FULLY SOFTWARE CONTROLIED PCB HOLE-POSITION PROCESSING SYSTEM

by
Tayfun Demir

B.S. in E.E., Bŏ̆aziçi University, 1981

Subnitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science in

Electrical Engineering

Bogazici University Library

Boğaziçi University
1984

ACKINONLEDGEMEITS

I am grateful to my thesis supervisor Doç.Dr. Okyay Kaynak,for his helps,guidance and cooperation, and especially acknowledge his encouraging supervision in our work to design and operate the realized system.

I would also like to express my thanks to Y.Doc.Dr. Vahan Kalenderoglu,for his guiäing helps on the mechanical construction and design of the scamer, and to Y.Doc. Dr. Ömer Cerid for his valuable suggestions on hardwere problems of the system.

I also thank Vildan Polos for her encouragement in my works and her sirillful helps in the typing of the manuscript.

ABSTRACM

The purpose of the thesis is to design and realize a microprocessor-based system to process and simulate the drilling of hole-positions in printed circuit boards under software control.

System is based on Z-80 microprosessor which controls a stepper motor driven mechanical moving stage scanner. Scan-control,detection and drilling of hole-positions are performed by the $Z-80$ microprocessor-based card which is connected to the drivers of the stepper motors through which the power requirements of the motors are supplied during acceleration,steering and deceleration of the mechanical stages.

In the developed system,hardware is minimized, giving all possible controls to the software. System can also be viewed as an intelligent system, since the detection of hole positions is done by optical means but not manually. Also, the drilling process utilizes optimum-path concepts, minimizing drilling time.

ÖZETÇE

Bu tezin amacı,baskı devreler üzerine açılacak delik yerlerinin,mikroislemci denetiminde saptanması ve delinmesini simüle eden bir sistemin tasarım ve gerçekleştirilmesidir.

Sistem, Z-80 mikroişlemci kontrolunda olan adımlayıcı motorların sürdüğu iki boyutta hareketli bir mekanik tezgahtan oluşur. Tarama kontrolu, delik yerlerinin. saptanması ve delimi, $\mathbb{Z}-80$ mikroişlemci kart tarafından yapılır.Bu kart,aynı zamanda mekanik tezgaha hareket sağlayan motorlara,hızlanma, maksimum hızda sürme, yavaşlama sırasında gereken gự gereksinmelerini karşılayan sürücuilere bağlıdır.

Geliştirilen bu sistemde donanım en aza indirilerek, mümkin buitün kontrollar yazılım denetimindedir.Delik yerlerinin sisteme girilmesi optik yollarla sağlanmıs olup,aelme işlemi sırasındada optimum yol kavramı doğrultusunda,zamanlama en aza indirilmiştir.

TABLE OF CONTEITTS

Page
ACKNOWLEDGEMENTS iii
ABSTRACT iv
ÖZETGE v
IIST OF FIGURES ix
LIST OF TABLES xi
CHAETER 1 1
I. INTRODUCTIOIN 1
II. SYSTEM IAYOUT 3
CHAPTER 2 5
I. STEPPER MOTOR BASICS 5
A. OPERATIONT 6
B. TORQUE 8

1. HOLDIIVG TORQUE 8
2. RESIDUAL TORQUE 8
3. DYNAMIC TORQUE 9
C. RESONAICE 10
D. BIPOLAR \& UNIPOLAR OPERAMION 10
E. PERTORHANCE IMPROVEREIT \& DRIVE TYPES 13
4. BI-LEVEL DRIVE 14
5. CHOPPER DRIVE 15
F. TRANSIENT VOLTAGE SUPPRESSION 15
G. PERTORMANCE IIMITATIONS 16II. CHAPACTERISTICS OF THE STEPPERS USED IINTHIS APPLICATION17

Page

CHAPTER 3 18
I. SYSTEM HARDWARE 18
A. Z-80 MICROPROCESSOR CARD 19
B. MECHAIICAL ASSEMBLY OF THE SCANNER 26
C. STEPPER MOTOR DRIVERS 29
D. DETECTOR 33
E. POWER SUPPLY 35
CHAPTER 4 37
I. SYSTEM SOFTWARE 37
A. SUBROUTIIES 38

1. CONSTANT DELAY 38
2. VARIABIE DELAY 38
3. CONSTANT SPEED SUBROUTIINES 38
4. ACCELERATION/DECELERATION ROUTINES. 41
B. MAIN PROGRAMS 45
5. LINE DERECTION PROGRAM 45
6. FRAME-LENGTH DETECTION PROGRAM 50
7. SCANHING \& STORE PROGRAIIS 53
8. DRILLIING PROGRAM 64
DITSCUSSION \& CONCLUSSIONS 77
APPEIVDIX A. ASSEMBLY LAINGUAGE LISTINGS OF THE SYSTEM PROGRAMS 80
aPPENDIX B. OPERATING INSTRUCTIONS 126
APPENDIX C. Z-80 CPU \& PIO SHEETS 129
Page
APPEIDIX D. MOTOR SPECIFICATIONS 137
APFENDIX E. CIRCUIT SCHENATICS \& NEGATIVE CIRCUIT IAYOUTS OF THE Z-80 CARD 138
APPEINDIX F. DRAVIING OF SCANIER 140
BIBLIOGRAPHY 141

IIST OF FIGURES

Page
Figure 1.1 System Architecture 3
Figure 2.1 DC Stepping Circuit 6
Figure 2.2 Stepper Speed/Torque Characteristic 9
Figure 2.3 Bipolar Switching Sequence 11
Figure 2.4 Ünipolar Switching Sequence 12
Figure $2.5 \mathrm{I} / 4 \mathrm{R}$ Drive 13
Figure 2.6 Bi-level Drive 14
Figure 3.1 Z-80 CPU Block Diagram 19
Figure 3.2 Address Decoding Circuitry 21
Figure 3.3 Interrupt Hardware 22
Figure 3.4 Drill Simulator 25
Figure 3.5 Motor Coupling 27
Figure 3.6 X-Stage 28
Figure 3.7 Motor Driver Circuitry 32
Figure 3.8 Detector Circuitry 33
Figure 3.9 High Voltage. Supply 35
rigure 3.10 Low Voltage Supplies 36
Figure 4.1 X-motor CCW Constant Speed Routine 40
Tigure 4.2 Acceleration/Deceleration Profile 42
Pigure 4.3 Acceleration Routine Flowchart 44
Figure 4.4 Dot Dimensions 45
Figure 4.5 Flowchart of Iine Detection Program 47-8-9Figure 4.6 Flowchart of Frame-Iength DetectionProgram 51-52Figure 4.7 Flowchart of Scanning Program57-8-9
Page
Figure 4.8 Flowchart of CSCAN Routine 59-60
Figure 4.9 Flowchart of STORE \& LASTST Routines 61
Figure 4.10 Flowchart of SRTNZ1 \& SRTNZ2 Routines 62
Figure 4.11 Flowchart of Drilling Program 69-76

IIST OF TABLES

Page
Table 2.1 Four step input sequence 6
Table 2.2 Eight step input sequence 7
Table 2.3 Wave Drive input sequence 7
Table 3.1 Memory Layout of the System 21
Table 3.2 Reset Routine 23
Table 3.3 Int. Service Routine Starting Addresses 24
Table 4.1 Motor constants 39
Table 4.2 Acceleration constants 42

CHAPTER 1

I. INTRODUCTION

Even though,in today's technology Computer Aided Design (CAD) is becoming more important, in which case the drilling hole positions are known from the design process, presently many of the board layouts are drawn by hand. Thus at this moment, in order to make the drilling of these holes, either automatic drilling machines are used,or drilling is performed manually using a drill.

Both of the mentioned drilling operations have disadvantages.If an automatic drilling machine is used,hole positions must be manually stored on paper-tape or cassette or an input has to be made directly into the memory of the drilling machine which then performs the drilling operation according to the data recorded into its memory. In this case, alignment of the holes is at its maximum accuracy with minimum process time.

When drilling is done by hand using a drill, one can not talk about accuracy in alignment, or time taken in order to complete even a small card.

As can be understood, even generating the list of drilling positions or calculation of their coordinates,is a very substential part of the total production time, and when drilling operation is included, the time required is twice as much.

In this thesis, a proto-type system is designed and realized which is capable of detecting the hole positions by itself,using its scanning and detection programs, then performing the drilling of these appropriately recorded hole positions under the control of its drilling program which utilizes a developed optimum-path algorithm written for this specific application, including the drilling accuracy of an automatic drilling machine with process time minimization.
II. SYSTEM LAYOUT

General architecture of the system is given in the below figure.

Figure 1.1 System Architecture

System scans the previously prepared dot mask, located onto the upper stage, in a meander pattern, taking data at the end of every 80 step of the stepper motors under the control of the related routine within the software of the system.

Control program is processed by the $Z-80$ microprocessor card and the required step sequence is generated Which is then fed to the motor drivers connected to the
stepper motors.Scanning and detection routines continue interactively until the whole lajout is scanned. Then, control is transferred to the drilling program.

