features. Many pictorial pattern recognition problems involve

" more than just the assignment of:é picture to one of a set of prespecified

. classes; -they require a description of the picture, where the number of

possiblevdescriptions is so large that it makes it impractical to regard

each descfiption as defining a class. Typically, a description refers to .

various subjects of the picture, "objects", and specifies properties of

"these'subjects. To arrive at such a description, an automated pattern

o) VTP
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' recognition system must be.capable of singling out the appropriate picture
subjects, "segmentation"f There is no universal method of segmenting a,

: picturé; many different types of,suﬁjects can be "objects'", depending on the

type of description that is required. Noncausal models are very oftenly used

for edge extraction and pattern recognition methods. In chapter 3, edge

extraction (edge detection) techhiques will be studied in detail.

1.9 CONCLUSION AND SUMMARY

Tﬁis‘chaptef'has briefli‘preSeﬁted several mathematical models which have

_been usgd,and are-of potentiél use in image processing. Typical problems in
.~ -image processing have -also been diécusséd and the solutions and applications

ofvtheée problems have been summarized. Several mathematical models like

series expansion, one-dimensional AR, state variables, the causal,

'semicausél,~and nbncauSalvpredictioh models and'type of applications like
ééding techniques, image enhancement were included in the discussion. It is

impossible to cover all the important aspects of image processing in this

study. But, the reader is referred to the bibliography for more detailed

information about the topics.whiéh have been briefiy’mentioned in this

~chapter. Several'important aspectsfof image processing will be’'discussed in

more de;ail»in the succeeding'chapters;
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II. PICTURE CODING TECHNIQUES

The advantages of'COding a}signai digitally are well known and are widely

 discussed in the literature. Briéfly, digital representation offers

.ruggedness, efficient signal generé;ion, the possibility of combining

trénémission and switching functions; and the advantage of a uniform format
for different types of signals. The_price'paid for these benefits is the
need for increased bandwidth. He;e‘ste techniques of waveform coding will

be‘discussed. The discussion<w111'be confined to the encoding of image

. waveforms by means of a straightforward reconstruction of the waveform:
.épecificélly by means of the closely related discrete-—time, discrete

vamplitude :epresentation known as‘Pulse Code Modulation (PCM) and

Differential Pulse Code Modulation (DPCM). These techniques are appropriate

for the communication of any bandlimited time function.

fAl;hough the main‘subject%of‘this,wofk is‘;he investigation of the various
Image Tfansmission Techniquéé,wthis chapter will handle the coding
téchniqueé such as quantiéation,.PCM or DPCM in a broad sense because of two

. reasons:

1= PCM or DPCM are used for digital speech communication as well as for

digitai iﬁége transmission. In fact, there are many more studies about

'spéech'prodessing_than image processing. Then it is preferred to examine PCM

and' DPCM ‘techniques in more general sense.

.2-'As mentioned earlier, the combuter which is used for this study has

iimited memory and storage capacity”and.also has no ability to draw pictures
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as 41fferehces of grey level.inteﬁSities. Because of these limitations, the

picture coding techniques mentioned'above were tested on one-dimensional AR

" model seqﬁencés which are very suitaﬁle models for image coding techniques.

‘(seé chapter 1). It must be kept in mind that if a coding technique is

applied on a real continuous image, the system in which this process is
performed must have a two-dimensional filter, two—-dimensional sampler,
two—-dimensional quantizer .and a scanner. A scanner transforms a

two-dimensional array of samples into a one-dimensional sequence.

.In Sectidnv2.l the congept_of quantization is discussed in detail and
different:types of qUantizérs will be given.'In section 2.2 the general

_'theory of-Seqﬁantial or differential.qﬁantization is considered, then in

o segtioﬁ'2.3;é;brief,ekplénatibn”df linear predictors is given. In the next

2.1 QUANTIZATION

.ééction‘(Z.&)'Pulse CodélMQdulatibnT(PCM), Differential PCM,_Adaptive DPCM

are discussed. In the 1a$£15e¢ti6ﬁ'the computer simulations of PCM and DPCM
techniqueé are introduced and some examples of outputs ére given. A package
program which includes.different.types-of quantizers, different types of

waveforms and coding techniques is introduced;lw

In order to transmit the sequence of samples over a digital communication

channel ‘or to store them in a digital memory or to use them as the input to

a digital signal processiﬁg algorithh,.the sample values must be quantized

to'a finite set of ampiitudesjso that they can be represented by a finite

set of symﬁols.

QUéﬁﬁizatibn:beginé'with»;hé'avéilability of analog samples. Each sample may
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techhidﬁgs for QuanﬁizingAa<signal will be discussed.

in‘génefal take.on any of a contiquﬁh of amplitude values ranging from -0
to +Cb  ; The quantizer replacés gaéh"of these sample values with an output
Qalue which is an approximation to'the original amplitude. The key featupe
is;that'each output value is Qneldf.a finite setuof real numbers. Hence a

symbol from a finite alphabet can7be‘used to represent and identify the

- particular output value that'occursQ A distinct B-bit binary word can be

associated with each output value if the set of output values contains no

N - : SR .
more than 2 " members. With this procedure a sequence of analog samples can

_-be transformed into a sequnce of binary words suitable for storage,

transmission, or . some other form Of,digital signal processing. A receiver
having the table of output values (sometimes called "quanta" or "quantum

levels") associated with the set of binary words, can then reconstruct an

ﬁapptoximation to the original sequence of samples.

It is generally desiréble to maintain'thé bit rate as low as possible while

: méinfaining a required level ofOQuality. For a given waveform bandwidth

(such as speech or image intensity), the minimum sampling rate is fixed by

‘the sampling theorem. Therefore, the only way to reduce the bit rate is to

redﬁce the number of bits/sample. For this reason, here a variety of

/

~ In general it'is :eaéonable tovéésuﬁe that the samples { x(n) } will fall in

'é’finité range of amplitudés_such.thét

- |x(n)| € Xmax ;[.' | ’ (2.1)

for convenience, it may be desirable to assume that Xmax is infinite as for

example when we assume a particular form for the probability density
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-.funétion'dff;he amplitudeS*of'x(n), such as the Gamma or the Laplace
:distribﬁtion;_However, thefassumption-bf a finite range of amplitudes is

more realistic. The quantity Xméx'is'a’parameter of the quantizing -system,

whidh-specifieS'the "loading fact:c;r"i of the system, i.e., the amplitudes

beyond»which all samples are clipped. In order to avoid overloading and

clipping a "dynamic range" for the quantizer must be defined. This is

related to O; (variance of the input signal). It can be easily shown that

where -

‘ only 0.35%iof'samp1es would fall outside the range if the dynamic range is

-40 x £ x(n) < 40x . : (2.2)

Ny
Ox=1/N2. x = . ‘. (2.3)

N=total number of samples

which is also known as the ''peak to peak range'. For the Laplacian density

bﬂthé.peak‘tb'peak range of the quantizer will be 2(40,).

'The,prdCeSS'of,quaﬁtizing“and coding is generally depicted as in

xtﬁ) "

a ' e(n c'{n) et
RO, R EESWIN
QUANTIZER ‘ 7| EncooerR | / ; tECODER ;
- / . /J \. _/1 \- -

A A

: Fig.’Z.i'F'rocess of guartizing and coding
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.VH¢F81{ x(D) } representsvinput sapples
{ %(n) } ‘represents quantized values of input samples
{ c(n) } represents code word
A represents qUantization step size at the trensmitter side;
and { x'(n) } represents input semples )
A e'(n) } represents code word

! s . : . .
A represents quantization .step size at the receiver side.

Quantizers eén be classified as: .

N N v

) :61?6' ﬂ?&"f’ﬁ&‘g‘»}-' QU&‘)’:‘#. quﬁf;’t;f (;)u&»ﬁg_ Q"ﬁﬁ{ with memory
.Sl/ o v \l/ \l/ ‘ 1 \l/ \l/ ol
tniforn . Honuni forn Feedbsck - g;yan; adggzt. Block Quent. - Sequentisl or
' o iua uant. wi : . .
) adaptive .
%P 1-word Memory) 0ifferentisl quant
- —EPCM
- Feedforward S
© . Optimum Logarithmic aﬂaptive‘ga -0
- ¢Compending) '

:The_simpiest-end most common fqrm of Quantizer is the zero-memory quantizer.

-In this case, the output yalue'is determined by the quantizer only from one

e'cerfesponding‘input sample, independent of the values, taken on by earlier

(or later) aﬁalog.sampleé; applied_to'the quantizer input.

- The types of quantizers which are defined as zero memory quantizers in the

“above table.can be transformed into adaptive quantizers by.adding memory to
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‘decision. levels X, 0%

: the_configufation of the éirCuit;iln'the case of adaptive quantizers, the

output values are determined by the quantizer from the values taken on by

éarlier.(or‘later)'analog‘samples‘appliedfto the quantizer input.’

A more‘sophisficéted quantizér is ‘the one which looks at a group or "block"
'vainput'samples simuitanéously and. produces a block of output values,
'chosen'from a finite set of possible output blocks, approximating the

, corfeépondingiinput sampléé. In general, for a given number of bits per

sample representing the output values, a better quality approximation can be

'i achieved by block quantization.

2.1.1 ZERO MEMORY QUANTIZATION

A zero memory N-point quantizer Q may be defined by specifing a set of N+l

,..,3 and a set of output points X ,iz,...iN. When the

1 N 1

"value;x of an input sample iies_in the :i“Iquantizing interval, namely,

v» gn f { xaf x <.xh} . ,i.‘ B , (2.4)

“theiquantizer-producés the output value iﬁ' The input—output characteristic

of a quantizer has a staircase form.
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UNIFORM: QUANTIZATION

“-The quantization levels and ranges are generally distributed uniformly. Thus

/

X X = o (2.5)
A | (2.6)

where A.is'thg quantization stgﬁsizé. Two common uniform quantizer .
'chafaétéristics are shoﬁnlbeldﬁ'aﬁd the VAlue of the quantization levels and
stepsizeS.are'shown in Iable.(i;l).w(Midtread and Midrise uniform quaﬁtizer
ohtputLéndgdéCiéibn Valués). Vélﬁes are calculated accordiﬁg to Eqn (2.9)

~where Xmax = 40 x.
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values

(it =0

2.
G =1)

34

N 2 4 8 16 32 64
SRR EINESIRTE RS ETH I BE TR B B TS s
1 o {4000 |3.000 2.000 | 0.500 §1.000 | 0.250 0.500 | 0.125 | 0.250 } 0.063 | 0.125
2 | @ §4.000 | 1.500 §2.000 § 0.750 § 1.000 | 0.375 § 0.500 | 0.168 { 0.250
'3 2.500 § 3.000 | 1.250 § 1.500 | 0.625 } 0.750 | 0.313 j0.375
na @ §4.000 |1.750 }2.000 | 0.675 § 1.000 | 0.436 § 0.500
5 ‘ 2.250 § 2.500 | 1.125 } 1.250 § 0.563 } 0.625
6 2.750 }$ 3.000 | 1.375 § 1.500 | 0.688 { 0.750
7 2.250 §3.500 | 1.625 § 1.750 | 0.613 §{ 0.875
. 8 @ §4.000 |1.875 §2.000 | 0.935 § 1.000
'8 2.125 § 2.250 §1.063 }1.125
10 2.375 } 2.500 | 1.188 } 1.250
n 12625 §2.750 [ 1.713 } 1.375
2 2.875 § 3.000 | 1.438 § 1.500
13 3.125 § 3.250 | 1.563 § 1.625
pr o 3.375 } 3.500 | 1.688 § 1.750
15 3.625 | 3.750 | 1.613 } 1.675
16 @ §4.000 |1.938 2.0007
S v 2.063 2.125*‘
18 2.168 § 2.250
19 | -2.313 § 2.375
20 2.438 '} 2.500
12a 2.563 § 2 gzsﬂ-;
22 2.668 § 2.750
Iz 2.613 § 2.875
‘; 2.936 § 3.000
s '3.063 § 3.125
26 3.188 §3.250
¥ 4 3.313 $.3.375
28l 3.438 § 3.500
29 3.563 § 3.625
-3 3.688 § 3.750
3 3.513 § 3.875
‘32 @ }4.000
,.Téble Zolea I1/0 values of uni%mrh quantizers with‘midwtr@ad



values

{5, =)
\mx .

'y 0;(2=: i

35

N 2 4. 8 16 32 64
g ¥} il X i alxi f | xijxi | xif
1| « {2000 2000 1000 1.000 §0.500 | 0.500 § 0.250 J 0.250 } 0.125 | 0.125 § 0.063
2 ' ® $3.000 |2.000 §1.500 | 1.000 § 0.750 | 0.500 § 0.375 | 0.250 { 0.186
'3 3.000 § 2.500 | 1.500 §1.250 } 0.750 { 0.625 | 0.375 } 0.713
[ - §3.500 | 2.000 §1.750 { 1.000 { 0.675 { 0.500 § 0.438
5 2.500 §2.250 | 1.250 § 1.125 | 0.625 { 0.563
6 3.000 § 2.750 } 1.500 § 1.375 } 0.750 } 0.668
7 3.500 § 3.250 | 1.750 § 1.625 | 0.875 { 0.613
8- @ §3.75 | 2.000 §1.675 | 1.000 § 0.938
9 2.250 § 2.125 }1.125 § 1.063
10 2.500 § 2.375 § 1.250 § 1.188
1n - 2.750 §2.625 §1.375 } 1.313
12 3.000 §2.675 | 1.500 § 1.438
13 3.250 § 3.125 | 1.625 § 1.563
b | 3.500 § 3.375 | 1.750 § 1.668
15 3.750 §3.625 | 1.875 | 1.813
16 o 3.875 | 2.000 § 1.938
17 2.125 § 2.063
18 2.250 } 2.168
19 2.275 § 2.313
20 2.500 § 2.438
2 2.625 § 2.563
2 2.750 } 2.686
1z ! 2.875 § 2.613
”n , | 3.000 § 2.9
I'= C 325 | 3.083
2 3.250 § 3.168
7 3.375 § 3.313
1 28 3.500 § 3.438
29 3.625 § 3.563
‘30 3.750 § 3.666
= 3.875 § 3.613
32 @ §3.938
TTable Z.1.b 170 values of uniform guantizers with mige




' Here the quantization error is e(n)=x(n)-%(n) for the nth sample.
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Fig 2.3 Two common uniform quantizer‘characteristics

a) Mid-riser

b) Mid-tread
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 Fig.2.4 Additive noise rnodel of guantization

If we interpret the binéry codeiwéfds as a sign—magniﬁudé representation

with the left-most bit being»the‘éign—bit

.16

, then the quantized samples are




l. L
U

présentation of the sample values.

' reiatedgto;the‘code words by thefrelationship

S S .
x(n)= == sign (c(n))+ A c(u) - (2.7)
whére sign (c(n)) is equal to +1 if the first bit of c(n) is 0 and -1 if the

first bit of:c(n) is 1. Similarly, one can interpreted the binary code words

in'Fig 2;3b as a 3-bit two's complement representation, in which case the

‘quantized samples are related to the code words by the‘relationship

%(n)= Ac(n) . (2.8)

This latter method of assignment of code words to quantization. levels is

most gommonly used when the sequence of samples is to be processed by a

' .signal processing algorithm which is implemented with two's complement

arithmetic, since the code words can serve as a direct numerical

For uniform quantizers there are only two paraméters: The number of levels

- and thg'quéhtization étepsiie'A . The number of levels_is generally to be of
- the form ZB‘so astto,make_thé’mdst_efficient use of B-bit binary code words.

' TogetHer, A and B mhst'be'chosénbsdfas'to cover the range of input samples.

If we assume that |x(n)| € ZXmax, then we should get

2Xmax=AIZB" D ' » : - (2.9)

If A and B are chosen as in Eq.(2.9) then quantization error e(n) will be

restricted to the interval:.

—é—< etm) <5 | O (2.10)
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' PERFORMANCE MEASURE = SNR

" In order to compute,the strengh of the noise on images it is convenient to

.compute the signal-to quantizatidn noise ratio defined as

. N
o 2 - | |
_ L v{E ><2(n)} ~ r‘?’a xz(n) '
SNR = ——- = e (2.11)
o2, f dn} > €ln)
. X o T N=

" in its'§imp1e:form. Sincé_the QUantiZation error is modelled as ‘a random

variable, a measure of the performance of ‘a quantizer must be based on a

statistical average of some function of the error. Then we can define SNR

‘which. is felated'tdvthe.meén-sdgaie distortion measure D, defined as

a ‘ ‘ o ‘m .
= O'ez'=-S'['Q(x)—x] p(x)dx = Se p(x) dx = S (i'c—x)2 p(x) dx ,(2}12)

m -

’.

‘WHére Q(x) is the output characteristic‘of the ‘quantizers. This. quantity can

be. used tb measure the degradatién”ihtroduced b&ithe quantizer for a fixed

3 ) .
input pdf p(x). SNR is often defined as

SNR = 10 log (0, / D) ' (2.13)

‘where Of is- the variance of the input samples. In most applications of
- qﬁ&ntizétion, the number of léVels N is very large so that a sufficiently-
'yfhigh SNR is obtained. A useful formula for mean—squared error can then be

':used. Eq.(2. 12) can then. be written in the form,

N- X ’
g S —x) p(x) dx _" ' : ' (2.14)
X

"D



- density p(x) as being constant'within the interval Rn. On setting p(x)

;hy braking up the region of integration into the separate intervals Rn and
‘.anting that Q(x)% kn when x is in'Rn. For large N each interval Rn can be

B made‘very small. Then it‘ié'reasonable to approximate the probability

R

>p(x ) when X is in Rn and approximating p(x) 0 for x in the overload
" regions (Rl & RN), the integral fqr each term of the sum in Eq.(2.14) is

' readily found and we get

e
D = 1/;2.._ nEZ: p(xn?‘An‘g | | (2.15)

'hf_where A X=X - n-1 ; the 1ength of interval Rn. This approx1mate formula is

n

.'hbased on the assumption that for 1arge N a suff1c1ent number of quant1z1ng

levels are available for both*the‘granularity and the overload noise to be

verY-smail.

eThe'staircase-quantizer characteristic of the uniform quantizer has equal

"width and equal height steps. The expression for mean—square error

simplifies to

2 N1 : ,
D = A./12 2, p(X A , (2.16)
| Tplk)) A% Gpie) as =1 (2.17)
S0’ that | e

,Thus the mean-square destortlon of a uniform quantizer grbws as the square

of the stepsize. This is perhaps the mos;<often used result in quantization.
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As mentionedvabove, thefpeak—to%peak range quantizer range is assumed to be

'ZXpax,'then, for a B—bit_quenti?ef,}we get A= 2Xmax / ﬂ? Then

D = o by - g o O (2.19)

- {32

“Substituting Eqn (2.19) into Eqn (2.11) gives

R
(37
I Xmax 12

Oy o . ‘ .

P

s

" or expressing the signaletovquentieing noise in dB units

) v

SNR(dB)

e ,
10 log, 0[%2-} ~ (2.21)

' | Xmax
6B + 4.77 - 2010 (2.22)

‘SNR(dBi

,If we assume that the quantlzer range is such that Xmax = 40 x, then

eqe (2 22) becomes

SNR(dB) 6B -7.2 . ‘ (2.23)

‘ ;Eqﬁ(2.23),fﬁhich_s;ates that each?bif_in the eode word contributes 6dB to

-theyéiéhél*to*nbise ratio. ..

in;order‘to meintein effidelity:ef fepresenﬁation with uniform quantization
‘ thet is aeceptable perceptually, it is necessary to use many more b1ts than
'might be implied by the previous ana1y51s in which we have assumed that the
'signal is stationary; For example,‘whereas Eqn(2.23) suggests that B ; 7
,would provide about 3§ dB'SNR s whlch would -most likely provide adequate‘

'Q\quality in a communication'system; it is generally accepted that about 11
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C:bits are required to provide high quality representation of speech signals

’with a uniform quantizer.

~ An example to uniform mid-riser’quantizer will be given in section 2.5. An
"AR model waveform, which is explained in section 1.5, is used as an input to

'.the quantizer.

Fer'eli'of the apovebreasons, it’ﬁould.be very desirable to have a
quéntizing syStem‘for which the SNR was independent of the signal leyeli
Thetlis; father than the etrot being‘of constant variance independent of

' signal amplitude as fbt]uniforn qnantization,.it would be desirable to have
.l,}alcnnetant peteentege error. Thie‘ean be‘achieﬁed by using a non—uniform

"distribntipn pf quentization:lefele.
. NON-UNIFORM QUANTIZERS &

ti'Tne;use‘of a'nonéunifbrn~quentizer is'eqnivalent,to taking compressed
Hsignéls as an'inpnt to nnifotmfnnantizer and a eubsequent expansion of the
',ofntpnt‘. | |
H.iéonEidet e non—uniferm:qnantizer with the feature that the stepsize
fincreaeés as we go away from tne center of the (zero—mean) quantizer. The
advantaée of such a‘quantiner'is'that without increasing the total number of
.1iqnantizetion 1eveis (arid hence the needed bit rate), one can allow large end
‘stepS‘in the quantizet to take cere of.posSible excursions of the signal
into the (relatively infrequent) large amplitude ranges. Equivalently, for a
-given quality of encoding,‘over a specified dynamic range of the 51gna1, a

nonlinear;qnantizer permits a reductlon of the bit rate. For example, the
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logaritmic quantiier of Smith [47] can typically be designed to provide
- waveform quantization with 128 levels or 7 bits per sample, while a uniform

' - quantizer neéds about 11 bits for a similar performance.
_ 'LOGARITMIC QUANTIZER
" As mentioned above, it would be vefy desirable to have a quantizing system

for which the SNR was independent of the signal level. That is, rather than

the error being of constant variance independent of the signal amplitude as

for uniform quqntization, it would be desirable to have a constant

percentage error. In order. to have a constant percentage error, either the

"quantization‘levels muSt'bellogatitmically spaced or the logarithm of the

‘input shpuld be quantizéd rather'than'the input itself.

X g - Ly 1 v S o(ny
X G ) QUANTIZER —— . ENCODER [——
N [ . ] 7 .
o ’ . // . .
A \\ " N .
AL ~SIGN X))
- (8)
: : | ~ : 1x" (ny| : XNy
e () — VI ' /
————% DECOOER — EXP [ ) %

SIGN [ X" (n)]
(b

Fig.2.5 Block diagram of logerithmic guantizer
(8) coder, (b) decoder

The procedure which.is used in this study is the following: The logarithm of

.ttﬁe-input'samples are takeﬁ.fSign'of the original input values x(n) are

42



saved.

y(n) = 1n |x(n)| (2.24)
 Then the y(n)s are quantized by a uniform quantizer. The inverse
transformation is

_'x(n)'='exb [y(n)] signlx(n)] (2.25)

".where‘Sign[x(n)]fis + if x(n) is positive, and - if x(n) is negative. Now

'the'duaqtizéd'log magnitude is

g = '[_logIX(‘fl)"l] - (2.26)

y(n) = log|x(n)| + e(n) ‘ (2.27)

" where we have assumed as before that e(n) is independent of log|x(n)|. The

~ inverse of the quantized log magnitude is

exp[i(n)]éign[k(n)]

- %(n) =
&(n) = |x(n)| signlx(n)] exple(n)]
k(n) =

x(n) exple(n)] (2.28)
i if é(n) ié_smail; we.éaﬁ approkiméfe the above equation by
k() # x(n)[1+e(n)] ='>::'(n)'+ e(n)x(n) = x(n) +£(n)  (2.29)

where f(n) = e(n)x(n): Thus, siﬁCg'x(n) aﬁd”e(n) are assumed to be
independent .

q = 0,0, : ’ - (2.30)
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and ' SNR = 7 = (2.31)
S S 0 o2 -

That is, the SNR iS ihdeﬁendenE_of'the signal variance. It depends only upon
thg stepsize. Thé simulation feéhlts of the logarithmic quantization will be

giﬁen in séction 2.5.

OPTIMUM QUANTIZATION

The.logafithmic quantizer strives to achieve constant SNR over a wide range
of signal variances. As we have just seen this is achieved at some sacrifice

over thevSNR-performénce‘that can be achieved if the quantizer stepsize is

Amatchéd with the variance of the signal. In cases where the signal variance
is known, it is possible to choose the quantizer levels so as to minimize

‘the .quantization ertor.'

_ For applicétions whefe.one particular probability density function is known

td'dgscribe‘édequately»the>distribution of input samples to be quantized, it

is natural to seek the best possible.quantizer characteristic for that

4.density;'de approaches_héﬁe beeh taken‘to.so1ve this problém: One uses the

;.éSSumptioﬁ'that N is large and 1ead5'to explicit solutions; the other is

Valid“fdf'aﬁy N and leads to algorithmic procedures for finding the optimum

'decision levels and output points.

In 1960,Max [48] formulated the necessary conditions for optimality for a

kth absolute mean error criterion. He examined the optimization of the.

$tepsizé for uniform quantiiation. Max also tabulated the optimum quantizer

 1eve1s for the Gaussian distribution, for various values of N.

1.7



,“.“

oA
'

interval Rn with':espéc; to theAinput:deﬁsity p(x); In other words, %X_ is

of the output point X

" For the mean-square error criterion, with some fixed values of N, the

necessary conditions for optimality on the values of x ,x,z,....,x:NI and i1,i2

' },;;.,iNfare fdund_simply by'seﬁting the derivatives of D with respect to

1 eéch,of'these parameters to zero. The resulting conditions are as follows.

1~ Each 6utpht‘1eve1'6f §hmust beithe'centroid or center of mass of the

n

"the éphditionai mean value of the;inﬁut random variables x given that x is

" in the regioh Rn.

‘2f Each decisibn level X, must be half way between the two adjacent output

'.'pOints.;

“These conditions do not give the optimum values explicitly. Since the value

n for an interval Rn depends on the value of tﬁé

decision levels X4 and xn defining Rn, and the decision level X depends

on the'Qutput level x

n and;inda..HQWever, these conditions are used.in Max's

- algofithh;fbr computing 1terati&e1y a set of parameters that simultaneously
'-fsatisfy:boﬁﬁ’cbnditions.,Using the Max algorithm, Paez and Glissen [49]
' tabulated the opfimuﬁbqughtizef:pérameters for the Laplacian and a

3 pafticuIar,form'ofIthe'Gaﬁmé‘density.‘Ic can be shown that

L5 llog p()] < 0 | o (2.32)

'for_all k, in other words, if log p(x) is conca§e, then only one quantizer
bexists which satisfies thé Max conditions 1) and 2) and that quantizer is

‘ indeed optimal. It should be notéd that the converse is not true, so that it
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islpéssiblé to héve a density p(x) not satisfying Eqn (2.32) and yet a

uﬁidue optimaL quantizér méy éxiSt. Eqn (2.32) holds for the Gaussian
~density as well as forgmény oﬁhefléommon densities. Hence, the tabulated

- qﬁéntizéf-parametefs, given‘by'Méﬁ for the Gaussian density, are in fact

" unique and optimal.

' Tabig‘(ZaZ)-shows optimum ‘quantizer parameters for Laplacian, Gamma and
.Gausé,densities.-TheSe-numBers“a:e derived assuming unit variance. If the’
variahce.of the input is Of‘theh the numbers in the table should be

Multipl;éd.by g, -

Ve,

PRI ;
Y - PRSP

.
Fxy= =~

. A4 @ A

—_ : s i

Fig 2.6 Density function énd quantizer characteristic

,for Laplacian density function and 3-Bit quantizer
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G X Xl xa o Xi X p i Xy (X XX
1 @ $0.796 | 0.952 § 0.453 | 0.501 } 0.245 | 0.258 § 0.128 | 0.132 { 0.066
2 | @ {1510 J1.050 $0.756 | 0.522 § 0.388 | 0.265 { 0.198
3 © L1788 $1.7a4 | 0.800 § 0.657 | 0.300 { 0.334
a @ §2152 | 1.009 §0.982 | 0.536 § 0.46?
5 A 1.437 §1.256 | 0.676 } 0.€05
6 N ' 1.604 § 1.618 | 0.621 § 0.702
7 | ' 2.4 }2.069 ] 0.972 §0.6%2
8 @ §2723 )1.130 §1.009
9 1.209 §1.712
10 1.462 §1.367
1 1.662 § 1.577
12 1.908 § 1.768
13 2174 § 2.029
im 2.505 § 2.319
15 2.977 } 2.692
- 16 o 3.263

Table 2.2a Optimurn Quantizers with Gaussian Density

' (rnx =O,U§ ‘=1]




"N 2 4 i6 " 32
il Xid X b oy pxg b X oxg BXTy X)X
1 ] ® }o.707 l1.302 §0.395 ] 0.504 § 0.222 | 0.266 } 0.126 | 0.147 | 0.072
2 ' | = #1810 )1.161 §o.765 | 0.566 § 0.407 | 0.302 § 0.222
3 2.265 $ 1.576 | 0.910 } 0.726 | 0.467 { 0.362
'y o f2.9 §1.317 1.005 Jo.6a2 { 0.551
5 1.624 §1.500 J 0.628 { 0.772
6 2.490 § 2.103 | 1.031 § 0.926
7 3.605 §2.695 | 1.250 § 1.136
8 e fa.3ie | 1.400 f1.765
9 1.756 § 1.616
1 10 2.055 § 1.59
11 2.398 } 2.714
12 2.804 f 2.563
13 3.305 § 3.025
1A 3.976 § 3.566
15 5.069 § 4.371
16 @ 5768

Tablé 2-2b"1’ Optirh'urh Quantizers with Lsplacian Density

ol 20 2 =
' ( My -,o’g-x =1)




N 2 . 4 16 32

EN RS IR T Ar e IR ST BN IR EEE RN IR R

1 @ §0.577 1.205 }.0.302 | 0.504 § 0.149 | 0.229 § 0.072 | 0.101 } 0.073
2 @ {2108 J1.401 §0.559 | 0.568 § 0.386 | 0.252 § 0.1€9
3 ' 2.872 §1.944 | 1.045 } 0.791 | 0.429 | 0.334
. o §3.700 J1.623 §1.300 | 0.630 { 0.523
5 2.372 §1.945 | 0.857 § 0.737
6 3.407 §3.798 | 1.111 § 0.976
? 5.050 §4.015 | 1.397 } 1.245
8 o fe6.085 | 1.720 § 1.588
9 2.069 § 1.692
10 2.517 § 2.267
n 3.022 § 2.747
12 3.633 § 3.206
13 4.404 §3.970
1A ! 5.044 § 4.838
15 7.086 § 6.050
16 o }8.0a3

Table. 2.2ic'., Optimur_n’ Quantizers with Gamma Density

- .z
( m'x,=0,0'_x =1]
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Fig 2.6 sﬁows a 3-bit quaﬁtizeeror a Laplacian density. It is clear from

.this’figure‘that the quantization levels get further apart as the
' probability density decreases. This is consistent with intuition which would

suggest that the largest quantization errors-should be reversed for the

least frequently dccuring samples.

| STEP SI12E
o
LS

GAUSSIAN

R L 10 100
) © NUMBER OF LEVELS (M)

Fig 2.7 Optimum stepsizes for a uniform quantizer

for Laplace, Gamma and Gaussian density functions

Fig 2.7 which is taken from the study of Max [48], shows the optimum step

“'size for uniform quantizers for Gamma, Laplacian and Gauss densities. It is

clear that, the step size decreases roughly ekpbnentially with increasing

humber of bits.

In transmiséidn»systems‘dufingvpefiods when there is no signal, i.e., thg
idle'channél”conditiongithe iﬁput to the quantizer is very small (assuming
1oﬁ}noise) So.that the output of the quaﬁtizer will jump back and forth
betWeeﬁlfhé lowest magnitude éuéncizatibn levels. For a symmetric quantizer,
if'fhe_iowest quaﬁtizétion 1évéis are greater than the amplitude of Eﬁe
baékground noisé, the}éu;put nqise»of the quantizer will be greaﬁér than the

input noise.
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2.1.2 ADAPTIVE QUANTIZATION

- Better results are obtain if the quantization step size is chosén large
gnOUghfto‘accomodaté the maximum:peak-to-peak range of the signal. On the

' cher'hand it.is aléo dgsifabie to make the quantization steps small enough
1o} ;s to minimize thé quanﬁizatibﬁ n§ise. The idea is to work with a basic

quantizer which is very simple (uniform, if neccesary) but'to modify its

step size by a factor depending on the knowledge of which quantizer slots

were occupied by the previous samples.

In this_secfion, some general principles of adaptive quantization are

discussed and in later sections, some examples of adaptive quantization

:échemes'in conjunction with linear prediction will be explained.

The basic idea of adaptive quantization is to let the step size A (or in
general .the quantizer levels and ranges) vary so as to match the variance

of the inpﬁt signal.

o : c(n) c'in) N
: ) : . TN
Xy N1 XT(m) - . N\ Ty
r——-%oummzm “—————=— ENCODER -—} """ - —| DECCDER ‘—-————+
. . £ '—7R———' ) : /\ . N N AN »
. . - . . % eeweas l')______
. aln) a'ln)
(a)
o e yeny ' ' =(N) c'orm) v N LG
CXCY N 1 ¥y : E b RV
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Fig.z.8 Adaptive Quantization s)Ver.step size rep kiVer.gain rep.
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This is'depicted in Fig (2.8a). 'An alternative point of view (in Fig (2.8b))

'~ is to consider a fixed quantizer characteristic preceeded by a time varying
.gain which tends to keep the variance constant. In the first case the step
'size should increase and decrease with increases and decreases of the

‘variance of the input. In the case of a nonuniform quantizer this would

B4

imply that the quantization levels and ranges would be scaled linearly to

- match the variance of the signal. In the second pdint of view, which applies

without‘ﬁodificationnto both uniform and nonuniform quantizers, the gain
changes invérsgly with changes in ﬁhé variance of the input so as to keep
the variance of the quaﬁ;izer input relatively constant. In either case it
is necessary to obtain an estimate of the time-varying amplitude properties

of the input signal.

"Inldiscuésing adaptive quantizing schemes, it will likewise be convenient to

cléssify them'a¢c6rding’to whether they are adapting slowly or rapidly. In

one class of schemes the amplitude or variance of the input is estimated

‘f;om,thé input itself. Such schemes are called " Feed-forward adaptive

quantizers". In the other class of adaptive quantizers the step size is

adapted on the basis of the output of the quantizer, %(n), or equivalently,

- on the basis of the output»codezwords; c(n). These are called feedback

quantizers.
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i FEED-FORWARD ADAPTIVE QUANTIZATION |

c(n) c'{n
M) N7 XNy, \ . N )
v QUANTIZER - ENCODER |— —| DECCDER [
I_7qt__l , /' \ Vs s /" e 4
s ’ ~

STEPSIZE , _ aln) 2'(n)

HDAP - >

| SYSTEM o

' Fig.2.9 General Representation of Feed-forward quantizers
Coders and decoders

'The'aﬁovevfigﬁré_depicts a'genéréi repfesentation of the class of
feed—forWard'quantizers, For'cénvenienée, we assume that the.quantizer is
‘uniform 36 that it is sufficieﬁt to Vary a single step size parameter. It is
straightforward‘to genefélize this discﬁssion to the case of ﬁonuniform
qﬁénfizers. The étep—size A (n), used to quantize the sample x(n), must be
'available at the receiver. Thus,‘the code words c(n) and the step-size A (n)
together yepresent.the sample x(n). If c¢'(n) = ¢(n) and A'(n) = A(‘ﬁ) then
x'(n) = i(h), but, if c'(n) # c(h) or A'(n) # A(n), i.e., if there are
errors in transmission then §'(n)‘#ri(n). The effect of errors will dépend

bupon the details of the adaptation scheme.

Y . oedny  ct(m . PR () RS S 1))
() \/"‘\ )’(n)/ mﬁnrlzsﬂ—r—')} ' ENCODER —:}* ........ — oecooer | - F—>
GAIN |, _ S ‘ HOIN L
ADAPTOR T I

- Fig.2:10 General feed-forwerd adaptive quantizer

with a time varying Gain -

Fig 2.10 shows the general feed-forward adaptive quantizer represented in
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©  terms of a time-varying gain. In this case, the code words c(n) and the gain

.‘C(ﬁ)'togecher represent the_saﬁple.

nqé; systemsvéf this type_attempt.to obtain.an estimate of the<time—varying
vafiance.’A common approaéh is:tO“assume that the variance is‘proportional
t;_the short-time energy, thch; aé we have seen, is defined as the output
of a low-pass filter with input xz(n). That is,

0

) .

O(n) = 2 xz(m),h(n—m) - (2.33)
m=-o : : :

whére.h(n) is the impulse respohse of the low-pass filter. (For a stationary

input signal, it can be easily shown that the expected value of O (n) is

proportional to the variance 03 )

: A»simplé‘example is

: ot =

h(n) =5~ = n 1

_“O - otherwise ‘ ‘ (2.54)

“using this in equation (2.33) givéé

: on-1 .
)= 3 e

m=-0

-1 ,‘
" (2.35)

It can be shown that the O (n) in equation (2.35) also satisfy the
.’ difference equation (72(n) =C¥02 (n-1) + xz(n—l) (past samples). For
| stabiiiﬁy we require 0 < X. <1 . The step size in Fig (2.9) would therefore

.belof the form

A(n):= AOO'(n) : . - (2.36)
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or the time-varying gain in Fig (2.10) would be of the form

G(n) =-_30_

o(n) (2.37)

The choice of the parameter X controls the effective interval that

~contributes to the variance estimate. It is important to consider the lowest
_possible sampling rate for the gain, since the information rate of the

'digital representation is the sum of the information rate of the gain

o  function._The.gain'function (or steﬁ size) as used in Fig (2.9) or (2.10)

l|-"

must be éémpled and quantized before transmission.

To permit quantizing and because of constraints of physical implementations,

it isfcommon'to'limit the variation of the gain function or the stepsize.

That is, we define limits on G(n) and A (n) of the form

Cmin € G(n) <_Gméx : (2.38)

G
‘ Amin\<A(n) QAmgx (2.39)

It is the ratio of these limits that determines the "dynamic range" of the

r

system. Thus, to obtain a relatively constant SNR over a range 40 dB,

requires Gmax/Gmin = 100 or Amax/ Amin = 100.

An example_of.the imprOVement’invSNthhat'can be achieved by adaptive
jquan;izatidn is given in a compafative study by Noll [50]. A feed-forward

~scheme is considered in which the variance estimate was

n+M-1

N 200y | .
M 2o x4 (m) (2.40)

'Uz(n) =
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The gain brvstepsize is evaluatéd‘andvtransmitted for every M samples. In
thisvcase;the system requires a buffer of M samples to permit the quantizer

gain or stepsize to be determined in terms of the samples that are to be

quantized'rather than in terms of past sampleé as in the previous example.

‘Table 2.3, which is taken from the study of Noll fSO], shows a comparison of "

‘ various'3-bit quantizers with a speech input of known variance. The first

columnllists the various quantizer types. The second cdlumn gives the SNR
ratios with no adaptation. The third and fourth éolumns givé the SNR ratios
for stepsize adaptation based upon the variance estimate of Eq.(2.40) with

M=128 and M=1024, respectively.

P 3 ) P R . |

i ' Monadeptive Adaptive,M=123 | Adaptive HM=10Zb . ‘

. Noruni farm. Quan. COENR (OB - EHR (3B i ERE dED |

Gawssisn 7.3 150 12.1 |
Leplace 59 133 128

. Uniform Quan. o e "

Gaussisn 6.7 147 113
Leplace - 7.4 134 11.5

Table 2.3 Hd-sip_ti&@ 3-bit Quahti;at.iorjs with Feedforward Adap.
' ~ - After Nolif50] )

It can be readily seen that the adaptive quahtizer achieves up to 8.0 dB

better SNR. Thus;_it is evident that adaptive quantization achieves a

‘definite advantage over fixed nonuniform quantizers. An additional advantage

is,:;hat by appropriétely choosing Anﬁn and Amax it is possible to achieve

,thé'imﬁrovement in SNR while maintaining low idle channel noise and wide

dynamic range.

Examples of feed-forward adaptation will be given in séctidn 2.5
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FEEDBACK ADAPTATION

The'Second class of adaptive quantizers is depicted in Fig (2.11) and (2.12)
wheré it is noted that the variance of the input is estimated from the

quantizer output or equivalently from the codewords.

U ) . : c(ny ¢ ®orn
xm NI N TR WIAN e TGO
AXS QUANT 1 2ER ; -1 UECODER .
‘ !"Jl .
N A.
A
‘ _ GAIN ’ g GAIN
— ADAPTATION [ 1 ADAPTATION
6en) , SYSTEM - 4 71 SYSTEM G

. - Fig 2.11 Genersl Feedback adsptation of time verving gains

o : . . — - (n) c'in
. X(n) \\ X (n) \\ . y '\ A\'\ .\'\ X
. 1 QUANTIZER v - ENCODER A -\ DECODER [~
SN ‘ . A
STEPSIZE || STEPSIZE
ADAPTATION | ] ADAPTATION '
< > - A1)
aln) |
. Fig.z2.12 General feedback adaptation of step size. = 7

As in the case éf feedforwafd systems, the .stepsize and gaiﬁ are
proporfionai and inQérsely proportional respectively to an estimate of the
standaraideviation of the inputlas in Eq (2.36) and (2.37). Such schemes
haye.thgldistinct'advantégé_thaf the stepsize or gainAneed not be exﬂlicitlv

retained or transmitted since they can be derived from the sequence of

- codewords. The disadvantage of such systems is the increased sensitivity to
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errors in the codewords, since such errors imply not only an error in the

quantizer levels but also in the stepsize.

One simple approach is to apply Eq (2.33) directly to the quantizer output,

i.e.,

0’2(n) = mim iz(ﬁi) hv(n—m)‘ (2.41) -

. In this case, however, it will not be possible to use buffering to implement

a,noﬁcausal.filter} fhéf‘is, theIQarianée estiﬁate must be based only on
pasp values of %(n) since thé b;esent value of x(n) will not be available
uﬁtil the QUantization_has'occdrea; which in turﬁ must be after the variance
ﬁas.been'estimated. For example, we could use a filter whose impulée

response is

h(n) =4 -  ny»1 (2.42)

0 . otherwise
as in Eq (2.35). Alternatively-thé filter might have an impulse response

h(n)‘= i/ | 1{ngM ‘ (2.43)

o. - otherwise
lso:that' ‘
| . ) Wl
oc(n) = 1/M 2 x“(m) (2.44)
Lo M | |

This system is studied by Noll; who found out that with suitable adjustments

df the'constants Aoand Gb in Eq (2.36) and (2.37) a SNR ratio of the order

.v-of’12 dB could be obtained for a 3-bit quantizer with a window length of

only two samples. Larger.values of M producéd only slightly better results.
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'jA differeht'apprOach has been spu&ied extensively by Jayant. In this method

the stepsize of a uniform quantizer is édapted at each sample.
JAYANT ALGORITHM (Quantization with one word memory)

More recently studied, and presumably more flexible, means of matching

quantizer step size to signal variance is the use of step size adaptation

based on quantizer mémory. The idea is to work with a basic quantizer that

is very simple (uniform if necessary), but to modify its step size (for

’ every new input sample, in general) by a factor depending on the knowledge

of which quantizer slots were occupied by the previous samples.

In its simplest form, the scheme operates with a one word memory. Let the

+ output of a B-bit (uniform) quantizer be

: . o , B :
y, =H ,Jég_ where H_ = 1,3,5,c0000,2 -1 (2.45)

and  (A>o0,B>2)

The step size leis chosen to be the’previoué step size multiplied by a

£

time-invariant function of the. code word magnitude |Hn|

n+

A = BmCi ) | (2.46)

When the‘mutiplier function is properly designed, the adaptation logic

serves to match the step size, at every sample, to an updated estimate of

- signal variance. Fig (2.13) explains a 3-bit adaptive quantizer.
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Fig 2.13 Adaptive quantization=1/0 characteristics

of Jayant's Quantization Scheme

~Shown in the figure are the eight possible values of (the latest) coder

output:(OOO'throughllll) and the.cqrresponding‘step size multipliers M. Note

that the value of M depends on tﬁe magnitude of (the latest) coder output -

. equivalently on the magnitude |Hn| in Eq.(2.45) - and not on the sign of the
j’qutput, (This strategy is a simple consequence of the observation that the.

'vinput probability density function p(x) is expected to be symmetrié about a

mean value of zero).

Fig (2.14) shows histograms of stepsizes encountered in the simulation of a

. N . s
4-bjit adaptive quantizer with a Gaussian signal at the input which is taken

from the study of Jayant_tSl].'Tﬁe‘step size multipliers were seleéted to
'maximize énvappfopriately'définéa SNR -and Fig (2.14) shows how these
.multipliérs indeed ﬁaintain the variable A in a region centered on Aopt,
‘the»optiméi:(constant) stép size_for 5 nongdaptive quantizer (even when the

' étarting step size is severly suboptimall
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Fig 2.14 Histogram of step sizes in adaptive

quantization of Gauss-Markov input [51]
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Table 2.4 Stepsize Multipliers for 8=2.34(arter Jsyani[5{))

I

Table (2.4) lists steﬁ size multipliers found to be optimal for adaptive PCM
- coding of a low-pass filtered spéech sample. The recommended step size

‘multipliers do not in general comstitute overly critical target values.

It is possible to get away, for instance, with trivial values of unity for
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_ some of the central mul;ipliers{:quléxample

ML M=M=13M>1  for B=3 (2.47)

, ‘HOWever, the stép'size inéreaseSvshould, in general, be more rapid than step
‘size decreases. This has to do with the following comparison of two basic

‘types of quantization errors: "overload" errors that occur when A_is too
yp q . 0

small, and'a signél sample falls outside the quantizer range, and "granular"

errors’ that are inherent in quantization even when the input falls within a

.qﬁantizer;slpt or stgb. Granﬁlgraerrdfs tend to bé iess harmful to SNR than
:overléad érfors; Tq mitiéatg-thé;contributiop of the latter to the total

‘ndi§e5p0wer; §né séeks-ﬁqﬂqorfecﬁ‘tﬁe oécufahce of overload errors more
t'éxpediti5hsi§; The‘énd reSUlt’iérén-GPCimal multiplier functidn that has the

' general form depicted in Fig (2.15) =

" Fig 2.15 General shape of optimal multiplier function; B > 2
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Fig (2 15) shows' that

A= B w (] '. o L (2.48)

»steadily increases with IH | during step size increases (M>1; to correct

-”'for overload) On the other hand during step size decreases ( M < 1) the

optimal M function is remarkably close to unity. The shaded region in Fig

'(2 15) expresses variations in the Jayant multlplier function when there are
vf.changes in B and the input statistics. The exc1u31on of B—2 from the
'”padaptation rule in the figure has to do with the fact that when the

jﬂquantlzation-gets to be:crude’enough,.thegdistintion between expected

_magnltudes of:granular and:overloadderrors_diminishes and so does the

,disparity'betneen-desired‘ratestof step size decrease and increase.
“ BLOCK QUANTIZATION (Quantization with memory) .