From this point on, the detector can be visualized as a drill, and drilling is performed repeatedly, according to the data obtained during the scanning and detection routines, waiting a few seconds on the dot to be drilled, simulating the drilling process. 'lhis program utilizes an optimum-path algorithm specifically written for this kind of application.

Detailed explanations and calculations are given under specific headings and chapters.

CHAPTER 2

I. STEPPER MOTOR BASICS

A stepper motor is a device that converts electronic signals into discrete mechanical motion. Each time the direction of the current in the motor windings is changed, the motor output shaft rotates a specific angular distance. The motor shaft can be driven in either clockwise or counterclockwise direction and can be operated at very high stepping rates up to 2,000 steps per second.

Stepper motors offer many advantages as an actuator in a digitally controlled positioning system.They are easily interfaced with a microcomputer or a microprocessor in order to provide opening, closing, rotating, reversing, cycling and highly accurate positioning in a variety of applications. Mechanical components such as gears,clutches,brakes and belts are not needed since stepping is accomplished electronically. There is no need•for any feedback device such as a tachometer or encoder.Because the system is open loop, the problems of feedback loop phase shift and resultant instability common to servo drives are eliminated. However,if desired,a minor loop may be closed around the stepper motor with an encoder for system performance enhancement. Stepper motors are available in a range of frame sizes and with standard step angles of $0.72,1.8,5,15$, 18 degrees and $0.9,2.5,7.5,9$ degrees(half-angle) with
step accuracies of 3 per cent or 5 per cent noncumulative.
A. Operation

Stepper motors operate on phase-switched d.c.power. If the motor is a 1.8 degree per step motor, the shaft advances 200 steps per revolution when a four-step input sequence (full-step mode) is used and 400 steps per revolution (0.9 degree per step) when an eight-step input sequence (half-step mode) is used.

STEP	SW1	SW2	SW3	SW4
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	ON
3	OFF	ON	OFF	ONF
4	OFF	ON	ON	OFF
1	ON	OFF	ON	OFF

(FULL_STEP MODE)

TABLE 2.1 Four-step input sequence

FIGURE 2.1 DC Stepping circuit

STEP	SW1	SW2	SW3	SW4
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	OFF
3	ON	OFT	OFF	ON
4	OFF	OFF	OFF	ON
5	OFF	ON	OFF	ON
6	OFF	ON	OFF	OFF
7	OFF	ON	ON	OFF
8	OFF	OFF	OIV	OFF
1	ON	OFF	ONT	OFF

TABIF 2.2 Eight-step input sequence

1-2-3-4-1 sequence in full-step mode, and 1-2-3-4-5-6-7-8-1 sequence in half-step mode provide clockwise rotation of the shaft of the motor. For counter-clockwise rotation of the shaft,switching steps are performed in the following order : 1-4-3-2-1 in full-step, 1-8-7-6-5-4-3-2-1 in half-step mode.

Apart from the Four-step and Eight-step arive methods, there is one more drive method which is called Wave Drive.Energizing only one winding at a time is the so-called Wave Excitation.

STEP	SW1	SH2	SW3	SW4
1	ON	OFF	OFF	OFF
2	OFF	OFF	OFF	ONF
3	OFF	ON	OFF	OFF
4	OFF	OFF	OIN	OFF

This type of excitation also produces the same increment as the four-step sequence. Since only one winding is on, the hold and running torque with rated voltage applied will be reduced 30 per cent.Within limits, the voltage can be increased to bring output power back to rated torque value. The advantage of this type of drive is increased efficiency while the disadvantage is decreased step accuracy.

Also in the multiple stepping case, the pulses can be timed to shape the velocity of the motion,slow during start,accelerate to maximum velocity, then decelerate to stop with minimum ringing.

B. Torque

1. Holding Torque

At standstill (zero step per second and rated current) the torque required to deflect the rotor a full step is called the holding torque.Normally, the holaing torque is higher than the running torque and thus acts as a strong brake in holding a load. Since deflection varies with load, the higher the holding torque the more accurate the position will be held.
2. Residual Torque

The non-energized detent torque of a permanent-magnet stepper motor is called Residual Torque.As a result of the permanent magnet ilux and bearing friction,it has a value of approximately $1 / 10$ the holding torque. Whis characteristic of permanent magnet steppers is useful in holding a load in
the proper position even when the motor is de-energized. The position however will not be held as accurately as when the motor is energized.
3. Dynamic Torque

A typical speed/torque characteristic curve is shown below.

Figure 2.2 Airpax K82402 L/R Stepper Speed/Torque

Ihe Start Without Error curve shows what torque load the motor can start and stop without loss of a step When started and stopped at a constant step or a pulse rate.

The Running curve is the torque available when the motor is slowly accelerated to the operating stepping rate. It is the actual dynamic torque produced by the motor. This curve is also called the STEW curve.

The difference between the Running and the Start Without Error torque curves is the torque lost due to the accelerating the motor rotor inertia.

C. Resonance

When a stepper motor is operated at its natural frequency, typically 90 to 160 steps per second, depending on motor type, an increase in the audio and vibration level of the motor may occur.The frequencies at which this resonance will occur vary widely depending on the characteristics of the load.

In some cases, the motor can oscillate or loose steps, while in other applications, resonance may not be experienced. Where resonance does occur, an increase in inertial loading will usually allow operation at these frequencies.

A permanent magnet stepper motor, however, will not exhibit the instability and loss of steps often found in variable reluctance stepper motors since the permanent magnet motors have higher rotor inertia and a stronger detent torque.

D. Bipolar \& Unipolar Operation

There are steppers with either 2 coil bipolar or 4 coil unipolar windings.

The stator flux with bipolar winding is reversed by reversing the current in the winding. It requires a push-pull bipolar drive as shown in Figure 2.3.One must be careful in the design of the circuit so that the transistors in series do not short the power supply by turning on at the same time. Properly operated, the bipolar winding gives the optimum motor performance at low to medium step rates.

A unipolar winding has two coils wound on the same

Figure 2.3 Bipolar Switching Sequence
bobin per stator half.Flux is reversed by energizing one coil or the other coil from a single power supply. Unipolar case allows the drive circuit to be simplified. Only four power switches are required, and the timing is not as critical as in the bipolar case, (refer to figure 2.4) to prevent the short through two transistors.

Figure 2.4 Unipolar Switching Sequence

For the unipolar motor to have the same number of turns per winding as the bipolar motor, the wire diameter must be decreasea and therefore the resistance increased. This results 30 per cent less torque for the unipolar motor at low steprates.At higher rates, torque outputs are equal.
E. Performance Improvement \& Drive Iypes

If a motor is operated at a fixed rated voltage and if its frequency (i.e. its step rate) is tried to be increased, the torque output decreases because of the rise time of the coil which limits the power delivered to the motor. And this effect is due to the inductance to resistance ratio of the circuit.

This may be compensated by raising the power supply voltage and adding a series resistor (as shown in figure 2.5) or by increasing the power supply voltage to obtain a constant current as the step rate increases.

Figure 2.5 L / 4R Drive

For $L / 4 R$ drive,series resistor is selected three times the motor winding resistance.Supply voltage is increased to four times the motor rated voltage. It can easily be
understood that power supplied to the system also increases by a factor of four with respect to L / R drive.

For power minimization, bi-level or chopper drives may be selected.

1. Bi-level Drive

At zero step per second, this type of drive holds the motor at a lower voltage than rated voltage, and higher voltage when stepping.It is most efficient when operated at a fixed, constant stepping rate.

Figure 2.6 Bi-level Drive (Unipolar)

The high voltage source is put on through a current sensing resistor or by the circuit in figure 2.6 which uses
the inductively generated turnoff current spikes to control the voltage.At standstill, the low voltage source energizes the motor windings.As the stepping sequence is fed to the windings, diodes $D_{1,2,3,4}$ are used to make the high voltage transistors $Q_{1,2}$ conduct.

2. Chopper Drive

Such a drive maintains an average current level, using a current sensing resistor to turn on the high voltage supply until an upper current level is obtained, and turn off the high voltage until a low level is sensed.Then it turns on the high voltage again.

This type of drive is best for fast acceleration and variable frequency applications, and more efficient than a constant current amplifier regulated supply. In a chopper drive, the voltage supply must'be five to ten times the motor voltage rating.

F. Transient Voltage Suppression

Transient voltages are generated as current is switched through the windings during stepping.These voltages can cause faulty operation and damage the motor or drive components unless a means of limitine or removing them is provided.The most common method for suppressing transient voltages is to use shunting diodes across each winding. Since this reduces torque, voltage is allowed to rise to more than twice the supply voltage across the switching transistors.

In order to achieve this,a zener or a series resistor is added for faster induced field,faster current decay,better performance.
G. Performance Limitations

Increasing the voltage to a stepper motor at standstill or low stepping rates will produce a proportionally higher torque until the magnetic flux paths within the motor saturate.As the motor nears saturation,it becomes less efficient and thus does not justify the additional power input. The maximum speed a stepper can be driven is limited by hysteresis and eddy current losses.At some rate, the heating effects of these losses limit any.further effort to get more speed or torque output by driving the motor harder.
II. CHARACTERISTICS OF THE STEPPERS USED IN THTS PROJECT

Stepper motors used in the proposed project have the following specifications whose related performance charts are given in the appendix.