'HIn.block quantization,.more commonly considered for image digitization, a
-~ block of k input samples‘(x‘,xz,....,xk) = x (which may be regarded as a
VVector in'k dimensions).is simultaneously quantized, producing an output

, vector (y‘ sY, 2,....,y k) =¥, 'approximating xX. Thus the output yhmis an

approximation to xn‘for -each m=1 2...,k. An N—p01nt quantlzer selects one of

N output "points" % ,y&,,,wsy }to.approximate Xe Unlike zero-memory
S . n- , .

1

:_Quantization,”the'value'y ‘depends not only on the corresponding input
.;sample ﬁn’ but also on  the values of all other samples xn‘in the block. Even
o if the input samples are statistically independent, an advantage can be

'fgained by quantlzing a block at a time, rather than a sample at a time. A

onvenient measure of the dlstortlon of the block quantizer is

‘D=1/k 2 . @ (2.49)
n=1
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~where @

"datafsamplesvx

g'is the mean-square errorwihvthe nth sample. Such an approach was

aﬁalized by Berger [53], Kramer and Mathews [54] and Huang and Schultheiss

- [55). The basic scheme fbr‘image‘transmissign is as follows. A block of N

n are,linearly transformed into Y by ‘an N*N matrix A. The A

are quantized and transmitted. At the receiver, the quantized y, are
. transformed by another N*N_matrix'B‘into zh.,For a given bit raﬁe, the

matrices A and B are chosen to minimize the mean-square error between z, and

xn,fIt turns out that the optimum matrix A consists of the eigenvector of

the[COrrelation matrix of the samples X, and the optimum matrix B is the

inverse. of A. Tt appears however that a much simpler type of matrices, the

so—called:Hadamafd matrices work almost as well as the opﬁimum [56]. A

Hadéméfd matrix contains only +1 and -1 as its elements and is.orthogonal.

The performance -of block quantization could be compared with zero-memory

quantization by examihing how the bit rate or average number of bits per

sample, B:logzN/K, depends on D, the distortion per sample. Clearly, as the
» bloCk:lenght k increases, the mihimum bit rate needed for a given distortion
will decfeaée. In the limit as k— o, the minimum bit rate B approaches a

~ limiting value R depending on D.

3 Anothef clasé of quantizers with memory are the sequential or differential

quantizers such as delta modulatidq; differential PCM and the various

‘adaptive versions of these schemés}’These will be discussed in the

suCCeéding-Sectiohs. Although the quantization techniques are given in the
precedingtsections of this chaptér, most of the time, different type of

quantizers are used together in the same transmission process. I.e.,

} quantization can be performed by -using uniform and adaptive, or nonuniform

,.and adaptive quantizers. One can even use uniform and adaptive quantizers' in

block quantization. Some exampies will be given in section 2.5.



2.2 " GENERAL THEORY OF SEQUENTIAL OR DIFFERENTIAL QUANTIZATION

If we consider image_samples, there is a considerable correlation between

adjacent -image samples, and indeed the correlation is significant even

o between samples that are several sampling intervals apart. The meaning of

this high correlation is that, the signal does not change rapidly from

sample to sample so that the difference between adjacent samples should have

a lower variance than the variance of the signal itself. This fact provides

the mopivation_for the general differential quantization scheme. In this

syStem,‘ﬁhe output to che_quantizer is a signal

d(n) =lx(h) fdi(h) '  :'v , (2.50)

'which is the différenée'betweénﬁthe.unquahtized input sample x(n), and an

' estimate or pfedidtion'of5the iﬁpﬁt Sample which is denoted by X(n). This

ptédidted Qalue is‘the output of a predictor system P, whose input is a

-iqﬁﬁntized verSion of the input signal, x(n). Tﬁis difference signal can be

" called as the prediction error signal, since it is the amount by which the

predictof fails to exactly predict the input value. Temporarily leaving

aside the question of how the estimate X(n) is obtained, we note that it is

the différence'signal that is quantized rather than the input. The quantizer

"could be either fixed or adaptive, uniform or nonuniform, but in any case

-its parametersfshoula bésadjustéd to match the variance of d(n). The

quantized difference signai can be represented as

. d(n) = d(n) +'g(n) ‘v o - (2.51)
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where e(n) is the quantization error. According to Fig (2:16a) the quantized

differenée signal is added to the predicted value %(n) to produce a

- quantized version of_the_input,;i.e.;

‘-;i C  R(n) ? §(n)‘+ ﬁ(n) o - (2.52)

e Substitutiﬁg Eq (2,50):ahd,(2451)vintb Eq (2.52), it can be seen that

Fn) = x(a) + en) . | S (2.53)

That'is, independent of the properties of the system labeled P, the

quantized image sample differs from the input only by the quantization error

of the difference signal. Thus, if the prediction is good, the variance of

d(n) will be smaller than the variance of x(n) so that a quantizer with a

' given number of levels can be adjusted to give a smaller quantization error

than would be possible when quantizing‘the‘input directly.

| A

| quenTIzEr |

d™(m | ENCODER e(n

N

X"(n) | PREDICTOR

- a—m \Qf:f\ S XN
DECODER — 7

PREDICTOR

7 (ny

(b)

Fig.z._lﬁ General differential quantizatitln a)Coder, h)Decoder
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_ Iﬁ-shauidAﬁe'ﬁotéd thaﬁ,it is the‘qdaﬁtized difference signal that is coded
.fbr traﬁsmiésion or stofage.'Thévsystem for reéonstructing the quantized
' input'from-the»code words is imbliciﬁ in Fig (2.16a). This system, depicted
,in'ﬁictufe‘in Fig.(2.16b),'invoives a decoder which reconstructs. the
*iqﬁanﬁized différence.signal from which the quanﬁized—inﬁut is recdnstructed
- using thg same'predictqr as uséd in Fig (2.16a).Clearly, if c'(n) is
" identical to c(n) then x"(n)=x(n), which differs from x(n) only by the

‘quantization error incurred in quantizing d(n).

The signal—to—quantization.noise ratio of the system of Fig (2.16) is, by

definition, e _
. ElA(@) . g2 | (2.54)
SNR=—— = %
2,1 @
E[e"(n)] . Ve
7:which-cah be_writtenlaél‘f »
2 52 | -
O, Oy ,
SNR = —%——3— = Gp SNRq - (2.55)
of oz a
e .
2 '
. v af
where . SNRq = '% ' : (2.56)
N . o

: is.the signal-td—quantizing noise ratio of the quantizer, and the quantity

2
‘7’5 . | (2.57)
a .

Gp'=

.is.dgfined as the gain due to the differential configuration. The quantity
SNRq is debendEnt upon the particular quantizer . that is used, and, given

kﬁpwledge of the propérties;of d(n), SNRq can be maximized by using the
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tgéhniques of the previous section. The quantity Gp, if greater than unity,

- represents the gain in SNR that is due to the differential scheme. Clearly,

the-objectiVe.shquld be to maximize Gp by appropriate choiseof the predictor
system P. For a given signal, Of‘is a fixed huantity so that Gp can be

maximized by minimizing the denominator of Eq (2.57), i.e., by minimizing

v the variance of the predictor error.

_Ih.;he'following sectioh, the Canépt of linear prediction will be explained

 before en;efing Differential Pulsé,Code-Modulation, DPCM, in more detail.

DELTA MODULATION

A few words should bé said ébout Delta Hodulation even though it is not

.‘inﬁluAed iﬁ the subject of this:étudy [67)]. Delta Modulation, DM, is the.
special case od DECH to be discussed in Sec.2.4, in which the difference
" iiéve1;is l. This has.been_of intéfest.because of the simplicity of tﬁe
k .thiﬁﬁent.-Fairiy.extensive tegtiﬁg has shown that the sampling rate must‘Be
- spbstantially higher'tﬁan tﬁice the bandwidth for acceptable quality. For a

vgiven daﬁa rate, the quality is almost always inferior to three-bit DPCM

except fbr.éome low SNR systems, and is even inferior to ordinary PCM in
/

some low SNR systems. Of‘coursé, exceptions can be found which favour any

particular system.

" 'The remarks. above concerning the trade—off between channel noise performance
-'anquuality by means of varying the integrator time constant apply to the

--jone-bit caSé with at least equal force. The reason why delta modulation is

géneraliy lessfeffiéient than PCM and DPCM for image signals is not hard to

‘see. These signals, although'they>have little energy at the higﬁ end of
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it is on. their proper rendition that the respective sharpness of the picture

7_'depends.aThe_attempt to reproduce ‘these sharp transitions in a delta

‘calculateéd from the equation:

their spectrum;'do have sharp transitions at the edge of objects in the

scene. Even though the,tdtél.enefgy:per frame in these transitions is small,

»

,modulatidﬁ System;7for examp1e by increasingAéhe’pulse height, introduces

_ granular,noise‘(and cont§ﬁfing if the intégrator time constant is short)..

Further more, progress in electroric technology, in particular, digital

intégrated ciréuits, has greateiy,reduced the cost and reliability

‘adVantageé of delta modulation over PCM.
2.3 LINEAR PREDICTION

‘Here,Vthe nature of the predictor is specified. The predicted value X(n) is

a linear combination of past quantized values.

x(n) = kgl (.ka(vn—l'c)‘ N (2.58)

..where(X'ére‘the kth‘ordé:‘predictor-cogfficients, The predictor coefficients

k

'”éanjbe found‘from the. autocorrelation values of the system, which can be

R(K) = E{x(n) x(n+k)} | (2.59)

_If'wé?consider the first order predictor, we must calculate R(0) and R(1)

~which are

"R(0)

o

N
1/N i§1 x(1) x(i) (2.60)

R(1)

' N-1
1/(N-1) i:z‘i x(i) x(i+1) ' (2.61)
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| ‘minimize g

=‘R(1)/R(0) | | (2.62)

"‘But if a second or higher order predictor is required, more complicated

afithmetic work has to be done. We denote prediction error as d(n) and the

variance of the prediction error as C%.'Then vne can write:

%-

lIn.ordEr'to'choose a

-2

d » We must

" the derivative equal

- E{d2(n)} = E{(x(n) - %(n))?}

S le "2
E{(x(n) - 2 & %(n-k))"}

K31k
E{(x(n) —REI Q(k x(n—k)-kz]._O(ke(n—k)) } (2.63)

sétféf”pfedictqr»coefficients ij}.Where 1<j<N, that

diffetehtiété{%fwith respect to each parameter and set

to zero. Theréby a set of N equations is obtained.

. >
3y
>
&

313—3?:" “2E([x(n) 12 0 (x(nkdreCnn)) ) =xln—y Me(n=i]) =
where 1 3JF¢N
302 '
224 E{(X(n)-X(n)) x((n-i)} E[d(n) &(n-j)] = ' (2.64)

E{x(n—j)x(n)}+E{e(n-j)X(n)}

The above equation can be expanded .into the set of N equations:

2, o E{x(n-j )x(n—k)} i

+ OckE{e(n j)x(n-k)}

MZFMZ

ZI o, E{x(n—J Ye(n-k)}

+ z o) E{e(n—J)e(n—k)} (2.65)
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where 1{j¢{N. We assume that e(n) is uncorrelated to x(n) and e(n) is a

stationary white noise sequence, then the above equation can be simplified

. tos.

CEfx(amidx(n)} = R(3) = 2 0 [E(x(n=3)x(n-l) M GB(-)) (2.66a)
 where Efx(orDx(m)} = R( ' | (2.66b)
B E{x(n-j)x(n-k)} = R(j-k) , (2.66¢)
" Efe(n-j)e(n-k)} = 025(j-k) - IKIKN (2.66d)

» Théﬁ the eqﬁétion becomes:

N R 2 | |
, R(J} = ka O‘k.,[R(j"k)f. oli-kl ] IKHEN (2.67) .

where R(j) is the autocorrelation function of x(n). The normalized

~ autocorrelation is

9(3) = R(3)/GZ (2.68)
' the'Eq (2;67)>cén be expressed in ‘matrix form

I

p=ca . " (2.69a)
. where R o
: fQ.('l )]
;9(2):t¢'
o= (2.69b)
o(N)
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(Seé Eq'(2.6QC));:but SNR depends on the coefficients of the linear

: ibé direct1y'so1ved‘to‘givé~

| o/sNR o) . . . p(N-l)
(1) 141/3NR. .« Q(N-2)
g"_' . | * . ‘ .- . . . . (2.69(:)
| et o(v-2) . . . o1e1/SAR
%
. Ol_]= . (2469d)
%N ]
whier | e o O '
where . R : N 51\1;{._-'.0_e2 (2.70)

Then' the predictor coefficiehts of the Nth order predictor can be found from

Q(_;—‘_-'g:l‘): : : (2.71)

. S . , -1 ' .
In general, the matrix C 'can be computed by a variety of numerical methods,
because there is an adVantagé of the fact that C is a Toeplitz matrix.

However, Eq. (2.69a) ¢an not be solﬁed in the most general case since the

: _ . : . / 2
" matrix C contains terms which depend on the signal-to-noise ratio, SNR= 03
- » o o _ _ 5

: pfedictor;~wﬁiph in turn dependSQ6hjSNR through Eq (2.69a2). One possibility

o 1§ to negiec£ the.Eerm 1/SNR in Eq (2.69) in order to obtain a solution. For

‘'the case N=1, however, such an assumption is unnecessary since Eq (2.71) can

9(1) R (2.72)
yE———— .
‘141 /SNR

72



Eq (2 72) shows that . (X < Qﬁ) . But for N=4, the predictor coefficients caﬁ

: be solved by

B S T DR (L N TE & |
Cc=le( 1 e o2y =] 2| . (2.73)
1 p(2) oy 1 e ' Loq.
o) p2) p() 1 | -4
L - ' . .

'In,épite of the difficultieé in solving explicitly for the predictor
: cbefficients, it is possible to obtain an expression'for the optimum gain,
Gp in terms of the Cq(s. To do this we solve for qf by rewrltlng Eq (2.63)

in. the form

g= E[(x(n)—x(n))]
= E[(x(n)-x(n))x(n)] —'E[(x(n)-x(n))x(n)] (2.74)

‘Uéihg:Eq (2;64) if iS'étréighfforward:tO'shOw’;ha; for the optimum predictor.

coefficients, the secdnd-tetmfin the above equation is zero, i.e., the

‘ptedicted-vélue is also_uncbfrelated with the prediction error.Thus, it can

‘be written.

%Zs- E[(x(n)-%(n))x(n)]

2 « N B
%= E[GZ(m)] - B[ 2 O (x(nmk)+e(n-))x(n)] (2.75)
1; fﬁsiﬁg ;he assumptions of uncorrelated signal to'noise, we obtain

2_ .2 _ 21

gy =0, kgl oG R(k) =0} [1.k§1 c_rk.g(k)] . _ . (2.76)
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Thus, from Eq .(2.57)

(Gp)opt = 1/(1- k210< Q(k)) - (2.77)

where the Olk s satisfy Eq (2 69a) . For the case N=1 we can examine the

v 'effects of using a suboptlmum value of 0‘1 on the-quantity Gp-gx/az "From Eq
, d

. (2 77) we get

.‘(Gp)opt' = (2.78)

1-0490) ¢

: .If.-'an'a'fb.itrary value 4fﬁo:'vr OCl is 'ého"sen, then by repeating the derivation

. leeding‘ to Eq (2.76), we. get -

-od? =07 [iézoc‘p(’iifozlz ] +ocfaf : o (2.79)

(GRYy ‘1/(1—2oqp(-f1)+a,2( 141/SNR)) (2.80)

':The ‘term (Xf/SNR represents the increase in variance of d(n) due to the

feedback of the error signal e(n). Eq (2.80) can be written in the form

-([Gp)u.rb = (1- 051‘2/SNRq')/(1.-2051p(41)+<X12) g (2.81)

- for any value of O( (including the optimum value). To obtain the maximum

gain, Eq (2 81) can be differentlated with respect to & to give

d(Gp) ,.-'f' R - (2.82)

4y

~which can be solved directly f.or.tﬁe optimum value of .
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-For~ illustrative purposes, the term l/SNR is neglected in Eq (2.69). Thus,

;‘for a first order predictor, Eq (2 72) becomes(x1 P(1), and the gain due to

.}.predictlon is

('Gp‘)opt' =‘_1_l(“'1-v.-‘-’ pz(i)"") | (2.83)

Thus s0 1ohg aS'~Q(1)¢Q there will’be some improvements due to prediction.
It is elear that, even with the simplest predictor, it is possible to

realize about a 6dB improvement in SNR. This is of course equivalent to

tédding_an extra bit to the quantizer; However, since this bit is not
. actqally added, the bit rate remains the same. The price paid, of course, is

:increaSed'cqmplexity in the quantization system.

Some basic ﬁrineipieé of'application of the differentiai quantization scheme

can be summarized. First, it is clear that differential quantization can

yieldfimprbvemeﬁtvover'direct quantization. Second, the amount of

V'imprqvement_is dependent upon the amount of correlation. Third, a fixed
~predictor can not be optimum.for all communication systems. These facts have

 léd.to a variety of schemes that are based upon the basic configuration of

£

,Fig.(2'16). Theee echemes combineba variety of fixed and adaptive quantizers
fwith a. variety of fixed and adaptlve predictors to achieve 1mproved quallty

or 1owered b1t rate.‘
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2.4 DIFFERENTIAL PULSE CODE MODULATION (DPCM)

" 2.4.1 PULSE CODE MODULATION (PCM) .

Conceptually we may think of a PCM transmission system as shown in Fig

- (2.17).
'_ContinuouS .
 original _ - cny  ¢'(n)
. signal - (N —— R : . X' (M)
. ‘SAMPL N el : - N N
) SHPLER | QUANTIZER ‘ ENCODER N > DECODER S

R :.'.-Fvig';’zﬁvl_'/' A PCM 'Traré'miséidrn system: Coder and Decoder -

1If the signal is an image then théISYStem in Fig (2.18) is used for picture

» trénsmiésion [58], {59].

- signal

© N} Two DI
.'*'f}'PREFILTER

it

thsnr\el"

original

¢Kh1l‘-

N

DECODER

.x(n,k?' : § (n.K) , yen) o(n)
 SAPLER ) QUANTIZER | N\ scaMneR N Emcooer | N\
' ‘ IV
e * chennel
(a) |
y'(ny ‘ X' (n, k) Receiver
A T4O DIN. N
' | SR | pOSTFILTER s
(b)

) Fitj.Z.lS A PCM-Apicture' tfansrnission systern ajcoder,bjdecoder

 .ThéfContinU6us.two-dimensionalvpfcture is'prefiltered and then sampled in
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. l"“
'

. 'l.;.‘.

.tuordimensional array of quantized samples into a one-dimensional sequence
l which gnes into an"encoder, which;in turn puts out a sequence of binary
_numberspfor transmission‘oVer‘the channel. At.the receiver, a decoder tries
"vto recoyer'from the'received.Binary.sequence“the'original sequence of
'-,quantizedpsamples. A scannertthen:transforms this reconstructed sequence
'“3ihto.aituordimensional=array;_finally a two—dimansional post-filter is used
fto obtain .a continuous picture. By comparlng the figures given in section
2.1 and Fig (2 18) one can easily see that each of the quantization systems
‘explained in section 2.1 is one-choise of PCM transmission. When adaptive
“'fquantization is used directly on samples of the input the system is called
l.-fadaptive PCM or simply APCM.If it is a picture transm1391on then only

1iscanners and two—dimensional filters must be added to those systems.
'SAMPLING

To concentrate on the sampling process, let us consider the simplified

subsystem depicted in Fig (2.19). The basic question is, for a'fixed number

of samples per frame, how should one choose the prefilter, the postfilter,
'and the sampling pattern to optimize the output picture quality° Let the'

: picture be sampled at a.square arrayof p01nts. Peterson and Middleton [60]

!

',vshowed that for a fixed number of samples per frame, .pre— and postflltering
h:with one—dimensional ideal low—pass f11ters (whose cut—off frequencies are

hto avoid aliasing),giye the:least'mean square difference between. the output

and:the input. Suhjective tests'[61] indicated that these same filters also

give reconstrUCted pictureS'with.the best subjective quality in the case of

<very low-resolution 64*64 samples per frame) systems. For higher resolution
',sjstems (256*256 samples per frame), high frequency accentuation at the

- _ postfilter seems to improve the output picture quality; however, no
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. ‘extensive subjectivé'tests:haVefbeén done to substantiate this.

1 INPUT PICTURE
LN

" _THO-DIM
PREFILTER

N

-IDEAL IMPULSE
SAMPLER

x,

N ' -

" TWo-DIN
| - POSTFILTER

- OUTPUT .PICTURE '

- Fig.2:19 The sampling process

|-

: vThét5the'qgality of the'éﬁtput picture depends on the shapes of the pre--and
the pOstfiltété was deﬁopstrated:by Huang;and Tretiak [61). The sampling
- pfocéss is bééic to all;PCM picfuré‘transmission systems and deserves

‘fdrtherlinveétigatidnt
~'QUANTIZATION -

':ih-SeEtisnFZ.l the quantiZation_prbéess is explained in detail. Quantization
noise can be fgduCed by putting‘a pre= and a pOStfilter around the
quéntizgf.'The human'eye objects much more to noise ;ith stréng structure,

: Such as'quaﬁtizafion'noise;'théq.td fandom ﬁoise. Therefore, a smaller

" number 6fvduantization iévgls cén be tolerated, if means can be fdﬁnd ko

ilﬁranéfo:m éuanti;étioh nQise po‘randoﬁ»noise; An example is the method of

Roberts [62]; who added pseudo-random noise -to a pictufe before
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:~SéCréCy transmission [63];

vquantization, and later at the receiver subtracted the same noisé from the
quantized picture. It can bg shown that by this maneuver the quantization
-nbise'is transformed into random noise with the same rms value. This method

gives acceptable picturgs with'éﬁly four bits per sample.
- SCANNING

»':In the PCM.pictg;e't:ans@iséionvsystem, the transmitter scanner converts the

‘two—dimensional digitalized picturé to a one-dimensional sequence of points,
‘and the receiver scannérv:econstructs’a two—dimensional picture from the

'receivedjoné—dimensiohél'sequenée.AUsually,_the scanners scan the picture

iine by'line sequentially. However, many other scanning patterns have been

suggésted. Thq socalled pseudorandom scanning, for example can be used for

.. In pseudorandom scanning, the sdanning,beam‘hops from point to point.in a

seemingly random fashion. However, the transmitter and receiver scanners are

“syﬁchronAQg, so the receivef scgﬁﬁér can recopstruct the picture. The

 qoprd1pateé éfjthg sugcéésiﬁe séahning pointé are specified by a sequence of

 §§éu§or$ﬁd9ﬁ,numberé,whiéh‘éan be,génefated, foriexémple, b§ é
'i ﬁé#imﬁﬁ—igngth'shiftvfégistgr}générator._Any one who does not know the

particular pseudorandom sequence will not be able to reconstruct the correct

piéture'even]if\hé should ‘intercept the one-dimensional signal beeing

‘transmitﬁed.'ASSuming the ttansmitter and receiver scanners are
~synchronuous, then thé»aﬁﬁeérance.bf the received picture will be

»}.ihdependénpfcf'the scanning pattern, i1f the channel is noiseless of if it is

nbisY;butvtréats each inComihg bit,independeﬁclyi In many particular

- ‘channels, however, the noise tends to occur in bursts. For such channels,
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~fsequentia1 Scanning'will<yield received'pictures containing errors that last
over many succe851ve picture points along the scanning direction, whereas
,pseudo-random scanning will randomize ‘the noise so that the errors will

tscatter more or less uniformly over the entire. picture.
' .CODING ‘AND CHANNEL NOISE

- Assume‘that fixed—length binary code is used, so that each of the ZB

. 'B
brightness 1evels (0,1 2,..., -1) has ‘a B-bit codeword. When the channel

is noisy,uthe amount of noise in the received picture depends on the

particular code one chooses to use. Two codes are often used in practice:

‘Athe,straight binary code,:in which the codeword for each integer is just the
':binary representation-of'that integerg and the reflected binary gray code,
‘in which the codéwdrds'for any two successive integers differ in one and

. only one bité'It‘has beenﬁprOVen‘thatrfor transmission through a binary

E 'féYmmetric;channel the straight binary code yvields less noise power than the

. gray code, with the assumption that the input brightness has a uniform

7distribution and that the channel error probability p is less than 1/2.

In fact it was . shown that with these assumptions, the average noise power

/

for a n—bit straight binary code is [64]

= " - 1)§/3 » (2.84)

and that for a'n-bit_reflected—binary gray code is

. ' 1} R
E 1=2p 4" =(1-2p) (2.85)
Gn= (47-1)/6 =— . oo
e 2 4 -(1-2p)
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so that ' _ "G, - N

" hence o G, »N

B

5

-iIn most practical cases, the channel
' Then, the noise power:is,eseentially

‘codewords. -

“In summary the advantages of PCM, as
" methods, arefas;follows.i
1 - By the.uee4oftrepeaters,'PCMICant

N 1ong distantealwithout aéterioration

The disadﬁantages are:
1 - The transmitter and the receiver
‘ somewhat complicated.

V,2 = PCM requires more- bandwidth.;

for p g 1/2

(2.86)
(2.87)

error probability p is very small.

.due. to single-bit errors in the

compared with analog tramsmission

be employed to transmit signals over

in signal-to-noise ratio.

- It tends itself to time-division multiplexing.
#'It simlpifies switching problems in central stations.
-~It_can be adapted easily to Secrecy transmission.

PCM.Systemsyare most -suitable for transmitting digital data and are

'5eaSily coupled with digital computers.

'(or coder and decoder) for PCM are

' .2.4.2 DIFFERENTIAL PULSE CODE MODULATION (DPCM)

i As mentioned in section 2. 2, the statlstlcal relationship between nearby

' pels and the greater sensit1v1ty of the eye to the differences than to

absolmte values, both spatial and temporal, has lead to many suggestions for
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.and quantizer. It may have a scanner in order to transform this

:~"differencefhtransmiSSion,[66],_Direct’analog difference transmission has
.‘,few advantages, since the bandwidth required is unchaged, the peak power is
i'greater:(through.the‘average‘power islless); and the noise level is higher

“than in‘the.original'signal;

'vAny system of the form shown in Fig (2. 16) could be called a differential
1PCM (DPCM) system. If ‘this is a picture transmission system as mentioned

'earlier about PCM, the system may have two-dimensional filters, predictor

. two-dimensional array of quantiaed samples into a one—-dimensional sequence.

'_ The output of the scanner must golinto an encoder, which in turn puts out a

sequence of binary numbers for transmissions over the channel. The remaining

is the same both for one-dimensional and two-dimensional transmission

‘_'processes (see Fig (2.18) for PCM).

;N_Delta modulators, as briefly discussed in section 2.2, for example, could
' n'also be called a: one-bit DPCM system. Generally, however, the term
idifferential PCM is reserved for different1a1 quantization systems in which,

" the quantizershas more,than two_levels.

"In DPCM systems, what is transmitted is ‘the quantized dlfference between the

input signal -and a. second signal wh1ch is the same as that which can be

o fderived at the receiver.by integration of the received signal. Differential
.hquantizing, since it uses the transmitted data primarily to represent edges
. ‘to which the observer is'more sensitiye, produces better quality pictures

" than PCM for the same number of bits per pel.'

" As it'is clear from .Fig (2.20) which is taken from the study of Noll [65],
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,:DPCM sygfeﬁs withvfixéd é:edictdr33can provide from 4 to 11 dB improvement
_5§vg?'direcf quantizati&ﬁ'(PCM).:Thé greaﬁest iéprovement occurs in going
;ftqﬁrﬁoApredictibn to fifst,order'predictiOn with somewhat smaller

 faddi£i9én1 gains resulfing from inCreasing the predictor order upto 4 or 5,

‘after which little additional gain results.
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f I_F;g,ZQZO:Optimal‘SNR gain,G"vs. number of predictor
R céefficienfsfa) wa—pésé filtéredzspeech signal
..1b)'Bahdpassnfilﬁeréd speech signal

- This gain in SNR implies that a DPCM system can achieve a given SNR using
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:ybne.less blt,than would be required’when using the same.quantizer directly.
'Thus, a reasonable estimate of the performance that can be obtained for a
iparticular quantizer used in a differential configuration can be obtained.
fFor example, for a differential PCM system with a un1form fixed quantizer
‘dthe SNR would be approximately 6. dB greater than the SNR for a quantizer

v_with the same number of levels acting directly on the input. The

- different1a1 scheme would behave in much the same manner as the direct PCM

",:scheme; i.e., the SNR would intreaSe.6'dB for each bit added to the code

vndrds,'and the SNR would show the same dependence upon signal level. Some

'fy-e*amples'will'be,given injsection:2;5;7. Similarly the SNR of a logarithmic

:.‘quantiZer"would be improved by about 6 dB.by use in a differential

configuration and at the same time its characteristic insensitivity to input

hsignal'level_WOuld be maintained. Fig (2.20) displays a wide variation of

predictiontgainlwith source and with bandwidth. This variation of

performance with the_input source and picture material, together with
.'variations in signal 1eve1 inherent in the picture transmission process, may
v‘make adaptive predictlon and adaptlve quantizatlon necessary to achieve best

lperformance over a wide range of inputs. Such systems are called adaptive

"f DPCM systems (ADPCM). :\"

K
e
v
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'2.4.3 DPCM WITH ADAPTIVE QUANTIZATION (DPCM-AQ)

The discussion of adaptive quantizatlon in Sec.(2.1. 2) can be applied
_ directly to. the case of DPCM. As indicated in Sec.(2.1.2), there are two

. basic approaches for the control of adaptive quantizers.

| ADAPTATION ‘
SYSTEM > a(n)
1 x \/-\ am N ey ' ,
‘ L, X" [ ooeptetoR |
- P
RS s VUL » '
[ RSEREEEA S LU LAY g SR . — %7

8 L W

' l “|" PREDICTOR
P(2)

~

e Flg 2. 21 ADPCM system w1th feed-forward adaptlve quant
a) Coder, ‘b)Decoder

Fig‘(ﬁ.Zl) shows how a'feed—forward;type adaptive quantizer is used in an
'ADPCM system'[65]; In'schemes of this.tppe; the quantizer step size is
;proportional to the variance of the input to the quantizer. However, since
. the: difference signal d(n) will be proportional to the input, it is |
: reasonable to control the step size either from d(n), or as depicted in Fig

(2 21) from the input x(n) Several algorithms for adJusting the step size
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are'given'in'section 2,1.2..The diséussion of section 2.1.2 indicates that

}:suoh adaptation procedures can provide about 5dB improvement in SNR over

standard-logarithmic non—adaptive PCM. This improvement coupled with the 6dB

'in:section'z.s.

'that can be obtained from the differential configuration ‘with fixed
prediction means that ADPCM w1th feed-forward adaptive prediction should
"achieve an- SNR that is 10 lldB greater than could be obtained with a fixed

.quantizer with the same - number of 1evels. Simulation results will be given

A A"(n):l

:'d('by

o aln) LOGIC
B {(2)] ‘\/f:‘\is dq¢n)y: ,S\ = - d™n). — N et
E /) s /] QUANTIZER T ENCODER
PLO) PREDICTOR " | , 5
Pz) | K Q' ‘
(a)
e d"'¢n)
2o —(+) N xt
» DECODER +-/> < A7
0
", HOSIC PREDICTOR
P(Z)

Flg 2 22 HDPCM system with f‘eedback adaptlve quantlzatxon

a)Coder b)Decoder

quantizer with the same number of 1evels.
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"_Fig (2 22) shows how a feedback-type adaptive quantlzer can be used in an
_.ADPCM system. Thus, both the feed—forward and the feedback adaptive

quantizers can be expected ‘to achieve about 10- 12dB improvement over a fixed




B "l?"

In either case the quantizer adaptation provides improved "dynamic range as

.;well as improved SNR. The main advantage of the feedback control is that the

‘istep ‘size information is derived from the code word sequence, so that no

additionalvstep size infOrmatiOn_need be transmitted or stored. This

however, makes the quality of the reconstructed output more sensitive to

‘errors in transmission. With- feed-forward control, the code words and the
"step size together'serveﬁas the representation’of the signal. Although this

b-increases the complexity of the’ representat10n,<there is the pOSSibility of

transmitting the step s1ze with error protection, thereby 51gn1f1cant1y

' improving the output_quality for.high error rate transmission.
- 2.4.4 DPCM WITH ADAPTIVE PREDICTION (ADPCM-APAQ)

_So;far, only fixed predictorsihaveﬁbeen considered and it has been found

:that.with higher order predictors;.We can expect that differential

quantizatipn will provide, about 10-12dB improvement. Furthermore the amount

’offimprovement_is a function of the input. In order to effectively cope
-Withfthe non-stationaritynof the_image transmission process, it is natural
E topconsider'adapting the predictor as well as the quantizer to match the

v temporalvvariation of the image samples. A general adaptive DPCM system with

’

both adaptive quantization and adaptive prediction is depicted in Fig

..(2 23) The dotted lines indicate that both the quantizer adaptation and the

v‘predlctor adaptation algorithms can be either of the feed—forward or the
A':feedback-type.'If feed—forward COntrol is_used for the quantizer or the

,:predictor, then A(n) or the predictor coefficients,

p(X(n) = {O%(n)}, (or both) are also requlred in addition to the code words,

c(n), to-complete the»representation of the image samples.
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The predictor coefficients are assumed to be time dependent so that the

"prédicted value is

: ‘N
X(n) = k’é 0( (n)x(n—k) ‘ (2.88)
¥ STEP SIZE . M@
. ADAPTATION
o : 1 svsTeM
S o T : v L N
' . . o . + - A(n)i
xay |~y * a%n) v |
; '@ --.; QUANTIZER: | ‘ ENCODER. einy .
—— +)
X(m) A— XM
: PREDICTOR .
Py |p——}
,g% ' 3(n)
i
PREDICTOR '
—P| ADAPTATION Mb——
- SYSTEM
(a)
'c%nﬁ o : .
, ' DECODER X
a'(n) J SR ’
- - » PREDICTOR dJ

Flg 2.23 ADPCM sttem thh both adaptwe guantization

P(Z)

. STEP SIZE S )
ADAPTATION n———— ¢ S TF¢ )
SYSTEM - ‘ .
PREDICTOR
- ADAPTATION
"SYSTEN

tb)

and adaptwe pzedlctmn aJCoder bJDecoder

r‘_.__‘

In.adapting‘thé pfediétqf coefficients

(n) it is common to assume that the

properties of the image samples remain fixed over short time intervals. The

prediction error over a short time interval. For feed-forward control,
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predictor, adaptation is based upon measurements on the input signal. Using

the same type‘of manipulations that were used to derive Eq (2.67) and (2.69)

_ and neglecting the effect of quantization errors, it can be shown that the-

'Optimum predlctor coeff1c1ents satisfy the equatlons,

.Rni(j) =2 (R, (5k) C3EL2,eeN (2.89)

where Rn(j) is the Shdtt—time autocorrelation function

R (j) Z X(m)W(n-m)x(J-l-m)w(n—m-J) . 0<igp (2.90)

:ahd'W(n—m) is a'wiudow function that is positioned at sample n of the input
_ sequence. Since the pafameters,of the image vary rather slowly, it is
reasonable to adjust the predietor parameters X(n) infreduently. As defined
“by Eq (2.90),‘the comeutation ef'the correlation estimates required in Eq

" (2.89) would requife the accumulatiqn of N samples of x(n) in a buffer

before computing R, (j). The set of coefficients ®(n) satisfying Eq (2.89)

'are[used in the configuration of Fig (2.23a) to quantize the input during

- the,interyal of N samples beginning at sample n. Thus, to reconstruct the

input from the quantizer code words we also need the predictor coefficients

(and possibly the- quantizer step size) as deplcted in.Fig (2.23b). The

details of computlng the time—vary1ng predictor parameters is beyond the.

purpose of this study.

In order to quantitatively express the benefits of adaptive predictien, Noll

.[651 has examined the dependence of the prediction gain, Gp, upon predictor

order for both fixed andAadaptive predictors.
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. - . o ~ ADAPTIVE PREDICTOR
:P12 - ) S
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4}
] N
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: o NUMBER OF COEFFIC.i:NTS p

'5~!,3Fig'2§24_Predictor‘gains.vs,-number of predictor coefficients,

_ which is taken from the study of Noll [65]

' Fig'(Z;Zﬁ) sdes the quantity-G§5;as a function of predictor order, p, for

"bdthAfixed;and adaptive prediction. The lower curve, obtained by computing a

:Idngvterh estimate of the autocorrelation for a given sample and solving for
1the_set of predictor coefficients satisfying Eq (2.69), shows a maximum gain

bf;abouﬁ_IOhSdB;,The upper curve was obtained by finding the value of window

' ‘lenght, L, and the predictor cbefficientstx(n) that maximized Gp across the

‘entire utterance for a fixed value of N (number of predictor coefficients).

+

That maximum value ié plotted for each value of N. In this case, the maximum
gain is about 14dB. Thus, N§11 [65] suggests that reasonable upper bounds on

the perfOrmance of DPCM systems with fixed and adaptive prediction are 10.5

" and 14dB, respectively for speech signals.
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“255 RESULTS OF THE COMPUTER SIMULATION

In this section the simulation results of PCM and DPCM technidues are
examined. A package program is developed which consists of different types

of'qmantizers,-multilevel predictors and different types of signals. By

_using menus on the screen_one can choose the type of signal or quantizer or
o deoide to use a predictor or not. The structure of the program is designed
. such that it can serve for both two-dimensional or one-dimensional signal

" processing. But because ofvthe storage capacity of the computer, test images

could not be generated5anddthe_program could not be tested on images.
Instead;Aone—dimensional AR model waveforms have been generated and the
proposed picture coding techniques were tested on this models. The program

hae.been developed for just finding the performances of several PCM and DPCM

techniques but not for the comparison and evaluation of those. At the

beginning, the structure of the.program will be explained in detail and then

_ somevoutputs will be given.
2.5.1 A PACKAGE PROGRAM FOR QUANTIZATION, PCM AND DPCM TECHNIQUES

o This program has been.deVelopeddby using the APPLE lle microcomputer, which -

has 64 kB main memory and 140 kB dlskette capacity. The program is written

'fin the APPLESOFT BASIC programming language. The memory allocation of Apple

does not’ allow the use of graphlc mode, large variable strings and long

: program3~a£‘ﬁhé same time.'That's why, if we want to see the graphic or the

Spectrum of the inputyoflthe inbut,itself,‘we have very limited area for
variaoles; Then if the gfaphics‘are required, one can work only with 64

samples of data at a time. A subprogram has been developed to solve this

) ;problem. A long string of 1nput can be given ‘at the beglnnlng. ThlS
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'19ubprqgfém'dividés the ﬁhoie*signél into pieces in such a way that each

piéce donsists-of 64 samplés at'most. In order to use the graphics mode of

the computer, it-has been avoided to use 1ong programs; instead it has been:

divided into many little. programs Whlch are CHAINed together without loosing

'the variables which must’ be shared by all programs.

 As mentioned above test images could not be generated because of limitations

- of the capacity 'and the package program was tested on some one-dimensional

waveforms such as AR model;.sine, random sine or square waveforms. As
explained in Chaptef 1, auﬁoregreésive sequences are one of the good
Irepréseﬁtations of images.fThus, all analysis and‘berformance evaluations
Qere performed on autoregrgssivébsequences.‘The examples of inpdt waveformé
are shdwn in‘Fig‘(Z.ZS)f In sectionil.S detailed information about AR

sequences_has'beenvgiven.*

. Thejnamgs:and,the.functions of thé_programs are the following:

' MAIN,?.The'package'beginé'withjthis program anddafter choosing the type qf

signal, the réspéttivé sighal'géheration program is called.

KARPROG, - s'INPkQG, RASPROG and GAUPROG are the names of the respective
wdveform:gederation.bfogramé. As mentioned earlier, the number of samples
égn'be ﬁuch;more dhan 64. The éenéréted samples are stored in a textfile and
recalied‘as blocks of required sizéb(maximum 64).
QUANPROGE‘Aftervgenerationddf’inpﬁt samples, signal generation programs afe
CﬁAINed to a program calied QUAN?ROG. here; the type of quantization and

coding techniques, number of quantizer levels and types of quantizets are

~ chosen.
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225 Four types of input sequences used in the

gach of which consists of &4 samples

a)Bine~wave b)Sguare-wave o)Random Sine-wave d)AR
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The' quantization and coding techniques in the package are classified as:

ll;5Unifofm;§uantizatioﬁ with Sigﬁal variance adaptation
2 - Noﬁunlform optlmum quantlzaﬁlon ‘with s1gnal variance adaptation
. 3.- Differential quantlzatlon wifh a.summer instead of a predictor (See
7 sec.2.5.4), '
4:-’L6gérithmic duantizéti@ﬁ
5 ;'Feedfforward adaptiﬁe quantizétion )

6 f'Differential pulse code modulation (DPCM)

"The'program'has been constructed in 'such a way that each quantization

. technique can choose several types of quantizers or predictors.

:Chdicés_for'quantizer types in thé simulation program are as follows:
lff1Quantizers with uniformAmidriser values

2 - Quantiéérs with uniform midtread values
,3-f.0ﬁah#izeré with Gamma'densities (optihal quantizer)

4 - Quantizers with‘Lapiace densities (optimal quantizer)

I

- Oqaﬁ;iiérs withiGéués'dgﬁsitiés (éptimal quantizer)
' Tﬁé éuéntii§r 1éve1s can;véryvffoﬁ'Z to 32. This program is chained to
"'anbthé:'pfbgram withouf'looging the y;fiébles according to the type of
'quantizétion,’ |
) Q;SNRfRdG;:DIFADAPQU,'FFADAPQU,,D?CM: If optimum, 1oga£ithmic or uniform
;éaéntiz;tioﬁ is chosen;ithen Q.SNRfROG is chained to QUANPROG. DIFADAPQU
 c§htéins the algorithm'of a type of differential quantization whiqh has a
sﬁﬁmer,vwhich.fiﬁds the cummulative error. the details of the algorithm Qill

~be given later in this chapter. FFADAPQU performs feed—forwardradaptive
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" quantization. DPCM has the algorithm of DPCM with usual predictor. DPCM can

find upto4phé‘6th'coe£fiéient of the’predictor.
<OZILINTi;‘in order to.get correct decisions on error waveform,
':aufocérfélation coeffiéiénts of inﬁut‘and error might be required. This
'}pfbgrém can be chosen oﬁtionally.
ffoROG:'Finds Ehe spectrum ofvinpu;, errér, quantized signal or
'autqcorrelation functions'of input’and error. in order to get smooth results
- the same;qﬁantizaﬁién technique is applied on the same type of waveform
.éevéral‘times, and eééh time the results are saved on a textfile. At the end
the average valges of the spectrums ére Calculated. The listings of the

prbgrams~will be given in Appendix A. Fig (2.26) shows an example

s | ,v . . '. SR ‘.Jtr'—' ‘ ‘ . v \}giu.i _;“ ol : :I"mljh. f‘w‘ar_‘.“ﬁ%'ﬁl}
ikt AU L s U i

(@ (b)
o4 ' . . ‘&‘L.‘.\h, - N ,u‘-d'l"ﬂ'lx‘
fﬂ"ﬁ'ﬂ*‘pﬂﬂ‘ L.-.ﬁu"brm-..l‘ {#i!,‘!khﬂm‘hu{‘-h" TR ' L Gy el ey
¢y - 4
‘. 'Fig 2.26 Spectra of three quantized signals individually and their

. .averages in a), b), c) and d), respectively
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‘2.5{2 . UNIFORM QUANTIZATION WITH SIGNAL VARIANCE ADAPTATION

The'algorithm of this technique is the same as the algorithm which has been

~ explained in section 2.1.1. QUantizer 1evels'are calculated by the formula;

. o B . : ‘
'.medx—Az ‘_ . (2.91)
whese L : » %“GX?_4O;.l - asse@ing(& =1 (2.92)

-TTwo types of?quantizerS'can be‘chosen as uniform midriser or uniform

midtread values. Quantizat1on levels ‘and step31zes are shown in Flg (2.3)

and Table (2. 1) where U = 1. A11 tests are done on AR model sequences and

“thefvariaqce of the sequences-arejcalculatedf The quantizer stepsizes are

then multiplied with this variance, in order to adapt the quantizer to the

signelfvariaﬁce. The outputs are taken for 2-, 3-, 4- and 5-bit quantizers.

‘,Thefsignal'to noise ratio for all outputs are calculated. Fig (2.27) shows

‘the_fesult as SNR vs. number of bits used in quantization. As expected, each

bit in-the'che‘word contributes 5-7db to the signal to noise ratio.

SNR (dB)
25 —————
’ o o o =
20 - L T
- o S — : !
= | ’ - S ';_.-EI"' .
15 - e e
vl . N
10+ Rt
ok ' mfﬂfeff
5k .
1 0 : ! ! L !
1 2 2 4 ) &

MNumber of hits.

‘F1g42.27 SNR vs. quantizer stepsizes for uniform

T '~ quantization with midriser values
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- In Fig (2.28) AR model.séqugncé'énd‘the.qﬁantized waveform using 3-bit

- quantizer with'midriser.&élues'are~shown.

1G]

Fig 2.28‘Uniform-quéﬁtization'with 3-bit uniform midriser

~values a) original sequence b) gquantized sequence

_Iabie (2.55 shqws the numerical values of original sequence, quantized

sequence and the quantization error.
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' . 2.5.3 NONUNIFORM OPTIMUM QUANTIZATION WITH SIGNAL VARIANCE ADAPTATION

- As mentioned in section 2 1. 1, 1n cases where the 51gna1 variance is known,

it is possible to choose the quantizer levels so as to minimize the

'quantization'error. Optimum quantizer,parameters which are used in the
“siuulation are‘giﬁen in.tab1e>(2.2) for'hapiace, Gamma and Gaussian
.orobability density functions. As in the case of uniform quantization the
'values in the table are calculated assuming that the signal variance is 1.
JAR model sequence is used for all tests and the variance of the sequence 1s
»calculatedbin order to adapt the quantization stepsizes to this variance.

+ The simulations are done using three different types of quantizer values.

Table (2.6) gives the SNR‘values‘of three different types of 2-bit and 4-bit

quantizers

- i 2-BIT . 4-BIT
QUANTIZER
) ] o ;th (dB}) SHR (OB
‘  Geuesian . | . - Q.62 2080
S s | 7EL | 1B6E
i cema | BEE 1765 '

Table 2. 6 bNR values t‘or 3 dlfferent type of 2 b & I-bit
. o Uptlrnum Quanh"uxx . S

As;one_can'see’from table (2.6) SNR is closely dependent on the signal

variance. The AR model seQuence'nith gaussian distribution gives the best

results.- Fig (2.29) gives‘the results as SNR vs. the number of quantizer

stepsizes by using gaussian distribution values.
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o . , : 8
1 Bf”ff—FFfier '
-0 | ! 1 A1

Number of bits

fig;é,ZQ SNR vs. éheinumsg:vbf bits for optimum

"A quantization with gaﬁssiép AQnsities

 Lip Fig (2;365 AR'@Qdel sgquencé é§dsqu;n€iied waQeform using 3-bit optimum
q##ﬁtizef:withjgagssian dénéitiéé’is shown. The numerical valueé are listed

"in Table (2.7), as the Ofiginal séqﬁence,-the quantized sequence and the

"_quantization error.

-

WY

Fig 2.30 Optimun quantization using 3-bit optimum guantizer with
gadssian densities ar0riginal signal bhitGuarntized signal
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-2.25421947 L -4,23566588 1.98144641
11.5704859" 10, 9881464 . 582319438
16.5896464 18.376632 ~1.78698556
22.1195285 20.559106 1.56042251
22.119528% 23.3554897 . —1.2359612
22.1195285 206877105 - 1.43181802
11.5704859 . 9.9057652 1.664872067
6.83310277 5.39076426 1.44233851
-2.25421947 ~4,49254574 2.23832627
-2.25421947 ~. 982525193 -1.27169428
- =2,25421947 £ -1.27301328 -. 981206193
T =2.25421947 -2.9388102 . 684590728
2.25421947 < 84,02964543 -1.77542596
2.25421947 [ 3.61687023 -1.36265076
. 6.83310277. 4.57861038 2.25449239
11.5704859 10.7292623 . .841223557
6.83310277 . S B.92709037 . -2.0939876
16.5896464 17.0619604 .—=. 472313993
' 2..25421947. 1.99505849 -.259160982
. 6.83310277 ©B,b66964447 - —-1.8365417
- 2.25421947 1.96793795 . . 286281518
16.5896464 14.3969127 2.19273367
6.83310277 6.22884205. . 604260717
[ =2.25421947 =1.17304633 ~ -1.08117314
-11.5704859 ©=13.5541967 . 1.98371088
—-22.1195285. 1 =24.0902994 1.9707709 d
-16.5896464 - -14.1172403 ~2.47240614
-28. 494743 1 427.577S41 -. 917201966
-22.1195285. ~24.5804439 2.456091536
-28.494743 -25.5463371 -2.9484059
o, ~11.5704859 o =11.0545575 -.515928414
C . =4.83310277 =6.83029795 -2.80482322E-03
~-6.83310277 -5.73487488. -1.48435397
-2,25421947 . =2.71345257 . 459233098
-6.683310277 —B.59670702 1.76360425
-11.5704859 -12.86164844 1.29115852
~16.5896464 ~16.9493518 .3I59705359
~16.5896464 ~16.1559856 ~-. 433660768
2.25421947 2. 41660757 -.162388104
~2.25421947 —-2.76399195 . 50977248
11,5704859 12.2292327 -. 658746842
22.1195285 . 22,2889063 = 169377767
- 36.4373444 - 34.9569628 1.48038156
22.1195285 20.0284598 2.09106874
16.5894464 16.523792 . 0658543855
. 16.5896464 16. 1565853 . 433061145
. 22,1195285 22.0253181 . 0942104682
! 22.1195285 T19.7496876 2.36984092
g 28.494743 1.4008813 -2.90413828
16.5896464 17.0170933 -. 42744685
16.5896464 18.: 4473921 ~-1.85774573
16.5896464. . 17.2986446 -.709018178
6.83310277 . 1 7.968309976 ~=1. 14999699
~11.5704859 . ~12.1967261 .626240183
~16.5896464" C L -18.7353184 2. 14567199
—-22,1195285 —-22.7035625 . 584033944
-22,1195285 L -22.552017 . 432488449
~28.494743 [ =27.5724289 ~-. 922314055 L
~22. 1195285 -21.2822886 | -.837239981
=22,1195285 ~21.5067347 -.61279387
~-28. 494743 - =29.5738026 1.07905966
—28.494743 © -25.3383382 ~3. 15640475
=356.4373444 ~41,8102241°  5.37287972
-28. 494743 L =29.0409948 . 5446253838
(3) (b) (>
. b [y ' 3 ) . .
Table 2.7 MNumerical output of the S-bit aptiaouwn guantiser wit

i
gaussian densities a)@uantized sequence ) Original
) Buantization errors ’ )
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2.5.4 DIFFERENTIAL QUANTIZATION WITH A SUMMER

- An alternative technique of quantization can be obtained by adding
‘ quantiiation errors. This quantization method must contain a summer in

faddition to the quantizer. Fig (2.31) shows the block diagram of the

quantization method

L4 Em et A=Y : :
%(n) ——»(/Dn——-———r QUANT IZER * 5‘,—‘”{“ ——»] ENCODER b en)
. xTiReL)
- Fig.2.31 Quantization method with summer

"fHere;;the3efror is'quantized_and then,added‘to the preceeding errors.in

order to findvtheiqﬁantized valué of the input. The formulation of the

.method is as followé:

%(n+l) = i‘gil' e(1) . where 1 {ng N : (2.93)
= x(1) - X(1+1) L (2.98)

aﬁd 'az ;Ve(i)

Five different. types of quantizers can be chosen. Quantizer stepsizes are

adapted to the error variance according to the formula:

, M
'ﬁ(n)’=‘_>j‘ o (L).x(n-1) " (2.95)
N U , »

:where %(n) is the expected value and the & (i)'s are the predictor
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' Thén,the»érrqr will be.

and " O((l)

coefficients. For i=1 then,

S &(n) =00(1) &(n-1) o (2.96)

.and one can approximate the above equation with the original values

-<x(n);=(X(1).x(n-1)' o ‘ (2.97)

]

e(xi)- x(n) —cx(1) x(n 1) . where 1¢ng N (2.98)

R(l)/R(O) o . (2.99)

- QWherelR(l) and'R(O)‘arevthE'éutoéqrrelatibn coefficients and are found from:

“R(0)

n

1/N 2 x(n) - | (2.100) .

R(1)

1/(N—1) 2 x(n) x(n+1) : ' (2.101)

.Then the error variance can be found by the following formula:

Is

2 ' N .2 : :
0= 1/(N-1) n§1 e(n) - (2.102)

.The disadVantégé'of this‘ﬁechniqﬁe is that the performance criteribn, SNR is
‘closely dependent on the signal variance. This can be seen from the outputs
:'shown in Fig (2.32). An example of the original signal and the quantlzed
l.sequence using different1a1 quantlzation with summer and a 3-bit uniform

. midriser quantizer ;s~shown in the flgure.
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Fig 2.32 Differential quantlzatlon with summer using 3-bit uniform

midriser quantizer a) original signal b) quantized sequence, x(n+1)

'Tabie (2.8)‘shows the vaiues of x(ns,.ﬁ(n), e(u). It can be seen from Fig
;(2 .32) and Table (2 8) that the f1rst samples of the original- signal are
v.mlssing, but the error between 1nput and output is decrea81ng wh11e the
' number of.sampleslls increasxng..The value.of any one input sample let say
'.n, matches up the (n+1)th value of the output sample. The performance
A,criterion, SNR' is relatively better than.other guantization technlques. Fig

"(2 33) shows the SNR value vs. the number of quantlzatlon stepsizes. But

DPCM with a predictor is a more reliable method because it is less

’depeudent on the signal variance.
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- 4.81290478 . Q 1.06290478 '
, 18993231 - 3075 ~. {00676B7
T O5.31237873 - 2 . 0623787306
1.32638222 5.25 ~-.17361778
~1.4739646 1.5 -. 223964691
Z.849533L4 | ~1.25 1. 34953364,
4.16573342 . 2.5 ~-.0B42655785
5.32529826  4.35 . ~.174701741
8.6187932 5.5 - ~. 131206803
B.66511722 B8.75 . 165117219
1.90382203 6.5 ~2.84617797
1.84731673 . 4.75 . 0473167291
5. 97469997 1.5 . 72469997
T 4.160894677 5.29. .150894771
. 4.50488156 - 4 -.245118443
8. 38657093 6.75 -.113429017
. 10.4592687 © 8.5 L 209268697
12. 6189783 °  10.25 2118978299
8.4248933%7..  12.5 | ~. 325106636
10.295048% B.7S -.204951696
110.9237542 10,5 . 1737542 - N
11.3125493 10,75 ~.'1874507
C12.6450591 . 11.5 -.104940899 ‘
. 8.90937354 - 12.75. —. 0904626061
11, 9793363 o . © 229336295
9.48287271 '« 11.75 -.0171272978
$10,7622502 9.5 - 0122502036
+145.7284275 . 10,75 1.2284275
. ‘RI.0L96705 . 14.5 4.8195705
21,7475631 . 18.25 T .217563108
.. 22.3638416 21.5 . 1138414601
L 28.2704586 - | D2.25 ~. 226541399
" L23.5020794 24.5 -.24792061
23.3081414 . .23.75 ~-. 171858396
18, 8878625 23.5 ~.B6L2137496
C 1B.6916329 - 19,75 . 191632897
17.551596 | 18.5 - -.198403999
13.8736503 . 17.75 ~. 126349695
4 U 15.6609925° 14 -. 0B90075043
' L 15.522347 15.75 . 0223470032
) 17. 2030273 13.5 ~. 0469727069
: . 17.0205803 17.25 . G20SE03066
18, 3221822 17 -. 2778478
19.3393308 18.75 ~. 16056692
'22.1014807  19.5 -. 148519307
24, 2E7ILID 0 22026 ‘—. 242636792
2¢, 058911 24.5 -.191088997
26.141033 25.25 . 141033903
. 31,0560074 26 1.30600741
. 31.2082493 29.75 108249292
i 32,0083784 3| ~. 241621614
i | 29.0922039. 32.25 . 0522038928
R I 29,1430945 2% -. 106905498
Tt 1 35.0017043  29.25 2. 60170431
. 39.4039687 - 33 2.653946871
341007173 346.75 L 100717291
o 27.3677364 . 34 -. 882263586
) 2700727329 L 30.25 L0727329031
©, 27.735221 27 -.0147790089
. | ‘28, 1432571 27,75 .143257104 - -
Sl 251696186 28 ~. OBO3813934
- 28.32815583 | u5.2 -. 171844199
, 27.0662981 - .28.5 —. 163701088
- J. 26.4947237  27.25 ~5.27628511E-03
|| IR o
(ay (b)Y ).

.

fébléiE:B Numékicﬁl-@utpgt of di{feréntial quantization with a sunmer
‘and & 3-bit uniform guantizer a)0riginal seq. b)Buant. sedq. C)Errar
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input sequence, output'sequence and the error.

Fig 2.33 SNR vs. the number of bits for differential

o o R
" quantization with a summer and uniform midriser quantizer

' 2.5.5. LOGARITHMIC QUANTIZATION

. As mentioned in section 2;1{1,,in order that the percentage error be a
_constant, the quantization levels must be logarithmically spaced or -

”equiialehtly, the logarithm of the input must be quantized.

“In. this study the logarithm values of the input are taken and then

vquantlzed, as shown in F1g (2. 5) F1ve different types of quantlzer values,

llsted in Table (2.1) and (2.3),,can be used as quantizer values. Adaptation

'k‘tblsignalevariance is not performed. AR model sequences are used for all
tests. Fig (2.34) shows an example for logarithmic quantization by using a

3-bit uniform midfiser.quantizer. Table (2.9) gives the numerical values of
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2.0673877

777621378
L =5, 51000177 .

TR LY
~25, 2278535
~18.202564 -
-20 102818y
-27.6758566
-4, 300; \1,_‘
-8,
-21. 2055822
24936983
—19.7206689
-10.9481944
~15. 908261 .
~26.4764477
—. 540991667
-4, 3HST477S
~7.6748213
~3.75850827

C =10.345583

~22.7298954

—~19.223

L =19, 6726523
—9.615147465
2. 42656085
5. 90206426
4. 65Y51H1

=6, 2TA2G06A

~6.12312445
18. 4132255
15.1274991
R 09257551
-~ 363629714
-11, 35964628
~30., 0979135
—u1.54607uf
—&2.“9194”J

c =36 0273022
L =36.8683594

—2u.01\°695

-27.9174936

-27.25208027
~14.827935
3.21833441
111407927
24,7527185
1B. 7856585
3. 66186058

~6.47838% 48 -

5. 78437955
~5. 44446578
3.18827406
2.23820514
-12.108194
~23.8137189

= 1503506677

=3+ 61746002
~G. 488092

()

244

T -5, 21214503

10. 6672148
10, 6672148
1214507

4819805

3. 41319805
23. 4819805.
~10. 6672148

=23, 4819805
~10.6672148
kY

.7“49467
=5.21214503

~10.6672148 .

-5. 21214503

—5. 21214503

~10.564672148
=23.481980%
238819805
-23. 4819805

-=10. 6672148

2. 65120634

10. 6672148
321214503
. 72494837
2. 65120674

23.4815805
10.6672148
2 651206734
~ 377186787
—10, 6672148
—-23. 4819805

05
;0.4819805
-23. 4819805

. 4819805
%23.4819805
~10. 6672148
2. 65120634

(-." 1204634

L R.ES1206E4
—=10.46672148

- 4819805

T —10. 64672148

-, 65120634

=10, 6677148

(b)

TLAR19805

=23 4819805
=23, 3819805

-1.40017287
2.89100106
1.29785674
-. 858865015
1. 74987”96
~-5d &~ 27741 ..12
-3.37916157
4,19347604
-18.0177617
5. 260045604
~2.27639828
—-1.41784501
-3.76131165
. 280979518
~7.57371955
2.99446724
~-. 183997056
- B2679728
-2,99239354
-1. 45367676
2.2013902
—.&21691808
-. 752085112
—-4.25845611
-3.80932821
-1.05206719
. 224645491
- 739921231
. 550626877
~3.8751643
-, 29760262
108112362
-. 02090264681
1.01205561
. 910979422

'5.068755

-4, 46028431
-, 8481369177
-. 0135574726
. 692447998
b. 61593299
8.06409464
8. 640995999
12.5453217
13.3863789
1.53128799
4.4355131
3.77082222
4.16072012
-. 567128077
—-. 473577827
-1.27073801
4.696322
~1.01065424
1.26624445
—. 536650367
L 232I20752
-, 537068526
.413001202 /
1.44097915
. 331338435
4. 60345282
. 68253679
-1.17912241

(<)

Table 2.9 NMumerical output of logarithmic quantization with &-
Suniform quantizer a)0Original seg.

M Cuantized sedq. o) Guant.
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_Fig 2.35 SNR vs. the number of bits for'logarithmiévquantization
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. to the formula;

AR model sequences are used for ailltests. The outputs are taken for 2-, 3-,
'44'and'Sfbipfquanﬁizersband SNR values are calculated for all outputs. Fig -

‘(2.35) shdws,the,SNR'valué,vS}'the.number of bits. The results are not as

gdod as'uﬁiforquuéntizatioﬂ.with<signal variance adaptation.
2.5.6 ;FEED-FORWARD ADAPTIVE QUANTIZATION

In section 2.1.2 the theory of adaptive quantization has been discussed in

. detaii--For the feed-forward adaptation scheme in this study the stepsize of
the'quahtizers is evaluated and transmitted every M samples. In this case

;i’the,System requires a buffer of M samples to permit the quantizer stepsize

to be determined in terms of the samples that are to be quantized rather

‘than in terms of past samples. Uniform quantization with signal variance

.adaptation which has been. given in section 2.5.2 is a specific application

of the feedeorward adaptive quantization. The buffer is chosen so that it

" covers all the input saﬁples‘i;e.5'ﬂ=N.'The variance is calculated according

2w,
O(n) = 1/M % x“(m) ~ .~ 1<agN (2.103)

‘The . simulations on feed—fdrward adabtation is done for M=4,8,16332. Fig

(2.36) gives the results of the simﬁlation for a 4-bit uniform midriser

‘quantizer. As one can see from Fig (2.36) better results are obtained for
. smaller. M values.

For adaptiVé quantization five different types of quantizers can be chosen.

As for other quantization methods, AR model sequences are used for
simulatioﬂ. The ‘outputs are taken for 2-,3-,4— and S5-bit quantizers and the

SNR values are éalculated for all outputs.In Fig (2.37) an example is given

for feed-forward adaptation with -a 4-bit unif. midriser quantizer and M=8.
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' Fig 2 37 Feed—forward adaptatlon with 4-bit unlform mldrlser

: quantizervand.M= , a) input sequence b) quantized sequence
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Table (2.10) gives the numerical values of Fig (2.37). In Fig (2.38) the

'rpeffo;mance.of an adaptive quantizatidh ﬁitﬁ M=8 and 16 is given as SNR vs.

_theﬂnumbeerf bits used in quantization.

- Fee dffcrwafd adaptative quantization
SNR(B1 | R

23
- i
[ R gt b
20 — :"::' -~
: fate :
. 13 . ’ ‘(:-f:'x !4=16
. _,4?”?
10 e '
F“-‘-"-.-:d‘- . i
R
9] , | i ! Nm T ooLr
1 z 3 4 o] £

Fig'2.38'SNR:vs. the number of bits for feed-forward .
. adaptive quantization using uniform midriser

“quantizer while M=8 and M=16

2.5.7 DIFFERENTIAL PULSE CODE MODULATION - DPCM

‘The theory of DPCM has been’discussed in section 2.4.2. The program is

constructed so that for DPCM five different types of quantizers can be

chosen. In-addition the predictor‘cen be designed as multilevel predictor

' upto the sixth order. Predictor coefficients are calculated for each

simulation. The DPCM performance is calculated according to the equatlon

,(2.54) = (2.57), ise., the performance criterion SNR can be written as

v
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*Table

LB
P

?.78440667

9.489435623

?.60225021

B8.87011188

P. 11279245 -

. 9.59999459

6.2572424

2.37877703

8. 25352909

- 8.59933399

2.90343521

9.11997486
. 9.55964218

10.0915173 "

.16.4350175

15.6617216°

8. 85938075
8.36820934
- 13127072
©'12.1234876

14, 6432038

L 11.3159962
.. 10,0135829°
1 11.5653706 - -
L R.58472835 .

.B8469264811
=2. 66825491

~. 863906341

—6.06179233

© ~5.72409213
~4,.41483956"
-1.01585336

~3.09736636
-3.0350942
1.01016122-
-1.02748296
~3.22971716

© -5,39280726
~B.42044954
-2.10356274"

-.731840171

-2.19391969
- 227879809

4.029656639

3.70142078

1.92837973
3.15862131
3.35470361
.772121984

| 3.37331412

4.4B258482

-1.69157659
-1.81651508
2.02193532

" 2.16377517 . :
5.6763I3317 .

9.46055527

. 13.2447774

9. 846055527

9.46055527. -
. 9.46055527
‘9, 86055527 '
| 8.57633317
9.46055527

g

8.39451726
8.73918842

10.1238999
7. 38090545
7.58834232

-8.89978292
5.91049876

3.82435652

6.43114495
' 9.34884573
5.76617797
. '8.76481401

10.2108626
12.8137079
14.2263282

- 16.0983161
" 11.1464761
10.7107463

11.7104993

13.9149544
15, 9032026
. 9.93883118
'8. 67805232
.. 10.9341722
C1.97477946
'1.02959406
L -2.7183688
~1.1046273 -

-5.2237875

' =5.1198037
~8,9743673

—1.789383

. =2.3671008 .
T -2,3657653

1.28995847

© =1.2950749
' =4,1098627

—-6.3572417
=7.59261681
-2,7485792

=.41489054
~2.2801188

2.49688B466
X.85296339

. 4.17608295
. 1.8B6481664
- 2.81588967
3.63004374
268597706

3.25549163
3.93944176
1.3610019
-. 42481949

1.32393123
©3.80371371
5.64505152

9.2520447S

12.6730034
$8.36286009 .
- 7.61276387

10.0552417

" 6.81739546
6.84414774
;10 7058495

(b)

4

1.389887%4
.75024781
-.5216494688
1.48920643
1.52445013
« 700213671
. 3456743643

. =1.4455795

1.82238413
-.749511741
-2.86274276

. 3551462848

-. 65122043
-2.,7221906
2.20868933
-. 436594516
-2.28709536
-2.34253696
1.41657271
-1.79146678
-1.25999877
1.37716504
1.33553058
. 631198402
. 609948889
-. 160329249
. 0501138913
« 240720959

-.B83800482%

-. 604288423
. 559527734
. 773529645
-. 730265558
-. 669330895
-.279797246
. 267391942
.BB0145536
. 944434435
-.B47832743
. 645016463
-.316949631
. 0861991123
-.218086566
.176702996

-.874662178

-041963086
- 342731639
~. 27533993
.503424278
117822491

.« 743143057

-.330574686
-1.39169559

- 698004093

-1.63993854
. 0312816463

. 208510518
.57177398

1.09769517
1.84779139

-. 594686434

- 683159799

. -1.16781857
-1.24529424
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SNR " = SNR. G - (2.104)
C ' Ga”
where SNRq = — s
- , o
2
G, = (sz
0y

. where Ca,is the signal variapée,l% is the difference variance Oé is the

qdantization error variance, Gp is the predictor gain and and SNR is the |
SNR: for the.qpantizer,vFor each simulatibn, the predictor gain and the

quantization gain is calculated. Fig (2.39) shows the variation of the

_ prédictor gain as a function of the predictor coefficient for first order AR

model sequence. It can be seen from Fig (2.39) that after the fourth or

fifth predictor coefficient the predictor gain decreases. Third order

‘predictor is sufficient for DPCM.

i :
oy T
i ) o b
| N : S
- e .o - z
oo /-"‘ , o __4—\3'-‘.?'""\ )
. ) - e -
} ,f' ) A" - [ N -
’. ‘ E ,’_’; N . \'\__-\‘- "‘_-
4 - S » -
i v )
] / .
- v . .
£ i I g :
& —— . :
S~ ;
ol . 1 t T
0 7 4

. Fig 2.39 Predictor gain vs. the number of prediétor
‘coefficients for DPCM quantizatiqn of first

order. and secondorder AR model seduence
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.AR model waveforms are used for all tests. An example for DPCM quantization
‘with_é-bit unifqrm midriser Quantizer and a first order predictor output is

* shown in Fig (2.40).

|

b(a)

'I;" . . ) . . :

ORE

Fig 2.40 DPCM quantization with 4-bit uniform midriser
QUantizef,and alfirs; order_predictor for a first order .

AR sequence é) input sequence b) quantized sequence

Nﬁﬁefica}"vaiues of Fig (2.40) is given in Table (2.11). SNR ié célqulated

fbr each quantizer leyeliand 1st, 2nd, 3rd.and Ath order predictors. Fig

(Z;Ai).shows the berformance criterion as a function of the number of bits
‘fér st and’3rd ordervpredictors using unifofm midriser quantizer values for

“a first order AR seq. as an input.
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' DRE.SIGNAL PRED-.SIGN.  @Y(I) QUAN. ERR. FRED.ERR.
25, 1036969 O . 14.722498 10.32811989 25. 1036969
21.8211023 14.722498 6.87049909  .228105173 7.09860424
26.6226572 21.5051254 . 4.90749935  .210032467 2111753181
20.75844699 26.2B42707  4.9074993%  —.A3IZ0OO104 4.47419924
28.1709193 31.0348914  —2.944499461 .0B0OS274807 -2.86397213
28. 39369462 27.905159 .9814998469  —. 4929626462 . 4BB537207
24, 1609085 28.720106 -4.90749935 .348301876 -4.55919747
21.4456425 23.6411897 - ~2.94449961 .748952437 ~2.19554717

. 28.9342738  20.S555868  £.63I349883 . —.45481183 8.378687

. 24.3529726 29.26637989  —4.90749935 -5.92697039E-03 —-4.91342632
23.4544608 24.1842221 - -.9B1499869 .251738619 72976125

'24,1123313  23.0583778 . 981499869 .0724536069 1.05395348
29.3491764 23.902253 4.90749935  .53P424073 5.44692342

3401373273 28, 6470909 . 4.90749935 . .562737059 S. 47023641
33.5780923  33.4034897 = .981499869  -.B0&6BIT271 -174602598
31.3305121  34.1856197  -2.94449961 .0893920176 ~2.85510759
-31.5058793 - 31.03I7082 . -.98149986%  -.51270261 . 468797259
29.4453586 31.833336 - -2.94449961 .556522194 -2.38797741
31.692357  28.698838 | 2.94439941  .0490193553 2,.99351896

© 28,.8B52432  31.4720476 =2.94449961 - 357695166 ~2.58680444

. 3B8. 1848405 © 28.339706 . - 10.7964586 - TATT64052 7.84713447
39.7914502  38.9670581  .981499869 - 157107729 - 82439214
33.6488572 39.7159817 - —=6.87049509 . -BO3IZ74585 —6.0671245
39.2850113 32.6084364 -6.87049909 @ —-19392417 6.67657492

. 46,0283704 39.2843109 . 6.87049909  —- 126439583 6.7440595
146.1816907 45.9203403. 981499849 ~-760149393 -221350476

87.2294794  46.62776F .981499869. - —-379783411 - 601716459

. A5.2743&6  47.3309634 . ~2.94449961  -887896236 ~2. 05660337

| 45,2937406  44.103967F . 981499869 - 20BI73I437 1.18977331

. 41.5868852 44.8222311 . -2.94449961  —-290846277 ~3.23534589

< 44.0392643 . 41;61020B4 2.9444994 ~- 915443753 2.42905586

S 40.8567129  44,3063F561 -0 :

!
Table 2.11 Numerical output of DFCM guantization using 4-hit
wniform quantizer and first order linesr predictor
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Fig 2.41 SNR vs. number of bits -for DPCM quantization with’
“uniform midriser quantizer for first order AR seq. with
first order & third order predictor

&

As.expected DPCM systems can provide 5-10 dB improvément,over direct

-qﬁantizatioh-(PCM). The greatest improvement occurs in going from no -

' prediction to first order prediction with somewhat smaller additional gains

‘resulting from increasing the predictor order up to 3 or 4, after which a

'décreaée,iﬁ gain can be.observed (see Fig (2.39)).

2.6 CONCLUSION AND SUMMARY

In ;his-chapﬁér,the most commonly uééd.picture compression techniques PCM
ahde?CM have been discussed in detail. Different types of quantizers have.

been*éxplained and -their applications in PCM and DPCM systems have been

discussed. In the second part of this chapter, a package program was

deséribed and -six different types of PCM and DPCM techniques were "simulated
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on a microcomnuter. The program has been designed such that the flexibility
of choosing alternative quantization methods, alternative quantizer values
.and- multilevel predictors is given to.the user. For each technique the user
" can find.the performance criteria as SNR value and if desired the
autocorrelation functionS”and the spectrum»of each the input sequence,
“quantizationbnoise}or autocorrelation'function. From the results of the
1simulation one ‘can easily see the performance of each technique as SNR vs.
"number of bits used in quantization. The results‘can be summarized as
’_follows..For,uniform quantizationleach bit adds 6dB to the SNR value. If
adaptation with signal variance is'added to the method better results are
obtained..LOgarithmic quantizatidn without adaptation to signal variance
'gives'an SNR value which is below the uniform.quantization with signal
variance adaptation. The advantage of the logarithmic quantization is that
the SNR value is totally independent of the signal variance.It depends onlv
~upon the stepsize; Optimum'quantization can give hetter results.if the
7quantizationjstepsize is“matched.with the variance of the signal, i.e.,
'-whenever‘the'variance;of the signal is known. Adaptive quantization gives
‘lbetter results than nonadaptiveVschemes.'AboutJZ—S dB increase in gain can
rhelohtained.;Differentialfquantiaation<with‘summer gives 3-10 dB increase in
Tgain, buthitlis'closely-dependent on.the'signal‘variance and approximatelv
'the_first ten samples of'the input can not be matched. This is the
:disadvantage of the differential quantization with_summer. Differential
‘Pulse Code Modulation (DPCM) gives the best results and can provide from 4

to 11 dB improvement over direct quantlzation (PCM).

The package program is designed such that further improvements on the
‘_'package are possible. Alternative PCM and DPCM methods can be added to the

package. The.only limitation is the storage capacity of the computer.

B
e
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" 3.1 INTRODUCTION

TI1. EDGE DETECTION TECHNIQUES AND THEIR COMPARISON

In image cdmpression discussed in the last chabter, the desired output is a
picture - an approximation to, or an improved version of the input

picture.Another major branch of,picture processing deals with "Image

]

'Analysisﬁ3 "Scéne Analysis"; here the input is still pictorial, but the

desired output is a description of a given picture or scene. The description

refers tq spécific parts in the picture, or scene, to generate the

"descrip;ipn;_it4ié nééessarY'tdf"extréct" the picture or "segment" it into

theée pérfs;¢Th1§ éhaptet-Will disc@és an important approach to picture

‘extraction which is based on‘the,dépection of discontinuity, i.e., of places

‘whete théré-is a mofe'otvless abrupt change in grey level, indicating the

end_of oﬁe7regidn and the beginning-of another. Such a discontinuity is

called an "edge".

The ‘human observer is the ultimate receiver in many image communication

I3

- systems. A human observer seems to rely upon edges, bounderies and colour’

rather than the individual pikel‘amplitudeg_for visiual recognition and

interpretation. Therefore various image coding techniques based upon the

" detection and the coding of edges and contours have been explored.

The'dther’adﬁantage of eage.deteé;ioh is the potential for reduction of

j7biandw':l.dthv"‘r:eql.xire_d-t;o_t:.r.";'nsr'ni't signals. Since the advent of television in

' th¢feaf1y part of this century it has been obvious to investigaters in this
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= figld;thap ﬁhere should be some wéy*qf.reducing the bandwidth required to

';rahsmit'antglevision'signalgThe;basis for the assumption has been that the

: high bdndwidth, hecessafy for reproducing sharp changes of brightness, is

réq@ired only at a relativeiy small number of points in the picture.

In section 3.2 fundamental cdncepts about edge detection techniques will bé

summarized. In section 3.3 different edge detection techniques will be

-discussed. Then evaluation of edge:déteétion'schemes performed by Pratt,

Fram, Deutsch and Alpaslan will be summarized in order to review the

.-evaluation criteria and techniques. Invthe 1ast‘chaptag chapter 4 ,

further research on evaluation and comperison of performances of edge

detection ﬁechniqueé will be performed.

3.2 FUNDAMENTALS OF EDGE DETECTION

3.2.1 TEXTURAL AREAS -

A visual scene or picture is seen as composed of regions and edges which are

separéte(regions.But, not all ofgtheée regions can be seen as "objects" at

”thé same time. In general, only the region on one side of an edge is seen,

at a given time, as a "figure" that has a shape. If one of the two regions

1 1s_br£ghter, or smaller in size, more symmetrical, or bounded, it is
generally easier';o see that one as the figure.The properties that are

. important in producing simiiarity grouping are also important in the

perception of "visual tex;ures". These are complex visual patterns composed

of entities, or subpatterns,that have characteristic brightness, color,

slopes, sizes, etc. Thus a "texture" can be regarded as a similarty

grouping. The local éubpattern ﬁroperties give rise to the perceived
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The operation of a

brightness,-directionality, etc.,-of the texture as a wﬁole.
3.2.2  GRADIENT AND LAPLACIAN,

The”deteétipﬂ-of details in‘an4imagé.13‘nop easy and is made more difficult

:By-any ﬁaisé'in the éignai.'Any'effért to reduce the noise conteﬁt of the

,ofigiﬁal'piqture-before ﬁ;océssiﬁg will greatly simplify the edge detectioﬁ
' -pfoégss.By conéidefing the“imége.in_tﬁo dimensions tﬁe true edges of the

‘plcture wﬁich lie along cdnnectedLCOntours can be isolated from the

spétially'n6n¢orrelatedjnoise,while. textured " areas of the picture can be

'_ gliminated because of the low rate»df the brightness changes.

synthetic highs system using the gradient as an edge

detector can best be éxblained in one dimension with reference to Fig.3.l.

| edge detector otitput - “synthetic higs*
' Fig.3.1 Synthetic highs system

I1f a signal is unit step, the gradient will be unit impulse. The impulse

. response of the reconstruction filter must have the form shown in

ﬂrFigf3.1,such that the original unit step will result when the "highs" are
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. added. to the "lows". Although the - dependence of the reconstruction filter on

the low-pass filter is obvious in one dimension, the general formulation has

' beeprfirst derived by Schreiber [73] for the grédient edge detector.

A - GRADIENT

- The gradient of the picture G(x,y) is a vector signal and has two

 cdmpoﬁents."

| o | aA(x,y)i O 2AGy) :
VaGey) - c‘(;‘z,y)»;_ —— o t——— (3.1)
| | -’:vax o 9V

where,ux and-uy.are unit vectors in‘the x and y directions respectively. The

reconstruction filter H(x,y) must also have two components to operate on the

grédient signal,
H(x,y) = Hx (x,y) u + Hy (x,y) uy (3.2)
To have the output equal to the input, the following must hold:

VA @ H+A @ M=4A . = (3.3)

vwhere ‘® .indicates convolution,‘H“is the recontruction filter and M is the

" "lowpass filter. VA @ H gives‘the,Synhe;ic'highs, i.e., high frequency

vérsion,;éndvA ® M'gives‘;hé lbw'frequency version of the picture. -
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"B - LAPLACIAN
Usiﬂg-;ﬁe Laplacian as an edge deteétof,

aZA(x,y) 3°A(x,y)

2 ’ : »
VA(x,y) = C(x,y) = _ + - (3.4)
: ox2 9y2
.the signal is a scalar and requires a filter, f(x,y), for recomstruction
. 2 : o
[73];;The‘ V A signal is a scalar and thus is easier to store and filter
thaﬁ-the gradient;' V A, but since it involves a higher derivative, the

Laplacian signal will be more adversely affected by noise in the original

' and”by’any-nonlinear operétion sﬁch éé thresholding.

© 3.2.3 DIRECTIONAL DERIVATIVES -

Derivative operators, which give high‘values at points where the grey level

‘ -6f'the.picturevchange rapidly. Evidently any such operator can be used as an

edgé»detectqf; its value at a point.reptesents the "edge strength" at that

: pqint;,and'We:can expliéitly extféct,sats of edge points from the picture by

' thresholding these values.

‘The simpest dérivative operétbrs-are the first partial derivatives 9 A(x,y)/ox
*,aﬁd 2 A(x,y) /By, as were seen in Sec.3.2.2, which give the rates of change
of,gray level in the x—- and fhe y-directions. The rate of change in any

direction & is a linear combination of these:
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»aA(x,y)/a L= asin(p sthe component in dlrection W is

3 A(x;y) - _a’A(x,'y‘) o aA(x,y)

co.se + ——— sinG (3.5)
2x" ox | | - 2V

For.d'igit_al pictu'res,-.we use3'differences instead of derivatives:

AGAGL,3) = ACL,3) = AG-1,3) (3.6a)
CAGAGLE) = AGL3) - AU 1) {3.6b)
,.ASA(i,j) ='A;’A’('i,'j).cos-e+ Ay A(i,])sin G (3.6c)

It should be noted that che5va1ues'pf these operations can be either

. positive or negative, depe_nd_ing on whether the grey level goes upward or

downward as one moves -in -the p‘ositive x- (or -y, or —@-) direction. If one

wants' operations that always have nonnegative values at edges, absolute

'Valﬁes_of derivatives or differences can be used.

I

A d'irectional deribvative (or difference) measures only the component of the

rate of change of grey 1eve1 in one particular directlon. Suppose, for
example, that the grey level is given by the linear ramp function
A(x,y)=a(xcos(p+ysin(p) + b over's'ome portion of the picture. lere the

x-—component of t:he rate of change is: aA(x,y)/a = acos(p; the y—component is

/

a(x,y) aMXJ)

' co.s'(p_‘-!--—-_—-—- in(,D— a(cos (p+ sin (p) (3.7)
ox | 8}'
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‘ ;Similarly, the components in direction QY+ (1/2), p +Tand Y + (317/2) are O,
' —a’and"O; respectively.sThus the partial derivatives in various direction
give responses to this ramp edge that vary from 0 to a, depending on their

orientations relative to. the ramp direction.

”For digital pictures, we . can use’ differences in place of derivatives in the

A

,previous definitions. Thus the magnitude of A at (i,j) is \/K;A(i,g) +AyA(hJF
:It is common practice to approximate this expression, either by
18,401,350 + |AAG, )] (3.8)

_or by max( |A, ACGE, D) |, [A AG, DD (3.9)

However,tthese approximations are no longer equally sensitive to edges in
all directions. They -agree with the exact expression for horizontal or

. vertical edges. For a;hSﬁ edge, where AxA(i,j) ==Ay A(i,j), we have

\/A A(l,j)2 +A A(l,j)z AxA(i,j)VZ_ (3.10a)

_ Ay A(i,j)| + |A A(i,3)| = 20,A(1,3) (3.10b)
| max( IA A(i,j)l IA A(1,J)|) =A A(l,J) (3.10¢)

~ so that the approximations can’ give values that are too high or too low,

‘respectively, by a factor of as much as V7.

Various other approximations to digital difference or gradient are often

used. For example one can use

ax,, | A(1,3) - ACu,v) | ’ (3.11)
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~ 3.2.4 TWO DIFFERENT APPROACHES TO EDGE DETECTION

"allow the segmentation of the image

where_thé max is taken over some set of neighbors (u,v) of the point (i,3),

e.g.i.its four horizon;al and vertical neighbors, or its eight horizontal,

.vé:tical and diagonal neighbors. The various digital gradient approximations

yield different numeficai "edge valuéé" for any given picture. When however,

. we-display these values in picture form, representing edge values by grey

lévels, the tésults all,tendito ipok quite similar.

Thefe-arg tﬁb7§istinét Ways pf§§iéwingfedge detection. They might be called

respectively the~signal-pfoééSsing”aﬁpfoach and the artificial intelligence-
approach. Ihe_first one can be.briefly described as follows.In real images

the»nopion’bf édge-implies a‘variétion of brightness. It can be represented

‘punctually by a vector whose components are continuously varying functions.

1f ‘a ‘decision is made to retain "important” variations, the result can be

éélled'edge or contour.

. In the second approach, a regional and textural/p:operty is defined first.
bThen; éil‘;he picture pointé possessing the same property are identically

lébeléd, fbrming_thﬁs,a region. The border lines of these regions, which

,'can‘be-called contours or edges. If no

3

réfefeﬁce ié-ﬁade'to real objects, they may correspond to edges. Here, major

_edgé”deﬁeétioﬁ technidues will be reviewed briefly.

~Given a picture, the phrpéée of edge detection is to produce a binary image,

)

‘of the same siée as that of the original, where each picture element (pixel)

has’theziabel "édge",or "not edgéﬁ;-
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filters for edge enhancement.

i deciaion can be,done either by thresholding the magnitude of the variation

Edge detection methods may be classified in a number of ways at various

levels like preprocessing and labeling. A key level is ‘the one where the

‘decision to label or not a pixel ‘as anyedge—point has to be taken.Beforeb
thie'labeling stage, and atrthe same time to make a decision as correct as
ipossihlei the pictures are,ueualiy preprocessed. The preprocessing level may
l be_viewediasj"edge enhancement".}A.diatinction'can be made between local,
l regionaihor'globai~methoda depenning on-the size of neighbourhood used for

. preprocessing. Localvmethods attempt,to approximate differentiation within a

small window of size 2 by 2 or 3 by 3. Commonly used operators are those of

‘gradient, Sobel Prewitt Kirsch. Regional methods try to find the best

match between a region of the image and a set of idealized edge
configurations. This idea is due to Hueckel.

The :general idea for regional methods can be described as template matching.

) Given,a set of N idealized edge configurations (+1,-1 or 1 and 0) within a

Hcirchlar or square region, the probiem is to find the mask which matches the

best analized region surrounding every pixel of the original image.

°

Finally, global methods attempt to filter the entire image,.linearly or

' nonflinearly, aiming to keepfthehedges;while eliminating the rest\as much as

poSSible..Linear Shift invariant'filtering is the most commoni§ used

technique. The operators mentioned as local are also examples of non—linear

y
\

"rThese.preproceasing operatbrs may also‘bejclassified into linear or -

'nonlinear methods.In each case the resulting picture is a grey level vector
image.A-decision'should then be made on each pixel, according to a }~
criterion, to decide whether it must be labeled as an edge or not. The ‘\.

|
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lisequentially to

“vector, i.e. gradient image, or by ridge riding. In the first case the

contours are usually thick and it might be necessary to skletonize them. In

both'cases,.pOSt_processing is often needed to connect or disconnect edge

segments, or to filter them.

. From°the inplenentation.point of view, a distinction can be'made between
' Iparallel and sequential methods._The fist ones can be applled to each pixel

-independently whereas the. second ones f1nd a f1rst edge p1xe1 and proceed

" connected."vneighbors. From the conceptual point of view a

» distinction can also be made between informatlon dependent and information

independent'methods where the information source is the image being

_processed.

The result obtained after'preprocesSing-for'edge enhancement is a vector

imageQ At each pixel, the magnitude of this vector indicates the "strenght"

.;of the edge and its angle the "direction" of the edge. The next step is to

make a decision at each pinel whether it is an edge point or not, on the

\

basis of some pointwise or regional information. There are two alternatives
to this problem, each with several'Variations. The first onme is thresholding

' ,andhtheisecond one is ridgeiridinga' ' - y

"Thresholding consists of combéring'a paremeter extracted from the enhanced

»edge 1mage and representlng a given p1xe1 to a threshold, and decide for an

edge point 1f it exceeds 1t.~Threshold1ng w111 be dicussed in section 3 2 5.

.The'other élternative,i;e.,ridge riding, isrbasically a sequential method

and functions as followsi Scanning the image line by line, all the pixels

;ére tested against a Contour Start Threshold (CST). When a pixel is found
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. that exceeds the'CST, its neighbourhood is searched for a local maximum.

This;maximum,is the starting location for a contour, and its coordinates are

stored in:a contour buffer..The‘algorithm then selects the largest pixel in

4 the 3x3 neighhourhood ottthe localvmaximum and"storeslit into the contour
','buffer, initiating the ridge riding process: find the largest pixel inthe
’i.direction p01nted to by the previous pair of elements in the buffer,
:'hiplus/minus 45 s and test it against the Contour Continuations Threshold

'(CCT), lf the pixel found:egceedsgthe CCT, it is stored into the contour

' buffer“andfridge'riding:proceedsfto the next element. If a pixel is found to

"he heloﬁathee¢CT, the search is;terminated{ However, since the contour may
. extend in.hoth:directions:from the.starting'location, the second possible

- path is searched and traced Similarly.ln’addition, the points traced out are

v

"vfflagged_to'avoid retracing. The restriction of plus or minus 45 can be

b;modified if high'curviture contours are also searched.

‘This method has several substantial advantages: CST may be set fairly high

s0 that most spurious objects are ignored. On the other hand, the CCT may be

set very low, which permits to track contours of very uneven contrast

without breaks‘; eliminating the need for edge linklng operations. Secondly,

this algorithm produces one element wide contours which are directly

!

f;suitable for feature extraction w1thout thinning. Thirdly, the buffer length
'.is a first measure of -contour acceptance and short segments can be
.~eliminated immediately..;,

'The main disadvantages are the complex1ty due to the sequential nature of

the method and -the arbitraryness in the. selection of the threshold CST and
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" 'REGION GROWING =

Edge detection by'region growingucan be viened as the artificial |

3Tintelligence approach of the problem. The general idea is the following. We

assume that the image is composed of regions. A region is defined as an area

in4the picture whose pixels have a common property. The operation which -

ﬁconsists'of'seperating the image into such regions, is called segmentation.

Depending on the property,-the'frontier points of‘regions can” be interpreted

. as’ edge points. Region growing requires first the property to be

defined (e g.,the magnitude of the digital gradient), then each pixel of the
pictnre.must be 1abeled accordingly, i.e. must. belong to a region. The

pixels of a region are therefore connected and consequently are surrounded

. hy_a‘closed'border;»Finally;the‘region must cover the maximum possible

numher-of'nixels.

"1r6f the}borderilinesdorvthe'regions to correSpond to edges or to estimate
.dthem, the property has to be selected very carefully. One possible
-~estimation is to use.a property of small grey level variations. Let dB be a
‘small brightness interval;compared to the full dynamic rangelof the image.
{Starting”from_a giyen:pixel of.grey level G, a region can be grownbby
n}searching connected points whose grey levels ate within the interval G+dB

“4and‘G—dB; In order to intercept a;makimum number of pixels; the interval 24B

can be noyed up and down in:the brightness scale. However, such displacement

 should be limited so that‘previously intercepted points remain in the

region.f
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We'can”summarize the classes of .edge detection techniques as follows.

(edge enhencenent) (Decision)

. (regions of imsges)

. Signal processing . R Artiricial Imelligence
(Bmwneedms) ' (Region Growing) 'i
iE . S Qegxonal or textural prop. |
The notlon of edge B : is aefin. first.Theie pnte |
: . o wWhich have the came prop. |
xnpl1es & variation ' " are icentically leteled ‘
of brightness forming regions ;
-euge oetecnon -border lines g
' -segentation B

Preprocessing v‘iﬁﬂellﬁ!]

Global Thresholding Ridge Riding
" (Filtering L )
entire 1nage)

Regional

“3.2.5 ' THRESHOLDING

.The thresholdlng consists of’ comparlng a parameter extracted from the
enhanced edge image, and representing a given p1xe1 to a threshold, and
decide'for an edge point if it exCeeds it. Two questions that arise are:
‘What parameter and what threshold. The most commonly used parameter,
'especially for practical implementatlon reasons, is the magnltude of the

- edge vector at a given pixel. The threshold is selected from an hlstogram
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computed over a region surrounding the pixel (adaptive threshold), or for

~ simplicity, over the entire,image (fixed threshold). In both cases there is

.coﬁsiderablg arbitraryness in selection of the threshold.

In-general‘fixed thresholds selects the big grey level differences and label

these as edges in an image. The pixels whose magnitudes are above the given

thfeshpld afe selected.

Fixlthreshbld eliminates the edges which have small variations in grey

levels such as edges in sky and face and produces thick edges.

If an image is observed one can recognize that some edges are very faint,

" while some are stronger. If the fixed threshold is too low, too many edge

points are obtained and if the threshold is too high, then some significant

‘edges are lost. This suggests that improvements of the analog gradient image
- and the use of a local threshold is necessary in order to bring out most.

- edges and boundaries in natural images.

‘ The'edges,.which'have small variations in grey levels can be selected and

one éan.obtain thinner edges_by'using adaptive thresholding./

Several. improvements for thresholding can be listed. For example the

parameter can be a linear combination of edge magnitude in a small window
around the pixel, weighted according to their distance to the pixel or to

their own magnitude.

Another choice for a fixed threshold value in edge detection is the mean

\bintensity of the gradient image; In the examples, edge maps generated with
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fixed threshold are obtained using mean intensity as the threshold on the

- corresponding gradiéﬁt image. The third alternative for the fixed threshold

can be obtained by using the histogram of the gradient image. Mofe and more
edge points can be added by lowering the threshold on the histogram in order

to attain a fixed number of edge points in the resultant binary edge map.