Manufacturer: ORIENTAL MOTORS
Type: FH296-03
Voltage: 14 V
Current per phase: $0.7 \mathrm{~A} / \mathrm{phase}$
Holding torque: 174 oz-in (123 N cm)
Resistance per phase: 20 ohms/phase
Inductance per phase: $60 \mathrm{mH} /$ phase
Working temperature range: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Temperature rise: $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
Insulation type: Class B
Insulation resistance: $100 \mathrm{M} \Omega$ or more when megger reading is DC 500 V

Dielectric strength: Vithstands in normal when impressing 0.5 kV at 60 Hz . between the windings and the frame for one minute

CHAPTER 3

SYSTEM HARDWARE

Hardware of the system consists of the following the blocks and explained as listed.
A. Z-80 microprocessor card
B. Mechanical Assembly of the Scanner
C. Stepper Motor Drivers
D. Detector
E. Power Supply

Although each heading above will be considered in detail , main spec's of the hardware are;
i. Z-80 is used as the CPU, and a Z-80 PIO for input/output purposes.
ii.Control programs are about three Kbytes long and stored in two 2716 EPROMs.
iii.Maximum scenning area of the system is 220 mm by $150 \mathrm{~mm}(\mathrm{x}, \mathrm{y})$ mechanically.
iv. System scans the nodes of a grid pattern whose nodes are $1 / 20$ inch (1.27 mm) apart.
v. Since a two kilobyte random access memory is used in the system, memory available for storing the holeposition information limits the card size to 170 mm by 140 mm (x, y), because RAM is also used as a stack and a general purpose store area for program constants.
A. Z-80 Microprocessor Card

In the design of the system, Z-80 microprocessor is chosen as the CPU, whose block diagram of the internal structure is shown in the below figure.

Figure 3.1 Z-80 CPU Block Diagram
Z-80 is an 8-bit processor with eighteen 8-bit registers, and four 16-bit registers. The registers include two sets of six general purpose registers that may be usedindividually as 8-bit registers or in pairs as 16-bit registers. There are also two sets of accumulator and flas registers.

Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU.The instructions can be broken down into the following major groups:
a. Load and Exchange
b. Block Transfer and Search
C. Arithmetic and Logical
d. Rotate and Shift
e. Bit Manipulation (set,reset,test)
f. Jump, Call and Return
E. Input/Output
h. Basic CPU Control

Also, the type of adaressing modes avaliable in $\mathrm{Z}-80$ CPU include; Immediate, Immediate Extended, Modified Page Zero, Relative, Extendec, Indexed, Recister, Implied, Register Indirect and Bit Addressing modes.

Apart from Non Maskable Interrupt, the CPU can be programed in any one of the three maskable interrupt modes, MODE $0,1,2$.

Details of the above mentioned characteristics of the Z-80 CPU can be found in the Appendix.

Input \& Output actions are done by z-80 PIO Parallel I/O which has two parts and provides a rIL compatible interface between peripherals and $z-80$ CPU.

Memory devices are; 2 EPROMS of 2716 type and a RAM, 6116 P-3, 2 kz 8 bit capacity.

System clock frequency is 2.0 MHz which is obtained from 4.00 MHz . crystal, dividing this by 2 using a D-type ilip-flop.

Address Decoding of the system is done as shown below:

- Figure 3.2 Adaress Decoding Circuity

This scheme of decoding gives such a memory layout;

```
\emptyset\emptyset\emptyset\emptyset - \emptysetПFF EPROM1
\emptyset8\emptyset\emptyset-\emptysetFPF EPRON2.
1\varnothing\varnothing\varnothing - 7FFF Unclassified
8\emptyset\emptyset\emptyset-87FF RAM
```

Table 3.1 Nemory Layout of the System

Hode 2 interrupt mode is selected in order to connect control switches to the system. Using this mode a table of 15-bit starting addresses is obtained for every input service routine. When an interrupt is accepted, a 16-bit pointer is formed to obtain the desired interrupt, service routine starting address from the table. The upper 8 bits are loaded to the I register, where the lower eight bits of the pointer are
supplied by the interrupting switches.But only 7 bits can be used,as the least significant bit must be zero.This is required since the pointer is used to get two adjacent bytes to form a complete 16 -bit service routine starting address and the addresses must always start in even locations This mode is used together with the hardware below.

$\overline{I O R Q}$ and $\overline{M T}$ indica Interrupt Acknowlec (INTA)

Wher one of the switches connected to interrupt inputs is drawn to ground, NAND gate output goes high and sends a 1.3 microseconds interrupt pulse through capacitor, resistor network, and at this moment, 74 IS 373 Octal Transparent Latch is enabled and it latches the data on its input. Meanwhile the CPU generates an INTA signal which enables the output of the latch, placing the data taken from the switches to the data bus.This information supplies the lower 8 -bits of the 16 bit address.Thus CPU jumps to the desired location to run the special program,this specific switch wants to run.

First,PortA of PIO is programmed as output,Port B as input.Then, after, detection and scanning program,Port B also, is programmed as output.

REGET ROURINE

$\varnothing \varnothing \varnothing \varnothing$	31 E 587	ID $\mathrm{SP}, 87 \mathrm{E} 5 \mathrm{H}$
$\not \square \emptyset \emptyset 3$	ED5E	IM 2
$\not \varnothing \varnothing \varnothing 5$	3Eø7	ID $A, \varnothing 7$
$\not \varnothing \varnothing \varnothing 7$	ED47	LD I, A
$\not \varnothing \varnothing \varnothing \square 9$	3EDE	ID A, $\varnothing \mathrm{FH}$
$\varnothing \varnothing \varnothing$ B	D302	OUT ($\varnothing 2$), A
$\varnothing \varnothing \varnothing D$	3E4F	LD $\mathrm{A}, 4 \mathrm{FH}$
$\varnothing \varnothing \varnothing F$	D303	OUT ($\varnothing 3$), A
$\emptyset \emptyset 11$	Air	XOR A
¢ø12	D300	OUT ($\varnothing \varnothing$), A
$\emptyset \emptyset 14$	FB	EI
¢ $\varnothing 15$	76	HALT

This routine, sets stack pointer to 87 E 5 H , chooses interrupt mode 2 ,loads I register with $\varnothing 7$, programs A port of PIO as output and B port as input.

Interrupt Service Routine Starting Addresses:

Table 3.3

IWMI is connected to the emergency switch on the control panel. Output Port A is connected to the stepper-motor drivers:4-least significant pins to x-motor,4-most significant pins to y-motor. Input Port B is connected to the detector circuity (Pin $B \varnothing$). The other six pins are grounded. But Pin B7 is connected as shown below:

This circuit enables us to simulate the drilling process when the detector comes onto a dot,as if it is drilling the hole, the IED flashes.During these operations Port B is also programmed as output port.

B. Mechanical Assembly of the Scanner.

Stage scanner used in this system is mainly composed of two stages mounted on top of each other with the following specifications.

Since for this very special application, in which very high precision motion is needed, the lead-screws and their corresponding nuts should not impose any backlash to the system. Although there are ways to avoid this phenomena such as coupling the lead-screws with ad.justable nuts or using spring systems,in the prototype, backlash did not cause any trouble, which is one of the best spec's of the mechanical system.

Mechenical system, from bottom to up is made up of:

1) Bese Plate (dim. $260 \times 350 \times 4 \mathrm{~mm}$)
2) y-stage (dim. $420 \times 195 \times 4 \mathrm{~mm}$)
3) x-stage (dim. $270 \times 220 \times 4 \mathrm{~mm}$)
4) Glass Plate (dim. $270 \times 220 \times 4 \mathrm{~mm}$)

Base plate holds the two vertical plates between which the lead-screw and the carrier-shafts are mounted that carry the y -stage.

Y-stage is on top of a carrier-sub-plate which is mounted onto the nut and the linear bearing housings by which a free slide on the shafts can be achieved. Y-stage holds the other two vertical plates.on these vertical plates, the other carrier-shaft pair and the other lead-screw is found.all stages and plates are aliminum.

X-stage,like y-stage is also carried by another subplate which is mounted to the nut of this lead-screw.

Mechanical system, being as mentioned above,uses linear motion bearings which gives the stages almost frictionless, smooth linear motion.Each stage has 4 of these bearings, (IKO, $D=16$ type) imposing a balanced load to the carrier-shafts Diameter of the shafts is 16 mm .

Lead screws have 8 threads per inch. Weaning that, one revolution of the screw moves the nut $1 / 8$ inch. Since the stepper motors, used in this system, have 1.8 degree step angle, giving one revolution with 200 pulses, as a result, one pulse to the steppers moves the stages $1 / 1600$ inch. Since no-blacklash is experienced, this $1 / 1600$ inch happens to be the resolution of the system described.