Aq examble to the adaptive thresﬁolding is suggested by Robinson [84]. It is
discgssed in more detail in séction 3.3.10. Basically he has suggested that
an édaptive tﬁreshold can be obfained by comparing the analog gradient image
with a blurfed vérsion of the original image, which is obtained by a

low-pass operation on the image. .

Another alternative to the adaptive thresholding is taking averages of
magnitudes of pixels in a 3x3 grid, surrounding the pixel of gradient image,

which is the one, that must be determined as an edge or not.

‘E.Alpaslan [87], have taken locally adaptive threshold which is 7x7 grid

surrounding the pixel the gradient image ,and. chosen the maximum 13 pixels

between 7x7 grid.
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3.3 EDGE DETECTION TECHNIQUES

. A common approach to edge detection is illustrated in Fig(3.2) in which an

original image A(x,y) undergoes a grey scale édge enhancement by linear ér
nonlinear processing to produce an'image field G(x,y) with accentuated
spatial brightnéss changés. Next, a threshold operation is performed to
détermipé the pixel locatién of significant edges, An edge, going in the
negative direction exists if

G(x,y) < TL(x,y) (3.12)

‘and a positive going edge exists if

6lx,y) » T,(x,y) | | (3.13)

where TL(x,y) and Tb(x,y)‘are lower and upper threshold values,

respectively.

Ay | epee Sy THRESHOLL: T
s %1 ENHANCEHENT }—- DETECTCR - —

hd

Fig.3.2 Thresholded edgé detecticn systern

Some linear and nonlinear edge detection techniques are summarized in the.

following sections.
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3.3.1 LINEAR EDGE DETECTION

A) PRATT " , -

A variety of edge enhancement techniques can be utilized to accentuate
edées»before threshold déﬁection. One of the simplest techniques is diécrete
differencing analogous to continuous spatial differentiation [10].
Horizontal edge sharpening can be obtained by the running difference

operation, which produces an output image according to the relation

G(x,y) = A(x,y) - A(x,y+l) (3.14)

. Similarly, vertical sharpening results from the operation

G(x,y) = A(x;y) - A(x+l,y) ’ (3.15)

Edge enhancement

4

IR

" )l‘ ‘;’;:- ‘.-

S
wraly v,
LR SRR

Horizontal Vertical
Edge map

Fig.3.3 Examples of horizontal and vertical differencing:

edge detection
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-Diagonal sharpening can be obtained by subtraction of diagonal pairs of

pixels. Fig.3.3 which is taken from the study of W.Pratt [10] provides
examples of horizontal and vertical differencing edge detection. The edge

plots have been obtained by thresholding. the magnitude of the difference

'planes at a threshold level corresponding to the 85% level of the gradient

magnitude histogram.

Horizontal edge accentuation can also be accomplished by forming the

differences between the slopes of the fmage amplitude along a line according

to the relation

G(x,y) = [AGX,¥)-A(x,y-1)]-[A(x,y+1) - A(x,y)]  (3.16)
or equivalently
G(X)y) =

2 A(x,y) = A(x,y-1) - A(x,y+1) . (3.17)

Similar expressions exist for vertical and diagonal slope differences. Pratt

has_berformed two-dimensional discrete differentiation by convolving the

original image array with the compass gradient masks listed below.

/

North o H = 1 -2 1 ‘ (3.17.a)

1 1 1
Northeast H = -1 -2 1 , : ‘ (3.17.b)
-1 -1 1
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-1 1 1
East H= - -1 -2 1 (3.17.¢)
-1 1 1
-1 -1 1
Southeast H= (-1 -2 1 - (3.17.4d)
1 1 1
-1 -1 -1
South ' H = 1 =2 1 (3.17.e)
1 1 1
1 -1 -1
Southwest - , H = {1 =2 -1 (3.17.£)
1 1 1
— | .
1 1 -1
" West H= |1 -2 -1 . (3.17.g8)
1 1 —1_J
1 1 1
'ﬂyNdfthwesti o H = 1 -2 -1 : (3.17.h)
1 -1 -1 .

The compass names indicate the slope direction of maximum response; for-
example, the East gfadient mask produces a maximum output for horizontal
luminance changes from left to right. It should be noted that the gradient

masks have zero weighting (the sum of the array elements is zero), so that
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there is no output response over constant luminance regions of the image.

Edge,sha;pening hithout regard to edge directidn can be obtained<by'
ébnvolution of an imége with a Laplacian mask. Several types of Laplacian

masks are listed below.

I | 0]

Mask 1 H = -1 5 -1 ' (3.18.a) -
| | 0o -l 0
IETE

Mask 2 R 8 -1 (3.18.b)

| P

L _
1 -2 1

"Mask 3 | . ' -2 4 -2 | (3.18.¢)
1 -2 1
l |

/

Fig;3.4 illustrates -the perfdrmance of the Laplacian edge detector, which is

perfofmedvby»W.Pratt
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Mask No. 1

- Mask No. 2

‘Enhanceiment Mask No. 3 Edge maps

Fig.3.4 Examples of Laplacian edge detection

Edge sharpening can be made proportional to the statistical correlation

pixel values by the statistical mask.

139



% % - 0. (140 0. 0
H = ’,PR(1+Q§) (l+q§)(1+9§) S0 (L+p§) (3.19)
. i > ,
% 9% 0. (1+00) 2. 9%
| - ]

'in which QR and QC represent. the assumed first order Markoviam correlation

factor between adjacent row and colomn pixels. If ;% Q’QR = 0, there is no

“adjacent element correlation, and the statistical mask has no effect; in the

extreme, if_(% = QR = 1, the statistical mask reduces to the Laplacian mask

of Eq.(3.18.c).

B) ARGYLE and MACLEOD

Argyle [74] and Macleod [75] have proposed Gaussian shaped weighing
functions as a means of edge enhancement. The.Argyle function is a split

Gaussian function defined in one dimension as

(4
o

h(x) .'exﬁ { -1/2 (g/p)z} 7 e X

(3.20)"

]

h(x) —exp { -1/2 (X/p)?} ; x‘< 0

where p is a spread constant.

Macleod's method consists of calculating an edge weighting, at every point

of the picture by multiplying the grey level value of each point in a

surrounding neighbourhood by the value of the corresponding point of a mask.

 The Macleod function given by
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H(xy) = exp{-1/2 (y/6)?} [exp(-1/2 (Gx-p¥/p) }

—exp{-1/2((x+p/p)}] (3.21)

.where p and‘t are. spread constants ‘and supress the effect of pixel values in
the edge transition region and edges in.rows above and below the edge to be

detected. In the above eqﬁation x is the component of the distance of the

‘neighbouring point from the original point in a direction. perpendicular to

the direction of the edge in queétion, and y. is the paralel component.
Values p and t are supplied by the user. Examples of edge detection with

these masks are presented in Fig.3.5

Edge enhancement

Argyle 1x 7 masks p =2 . Edyge maps racleod5>9mask p -+ 2,1 -2

' Fig.3;5 Examples of Arger and Macleod mask edge detection

These schemes have the desirable feature that, if the mask is centered on an
edge of the scale and orientation of interest, then the points most likely

to indicate such an edge will be weighted most heavily. Points on the edge
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itself and points most likely to lie on neighbouring edges will contribute

little to the resulting edge weight.

C) HUECKEL- LOCAL VISUAL OPERATOR

-

The local visual operator due to Hueckel [76]. under which the grey level
.valuéé of the image were analytically fit to members of a set of ideal edge
.lines whose Gaussian error of approximation to the original image was

minimum.

A common 1iﬁita;ion of the linear edge sharpening methods previously
discussed is the amplification of.high spatial frequency hoise and értifacts
as a result of the inherent differencing operations involved. Noise
smoothing can be incorporated into the linear edge sharpéning method by
perfbrming the linear masking on regions of pixels rather than on indiﬁidual

pixels. This can be accomplished by forming a linear mask

H(x,y) = Hs(x,y) ® H(x,y) ' (3.22)
by convolving one of the edge enhancement masks Hg(x,y) previously defined
with a low-pass filter avefaging mask Hs(x,y). Such spatial averaging, of

course, leads to a smoothing of edges as well as noise. This idea will be

discussed later in this chapter.
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3.3.2 NONLINEAR EDGE DETECTION °

llp.‘

A) ROBERTS

. Nonlinear edge detection systems utilize nonlinear combinations of pixels as
- a means of edge enhancement before thresholding. Most techniques are limited

to processing over 2x2 or 3x3 windows. Roberts [77] has introduced the

simple nonlinear crdss operation,
' 2 : 2372
GR(x,y) = ([A(x,y)-A(x+l,y+1)] + [A(x,y+1)-A(x+1,y)") (3.23)

as a two-dimensional differencing method for edge sharpening and edge

5

‘isolation. Another spatial differencing operation, which is of a

‘computationally simpler form, is given by

q&(x,y)'= |A(g,y) - A(x+l,y+1) | + |A(x,y+1) - A(x+l,y)|  (3.24)

it can easily be shown that

G (x,y) € G, (x,y) V2 6, (x,y) | | -~ (3.25)

Crudé directional information can be extracted by noting which of the four
pixels is largest at.a detected edge point. Fig.3.6 illustrates the

operation of the Roberts square-root and magnitude cross-difference

. operators.
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Edge enhancement

Edge maps

Square raot Magnitude

Fig.3.6 Examples of Roberts square-root and magnitude

cross—difference edge detection
B) SOBEL

éobel f79]'has used anléﬁerator which effectively accomodates the high edge
‘densities of structural scenes and establishes boundary and corﬁerklocations
laccuratély; but at the expense‘of'reduced noise tolerance.

He has suggestéd a 3x3 nonlinear edge enhancement operator described by the

pixel numbering convention of Fig.3.7. The edge enhacement plane is defined

as
.\[—";-_——_‘E_“ ; '
G(x,y) = VXX + YY (3.26)
wherg XX = (A2 + 2A3 + AZ) - (A0 + 2A7 +‘A6) | (3.27.a)
! = ‘ . - + . .
YY (A0 f ZA1 +'A2) (A6 2A5 + AZ) (3.27.h)

144



’!1”

A A
0 ] A
| A7 Alx,y) A3
A A
6 5 . AZ

Fig.3.7 Numbering for 3x3 edge detection operators

Enhancement

Fig.3.8 Examples of Sobel Edge Detection

After'convolving each pixel of the originalrimage by the 3x3 operator, edges

are established by the thresho1d test of edge magnitude.

" Bdge Mag.= VXX
if

edge is established at pixel: In equation (3.29) T is the fixed or the‘loca#

threshold.

Edge Mag.=

|xx]

vy

x| 4

YY

vyl
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(3.28.a)
(3.28.b)

(3.29)
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C) KIRSCH

Anqtherl3x3 nonlinéar edge enhancement algorithm has been introduced by

Kirsch [79]. Referring to the notation of Fig.3.7 the enhancement is given

as
G(x,y) = max { l,mg% [ 58, - 3Ti 1} (3.30.a)
1= :
‘where Si = Ai + Ah1 + Ahz (3.30.b)
Ti = Ai+3 +A A A AL (3.30.c)

“The subscripts of A are evaluated modulo 8. Basically, the Kirsch operator

provides the maximal compass gradient magnitude about an image point

ignoring the pixel value A(x,y). Examples of edge detection with the Kirsch

operator are presented in Fig 3.9.

PRy 52 2V

- Enhancement

Edge map

‘Fig 3.9 Eiamples

The Kirsch operator is equivalent to writing the eight compass gradient

- masks in Fig (3.10)

of Kirsch Edge Detection
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Direction of gradient

North

Northwest

West

‘ Southwest

South

Southeast

Kirsch masks

5 5
0o -3
-3 -3
—
5 -3
0o -3
-3 -3
|
~—
-3 -3
0 -3
-3 -3
_
-3 -3
0 -3
> 73
3 -3
0 -3
5 5
-3 -3
0 5
5 5
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- (3 3 5|
East -3 0 5
-3 -3 5

—:5 5 ;—
Northeast -3 0 5
| -3 -3 -3

- _

Fig 3.10 Xirsch compass gradient masks

The maSk which produces the maximum output determines the direction and the

magnitude of the edge. The gradient image is obtained by taking the

- magnitude of the output of that mask. A binary edge map is obtained by

- thresholding the gradient image by assigning a 1 to the points which have

- D) PREWITT

greater magnitude value and a 0 to the pdints which have smaller magnitude

value then the threshold.

A simpie set‘of‘éompass gradient masks can be formed by rotating the
differentiation masks (i.e.changing the angle). The compass names indicate

the slope direction of maximum response,e.g., the north gradient mask

produces a maximum output for vertical luminance changes,i.e., horizontal

‘edges.b
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w

~ given by Prewitt [80] as

North

Northwest

West

Southwesgt:

et
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(3.31.b)



F:i -1 -1
South 1 -2 1
1 1 1
—— —
-1 -1 -IT
’Southeast : -1 -2 1
1 1 1
L |
ih o _
h -1 1. 1
East -1 =2 1
' -1 1 1
1 1 1
- Northeast -1 -2 1
-1 -1 1

Fig 3.11 Prewitt compass gradient masks
" E) WALLIS

Wallisvhaé proposea a nonlinear edge detection scheme based on homomorphic
image processiné.uAccofding to this scheme an edge‘existé if the magnitude
of thé logarithm of the image luminance at a pixel;'A(x,y), exceeds the
magnitude of the'average iogarithmic luminance of its four nearest
‘neighboqrs Ao’A1""'%V by a fixed threshéld value. With reference to

Fig(3.7) the edge enhancement plane is defined as:
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G(x,y) = log[A(x,y)] ~1/4 log(A,) -1/4 log(A,)
~1/4 log(A.) -1/4 log(A,)) ; (3.32.a)

or equivaiently

L

(A(x,y)) B (3.32.b)

|
G(x,y) = L—log
A A A A,
13 5A7

Comparison of G(x,y) against upper and lower threshold values is exactly
equivalent to comparison of the function in the brackets of Eq.(3.32.b)
against a modified threshold. Therefore, logarithms need not be explicitly
computed. The principle advantage of the logarithmic edgé detector besides
.its ,computational simplicity is that the technique is insensitive to
ﬂﬁltipiicatiye changes in the luminance level. Fig(3.12) contains examples

of logarithmic édge detection.

Enhancement

Fig 3.12 Examples‘of logarithmic edge detection
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F) ROSENFELD

Rosenfeld [81] has developed a nonlinear product averaging mask for edge
sharpening and edge isolation. Rosenfeld has first developed his technique
on one—dimensional functions and then adapted them to two-dimensional

pictures. His method can be explained as follows:

The standard edge detection and enhancement techniques generally involve
'sdme.type of differentiation or differencing [82], which makes them highly
sensitive to noise. Absolute differencing of a function, i.e., computing

|£(i+1) - £(i)| for each i, gives no spatial prominance to the major "edge".

A-straightforwérd method of emphasizing this edge relative to the noise
edges is'to take absolute differences of running averages of the function

values, i.e., to compute

F(itk) + seees + £(i+l)  £(i) + ceeee + £(i-k+l) (3.33)

" - B ; )

: I - k » k.-

for each i. The results for k=2,4,8,16 and 32 are shown in Fig 3.13 (c)
through (q). which are taken from Rosenfeld's study.

~ For 1arge k;the.central edge becomes more and more appearent relative to the

noise edges;Howévef, the larger the k,the less precisely localized is the

detected edge.
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.. Fig 3.13 Differences of running averages and products of
this differences, for a noisy one—dimensional

step edge ‘and for a television line

It has been»found thét, if differences dk(i) are multiplied together for a
‘range of values of k,the‘fesult tends to yield sharply localized detection
of major‘edges while sdppressing nbisé.Intﬁitiveiy, this is because the
product is large only.wheﬁ all its factors are large, and as soon as one
moves a&éy from a position "just at" an edge point, the factors with low k's
' ,becomé sméll; while if one is not ag or near a major edge, the factors with
high k's‘arg sma}i. The resuits of cohputing d1.d2,d1fd2.d ,d1.d2.dL.d ,d .d

4 871 2

re sh in Fige 3.13 (h) through (1).Fig.
6and d1 d2 dl. d8. d16 d32 are shown in Fig (h) gv ( g

- 3.13 (m) through (x) shows analogous results for a single digital television

.d I.d .A.d
.4 8 1
‘1line.

This approach is generalized to two-dimensions by taking differences of
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averages over nonoverlapping two—dimensionél neighborhoods at each point.The
orientation pf the pair of neighborhbodsbdetermines.the direction of the
'edges whiéh wil; be detected.For exaﬁple Hk denotes the difference between
averages faken over horizoﬁtally adjacent, noﬂoverlapping kxk squares in
standérd orientation, and V

k

is defined analogously using vertically
adjacent squares.A product of H

k

's to detect horizontal edges.

's is used to detect vertical edges and a

product of Vk

Differences in two dimensions can be summarized as follows:

ACX,YH+K) ¥ o oFACK,YH+1) AR, ¥)+. . o+A(X,y—k+1)

Hk(x,yjz
k k (3.34.3)

o ACxHK, ¥+ e o o #A(xFL,Y)  ACK,¥)+e o o+A(x=k+1,y)
-%((x,y): : - . '
: k . k (3.34.b)

Fig.3.:14 (e) through (h) which is taken from the study of Rosenfeld shows

the result of computing

-‘ . .‘. . . .V oV -v .V . ) 3035
méx(H1H2HLH8}56’V124816) ( )

for pictures in Fig.3.14 (a) through (d). Those are 72x72 element binary
valued digital pictures-in which the probabilities of a "1" in the left and
right halves are. (0.9, 0.1), (0.8, 0.2), (0.7, 0.3) and (0.6, 0.4),

respectively.
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~Fig.3.ll+ Product of differeﬁces for a set of noisy

vertical edges and a set of noisy circles.

In principle, the scheme described above for detecting edges between regions

of different‘average grey level can be appliedbto detect a wide variety of

"textured areas", in which two regions differ with respect to the average

value of some local property.

Rosenfeld and Thurston have also proposed [83] a nonlinear thresholding

pfocedure for isolating large edges in the neighborhood of smaller

edges.This procedure, which can be called'dominant neighbour suppression, is
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performed by scanning the edge enﬁanced plane G(x,y); i.e., gradient image

with a small pixel window.The value of G(x,y) in the center of the window is

" suppressed (set to zero)‘unless its=magnitude is the greatest of all samples

within the window.Conventional amplitude thresholding then follows A

variation of the process is to permit suppression of G(x,y) only if a

’;neighbour in the window dominates by a 51gn1ficant amount.The dominant
"neighbour suppression thresholding algorithm has proved quite effective for
_edge deteetion when coupled w1th’an.edge enhancement method that provides

. some noise smoothing.

G) ROBINSON

¢

4Robinson [84], [85] ‘has described a new image coding system which comblnes

the detection and coding of v1sua11y significant edges in natural images.The

fedges are defined as amplitude discontinuties between different regions of

an image.The edge:deteotion system makes use of 3x3 masks.Use of an edge
direction map improves the simple thresholding of gradient modulus images.He
has suggested that the.concept of local connectivity of the edge direction

map is useful in improving.the performanceﬁof this method as well as other

Afedge'Operators’such as Kirsch and Sobel.He has also introduced the concepts

"‘j.of.an'“EdgefActivity Index" (EATL) and‘a "Locally Adaptive Threshold" (LAT).

‘The direetional’masks,'used by Robinson, can be formed by rotating the

differentiation masks,;

w,= | o 0 0 (3.36.a)
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- (3.36.b)

'Just ‘as Prewitt has done [80). These directional masks are called

three-level simple masks. The two orthogonal masks W and Wy in Eq.(3.36),
which:measure the gradients in the north and west directions, approximate
the partial derivatives in the x-direction and y-direction respectively.
Application of Wx and W& to an image resdlts in spatial differentiation in
twd‘drthogoﬁal directions. Tﬁe'gradient magnitude and direction can be
obtained By'takiag the magnitude and direction cosiaes at each point. An

enhanced pieture results:when the gradient magnitudes are displayed as grey

'valueSg A set of five-level simple direetiohal masks are considered for

obtaining the analog gradieﬁt‘imagefand the edge direction in a simple

ﬁaﬁnera‘These masks, called five—level simple masks, contain five integer

ﬁeights'between -2 and‘+2.rThree—1evei and five-level simple masks are. shown

in Fig 3.15. The two orthogqnal masks :

[ 2 1]
M, = 0o 0. 0 . (3.37.a)
a4 2 -
{1t 1]
s i
M, = |2 o -2 (3374 |
1 0 -l

L -

approximate the partial derivatives in the x-direction and y-direction _'

respectivly.Fig 3.16 shows the eight principle direction on a 3x3 grid.
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Direction

Direction

_of.édggé 'of‘gradient
. 0 " North
A#'. NorthwésF
L;Z jlWest
j;; ' Southwest
4 >Sogth :
.S.' »Southeast.

Three-level

.Simple masks
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Five—-level

simple masks




-1 .0 1 -1 0 1
'Qf . . East _ - -1 0 1 -2 0 -2
-1 . 0 1 -1 0 1
o 11 0 1 2
7 Northeast -1 0 1 -1 0 1
-1 -1 0 -2 -1 0

[ | | |

] 4

44— Lo

5 &~ * .
6

- Fig.3.16 The eight princple directions on a 3x3 grid

o | GRAGIENT
- PICTURE
Input ‘ EDGE »{ ECGE OF NOT |  autput
e 3X3 MAP - »{  DIRECTION » OECISION o b
- Picture OPERATORS _ il # Lxic 1} Edae Hep
o} THRESHOLD
" e

'lFi‘g.3.17 Block 'diagram'bf the proposed edge detec. system

Fig 3.17 Block diagrémVOf'the_propdsed edge detection system
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';fig53t17_show$va Biock diagram.of”the pronoSed edge detectionisystemf'The
”abniication'of the‘simple maake‘to‘a 3x3 grid surrounding a picture element
~gives the gradient magnitude and direction (See Fig 3.16). The gradient

j:-picture is obtained by taking the max1mum gradient magnitude at each p01nt.

Thevmask which yields the maximum gradient value determines the direction of

the edge{~The edge map thus generated is a two—dimensional array of numbers

. which range'between 0 and‘7. The edge‘map is uséd.to determine the local
.éénnectivity. if the direetion at the center of the 3x3 grid is k (k =
tO,;..;7); and if the directions of the‘preceding and -succeeding edge vectors

- .are k-1 or k+l,. for any of the eight compass directions,then the edges are‘

conneoted. TheAthfeshold'map'is used in determining whether the gradient

value is large  enough to 'accept or reject the presence of an edge point. The

' ‘presence_of an edge is determined by examining the gradient values, edge
'._direction map_and the threshold map'simutaneously. If the edge'vectof in a
3x3 grid surrounding a point satisfy the local connect1v1ty conditions and

"Aeif they are- above the threshold,,set by the threshold map, then-it is

determined that there - 1s an edge point. Thus, a binary edge map is generated

'bat ‘the output..

;e

Figv3.18,'whichhis taken from-the~study of Robinson, shows the importance of

thefthreejhasic blocks of the edge-direction_system for extracting the edges

infa'picture of a toy tank. Comparison of figures 3.18 b,c and d shows that

- simultaneous use of the local connectivity and locally adaptive threshold
: wili'bring out details, such as wheels, and eliminate the spurious edges

:.such as those in the gross area.
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'a) Fiked threshpld ) B . . b) Adaptive threshold
. No connect:vity test .~ . - .- . No connectivity test
7723350 edge points . o S 11144 edge points

' ¢) Fixed threshold (same 8) Adaptive threshold (szme

as a) and coanectivity " - as b} and connsctivicy
test; 6789 edge points. : test; 4413 edge points

Fig 3.18l Pe:fbrmancé of_thé edge detection system using

five-level simple directional mask

"Ihjgénepal, d suitable fixed threshold value would produce the edges

"directlyq HOWeVer, if thé phrésﬁold is too low, too many edge points are

‘.obtainedfand if the threshold i$ t6o high,'thén some significant edges are
;losf; ihat;SAWhY iﬁprbyéménﬁlpf‘thé analog gradient image and the use of
local threshold i#:necesééry in'qrdér to bring out most edges and béundaries

.»in'hatura1 images.

quinson:haS‘Suggested that improvement of<the analog gradient image can be

,obtaineduby.use of the edge activity index (EAI) defined as the ratio of the
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maximum‘gradient magnitude'at an-image point to the average magnitude of

, gradients invthe eight compass directions. If the eight compass gradient

. values at a pixel (x,y) are %),%,,.,.,% then EAIL is defined as

Max { ly, | o k=0,1;0u.,7)

EAT= ———————— | (3.38)

—
1/8 3
k=0

2

Yk |
Thisiexpréssion,becomes,simpler'in-the case of simple masks since oniy the
fi:ét'fouf masks are enough to obtain gradient in all eight compass
‘difectiohs. The analog gradient image can be improved by imposing a

" ‘threshold on EAI. If EAI is greater than soﬁe threshold, i.e., the edge

activity is‘considerably superior in the direction of the maximum gradient,

" then the maximum gradient value ié.taken, otherwise the gradient value is

set to 0. This operation results in a sharper histogram for the analog

.~gradient image. A locally adaptive'threshold LAT, has been obtain by

~comparingvthe‘gradient image with‘é blurred version of the original image,
‘whith ié'Obtainéd by -low-pass pperation on the image. The particulaf

gipw4pass'opératidp can be perfbrmed-by_the mask:

1 2 1 | ,
Moo= 1/16 | 2 . 4 2 (3.39)
1 2 1
L R -

" Thus, théilocally adaptive threshold has been defined as:

Max {|yk|,k=o,1,.;.;7} . , (3.40)

LAT =
OQutput of the low-pass filter Moat pixel (x,y)

The result of the use of a locally adaptive threshold is shown Fig 3.18
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3.4 - QUANTITATIVE EVALUATION OF EDGE DETECTION SCHEMES

Relatively few studies of edge detector performances have been reported in

the 1iteratu;e; A performance evaluation is difficult because of the large
number of proposed methods , difficulties in determining the best parameters
assbciated with each technique and the lack of definitive performance

_critefiaa In developing performance criteria for an edge detector it is wise

".i'to distinguish between mandatory and auxiliary information to be obtained

‘fromTﬁﬁé'defecfdr;TObvidusly;.iﬁjis absolufely essential to determine the
3:pixel Iocétidn of an édggf;oﬁhe:_infégmétionrof interegt.inclﬁdes the heighf
»ahd:sioﬁé anglé-oflthe éageélas‘wé11=as its épeéial'orientation. Another
vusefui ifem'is.a confidence facﬁor associatéd with the edgé decision, for

example, the closeness of fit between actual image data and the idealized

edge model. Unfortunately, few edge detectors provide the whole information,

-mentioned abbve.
}‘3,4;11— EDGE DETECTION PERFORMANCE BY PRATT

‘According to W.Pratt [10) there are three major types of error associated

. with the determinatioﬁ df ah(edge<location

(1)-—'M13sing valid edge points; deletion

T.J(Z)l? Failuré to_iotalizg edgé-pbints;‘iﬁsertion

(3)*- Ciéssificatidn of mnoise pulses as edge points; substitution

 Fig 3.19.111hstrates.a typical edge segment in a discrete image, an ideal
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errors. -

edge representation, and edge representations subject to various types of

{0} IMAGE SEGMENT

1.
T

{b) IDEAL INDICATION ) {c) FRAGMENTED lNDIéATlON

o

(d) OFFSET INDICATION *  -(e) SMEARED INDICATION

lFig:3.19. Indication‘bf edge location by Pratt

‘Pratt has suggested that,'a'commOn strategy in signal detection problems, is

“to establish some bound on the probabllity of false detection resulting from

noise" and then attempt to max1mize the probability of true signal detection.

Extending thlS concept to edge detection simply involves the setting of the

edge threshold at a level such that the probability of false detection

resulting .from noise alone does not exceed some desired value. The

: probability of true edge detection can be readily evaluated by a coincidence

comparison of the edge maps of an ideal and an actual edge detector. The

penalty for nonlocalized edges is somewhat more difficult: to assess. Edge
' detectors, that provide a smeared edge location should clearly be penalized;

. however,icredit should be given to edge detectors whose edge locations are
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localized but biased by a small amount, Edge location accuracy may be

assessed by the figure of merit rating factor defined by

1 I 1 . (3.41)
R=— 5 —

. ] l=1 E -

»IN ad

. 'where IN=‘max (I le)tand~ll andilAcrepresent the number of ideal and actual

edge map points, ‘is-a scaling constant, and d is the separation distance of

“an actual edge point normal to a 11ne of ideal edge p01nts. The rating
'Zlfactor,aR, is normalized so'that:R' 1 for a perfectly detected edge. The

'scaling.factor;" may be adJusted to penalize edges that are localized but
offset from the true position. Normalizatlon by the maximum of the actual

'_and ideal number of edge p01nts ensures a penalty for smeared or fragmented
‘edges; As an example of performance, if & = 1/9 , the rating of a vertical
, detectediedge offset'by.one.pixel becomes R = 0.9, and a two-pixel offset

» giVes a rating'of.R = 0.69. With(X= 1/9 a smeared edge of three—pixel width

;centered ‘about the true vert1ca1 edge yields a rating of R = 0.93 and a

five-pixel-wide ‘'smeared edge gives R = 0.84.

. A highervrating’for a smeared edge than for an offset edge is reasonable

-_because‘itfis possible‘toithin the smeared edge by post-processing.

I3

a.'Pratt has applied thlS performance evaluation methodology described above to
.Uthe assessment of some of the most promising edge detection techniques, like
. Kirsch Sobel Roberts. He has used a test 1mage consisting of a 64x64 pixel

‘ array over- a 0-255 amplitude range with a vertlcally oriented edge of

variable'COntrast and slope, placed at'its center. Independent Gaussian
noise'of standard deviation has been added to the image and the resultant

picture has been clipped to the maximum display limits (0-225). The

'signal-to-noise ratio is defined as
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(3.42)

where h.is the edge hight. Since thevpurp0se‘of the testing is to compare
" the .performance of various edge detection methods, for fairness it is

-,v‘important that each edge detector be tuned to its best capabilities.

Consequently, each edge detector has beén permitted to train both on random

‘noise fields without edges and thé actual test images before evaluation.
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'.FQr'egchledge detéctor-the_threshbld'parameter has been set to achieve the
maximum figure of méritlsubject to the maximum allowable false detection

‘rate. .

Fig 3;20.a‘contéins_a plot of thé figufe of merit as a function of
sigﬁa14to—inoise ratio for several edge detectors with & = 1/9. The figure
of ‘merit is also plotted in Fig 3.20.b as a function of edge width. As one

Canbsée~from Fig 3.20, the figure of merit is low for contrast, wide noisy

" edges,and high in the opposite case.

3.4.2. QUANTITATIVE EVALUATION OF EDGE DETECTION SCHEMES BY J.R.FRAM AND

E.S.DEUTSCH

Accdrding to_J.R.Fram‘andlE,S.Deutséh, [86]), characteristics of edge

.dgtéction:schemes'which~shou1dfbe investigated for comparative purposes

,ihclhde'the'folldwing: edge orientation biases, edge detection in the

pteéeﬁce-df_hdise,-réngéfin scale of edge detectability, ability to detect

biurred édges,'ébiiity to.detect_éurvéd edges, ability to extract an edge in

ithe pfeéehce offothgr edges and éomputer speed and storage requirements.

.‘They.have'ihvestigated the performance of.edge Qetectors in the presence of
noise,'as-this-is important in a wide range of applications and can be

‘isolated relatively easily from other characteristics.

The approach followed by Fram and Deutsch has one principle feature that the
comparative resulté_must be quantitative. They have attempted to find .

reproducable numbers corresponding to’'the parameters which accurately
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reflect the edge detection performance in the presence of noise. And this is

agcomplishéd with:értificial'piétures.

The edge detection schemes due to Hueékel,‘Macleod and Rosenfeld have been

taken for:comparative'purposes.‘

A set of images was considered‘fdr'which both the noise and the edge signal

cdula‘bé-éhéradterized ﬂumericaliy; The edge signal of a picture is
. parametrized ‘by establiéhiﬁg‘two regions with different mean grey levels so
‘that the regions could be said-tbtbe:separatéd by an edge. The edge signal's

”strength:could'thus be parametrized as the difference in mean grey levels of

the two regions. The noise in these regions could be given by the variance

in their greyslevel.and it was decided to keep this variance largely

_independent of positidn.'Approxiﬁately ten pictures were generated for each

such contrast.

These test images consisted of 36x36 matrices each of which was divided into.

three zones as shown in Fig 3.21. Picture points in zones 1 and 2 were

assigned gféy Jevels whiéh were selected randomly from Gaussian distribution

.oflmeansigland.gz résﬁectively and O = 24. These.distfibutions were

!

truhcated;atlo and 63, réspectivély, the minimum and maximum'grey level

Qéed;'Eléments in zone three were assigned values in essentially the same

.manne:, however, the mean of tﬁe”grey.level distribution for each column was

“6btained’bjfinqéfpolating between- zones lfénd 2.
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Fig 3.21 The lay-out of a test image. The square indicates the
partitioning of ‘the three zones of the test image, and

- the graph.indicafes their mean grey levels.

"Specifically; the truﬁcation:poiﬁts of the Gaussian distributions were set:
zétﬁho.S-énd 63.5; this resulted in.feducing the variance of the distibutions

:pusﬁingltheir‘means towards‘32.‘

The quantification of edge detector performance was divided into two steps:
(1) - The edge detector output was put into a standard form by a procedure

which took into account its.various characteristics. ,

(2). - From the standard form, two parameters reflective of the performance

of the edge detector were calculated. This calcdlation was done in identical

manner forAall edge detectors.

‘The standard form chosen wés'a binary piane in which a 1 denoted that the
-é§rfésppnding point was considered an edge point and a 0 meant otherwise.
;Thé'size'of,this plane was the output dbmain‘of the edge detector. Hueckel,

‘LMaéleOd‘Ahdxkosenfeld edge'détec;ors evaluated here all produced quantities
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which could be‘cOnsidered‘as.edge~Weights for everyvpoint of the output

domain. These,quantities were rounded off to the nearest integer for

.convenience of display and storage{ Thevaere then thresholded-to produce

’;approximately the number_of-points n,.. ;'exuected for a well found edge.

ful

This number was chosen for each edge detector on the basis of an inspection

of a small Sample of outputs from the test images so as to optimize the.

" results.

;.Given n 5 .the methodlof>decidingﬁthe above threshold for each picture was

fiit

as,follows. For ‘each edge'detector'cutput, one can define a monotonically

decreasing function n(t) equal to the number of points whose edge weights

‘are’ greater than or equal to t. The threshold used then is defined by

=ft|ne >n. ) (3.43)
: » i

" The number of points of edge weight near threshold (T) was always much less

&than n.. ;“For;this'reason, it was*thought‘that rounding off the edge

ful.

‘hWeights did[not:greatly influence.the,results. For every picture of the

"v'sample‘set,~two‘parameters are calculated from the standardized form of

.ni--_

houtput discussed earlier. These may be conceptualized in terms of the'
-'following model. It is assumed that each 1 within the binary plane results

,from either one or possibly both of the two sources, noise or s1gna1. It is

further assumed'that the l s derlved from the noise are randomly distributed
in‘the whole picturevwith.constant'prohability, whereas the 1's resulting -
fron signal are restricted to a Small.subset of points within thevplane,
which'contalns the edge. If the position of the 1's generated by signal and

the 1's generated by noise had been‘knOWn,’one could form the standard

'Aoutput'binary plane by simply OR'ing these two sets of l's together.
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oThe‘first parameter'% may ' be defined on the basis of the above model as the

. maximum likelihood estimate (MLE) of the ratio of the total number of signal

.'“-'

‘size of theioutput domain of the -edge detector. The second parameter, P

“1 'S divided by the sum ; of the number of noise ' 1's plus the number of signal

1 Se The number of n01se-1.s~is‘normalized to correspond to a standard

- number of columns in the binary plane making this ratio independent of the

2 ?

was-visualized as follows. A row of the edge region is defined as "covered"

if it contains at least one 1. (In this study the'edges of the sample are

_all-vertical). For this purpose, all rows of the edge which are "covered" by
Mnoise-i's'regardless of whether they are also covered by signal l's are

;;disregarded' F& is then set equal to the fraction of remaining edge rows

covered" by signal 1's. It thus provides a measure of the distribution of

_the signal over the 1ength of the’ edge.’

"The ahove two parameters'have the foliowing model independent propertiest
(1) - Should the 1's on. the binary plane be distributed randomly W1th

:“constant probability,'the most probable values of ‘both P - and P2 are 0;

1
(2) - Should a11 the 1's. of the binary plane fall within the edge region,

"then P =13

'i(3) - Should every row of the edge be cOvered",\then P =1.

2

If it is assumed that the above model is correct, then defining the edge’

region.larger than necessary will not affect the expectation values of the

ttwo parameters P' and P, . It will however, decrease the accuracy to which

1 2

. they may be determined. A further consideration was that a likely failing of

‘the model is for signal 1's to be shifted away from the edge.
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In the study of Fram and Deutch [86] it was noted that the two parameters
calculated may not. be expected tO‘teflect the degree of success in finding

the edge for every picture. Rather, when averaged over many of a given class

‘ of pictures, they should glve a good indication of the performance of the
'edge detector‘w1th that setf‘FLg 3&22 which is taken from the study of Fram

'ﬂ.andTDeutchgfgives alpictorial display of the computation of the edge

detectioh‘performance parameters'forvsome typical images.

o Ve T X - & 1,
117,09 .10 .21 .82.49 .57 .60 .65 .50
[ '.'v' c . “ ) : '-! . e ‘ 2 M - N

| MACLEOD (1aRGE)” [ [T{ 3 e V. {
' .26..28° 1.00 .96 .87 .68 - 1.00 1.00 1.00 1.00

) St . . . . 3-? ‘ - - ‘, . - ———

MACLEOD (SMALL) ~ ;. A T E Y Y

S . o C M A ¥ i
| .22 .49 .47 .84 .60 .61, .82 1.00 .90 1.00

ROSENFELD .DIFF . &% t 4 i 3

.20 .14 . .71 .94 .66 .80 .98 1.00 1.00 1.00

{'ROSENFELD DIFF & B ﬁ g 2 [

EDGE " | o
.19 -.44 .68 1.00 .72 1.00 1.00 1.00 .84 1.00

Fig 3 22 A pictor1a1 display of the steps taken 1n computing

the edge detectlon performance parameters.,

During the comparison of the speed of the three schemes tested, it was noted

'that the. method suggested by Hueckel seems appropriate- In the case of the

schemes of Macleod and Rosenfeld, the speed is a funtion of the picture size
and it approaches a minimum as the picture size increases. Another feature

of these ‘two schemes is that they do not cover a complete range in edge

_orientations as does the operator of Hueckel. Their performance is best for
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- “scheme is advantageous.

_edges of an optlmum orlentatlon and- they cannot be expected to funtion, at

vall the edges perpendlcular to thls.

“Economies were introduced into ‘each of these methods by various means:

(1) - The use of convolution with Fast Fourier Transforms in Macleod's

.

_(2) - Parallel proceSSing could reduce the computation time of all three

. schemes but most effeetively that of Rosenfeld;

(3) - The entire picture does not necessarily have to be examined in order

‘to find its edges. In pérticular,’the additional informatioh, which

Hueckel's operator supplies, could facilitate economies.

(4) - Optical preprocessing could be beneficially employed by all schemes

“but most of,éll by‘thatjof Macleod where the speed would then be reduced to

one operation per picture point for each orientation

¢

hThe results of evaluatlng the performance of the edge detectors, described

v

Vvabove, are g1ven by the graphs of- Fig 3.23. and table 3.1

qum,s OF PERFORMANCE 4GR THI DL TECTOR SeHEVES

EDGE ~ . PARAMETHZ [

Ty T T

DETPECTOR ! NuMpER ! 3 '
N 1} .00s.08).
RUBCRES 7 i@ onr .
FACLEOD | 17 057,99
‘(LARGE). 2 1 .07:.18
TMACLECD | L | .0l:i.0d
(SMALL) 2 207
rosenPrun L1 -0%% 0%
.D1FFoNLY] 2 L07=.19
ROSENFELD{ - 1 .02 0% : l ~
S N R TR

EDGE

Table 3.1 Evaluation results of the performances for the

'detector;schemes
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Fig 3.23 The‘édgg detection performance parémeters as

‘a function of nominal contrast

'lItfis_readiiy seen‘from’Fig_3.23>that_of the two parameters evaluated,
_pafametér 1, which indicates the ratib of the edge detector's signal ‘to its
noisé-donéistehtly, shows more pronounced differences in the performance of

ot : . . o -4 .

‘the various edge deﬁecting programs tested, than parameter 2, which gives a

‘measure of the fraction of the édge covered by the signal.
'A'clear result indicated in Fig 3.23 is that Hﬁeckel's operator as
impiemented in the study does not perform as well on the sample images as

the other two schemes.

In the secondeork [88] of Fram and Deutsch, the performance of these three
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‘vedggfde;ection schemes was studied at skew orientations. The question of

otieﬁtation'biases was investigated either by rotating the test images or by

~ changing the op;imum Qrientatioﬁ‘of the'edge detectors. Four sets of test

imageS'ﬁere generated to the same specifications. These were rotated by 15°

‘,30° 45 .,60° .

’Thresholding the édge détegtér bufput Wa§ performed after it was rotated
'lbéck so;tﬁéﬁ the edgeﬁrégibn was Qerficél. As was done for vertical edges,
fthe th;ésholdlwasvdetermihed for»éach ;ést image to permit enough points to
 :p§ss'an&vto fill the edgé region. A differenée between the rotated-edge

-output énd'the‘vertical—edgé output was that the first one cdntained a

‘ greater.p:oportion éf points in the edge region than did the sepond. As in
the firét study, the number of points in the threshold determination which

were considered to fill the edge region, n 1 , varied from detector to
R b . . It

detector. To genéralize_the definition of parameter 1, it was necessary only

to te—ekpress it in such a manner that it no longer was implicitly assumed

that the domain was rectangular..Parameter 2 was dependent on the edge

"region beiﬁg rectangular, but phe'"rotated out" corners in some cases
extended into théfedgeiregibn.jWhen;this occured, the rows of the edge

_région-which wérg missihg“points ﬁére excluded from the computation of

parameter 2.

The results of the tests described above are plotted in Fig 3.24

.Within,Statis;ical fluctuations, the changes in the rated performance of the

édgé detection schemes with orientation and contrast-to-noise ratios is

consistent with what one would -expect on general principles. The performance

_ofAHueckel's operator is roughly independent of the orientation of the test

edges, and the pefformance of the other schemes fall off as the orientation
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. of the test‘imaggs becomes more -apart from the ideal orientations. This

‘fall-off is most pronounced at the intermediate contrast—to-noise-ratio. If

an edge. is very distinct, then it can be detected over a wide range of
orientations. If the edge is not very distinct, then the fange of

orientations in which it can be detected is smaller.

It can be seen in Fig 3.24 that the method of Macleod as programmed by Fram
and.Dgutsch is much more biased with respect to the orientation of the test

edges then the method due to Rosenfeld. A likely explanation for this is the

: shape of the mask used in implementing Macleod's scheme. The selection of
- the Square—shaped:mask for Macleod's scheme, was not an inherent feature of

~ the method, but an arbitrary choise of the investigators.

. 3.4.,3 QUALITATIVE COMPARISON OF DIRECTIONAL LAPLACTAN MASKS AND SOBEL AND

B PREWITTZOPERATORS BY E.ALPASLAN

v Efﬁan Aipasian [871 hasudéééribéd,the directional Laplacian masks and
'suggééted.ﬁome'néw algofitﬁms in his papérf,He has takeﬁ an‘actual'image and
.'_aﬁplied1thréé;diffefehﬁkedge detection méthods, Prewitt, Sobel and_thé
JdireéEiohél Léplaéian ﬁaéks by'ﬁaking a computef simulation. He has prepared-
_histimﬁlation with PDP 11/45. The actual piétﬁre is sampled to 128x128

”.'pixelé each of which have a weight according to its grey level.

After construction of the gradient image, he applied both fixed and locally
' "adaptive threshold to the gradient image.He has. reported in his study- that

vthe‘diféctional Laplacian masks served for edge detection as well as Prewitt

and Sobel operators did.
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IV - COMPUTER SIMULATION RESULTS OF EDGE DETECTION SCHEMES

" AND FURTHER RESEARCH ON THEIR COMPARISON
4.1 . INTRODUCTION

In'thié chapter, some: local edge detection.techniques are studied. The first

- one is the method which uses Kirsch masks. After preprocessing of images

with the directional Kirsch masks, the enhanced image is put into a labeling
stage which.is done by both'adaptiVe and fixed thresholding. The second

method ‘uses the Sobel-operator._After preprocessing with the Sobel operator,

ragéin both the adaptive and fixed thresholding are applied to the enhanced

_image.”Thén_a sécond‘level}thresholdidg is used in order to get sharper
edges. The third one uses Rosenfeld's product of difference equations in
ordef to enhance images. After the énhéncement 6peration, fixed thresholding

is applied to make a decision whether a given pixel is an edge or not.

The above three methods is chosen for the subjecfrdf this study, among
‘various different edge detection schemes, becouse each scheme has some
.typital_prbperties and has different algorithm which was discussed in

SéC03-3o

v
.ilid

" The methods méntioned above are not tested on actual images, because of some

limitations of -the computer used.“Thé memoryvcapacit§ and the operation time’

of the computer is the basic handicap. Instead of actual images, some test

'images:with vértical, diagonal and circular edges are generated and these

methodé were thén applied on them. Evaluation and comparison of the methods
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"mentioned above is done depending on some qualitative and quantltatlve

‘,performance criterea._

R\ package.pfogram'is developed-eonsisting of three edge detection

techniqoes,ivarious thresholding techniques and formulations which are used

for evaludtion'and comparison procésSeSu In section 4.2 test images which
'aje‘generated'by the computer will be explained in 4.3. Three edge detection

‘schemes will be discussed in more detail. Insection 4.4 performance criterea

wili be explained. In 4.5 depending on each performance criterea evaluation

of each method and their comparison will be done.
4.2 TEST IMAGES

The study on edge detection schemes and evaluation processes is done with a

set of test images generated'by the computer. These are the pictures in

which both the noise and the edge s1gnal can be characterlzed numerically

-and in which thes are to be the only varlables allowed to change. The edge

signal.of a picture is parametrized by establishing two regions with"

different mean grey”levels SO ;hat the regions can be said to be separated

.'>ijan edge,'Thereforej the_edge signal's strength can be parametrized as the

difference in,mean'grey'ievels:of:fhe two regions. The noise in these

regions is given by the random variances in their grey levels.

The maximum dimension of the test images is 32x32 which is set by the memory

_Iimitation of the computer. But the pictures which are used for analysis are

of size 20x20, because of the long operation time (run time of the computer)
of the oroceseing. The test images consist,of 20%x20 matrices and may have

three'different shapes of edges, namely vertical,diagonal and circular. They
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all are devided into three zones as shown in Fig(4.1). Picture points in

, ZOhesbl,and:B areuassigngdigrey‘levels which are selected randomly from
* Gaussian distributionfof‘meéns Dl_ahd D3, repectively. These ditributions

are truncated at 0 and 280, respectively, the minimum and maximum grey

1ev¢13 ugeda Elements in zone 2 are assigned values, especially as the

v_aygrggesqu'means of the grey level distributions of zones 1 and 3.

‘\\ A
\ N, /_,_,—-\
\‘?\.\ . s /.-ﬁ- "‘: \\",

\ \\ N ey
-"\ \ R P
N e’
( b') (~1

(8)

Fig.4.1l Thé regions of three differént test images

 ;Zone'2 is:neglected-while taking'most of the analysis. It is taken into

- thsideration when it is-desiféd to see the behaviour due to blurred edges.

’5'Thé program is prepéred'éuch that the grey levels of the two different

‘regiohs of‘thé-edges can be éhahgéd each time the user wants to do so. Fig

AiZfand 4;3vshowé the. test edges with différent‘contrasts. &he contrast

_value can be defined by the equation

¢ =Dl - D3 (4.1)

where Dl and D3 ‘are the mean values of the Gaussian distribution in zones 1

“and 3 respectively. For the vertical image, zone 2 can be devided into two

regions with different means of grey levels if it is desired.
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'Random numbers are generated 1ndependent1y from a uniform distribution on
L the interval (0,1)..and ‘the noise is introduced by adding one of these

’numbers to the‘density value at each pixel if it is desired to see the

resuits‘of‘applying the_three edge detection schemes on the test images.

The-. microprocessor which is used in this study is- APPLE ITle with 64 Kbyte -

memory and the printer is EPSON MX—8O which can provide discrete level

):display of the images. APPLE has no grey 1eve1 differences in its graphic
sﬁmode, Ihat,s.why L4<new characters, each of which has 7x8 dots, have been
generated; gaCh has different number of dots in the 7x8 matrix according to
4pthe,respectiye:neightings.of pixeis‘of_the_image. Grey level distribution
1which‘is truncated atIOI—HPSP isadepided'by i4 and for each level one
"character‘iswassigned.AThe:actual~image and~the gradient picture of enhanced
"edges.areﬁprinted character by character.acCOrding to the above
‘fjcriterea.(See Pig(4.2) and»Fig(4.3)). The circular edge is used more for
: qualitatiye analysis, like ability to detect curved edges, instead of
'cuantitative_ones. For quantitative-purposes the vertical and diagonal

images are'used,‘
4.3. EDGE DETECTION SCHEMES

':The&edge detection schemes which‘are considered in this section are
5.exp1ained in detail in section 3.3. 5 (Sobel operator) 3.3.6 (Klrsch masks),
"i3 3. 9 (ROSenfeld s difference equations) 3.3.10 (Connectivity test and

7Locally Adaptive Threshold from Robinson) Here, methods which are used in

'the computer simulation and new additions to these methods will be

idiscussed.
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pA) ~ EDGE DETECTION BY USING DIRECTIONAL KIRSCH MASKS, THE CONNECTIVITY

TEST AND THRESHOLDING '

',In.this method eight-direetionalfKirsch masks is used for preprocessing
;level- (See Fig 3.10)." In.erder to get the gradient image, convolution of
’_each gradient mask and the”3x3igrid25urronnding a picture element is takenh

v‘by using the equation: '

' +]  x+i 3 : )
-GD(x,y) = yz xz MSK(k,1)*A(k,1) - (4.2)
o l=y kex :

hwhere GD(x,y) is the gradient value of the pixel which is in position x,y.
‘e MSK(k 1) is one of the Kirsch's masks A(k,1) is the element of the image.
;::Eq;4,2fmust beArepeated‘for each mask. The application of the eight masks to
va.3x3;grid:surrounding a pietnrebeiement gives the gradient magnitude and

.,direction as G1(x,y).....G8(x,y) The gradient picture 1s obtained by taking

the maximum gradient magnitude at each point, i.e.,

CGD(x,y) = Max {G1(x,3)++0++G8(x,¥)) O (4e3)

': Two different“types of thresholding techniques are applied to the gradient
;picture in order to determine whether the gradient value is 1arge enough to
'accept pr reject the presence of an edge point. At the end of this procedure
a threshold map is. generated.

i;(l) - Fixed ‘threshold,. which is equal to the average intensity of the

,corresponding gradient image, is used as one alternative. After computation

6ffthe threshold value, the gradient value of each pixel is compared with

"that value. If it is above that level, a "1" appears in the position of that
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'iléd

floﬁfpass filter M

‘ pixel and if it is- not then a " appears in the same position in the

'.threshold map.

N (2) - Three _different adaptive thresholding techniques are tested:

a) The one, which is suggested by Robinson. A locally adaptive threshold

LAT, is obtained by comparing the gradient image with a blurred version of

‘the original image which is obtained by convolving the image by a low-pass

filter. The particular low—pass operatlon can be performed by the mask M :

0
1201
M= 2 w2 | | (4o4)
12 1
— .

.Note‘that;‘in Eqn(3}39).ﬁdlis muitiplied by a constant of 1/16. This does
not hold for the case of thresholding. Locally adaptive threshold is

'ohtained'by,deviding the gradient_value of the pixel by the output of the

0 at ‘that pixel,i.e.

SN GD(x,y) (4.5)
LAT = : : '

Output. of the low-pass filter M. at pixel (x,y)

0

’

‘b) The second‘ohoice of adaptivevthresholding is obtained by applying a
. C/ . .

‘fined thresholtho.the ontput of the above procedure (1ow—pass filtering).

.:The~fixed'thre9hoid'is‘again thesmean intensity of‘the gradient image.

::_ é5=1nitheithird case,‘the anetage nagnitudes of pixels in a 3x3 grid,
l'-surrounding each of the pixel in the gradient image, are taken and their

'average intensity value is found. This value is determined as a threshold

value for that- pixel. If the magnitude of the pixel is higher than the

'“thteshold.value, then-a>"1", if not a g appears in the position of that
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.pixel in the threshbld;map,

Thefcomparison.of these three threéholding methods was done at the
beginning, and it was discovered that the seeond alternative for adaptive
thresholding gives the sharpest edge, but as a disadvantage some edge points
disappeared. The third choice gives many edge points in addition to the
pointS'oflthe main edge. In a reallimage, if details of the picture are

required the last method can be used, but in our case, it is preferred to

"'deal with the first method for adaptive thresholding. In the.succeding

sections of this study, only the first method will be used. Examples of

‘these three adaptive thresholding techniques are given in Fig (4.4). They

'are'takenvwith.a contrast'value'of'ZO and there is no addition of noise.

rAlternative_eombinatibns'othhreshoIding techniques can be considered. For
‘uinétance; after applying the. third method, in order to sharpen the main edge
and neglect the subedges,-flxed threshold can be applied to the output of

, the adaptive threshold. But this" 1nvestigat10n would exceed the purpose of

this study.

The mask which yields the maximum gradient value determines the direction of

the edge. The direction edge map is generated as a two—dimensional array of

numbers which range between 0 and 7. The direction edge map is used to

‘determine the local connectivity. If the direction at the center of the 3x3

grid is' k (k = 0,1,¢e¢.,7), and if the directions of the preceding and

succeding edge vectors are k—l, k, k+l, for any of the six compass

directions and the directions of the other two edge vectors are kf2 or k+2,

then theledges are assumed to be copnected;(See Fig 3.16 for eight .compass
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edge vectors in order to fill the. edge region ‘totally. Because, when the
-hconnectivity test of Robinson is applied to the Kirsch masks without such a
4.tolerance, edge becomes sharper but ‘many of the edge points are lost. The
.connectivity test is applied to the threshold map and only the 1's which are

above the threshold level in the map are tested whether they are connective
dor not. The connectivity test can be considered as a post processing

operation. The block diagram of the proposed edge detection scheme is shown

in Fig.4.5

: TOTAL |
] AVERAGE . |
(FIXED) -

o B wF . .
. H{. OPERATION =~ -
| canaprive) ||

. T )
N output
EDGE -
cmr;ggw _"( DIRECTICN )—-’
. MAP ), Edge map

Nl

Input | ax3 el
* KIRSCH GRADIENT -
MASKS: PICTURE. .

. THRESHOLD
- MAP:

icture | :
' 41 pF AND
W TOTAL OP. —

(ADAPTIVE) |

LOCAL
- Ipd - aveRAGE |
(nmpnvm .

e Flg 45 Block dlagram of the Edge detectmn scherne
) E usmg Klrsch Masks

?in'Fig.4,5.square blocks show the operations while circles show outputs of

'the,preceeding'operationsw

ln[FigLA 6 the outputs of-the'edge detection scheme vith Kirsch masks and
;fixed threshold which is: applied to the vertical edge is shown step by step.

:‘In Fig 4 7 the application of the same scheme on a diagonal and in Fig 4.8

‘ a'on a circular edge is. shown. In Fig 4 9 4.10 and 4.11 the same detection

f'scheme with locally adaptive threshold (application of LPF—M ) on vertical
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diégcnal:and‘circular shapes, réépectively‘are shown. These outputs are

‘taken with the contrast value of ¢=20 and without the existance of noise.

The evaluation of these two alternatives will be done in the section 4.5

‘- with the other edge detection schemes.

-'B)v;fEDGE'DETECTION BY USING SOBEL?OPERATOR AND SEVERAL

'THRESHOLDING TECHNIQUES

‘.jIn“thiS'SCheme; the'Sobel operator (See‘Eq 4.2 and 4.3 and Fig 3.7) is used
"ein the preprocessing level. In order to get the gradlent image, the Sobel
‘operator is applied to each pixel of the picture and the gradient values

‘GD(x,y) of each pixel at location X,y is obtained.

.fdr‘this.echeme,_egaihitwo different'types of thresholding techniques are
:csed'inlerder to bbtain e decisibn;on each pixel whether it is an edge point
"féf,ndé. Ny
’(I)'- fheAfixed&threshoid is the same one which is used in the scheme With
‘.Kirsch maske. The threehold.value is determinee es the mean intensity of the

'.gradient image. The threshold map is also obtained in the same manner.

!

'(2) - The adaptive threshold is performed just as the third case explalned

in‘the»first echeme.(The'schemewwith-Kirsch masks) The threshold value is

determined' as the average intensity of the pixels in a 3x3 grid, surrounding

E eachfof,the’pixel'in‘the'gradient»image.,Then the threshold map is

- 'generated. .

'tA cht—processingvalQOrithmiis applied on the‘threshold map, as a second

ilévél thresholding; A'liﬁit fqrhthe_ncmber of 1's in the threshold map is
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given. This limit can be changed according to the user requirements. If the
number of 1! s in the edge region can “be expected, to be as in the case of

thejt_est images used in this prdjec’:t, this limit can easily be determined.

l:If4it.is an actual image, some tests must be pefformed before getting the

best result. This post—processing operation gives good results like

sharpening the existing edge and eliminating the subedges. The block diagram
ofkthevptoposed_edge deteetion_scheme is shown-in Fig 4.12. The square

vvbioehs :epresent the operationS'andfthe circular blocks represent the

outoutS'of'thevpreceeding operations.”

|01 AVER. |
U FIED)
| soBEL S | posTi
_ W . OPERATOR . ' : THRENgjOLD (LI:F'IQ cg). EDGE MAP
Input - 2 - \__,/ out
e . LOCAL AVER put
picture B | (eowpy : ‘

F,ig;l«-.'l?" Block Diegrarn of the edge,detection scheme using Sobel Operator

"The fésults of.the tests with the vertical, diagonal and circular shapes are
sshown in Fig 4.13 through 4 '18. In Fig 4.13 edge detection scheme with Sobel

,operators and fixed threshold is shown on a vertical image. In Fig 4.14 the

same scheme is shown on a d1agona1 1mage and in Fig 4.15 on a circular

.image. In Fig 4. 16 through 4.18 Sobel -operator with adaptlve threshold is
;shown on a vertical,diagonal andvcircular shapes, respectively. All the
o outputskareutaﬁen withvcontfast‘value of 20 and without the existance of

.‘noise.

' aComparisons_of these teehniques‘and the evaluation of each scheme will be

‘*discussed in seotion-é.s;;f
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_ As an alternative .

c) - EDGE;DETECTION SCHEME USING PRODUCT OF DIFFERENCE EQUATIONS AND

FIXED THRESHOLDING TECHNIQUE

lThis_scheme has'been explained in more detail‘in section 3.3.9. Shortly, the

formula for differencing opefation is:

' H‘i(x ;);.'A(x,yfk)+.;{+A(x,y;1) A(x,y)+.;.+A(x,y—k+1) (4.6.a)
ok T L B

k. S ok

‘ -A(x+k,y)+-..+A(x+1,y)' CA(X,¥)He e o tA(x~k+1,y)| (4.6.D)
vk (x:)’)'_' : : - B — :
: ' k k

-in horizontal and vertical directions, respectively, where k=1,2,4;...,32.
: For:preprdcessing level, the above equations are used. k is defined as a

. changeable value. If it is choosen to be 2 then,

“Hk(xsy) = A(x,y+2)+A(x,y¥1) CA(x,y)+A(x,y-1) (4.7.a)
| 2 2 |
) vk‘.(;c,y‘).'= ACx+2,y)+ACx+L,y)  AGx,y)FAGx-1,y) | (4.7.b)

'must'be'calcdiatedQ In this case, the gradient value of a pixel at a

location X,y can be defined by

" Max {Hz(x,y),Vé(x,y) } (4.8)
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H(xy) = | AGey+D)-AGey) | (4.9.a)

." v‘ (X’Y)

| AGe+1,y)-Alx,y) | - (4.9.b)

are also calculated and the products of vertical and horizontal differences
are found. Then the gradient value is determined as a maximum of these

p:oducts.
. Max { Hj(x,y)_. B, (x,y),Y, (x,y). v, (x,y) } (4.10)
Ifflarge k. is choéen, then in the same manner the gradient value caﬁ be

detefmined from only the difference equation or the product of differences.

;The grogrém of this scheme calculétes both difference equations and their

, prodﬁcts; It can bevseén,from_théSOQtputs that for large k, the edge becomes

more ‘and more.conspicudus,fbut the larger the k the less precisely localized

is ﬁhe-detected-edge. If the differences are multiplied together for a range

of values.of‘k,_the result tends to yield shafply localized detection of the
- edges. The block diagram of the proposed édge'détection scheme is shown in

' Figﬂﬁ.lg. Some outputs are shown in Fig 4.20 through 4.23.

lhput

'ROSENFELD | THRESHOLD .
| DIFF.EQNS ' (FIXED)

IMULTIPLIC. l

‘L_oF DIFF.EQS —
| N )

y

THRESH.
HAP

Fig. 4.19 Block diagram of the edge detection scheme using Rosenfeld's
' Difference Equstions
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. .Thresholding is’ done by ‘a. fixed threshold whose value is ‘determined as in

i
i

‘(1)5- The outputs are not in the same form.

";the preceeding edge detection techniques. In section 4.5 evaluation of each

scheme and comparisons will be done. In this project the following about

'edge detection techniques are examined

-ma)'Kirsch masks with fixed threshold without connect1v1ty test.
'lb)‘Kirsch masks with fixed threshold with connectlvity test.

b"rc):Kirsch masks with adaptive threshold without connectivity test.

: d)LKirsch masks with adaptive threshold with connectivity test.
.e)iSobel operator w1th fixed threshold without post—process1ng operation.

ff)fSobel operator with fixed threshold with post-processing operation.

g) Sobel operator with adaptive threshold without post—-processing operation.

'h) Sobel.operator:with_adaptive threshold with»post—processing operation.
1) Rosenfeld diff.equations with fixed threshold for k=1,2,4...32
'-.j)-kosenfeld'diﬁf.equations with.fixed threshold for

Ck=102,10204,5 0005102000320

.3IhefcomparisQn of-each:method'with.all the ‘other methods»is very difficult,

- because.

_(2) - Different thresholding techniques effect the preprocessing schemes in

‘different ways “and cause some difficulties in getting correct decisions.

(3)-- There aré more than 20 different methods and they cause very long and

useless comparison procedures.

:;Therefore, each of the preprocessing methods will be evaluated in itself by

taking into consideration all thresholding and post-processing methods which
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were'discussedlin the preceeding sections..

'In order to put ‘the outputs into a standard form, the preprocessing schemes
. -are, compared by taking into account only the fixed thresholding technique

4 and neglecting adaptive th:esholding and post-processing.

4o4. PERFORMANCE CRITERIA

- In this project,,various.quantitative]and qualitative evaluations have been
taken intO'consideration; This'pefformance criterea can be listed as

1-LfollOWS.d:i;'

_aj ?etcentage;errot vensus conttast

) ;J.Fon‘each-method, this]ctiterion nill.he eualuated by calculating the
'petcentage.ertot,whilelincreasing_the‘contrast values of the test image.
“Conttast Value,as'mentioned earliefvis C=D1—D3;‘where Dl and D3 are mean of
‘pixél magnitudes in zone.l'and 3,respectively.‘Contrast values are tahen to
”be 2 5 10 20 30 50, 80, 100 for each method. Percentage error is calculated

.by counting the 1 s in the edge map, which are out of the edge region and

adding the uncovered rows, .e.missing edge points, to this. Then

I3

= % Error. .i# of 1 s out of the edge reg.+ # of uncov.rows

o #. of pixels in the whole picture (4.11)

This criterion is applied to each method both with and w1thout the existence

of noise and is also used for the comparison of the above methods.

L 218



‘:1about'the distribution of the errors.

-b)-Percentage error versus noise'variance
-For a given fixed contrast, .say C—20, percentage of error,E, is ‘calculated

.for different noise variances 03 (Example 0= 0.2,2, 5,10,20,30,40,50,100).

}vfc)«PAfaﬁetéf Pin
-_As suggested by Fram and Deutsch [88]; a parameter P can. be calculated as

. one, more criterion in order to compare the behaviour of various edge

”detectibn:schemes withfrespect to noise. P is calculated by

#.of‘errors in. a pure signal (4.12)

P = v
# of errors in a noisy signal.

‘wFor'a-giyen fixed noise variance ( O =40), variations of P are calculated as

‘ ‘the.functiOn of the: contrast.

- d) Mean sqarefdistance of[errors
- This parameter is calculated by taking the mean of distances of the 1's in

thefedge_map.whicn are out of the edge region.

equarefdistance:of error_l's to the edge region (4.13)

B . ki ,
.- . Total # of 1's outof the edge region .

_'This parameter'is nsed‘to'decideinhetner'the=1's out of the edge region are

near the edge,"i.e., are only blurring the edge or not. This criterion is

ﬂlapplied to both_noisy,andjpure signals. This criterion can give an idea
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' '.pe);Missing'edge?points

”.This parameter shows the uncovered rows in the edge region and is applied to

o both noisy and _pure signals.

'f)ioperation times of each scheme are considered as an important criterion.

‘Thelcomplexity of the algorithm is hence taken into account for each scheme.

g) Another parameter is the ability»tohdetect curved edges. Circular images

iare.uSedeor;this purposeuvOnly.Qualitative evaluation is done for this

ncriteriOn{,

:,‘~h) Another qualitative evaluation is ‘the ability to detect sharp edges. An,

.-'l;"

:'edge region for each test image is defined. This region contains two pixels
!in each row of the picture, but sharp edges must contain only one pixel in’

Aeach roWe
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4.5 EVALUATION OF RESULTS

- existence

threshold

As mentioned earlier,hbecause of Ibng operationltime Of.the computer and the
' great number of edge detection schemes, all simulations had to be performed

_by using a minimum number of data (i.e. 20*20. samples) in.order to evaluate
’;ieach’performancefcriterion..Each*simulation was only performed three times

 ‘because of the above reasons.

o In the following, each performance criterion is evaluated for each
»rpreprocessing scheme with respect to the various postprocessing algorithms
- and,thresholding techniques. In some cases the evaluation is done with the

of noise. In addition all preprocessing schemes using a fixed

are'compared_with respect to all criteria.

- . PERCENTAGE -ERROR VERSUS CONTRAST

A - SOﬁﬁL
1th§ Sobel
lhulﬂQZSohel
’12 - Sobel

'f3 - Sobel
- 4 = Sobel

In Fig (4.

noise. It:

OPERATOR - Four'different-tYpes ofxedge detection schemes using
operator are’eualuatedt‘ ‘
operator with fixed threshold and without postprocessing algorithm
operator with fixed threshold and with postprocessing algorithm

operator with.adaptive;threshold.and without postprocessing

3algorithm’

operator mithladaptive:threshold and with postprocessing algorithm

24) four different_schemes are shown without the existence of

is obvious from Fig (4.24) that increasing the contrast value does
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R T Fixed thr.w/ o post.
- % Error

,‘\\\\gx\ Adap.thr.w/o post.
- A

Fixed thr.w. post.

oo T | *

Adaptive thr.w._post

v

. o 10 .

'_Ji; 4 ! — ___ﬂ_l Cantrast

Y
v, N v ; v

o 20! 40 60 80 100 120
‘“Fig.k2§ﬁ %»érror'93~c0ntra3t for adaptive & fixed threszhold,
‘with and w/o poStbfocéssing}Qithout-the existance of noise
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-pot result in a decrease in the percentage error. This can be expected
~ibecause, when the contrast:increases, the number of 1's, i.e., points which
' areEabove.the threshold value, increases on one side of the edge, while it

'decreases.on‘the other side. Because the thrshold value depends on the local

or'total(aVerage variances of the picture, this criterion does not give any

idea about the behaviour of the detection scheme. But, it can be seen that

.the pOstprocessing’algorithm; i,e.;vlimiting the number of 1's in the
ipicture, gives pretty good results._Fixed threshold gives better result than
"adaptive threshold without using postprocessing because, the local threshold
vpermits some local edges to appear which are not required in our picture.
fThis postprocessing algorithm can be applied to all other edge detection
'schemes. But in this study postprocessing was 'used only- for the Sobel

"operator.

In‘Fig (4.25) the same criterion is evaluated with the existence of noise.

More reasonable'results are taken from this analysis. In a noisy environment

’ with (7= 40, the percentage error decreases with increasing contrast values.
This is shown in Fig (4. 25). ‘The postprocessing algorithm again gives very
- good results-,In fact, for contrast values greater than 30 the error

disappears. That is, there are no 1's except the 1's in the edge region.

r

' For O' 40, the noise influences the results for values upto C—SO. For

v greater contrast values the noise has no effect on the scheme. Thus, for

smaller noise values the effect of the noise disappears at lower contrasts

~‘;than C—SO. Again, because we don t want to detect subedges, fix threshold

w”gives better results than the adaptlve threshold.

J.Ianig (4;26),‘three‘pictures'(vertical edges), and the detected edges by
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Fig 4.326
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.pixél»ﬁith the low pass filter, M

‘using fixed threshold, with and without postprocessing procedure (i.e.,

limitation of 1's) are shown for contrast C=20. Fig (4.26a) shows the pure,

Fig (4.26b) shows the noisy image with 0 =40, and Fig (4.26c) shows another

“noisy image with O =100.

B .= KIRSCH MASKS
Fbuf different types of edge detection schemes are evaluated for Kirsch
directional masks.

1 —3Kifsch masks with fixed threshold and without postprocessing.

Kirsch masks with fixed threshold and with postproéessing.

w
1

Kirsch masks with adaptive threshold and without postprocessing.

4 - Kirsch masks with adaptive tﬁreshold and with postprocessing.

in‘Fig.(4.27) four different schemes are shown without the existerce of

noise. As in .the case of the Sobelboperator, increasing the contrast value

"does not result in an increase in percentage error because of the same

reason. A different postprocessing algorithm, the connectivity test, is used

. for this scheme as explained in section 4.3. Although this parameter does
‘not give any idea about the individual behaviour of each scheme, one can get

a comparative result from Fig (4.27). Connectivity test for fixed threshold

- I

giveé better results. But the 16caliy adaptive threshold by convolving each

0 (see section 4.3) without connectivity

test gives the best result, because the output of the convdlution is the

sharpest edge, and when the connectivity test is applied to this output some

edge points are missed and uncovered rows appear in the edge region. That is

. why the connectivity test is not good for Kirsch masks. If a fixed threshold

is used, better results can be obtained by applying connectivity test but

for adaptive thresholding there is no need for postprocessing procedures.
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KIRCSH MASKS
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Eigi(&.28)'shows the hercentage error versus contrast with the existence of

:noise. The behaviour of the schemes can be .understood easily from Fig

”(4 28) As in the ‘case of the Sobel operator, the noise is added to the

.original picture with the variance a =40, Again, the best result is obtained
‘-.with an:adaptive thresholduand without'Canectivity test. Connectivity test

'effects.the scheme withﬂadaptiVeZthresholding in a negative manner, but for

fixedfthreshold it can be. used to get better results.

V;Eig'(4;29) shows three pictures.(with vertical edges) with contrast C=20,

‘andxthe detected edges by using fixed threshold without and with
hostprbtessing (i.e.,'connectivity test) algorithm. Fig (4.29a2) shows the
pure image, (4.29b) the noisy image with variance O =40, (4.29c) the noisy

image with noise varianCe o =100.

*'C - ROSENFELD DIFFERENCE EQUATIONS
hThe simulation of this method is. done for each value of k where
r’-A_k—l 2, 4,...,32 and the products of these, i.e.,

. Lk-2*1 4*2*1,...,32*16*8*4*2*1. But the evaluation has been done for:

El'f Rosenfeld difference-equation;with fixed: threshold, for k=1
.*2:~.Rosenfeld difference.eduation with fixed.threshold, for k=8
131—“Rosenfeld difference equationvwith fixed threshold, for k=32

4 —.Rosenfeld differencefequation with fixed threshold, for k=8%4%2%]

5'r‘Rosente1didifference equation with fixed threshold, for k=32*16*8*4*2*i

'(The’postprocessing procedure is not used for this scheme. Fig (4.30) shows
,-the resulrs for k=1,8, 32 and k=8%*4%2%], 32*16*8*4*2*1 with fixed threshold,

ﬁﬁ without any postprocessing algorithm and without the existence of noise. As
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- ROSENFELD DIFF. EQUATIONS

% Error -

0.40 =

1.

o

ol

k=8

| ]

*

K=8*4%2%1

v

k=32*16*8*4*2*1
o .

‘ Contrast->

0 . 20 400 g0 80 100

Fi§.4:30 . % error vs contrest for fixed threshold,

120

K 'w7ﬁjboétprbgeséing,&'without the existance of noise
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inlthe case of the preceeding schemes, percentage error is not a function of

_the conrast values. But a Comparison can be done between the alternative
: schemes. For k=1 the worst and for k=32%16*8*4*2%] the best result is

':': . obtained as expected.
TTRN . _ o i

- Fig (4.31) shows the samefschemes with the%existence of noise (0 =40). with

1

Y

_ noise the percentage error decreases versus the increase in contrast. When

the two graphs (Fig (4. 30) and (4 31)) are ‘compared, the values in (4.31)

:are worse than the values in (4 30). The noise is still effective even for
’fhigh contrast values. Again the worst result is obtained when k=1 and the
";best result is obtained when k—32*16*8*4*2*1. Fig (4 32) shows three

;pictures with contrast value C—20 and the detected edges by using fixed
: fthresholf for k58*4?2*1,3Eig.(4.32a)»shows the pure image, Fig (4.32b) the
“noisy.imagefwith CT=40{.Fig (4.32c)rthe noisy image with O =100. Fig (4.19)

*1;1=and<(4a325 illustrate thehfact that“for large k .the edge becomes more and
.:gﬁore conspiciuous!but~the larger the_kvthe less precisely locallized is the
'”detected‘edge. If the differences are multiplied together for a range of k,

‘the:result tends to yield sharply locallized detection of the edges.
D - THE COMPARISON OF THE THREE PREPROCESSING SCHEMES

FThe comparison is done using only the fixed threshold and without taking any
Zpostprocessing algorithm in order to look ‘at each scheme in equal

:Iconditions. Evaluation is. performed for.

= Sobel operator with fixed threshold
- Kirsch masks with fixed threshold »
k;dh% Rosenfeld difference equations with fixed threshold for k=8
4 -

"nRosenfeld difference equation with fixed threshold for k=32*16%*8%4%2%]
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ROSENFELD DIFF. EQUATIONS
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. REMARKS:

'Alchough thisicriterioﬁ”does notoshow anﬁ steady behaviour, it can be used

for comparison purposes. Sobel and Kirsch methods show almost the same

characteristics..Rosenfeld‘s method with k=8 is the worst and with

k=32?16f8*4f2*1 gives the best result‘(see Fig (4.33)). 1If Fig (4.34) is

" observed one can see the behavioor of the four schemes with the existence of

:poise-for-0'=40.

‘Forﬂsmall contrasts the behaﬁioup‘of Sobel and Kirsch algorithms are again
'almost the Sahe.-But theueffect of.noise disappears faster by using Kirsch's
_method. For greater values than C—SO Sobel, Kirsch and Rosenfeld (for
.k—32*16*8*4*2*1) approximately shows the same characterlstlc but for the

' fcontrast values less than 50 Rosenfeld with k~32*16*8*4*2*1 cannot give as

good_resultsvas Sobel and‘Kirsch methods do. The percentage error is very

"ﬁigﬁ for sﬁallfcoatrastsi-Rosenfelo'for k=8 gives the worst result. Another
';'disadVanﬁage of;Rosenfeld’s'schemelcan also be observed from Fig (4.34). The
.“éffect:of ﬁoise“does_not disappear even for large contrasts. Besides,‘the

Iinccease:Ofpthe percentage error-in a noisy environment is much greater.

o Tﬁis can be seen by making the comparison of Fig (4.33) and Fig (4.34).

-1 = Although percentage error versus contrast is not a steady characteristic

for any of these'three’pfeprbcesSipg algorithms, however, it can be used for

- the comparison of;different.thresﬁoloing and postprocessing technioues using.
. one of these_pfeprocessipg methods. Also it can be used for the comparison

“,voféthe'pfeprocessing methods among'themselves provided that they are
"employeo.under;the same conditiohs.'

s.'2.-'Pefcentageﬂerror versus contrast with noise contamination puts more into
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Comparison between Sobel Operator, Kirzch Maskz,

Rosenfeld diff.eqn lb&’Z'for k=8 and k=32...1 respectively

% Error. | . o Saobel

Kirsch

A

0.30 |-
- : Rogenfeld 1
.

i 0.20 |

.";

l .| Contrast

e
ﬁ~b-:_ :’  20 R _;éo e s 100 120
“ ' ?19};3$i'i.§r¥§r vs'cdntrasﬁ fﬁrvfixed threshold and
wi#ﬁth'pbstprocéssing‘anﬁ'withgut;the-existanceof noise
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- Comperison. between Sobel.Operator,Kirsch Magks,

"*,..»:R@S'erif‘erld diff.eqn 1 & 2 for kéa’ and k=32...1 respec:tiual-)

‘% Error .
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Fig:434 % error vs cgntiast?forgfixad‘threshold and

_withoutbpostpropessing and with the existance of no

243

Kirzch
-~

Pozenfeld

Raozenfeld

ise (o =40

<
i



.i'i"

evidence characteristics about the detection schemes.

3 - Postprocessing algorithms, e.g., limiting the number of 1's in the
“plcture can be applied t9 a11 schemes. The comparison of the effect of such
.pos;p:OCéSSing techniques'oﬁ the various preprocessing algorithms has not

. been incipded in this study.
- PERCENTAGE ERROR VERSUS NOISE VARTANCE

Evaluation is done for Ehe fdllowing nine noise variance values: 0 =.2, 2,

5, 10, 20, 30, 40, 50, 100. The contrast is fixed at C=20 for all

similations. .

"A — SOBEL OPERATOR

“‘Four different»types of edge detéc:ion schemes are evaluated for the Sobel

opefator'just as has been done for the preceeding criteribn. The results are

~shown in Fig (4.35).

It can be 'seen from Fig (4.35) that”the noise variance is directly

.proportiohalﬂto'the percentage error at a fixed contrast. Because the

! s

',;éﬂaﬁtive?threshold.pefmits~thé'appearance of subedges which do not belong to

thé picture, the results are worst especially if postprocessing operation is

nbt_use&.'Up‘td 0 =30 (with C=20) fhe;percentage error deteriorates slowly

but for values greater than O =30 the increase becomes sharper. The best

”reQult.is obtained'when-usihg édaptive thresholding with postprocessing

_Qperétion.

Fig~(4.36) shows the results of the three simulations using a fixed
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Fig 4.&3:“-6)_\ Simulat ion r esults of Sobel aperator:Original o
image with fixed. threshold and output of postprocessing
respectively adwith noise, 0=5,C=20
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" threshold, one with noise variance O =5, the second with noise variance O

=10 and the31ast one with O =50. In the first two pictures, edges can be

éaSily:géthered but in the third .one the'edge points can not be recognized

' frﬁm'the output. For (7=160 the_result gets worse as shown in Fig (4.26).

B - KIRSCH MASKS

‘ Again the same four schemes are used for the simulations. Fig (4.37) shows

the results .of how percentage error changes with respect to the changes in

goise variance. The worst result is obtained if a fixed threshold is used

.'without'using connectivity. test.If connectivity test is used with fixed
(thréSholq the result of the scheme is very similar to the one with adaptive

. 'threshold. and without using the connectivity ‘test. For small variances of;

noise adaptive}threshOidiﬁg without using postprocessing gives the best

result. For this éritefion, it can be said that for fixed thresholding a

‘ poétprdcessing a1gorithm is needed in order to get better results, but for )

adaptive thresholding there is no need for any postprocessing algorithm. Fig

(4.38) shows three simulation results with noise variance O =5, 10, 50. The

- effect of noise and connectivity test can be easily seen from the figure.

For O =100 the result gets worse as shown in Fig (4.29).

c - ROSENFELD DIFFERENCE EQUATIONS

kfop this méthod'onlyifive different schemes are evaluated, although all
'  §imulati6n results for each value of k, which is explained in section 3.3
and 4.3,:havé been obtained in order to get simpler and more understandable

graphs.as”in the case of the procceding criterion.

2%
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"';obvious that the result gets worse when O =100.

.The evaluation has been done by using only fixed threshold and for ‘the

,values of k=1,8,32, 8*4*2*1 32*16*8*4*2*1. No postprocess1ng algorlthm ‘has

been nsed.fot-this scbeme.'Fig (4;39) shows the simulation results for
percentage error versus noise variance O at a fixed contrast. For
simulations C=20 is used as contrast value. As easily understood from the

figure'better results are obtained for larger values of k and the products

': offthe:differences-give even better. results. Even small noise variances are

effective in the graph. The best result is obtained by the product of

differences for k=32 (i.e., 32*%16*8%4%2%]),

Fig (4.40) shows the three simulation outputs with O =5, 10, 50. Noisy
'images and the-outputs‘ﬁith fixed threshold for k=8 and k=32*%16*8*4%*2%*] can

lbe seen from Fig (4o 40) 1f Fig (4 32) is examlned one more time, it is

. D <. THE COMPARISON OF THE THREE PREPROCESSING SCHEMES

fTﬁe~eompafieoh of.ehe ;hree schemes is done by only using a fixed threshold
‘eahd'ﬁithde;jtakiﬂg.eny postproceesing.algorithm'provided they are employed
,‘endeff?ﬁe‘same'EOpditioﬁei Evaluatien has been done for Sobel operator,
'_Kiféch masks, RdsenfeldVdiffereﬁce»equations for k=8 end k=32*16*8*4*2*1 as

in the case of the preceeding cfiterion.

It is easily understood from Fig (4.41) that Rosenfeld's schemes do not give

- results as good as Sobel and Kirsch sbhemes do, i.e., it is better to use
- Sobel or:Kiréch schemes in a noisy environment, but if the noise variance is

!latge,-the'three schemes give almost the same response.
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" ROSENFELD DIFF. EQUATIONS
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- fCﬁhprisonihetwéen Sobel Uperator,Kirsch Hasks,

Rosenfeld diff.eqn 1 & 2 for k=8 and k=32...1 respectively
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| REMARKS

From,the'simulatioﬁ results it can be said that the noise variance is a good

criterion to see the behaviour of each scheme and to compare the schemes

B aﬁdngfthémselves.
" 'PARAMETER P

'The péfametér-P-ha$ been‘Ealculatéd'for eaéh method in order to compare the
'.:béhéviouf:of‘tﬁe-mentiqheﬁ“edge.Qegection échemes. P is calculated by Eqn.
.‘(4¢3i);'81mqlatibn;runs héVe beeﬂ taken for different contrast values once
. witﬁput n§i§é and bnce_With a'noise:of 0 =40. For each.contrast value the
o péfcentage error ha§ béen éalcuiated for both, with and without the
1'existence of noise. P.is the ratio of these two values and is calculated

;from Eqn(b 12)

A - SOBEL' OPERATOR

FIXED : 7" ADAPTIVE

Nconmmasr & ERRIN PRE SIG | ERR-IN HOISY SIG | & ERR.IN PURE SIG [¢ ERR.IN HOISY SIG

TR B} T v} weo ) wiH ] we WITH o WITH
2. 2a- | a4 1 e} a0 109 4 144 35

5 32 '} 15} e | m | o1u 0 155 | 38
10 -}y =l 1) o | s 117 1 w | 2
20 33 | v ] 9 107 0 129 16

30 a4 o4 - a2 |1 108 0 128 | o

50 T T A s | 1 112 o 106 1

80 a7 07 | =28 1 1z 1 117 0
100 | a4 05 25 1 110 0 120 1

Taeble 4. 1 The vaer'of‘ P perameters for Sobel Operator
. with adaptwe thr. & f1x thr. ,wlth & w/o existance of noise
( U = 40) -
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~ reach such large values.

' As in;theicase‘of.the_preceeding'critetia four different types of edge

'v.detectionlschemes‘ate evaluated.hThe simulation results are shown in Fig

: (é.ai) anu Tgble'(4eljvaais'an incteasing function of the contrast. This
‘can:he visualized from Fig (4,42);eFor-the scheme with an adaptive. threshold

”and'the'postprocessingJalgorithm, P is aiways zero, because the percentage

error is zero for all contrast values in the pure image. That's why this

graph can not give any idea about the variations due to noise. For the

‘scheme with fixed threshold and without postprocessing algorlthm, P
) increases rapidly, because the effect of noise decreases rapidly when the
"contrast value increases. For smallvcontrasts, the noise is more effective

~than it is for higher contrasts. The graph of the scheme with fixed

threshold and without postprocessing also shows that, the decrease of the

noise effect,'as well'as'the increase of percentage error for the pure image

are. the reason for such large values of P. The graph of the scheme with

adaptive threshold and without postprocessing shows that the effect of noise
j_;does not change very much for 1ncreasing contrast values. The graph for the _

ischeme with fixed threshold and w1th postprocessing shows that, for

'increaSing éontrast the effect of'noise decreases but, because the increase

" of the percentage error for the pure image is less, P in this case does not

1

© B~ KIRSCH MASKS

Again, four different types of edge detection schemes are evaluated for

.Kirsch masks ‘as.in the case of the preceeding criteria. The simulation

results are shown in Fig (4.43) and table (4.2).
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, T . FXED o ADAPTIVE
Joonmmnst | € ERR.IN PURE SIG | ERR,‘IN‘-NOI‘SY SIG | € ERR.IN PURE SIG ] € ERR.IN NOISY SIG
e ) WITH wo | wimH vo | wITH W/0 WITH
g x| 3 108 2z 11 16 21 18
5 .¥4 o > S 80 is 0 8 20 18
10 2 | s 73 1 18 0 10 19 18
20 a3 8 ' 7 0 g 14 17
30 7 | .8 | = 13. 0 5 9 10
50 - 28 5 7 11 0 g 4 15
80 37 9 8 10 0 9 6 12
100 a5 0 | w7 0 4 3 11

- Tablels 2 The velue of P perarneters for Kirsch Mask
- with adaptlve thr. & fix thr, wlth & wlo exlstance of noise
‘ ( o= 40) '

All schemes show approx1mate1y the same characteristic. P is an 1ncre351ng

function of contrast for all schemes but the increasing rate changes from

‘one scheme to another. As in the case of the Sobel operator we can not say

'anything,abeﬁt the scheme with adaptive threshold and connectivity test

because of ‘the same reason. For adaptive thresholding with connectivity test

the sensitivity to noise is much more than for any other scheme. As the

.contrast increases P increases slightly. The graph of the scheme with fixed

threshold and without connectivity test increases sharply. This sharp

. -increase can be interpreted in the following way. Since for increasing

S

contrast ‘values the number ofiefrors in the pure signal is increasing
yhefeas the number.of errors in the noisy signal is decreésing, their ratio,
the P parameter,'will incfease very rapidly. That's why the best result is

4obtaiﬁed~by.the\scheme with fixed threshold and with connectivity test.
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C - ROSENFELD DIFFERENCE EQUATIONS,

Fivgraiffe;éﬁt schémes afe evaiuaﬁed_for_Rosenfeld difference eqﬁations as
"fiﬁ'the caée’df the precéeding éritéria. The fesults of the simulations are
lgiven in’ Fig (4. 44) and Table (4 3). All ‘schemes approximately show the same
icharacteristics. For all schemes P is an increasing function of contrast.‘
‘bThg rates of increase'arg'alsé very:similar to each other. As it can be seen
"fﬁom‘Fig (ﬁ.44) the'noiSe:effeétS‘the:schemes much more for small contrasts

than for greater contrasts.

= k=8 k=32 k=6.8.21 | k=32.16..21

, - JeEm £ ERR-J € ERR £ERR JeERR [ ERR JEERR [LERR |EERR |t ERR
CONTRAST § PURE | NOISY | -PURE | NOISY PURE | NOISY PURE | HOl1SY PURE | NOISY
] SIGNAL | SIGNAL | SIGNAL SIGNAL § SIGNAL | SIGNAL § SIGNAL | SIGNAL | SIGNAL | SIGNAL

140 7 138 g 139

2 121 | 190 100 | 136} 39

5 103 | 198 | 82 | 13 50 | 12a } a3 | 143 & 116
10 127 . | 171 7s | 121 30 ) 106 | 5 | 122z | 12 | 105
20 f 163 | 158 ' o5 | 95 sl | 92 7 70 53 56
30 122 | 150 | 76 | 88 a3 | 73 79 sa | 30 | e
50 20 | 133 | o |72 3| a7 69 62 30 32
80 J 126 | 105 | =B | 73 ag | a3 7 69 ai a1
100 122" | 102 ) s | 70 | aa | 32 | e 67 33 | 32

Table. 4-3° The value of P paremeters for Rosenfeld's .
o le‘ference Equat.mns with adap.thr.& fixed thr,,
' with & w/o existance of noise (O =40}

D - COMPARISON OF THE THREE PREPROCESSING SCHEMES
As:fdr the preceeding criteria, comparison is done only by using fixed
‘thtesholding without postprocessing algorithms. Evaluation has been done for

Sobel operator, Kirsch masks, Rosenfeld difference equations with k=8 and
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| ROSENFELD DIFF. EQUATIONS
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-ké32*16*8#4*2*1; Fig (4.45) shows. the results of the simulations.

'For sma11 contrasts bettéf‘results‘canvbe obtained by using Rosenfeld

producté of diffetences for large k. Since a nonincreasing P function means

‘that the effect of noise does not diminish for increasing contrast values,
'"Rbéenfeldfswmethodvis not. convenient for great contrasts. Since a sharp
_ianeaSe,bf'thé parameter P shows not only -the diminishing effect of noise

14but,alsd that the‘perdentage error in the pure signal is increasing, this

much of increase is not desired. .This makes the Sobel operator more

'desirable than the Kirsch masks because of their somewhat smoother increase.

MEAN SQUARE DISTANCE OF ERRORS

"This parameter is used to decide whether the 1's out of the edge region are

“'near théledge or not, i.e., the edge is blurred or note.
"A '~ SOBEL-OPERATOR

"The simulation results of four different schémes of the Sobel opefator

‘witﬁbut.and‘with the existence of noise ( O =40) are shown in Fig (4.46) and

.(4.47) respectively;
B - KIRSCH MASKS

The simulation results of four different schemes of Klrsch masks w/o and

‘with noise (O‘ =40) are shown in Fig (4.48) and (4. 49), respectlvely.
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© .SOBEL OPERATOR - -
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_ KIRSH METHOD
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.C - ROSENFELD DIFFERENCE EQUATIONS

“vihe,simulétion results of thé,five:different schemes of Rosenfeld edge
'vdetéction‘methOdvwithdut aﬁd with the exiSﬁence of noise ( O =40) are shown

'in Fig (4.50) and (4.51) respectively. -

REMARKS:

It is obvious from Fig (4 46) through (4.51) that, this parameter can not be
' used for evaluation, because it does not show any consistency and give a
‘5reasonab1e result.

'.MISSING EDGE POINTS

‘Tﬁié;pafémetgrlshows.thé uncbvered;fOWS in the edge region and gives an idea

4ab6ut Ehe'scﬁemES'whethér they'can'éatch.the~points in the edge region
'Qjéufficiehtiy or not.

A - SOBEL OPERATOR

wFigJ(4f52).$hbﬁs.;he ratio of missing edge points per total number of points

in’aﬁ image'as a function of confrast for four different types of Sobel

‘-pperator.séhemes without the existence of noise.

'VThé figure shows that there are no missing edge points when the

3 postprocessing algorithm-is not used. But, if it is used then the scheme

with adaﬁtive»thresholding gives a better result with respect to this
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ROSENFELD DIFF. EQUATIONS
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" criterion. Fig“(4.53) shows the results of the same criterion with the
:exiStence'of noise. The comparison of Fig (4.52) and (4.53) indicates that
.the number of missing edge points increases when noise is added to the

fpicture. Since for 1arge contrasts the noise looses its effect the graphs in

the above‘mentioned figu:es'have approximately the same shape.

‘B - KIRSCH MASKS'

;‘Fig (4 54) and (4 55) show the ratlo of the missing edge points per total
'number of- points in the picture as ‘a function of contrast for four different
'hypes of schemes of Kirsch masks ‘without and with the existence of noise,
‘respectively. Although«phegconnectlﬁity test;sharpens the edges it‘causes

'sqme‘edge pqints»to be missed. That means, that for both with and without

the existence of noise, the schemes without connectivity test give better
results with'respect to this criterion. When there is noise, especially for

low' contrasts, ‘edges are totally missed. For small contrasts the best result

1is obﬁained'by using the scheme with fixed threshold and with connectivity

test. In the upper part of the contrast domain the schemes without

"connectiVity test catch almost all edge poiﬁts whereas the schemes with

connectivity test miss many points of the edge region. The worst result is

. ‘obtained byjthe scheme with adaptive threshold and with coﬁhectivity test
"because adaptive threshold (convolving with an LPF,MO) itself, gives the
‘shafbest edge.vif.the ccnnectiviﬁy‘test is- applied to this output, it is

;obﬁious thac:some.edge soints~wil1-be missed;
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KIRCSH MASKS
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-C -~ ROSENFELD DIFFERENCE EQUATIONS

'Fig:(4.56) and (4.57) shnws the buﬁputs of the same criterion for five
-different schemes using Rosenfeld difference equations without and W1th the
;-existence of noise, respectively. As shown in Fig (4.56) and (4.57) this
result gives good results for this criterion. All five schemes catch all the

'edge points when there is no.noisexand for small contrasts some of the edge

pbints:éfe missed.