Coupling between the shafts of the steppers' and the lead-screws is done a.s shown below:

\therefore
Figure 3.5 Motor Coupling

On top of the x-stage, a glass-plate is mounted on which the dot-mask is placed for processing. Glass plate, xplate combination can be seen in the below figure:

Figure 3.6 X-stage

The mechanical assembly, having the previously mentioned characteristics, gives a scenning area of 220 mm by 150 mm . (x, y)

C. Stepper Motor Drivers

Although the drive circuitry of a stepper motor has to be determined-according to the requirements of the application (such as the amount of torque needed, speed, acceleration) stepper motors which are used in the system were available before the mechanical assembly (i.e. stage scanner) is realized.So, there was the obligation of making a suitable drive circuitry for these stepper motors considering how a scanner design may be the best for the application.

Since in this application,scanning is done with very small intervals (1.27 mm), time is a very important factor in the process. So, motors have to be forced to be driven at the probable maximum speed, by acceleration, steering at that speed and deceleration finally.

Miechanical assembly is so designed that almost frictionless movement is obtained which means that there was no need for high torque output from the steppers. This characteristic of the scanner created a chance to speed up the stepper motors:

When speed vs torque characteristic of the steppers is examined, it is seen that as speed increases, torque output decreases accordingly. Since slow constant speed is also needed when acceleration is not possible because of short paths, studying the Start without Error Curve (the stepping rate which a motor can start and stop without losing a step) indicatea that, a speed around 200 steps per second, will be good enough for the constant speed requirements.

Since high 舜orque output is not needed for this application,it is decided to choose a drive circuitry which is best for fast acceleration and variable frequency operation;and a chopper drive is preferred after studying the drive types.

An inductor of inductance L, havine resistance R, behaves according to the below formula when a voltage V is applied on its terminals:

$$
V=I \frac{d i}{d t}+R i
$$

$$
\begin{aligned}
& \text { Taking Laplace Transform, we get, } \\
& \begin{array}{l}
\frac{V}{s}=\operatorname{sII}(s)+R I(s) \\
I(s)=\frac{V}{s(s I+R)}=\frac{(V / R)}{s}-\frac{(V / R)}{s+\frac{R}{I}} \\
I(t)=\frac{V}{R}(1-\exp (-t R / L))
\end{array}
\end{aligned}
$$

In our case we equate the above equation to 0.7 A rated current, and we obtain,

$$
\begin{array}{r}
0.7=\frac{V}{20}\left(1-\exp \left(-t / 3 \times 10^{-3}\right)\right) \quad \text { where } R=20 \text { ohms } \\
I=60 \mathrm{mH}
\end{array}
$$

> From here,

$$
t=-3 \times 10^{-3}\left(\ln \left(1-\frac{14}{v}\right)\right)
$$

!

If $\mathrm{V}=30 \mathrm{~V}$, then $t=1.8 \mathrm{~ms}$.

If $V=42 \mathrm{~V}$, then $\mathrm{t}=1.2 \mathrm{~ms}$.

It is seen that increasing the voltage applied to a winding,increases the time to reach a specific current. From the above equation, we deduce that a voltage of approximately 42 volts can give an operation frequency of 834 Hertz. This fact is one of the important design criteria of the motor drivers.

Drive circuitry of one stepper motor is designed as in figure 3.7 , and the operation of the circuit is as the following:

According to the coming excitation pulse sequence from the microprocessor card, to either one of the transistors $Q_{2 A}, Q_{5 A}, Q_{2 B}, Q_{5 B}$, corresponding motor winding is chosen and connected to the high voltage through power transistors, $Q_{1 A}$, and $Q_{1 B}$, until the rated current of the windings is reached.
lhis rated current is detected on current sensing resistors $R_{5 A}$ and $R_{5 B}$, turning on trensistors $Q_{6 A}$ and $Q_{6 B}$, which draw $Q_{1 A}$ and $Q_{1 B}$ into cut-off.At this moment, the low voltage supply is connected to the windings in order to prohibit the power that will be dissipated on $Q_{1 A}$ and $Q_{1 B}$ When rated current is passing through.

Diodes $D_{3 A}, D_{4 A}, D_{3 B}, D_{4 B}$ and zener diodes Z_{A} and Z_{B} are for voltage suppression purposes in order to protect the circuitry from high voltage inductive spikes that may be generated. Diodes $D_{2 h}$ and $D_{2 B}$ are to inhibit reverse current to low voltage supply, while diodes $D_{5 A}, D_{5 A}, D_{5 B}, D_{6 B}$ are included in order to avoid negetive spires through windings.

D. Detector

Detection system consists of the following components:

1- A photo-transistor as a detector
2- Lamp (12 V)
3- Comparator (IM 324)
Photo-transistor is connected in common-emitter mode, collector voltage being the output.Its base being excited by radiation, photo-transistor gives an output according to the light intensity falling onto the base.Thus, voltage seen on its collector vary with light.

In order to obtain sharp transitions and stable voltages,a comparator is connected to the collector of the photo-transistor as shown in figure 3.8.

To Z-80 PIO port $B, p i n B \emptyset$

By using the potentiometer, the offset voltage is set to 1.2 V , which means that, when the voltage at the collector of the photo-transistor rises to or above 1.2 V , the comparator raises its output to high (4 V).Below 1.2 volts, output is at low level (0.55 V).

In the Z-80 PIO specifications, input low voltage is given as 0.8 V , and input high voltage as minimum 2 V . Since comparator output is connected to Z-80 FIO pin $\mathbb{B} \varnothing$, a wrong data input is avoided, which can be encountered due to the oscillations.

This information coming from the detector through the comparator is used to decide whether there is a hole or not at that node.

Since the photo-transistor has a very narrow sensitivity angle, the lamp has to be located in perfect alignment with the photo-transistor.Also, a diaphram is put on to the lamp, to show only the filament to the photo-transistor.

E. Power Supply

Voltage levels required in the system are:

1) 42 V for the high voltage side of the drivers
2) 18 V for the low voltage side of the drivers
3) 10-12 V for the lamp
4) 5 V for the processor-card, detector, comparator

High voltage is obtained just by rectification through diodes, and filtering bycapacitors using a 32 V AC supply as shown in figure 3.9.

Figure 3.9 High Voltage Supply

Although the output of the above circuitry is around 45 volts at no load, when loaded output drops to 42 volts, which is sufficient to fulfill the high voltage requirement of the driver card.

Other voltage levels are obtained using voltage regulator IC's, as given in figure 3.10. Voltage levels, 18 and 5 volts are derived from 7818 and 7805 regulators with 1 A ratings. Iamp voltage is supplied by using a 723 IC (Variable Voltage Regulator). This supply is made variable in order to
set the intensity of the lamp to a level so that the phototransistor output voltage can be at the optimum level.

Figure 3.10 Low Voltage Supplies

Approximately 500 mA is drawn from the 45 V supply, and 700 mA from the above supply card (200-250 mA processorcard, $70-80 \mathrm{~mA}$ lamp, 350 mA driver).

CHAPTER 4

SYSTEM SOFTWARE

System software can be devided into four main program blocks:
i. Line Detection Program
ii. Frame-length Detection Program
iii. Scanning \& Store Hole-Positions Program
iv. Drilling Program

There are also a few sub-programs which are used in each of the above mentioned programs, and these include;
a. Constant Delay \& Variable Delay Programs
b. Acceleration \& Deceleration subroutines
c. Constant Speed Subroutines

A. SUBROUTIINES

I. Constant Delay

This delay routine is used at constant speed movement programs. (Routine DIY). It is 8017 T cycles long. Since system clock frequency is 2 MHz . (one \mathbb{T} cycle is 0.5 microseconds), this gives us a delay of;

$$
8017 \times 0.5 \times 10^{-6}=4.0085 \mathrm{msec} .(249 \mathrm{~Hz})
$$

II. Variable Delay

The Variable Delay routine is used where a delay of different durations is needed, namely in the acceleration, maximum speed and deceleration routines (Routine VDLY). Its delay is given by the relation below:

$$
\left(\left(133 \times 0.5 \times 10^{-6}\right) \mathrm{M}\right)+5 \text { microseconds }
$$

Multiplier M, is loaded before the VDIY routine is called, and it determines the duration of the delay.
III. Constant Speed Subroutines

As mentioned before, in order to rotate the rotor of the stepper motor, a four-bit pattern must be sent to the appropriate windings in a special sequence. These patterns are $1,9,5,6$ in hexadecimal form ($1 \varnothing 1 \varnothing, 1 \varnothing \varnothing 1, \varnothing 1 \varnothing 1, \varnothing 11 \varnothing$ in binary) for clockwise rotation; $6,5,9$, A in hex. for counter-clockwise rotation.
'A' port of the PIO is used to output these patterns. The least significant four bits ($03,02,01,0 \not 0$) are connected
to X-motor, the rest ($07,06,05,04$) to the Y-motor through the motor drivers.

Since one port is used for both of the stepper motors and one of the motors should be in standstill state while the other is rotating, the bit patterns of the motors should be stored in the memory as shown below for use in the routines.