D - THE COMPARISON OF THE THREE PREPROCESSING SCHEMES

Fig (4.58).and (4.59) show the graphs of the percentage missing edge points

" as a function of contrast for the discussed preprocessing schemes. Fixed

- thresholding without postprocessing is used. If there is no noise then there

are no missing‘edges-poin;s for any of the schemes. As it can be expected,

for contrasts up to C=30 the noise is more effective than it is for greater

' contrast ‘values. Therefor, -edge. points are missing in the lower contrast

" domain whereas there all edge points are covered in the upper part. For

'greater noise values it can be‘ekpected that the effectiveness threshold of

"C=3d.wili also rise.

REMARKS

1),Tnis criterion ¢an not be used slone to evaluate the performance of the
edge'deteCtion’schemes,'a scheme:may catch a lot of nonedge points besides
of‘all edge*points. Although all edge points are covered what sounds good,

such a result is not desired. Percentage error versus contrast or percentag
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ROSENFELD DIFF. EQUATIONS
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error versus noise variance shou1d>be_taken into consideration together

with the miSsihg_edge‘peints to. evaluate the schemes.
2) ?his ctitetién gives better results when no postprocessing is used,

.becauae'ﬁhile shafpening'the edges'obtained by preprocessing, the

= pbetptpcessing;prqcedure'ﬁay end up in loosing some real edge points.

'OPERATION TIME OF THE SCHEMES

Theiopefatien time of the-schemes,is considered as one of the performance

cfiteria.{The’computef used for this study has an 8-bit processor and has

‘veryllow operation speed. Because of memory limitations, disk accesses are
. reqﬁired in many parts‘of.the program. This also causes long operation
':times.»In our ‘case the speed of the printer and the disk accesses are not

'considered in order to make the evaluatlon independent from the computer.

The ‘number of operation during one run are calculated for each scheme.

A ‘- SOBEL OPERATOR

A';For only the preprocessing algorithm 21(N*N) operations are required, where

'N*N is the dlmension of the test 1mage. 1f a fixed threshold is used 16(N*N)

’

'operations,.if an adaptive threshold is used then 25(N*N) operatlons must be
‘ :added to the number of the hreprocessing operations. For the postproce331ng
._operation 18(N*N)+LIM+3(L*L) more operations are required, where LIM is the
, nqmber_llmit, L is the'number of 1's in the whole picture. Then, for the
'i.feer‘different schehes'usihg Sobel operator, the humber of operations

l reqpited can be‘semmarized as follows.
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B - KIRSCH MASKS'

" convolving with LPF,M

S Sdbélfoperator with'fixed thfesﬁold'without postprocessing:

|10 = ZL(NAN)+16(NAN) = 37(N4N) (4w

where O is the total number of operations.

'Z'T.Sobel operator with fixed.thresholévand with postprocessing:

o
I

21 (N*N)+16 (N*N)+18(N*N)+LIM+3(L*L)

O
‘n

S5(NAN)+LIMF3(L*L) = - (4.15)
'3 i{Sdbel opefator‘Withfadaptive‘thfeshold.and without postprocessing:
0= 2L(NAN)+25(NAN) = 46(N*N) (4.16)

*Aﬂf'Sdbel'operatbrfwith5adéptive thresho1d and with postprocessing:

o
[} ’

'2I(N#N)+25(N*N)+18(N*N)+LIM+3(L*L)

]

= 64(NAN)+LIMF3(LXL) © (4.17)

For pniy thepostprocessing algorithm 162(N*N) operation are required. If a

fiXed7thresﬁold is usedflé(N*N) operations, if an adaptive threshold, i.e.,

o;isfused ZG(N*N) operations must be added to the

hdmper bf,thé preproceSSing Qpe;ations. For postprocessing operation which

is thé;connéctivity test in the‘case'of the Kirsch masks, 45(N*N) operations

.:Afe»requirédgin‘additioh of the number. For the four different schemes using

“Kirsch masks, the number of operations required can be summarized as
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follows.

lv‘~Kirsch.masks with fixéd threshold and without postprocessing:

0 = 162(NKN)MHLE(NAN) = 178(NAN) (4.18)

'-Kiréchfmésks,withifixed threshold and with postprocessing:

| 0'= 162QNANMI6(NAN)+AS(NAN) = 223(NHN) (4.19)

A 3 =.Kirsch maské'wifh adaptive threéhoid‘and without postprocessing:

0°= 162(NAN)+26(N*N) = 188(N*N) a C (4.20)

:4;—_Kirscﬁ masks with adaptive threshold and with postprocessing:

‘;0>= 162 (N*N)+26 (N*N)+45(N*N) = 233(N*N) (4.21)

- ROSENFELD DIFFERENCE EQUATIONS

~The;valuélof,k is very iMportantffor Rosenfeld's edge detection schemes. The

. "generaliZéd7fptmﬁia'fdr,tﬁe_numbgr‘bf pperatioﬁs of difference .equations:

..”.‘4

o o'=-(k+L)(N*N5+kH(N*N)~»“5" - O (4.22)

Qhefé[k is thé-brder'of.differénée énd M is calculated by the formula

k=2 R - (4.23)

M= B+l ‘ P - (4.24)
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CIf k=32, O

‘_Theh,,forsexemple if7k=1,:*i-

o
o

2(N*N)+(N*N) 3(N*N) “ | (4.25)

If k=8 0 = 9(N*N)+32(N*N) = 41(N#N) n (4.26)

“If products of the differences are used, the number of operations can be

. 'calculated by the formula:

0.= (18Kk+1)(N*N)+KM(N*N) (4.27)
For ‘example, if k=4 (i.e.,4*2%1), thed

: '(;8#4+1)(N*N)+4*3(ﬁfu) = :85(N*N) (4.28)

O :
-

(18*32}1)(&*N)+32*6(N¥N)v= 769 (N*N) (4.29)

‘”If the above eqoatlons from (4. 14) through (4.29) are examlned, the .smallest

'lznumber of operations corresponds to the Sobel operator scheme which uses
‘;fixed ehreshold and the 1argest ooe corresponds to Rosenfeld's products of

| differenees for1k=32. A@aptive.thresholding always adds a considerably large
'nhﬁbef<of ooerations..PostproceSSing algorithms also add large number of

operations.. .
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ABILITY TO DETECT CURVED EDGES

Fig (4.60) through,(4;65) show the behaviour of the edge detection schemes

‘on curved_edges,_e.g.,'onfcircular shapes. The;hest method for detecting

curwed-edges‘is‘the method of Kirsch withouttconnectivity test. But when

tconnectiVity test ‘is applied, somevedge pdints are lost, then the shape of
'.the edge can not be realized properly. Rosenfeld s schemes give good results
. Iat higher values of k and for products of differences. If differences are

- used without taking the products of them, the larger the value of k the

wider the edge region gets, ‘then- the shape of the edge is lost. This is

tshown in Fig (4 62) and (4 65). Sobel operator can also give better results

by using postprocessing algorithm as limiting the nuber of 1's. If the limit

is-chosen-properly all 1's which are outside of the edge region, can be

. eliminated and’all 1's which are inside of the edge region can be saved.
" ABILITY TO DETECT SHARP EDGES
Fig (4.66) . through (4.68) show all edge detection schemes with fixed and

adaptive threshold without and with postprocessing algorithms when a

‘ Avertical image with contrast C—30 is used W1thout the existence of noise. It

-y

is obvious that Kirsch masks with adaptive threshold w1thout using any
T,Vpostprocessing_algorithm-gives.the_most exact and sharpest edges. Rosenfeld
differerce equations give good results when the large values of k and the

'[products-of'differences>arebused;»
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" 4.6 CONCLUSION

T_In this chapter the most 1mportant edge detection methods were overviewed
v and some new ideas on decision levels and performance evaluations are

h introduced.

Edge"detection:methods'can'be divided into three levels: Preprocessing
labeling‘and;postprocessing. A key level is the one, where the decision to

labelia,pixelsas'anledge point or not, has to be taken. Before this labeling

‘'stage, in order to make the decision as correct as possible, the pictures

- must be preprocessed.

Many different preprocessing_and'labeling algorithms have been developed.

" The most popular preprocessing schemes are included in the class of the

local methods which attempt to approximate differentiation within a small

window of size 2*2 or. 3*3. For labeling level many different ideas have been

.introduced. But the most commonly used parameter especially for practical

”jimplementation-reasons,-is the magnitude of the edge vector at a given

I

'pixelgﬂComparison of,varioUS.edge-detection schemes are mostly dependent on

'their duaiitative'performances. Papers about the quantitative evaluation of
' hedge detection schemes are very limited. A performance evaluation is

'.difficult because of the 1arge number of proposed methods, difficulties in

xdetermining'the best parameters associated with each technique, and the lack

of'definitive performance’ criteria.

' In the last section of this chapter, the .connectivity test and a locally
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;adaptive thresholding technique which was 1ntroduced‘by Robinson has been

-adapted to the Kirsch masks. Another combination of two thresholding

.techniqueslhas been appiied to Sobel Operator~and a comparison between the
A"most'popular‘ecge detection schemes'was done and some new parameters for

performance evaluation has been generated. Because of the memory limitations

and'lack of faciiities, the comparison was done on some test images.

Evaiuation was also done in the presence of noise.
The results can bevsummarized as follows:

-(i):-AThe:connectivitv test .is not suitable for Kirsch masks, especially

rwith adaptive'thresholding;

(2)‘—-Without connectivity test, Kirsch gives sharpest edge points with

1oca11y adaptive thresholding u31ng LPF; .
~,(3) - Sobel operator is more sensitive than the other methods to edges which
:have very little contrasts,

2(4) - Rosenfeld s multiple difference equation gives very sufficient results

at higher multiples, but it takes the biggest operation time, while Sobel

with fixed threshold takes the 1east .

;(5) - Postprocessing algorithms can be applied to all edge detection schemes
1'in{or@er to eliminate the 1's Outside the edge region and to get sharper
'},edges;

'(6)c-'Two-1eve1 threshoiding(e.g.,:first adaptive then fixed thresholding)

can be applied to edge detection schemes to get better results;

(7) - The Parameter P“is“very useful to understand the behaviour of the
scheme with‘respect to the changes in. the contrast value with the existance
ofinoiseg.Inhaddition, a‘large_value for P does not mean that good results

fifare;obtained;.becauSehthis large value is obtained by not only decrease in

- 301
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“increases;:

"‘noise1efféct,but also increase in % error for pure image when the contrast

(8)‘quor‘Iarge values of noise variance, three preprocessing algorithm

almost give the same fésponse;

(9) - Mean square distance of errors does not give any reasonable responses

and:éah'nb; ﬁgAuséd,for.thevevélgétibn-of the edge detection schemes;
j;ti0) - biffefentfséhemes ;esﬁohd:fo each éfiterion in a different manner.

 S§mé£iﬁeéiéi§¢fBef£ér,_s§ﬁetiméléive worse»résults, means thaﬁ a tester must

'éﬁo§se:the &ost.éqhvinieﬁf séhémé}éccqtding to his requirements and criteria

" he .usés. .

At ﬁhe.enﬂ éf the chaptér]a set of package programs which are open to

- further expansion consists of edge detection teéhniques , various

2thresﬁdlding me;hbdé and complete analysis has been also introduced.
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V . CONCLUSION AND SUMMARY

In this study.the most important‘aspEcts of'image processing techniques and

' applications were reviewed. Although it was a relatively long study, all the

important aspects of image proce551ng could not be covered. The first part

of the-Study was only a tutorial review of mathematical models and
*'appiications of image processing;‘lnvthe second part of the study, various

:picture'coding techniques were examined and their evaluation were done by

computer'simulations. In theplast-part, various edge detection schemes using

different thtesholdingﬁtechniques‘and postprocessing algorithms were

’ evaluated;on'some test .images. Some performance criteria were developed in

otder to make a comparison among these schemes. A computer program was

. developed.to,simulate the'picture coding techniques. In the last part, edge
'detection}schemes:were feviewed,isOme performance criteria were derived and
- compafison-ofotheuschemes.was:done.using these criteria. Again a package

;program was developed and simulation results were obtained.

'This-stUdyfhas three diffe;ent aspects. The first one is that, it is a

4

" review offali'imagelprocessing.probléms and methods to solve these problems

and ‘it might be'nelpful for further studies on the same topic.

The”seCOnd_one is that;.a microcomputer is used to simulate picture
COmpression;'coding_and edge detection techniques. This computer -
applications have given us important results on two picture processing

techniques, but din addition to that, during this study, the advantages and

_ disadvantages'of:working with?a microcomputer for similar topics have been

. 303



iy

‘foﬁﬁdm'Thé'advahtages are,

1 - Ability ‘to work interactively

2 - Easy use and progrémmiﬁg

.Bﬁt the term'image;implies a large number of déta, besides picture

prdcessing teqhniques ére,based 6ﬁ complex algorithms, like matrix

manipulations,vln‘ﬁhis,study the'memory cépacity and the operation time of

, thg‘gomputer Set'limits on.the size of the model. For test images only 64

samples could bé taken at the same time. In the literature, the minimum

'1,'qumbérfof‘éaﬁﬁlgs-used.for*ihages.iS'256, but even it could be worked only
) with ﬁéfy4sméllrﬁumber‘QE.éamﬁles; very reasonable results which are

.‘é%mpériblg’with literature»wére.obtained. The complex structure of the

algqrithﬁs has resulted in rather great operation times. That is why only

" minimum humber of simulation outphts'could be taken for evaluation purposes.

The - third aspéct is that, some performance criteria have been derived in

16rder‘td evaluate and compare the results of the simulations. In the -
'literaturg7very few quantitative comparisons exist and evaluations are

' mostly'déng'quéiitatively. Because edge detection schemes have very

different'aigorithms, it is difficult to compare them. That is why in order

/

. to evaluate and compare thé edge detection schemes examined in this study,

‘~n¢W'quéntitativeAperformaﬁée-critériaihave been derived. If the results of

thef#imhldtioné of?different'edge.detéctiqn schemes are observed, it can be

'jéééﬁjfha;,tfdf diﬁféfént‘cri;eria;Adiffereht schemes can give better
' resuitsa But on the average it can be said that Kirsch's directional masks
- with adéptivé,thréshold giVe the best result among all other schemes which

: aré‘éxamihed in.thié studyifor almost all performance criteria.
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‘A .comprehensive bibliqgraﬁhy’is';ncluded at the end of the study for a

'réadér_iﬁtefestéd,in further details of theoretical and experimental results

‘discussed here.
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3008 = CHRS (4)

iyt

lb"REH' 8% QUANTIZATION MAIN PROG. 83
20 TEXT & HOKE
25 'HTAB 10: PRINT *-- . : et

40 HTAB 10: PRINT "QUANTIIATION PROGRAN"
50 HTAB 10: PRINT #=-miermemmmmiomemeenct

270

- 280

290
w0
310

30
.30
400,
T _
~ 2000.° PRINT. D$; "RUN SINPRUG, S5, D1*
3000 PRINT D$; *RUN KARPROB, S6,D1°

HONE

VTAB b: HTAB 5: 'INVERSE s PRINT 'IAVEFURHS" NRMAL

VTAD 10z HTAB 5: PRINT *1-GINE WAVE®

'HTAB 5: PRINT *2-SRUARE HAVE®

HTAB S: PRINT *3-RANDON SINE WAVE® _
HTAB 5¢ PRINT "4-AUT.REG. WAVEF..¥ITH BAUSS DEN,”
YIAB 20: HTAB S: INPUT *CHOOSE ONE OF THEM...=";A
IF A 4 THEN PRINT CHRS .70: 6OTO 330

OK & 6070 2000, 3000, 4000, 5000

4000 PRINT D$; *RUN RASPROS, S6,01"
5000 PRINT DS,'RUN BAUPROB, 5, 01"
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00 REN 48 SINPROG 18

2010 D8 = CHRS :(4) -

2014. HONE : VTAB 10: INPUT *TOTAL § OF SANPLES 7=";N$
WIS N= VAL'IRS)

7016 PRINT DS;"0PEN ORNEX,D2*

2018 'PRINT D$;*DELETE ORNEK®

2019 PRINT DS; “OPEN ORNEK,02" -

2020 'PRINT D$;"MRITE ORNEX*

2021 PRINT.N§

022 PRINT-D$; *CLOSE GRNEK®

2024 DIN YIN)
2025 DIN ARALIK(N)
2030 PI = 3. 14159265

© 2035 PRINT DS;"PRE1": PRINT "TOT.4 OF SANPLES=";N: PRINT D$;"PREO*

2040 PRINT @ INPUT *AMPLITUDE ?=";F$

2050 A= VAL (F$).- , ,
2080 PRINT : INPUT *MULT.VALUE OF X-CODRD. =7*;64
2070 CARP = VAL {6$)

2072 PRINT : INPUT "4 OF PERIHDS 745

073K = VAL (S8) -

2075 PRINT ‘PRINT PRINT ,

2080- PRINT *X{1)";:- HTAB 20: PRINT *V(D)*

. '2090 PRINT *—---%;: HTAB 20: PRINT *-——*
" 2110 ARG = 2 1PI t K/ N

A5 FRI=1T0N

* 2060-ARALIKAT) = ARG 8 (1 = 1)

2070- ¥4I} = &'¢ SIN {ARALIK(D)}

2180 APRINT ARRLIK(I);: HTAB 20' PRINT Y(I)
2270 NEXT 1

2280 PRINT D$

2230 PRINT-D4;"QPEM BIRDI,D2® -

2300 PRINT -D8; "DELETE GIRDI*

2310 PRINT-D; "OPEN GIRDI,Lif, D2'

- B3 FRI=1TON.

2322 INP$ = STRS (Y(I)) ‘
2324 IF- LEN (INP$) = 10 THEN 6OTO 2330

2315 IF CLEN (INPS) ) 10 AND- VAL (INPS) ( .01 AND VAL (INP§) 3 0) THEN INP$ = *,001000000": EQTD 2330

2326 IF- LEN-(INPS) > 10 THEN INPS = LEFT$ (INP$,10): BOTD 2330
2327 FORL = LEN {INPS) TO 10:INP$ = TNP$ + **: NEXT L

30 PRINT D4;SHRITE BIRDLRY;1

i

7532 PRINT INPS
3 NEIT I

*.- 253 PRINT. D8; CLOSE GIRDI"

2340 PRINT D$;"0PEN ARALIK,D2"

" I342 PRINT D$; *DELETE ARALIK®
2344 PRINT DS;"0PEN ARALIK,L11,02°

246 FRI=1T0N

‘2348 INPS = STR$ (ARALIK(I))

2350 IF LEN (INP$) = 10 THEN 60T0 2370 .

2352 IF ( LEN (INPS) ) 10 AND VAL (INPS) ¢ .01 AND VAL (INP$) -3 O) THEN INPS =

*,001000000%: §OTO 2370



2350 IF LEN LINPS) ) 10 THEN INPS = LEFTS (INPS,10): GOTD 2370
2356 FOR'L = LEN (INPS) TO 10:INPS = INPS + **: NEXT L
2370 PRINT D8;"NRITE ARALIK,R";1
2312 PRINT INP$
- 2376 NEMT T ,
2380 PRINT D$;"CLOSE ARALIK®
2382 PRINT D$; *OPEN 157,02°
© 2384 - PRINT D$; *DELETE IS1*
',,i2386  PRINT Ds;*OPEN 1ST,L3;02"
<2308 FIRI={T0N '
2390 PRINT, D$;"MRITE 1ST,R";1
n%.ﬂvu)<omuvms-ur BOTO 23% o
2394 VARS = "41* g
239b PRINT VARS: NEXT [ .
2398 PRINT D;*CLOSE 157"
2mmsmnm
2420 X = FRE(0). ,
2430 HPLOT 0,100 TO 270, 100
2440. HPLOT 0,0 T0 0,190 -
U0 FRI=1T0N
' nwxx-AMUKU)zmw
170 Y1 = ¥(D).
- 2480, HPLOT 100 + 11, 100 - vx
290 NEXT.1
2500 PRINT "SINE NAVE'
21505 PRINT D$° : 4
2510° PRINT D$;"PR#1%: PRINT tuns (9)3°6": PRINT D$;PRIO®
2520 - TEXT
2530 HOME-
K0 PRINTDS
5000 PRINT D$;*RUN QUANPROG, D1*



10 HONE
(506 = CHRS (4)

20 BEN &8 AUT.REG.PROCESS S/R 18 .
25 HONE 3 VTAB 10: INPUT *TOTAL ¥ OF SANPLES 2=";NS

260= VAL (NS):sT'='N - 64:T8 = STRS (T)

.27 PRINT D$;°DPEN ORNEX,D2"

28 PRINT.DS$;*DELETE ORNEK*

29 - PRINT 08; *OPEN ORNEK,D2* *
30  PRINT-D8; *KRITE ORKEK®

32 PRINT 1§ . '

35 PRINT 08; CLOSE ORKEK"

3B DY

40 DIN ARALIKINI

15 DIN WNIN) -

60 PRINT

80 INPUT *Al=? (0CAK(1)= . ;K8

BS . PRINT & INPUT *A2:7 (0CAX(1)= %358

- %08 = VAL (KSI:AZ = VAL (S8)
95, PRINT D$;*PRE1*: PRINT : PRINT "Al="Al: PRINT : PRINT *A2="3A2: PRINT

95 PRINT D$;"PREO® -
100 -PRINT ¢ INPUT °ANPLITUDE 7=";¥$

5105 PRINT & INPUT "NUL.VALLE OF I-CO0RD. =786
107 TARP = VAL (58) -
10D = VAL I¥8)

130 SR = SOR-U12)

M0 FRI=1TON
150RM=0

160 FRL=1T012"
170 RAN = mnmm- 5

180 NEXTL
190 NI = (0 / SR)~t‘RAN‘

200 NEXTI.

S0V = = WY -

25 Y(2) = WD) - 5 -

. W0 FRI=3T0N .

BN =T - 1) BAL V(- 2) B A uum
0 NEXT

250 PRINT 2 PRINT =, PRINT. 'xm-,.ma 20: PRINT *Y{1)*

260 PRINT *--—*;: HTAB 20: PRINT *----

20 FIRI=1TON

260 PRINT 1;: HTAB 20: PRINT ¥{l): NEIT I
290 PRINT D8;DPEN GIRDE, 02"

300 PRINT DS;*DELETE BIRDL*

310 PRINT DS;*0PEN-GIRDI,L11,02°

312 FORT = 6570 N ‘

34108 = STRS (Y{D) :
36 IF. LEN (INPS) = 10 THEN - 60T 330

: PRINT “TOT.% OF SAMPLES=":N - &4

318 IF CLEN (INPS). ) 10 AND VAL (INPS) < .01 AND VAL (INP’) ) 0) THEN INP$ = *.001000000": 6OTD 330
320 IF LEN (INP$) ) 10 THEN INPS = LEFT$ lINPG_lO) 6070 330
322 FORL = LEN (INP$) TO 10:INPS = INP$ + **: NEIT L



330 PRINT DS"HRITE BIRDI,R"; I-of
. 360 PRINT INPS :

30 NEXT.I

380~ PRINT D$; "CLOSE GIRDI®

400 HOME : VTAB n .

A0 WSRO

420 HPLOT 0,100 10 270,100

430 - HPLOT 0,070 0,150

Mo FOR I ="85TO N

150 XI'=+{1 - &4) § CARP:YI = Y(I)
A0 HPLOT 100 + XI,100 - ¥I
§10 NEXT '

4B PRINT *AUTO REBG. WAVEFORM®
490 PRINT D%;"PREL'z PRINT CHRS (9);°6"2 PRINT 08;°PRK0"

510 FORI=1TON- &4

520 ARALIK(D) = It NEXT _
530 PRINT D8;*OPEN ARALIK,D2*
540 PRINT DS;°DELETE ARALIK®
(550  PRINT D8;°OPEN ARALIK,L11,02°
560 FORI=1TON-- 64
570 INPS = STRS {ARALIK(1)) - :
B10 FOR L = LEN (INPS) TO 10:INPS = INPS & **i NEXT L
700 PRINT D8;*WRITE ARALIK,R";1
. THO PRINT INPS
750 NEXT D ) _
760 PRINTD8;°CLOSE ARALIK" -
770 PRINT DS;*OEN IST,02°
780" PRINT D$;"DELETE IST*
ﬁrmmmwnmum-
800 FOR I = 4570 N
810 PRINT.DS;"WRITE IST,R%;1 - b4
820, IF YUI) - . THEN VARS = *-1": GOTO 840
830 VARS ;= *41*
840 PRINT VARS: NEXT I
850 PRINT- DS;*CLOSE IST*
1000 TEXT: HOME ~
6000 PRINT DS; "RUN QUANPROS,D1® -



b

,,. 10 REN 88 QUANPROG 88~

N TET: HUHE

2 0N X3,
23018 Q{32
3008 CHRS (A)

100

101

~90 - PRINT ¢ INPUT “# OF DUANTHER LEVELS ?=°;08

PRINT : "INPUT *# OF SUBBLOCK SAMPLES 7=";08
mm- INPUT *NAAT, VALUE OF X-COORD.- 7=";8$

- 102 CARP'= VAL (GS) :
1050= VAL (83): N = VAL {08)

120

130

140
150

180
170

106 NS = Q§:H8 = 08 .
o0

VIAB 14: HTAB 5: FRINT *1- UNIF QUANTIZATIDN'

_HTAB-5: PRINT- '*2-NOKUNIF. 0P, GUANTIZATION®

HTAB 5: PRINT *3-DIFF.GUANT.NITH SUNNER®

HTAB 5: PRINT "4-LOGARITHIC GUANTIZATION®

HTAB S: PRINT *-FEEOFORWARD ADAP.GUANT.®

HTAB S: PRINT “6-DIFF.PULSE CODE NODULATION-(DPCH)®
PRINT: HTAB S: INPUT *CHOOSE ONE OF THEN...’;Us

190 U= VAL (U$)

00

210

0

230
40
20

260

20

30 -
40

150

a0

70
- 480 0§ = "UNTREDDAN® + Q$:N$ = “INTREDGUAN® + N§

490
500
510
520
530

b

330

340

- 310

B0
480
690

580
590

500
610
20
830

o

650
60

IFy-= 1 THEN N$ = "UNIFORM®: GOTO 420
IF U = 2 THEN N$ = "NONUNIF OPT.": 60TD 420

JF U= 3 THEN WS = *DIFF. (SUNMER)*: 6070 420
JIF-U = 4 THEN NS = "LOGARITHNIC': GOTO 420
JF U= 5 THEN N$ = *FFADAPTIVE®: €0TO 420

IF U =6 THEN ®$ = "DPCA"

IF U ) 6 THEN PRINT CHRS (7): 6OTO 110

IFUC )t THEN 6070 520
HONE = HTAB 5: VTAB S: PRINT 'I-MIFURH-HIDRISER VALUES*
HTAB 5: PRINT "2-UNIFORM-NIDTREAD VALUES®

HTAB 5: VTAB 10: PRINT "CHDOSE ONE OF THEN';: HTAB 24 IKPUT ]

VIAB 10: HTAB 24: PRINT I$:X = VAL (1$)
IF X = 1 THEN @ = “UNORN® + Q§:N$ = "UNGUAN® + N$: BOTO 490

IF X = 1 THEN RS = "UNIFORK-NIDRISER": GOTO 510
IFX=2THEN RS = 'UNIFDRH-HIDIREAD'

§0T0 650 '

HOME @ VTAB B: HTAB 5: PRINT *1-GANMA DENSITIES®
HTAB §: PRINT *2-LAPLACE .VALUES® '

HTAB 5: PRINT "3-BAUSS VALUES®

IF U= 2 THEN - 607D 580

HTAB 5:. PRINT '4-UNIFORH*HIDR18£R VAI.UES' '

HTAB 5t PRINT 'S-UNIFDRH-NIDTREAD VALUES"

VTAB 14: HTAB 5: PRINT *CHOOSE OKE OF - THEN";+ HTAB 24:- INPUI 1s
VTAB 14: HTAB 24: PRINT Y$:Y = VAL (Y8)

IF Y ) S THEN PRINT CHRS (7): 5010 520

TFY) =4 THEN X = Y - 3: GOTO 470

IF Y = { THEN 0% = *ORNEK® + O$:KS = "DUANT" + Ns: GDTD 50
IF Y 2 2 THEN @8 = *LAPORN" ¢ D$:N$ = "LAQUAK® + Ns: 6OTD 650
IFY=3 THEN B8 = 'GAUDRN' + O8NS = 'EAQUAH' + K$: 6OTO 450
HOXE -

IFY=1THENRS = ',BAHHA'. GOT0 690

IF Y = 2 THEN RS = *LAPLACE®: GOTD 590

IF Y. 3 THEN RS = "6AUSS*

PRINT D$;"PRR1": PRINT CHRS 19);°I°



© 700 PRINT TAB( 9)"GUANTIZATION OF* .
710 - PRINT- TAB( 5)08;: PRINT TAB{ 9)"SAMPLES * ¢ V8 + * SIGNAL WITH®
T30 PRINT TAB{ SINS;: PRINT TAB( 9)°LEVELS ™ # NS + * QUANT.USING *
740 PRINT TAB(.9)RS + * DENSITIES®
750 PRINT DS;°PRO" o >
2030 HOME - R
2080 * PRINT DS; *DPEN";08;°,02"
2070 PRINT-DS;READ';B8
vmuwmmmmmmm
2090 INPUT X88,X9%, XAS, KBS, XC$, XD$, XES
2100 INPUT- IFS, 168, XHS, XIS, XJ8, K, XL$, XNS, XN$
2110 INPUT 108, XPS, XOS, XRS, XSS, KT8, XUS, Xv$, XN$
2120 PRINT D$;*CLOSE";08
2130 PRINT. DS; "OPEN";N8;*,02°
2140 PRINT DS; "READ";N
muwmwmmmm
2140, INPUT 078,088,094, 008, 088,008
#2070 INPUT. nns,’uss,m,oss,ons,uu,m,m,m,m
" 2180 INPUT NS, Q08,0P$, 008, ORS, OSS, OTs, 0US, GV, ONs
© 2130 PRINT DS;"CLOSE";N$
2200 HOME .
2220 PRINT : PRINT : PRINT “XI$ VALUES';: HTAB 20; PRINT *RIS VALUES®: PRINT *-----—--—*;: HTAB 20: PRINT ®---------v*
ﬂmmmwmmmmwmmmmmmmwmmwmwmmmmmsmmmmwmmf
* 3t HTAB 202 PRINT 65§
mmmmmwmmwmmmmmmﬂmmmwmm
. 2250 PRINT.19%;: HTAB 20: PRINT 095
‘ 2260 PRINT XA$;: HTAB 20: PRINT BA$: PRINT XB8;: HIA 20: PRINT OB$: PRINT IC$;: HTAB 20: PRINT OCS: PRINT XD$;: HTAB 20: PRINT QDS: PRINT XES$
1. HTAB 203 PRINT QES
. 2210 'PRINT F$;: HTAB 20: PRINT GF$: PRINT X683 HTAB 20; PRINT 06
mmmmmmwmmmmmmmwmm
mwmmumwmmwmmumwmms
© 2300 PRINT XL$;: HTAB 20:-PRINT OLS: PRINT XM$;: HTAB 20: PRINT QNs: PRINT INS;: HTAB 20: PRINT ONS

. 2310° PRINT X08;+ HTAB 20: PRINT 903' PRINT XP$;s HTAB 20: PRINT OPS: PRINT XO$;: HTAB 20: PRINT ggs

2mmmmﬂmwmmmmmmﬂmmmmmmmmwmmmmn
2330 PRINT Xus;: HTAB 20: PRINT QUS: PRINT XV$;: HTAB 20: PRINT:QUS: PRINT IN$;: HTAB 20: PRINT ONs
T30 I(1) = VAL (XI$):X(2) = VAL (X26)
2350 X{3)= VAL (X38):X(4)-= VAL (X48)
2360 145) = VAL (XS8):X(E) = VAL (Xb$)
2370 X(T) .= VAL (X76):X(8) = VAL (X8%)

© 7380 -IF N = 4 THEN- 6OTO 2520

2390 X495 = VAL (X96):X(10) = VAL (XAS).
2400 X¢11) = VAL (XBS):X(12) = VAL (XC$)
2410 1013) = VAL (XD$):X(14) = VAL (IES)
2420 1(15) = VAL (XESD:X(16) = VAL LXGS)
430" IF ¥ = B THEN . BOTO 2520

2000 10170 = VAL (XH$):X(18) = VAL (XI$)
2450 XU19) = VAL (XI$):X(20) = VAL (XK$)
. 2460 1421) = VAL (XL8):X(Z2) = VAL (XNS)
2470 X(23) = VAL (INS):X(24) = VAL (XO8)
2480 1125) = VAL (XP$):X(26) = VAL (X08)
2490 X(27) = VAL (XR$):X(28) = VAL (X56)
2500 X{291 = VAL {XT$):X(30) = VAL (XUS)
2510 1M31) = VAL (XV8):XI32) = VAL (XNS)
2520 QX11) = VAL (@18):0X(2) = VAL (828)
2530 DX(3):= VAL (838):R10A) = VAL (Q48)
2540 0X(S) = VAL (056):0X(6) = VAL (Q6$)



| 2580 BX{11) = VAL (OBS):0X(12) = VAL (CH)

- 2m0
me-

2550 Q107 = VﬁL {078):0X(8) = VAL (g88)

2560

IF M= 4 THEN BOTO 2700

2570 QX{9) = VAL (Q98):01(10) = VAL (0A$)

2590 OX(13) = VAL (0D$):0X{14) = VAL (QE$)
2600 QI(15) = VAL -(QF$):0X(18) = VAL (0G$)

2610

2620 QX(17) = VAL (QHS):DI(1B) = VAL (RIS$)

IF N =8 THEN 6010 2700

2630 DX(19) = VAL (0I$):0X(20) = VAL (GKS)
2640 QX(21) = VAL (QL$):0X(22) = VAL (GM8)

2650-BX(23) = “VAL (ONS):QX(24) = VAL (008)-

2660 QXM25) = VAL (QP$):0X(25) = VAL (DOS)

7
2125
2130
2740

2150

2260
210
2780

0

3000
3010

. 2670 DX(27) =" VAL (OR$):QX(28) = VAL {05$)
‘2680 QX(29) = VAL (QT$):0QX(30) = VAL (RUS$)
2690 BX31) = VAL (Qv8):01(32) = VAL (GiS) -

“HONE ‘

VTAB 15¢ PRINT "PLEASE WAIT...*
IF U = 3 THEN 60TD 2760

IF U'= 5 THEN ' 6070 3000°

IF U= & THEN 6OTD 2780

PRINT D$;"BLOAD CHAIN,AS20,D1"

'CALL 520"8.5NRPROG®

PRINT D8;BLOAD- CHAIN, A520,D1®
CALL 520°DIFADAPRU®

PRINT DS; *BLOAD CHAIN, A520, D1*
CALL S20°DPCH*-

PRINT D8;"BLOAD CHAIN,AS20,D1*

-CALL 520'FFADAP9U'

315



1008 = CHRS ()

20 REN 88 QUANTIZAT.,ERR L SRR CALEUL i
30 DIN YNV '

- 35, DIK QYeW)

37 DIN ARALIKIN)

~ 40 DiN ERRINY

BgC=n0C=N

" A5 PRINT-DS;"OPEN DRNEK,D*

30 PRINT-D$; "READ DRMEK"

. 55 INPUT- NNS

50 " PRINT D§; "CLOSE ORNEK®
62 KN = VAL (KNS):HH = NN / N
85 PRINT D$; *0PEN GIRDI,L11,D2°

-GN FRTI=CTOCC:P=1-C+1

70, PRINT D8;"READ GIRDI,R%;1

72 IRUT IKPS:Y(P) = VAL (INPS)
TN ‘
74 PRINT 8 "CLOSE GIRDI®

" 75 PRINT DS;*0PEN ARALIKL1,D2*

T FRI=CIOCC:P=1-C+1
80 * PRINT D$;"READ ARALIK,R";1
B2 INPUT INPS:ARALIKIP) .= VAL (INPS)

83 NEITI
" B4 PRINT D$;°CLOSE ARALIK®

100 IF U = 4 THEN- GOTD 3000

168 REN 3% SIGNA HESAPLANIVOR 88 -
170 816 = 0 '

{76 FIRI=1TON
178816 = GI6 4 Y(I)8 Y(I)

180 -NEXT g

182 §16 = SI6 / N:S_UH = §I6

. 184 SI6 = SER (SI6)°

kY

185 PRINT D$;"PRE 1°

187 " PRINT - PRINT 'SIG"'SIS

168 PRINT Di"PRSO' o o

189 PRINT = INPUT *DD YOU WANT ADAPT.VIA INP VARIAHCE'(YIH)' TS .
190 IF T8= *Y* THEN BOTO 193

191 IF'T$C ) "N* THEN PRINT CHRS (7): 6OTO 189
192816=1

195 FOR1=17032

19 X(1) = X1} 8§15 -

198 QX(I).- Uy 8616

200 NET L

210 FORM=1T0N

20 FIRI'=17032

230 IF ABS (Y(M)) > X(I) THEN 6OTO 260

200 IF (U= 4-AKD.YUM) <. 0) THEN BY(M = - BK(I): 6OTO 270

- 230 QY(W) = QX(1): 6010 270

20, NEXT T -
770 KN

280 IF U= 4 THEN GOTO 3180

5 290 HONE
"300 PRINT D$
310 PRINT D$;*OPEN IST,L3,02°

320 FRI=CTOCLP=1-C+1



330 PRINT Ds; "READ IST,R*:1

340 INPUT ISTS:ING = VAL (IST$)

350 QY(P) = BY(P) 8 ING

360 IF U< 4 THEN Y(P) = V() £ 1N

370 NEAT T

380 PRINT D8;"CLOSE IST*

390- PRINT DS; PR |

400 PRINT : PRINT 'numu VALUES*;: HTAB 20: PRINT ORG. VALUES" PRINT
MO FIRI=1T0K.

L 420 :PRINT Q¥(1);: HTAB 20: PRINT Y(I) KEXT

lf|i

L 430 PRINT D8; “PREO®

- A0 PRINT

" 450 HOME ; VIAB 22

450 HGR : HPLUT 0, 100 10 270,100: HPLOT 0,0 T[l 0 130
470 FORL=1TON

480 PRINT It

10 YI =L

500 11 = ARALIKIL) '8 CARP.

510 HPLOT 70 O+ XI,100 - Y1

320 NEIT L :
530 - PRINT *QUANTIZED SIGNAL®

- 550 PRINT D$;"PREI": PRINT - CHRS (9);°6"

50 TEXT-3 HONE & PRINT *ERRORS!"

570 PRINT *=mmmmemet

00, FOR I '= 170N

- 810 ERR(I) = OVUD) - VD)~

620 PRINT ERR(I) -

630 NEXT

§40° PRINT D8;"PRIO"

480 PRINT D8;"0PEN HATA,L11,02"

b9 FORY=CTOCCIP=T1-C#1

700 ERRS = STR$ (ERR(P)}

710° IF- LEN (ERRS) = 10 THEN  6OTO 750 :

715 IF ( LEN (ERRS) > 10 AND VAL (ERRS) ¢ .01 AND VAL (ERRS)  0) THEN ERRS = *.001000000% GOTO 750
720 1F LEN {ERR$) } 10 THEN ERRS.= -LEFT$ (ERRS,10}: BOTO 750

730 FORL = LEN (ERRS) TO 10

740 ERRS = ERRS + " NEXT L

750 PRINT D$;"NRITE BATA,R";1

760 PRINT ERRS

770 KEXT 1

- 780 PRINT D$;"CLOSE HATA"

900 HINE : VIAB 22: WER 1 HPLOT 0,100 TO 270, 100: HPLOT 0,0 mowo
90 FIR1=1T0K '
920 Y1 = ERR(D)

© 930°11 = ARALIK(I) 8 CARP

940 HPLOT TO 0 + X1,100 - YI: NEXT I
950 PRINT *QUANTIZATION ERROR™

970- PRINT D$; 'PRM" PRINT  CHRS (9)"5" PRINT DS"PRIO‘

980 HOME @ TEXT -
90 TPL=0

1000 FRI=1TON .

©1010-TPL = TPL + ERRCI) 8 ERRID)



1020 NEXT:TPL=TPL/N

1030 IF U= 4 THEN BOTD ;uoo

1040 SNR = SUN / TPL . _

1050 PRINT "SUN=";SUM: PRINT *TPL=";TPL ‘
1060 SNR =, 10 8 -LOG-(SHR) / 2.3: PRINT *SHR=";SMR
1070. HOME '3 vmn S: PRINT D$;*PREL": PRINT - ums (91;"1*: PRINT “SNR=";SKR: PRINT D$;*PRi0*
1080 1878 = '

1090 6070 10000 -

3000 REN #8 LOSARITHIK QUANTIZATION .48

3010 HONE =. PRINT "L05 VALUES OF ¥(1)"

" 3020 PRINT *omm-mmmemmmemient

330 FRI=1T0N

3040 Y(I) = ABS (Y(D))

3050 IF Y1) = O-THEN Y(I) = 0.00001

3060 Y(I) = LOG (YD) / 2.3

3070. PRINT W

3080 NEIT

3090 070 210

- 3100 REM

M056=0

30 FRI={TON

3130 516 = 516 + Y(I) ¢ Y(}s NEXT

3140.508 = SI6./ N: G0TO 1040

380 FORI=1TON .

3190 Y(I) =2,71838 4 (Y(1) § 2.3)

3200 QYD) = 2.71838 4 (RY(D) 8 2.3)

.30 NENT ‘

'3220 8010 290 _

V10000 REN SURECIN. DEVANI DEVREYE GIRIYOR -

"10020 IF CC =N THEX BOTD 15010

10030 C=C e NLC=CC + N

10032 FORI=1TBN - .
10035 X(1) = 1T} / SIG:0X(T) = Qu(D) / sxs- NEXT-
10045° 60TO 65

15010° HONE : VIAB 15: INPUT *D0 YOU NANT AUTUCDRR COEFF. ? (v/m--ss
15020 TF 58 .= " THEN  6OTO 15050

15030 IF S8 ¢ -y "Y*-THEN . GOTO 15010

15040 -PRINT D$;*RUN OZILINTI,Sé,D1".

© 15050 PRINT .D8;"RUN FFTPRO, 56,01"



508 = CHRS (A)
10 REN 18- DIFF. DUAX. S/R 88

15 DIN ¥4K)

"20 DIN ERRIN)
25 DIN.QYN)
30 DIN USEIN + 1)
32 DIN ARALIKIN)
IC=10C=N
37 PRINT D$;"OPEN ORNEX,D2* -
40 FRINT D$;"READ ORMEK*
42, INPUT"JNS
4% PRINT D$;"CLOSE ORNEK®
45 N0 = VAL (NNS):HH = NN / N
A7 PRINT Ds;*OPEN GIRDI,L11,D2*
09 FRI=CTOCC:P=1-C+1
- 50 PRINT D$;*READ BIRDI,R";I .
.52 INPUT INPS:Y(P) = VAL (INPS)
53 NEXT 1

54 PRINT D$;*CLOSE GIRDI*
S PRINT DS;*OPEN ARALIK,L11,D2"
S8 FORI=CTOLCP=1-C+!
60 PRINT D8;*READ ARALIK,R"31 -
62 INPUT INPSIARALIKIP) = VAL (xnps)
83 NEIT D

b4 . PRINT D$;"CLOSE' ARALIK®
" &5 REM ummmwmmmmna
R RN R s
LG8 FRI=ITON -

70 816 = SI6 + Y(I) & Y(I)

go-NEXT ‘

90 SI6 = 516 / N:SUN = SIB

100 S16 = 508 (SI6)

110 PRINT DS;"PRE 1*

120 PRINT : PRINT *SI6=";516 .

130 PRINT D$;"PREO"
140 RO = SUN:RE =0

IS0 FORI=1T0N-1

160 RE=YUD) 8 Y(E ¢:1) +RI

170 MEXT-1. R

180RI=RI/ K

190 HONE
200 PRINT-DS;* PR#1": VTAB 10: PRINT *RO=";R0: PRINT 'Rl" RL
'mmnuwmwmwr

230 FRI=1T0N-1 -

. 240 ERRUL) = YAI + 1) - ALF £ YUI)
w250 NEXT .
“710RS=0: FORI=1TON

280 RS = RS + ERR(I) # ERR{I): NEXT

m%%/WnMWWWNMPWWMWMH

330 PRINT DS;*PRi0"
© 2000 REN 33 DIFF.QUAN, 88



2010 USE(1). = 0
2070 FIRH=1TON

2030 FIRI=1T03 i

2040 ERR(N) = Y(M) - USE(M):INN = 1

2050 IFERRCHY C'O THEN INN = -1

2060 IF 4BS (ERR(N)) ) X{1) THEN 60TO 2200

2070 QY(N) = QX(I) 3 INN

2080 USE(N +.1) = USE(N) + Q¥{N): GOTO 2210

2200 NEXT I
2210 KEXT N
7211 FIR 1 = 110 K:QY(D) = ERRULD - QYCD: HEXT

2213 5= 0:TPL =0
i FDRl=lTﬂl

2215 SUN = SUN + ERRC) 8 ERRET): TPL JPL ¢ QY(I) ! OY(I)

216 NEIT

CBMIBR=108 LOS(SUHITPL)IZS :

219 Pl

0. PRINT & PRINT 'Y(ﬁ)"' HTAB 15: PRINT 'USE(H)" HTAB 27 PRINT *GYim)"
2% FRI=1T0K: PRIHT Y(l)' HTAB 15: PRINT USET)4: HTAB 27: PRINT €Y{1)

2240 NEXT

2250 SUN'= 0:TPL = 0

2060 FOR T =1 TO N

© 2065 ERRUD) = YAI) = USENT + 1)

2270 SUN.= SUN + Y(D) 3 YD)
2260 TPL = m+mmuxmm
2290 KEXT

" 2300.5U,="SUN / NsTPL = TRL / N

“2310-SHR = SUN/ TPLsSNR = 10 ¢ LOG (SNR) / 2.3

2330- PRINT *SNR-QUAN+PRED=";SNR: PRINT "SR-QUAN  =";5PR
3. PRINT DQ"PRIO' :

2340 HONE : VTAB 22 -

2350 KGR : HPLOT 0,100 10 270,100: HPLOT 0, 0 19, 190
0 FRL=1T0K .

2370 Y1 = USE(L)sXI = ARALIK(L) 8 CARP 8 HH

2390 HPLOT 7100 +.X1,100 - Y1 ‘

M0 NEXTL

2410 PRINT "QUANTIZED SIGNAL'

2420 INPUT §§
2430 PRINT DS;"PR¥1": PRINT CHRS (9)"6" PRINT D$;"PREO*: INPUT S8

2435 HOME ¢ VTAB. 22

2440 HGR : HPLOT 0,100 TO 270, 100: HPLIJT 0, 0 Tﬂ 0,190
M50 FRL=1TON

2480 Y1 = ERRIL):XT = ARALIK(LY 8 CARP 8 HH

470 HPLOT 10 0.4 XI, 100 !

- 2480 NEXTL

7500 PRINT "ERROR(Y(M)-USE(H))®

'2501 PRINT D$"PRH"‘ PRINT " CHRS 1913 76" PRINT DQ"PR#O'

2502 TEAT : HONE ,

2504 ‘PRINT D$;*PRAL": PRINT 'ERR(H)'

2505 FRI=1TON

7506 - PRINT ERR(I): NEXT

2509 PRINT D$;*PRIO®

3030 PRINT DS;"OEN HATA,L11,D2"

3040 rnnx-,cmccp-l-ul

3050 ERRS = - STRS {ERR(P))

3060 IF LEN (ERR$) = 10 THEN 60TO 3090

3085 IF ( LEN (ERRS) ) 10 AND VAL (ERRS) ¢ 0)-THEN ERRS =" LEFTS (ERRS, 10): G070 3090
3087 IF ULEN (ERRS) ) 10 AND VAL (ERRS) < .01) THEN ERRS = *,001000000": 6070 3070



3070 FOR L= LEN (ERRS) 1010
3080 ERRS = ERRS. + ' NENT L
3090 PRINT D$;"WRITE HATA,R%; ]

3100 PRINT-ERRS
MW METT
3130 PRINT D$;*CLOSE HaTa"

4000 REN SURECIN DEVAMI DEVREVE BIRIVOR -
4010 IF CC = NN THEN 60TO 10010
$020C=C+NLC=CC+N

4032 FORI=1T0N

4035 1N =D/ RS: an = ﬂX(l) / RS: NEXT

4050 BOTO 47
10010 - VTAB 15: INPUT “DO YOU WANT-AUT.CORRELATION COEFF,? (YIN)"SS

10013 IF G8 = "N" THEN 5010 10020
10014+ 1F'S$ ¢ ) *Y* THEN E0TO 10010 -
10045 PRIHT Ds; "RUK 0ZILINTI,S6,Dt"

10020 PRINT D$;"RUN FFTPROG, S6,01*

321



008= RS M. :
20 REW 88 FEEDFORNARD ADAP.GUANT. 1t~
30 DINYIN ‘

35 DIN QYO

37 DINARALIKIN)

40 DIN ERR(N)

$3C=100=N

45 PRINT DS;"OPEN ORKEK,D2°

50 PRINT D8; "READ ORNEK" -

S5 INUTHNS

60 PRINT [8;*CLOSE ORNEK®

. B2 NN = VAL (NNS):HH = KN / N

85 PRINT Ds;*OPEN BIRDI,L11,D2"

BT FIRI=CTOCCP=1-C+1

70 PRINT D$; *READ GIRDI,R";1

72 INPUT INPS:Y(P) <. VAL (INPS)

C T3 N

74" PRINT D$;"CLOSE smm-,

.75 PRINT D$;"0PEN ARALIK,L11,D2"

n FORI-CTDCCP-I-CH ‘
B0 PRINT DS; *READ ARALIK,R";1

62 INPUT INPSSARALIK(PY = VAL um»
31 \

‘84 PRINT D$;*CLOSE ARALIK"

90° HOME : VTAB {0: INPUT *CHOOSE N VALUE AS WINDOW= *;NI-
168 REN. 8% SIGNA HESAPLANIYOR 88 ‘

1708162 0.

16 FIRI=1TON

“178 516 = sm+vm:vm
180 NEXT 1

181 SM.= I / N

182 SI6 = SCR"(SUM)

B4 FIRI=1TON
18536 =0 C

188 FORN=1TOE+Ml-1 ‘
190 IF M) =N THEN- 6OT0 199
192 516 = I + Y(N) & Y(N)
193 nmn

196 SI6 = SOR (536 / ¥}

198 'IF M ¢ N THEN - 6010 200
199 536 = SIE

200 FORM=171032

202 X(8) = X(N) & SJG:QX(M} = @X(M) 8 SJ6
W6 TN

20 FORN=1T1032

= 2300 IF MBS (YA1)) > X(M) THEN 6OTO 260
250 QY(I) = OX{M)s 6OTO 262 ‘

20 NEXT N ,
%2 FRN=1T032
264 X(M) = X(N) 7 SIB:OXIN) = QX(N) / 536
" 26 KEIT M

70 WEXT1
290 HONE

300 PRINTDS.

310 PRINT D$; "DPEN IST,13,02°
30 FRI=CTOLC:P=1-C+1
330 PRINT D$;"READ ‘IST,R";1 _
o' INPUT ISTS:ING = VAL (ISTS)-



350 0Y(P) < QYIP) 3 ING
.30 NEXT 1 .
380 PRINT 08;°CLOSE IST*

390 PRINT D§;'PR81*
395.>PRINT PRINT *¥INDOM-NI=";NI

400 PRINT : PRINT QUANT, VALUES";= HTAB 20: PRINT “ORG. VALUES" PRINT

MO FRI=1TON

420 PRINT QY{10;x HTAB 20: PRINT YUD): REXT

430.‘PR1NT D§; "PREC".
440 PRINT-

S0 HOKE VA 22

460. HBR : HPLOT 0, 100 10‘270 100 HPLOT 0, 0 10 0,1%

- 410 FORL-=4 TON
.480"PRIIT Ds

430 Y1 = BY(L)

500 X1 = ARALIKILY § CARP

© - 510 HPLOT TO 0+ XI,100 - Y1

920 KEITL

,. "330 PRINT "QUANTIZED SISNAL'
330 - PRINT D§;"PREL": PRINT CHRS (9);°6"

S60. TEXT : HONE : PRINT *ERRORS!"
570 PRINT *---memet

600 FORI=1TON
610 ERRLD) = DY(D) = V(1)

620 PRINT ERR(I) .
630 NEXT .
£40 PRINT .D$; "PREO"

- 680 PRINT DS; "OPEN- HATA,L11, 2

890 FIRI=CTOCCP=1-C+1
700 ERRS = STRS: (ERR(P)) ,
710 IF LEN (ERRS) = 10 THEN 6OTD 750

715 IF ( LEN (ERRS) ) 10 AND . VAL (ERRS) ¢ .01 AND VAL (ERRS) ) 0) THEN ERRS = *.001000000": GOTO 750

10 IF LEN {ERRS) > 10 THEN ERRS = LEFT$ (ERRS,10): BOTO 750
730 FORL = LEN (ERRS) TO 10

740 ERRS = ERRS + **: NEXT L

730 PRINT D$;NRITE HATA,R";1.

760 PRINT ERRS

710 KEIT ] :

780 PRINT: DS; "CLOSE HATA*

900 HONE ¢ VTAB 22: HGR : HPLOT 0,100 TO 270, 100: HPLOT 0, 0 10 0,190
910 FORI=1TON.

" 920 Y1 = ERR(D)

930 11 = ARALIK(1) 8 CARP

© 940 HPLOT TO O ¥ XI,100 - Y13 NEXT |

950°. PRINT 'DUANTIZATION ERROR®
970 PRINT D$;*PRE1": PRINT CHRS (9);"6°: PRINT DS *PREO"
80 HOME : TEXT :



CgoTL=0

1000 FRI=1TON -

1010 TPL = TPL + ERR(D) 8. ERR(I)

1015 EXTT =

1020 TPL = TPL / W

1000 SR =5m/TPL

1050 “PRINT *SUN=";SUN: PRINT *TPL=";TPL -

1040 SR = 108 LOG (SNR) ./ 2.3: PRINT "SHR=";SKR

1070 HONE & VTAB 5, PRIII D$;"PRIL": PRINT CHRS (9)"1" PRINT "SNR=";SNR: PRINT D$;"PRi0*

1080 1578 = **

1090 . 60T0 10000

10000 REM- SURECIN DEVAMI.DEVREYE GIRIYOR
10020 IF CC = NN THEN GOTO 15010

1030 C=CHNCC=CCHN

10032 FORT=1TON
10035 XiI)'= 1T} / SIB:QUUT) = QXAID / SI6: NEXT
10045 60TO 45

. 15040 HOME : VTAB 15 INPUT DO YOU WAKT AUTOCORR.COEFF. 2 (Y/N)*;S8
Hmowmﬂwmumumo
" 15030 IF.S$ ¢ ) *Y* THEN 601D 15010
15040 PRINT DS; *RUN OZILINTI,S6,D1*
15050 - PRINT Ds;"RUN FFTPROG, S6,01"



5 REN s DRCA ML
1008 = CHRS (4)
15 TEXT 3 HONE : PRINT *DIFF.PULSE CODE MOD.°
16 - PRINT D$;*OPEN ORNEK,D2*
17 PRINT DS;"READ DRNEK*
18 INPUT NNS
19 PRINT D$;°CLOSE URNEK"
‘20NN = VAL (NNS):HH = NN / N _
22 VTAB 10: PRINT *TOT.8 OF SAMPLES =";NN$
24, PRINT @ PRINT *# OF SUBBLOCK SAMPLES =";08
25 PRINT': INPUT *F OF COEFFICIENTS =*;R$
30.8 = VAL (R$)
35 PRINT D6;"PREL": PRINT : mur W OF suaawcx SAMPLES="; ns- PRINT *TOT.¥ OF SANPLES="NNS: PRINT *# OF COEFF.=";R$: PRINT D$;"PRE0*
40 DIN YN
.45 DIN PREIN)
50 . DIN QY(N}
~ 55 DIN ERRIN)
&0 DIN PDIR).
&3 DINRIR)
55 DIM CIR,R)
67 DIN.BIR,R)
88 C=1:00 =N ‘
70 “PRINT D$; *0EN BIRDI;L11,02°
n FURI-CTOCCP‘I-CH
74 PRINT D$;"READ amm R%1
76 INPUT INPS:Y(P) = VAL (INPS)
78 NEIT I .
B0 PRINT D$;*CLOSE GIRDI®
105 REN -- ONSORUCU xmsmmm HESAPLANIYCR --
106°VAR = 0
0T FRI=ITON
109 VAR = VAR-+ Y(I) § Y(I): KEXT
110 VAR = VAR / N
L1, FIRK={TDR
130 RIK) = 0
MO FIRI=1TON-K
150 RIK) = RO+ YU $ V(T +K)
10 NETT -
170-RK) = ROK) 7 N - K).
180 NEXTK
190 HONE : PRINT DS;"PRE1* '
200 PRINT ¢ PRINT *ATOCORRELATION COEFF,”
205 PRINT *~= .
210 PRINT 2 PRINT 'R(O)-'-VAR
20 FRI=1T0R -
230 - PRINT. *R%;1")=";R{1)2 NEXT - :
© 250°FOR.1.=1 TO R:RUD) = RCD) 7 VAR: NEXT
20 FRI=1T0R -1 '
270 FRRL=1T0R
mc,n=1
290 IF 1 4L )R THEN 60TO 320
300 CIL + 1, = RUIKSCAL,L ¢ 1) = RUID)
30 MEXT L
320. NEAT 1

340" PRINT 2 PRINT 'AUTOCORRELATIDN HATRIX'
345 PRINT : - PRINT




330 FORI=1T0R.

340 FIRL=1TOR

365 PRINT “C(%;15*, %13 ")=";CAL,L)

30 ML

380 . NEXT T -
© 390" PRINT D8;*PREO® ,
400 BOSUB-1000: REN MATY, mvsnsmu S/R

~ 410 REN 88 REM MATELMILTP 8§

15 PRINT D8;°PRIL*

420, PRINT : PRINT 'PREDIBT(]R COEFF.*

430 PRINT *=mremmmmmmmemmeet

MO FRI=1TOR

150 PDMT) = 0

10 FORK=1.T0R

470 PD(IY = PDID) + BUL,K) & RiK)

480 NEXT K

500 PRINT *PD{";1;*)= “;PDII) .

502 NEXTT '

S04 PRINT D$;"PREO"

505 REM - —-NICELEYICI FFADAP OLUYOR--

S0b FORI=1TON-R

507 ERR(I) = Y(I + R) .

508 FRI=1TOR

- 509 ERR(I) = ERRLI) ~'RWJ) $ YUI ¢ R - 3): NEXT ]
510 NEXT I

§285=0.

S13-FRI=1T0N

514 RS = RS + ERR(I) & ERR(I)

515. NEAT

51685 = RS /(N - 1):RS = SAR: (RS): PRINT ¢ PRIHT -ns- 18
518, FOR [= £.10.32

520 161) = XAIY § RS:QX(E) = BX(T) 8 RS. nsxr
S22 REN --DPCH UYGULANIYOR--

"S5 HOKE :PRECY) = G:ERRLD) = Y1)
S0.FRI=1T0R -

555 FRN=1T032.

540 INK = 1. -

542 xrmuuomm-‘_-x

544 ‘1F. ABS (ERR(I)) 3 X(M) THEN GOTO 549
54 QY(I) = QIIN) § INN: BOTO 550

SI9 NEXT N

550 FORK=1T01 ‘
560 PRE(L + 1) = PDIK) 8 PRECT +1 - K) + PRELI + 1)s NEXT K
580 PRECT +-1) = PRECL + 1) + QYD)

585 ERRUI + 1).= Y41 + 1) = PRE(I + 1)

590 NEXT.D.

600 FORIZR+1TON-1

603 FOR M =1.T032

BTN =1 :
608 IF ERRII) (O THEN NN = -1

"b10 IF ABS (ERR(I)) > X(M) THEN BOTD 620
815 QY(I) = QL(N) § INN: GOTO 630

620° NEXTH -
,.‘530 FIRK=1T0R

640 PREAT + 1). = PDIK) 8 PREI F 1K)+ PRECL + s XEXT K
-850 PRECT + 1) = PRELL + 1) + OV(D)
assm(un-u1+n-mm+u

660 nsxn



562 HOME : VTAB 22: SR~
63 Lo 0,100 TO 270,100: HPLOT 0,0 TO 0 190

b4 FRI=1TON
665 YI = PRE(1):XI = 1 & CARP 8 RH
B87 HPLOT TO 0 + XI,100 - YI: NEXT
668 PRINT “PRED, & QUANTIED SIGMAL®
870 PRINT D$;"PRHI®: PRINT CHRS m;'s-- PRINT D$;*PREO*
672 TEXT : HOME .
“6T3 FORI=1TON
b74 ERR(I) = Y4I) - PRE(I): NEAT
675 PRINT D$;°PRH1"
% 480 PRINT "ORS.SIGNAL";: HTAB 13: PRINT "PRED.SIGN. -, HTAB 26: PRINT *EY(I)*
690 . PRINT So--mao==-";: HTAB 13: PRINT *--meemme- : HTAB 26. PRINT #---nut
<700 FORI=1T0N
710 PRINT Y{D);: HTAB 13: PRINT PRE(I);: HTAB 26: an QYi1: NEXT I
720 PRINT : PRINT *QUAN.ERR.*;: HTAB 20: PRINT *PRED.ERR.®
730" PRINT ®--------=*;: HTAB 20: PRINT "—-----=-*
A0 FORI=1TON-1
750 PRINT ERR(I) - QY(I);: HTAB 20: PRINT ERR(I): NEIT I
755 SEAR'= 0:5UN = 0:TPL =0
760 FRI=1TON-1
765 SANR = (ERR(I) - GY(I))-8 (ERRII) - QY{I)) + snmz
775 SUH-2 YUI) 8 YOI + SuN ‘
777 TPL = ERRAD) $ ERRII) +m
780 MEXT I
-~ B0O SKR = sun/sm SNR =104 LOG (sum 123
B05 SUNR = TPL / SBR

810 SPNR-= SUN / TPL

- B15-5ONR =10 . 106 (SOMR) I235PNR-10! L0 (SPAR) / 2.3
B17 PRINT.: PRINT “SNRE . - o ="s SONR

818 'PRINT ; PRINT "PREDICTOR GAIN . ="SPNR

B19 PRINT & PRINT "SIGNAL TO QUANTIZATION NOISE RATIO:" -snn
820 PRINT D8;°PRIO"
823 PRINT D$;"OPEN HATA,L11,D2°
825. FR'I'=CTOCC-1:P=1-C+1
827 ERRS. =. STRS. (ERR(P) - DY(P))
B30.'IF LEN (ERR$) = 10 THEN GOTO 847 ‘ ‘
B32' IF { LEN (ERRS) ) 10 AND VAL (ERRS) < .01 AND VAL (ERRS) > 0) THEN ERRS = *.001000000": EOTO 847
B34 IF LEN'(ERRS} ¥ 10 THEN ERRS = LEFTS (ERRS,10): GOTO 847
B35 FORL = LEN (ERRS) T0 10
838 ERRS = ERRS + **s HEAT L
847 PRINT D$; "MRITE HATA,R";1
"B49 PRINT ERRS '
S /
851 PRINT DS;*NRITE HATA,R";CC
852 PRINT STR$ (0)
853 PRINT D8;°CLOSE HATA*
855 'REW SURECIN DEVAMI DEVREYE GIRIYOR
858 IF CC = NN THEN “5OTD 900 -
BOC=C+MIC=CC+N
85 FRI=ITON
CBT0-X(D) = MI) / RE:AND) = M) IRS
B75 NEIT I
880 5010 70
© 900 HONE :VTAB 15 INPUT DD You WANT. AUTOCORR. COEFF. m/m' 5
910 IF § = *N* THEN' PRINT DS'RUN FFIPROG,DI* ~ .
920 IF S8 ¢ ) "Y* THEK 6070 900
930 -PRINT D$;*RUN OZILINTI,DI*
~ 1000 REN 38 MATX INVERSION S/R 13
1070 PRINT “MATRIX ELENENTS :*
1080 FOR J=1T0 R



.“

" 1070

1080

PRINT *MATRIY ELENENTS :*
FIR J=1T0 R

1130 BN =1

1140

1150
160
.

Y1)
NT()

1200

T

NEXT

FIR-J=1T0°R

FOR:.I=JT10 R

IF S 3 0 THEN 1210

NEXT I , '
PRINT ¢ PRINT PRINT 'SINBUlﬂR HATRIX' PRINT
XD ,

FUR K = l Tﬂ R

120'S = L, K
1230 T, K0 = c(x Ky
1240 CULK) =
1250 § = BUJ, x;

1260 B3,k = BL,K)
700 BULK) =5

1280

NEXT K

1280 7=1/7C4,0

1300

FIR K=1T0 R

£310 CU,K) = T8 LK)

1330

130

1350

108U, =TEBUK

NEXT K ‘
FOR L=LT0 R
IF L= J THEN 1410

1360 7= - CiL,d)

1310

1400

. 1450

150

1410

1420
1425
1430

140

1445

1460

1470
{80
1510

1515

FIR°K=1T0 R

. 1380 CIL,K) = C(L Kl # T8 CLLK)
1390 BIL, K= BiL oK) + T 3BU,K)

REXT K

NEIT. L

NEXT ')

PRINT D$;"PRE1"

PRINT .

PRINT *THE INVERSE HATRIX I5:*
PRINT *—-— . *s PRINT
FR T=170-R ‘
PR I=1T0R

PRINT "BI% 137 153 Bl J)
XT3

KEXT I

PRINT DS;"PREO"

RETURI




50§ = CHRS (4)

10
0
40
30
A
33
£
-

REN 83 FFTPROS 8t

REN  $3RADIX-2 FFTS8

HONE

YTAB 2: HTAB 15: PRIHI *FOURIER TRANSFDRH' ‘

HTAB {5: PRINT *---ve--venio—memmm
mwmmmmmmwm
IF 68 = *N* THEN . BOTD 57.

IF 6§ ¢ ) "Y* THEN PRINT CHRS (7): GOTO 53

56 K8 =*1%: PRINT ¢ INPUT *# OF HULTIPLIEATIUN' j68:6 = VAL {BS)

3
.98
0
b2

PRINT Ds; *0PEN ORNEK, 02"
PRINT D$;"READ ORNEK"
INPUT CC$

PRINT D$; *CLOSE ORNEK®

7= VAL (D8

n
ILE
73
1
n
80

HOKE -

VTAB 10z PRINT "TOTAL # OF SANPLES =%; CCS"
DIX X(CD)

DIN Y(CD)

DIN MAG(CC)

PRINT & INPUT °L? {NK=2*L)*;F$

TR0 L= VAL (FS)

100
110
113
115
111
120

121.

i
12
15
121
30
135
136
137

140

143
150
135
140
163

165

166

PRINT = INPUT *FFTI=?(-1 OR 1)*;5$
FFTI.= VAL.IS8)

HONE '+ VTAB 10: PRINT *1-PECTRUM OF THE INPUT" :

PRINT ; PRINT *2-SPECTRUN OF THE ERROR" R
PRINT : PRINT *3-SPEC,OF ‘INPUT AUTOCORR.COEFF.” . ‘

PRINT : PRINT .*4-SPEC.OF ERROR: AUTOCORR. COEFF.®

PRINT 3 PRINT “S-SPECTRUN OF NULTIPLE SIGNALS"
PRINT : PRINT *b-EXIT*

PRINT 2" INPUT *CHOOSE ONE OF THEN...="; ss
s-vmwnlfrwmmmm-wmrwrﬂmmwnr-mmm-mmuo
IF § = 2 THEN SPEKS = *HATA":338 = *ERROR:FFT$ = "HATAFFT*: 60D 140

IF § = 3 THEN SPEKS = *AUTOG*:0$ = "AUT.OF INP*:FFTS = "AUTOSFFT*; G010 140
IF §'= & THEN SPEKS = "AUTOH':3J$ = "AUT.OF ERR,":FFT$ = "AUTOHFFT": GOTO 140
IF 5 =5 THEN " PRINT D$;°RUN NAIN,DI*

£0T0 2000

IF (5=10R S =2) THEN NP = CC: GOTO 153

IF (5=3'0R § = 4 AND CC ¢ 32) THEN NP = 162 6OTD 155
IF(5=30RS=4MDCC)32) THENNP =32L =5

HONE : VTAB 10z HTAB 5: PRINT "SPECTRUN OF *;3Js

HTAB 5: VTAB- 12: PRINT "PLEASE WAIT,.."

PRINT D§ .

PRINT DS§; *OPEN®;SPEKS;* ,an n*

IF (S =1 OR S =2) THEN 7 = {: GOTD 170

167 PRINT D$;"READ";SPEXS; " ,R0"

168,,:I0PUT VARS:X{1)-= VAL (VARSY:YUD) = 0:1 = 2 »
I FRI=1T0N .
175 -PRINT D$;*READ*;SPEKS; " ;R™;1

178" INPUT-ERRS:ERR = VAL (ERRS):X(D) = ERR

200 Y(1) = 0

20 NEXT I

215 PRINT D8;"[LOSE";SPEKS

217

PRINT JJ8; " VALUES®

218 .FOR I = 1.0 NP:. PRINT X(Il NEXT

20

LMY = NP

230 SCL = 6, 263185 / NP



U0 FRLO=1TOL .
B =LN
260 LNX =ML /2
210 ARG = 0 :
280 FIRIM=1T0LM
. 280 C = COS (ARG)
"300 5= SIN (ARG
310 ARG = ARG + SCL
320 FOR Lt = LIX 1O WP STEP LIX
BOM=U-LIN+LM
W=y
30T =200 - 13D
30 T2=Y0D - YWD
370 X030 = IQ0) +.X002)

- 3B0YON = YA+ YUY

momz)-czrusxrz
RO YD =CET2- 50T
MO NEXTLLLN
12050 = 28 5L
T
440 " REN —BIT REVERSAL—-
1507 =1
450 W2 = up_lz. ’
470 NIPN = WP - |
480 FOR 1= 1TONIPH
190 IF 1) =J THEN 6OTD 540
500 T1=10)
mnr=vy
520 XD) = XD
530 YUl = VD)
Sk X =Tl
550 Yin =127
560 K = NV2 .
S0 IF KD = J-THEW §mo uo
I||SBOJ J K ‘
~50K=K/2:
- boo 60T0 570
NIPEREY S
520 NEXT I
530- FRINT : PRINT ¢ PRINT

B 840 HTAB 1: PRINT 'COEFFICIENTS oF FOURIER TRANSFDRHATIDN':':

650 'HTAB I: PRINT -
- G40 HTAB:1E PRINT LA HTAB 20: BRINT *Y(1)*
670 HIAB 1z FRINT "%z HTAD 20: PRINT *-—*
680 FOR 1 =170 NiPY ,
" 630 FRINT X{1);z KTAB 201 PRINT vm
700 KEXTT

720 G0SUB B10: REN —MBNITUDE .

. T30.IF FFTL = £ THEN BOTO 790
M0 FRRI=1TON o
TS0 XD = XN K

330



TV = - YD I WP
770 HTAB 1: PRINT X(I);: HTAB 20: PRINT Y(I)

780 MEXT
LRS!

800 END.

B10 REN #% MAGNITUDE S/R 84
B30 IFL(STHEN Y =1
BMoY=5
850 FOR I = 1. TO NIPH
860 SY = X(1) 3 X(D)"
870°SY = YiI) ¢ Y(I)
B80 UM = SX + SY
. 890 MAG(I) = SOR (SUM)
900 IF NAG(I) = 0 THEN MAB{T) = 0.0000001
910 MABITY = 10 ¢ LOG (MABUIN)
920 NEIT I: PRINT DS;"PRAL"
930 PRINT : PRINT : PRINT
940 PRINT “"NAGRITUDE VALUES (xu o)
950. PRINT *-mmmrmmmns -
950 PRINT.J3s :
970 . PRINT *=--—--*
980 FOR I = 1 70 NP
990 - PRINT MAG(I): NEXT I
- 995 PRINT DS;*PRIO"
1000 IF H$ = °1° THEK BOTD 1005
1002 C = 1:N = HP: GOTO 1006
1005C=(6-1) § NP:N = NP 86
1005 PRINT DS,
1007 PRINT Ds;*0PEN*;FFT$;" L1102 -
1008 FIRI=CTON-1:P=1-C+1
1012 INPS = STRS (NAGIP))
1004 IF- LEN (INP$) = 10 THEN 60TO 1023
. -1016 "IF. ( LEN (ENPS) > 10 AND VAL (INPS) < .01 AND VAL (INPS) > O} THEN INP$ = *.001000000%: GOTD 1023
{019 IF LEN (INP$) ) 10 THEN INPS = . LEFTS (INPS,!O) 6070 1023
1620 FOR XX = LEN (INPS) TO 10
1022 INPS = INP$ + * *: NEXT XX
1023 - PRINT D$- _
1025 PRINT ns--unxrs-'rfrs;-,n- I
1027 - PRINT InP$
1028 NEXT-T
1029 "PRINT D8
<1030 PRINT D$;"CLOSE*;FFTS ‘
1035+ IF_NIPN < 64 THEN CARP = 4 GOTO 1040 -
1036 IF NIPN 128 THEN CARP = 2: 6010 1040
1038, IF MIPK ¢ 256 THEN CARP = 1: 60T 1040
1039 IF NIPN ) 25b THEN CARP = .5

© 1040 HDME : VTAB 23: HER

1050 - HPLOT 0,100 .T0 270,100

1060 HPLOT 0,0 TO 0,190

1070 FORI=1T0 n1pn

1080 X1 = 1 8 CARP -

1090 YI'= MAG(I)

1100 " HPLOT .TO 0 + X1,100 - ¥I

1110 KEXTT :

* 1130 PRINT "FOURIER. TRANSFORN OF *;J3
1150 PRINT D$;"PRE1": PRINT CHRS (9) *6': PRINT D$; *PREO®
1150 TEAT: .
1170 6010 113

2000 IF H$ = *1* THEN BOTO 5000



2005 - PRINT Ds; "OPEN GIRDI, L1102 -
2010° PRINT B$;*DELETE BIRDI"™
2020 PRINT, D$; *OPEN HATA,L11,D2°

- 2030 PRINT D$;"DELETE HATA®

2040 PRINT Ds; "OPEN AUTOS,L11,02°

2050 PRINT DS;*DELETE AUTOE"

200 PRINT D$;"OPEN AUTOH,LL1;02"

2070 PRINT Ds;"DELETE AuTOH"

2080 PRINT Ds;*GPEN ARALIK, L11,D2°
2090 - PRINT DS;*DELETE ARALIK®
2100 PRIKT D$;"0PEN 15T,L11,02°

2110 PRINT Ds}'DELEIE IsT".

2120 PRINT D8;OPEN FFT,L11,02"

2030 PRINT D$; *DELETE FFT*

3000 HOME : B0 :

5000 REM -KATLAMALI SPEKTRUM CIZII

5002 FOR T = 1.T0 NP

5005 BT = 0: NEXT

5006 HONE.: VTAB 10: PRINT *1-HULT.SPECTRUN-OF THE INPUT*
5007 PRINT ¢ PRINT *2-MULT,SPECTRUN OF THE ERROR®

5008 PRINT ; PRINT “3-NULT.SPEC.OF INPUT AUTOCORR.COEFF.*

5009 ‘PRINT : PRINT "4-MULT.SPEC.OF ERROR AUTOCORR.COEFF.®
5010 PRINT : PRINT *S-EXIT* :

5011 PRINT : INPUT “CHOOSE ONE OF THEM...=";5¢ -

5014 S = VAL (S$): IF §'= 1 THEN FFT$ = "GIRDIFFT*: GOTO 5038
5015 IF 5 = 2 THEN FFT$ = “HATAFFT*: 60T0-5038°

5016 1IF §.= 3 THEN FFTS = *AUTOBFFT*: GOTO 5038 -

5017 IF .= 4 THEN FFT$ = *AUTOHFFT*:. 60TD 5038
5020  60T0 2005

. 5038 PRINT D83 OPEN';FFTS;* L11, 02"

5039 FOR L = 1 70 NIPN -
5040 FOR I =L T0 N STEP NIPK

5050. PRINT D8 "READ";FFT$; " R%;1
5060 INPUT INPS.

5070 MAGIL) = WAGIL) + VAL (INP$)
5080 NEXT I

5085 MABIL) = KAG(L) / 6

5090 NEXT L

100 PRINT Db CLOSE";FFTS

5150 HONE: VTAB 21

" 5150 HGR

5170 HPLOT 0,100 T 270,100
5180 HPLOT'0,0 T0 0,190

5190 FOR I=1 TO NIPN

5200 11 < 1 3-CARP

5210 Y1 = NAG(I).

5220 HPLOT Y0 0"+ X1,100 - VI
5230 NEIT

4 S240. PRINT 'HULTIPLE FOURIER TRANSFORM OF *;JJs _
3210 PRINT-D$;"PRHL": PRINT . CHRS (9);%6": PRINT D$;'PREO*
- 3280 TEIT

5290 6OT0 2005



APPENDIX B

333

PROGRAM LISTINGS OF
EDGE DETECTION

TECHNIQUES



10

REN 838 MAIN NENU 118

2008 = CHRS (4)

3
0
50
6
10
)
%
100
110
120

3 . 130 ¢

0
- 150
140
m

180°

i%
20
20
B0
.30
20

HOME : VTAB 8: PRINT *1-VERTICAL EDGE®

PRINT *2-DIAGONAL EDGE"
PRINT “3-CIRCULAR SHAPE®

VIAB 13 INPUT “CHODSE ONE OF THEN...";A
IF(ACTORA D3I THEN PRINT CHRS (7): BOTO 60
HOME : TAB 8: PRINT *I-KIRSCH NASKS®
PRINT *2-SOBEL OPERATOR"

PRINT *3-NOKLIN,EGE DETEC, ROSENFIELD®

VIAB 12: INPUT *CHOOSE OKE OF THEM...";B
IF(B-C1ORBY3) THEN PRINT CHRS (7): BOTD 110
IF B =3 THEN -GOTO 180
HONE : VTAB 10: PRINT *1- FIED THRESHOLD®

PRINT "2- LOCALLY ADAP.THRH.®

YTAB 13: INPUT "CHOOSE ONE OF THEN..,';00

JF (00 CSOR QR ) 2) THEN PRINT CHRS (7): 6OTO 160
ON A 600 190,210,230 - - g
_PRINT D$; *BLOAD CHAIN,AS20"

CALL '520"VERTICAL® o

PRINT D$;"BLOAD CHAIN,AS20":

CALL S20°DIAGONAL®

PRINT-D$;"BLOAD CHAIN,AS20° -

CALL S20°CIRCULAR® -



10
. 20:
3

40
30

o

70

B0
90 1
100

10
120
130
140

150"

180
170,
180-
190

20
it

0
20
240
¥l
20

270

280
290

. 300

310

!
i)

30
50
360
n
380
3%

40
410

120
30
10
450

50
am

180
%0

:‘509

's10

520

530
o

. 550

0
570
380
590
500

()

REN . $3-VERTICAL EDGE 88
HOME -+ 'VTAB 10

'INPUT *CHOOSE THE DIMENSION OF THE PICTURE ,BY

DIN A(BY,BY) :
HONE = VTAB 10z PRINT *PLEASE cmwss THE CONTRAST VALLES:: PRINT
INPUT *D1=";D1

INPUT- *D2=";02

IF A= 3 THEN BOTO 120

INPUT *3=*303 -

IF A =2 THEN BOTD 120

INPUT *DA="; D4

REN " DESIGNING A VERTICAL EDGE

REM : NDISE DECISION

PRINT ¢ INPUT D0 YOU KANT TO ADD NOISE? *3CEVS

IF CEVS = *N* THEN G070 200 -

IFCEVS <) *Y* THEN PRINT CHRS (7): GOTOD 140
FRINT 1 INPUT *CHOOSE THE SIGNA VALUE=;S16.
PRINT D8;*PRE1": PRINT “NOISE ADDITIOR WITH SIGNA=";S1S
PRINT D8;*PRI0"

FRI=1T0BY/2-2
FORJ=1T08Y

VAR = 0

FOR K =110 12

RN = RND (K +J)

VAR =RN + VAR

NEXT K .

V=1 I .SOR (12) 3 VAR
Ald, 1) = INT (VAR 8.D1)
lEXT J '

NEXT ] o
FﬂRI-BYI2-1T08YI2 -
FOR-J =1 T0- BY

VAR =0

FUR X=171012

RN= RND (K + )

VAR = RN + VAR

NEXT K

ViR =1 I SOR (12} ¥ VAR
MJ 1= N WAR 4 02}
NEXTJ

EIT 1 |
FORI=BY/72+1T08Y/2+2
FIRJ=1TOBY -
VWR=0" ’
FORK'=170 12

RN= RD.IK+0)
VAR = RN + VAR

KEXTK

VAR-II SQR (lZ)lVAR
MJ 1) = INT (VAR 8 D3) .
NEXT J '
NEIT 1
FORI‘BY/ZfSTDBY
FORJ=1T10BY

VR =0

FﬂRK-lﬂ] 12 .

RN = RND (K +4d)

VARZ RN+ VAR

NEITK .
VAR' 1/ SOR (12} HIAR
A(J 1) = INT (VAR §'D4)



620

T

b 630" NEXT I

640

450
640

480
b%0
.10
0
120
730
L]

750 IF 0= 2 THEN. GOTO 780
PRINT D$; "BLOAD CHAIN,A520"

750
70
o180
790

800-
810

IF CEVS =."N* THEN 6070490
FIRK=1T0BY -
FOR L =170 BY.

670 AK,L) = INT { RND (K + L) 8 SI6 + A(K,L)) -

NEIT LK o
ON B 60TD 700,750,800
IF 00 = 2 THEN' BOTO 730
PRINT D$;"BLOAD CHAIN,A520%
CALL 520"VERT.KIRFIX*

PRINT-D8; "BLOAD CHAIN, A520°
‘CALL -520°VERT.KIRADAP®

IF 00°= 2 THEN. 6OTO 780

CALL 520°VERT.SOBFIX® .

-PRINT D;"BLOAD CHAIN,AS20"

CALL 520°VERT.SOBADAP*
PRINT- D$; “BLOAD CHAIN,AS20°
CALL '520*VERT.ROS"



10 REN 88 DIAGONAL EDEE 11

20 "HONE 3 VTAB 10

30 INPUT °CHOOSE THE nmznsxm OF THE PICTURE: *;BY
40 " DIN-AtBY,BY) - '

50 . HONE : VTAB 1o: PRINT *PLEASE CHOOSE THE CONTRAST VALUES:': PRINT
. b0 INPUT *DI=%D1

70, INPUT "D2s%;D2

B0 IF A= 3 THEN BOTO 120

%0 IRUT D330

100 “IF A= 2 THEN 6OTD 120

110 INPUT *Dd=";04.

120 REN. DESIENING A DIAGONAL EDGE

130° REN NOISE DECISION ' -
140- PRINT = INPUT- *DO YOU WANT TO ADD NOISE? *;CEVS
150 IF CEVS = "N* THEN GOTO 200

160 IF CEVS ¢ ) "Y* THEN  PRINT CHRS (7): GOTD 140 -
170 . PRINT = INPUT "CHODSE THE SIGMA VALUE=";51E

180 PRINT DS;"PRO1": PRINT "NOISE ADDITION WITH SIGMA=";SI6
190 PRINT-D3;"PRIO™

200 FORI=1T0BY

. 20 FORJ =1 TOBY

C20WR=0

30 rnnx-xmlz

HORK= RND IK + )

250 VAR = BN + VAR
1,280 NET K
0wl 1 S ¢

280 IF 1) 3 THEN AUL3) = INT (VAR § D1): GOTO 310
0 IF 1 =3 THEN A(1,J) = INT (VAR ¢ D2)s GOTO 310
300 ALL,3) = INT (VAR $.03) - R
310 ¥ELT 3,1
320 IF-CEVS = "N* THEN 6070 370
30 FORK=1T0BY
340 FORL'=17T0BY
350 AIK,LY = INT CRMD (K4 L) zsmwx L
30 MEXT LK
=370f_DHSOTn 380,430,480 .
30 IF0: 2m£n IO AL0
3% PRINT m--mmn CHAIN, A520*
400, CALL 520°VERT.KIRFIX*
- 410 PRINT D$; *BLOMD CHAIN, A520"
420" CALL-520°VERT.KIRADAP®
(430 IF 00 = 2 THEN 60TD 480
. 440 PRINT D$;°BLOAD CHAIN,A520°
450 -.CALL 520°VERT.SOBFIX*
450 PRINT D$;*BLOAD CHAIN,AS20"
470 CALL 520°VERT.SOBADAP®
480 PRINT DS;"BLOAD CHAIN,AS20"
490 CALL 520°VERT.ROS®



R 3

20

k)

»

. 50

60.

70

80-

R
120
130

130
150

160

170

180

0

'ili

- 190

200
210
0

30

20

260

20
|

2%
0

310 -
320
330

- 340

350
360

370
30

-3

400

4o

120

430
m

450
450

. 470

)
9

REH 98 CIRCULAR SHAPE 44
HONE. = VTAB 10 ,
“INPUT *CHOBSE THE ‘DINENSION OF THE PICTURE:*;Y

'

DIN ABY,BY) .
HONE = VIAB 10 FRINT *PLEASE CHOOSE THE COVTRAST VALUES:": PRINT

INPUT *Di=*;Dt

IRUT *12="302 ‘

PRINT : INPUT *CHOOSE THE RADIOUS OF THE CIRCLE=";RA
IFRA ) BY / 2 THEN -PRINT 'CHRS (7): 6OTO 80

REN DESIGNING A CIRCULAR SHAPE

REN  NOISE DECISION

PRINT + - INPUT “D0 YOU WANT T ADD NOISE? *;CEVS

IF CEVS = "N THEN " 6OTD 200 |

IF CEVS ¢ ) "Y*THEN PRINT CHRS (7): GOTD 140
'PRINT : INPUT *CHOOSE THE SIGHA VALUE=";SIE

PRINT DS *PREI": PRINT "NOISE ADDITION KITH SIENA=;SIG-

PRINT D$; *PRI0"
XC=BY/2VC=BY /2
FIRK=1T0BY.

FOR L= 1 T0 BY
VRi=0
FRT=171012
RN = RND (K#J) .
YR =V RN
NEXTD

VAR.=17 SR (12) 1 VAR

IFAK=X00 424 (L-Y0) »2) ( RA 2) THEN AWK L) = INT (VAR § 02): GOTO 3!0

AK,L) = INT (VAR 8 D) -
RATLE -

IF CEVS = *N* THEW 600 370

FORK =1 TOBY

FIRL=1TOB

MK,LY = INT CRAD (K-+ L) & SI6 + AIK,L))
NEXT L;K

IK B GOTD 380, 430,480

IF 00 = 2 THEN GOTD 410

PRINT 5;°8L0AD CHAIN, 520"

CALL S20°VERT.KIRFIX®

PRINT D8;*BLOAD CHAIN,AS20"

CALL 520"VERT, KIRADAP®

IF 0= 2 THEN 6OTD 460

PRINT D8;*BLOAD CHAIN, 520"

CALL 520°VERT. SOBFIX®

PRINT D8;*BLOAD CHAIN, AS20*
CALL'szo'vsnr.snmAP-

PRINT D$; *BLOAD CHAIN, AS20*

CALL 520°VERT.ROS*



o 10 REN 88 VERTICAL EDGE-SOBEL OP.WITH ADAP.THR. 88

G20 DINAMG,3),SAOEY 8 BY) 7 2,3)
.30 DIN GD(BY,BY), T(8Y,BY) ;R(BY,BY)

40 PRINT D"'Pﬂll'
50 PRINT : -PRINT : PRINT "EDGE DETECTION BY USINE SOBEL ﬂ?ERATDR ¢ ADAPTIVE THRESH. *
50 * PRINT *

70 PRINT -comasrs D=1

B0 PRINT® D2 "DZ

85 IF A ='3 THEN '6OTO 110

- 90 'PRINT,f"‘ A
© 95 IF A =2 THEN 6OTO 110

100 . PRINT *- © D=t

110 PRINT. ¢ PRIRT PRINT 'ﬂRJINAL IHASE'

120° BRINT *emmimmiemimact
130 PRINT ' PRINT

- 140 PRINT - CHRS. (15) POKE 1657,130
150 FORJ=1TOBY
160 FOR L'=170 BY:
A70-18 = -STRS- (A, 1)):¥8 = **

180 FOR K = LEN (£8) TO 3:¥8-= Y8 +* "2 NEXTK
190 PRINT AU, DN;YS;

00 NECTT '

20 FRINT

- 2207 NEXT 1

230 B0SUE 70002 REN  BIT IHAGE-PR.
2000. REN- SOBEL OPERATION

2010 FIRK =1 T0 BY

020 FRL=1T08Y

2030 FOR I =17T03

2040 FIRJ=1T03

. 2050 AALLY) = 0
L2060 NEXT J
. 2070 NEXT I
B ENNER

2090 FIRI=K-1T0K+1

00 FRI=L-1T0L+1

210 IF (1= 00R d.= 0) THEN GOTO 2140

A0 IF(L=By+ LR Y= BY + 1) THEN EOTO 2040
2430 ALY = ML) |

MY =V ¥ 1

250 NEXTY

UL E LY

2A70 NEXT-T -

.- 2180 XX = (AA(l DeILMIZD ¢ AA(3,3)) - (AML,1) + 2 8 AAZ,T) + ARE3, 1))
230 YY S (AL LD + 278 AR(L2) + ARIL,3DN- (AAIS,1) ¢ 2 & AA(3,2) + AA(3,3))

200 REN BBIK,L) = ‘SAR {XX* 24 YY *2): BD(K L= INT {6DIK, L))
2210 BD(K,L) = ABS (XX) + ABS. (YY):BD(K,L) = INT (GD(K Ll)
220 NEXT L

230 KeXT X

2240 “PRINT : PRINT : PRINT 'ERADIENT INABE"

" 2230 PRINT *---mee— -t
.2260 PRIIT PRINT PRINT CHRi {13)

v
fye



200 FIR J = 1 T0-BY
280 FOR 1= 170 BY

,2290 I$-= STRS (6D(J,1)0:¥8 = *
2300 FORK = LEN (16) T0 4s¥8 = Y$ + * *: NEXT K

2310 PRINT 603, 1); ;Y8

BW KT

‘2330 PRINT

2340 KEXT ) ,
2350 . FOR 1= 17T0-BY

230 FORJ =1 10 BY
2370 ALY = BDILY
280 NEXTJ

230 KNI

2400 GOSUB 7000: REM BIT IN.PR,

5., 4000 REN 88 THRESHOLDING 88
4010 FRK=1TOBY
4020 FORL =170 BY

4030 ¥ = 1:00 = 0.
1000 FRI=K-1T0K+1

M50 FORJ=L-1T0L+1
4060 IF-{1 = 0.0 J = 0) THEN BOTO 4100

4070 IF (T=BY ¢ 1 0RJ=BY+1) THEN GUTO 400 -
4080-CHY = CHV t GD(I oo

Y=Y

MO0 KEIT)
M0 IEXTI

" A0 CNV= OV /Y

- 430 IF A= 1 ORL = 1) THEN 4160
A TFK=BYORL = BY) THEN 4160
M50 IF 8DIX, I.) ) ONY THEH TIK, l.) = {2 £OTO 4170

460 T(K,L) =

M0 KEITL

. MBO MEITX

4150 “PRINT : PRINT
4200 PRINT “ADAPTIVE THRESHILIING"
210 PRINT

4220 PRINT :
K300 FORK=1TOBY

310 FORL =1T0BY
£320 IF T(K,L)-= § THEN GOTO 4380
A330° PRINT CHRS (27)3"K"; CHRS (B); CHRS (0);

4340 FOR@=17T08

4350. PRINT .CHRS (B(12,));
4350 NEXT @ ‘
4370 60TO 4420

" 430 PRINT CHRS (27);°K"; CHRS (8); CHRS (0);

435 FOROQ=1T08

-4400 PRINT CHRS {B(1,0));

H10 NEXT €

340



M0 NEITL
M3 PRINT.