Memory	Address	Bit Pa	
	$\emptyset 7 \mathrm{~A} \varnothing \mathrm{H}$	\varnothing A H	
	$\emptyset 7 \mathrm{~A} 1 \mathrm{H}$	$\phi 9 \mathrm{H}$	
			For X-Motor
	$\emptyset 7 \mathrm{~A} 2 \mathrm{H}$	$\varnothing 5 \mathrm{H}$	
	$\phi 7 \mathrm{~A} 3 \mathrm{H}$	$\varnothing 6 \mathrm{H}$	
	$\varnothing \neg$ ¢ \varnothing H	$A \varnothing \mathrm{H}$	
	$\varnothing 7 \mathrm{B1} \mathrm{H}$	$9 \not 口 \mathrm{H}$	
	¢7B2 H	50 H	For 1-Motor
	$\varnothing 7 \mathrm{~B} 3 \mathrm{H}$	$6 \varnothing \mathrm{H}$	

Table 4.1 Motor Constants

As it is seen from the table, most significant four bits of the x-motor bit patterns, and the least significant four bits of the y-motor bit patterns are zeroes, not to energize the other motor windings while one of them is rotating, therefore not drawing excess current at standstill.

Using the above mentioned bit patterns and delay routine DLY, the constant speed routines are written as shown in the following figure 4.1.

Figure 4.1 X-motor CCW Constant Speed Routine

Since one step of the stepper motor gives a $1 / 1600$ inch Iinear motion;in order to move one grid length that is $1 / 20$ inch, motor has to be stepped 80 times (80 Decimal $=50$ Hex.) .

In these constant speed routines H register of the processor is used as the step counter. At every 80 step count,
the routine repeats itself to move one more grid length. Figure 4.1 is the flowchart of the routine to move the x-motor such that the upper (x-table) stage moves in positive-x direction (i.e. away from the motor).

There are four routines, which are called by using the interrupt mode 2 of the $\mathrm{z}-80$ through the control panel switches,giving manual control of the X and Y stages by which the detector can be positioned on the dot mask anywhere desired.These are negative and positive X and Y direction movement routines,located at;

> ФПøø H : X-Stage, Positive-X (away from the motor)
> $\phi 74 \varnothing \mathrm{H}: \mathrm{X}$-Stage, Negative-X (towards the motor)
> Ø765 H : Y-Stage, Positive-Y (towarās the motor)
> $\varnothing 6 \mathrm{D} \varnothing \mathrm{H}$: Y-Stage, Negative-Y (away from the motor)

These routines move the stages continiously until the STOP button is pressed on the control panel.
IV. Acceleration \& Deceleration Routines

Acceleration and deceleration routines are written using the same logic of the constant speed routines, but varying the delay durations.Delays are determined according to the acceleration and deceleration constants determined experimentaly by running the stepper motors until the desired profile is reached, and these constants are listed in table 4.2.

Acceleration takes place in eleven steps, reaching a speed of 791 steps/sec at the final step giving a profile as shown in figure 4.2 .

Address Constant Step Rate (steps/sec)

$\varnothing 70 \varnothing$	$3 T$	238
¢701	3D	245
$\varnothing 7 \mathrm{C2}$	3A	260
9703	34	289
$\emptyset 704$	2 B	349
$\varnothing 7 \mathrm{C} 5$	25	406
$\varnothing 706$	$2 \emptyset$	470
$\varnothing 707$	1A	578
$\emptyset 708$	17	654
$\emptyset 709$	15	716
$\varnothing 7 \mathrm{CA}$	13	791

Table 4.2 Acceleration Constants

Figure 4.2 Acceleration/Deceleration Profile

Deceleration constants are the same as acceleration constants, first constant being the last one in table 4.2, and they are written into memory locations from $\emptyset 7 D \varnothing$ to ø7D9.

The flowchart of an acceleration routine is given in figure 4.3, on the next page.

In the deceleration case, IY index register is loaded with $\emptyset 7 D \varnothing$ which is the starting address of the deceleration constants, and register C is loaded with \emptyset AH because deceleration takes place in ten steps.

After acceleration,motors are fed with a 835 steps per second pulse rate, increasing the speed of the stages to their maximum velocity.

Figure 4.3 Acceleration Routine Elowchart
B. MAIN PROGRAMS
I. Line Detection Program

In general, this program searches the frame lines, and locates the detector on the top right corner of the ring mask.Program operates as follows:
1). Detector moves up (y-stage moves in negative-y direction) in 4-step intervals and inputs data through port 1. a. If input is zero (that is no hole), program returns to 1), in order to move 4 more steps.
b. If input is 'one' (that is hole-position or frame-line), detector is moved 68 more steps in order to measure the depth of the blackness,taking data at every 4-step.
i. If a zero is detected in one of these 4step movements, program returns to 1). for further search.
ii. If a zero is not detected (meaning that
all of these 4 -step movements give high(one)), program decides that it has found the upper frame line of the card.Because the maximum possible diameter of a hole position is 54 steps.

$3 \mathrm{X}=80, \mathrm{X}=27$
Diameter of a dot $=2 \mathrm{X}=54$ steps

Figure 4.4 Dot dimensions
2). Then the detector steps back from the upper line by the amount it entered plus one grid length, giving a total of 150 steps.
3). After these operations, detector moves towards right (x-stage moves in negative-x direction,towards motor), inputing data at every 4 -step.
a. If a zero is detected, detector continues its movement in the same manner as explained in 3).
b. If a high level is detected, this is for sure the right side frame Iine, because as explained in the 'operating the system' section, there should not be any àots, one grid below the upper frame-Iine.
4). Detector then moves one grid length in the opposite direction (towards left), and stops a moment to continue with the next program.

This final location of the detector after this linedetection progrem, is the zero-position reference point,thereafter all calculations and length measurements are done accoraing to this position.

Flowchart of this program is given in figure 4.5.

Figure 4.5 Flowchart of Iine-Detection program
II. Frame-Length Detection Program

This program measures the x and y lengths of the frame of the card and operates as follows:
1). Detector moves towards left (x-stage moves in positive-x direction, away from the motor) with constant speed of 246 pulses/sec., incrementing the grid counter at every 80 step, until the detector observes the left-side line of the frame.
2). Then this length information in its grid counter is stored (by subtracting 2) into the memory location XLNGTH. Two is subtracted because detector could have entered the frame just at the end of the grid length, and the other grid is subtracted to leave one grid empty on every side of the card.
3). Since acceleration and deceleration steps add up to 21, (11 grids for acceleration, 10 for deceleration), this number is compared with the x-length measured by the system. If x-lengith is greater than 21 grids, system returns to zero position by accelerating to maximum speed. If smaller or equal to 21 , then it returns with constant speed.
4). Y-length is also measured in the same way as explained in $1,2,3$ above.This time, same control signals and step commands are send to the y-motor. Thus, bottom-stage moves and performs the same procedures.Y-length is stored into YLNGTH, and detector finelly returns to zero-position. Flowchart is given in figure 4.6.

Frame-length Detection Program

III. Scanning and Store Programs.

This program scans the whole card in meander pattern taking data at every $1 / 20$ inch interval(which is the node separation of the grid), and storing the data taken according to a pattern given in the $S T O R E$ routine for further processing in the DRILIING program. The operation of this program is as follows:
1). Program first determines whether the scanning will take place at constant speed or in the maximum speed mode. Decision is made according to the length in the x-direction(INGTHX).If x-length is greater than 21 grids (sum of acceleration and deceleration steps), then program enters the maximum speed mode. If not,scanning is done at constant speed (scanning with CSCAN routine).
2). Scanning is done in the following manner when the maximum speed mode is selected due to XLNGMH.
a. Since XLIVGTH is know, and sum of acceleration and deceleration steps is 21 , length which will be travelled with maximum speed is calculated by subtracting 21 from XLNGTH and storing this value into memory location XPATH.
b. Scanning of the line, is done first by acceleration and taking data at every node by calling the STORE routine. Then stage reaches its maximum speed, travels at this speed by the length in XPATH (again taking data at each node by STORE routine) and decelerates in ten steps and stops at the end of the line.

Odd numbered lines are scanned from right to
left, while the even numbered lines are scanned from left to
right in the same format explained in 2.b.
c. At the end of every line, LASTST (Last Store) routine is called.Since data (hole-position information) are stored in 8-bit blocks into the memory, even though a byte is not completely filled at the end of a line,it is stored half-full, to prepare the store routine for the new coming data belonging to the next line to be scanned.
3). After the above mentioned steps, the y-stage moves down one grid, and the y-length is decremented by one.
a. If y-length is not covered totally, that is if the scanning of the card is not finished,scanning procedure continues as explained in $2 a, b$.
b. If the scanning of the card is finished at the end of an odd-numbered line, detector is returned to zeroposition by a routine called SRTNZ1 which first makes the x-stage move by XLNGTH long (with or without acceleration depending on the x -lengeth), and then the y -stage, YLNGTH long.
c. If the scanning is finished at the end of an even numbered line, program jumps to SRTNZ2 which is a part of the program SRTHZ1, to move the y-stage until the detector is again placed at the top right corner (zero position) of the card. (Returning to zero position is necessary for the drilling process).
4). Sub-routine STORE is the main part of the scanning and detection program, whose operation is as follows:
a.After exchanging registers,accumulator and flags currently used with the other register set,routine inputs data from port 1 (which is the input port).
b. Then retrieves the previous hole-position
information byte from memory location LOC2, rotates right and performs logical OR operation on this byte with the new input byte as shown below.

From LOC2
RRC

c. LOC1 holds the bit count. In the beginning,it contains 8, but decremented after each above mentioned operations are performed. When LOC1 is decremented to zero,meaning that 8 consecutive hole-position informetion is read, and one byte is filled. Then routine jumps to STM (Store to memory) routine within the STORE program.
d. STl routine retrieves the data from IOC2, rotate right one more time, and store this form into the memory location, in which STAM (Starting Address of Memory) contains. Initially, STAM contains $8 \varnothing \varnothing \varnothing \mathrm{H}$, which is the first RAM location in the system.After each byte-store,STAM content is incremented by one, LOC2 is cleared, and LOC1 is loaded with $\varnothing 8$, in order to process the new coming data.
e. IASIST routine (Last Store), within the routine STORE, stores whatever data are in LOC2, after rotating the content LOC1 times in order to make this data fit to the reading sequence.

STORE routine takes $1188^{\prime \prime}$ cycles (59 micro-sec.)
if a store to memory is not performed, and 233 T cycles,if performed (115.5 micro-sec.).This means that the routine is fast enough to function properly even when motors are running at their maximum speed without imposing any constraints to speed.
5). Constant speed scanning routine CSCAN uses MVINXI, MVINXR and MVINYD which are constant speed routines and the scanning of the card is the same as in the maximum speed case, also utilizing STORE routine for hole-position detection.

Flowcharts of these routines are given in figures $4.7,4.8,4.9$.

In figure 4.11 , detector movement in each program is given schematically.

Figure 4.7 Scanning \& Detection Program

CSCAI (Constant Speed Scanning) Routine

IASIST Routine
$A \leftarrow($ LOCO $)$

Figure 4.9 STORE 8: LASTST Routines

SRTINZ2 Routine

Figure 4.10 SRTVZ1 \& SRTNZ2 Routines

I. Line Detection Program

II. Frame-length Heasurement Program

III. Scanning Program (meander pattern)

Figure 4.11 Detector Movements in each program
IV. DRIIIING Program

This program retrieves the hole-position information from the memory and performs the drilling process according to these data using an optimum-path algoritm, which operates as follows:
1). 'Routine first clears certain areas of RAM which will be used during the program, and does some initialization by loading data to appropriate registers. Since the scanning of the card is done first from right to left, then from left to right, the drilling program also,operates in a different fashion when lines are odd-numbered or even. The data of an odd-numbered line are processed as described.
a. One byte of information is taken from memory and bit by bit a '1' is looked for.At every test,incremented x-length value is decremented (which is in fact the node number on this line). Zeros do not cause branching, but when a '1' is encountered,its location on that line is written in to the memory starting from FRSTIX ($873 \varnothing \mathrm{H}$). By not considering zeroes in a byte, routine only records the locations of '1's till the line ends.

For example, if the x-length of the card is 100 , this means there are 100 grids, but 101 nodes. There is the possibility of having 101 hole-positions on this line. This number is decremented every time a bit in a byte is tested. For instance, when a '1' is found in a byte and the register contains 69.This '1' is said to be at node 69, beginning being the 101st node whose position is at the rightmost side. b. After this search till the end of the line,
memory location of the last stored hole-position is put into LASTIX, and the address of next byte to be tested in the second line is saved in SAVEHL.
c. Then a test is done whether there exists a
hole or not on this specific line. If there is not a hole, one grid length is moved down in the y-direction and the routine jumps to FTR, to trace the second line.
i. If there is a hole,it is tested whether there is only one hole position. If it is so,hole location is compared with the OIDX (which is the old location of the motor in the previous line. In the beginning, motor position is the XINC, incremented x-length value). Comparison decides whether hole is at the left or at the right of the old motor position. If they happen to be at the same location, drilling is made, (in fact simulated by turning on a IED Ior a few seconas). If the hole is at the right side or at the left side of the motor, the distance to be travelled is calculated and moved to the hole location with or without acceleration depending on the distance between the hole position and OLDX.
ii. If there is not only one hole on this specific line, a test is made whether the first hole is at the right of the old position of the motor.If it is not,meaning that it is at its left, motor moves left to this first hole-position and performs the drilling from this point onwards from right to left. If the first hole is at the right of OIDX, a comparison is made between the distance of the first hole and $O I D X$, and the distance between last hole and OLDX. If firsti hole is nearer, motor moves towards right on to the first hole and starts drilling from here (from right to left). If the
last hole-position is nearer, motor moves towards left onto the last hole to perform the drilling from here from left to right).

After the hole-positions are processed as explained and drilling is completed on this line, stage moves one grid in y-direction, and routine jumps to the second line trace section of the program. All of the above mentioned procedures are true only for odd numbered lines due to the fact that scanning and detection of hole positions are done in the same format and direction.
2). FTRACE routine searches the memory as in the STR routine, but it is for even numbered lines and hole locations are calculated differently.
a. When a '1' is found in a bit test, decremented value of XINC is subtracted from XIL which is two-incremented x-length in order to make the grid node numbering system similar to the odd-lines. Because in the even-numbered line case, the first data are at the left side oi the card whereas in the odd-lines,first data are at the rightmost side of the card.
b. After necessary store procedures are completed
as in 1.b, a test is ane whether there exists a hole or not on this line. If not, one grid is moved in y -direction, and control is passed to STRACE to trace the next line.
i. If there is only one hole, its location is
compared with OIDX which determines whether hole is at the Ieft or at the right of OIDX. And according to the direction decided by the comparison, motor is moved and the drilling is performed.
ii. If there are more than one hole, a test is made whether the first hole is on the left of OIDX. If not, motor moves towards right to drill this first hole, and continue with others from here on (from left to right). If there exists a hole at the left of OLDX, a comparison is made between the distance of first hole location and OIDX, with the distance of the last hole location and OLDX.

If the first hole is nearer, motor moves towards left to drill the first one and continue with others from left to right. If the last hole is nearer, it moves to right to drill the last hole, and drill the others from here to left.

After the drilling of all the holes on this line is completed,stage moves in y-direction one grid down, and checks whether the card is finished or not.If not,program jumps to the other line in order to continue the drilling. If the card is finished, detector (now being the drill), returns to zero-position and enters in a HALT state waiting for the command to drill the other card.

As it can be seen from the above explained drilling scheme, program utilizes an optimum-path algorithm which reduces the scanning time considerably during drilling.

The schematic explanation of how drilling isperformed and the flowcharts are given in the following figures.

a). If there is only one hole to be drilled,drill moves directly towards it according to its location(right or left).If it is just on it,it drills and moves to the other line.

b). It searches right side,if no hole,it moves directly tothe nearest hole and continues.

c). If there is a hole on the right, distences A and B are compared. If A is smaller,it goes to right first, then continues to left.

d). If B is smaller,it goes to left first, then arills towardis right.

e). If all of the holes are on the right,it goes to the nearest one and drills towards right.

f). If it happens to be on a hole, and no holes on its left (or righ it drills this one, ena continues drilling towards right (left)

Drilling is the same for even-lines, but it first looks on its left side due to the scanning format.

The flowchart of scanning and drilling the even-num bered lines,is about the same as given in Figure 4.11 with the differences as explained within the related parts of the drilling program section, and can be examined from the assembly language listing of the total program given in the appendix, from line number $\varnothing 511$.

DISCUSSION \& CONCLUSIONS

The-stepper motors used in the system were high output torque, not fast steppers which were supplied before no calculation or work has been done, and they were not the best ones for this specific application where speed is a very important factor.Although, they are forced to be driven With a speed of 835 steps/sec, there are stepper motors that can operate with 4000 steps/sec,still supplying the torque needed in this system.Using such steppers could reduce the process time by a factor 5 .

The construction of the mechanical stage scanner was so precise that either x or y direction stages had almost frictionless linear motion. Ihis advantage of the assembly Gave the chance of increasing the speed of the motors to their possible maximum stepping rate by losing some portion of the torque output. At maximum speed, which is 835 steps/sec stage moves with $1.325 \mathrm{~cm} / \mathrm{sec}$ velocity ($47.72 \mathrm{~m} / \mathrm{hr}$).At slow constant speed which is also the starting speed, 246 step/sec, stage moves with $0.39 \mathrm{~cm} / \mathrm{sec}$ velocity ($14.05 \mathrm{~m} / \mathrm{hr}$).

In the beginning of the project,it was thought that the backlash of such a mechanical scanner could be the most probable danger for the precision of the whole system. But there were no backlash experienced even aiter complicated movement schemes. In case, there were methods advised such as spring system or adjustable nuts on lead-screws.

Although the system operation, especially, the dotmask preperation seems to be tedious, it is in fact straight forward and there are some advantages coming from the scanning
scheme due to this mask preperation. One of them is that, scanning is done only once, in order to determine the location of a hole-position and no need to calculate its origin, because y-coordinate of a hole is known when a line is about to be scanned, and only x-coordinate is determined for its exact location.

Drilling routine also brings a considerable amount of time reduction in the whole process by using the optimization algorithm.

After some mechanical modifications, system can be used as a real drilling machine utilizing its mentioned characteristics. Detector, lamp,glass plate combination can be designed to be replacable with the drill set,in order to perform the drilling process.