4440 NEIT K

" AH5 GOSUB 12000: REN ANALYSIS

1430 -REW --LIMITING #--

MOL=0 '

MI0 FRI=1T0 By

4480 "FOR 3 = 1 TO BY :
430 IF TULA) < ) 1 THEN GOTO 4520

AS00L=L 41

4510 SNIL,1) = 6D(I,J0:SNIL, 2) = [35NIL,3) = J
520 NEXT 3

1530 NEXT 1 ;

4540 PRINT : PRINT "NUNBER OF BLACK PITS"'L -

4S50 PRINT DS;'PRE0*

4560 HONE : VTAB 10: INPUT "CHOOSE THE MAXIMUN- 845 A THRESHOLD: *;LIN
4510 PRINT D$;“PREL®

- 4S80 PRINT : PRINT -mnzsnuw Asnununs- LN
4590 . PRINT "=-sme

WO FRI=1T0L

4810 FORI =1+ 1T0L

I'li

1520 TF-SNUL,1) ) SKUJ, 1) THEN 6OTO uso
uxo'ruxx-lms '

4640 TEXP = SN(L,K)

4650 SK(1,K) = sn_u,x)g

650 SNII,K) = TENP .

4670 NEXT X -

180 NEXT

190 NEXTI-

4700 FOR I=1 10 BY

4710 FOR-3 =1 T0 BY

20 T3 =0
AT NENTJ

AT NETT

4750 FOR'K = 170 LIN
4740 TISN(K, 23, SNK,30) = 1

" ATIO NENT K

4850  PRINT

480 FOR K = 1 10 BY

4870 FORL =1 TG BY
4880 IF T(K,L) = 1 THEN GOTC 4940

4890 PRINT CHRS (27);°K"; CHRS {8); CHR$ (0),

1900 FORQ=1T08:
1910 PRINT CHR$ (B(IZ OH,
1920 NEXT O

. 4930 GOTO 4980

4940 . PRINT CHR$ (27) K CHR‘ {8); CHRS (0)'
95 FORQ@=1T08:

" 4980.. PRINT. CHRS (8(1 0);

- 4970 NEXT @

© . 4980 MEXT L

1990 PRINT

5000 NEXT K

5005 60SUB 12000: REN ANALYSIS

5010 PRINT D$

5020 PRINT DS;°PREO*
5030° END .

7000 REN i BITIHABE PRIHTING 838

7010 HAX : AL, 1)
1020 FDR K =1 Tﬂ BY



“7030 FOR'L=1TOBY
7040 IF Ml( {1 HAX THER MAX = ALK, U
7050 NEIT L '

7080 NEXTK

7070 MULT = 400 / HAX _ ‘ :
7080 PRINT : PRINT *MULTIPLICATION vAwE *sHULT: PRINT
7090 FOIRK =1T0BY - '

© 7100. FORL =1 TO BY

71O RIK,L) = INT (AIK,LY ¢ HLT)

7120 .usm ' o

7130 CNEXT K

-7250 - PRINT CHRS (18)

© 7260 FORJ =110 BY

7270 FOR 1 =1 TOBY

7280 IF RUJ,1) ) 280 THEN 8010
7290 IF RUJ, 1) > 240 THEN 8080

7300 IF RUJ,1) > 210 THEN B120

“7310- 1F R(J,1) ) 190 THEN 8180
7320. 1F-RW,T) ¥ 175 THEN 8240
7330 IF-R(3,11°) 140 THEN-8300

T340 IF 'R, 1) ) 135 THEN 8340
7350 IF RUJ,1) ) 110 THEN 8420
T340 IFRUJ;1) ) 80 THEN 8480
7310 IF RU,1) ) 50 THEN 8540

. T380 “IF R, 1) > 40 THEN 8400
‘T390 IF R(3,1) > 20 THEN 8450
7400 IF R13,1) ) 10 THEN 8720

‘7410 GOTO 6780

420 NEXT I

M3 PRINT - .
Mo NEITI

~ A0 RETURN -

8000 REX

BOO PRINT CHRS .(27);7K"; CHRS 18); CHRS (0);

»‘MZO_FME'ITDB

8030 PRINT CHRS (B(1,00); -
- BOAD NERT O - A
8050 6OTO 7420
8080 REM: : .
8070 FRINT ums (27)"X"; CHRS (9); CHRS w»
8080 FORD=1T08
BO0 . PRINT. CHRS (B2,00);
B0 MENTQR .
8110 6OTO 7420
BI20 REN
B130 PRINT CHRS (27);%%; CRS B); s 10
B4 FORO=1708
8150 PRINT  CHRS (B3, wy;
8160 NEXT 0 ’
8170 6010 mo

" BIBO REM

- 8190 PRINT CHR$ (27)-'x'- CHRS (8); CHRS (0);
8200 FIRE=1T08. ‘

o 820° PRINT CHRS (BU&,B));

s B0 NEXT @ ‘

. B230 6010 7420 -

8240 REN :

8250 PRINT- CHRS (27);°K"; CHRS (8); CHRS (0);



8260 FORE=1708

8270 FRINT CHRS (B(S, ay

B0 NEXTQ

8290 GOTD 7420

8300 REM

G310 PRINT CHRS (27);°K"; CHRS (8); CHR lO),
B520 FIRQ=1T08

8330 PRINT" CHRS (Bl6,0));

B30 NEXT

6350 GOTD 7420

B350 REM'

S GSI0° BRINT CHRS (21);°K'; CHRS (8); CHRS 10);
18380 FOR@=1T08 |

- 6390 PRINT CHRS (B(7,@));

CBAGO NEXT.O

8410- 6010 7420

8420 REN

8430 PRINT CHRS (27);°K"; CHRS (8); CHRS (0);
B0 FIRE=1T08 '
4SO PRINT CHRS (B(B,01);

T BAD NEXT @

8470 60O 7420 '
8480 REN.

' 8490‘. PRINT CHRS (27) "K" CHRS (8) CHRS (0),' o

B500 FIRQ=1T08

. E510 PRINT CHRS {B(9, un-'

B320 NEITQ

530 6010 420

- L

- BS50 PRINT CHRS (37);"K"; CHRS (8); CHRS (0);
8560 FORQ=1T08 - '

8570 PRINT CHRS (B(10,01);

8580 NEITQ

8590 6OTO 7420

8400 REN

8610  PRINT CHRS (27);°K"; cnm (8) CHRS (0); .

820 FORQ=17T08 :

8830 FRINT. CHRS (B{11,0));

B4 NEXTR .

8550 . 60TD 7420

B460 REM :

8570 PRINT CHRS (27)-'!('- cms (a) CHRS (o)-

" B8O FIRG=1T08

890 PRINT CHRS (B(12,01);
a0 e

8710 BOTD 7420

8120 REM o

8730 PRINT CHRS (27);"K"; CHRS (8); CHRS (0);
8740 FOR@=1T08 -

@750 PRINT CHRS (BUIS,0));

10 TR

8770 GOTD TA20

" 8780 REN -

- 8790 PRINT CHRS (27); -x'- CHRS (a) CHRS (o»-,
8800 FORG=1T08

8810 PRINT' CHRS (B(14,0));

820 NEXTQ

8830 6OTD 7420

12000 REN ¢4 1 ERROR S/R 8t

12005 PRINT s FRINT

12010 BLA = O:VAR = O:ERR = 0 -



12015
12020
12023

FOR K =1 10 BY
FORL =170 BY
IF TIK,L) = 0 THEN 6070 12035

100 BA=BA+1 -

12035

- 12040

12045
12050,

© 12055

12080

NEIT L,

ON A BOTO 12045, 12400, 12600
REW " VERTICAL EDGE REGION
FIRK=2T0BY -1
FRL=BYJ2TOBY /241
IF T0k,L)-= 0 THEN 601D 12070

COANES VIR =VAR L

{2070

12075

12080
12085

12090
12095
12100
12105
12110
12115

1215

NEIT LK

PRINT "NUNBER OF 1°S IN THE WHOLE PICTURE:" ;BLA
_PRINT "NUMBER OF 1'S-IN THE EDGE- REBION =";VAR

PRINT :FARK = BLA - VAR

FIRK=2T0BY -1

If (T(XBYIZ) -OANDT(KBY12+1) =0 THEHERR ERR + 1
REXT K.

PRINT 'UﬂDOVEREI) ROKS IN EDGE REBIONINISSING EDGE PﬂT)=';ERR
PRINT "8 OF EDGE POINTS=";BY - 2

PRINT 4§ OF MISSING EDGE PNT./8 OF EDGE PNT=";ERR / (BY - 2)
12120 ERR = ERR + BLA - VAR .

PRINT 3 OF ERRﬂRIIHDLE PICTURE=";ERR / -(BY t BY)

12130 VAR = 0

12135
12140
12145

FIR K = 1 T0 BY
FRL=ITOBY /2-1
IF Tik,L) = 0 THEN. BOTO 12155

oo AN UT=BYS2-2-L=02 4 ZVAR VAR + U2

1" 12153 ' ‘
L 12160
- 12183

KEIT L
FORL=BY/2¢270BY
IF TIK,L) = 0 THEK GOTO 12180

12070 U1 =L - BYI2+1UZ‘U1 2VAR VARHIZ

12178
12180
~12185

NEXTL
KEIT K »
“TF FARK = 0' THEN EOTU 12200

12190 VAR = VAR /'FARK

SVILH

12200

12205
Loy

A7d05
1280
1215

PRINT “MEAN SOUARE DISTAHCE 0F ERR(lR" VAR
PRINT o

'RETURN

REN DIAGONAL EDGE REGIDN

FOR K =2 TO'BY - 1

FIRL=KTOK+!:
IFTK,L =0 THBI» 6010 12425

AN VMR =VAR 4T

- 1un

- 12430

12435

12440

12045
150
15
12460,

12465

12470
' 12475ERR ERR + BLA - VAR

NEIT LK
PRINT 'NUHBER OF 1’5 IN THE HHDLE PICTURE=";BLA
PRINT *HUXBER OF 1’5 IN. THE EDGE REGION "=";VAR

- PRINT :FARK = BLA VAR
FIRK'=2T0BY -1

IF {TIK) = 0 AND TUK,K + 1) = 0). THEIERR £RR + 1

NEXT K.

PRINT *UNCOVERED RWS IN EDSE RESIOH(HISSING EDGE PNT) *;ERR
PRINT *$ OF EDGE POINTS=";BY - 2

PRINT *8 OF NISSING EDGE PNT./8 OF EDSE PNT=";ERR / )



12480 “PRINT *F UF ERRGRIUHULE PICTURE=" ,ERR / {BY 8 BY)
12485 VAR = 0 .
© 12490 FORK=2T0BY

1495 FRRL=1T70K-1
12500 "IF;T(K,L)_ =0 THEN - 60T0 12510 :
12505 U7 = K- L:U2 = UL * 2:VAR = VAR ¢ U1

12510 NEIT L
12515 FOR L = K .2 10'BY

12520 :IF.L Y BY THEN 5OTO 12535
1255 IF TIk,L) = 0 THEN 6070 12535

2530 UT'= 'L = K + 4301 = U2 ~ 2:VAR = VAR + UI

12535 NEXT L-

12540 NEXT X ,

12545 07O 12490

12600, REN CIRCULAR SHAPE REGION

12610 'FORK = 1 T0.BY

12620 FORL = 1 10 BY

12630 IF G - XC)‘2+(L YO 420) =RA*2MND (KK~ XC)"2+(L O ~20 ¢ = (RA+1) ~ 2} THEN 607D 12640

12640 IF TK,L) = O THEN 6010 12660

12850 VAR = VAR + {

12660 MEXT L,K

12670 - PRINT- 'NUHBER OF 1°§ lN THE NHOLE PICTURE=";BLA
12680 PRINT 'HUHBER OF 1'5. IN THE EDBE REGIUN "'VAR
12690 PRINT :FARK = BLA VAR

© 12700 EDEE = ¢

..“iJ

12710 FOR K= 1T0BY -

L '12720 FOR'L =1 TOBY ' '
C12730 CTF K- XD A 24 (L - YDV A D) ) =RA A2 AND (K- XC)A2¢(L-¥Ch~20 ¢ = (RA+ 1)~ 2) THEN 6OTD 12750
12740 EDBE = EDGE + |

12130 NEITL,X.
12760  PRINT *3 OF EDGE PDIHTS="ED5E .
12770 PRINT "3 OF NISSING EDGE PNT=";EDGE - VAR: PRIHT

12180 PRINT *# OF MISSING EDGE PNT/8 OF EDGE PNT="; (EDGE - VAR) / EDBE

12190 ERR = EDGE - VAR + FARK

12800 PRINT *# OF ERRBRIUHDLE PICTURE"'ERR / (BY 1B
12810 RETURN '



10 .REM - $8.VERTICAL EDGE-KIRSCH MASKS WITH FIXED THRH, 88
20 DIN SK(3,3),6(8) '

30. DIN GDUBY,BY), T(BY,BY), DRIBY, m R(BY BY)

40 PRINT ns,-mm- '

50 PRINT : PRINT “EDGE DETECTION BY USING KIRSCH MASKS ,cuxxsmvm TEST AND FIX. mxssn '

2 B0 PRINT "~ :

170 PRINT. *CONTRASTS: Di=";D1
B0 PRINT® ~  D2=%D2

*as IF A =3 THEN 60T0.110
% . PRINT® D343
95 IF A =2 THEN EOTO 110
100 PRINT® . Dé=";D4 -

110 PRINT 3 PRINT .z PRINT "ORJINAL IMAGE®
120 PRINT "-emmmeomee? '
130 PRINT ‘

230 " BOSUB 7000 REM. BIT INAGE ..
2000 REN. . CONVOLUTION ALG,

2010 “HOKE - ' .
2020 THR ='0: PRINT : PRIHT
030 FOIRK.= 170 BY
2080 FORL = 1 7O BY

250 FIRMA=1TD8

2060 FOR-I=1T03.

W70 FIRI=1T03
mo,'m'nsxu,a)

2090 NEITJ .

200 NEITD _

2110 DATA 5,5,5,73;0,-3,-3, x,
A0 DATA 5,5,-3,5,0,-3,-3,73,-3
2130 DATA' 5,—3,-3,’5,0,-3,5;—3,-3

40 DATA  -3,-3,-3,5,0,-3,5,5,-3
2150 DATA =3,-3,-3,-3,0,-3,5,5,5

. 60 DATA. -3,73,-3,-3,0,5,-3,5,5
110 DATA -3,-3,5,-3,0,5,-3,-3,5
280 DATA" -3,5,5,-3,0,5,<3,-3;-3
090 1= 1Y =100 =0

.00 FIRI=K-1T0K+1

2210 FIRI=L-1T0L+1
720 IF{1=00R)=0) THEN B0TD 2250-
2230 IF (E=BY + 1 O0R J.= BY+ 1) THEN GOTO 2250
2240, CAV = TV + MSKLX,Y) § A(L,D)
N0Y=Y+1 i
260 NEITY

/B D EX T EE N

2280 MEXTT

- 2290 60) = OV ,
2300 REX . PRINT smm-- .
20O NEAT AN -

',2320 REN PRINT

‘2330 RESTORE
2340 6DK,L) = 6D} -

0 FRM=1708
2360 IF BO(K,L) ) GINM) THEN GOTO 2380
2370 €DK, L) = (M)

. 2380 NEXTMM
27590 FOR KN =170 8 .

UM IF sn(x,u = G{MN) THEN BOTO 2420




2410

NEXT M

" 2420 DRIK,L) = W

240
- 050

2470
2480
2490
259
2600

220
. 30
. 2640
2650
4600

K10

4020

S

4026
"§030
40k
4050

4052

. 4055
4080

2430 THR = THR + BDIK,L)

NEXT L
NEIT K -

2460 THR = THR / (BY 8 BY)

POKE 1857,130 » :
:PRINT: PRINT : PRINT *GRADIANT IMAGE®
_PRINT *=mmermmmemeet

FORI=1T03Y .
FORJ'=1TO8Y

2610 ALLY) = 80UL D

NELT &
NEXT 1 -
§0SUB 7000: REM . BITINAGE PR,

PRINT : PRINT
REN 48 THRESHOLDING 88

PRINT *THRESHOLDING®

PRINT et

PRINT "EDGE DETEC. WITHOUT mmtscnvm-
PRINT *—-—
PRINT -
FOR K = 1°T0 BY

FOR L = 1.70 BY

IF(K=10RL=1)THEN BOTO 4065

IF (K =BY OR L = BY) THEN 60T 4045

IF EBIK,L) 3 THR THEN T{K,L) = 1: 60TO "

4085 TIK,L)' =0

110
- K080
- 190
4100

- M3
4140

H30
Heo'

4170

4180

4190

5000.

- 5010

- 020

5030

5040
5050

5060

5010

5080
5090
4000
4010
5020

PRINT UHRS (27)"1(" ‘THRS (8); CHRS (0); .

FGRI! 1708

PRINT  CHRS (B(12,80);.
- 400 NEITR :
T
)

8070 4180

FRINT.- CHRS (27);'K' CHR‘ {8); CHRS {0y

FRQ=1T08

FRINT CHRS (81, m, |

NEXT 0
REIT L

PRINT

NELT K '
60SUB 12000: REW. ANALYSIS
REW 884 EDGE DIRECTION MAP 18

PRINT & ‘PRINT ¢ -PRINT "EDGE DIRECTION MAP®

PRINT i emmimeet

-PRINT -

FOR K = 1 TO'BY
FIRLZ1T0BY "

"PRINT DRIK;L);* %
NEIT-L

PRINT -

NEITK

REM. #8 DECISION. !t 88
FCRK =1 TO BY

FORL =1 TOBY

6030 EDIK,L) = 0

6040

§050
5080

6070

b

HENTL

K
FIR K = 10 BY
FIRL =1 TOBY,

-IF TIK,L) = 0 THEN 607D 6290

347



5100 FRI=1T03

B110 MSK(1,0) = 0

b120 NEXT:Y -

bi30 NEXT-T .

BMISY=h¥=10=1

8140 FOR'Y = K-1T0K+1

6150 FRJ=L-1T0L+1 .

b160 IF-(] = 0 OR J = 0) THEN NSK{X,Y) = 1: GOTO 4195

8170 IF (1= BY ¢ 1 0R 3 = BY + 1) THEN MSK(X,Y) = 12 600 6195

6180, IF (OR(I, ) = DREK,L) OR DR(L,) = DRIK,L) + 1 OR DRII,J) = DRIK,L) - 1) THEN MSKIX,Y) = 1: GOTO 6195
6185 IF (DR(I,J) = DRK,L). + 2 AND 0 = 1) THEN NSK(X,Y) = 1: BOTO 192
6185 IF (IR(1,3) = DRIK,L) - 2 AND 0 = 1) THEN NSKIX,Y) = 1: 6OTO 6192

- b187 TF (DR(I,3) = DROK,L) + 2 AND 0 = 2) THEN MSK(X,¥) = 1: 6OTO 6192

. 6188 IF (BRC1,3) = DRIK,L) - 2 AND 0 = 2) THEN NSK(X,Y) = 1: GOTO 6192
- b190 HSK(X ¥) = 0: 60TO 4195

S920=0+1
BS Y=Y+ 1
£200. NEXT-J .
S ERERNERE
6210 NEXT I

0 FRI=1T03

4730° FIRI=1T03 .

" 6U0 IF WSKUL) =1 THEN . E0T0 6260

6250 BDIK,L) = 0: 6010 6290

L B2B0 NEXT)

6270 NEXT I.-

6280 BD(K,L) =1 : ' S o

6285 REM IF {MSK(1, 2) = 1 AND HSK(2, l) = AND HSK(Z 3= l ANDHSK(S 2} = 1) THEN 6DIK,L) = 12 GOTO 6290
6268 REM- BDIK,L) =

6290 MEXTL .

8300 MEXTK .
© 6310 PRINT : PRINT
6320 PRINT *EDGE DETECTION SING COMELTIVITY TEST"

6330 PRINT #ommmmmemmrmemm ety PRINT
6340 FOR'K =10 BY - '

6350 FORL=1TOBY

6380 IF 6DIK,L)-=.0 THEN GOTD 6420

4370 PRINT CHRS$ {27);°K*; CHRS (8); CHRS (0);

b380 FORQ'=1708

" 4390 PRINT -CHRS (B(1, un»

6800 NEIT-R -

4410 /EOT0 mo _
420 PRINT CHRS (27);°k"; CHRS 16); CHRS co)-
30 FRQ=1T08 -

5440 PRINT CHRS muz,nn,

- 6450 NEXT @

5450 T(K L) = 6D(X,L)

BAS NEXT L.

B470. PRINT .

8480 MEXTK | '
6485 GOSUB 12000: REW: AIALYSIS
6430 PRINT D$

. 6500 PRINT D$;*PRE0*
S0

7000 REN--388 BITINAGE PRINTING 848

7010 MAX = AL, 1).

7020 FORK =1 T0BY

7030 FORL =1 T0 BY :

7080 ‘IF AIK,L) - NAL THEN NAX = AtK, L

7050 MEXTL

7060 NEXTK .

7070 NULT = 400 / MAX . oo ,

7080. PRINT & PRINT 'HULTIPLICATIUM VALUE‘ $HULT: PRINT

7090 FﬂR K =170 BY .



b 7100 FOR'L = 1 T0 BY
110 RIK,L) = INT (AIK,L) 8 MOLT)
7120 NEXT L c
7130 NEXT K.
7250 PRINT CHRS (18)
7260 FORJ = 1 TO BY
7210 FORI.=1 70 BY .
7280 I Rid, 1) 260 THEN BO10
7290 IF RJ,1) ) 240 THEN 8080
‘7300 IF REJ,1) 3 200 THEN 8120
- T310 .IF RU,1) 5 190 THEN B180
7320 TF RUJ,10 3 175 THEN B240
7330, IF RG,1) ) 160 THEN B300
T30 IF RU,T) 135 THEN 8380
- 7350 IF-RM,D) ) 110 THEK 8420
7360 IF R, 1) ) B0 THEN'BABO
10 IF-RW,1) > 50 THEN 8540
7380 IFREI,1)-) 40 THEN 8400
7390 IF RU3,1)°) 20 THEN 84k0 -
7400 IF RUJ,1} ¥ 10 THEK §720
7410 -G0T0 8780
M0 KT
~TH30. PRINT -
MO0 XEITJ
7450 RETURN -
8000 ‘REN
8010 PRINT- O (2n;eks CHRS 48); CHRS U]
£020 FORQ =1.T08
© 8030 PRINT CHRS (B(1 un,
BOA0 NEXT.Q ’
8050 GOTO 7420
" B0S0 REM :
070 PRINT CHRS (20);°K"; CHRS (8); CHRS, (o),
8080 FIRQ=1T08
8090 PRINT CHRS (B(2,0));
8100 NEXTO
BL10° 60T0 7420
8120 RN . . - : , :
8130 - PRINT - CHRS (27);°K"; CHRS -(8); CHRS 0); -
Bl40 FIRQ=1T08 o
. BIS0 PRINT CHRS (B(3 a3
BI60 NEIT 0 i
BN smo mo
© BIBO. REN
BIS0 PRINT" CHRS (27);°K*; CHRS 18); s oy
B0 FRE=1T08 »
8210 PRINT CHRS-(B(4,D));
B220 MEXTQ
8230 6010 mo
8240 REN - ‘
§250 PRINT - CHRS m)--x-- CHRS (8); CHRS 10);
B0 FIRQ=1.T08 -
8210 PRINT. CHAS (B(5,0));
8280 NEXTQ ‘
8290 6010 420
8300 REN
- 8310 PRINT . cﬂm m)--x-- CHRS (8); CHRS (o),
- 9320 FORO=1T08
8330 PRINT CHRS (B(,Q));
. B340 NEXTE
© 8350 6070 7420 -
. B350 REN S o
8370 PRINT CHRS (27);°K"; CHRS (8); CHRS (0);
8380 FORQ=17T08
g390 PRINT CHRS (B(7,0));




B0 NETR

B410 6OTD 7420
8420- -REN

(G430 PRINT CHRS (27);°K"; CHRS (8); CHRS to)-”
S0 FIRQ=17T08 -

"B4S0 PRINT  CHRS (B(B,0));
©BAED NEXT @

8470 6OTO 7420

BABO REM

8430 PRINT CHRS (27) "K*; RS (8); CHR$ 0;
B500 FORQ@=1T08

10 PRINT CHRS (BU9,0);

8520 NEXT Q.
B30 6010 7420

8540 REN- |
B350 PRINT CHRS (27);°K"; CHRS (8); CHRS ‘(0);
B350 FIRQ=1T0B

‘. BST0 PRINT CHRS 1Be10,001;

I1|i

‘8580 NEXT @

" g0 G0T0 TH20
8500 REN-

8510 PRINT CHRt (213K cms {8); CHRS (0);

B620 FORQ=1T08

8630 PRINT CHRS {B{11,01);
B0 KEITQ -

8450 6070 mo

" Bh60 REM

‘8570 PRINT CHﬁS n; 'K'° CHRS (8) CHRS (0} -
880 FOR@=1708

* 8690 PRINT CHR$ (8(12,0))'

8700 NEXT D

8o 'snm 420

810 REN . -
8730 FRINT CHR$ (27)"K"‘ CHR$ (B) CHRS 10),

. B0 FOR-@=1708 :
. B750 - PRINT CHRS (BU13,0));

8760 NEXT 0

6770. 6070 7420

g780 REM

§79 PRINT. CHRS (20); " CHRS (B); CHRS: 0);
8800 FORQ=1708 ,
§810. PRINT cuns Bus,y;
8820 NEXT O

830" 6010 "

12000 REW 48 1 ERRIR S/R 88
12010 PRINT : PRINT
12020 BLA = 0:VAR = 0:ERR = 0
12030 FORK=17T0BY

" 12080 FORL =1 T0-BY
- 12050 IF TIK,L) = 0 THEN 6OTO 12070

12060 BLA = BLA ¢ |

12070 NEATL,K .

12075 ON A GOTO 12087, 12400, 12600
12087 REN VERTICAL-EDGE REGION

-12090 FDRI( ZTDBY-I o



17100 FORL =8Y /2T0BY /241
12110 IF TIK,L) = 0 THEN 60TO 12130
12120 VMR = VAR ¢ ¢
12030 KEXT LK _ '
12150 PRINT *NUMBER OF 1°S IN THE um PICTURE=";BLA
12160  PRINT "NUNBER OF 1S IN THE EDGE REGION --'vm
12165 PRINT :FARK.= BLA - VAR
12170 FRK=2T0BY -1 .
12180 IF (T(K,BY / 2) = 0 AND T, av/2+n = 0) THEN ERR = ERR + |
12190 NEXT K )
12200 PRINT *UNCOVERED RONS IN-EfGE Rsemu(mssms EDSE PNT)=";ERR
12205. PRINT *3-OF EDGE POINTS=";BY - 2. .
12210 . PRINT *# OF NISSING EDGE m I% OF EDGE PNT=";ERR / (BY - 2)
12220 ERR = ERR + BLA - VAR
12230 PRINT *# OF Ennua/umns PICTURE {ERR / (BY § BY)
AVRE =
173 FRK=1T08
1235 FRL=1T0BY /2~
12236 IF TIK,L) = O THEN  6OTD 12240 ,
12371 =8y 1 2-2-Lal 2 uz VAR = wunuz
1240 WEIT L
1242 FORL=BY /2+2T08Y
12243 °TF TIK,L) = 0 THEN 600 12246
12204 UL ='L - BY / 24 1:U1 = UZ » 2:VAR = VAR + U
1245 NEIT L
124 MEXTK -
1247 IF FARK = 0 THEN 60TD 12250
12248 VAR =-VAR./ FARK
12249 PRINT "NEAN SOUARE DISTANCE OF mmm-'-vnn
- 12250 PRINT .
12260 RETURN.
12400 REM: DIAGONAL EDSE REGION
12410 FOR K-= 2T0 Y- 1
1IN0 FRL=KTOK+ 1
"'12430 IF TIX,L) = 0 THEN GOTO 12450 -
" 12440 VAR = wmu
LU0 NEIT LK
“12470° PRINT "NUNBER OF 175 IN THE AOLE PICTURE=";BLA
12480 PRINT *NUNBER OF 1* S IN THE EDGE REGION ="k
12485 PRINT sFARK = BLA - VAR.
1249 FOR K = 2T08Y -1 , ‘
) 1zsoo~xrmxm-onnnuumn-o)mmnn ERR+ 1.
B0 TR
12520 PRINT. *UNCOVERED mws ) ED6E REGION(ISSING EDGE PNI)-'-ERR
/12530 - PRINT *# OF EDGE POINTS=";BY - 2 -
~12540: PRINT *F OF NISSING EDGE PNT./# OF EDGE PNT=";ERR / mv 2)
12550 ERR = £RR-+ BLA - VR
- 12560 PRINT "§ OF ERROR/WHOLE PICTURE-‘;ERRI {BY § BY)
- 1BI0WR=0.
12580 FRK=2T0BY
12585 FORL=1T0K-1
- 12585 1F T(K,L) = O THEN 6OTO 12590
12588 U7 = K - LsUZ = U1 2:VAR = ViR + U2
1259 NELTL :
1259 FORL=K 2708y



12592 IFL)BY THEH 500 12596

{2594 IF T(K,L) =0 THEN GOTO 1259
155U =L - xnuz-uz*zvnn vna+u1
- 125%: NET L.

12597 NEIT K-
. 13599 - 6070-12248
© 12600 REM CIRCULAR"SHAPEREGION
12610 FOR K = | TO BY
12620 FORL=1T08Y, -~ ’ '
12630 IF k=100 %24 1L - m*z)(m\ 280 ((K-XC)“ZHL YC) ~2) ) (RA+ 1) 2) THEN GOTO 12640
12633 IF T(K;L) = 0 THEN GOTO 12640
12635 VAR =VAR + 1 '
12640 NEXT LK.
12660 PRINT *NUMBER OF '1°S IN THE WHOLE PICTURE=";BLA
12670 PRINT *NUNEER OF 1S IN THE EDGE REGIDN ="3VAR

12573 PRINT :FARK = BLA - ViR
- 12674 EDBE = 0 . :

1280 FOR K = 110 BY
12680 FOR L'z 1 70 BY
2700 TF (UK -XCY A2 4 4L - Y0~ 2 CRA 2AND (K-300A24(L-YC) 20> (RA+1)~2) THEN 60O 12710
12705 EDBE = EDGE + 1
12710 KEXT'L,K
© 12720 PRINT *# OF EDGE mms—';mss S
. 1225 PRINT "§ OF MISSING EDGE PNT=";EDGE - VAR: PRINT

12730 PRINT *# OF MISSIG EDGE PNT/¥ OF EDBE PNT="; (EDGE - VAR) 3
12740-ERR = EDGE - VAR + FARK S

12750 PRINT *F OF ERROR/WHOLE PICTURE"-ERR I {BY ¢ BY)

12760, nsrumt '

e
lli



10 REM 88 VERTICAL EDGE-ROSENFIELD ALGORITHN. 88

20 - DIN HRUBY,BY, 1), VRIBY, Y, 21, BITBY, B0} T8, BY

30 PRINT D8;PRA1"

0 .PRINT : PRINT *EDGE DETECTION BY USING ROSENFIELD ALSURITHH'
50 PRINT *--
60 PRINT. *CONTRASTS: D1=";D)

. 0 'PRINT * - 0=n02

75 IF A ='3 THEN 6OTO0-§00 -

80 PRINT™ . D3=%;I3

8 IFa= 2 THEN -60TO 100
.80 PRINT-™ D=";D4

100" PRINT 2 PRINT : PRINT "DRJINAL IMAGE"
5 110 PRINT femmemmmmemeet,

120 FRINTCHRS (1502 POKE 1657, 130
130 FRI=1T0BY

140 FORI=1T0BY

180 BIT(, 1) = Afd, 1)

15 MEIT 1

- 20 NEXTJ

220 GOSUB 7000: REN ‘BIT INAGE PR.

2000 REN- 88 ROSENFIELD ALGORITHN §1
010 FRK=1T08L

020 FORL=1T0BY -

. 2030 WKL, = ¢

© 2040 NEXT LK

2050 K= 1:. 6010 2079 .

C o NMOKE=KK'S 2

- 2070 FOR'K =1 70 BY

280 FIRL=1T0BY

2090 Y1 = 0:92-= O:HL = 0:H2 = 0.
2100 FRI=KCT0 1 STEP -1 .
210 IF (K + 1) ):BY THEN 2150
220 TF (K- 1+ 1) <1 THEN 2150
A0VE=VEHAK ¢ LL)
A= V2+MK-I+1L)

" AS0 IF-{L #+ 1) ) BY THEN 2190

210" IF(L-I+1)(HHBI2190

270 By = HE# AKL +°1)

B0 M2 = B AL - T+ 1)

29 MITD '

200V =V xx;vz = V2 / KK:RE = B/ KKsH2 = B2 / KK
2210 VRIK,L, 1) = ABS (V1 - V2I:WRIK,L,1) = INT (VRIK,L,1})
2220 WRIK,L,0) = ABS (W1 - H2): HRIK,L,0) = INT (HRUK,L,1D)
30 um L,K

2450 PRINT : PRINT ,

2450 PRINT “EDGE DETECTION-KK= ,xx

2470 PRINT * '
2475 PRINT -CHRS (15)

480 FORK =1T0BY

U430 FORL=1T0BY . ‘

2500 IF KRIKL,E) ¥ VRIK,L, 1) THEN VRIK,L,1) -muxu)
2540 BITIK,L) = WRIK, L, 1):VRIK,L,2) -vn(xtz) t VRIK,L, 1)
2550 NEMT L A

2970 NEIT K :
75 IF (KK« )lAHﬂKK( )BANDKK( )32) THEN 6070 2582

- 2580  6OSUB. 7000: REN- BITINAGE

-2582 '60TQ 4000: REN THRESH,

2583 PRINT < PRINT '

2590 PRINT "NULTIPLE EDGE DETECTION® . - »
2595 IF KK = 1 THEN PRINT "KK=1": E0T0 2650
2600. IF KK = 2 THEN PRINT 'KK-Z!I" BOT0 2550



2610 IF KK = A THEN PRINT "KK=432¢8": 6OTD 2450
‘2620 IF KK =8 THEN PRINT *KK=B8482¢1"; 6OTD 2630

2630 IF KK = 16 THEN PRINT. *KK=1488848281"; 6OTO 2650
2640 IF KK = 32 THEN -PRINT 'Kx-smstsmm'
2650 PRINT * :

2655 PRINT CHRS (15)

2660 FOIRK=1T0BY -
2670 FORL=1T0BY

- 20 BITIKLY = WRIK,L,2)-

2726 NEXT L.

LT N | |
I KK G LD KK ¢ )BANDKK( »32) THEN . 6010 2735

2730 GOSUB 7000: REM BITINAGE PRI,
2735 6070 4360

4000 REN 88 THRESHOLDING &8

4010 PRINT : PRINT

020 PRIN 'mnssumm'na-«md differ. )-KK-‘;KK

4030 PRINT*
4050 R =0

4050 FORK=1TOBY

1070. FOR 'L =110 BY

£080 THR < THR + VRIK ) L

0o ETL SR
4100 - NEXT K -

© MIOTHR = THR £ (BY 8 BY).

H2 FR K S1T10BY
130 FOR L= 1708

5 AMO: IF VRIKGL,1) > THR THEN VRIK,L, 1) = 1z 0TO 4205

© 4150 VRIK,L;1) = 0

CMSS IFOKC > 1MDKKC > BANDKK ¢ ) 32) THEN GOTD 4255
4160 PRINT CHRS (27);°K*; CifR$ (B); CHRS (0);

M0 FIRQ=1T08

4180 PRINT CHRS (B(IZ,Q)),

A0 NETE .

4200 BOTO 4250 © ¢ '

0205 I K ¢ ) 1D KK € )BANDKK( )32) THEN SDT[H255

- 4210 PRINT - CHRS (21);°K*; CHRS (B); CHRS (0)
AZ0 FORR=1T08

1230 PRINT CHRS (BU1,00);

A0 KEIT D

ST = RIGL D) -

55 KL

© 4180 PRINT
4210 NEXT X

4275 GOSUB 12000: REM AMALYSIS

4350 IF KK = § THEN: BOTD 2080

4355 60T 2585 -

360 REN- ‘MULTIP. BIFF.
4370 PRINT : PRINT

4380 PRIIT 'THRESHULDINE—(lultxple dlffer )?



4390. TF KK = & THEN: PRINT "MULT.=482801": GOTO M430
4400 TF KK = B THEN. PRINT *NULT;=B84$281%: 60TD 4430
© A410 T KK = 16 THEN PRINT *NULT.=1688848281°: 6070 M430
20 1F KX = 32 THEN PRINT “HULT. mmmuu- '
30 PRINT #-m-em- :
" A440 PRINT
M50 THR =.0 :
M50 FRX=1T0BY
M70 FORL=1T0BY .
4480 THR = THR + VRIK,L,2i
M3 NEITLK
4500 THR = THR /- (BY $ BY)
1510 FOR K =1 TOBY -
A520 FORL =1 10 BY '
53 IF vmnz) >mnm£nvmx,1 20 = iz 600 4595
1500 REK,L,2 =0
I515 IF (KK >1mxx< ) B AND KK € ) 32) THEN GOTO 4445
- 4350- PRINT CHRS (27);°K"; CHRS (8); CHRS, (0);
560 FORQ=1T08
4570 PRINT CHRS (B(12,0));
4580 NEXT @
- 4590 60TO 4840
4595 IF (KK ¢ )-1-AND KK ¢ >mnxx< ) 32) THEN 6OTO 4445
4400 PRINT CHRS (27);°K"; CHRS (B); CHRS (0);
810 FORG=1T08
4520 PRINT CHRS (B1,0);
00 KEg
4640 TIK,L) = VRIK,L,2)
W5 NEITL
~ 4650° PRINT
A650 NEIT K o ,
~ 4b45- GOSUB 1200: REN ANALYSIS
" 47RO TF KK ¢ 32 THEN' 6OTD 2040
ATS0 PRINT DS
760 PRINT D$;*PR30"
710 END - ‘
7000 REM 888 BITINAGE PRINTING 188
- TOMOMAX = BITELY) -
7020 FORK =1 TOBY -
7030 FORL =170 BY -
~T000 IF BITIK,L) > MAX THEN MAY = BITIK,L)
7050 NEXT-L,K -
7070 MULT = 400 / MAX:
709 FORK=1T0BY
M00 FORL=1TOBY
7110 BITIK,L). = INT (BIT(K,L) 8 NULT)
N0 MEXTLK '
7250 PRINT: CHRS (18)
. 1260, FIRJ = 170 BY
7z7o FOR 1= 1 Th.BY o
"7zao: IF BIT(3,1) ) 280 THEN 8010
720 IF BIT(S,T) ) 240 THEN B0&D
7300 IF BIT(J,1) ) 210 THEN 8120
7310. TF BITH,1).) 190 THEN B180
. 7320 IF BIT(,1) ) 175 THEN 8240
7330 I BITW,D) > 160 THEN 8300
7340 IF.BIT(I,1) ) 135 THEN 8360,
7350 IF BIT(J,;1) ¥ 110 THEN 8420
T30 IF BIT43,1) ) 80. THEN 8480
7370 " IF BIT(3,1) ) 50 THEN BS540
7380 . IF. BIT(J, 1) ) 40 THEN 8400
T390 IF nma 1)) 20 THEN 8440




- Tho0
THo
T
T30
o
7450
8000

8010
8020

8030
8040
. 8050

8060 .

. 8070

B0%0

8100

8110

B2
B30
B

- 8150

8140

8110
8180
- 8190

8200

8210

8220 .

‘8230
B0
8250
8260

8210

8280
el

-~ 8300.

8310

820
- 8330
. B340

8380

8370

8390

BA00

"M

Bi20

" 8430

Bo40.

8450

8470

IF BIT(3, 1) ¥ 10 THEN 8720

BOTO B780

NEIT-1

PRINT

REXT J

RETURN

REN :
PRINT CHRS (27);°k*; CHRS (8); CHRS 10);
FRO=1108

PRINT * CHRS (B(1,0));-

NEXTQ

suro_74zo

FRINT CHRS (27)"[" CHRS (8); (‘,HRS (0)3°
FIRG=1T08

PRINT CHRi (B42,01);
KEITQ -

6010 420

REN--

PRINT CHRS (21); fK" CHRS (8); CHRS (0)'

FIRQ=1T08

PRINT *CHRS (B3 n)),

EXT R -

RTO M0
REN .

PRINT CHR$ (27);°K*; CHRs (e) CHRS (0}
FORG=1T08"

PRINT " CHRS (BU4,Q1);

NEXT @

BO0T0-7420

REN

PRINT CHRS (27);°K"; CHRS (9); RS (o),

FRQ=1T08

PRINT - CHRS. (B(5,0));

TR
B0T0 7420

REM -
PRINT CHRS {27)5"K"; CHR$ 18); CHRS {0};

"FRO=1T08

PRINT CHRS {Bl6,0));

MEIT @

60TD 7420
REN
PRINT - CHRS (27;°%"; CHRS. 8); RS 01

. FORQ=1T08

PRINT CHRS (B(7,0));
NENTD

6010, 7420,

m B
PRINT " CHRS (27)"Kf' CHRS (8) CHRS (0);

FORQ=1T08-

PRINT CHRS (B(B )5

MEIT O

5070 .7420



810 REN :

BI90° PRINT CHRS' (27);7K"5 CHRS ()3 O (015
8500 FIRG=1708 - - ,

- 8510 PRINT -CHRS {B(9,A));

B520 KENT Q. ‘

8530. 6070 7420

g0 REN . o
8550 PRINT CHRS (27);"K"; CIRS (8); CHRS (0);
850 FORO=1T08

"BST0 PRINT CHRS (B10,00);

BSB0 NEXTQ

BS90 GOTD 7420

B0 R .

8610 PRINT. CHRS (27);°K"; CHRS (B); CHRS (0);
8520 FIRQO= 1708 o

B30 PRINT. CHRS (BU11,00);

B0 MEXT O

~B450 BOTO 7420

" Bb80° REM

_ 870" PRINT o (27)--x- CHRS (8); CHRS (0);
C.B080 FR2=1T708

'iB490 - PRINT  CHRS (nuz,nn

BT00 MEXTR -

(6710 600 7420

8720 REM -

8730 PRINT CHRS (27);'x-; CHRY (8); CHRS (0);
BTA0 FIRQ=170.8
BTS0 PRINT- - CHRS teus,nn,
810 NEXT R .
8710 6010 i
6780 R
©BT90 PRINT CHRS (2703 GRS 18); cms 105
B0 FIRE=1TOR
. 8810 PRINT. CHRS uam,un
. 8820 NEIT O
B30 BOTO TN :
12000 REN 83 T ERROR S/R 48
12005 PRINT & PRINT
12010 BLA = 0:VAR = O:ERR = 0
12015 FRK=1T0BY
1200 FORL =1 T08Y - .
12025 IF TWK,L) = O THEN GOTOD 12035
1200 BA=BAYL '
12035 NEIT L,X
12040 ON A GOTO" 12045, 12400, 12600
12045 REM. VERTICAL EDGE REGION
© 12050 FORK'=2T08Y -1
105 FIRL=BY/2708Y/2+1
* 12080 CIF T(K,L).= 0 THEN 60TO 12070
12085 VAR = VAR + 1 ’
12070 NEXT LK
_ 12075 PRINT *NUNBER OF 1°S IN THE NHOLE PlCTURE";BLh‘
12080 PRINT "NUMBER OF 1°S IN THE EDGE REBION =*;VAR
12085 PRINT :FARK = BLA - VAR
1209 FORK=2T0BY-1
12095 IF (T(K,BY /.2) = O AND T(K,BY / 2+ 1) = 0) THEN ERR = ERR + 1
12100 NEXT K
12105 PRINT *UNCOVERED RONS IN EDE REGIONINISSING £36E PNT) ERR



12110. mnr *§ OF EDGE mlurs --av 2
1215 PRINT *# OF NISSING EDGE PNT./# OF EDGE PNT=";ERR / wv 2
12120 ERR = ERR + BLA - WAR
12125 'PRINT ¥ OF ERROR/WHOLE chruns=--snn I (BY 1 81)
12130 WMR=0
12135 FOR K =1 T0 BY
1200 FORL=1T0BY/2-1 -
12145 IF TIK,L)-= O THEN GOTO 12155
CANS0UI=BY/2-2-1:01= U2 A 2:VAR = VAR + UI
12155 MEXTL
12160 FORL'=BY /242708y
12165 F TIK,L) = O-THEN 60T0 12180 - :
O IMTOUI=L-BY /24 1:00 = U1~ 2:VAR = VAR + U1
12475 NEXTL
12180 WEXT K
12185 IF FARK = 0 THEN GOT0 12200
12190 VAR = VAR / FARK ‘
12195 PRINT *NEAN SAUARE DISTANCE OF ERROR=";VAR:
12200 - PRINT
12205 RETURN
_ 12400 REM DIAGONAL EDSE REGION
12405 FORK=2T0BY -1
12400 FIRL=KTOK+1
12M5 - TF TIK,L) = 0 THEN 6OTO 12425
12420-VAR = VAR + | -
12425 NEITLK ‘ :
12430 PRINT "NUNBER OF 1°5 IN THE WHOLE mruaz--;m
12435 PRINT "RUMBER OF 1°S IN THE EDGE REGION =";VAR.
12440 PRINT :FARK = BLA - VAR .
12M5 FOR K=.2 T BY.- -
12450 IF (TOK,K) = 0 AND TIK,K # 1) = O) THEN ERR = ERR + 1
1455 NENTK . :
12460 PRINT *UNCOVERED RONS IN EDGE Rssmxmlssms EDGE PNT)=";ERR
12465 PRINT-*# OF EDSE POINTS="3BY - 2
12470 PRINT *# OF MISSING EOGE PNT./% OF EDGE PNT=";ERR / (BY - 2}
12475 ERR = ERR + BLA - VAR
12480 PRINT "4 OF ERROR/VHOLE PICTURE=";ERR / (BY $ BY)
12485 VAR =0 ‘
12430 FOR K = 2 70 BY
. 12095 FORL=1T0K-1
".vusoo IF TIK,L) = 0 THEX GOTO 12510
112505 U1 = K = LaUZ = UL * 2:VAR = VAR-+ U1
U510 NETL
12515 FORL =K+ 270 BY
12520 1FL ) BY THEN 6010 12535
12525 IF TUK,L} = 0 THEN' 6OTO 12535
12530 UZ.= L' - K ¢ 200 = U1 * 2:VAR = wunuz
12535 NEIT L ‘
12540 MEXTK
12545 GOTO 12190 o
12600 REN CIRCULAR SHAPE REGION
12510 FRK=1T0 ny

358



'| 12620 FUR L=1T08Y - ’
12630 IF (UK -1E) A 24 1L -YD) ~20 > =RA* 2 4D ((K S A24 4L -0 420 ¢ = (RAH L)~ 2) THEN EBOTO 12640
12640 IF T{K,L) = O THEN BOTO 12660
12650 VAR = VAR + 1
12660 NEXT L,K
12670 PRINT "NUMBER OF 1°S IN THE KHOLE PICTURE=";BLA
12680 PRINT *AUNBER OF I's N THE EDGE REGION ""VAR
) 12690 - PRINT. :FARK BLA - VAR
1200 EDBE =0
12110 ERK=1T0 BY
:12720 FﬂRL-lTﬂ B ‘
12730: 1F (K - SRR (L YC) ] ) =RA * 2 AND ((K =0 A2+ (L-Y0) A 2) ¢ = (RA+1) ~2) THEN £0TO 12750
~12740.ED6E = EDBE + 1
- 12750 MET LK :
~- 12760 PRINT "§ OF EDGE PﬂINTS-"EDBE
12170 PRINT % OF ISSING EDGE PIT"'EDEE VAR: PRINT
12780 PRINT *# OF MISSING EDSE PNT/$ OF EDBE. PNT"'(EDBE VAR) / EDBE
+ 12790 ERR =-EDGE - VAR + FARK ,
12800 PRINT *§ OF ERROR/WHOLE-PICTURE=";ERR / (BY BY)
12810 RETURN :
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