APPENDICES

фффф $\varnothing \varnothing \varnothing 1$

ффф2
$\varnothing \varnothing \varnothing 3$
$\varnothing \varnothing \varnothing 4$
$\varnothing \varnothing \varnothing 5$
øфø6
$\varnothing \varnothing \varnothing 7$
øфø8
$\varnothing \varnothing \varnothing 9$
$\varnothing \varnothing 1 \varnothing$
øø 11
$\varnothing \emptyset 12$
øø13
øø14
$\varnothing \varnothing 15$
øø16
$\phi \varnothing 17$
$\varnothing \varnothing 18$
$\varnothing \varnothing 19$
$\not \varnothing \varnothing 2 \emptyset$
$\not \varnothing \varnothing 21$
øø22
$\not \varnothing \varnothing 2$
$\not \varnothing \varnothing 24$
$\varnothing 025$
øø26
$\not \varnothing \varnothing 27$
$\emptyset \varnothing 28$

XLNGTH : EQU 87FøH
XPATH : EQU 87F1H
YLNGTH : EQU 87F2H
YPATH : EQU 87F3H
XSTEPI : EQU $\varnothing 7$ A \varnothing H
XSTEP4 : EQU $\emptyset 7 \mathrm{~A} 3 \mathrm{H}$
YSTEPI : EQU $\varnothing 7 \mathrm{~B} \emptyset \mathrm{H}$
YSTEP4 : EQU $\emptyset 7 E 3 H$
XINC : EQU 87F4H
XL2 : EQU 87E8H
IOCl : EQU 87F5H
LOC2 : EQU 87F6H
STAM : EQU 87FAH
SAVEHL : EQU 87EEH
SAVEIX : EQU 87FCH
LASTIX : EQU 87F8H
OIDX : EQU 87ECH
FRSTIX : EQU 873 H_{H}
PATH : EQU 87F7H
WAY : EQU 87EBH
STRAM : EQU 8øøøH
A+DSTP : EQU 15H
ACOUNT : EQU \varnothing EH
DCOUNI : EQU \varnothing AH
COUNT : EQU $\varnothing 4 \mathrm{H}$
BY'SE : EQU $\varnothing 8 \mathrm{H}$
STEP : EQU Ø1H
GRID : EQU 5 5 H
MAXSPD : EQU 12H
;Memery location for X-length ;Memory location for X-path ;Memory location for Y-length ;Memory location for Y-path ;Location of first X-motor constant ;Location of last X -motor constant ; Iocation of first Y -motor constant ;Location of last Y-motor constant ;Location of incremented x-length ; " of twice " x-length
;Iocation of byte count
;Location of incomplete store byte
;Starting address location of memory
; Location to save HL registers
;Location to save IX register
; " to store last IX content
; " to store old position of motor
n to store fisst IX content
;Location to store distance path
; Location to store length way ;Starting address of RAM
;Sum of acceleration+dec. steps
;Acceleration steps
;Deceleration steps
; Motor pulse sequence steps
;Bit count in a byte
;One step length
;One grid length, 80D steps
;Maximum speed constant
øø29
Фф3ф
øø31
Фф32
øф $\$ 3$
øø35 ID B,COUNT
$\phi \not \varnothing 37$
фф38
фф 39
$\varnothing \varnothing 4 \varnothing$
øø41
$\phi \emptyset 42$
$\varnothing \varnothing 43$
$\varnothing \varnothing 44$
øø45
$\not \varnothing \phi 46$
фф47
øø48
фø49 INI : IN A, (PORTI)
$\varnothing \varnothing 5 \varnothing$
øø51
$\not \varnothing \varnothing 52$
øø53
фф54
Øø55 STOP : XOR A
фø56
$\varnothing \varnothing 57$

Øø34 NGY : ID HL, YSTEP4 ; Frame Detection Program

Фф36 OUT : ID A, (HL) ; Fiove in 4-step sequence
ID IX,87F5H
ID (IX $+\varnothing \varnothing$), $\varnothing 8 \mathrm{H}$
$I D(I X+\varnothing I), \phi \varnothing \mathrm{H}$
ID HL, $8 \emptyset \varnothing \varnothing$ H
LID (STAM), HL

OUT (PORT \varnothing), A ;and input data
CALL DIy
DEC HL
DJNZ OUT
JP NC,INI
DEC C
JP 2,STOP
IN A, (PORII)
BIT \varnothing,A
JP NZ,NGY'
CCF
JP NGY

BIT \varnothing, A
$J P$ Z, NGY. ;If input is zero continue
ID C,11H ; to move, if not move 68 more
SCF
;steps to determine the depth

JP NGY

OUT (PORT \varnothing), A
ID B, FFH

¢¢58	DELI	: CALIL DIY	
¢¢59		DJNZ DELI	
øø6ф		LD C, 29H	;Fove out from the upper frame
¢ф61	PSY	: LD HL, YSTEPI	
¢ø62		ID B,COUNT	
øø63	OUT3	: ID A, (HL)	
¢¢64		OUT (PORTø), A	
¢ф65		Call diy	
¢ø66		INC HL	
øø67		DJNE OUT3	
Ф¢68		DEC C	
¢¢69		JP NZ, PSY	
øø7ø		XOR A	
¢¢71		OUT (PORT®), A	
$\not \varnothing \emptyset 72$		LD B, FFH	
¢ø73	DEL2	: Call diy	
øø74		DJNZ DEL2	
¢¢75	NGX	: LD HL, XSTEPI	;Search for the right side
¢ø76		ID B,COUNT	;frame line
¢ø77	OUT2	: ID A, (HL)	
$\emptyset \varnothing 78$		OUT (PORTD), A	
$\not \varnothing 79$		Call diy	
¢ø $\varnothing \varnothing$		INC HL	
¢ф81		DJNZ OUT2	
$\varnothing \emptyset 82$		IN $\mathrm{A},(\mathrm{P} O R \mathrm{RII})$	
$\not \emptyset \emptyset 83$		BIT \varnothing, A	
$\varnothing \varnothing 84$		JP Z,NGX	
¢085		XOR A	
$\not \varnothing \varnothing 86$		OUT (PORT) , A	

øø87		ID B, FFH	
øø88	DEL3	: CALIL DIY	
¢ø89		DJNZ DEL3	
¢¢90		LD C, $2 \not$ H	;Move out from the right side
¢ $\varnothing 91$	PSX	: LD HL, XSTEP4	;frame
øф92		LD B,COUNT	
фф93	OUT4	: LD A, (HL)	
øф94		OUT (PORT¢) , A	
øф95		CALL DLY	
Ф¢96		DEC HL	
¢ф97		DJNZ OUT4	
¢¢98		DEC C	
¢¢99		JP NZ,PSX	
ф1фф		XOR A	;Stop on the zero position
¢1ф1		OUT (PORTD), A	;location
ø1ф2		LD B, FF	
¢1¢3	DEL4	: CALL DLY	
ø1¢4		DJNZ DEL4	
¢1¢5	FRIG'TH	: ID L, $\varnothing \varnothing$; Frame length progran
¢1ø6	FPSX	: ID A, Step	; Heasure x -lencth
¢1¢7		ID (WAY), A	
¢1ф8		CALL MVINXL	
$\not \varnothing 1 \varnothing 9$		INC L	
¢11ф		IN A, (PORTI)	
$\varnothing 111$		BIT \varnothing, A	
ø112		JP Z,FPSX	
¢113		XOR A	
$\varnothing 114$		OUT (PORT ${ }^{\text {P }}$), A	
Ø115		ID B, FFH	

$\emptyset 116$	DEL5	:	CALI DIY	
$\emptyset 117$			DJNZ DEL5	
$\emptyset 118$			DEC I	
$\phi 119$			DEC I	
$\phi 12 \emptyset$			LD DE,XINGTH	
¢121			ID A, I	
¢122			ID (DE), A	
ø123			INC I	
$\phi 124$			INC I	
$\emptyset 125$			ID A, L	
$\phi 126$			SUB A+DSTP	
$\emptyset 127$			ID (XPATH), A	
$\emptyset 128$			ID (PATH), A	
ф129			ID A, L	
$\phi 13 \emptyset$			ID (WAY), A	
$\emptyset 131$			CALI Z, MVINXR	
$\emptyset 132$			JP Z,DIX	
$\phi 133$			CALI C, MVINXR	
¢134			JP C, DLX	
$\emptyset 135$			CALI XRACC	
¢136	DIX	:	ID B, FFH	
$\phi 137$	DEL6	:	CALL DIY	
$\varnothing 138$			DJNZ DEL6	
¢139			ID L, $\varnothing \varnothing$	
$\emptyset 14 \emptyset$	FPSY	:	ID A,STEP	; leasure y -length
$\varnothing 141$			ID (WAY), A	
$\varnothing 142$			CALI MVINYD	
$\emptyset 143$			INC I	
Ø144			IN A, (PORTI)	

$\varnothing 145$		BIT \varnothing, A
$\emptyset 146$		JP Z,FPSY
$\varnothing 147$		XOR A
$\emptyset 148$		OUT (PORTめ), A
$\varnothing 149$		LD B, FFH
$\varnothing 15 \varnothing$	DEL7	: CALI DLY
$\varnothing 151$		DJNZ DEL7
$\emptyset 152$		DEC I
$\emptyset 153$		DEC I
$\emptyset 154$		ID DE,YLNGTH
$\varnothing 155$		ID A, I
¢156		LD (DE), A
ø157		INC L
ø158		INC L
$\emptyset 159$		LD A, I
$\varnothing 16 \emptyset$		SUB A+DSTP
¢161		ID (YPATH), A
$\emptyset 162$		ID (PATH), A
$\emptyset 163$		ID A, L
$\varnothing 164$		ID (WAY), ${ }^{\text {a }}$
$\emptyset 165$		CALI 2,MVINYU
¢166		JP Z,DIYY
¢167		CALI C,MVINYU
$\emptyset 168$		JP C,DLYY
¢169		CALI YUACC
$\emptyset 17 \varnothing$	DIYY	: ID B,FFH
$\not \subset 171$	DEL8	: CALI DIY
$\not \subset 172$		DJNZ DELS
$\emptyset 173$		ID A, (XPATH)

$\not \subset 174$		DEC A	
¢175		DEC A	
¢176		ID (XPATH), A	
¢177		ID A, (YPATH)	
¢178		DEC A	
$\emptyset 179$		DEC A	
¢18ø		ID (YPATH), A	
¢181		ID A, (XINGTH)	
$\emptyset 182$		INC A	
$\emptyset 183$		ID (XINC), A	
¢184		INC A	
¢185		ID ($\mathrm{XL2} 2), \mathrm{A}$	
$\emptyset 186$	SCANPR	: ID A, (XINGTH)	; Scanning Program
¢187		SUB A+DSTP	;Test ior constant speed scanning
$\not \subset 188$		JP Z, CSCAN	;or by acceleration
¢189		JP C, CSCAN	
¢19め		ID A , (YLNGTH)	
¢191		ID I, A	
¢192		CALI STORE	
\$193	SXPA	: LID IY,ACONS	; Start scanning the first line
¢194		ID C, ACOUNT	; by acceleration
¢195	SXPAH	: ID H, \varnothing (${ }^{\text {d }}$	
¢196	SXPAR	: ID IX,XSTEP4	
¢197		ID B,COUNT	
$\not \emptyset 198$	SXPAM	: ID A, (IX $+\varnothing \varnothing$)	
$\not \subset 199$		OUT (PORTD), A	
$\phi 2 \not \varnothing \varnothing$		LD E, (IY $+\varnothing \varnothing$)	
$\emptyset 2 \emptyset 1$		CALL VDIY	
¢2ø2		INC H	

$\phi 2 \phi 3$		IT) A, GRID	
$\emptyset 2 \emptyset 4$		CP H	
$\emptyset 2 \emptyset 5$		JR $2+9$	
¢2ø6		DEC IX	
$\emptyset 2 \emptyset 7$		DJNZ SXPAM	
¢2ø8		JP SXPAR	
$\emptyset 2 \emptyset 9$		INC IY	
$\phi 21 \varnothing$		CALL STORE	
$\varnothing 211$		DEC C	
$\emptyset 212$		JP NZ, SXPAH	
$\varnothing 213$		PUSH HL	
$\emptyset 214$		ID HL, XPATH	
$\emptyset 215$		ID C, (HI)	
$\emptyset 216$		POP HL	
$\phi 217$	SXAPH	: $\Psi \mathrm{H}, \emptyset \varnothing$	
$\emptyset 218$	SXAPS	: ID IX,XSTEP4	; Scenning with maximum speed
$\varnothing 219$		ID B,COUNT	
$\emptyset 22 \emptyset$	SXAPM	: ID $A,(I X+\varnothing \varnothing)$	
$\emptyset 221$		OUT (PORT O $^{\text {a }}$, A	
$\emptyset 222$		ID E,MAXSPD	
$\phi 223$		CALL VDIY	
¢224		INC H	
$\varnothing 225$		ID A, GRID	
$\not \subset 226$		CP H	
$\emptyset 227$		JR Z; +9	
$\emptyset 228$		DEC IX	
$\varnothing 229$		DJNZ SXAPM	
$\phi 23 \varnothing$		JP SXAPS	
$\emptyset 231$		CALI STORE	

$\emptyset 232$		DEC C	
$\emptyset 233$		JP NZ, SXAPH	
$\emptyset 234$	SXPD	: LD IY,DCONS	;Start to decelerate
¢235		ID C,DCOUNT	
$\varnothing 236$	SXPDH	: ID H, $\varnothing \varnothing$	
$\emptyset 237$	SXPDR	: ID IX,XSTEP4	
ф238		ID B,COUNT	
¢239	SXPDM	: ID $A,(I X+\varnothing \varnothing)$	
$\emptyset 24 \varnothing$		OUT (PORT \varnothing), A	
¢241		ID E, ($I Y+\emptyset \varnothing$)	
$\emptyset 242$		CAIJ VDIY	
$\emptyset 243$		INC H	
¢244		ID A,GRID	
$\emptyset 245$		CP H	
$\emptyset 246$		JR Z, +9	
$\emptyset 247$		DEC IX	
$\emptyset 248$		DJNZ SXPDM	
$\emptyset 249$		JP SXPDR	
¢25¢		INC IY.	
$\emptyset 251$		CALL STORE	
¢252		DEC C	
¢253		JP NZ, SXPDH	
$\emptyset 254$		EXX	
$\emptyset 255$		EX AF, AF'	
$\emptyset 256$		ID $\mathrm{HL}, \mathrm{IOCl}$	
$\emptyset 257$		ID C, (HI)	
$\emptyset 258$		LD A,BYTE	
$\emptyset 259$		AND C	
$\phi 26 \varnothing$		JP NZ, SX1	

¢261		CALI LASTST	-
$\emptyset 261$		JP SPI	
$\phi 262$	SXI	: EX AF, AF'	
$\emptyset 263$		EXX	
$\emptyset 264$	SPI	: XOR A	;Stop at the end of the line
$\emptyset 265$		OUT (PORTゆ), A	
¢266		ID $\mathrm{B}, 1 \mathrm{FH}$	
$\emptyset 267$	SDEII	: CAIL DIY	
$\emptyset 268$		DJNZ SDELI	
$\emptyset 269$		ID A, STEP	
$\emptyset 27 \emptyset$		ID (WAY), A	
$\not \subset 271$		CALI MVINYD	;Move one grid down
¢272		ID B, 1 FH	
$\emptyset 273$	SDEL2	: CALI DIY	
$\varnothing 274$		DJNZ SDEL2	
$\emptyset 275$		DEC I	; Test whether the cara is
¢276		JP Z, SRTNZ1	;finished, if yes, return to
$\emptyset 277$		CAIL STORE	;zero position
$\varnothing 278$	SXNA	: LID IY,ACONS	;if not,scan the next line
¢279		ID C,ACOUNT	
$\varnothing 28 \varnothing$	SXNAH	: ID H, $\varnothing \varnothing$	
$\emptyset 281$	SXNAR	: ID IX,XSTEPI	
$\emptyset 282$		ID B,COUNT	
$\emptyset 283$	SXNAM	: ID A, $(1 X+\varnothing \varnothing)$	
$\emptyset 284$			
$\emptyset 285$		LD $\mathrm{E},(\mathrm{IY}+\emptyset \emptyset$)	
¢286		CALI VDIY	
¢287		INC H	
$\emptyset 288$		ID A,GRID	

$\emptyset 289$		CP H
¢29ф		JR $7,+9$
$\emptyset 291$		INC IX
ø292		DJNZ SXNAM
¢293		JP SXNAR
¢294		INC IY
Ø295		CALL STORE
$\emptyset 296$		DEC C
Ø297		JP NZ, SXNAH
$\varnothing 298$		PUSH HL
Ø299		ID HL, XPATH
$\phi 3 \varnothing \varnothing$		ID $\mathrm{C},(\mathrm{HL})$
$\phi 3 \varnothing 1$		POP HL
$\phi 3 \varnothing 2$	SXDPH	: ID H, $\varnothing \varnothing$
$\emptyset 3 ¢ 3$	SXDPS	: ID IX,XSTEPI
$\phi 3 \varnothing 4$		ID B,COUNT
¢3¢5	SXDPM	: ID $A,(I X+\varnothing \varnothing)$
$\phi 3 ¢ 6$		OUT (PORTD), A
$\emptyset 3 \varnothing 7$		ID E,MAXSPD
$\phi 3 ¢ 8$		CALI VDIY
$\phi 3 \varnothing 9$		INC H
$\emptyset 31 \varnothing$		ID A, GRID
$\emptyset 311$		CP H
$\emptyset 312$		JR Z +9
$\phi 313$		INC IX
$\varnothing 314$		DJNZ SXDPM
$\emptyset 315$		JP SXDPS
$\varnothing 316$		CALI STORE
¢317		DEC C

$\varnothing 318$			JP NZ, SXDPH
¢319	SXND	:	L IY,DCONS
¢32め			ID C,DCOUNT
¢321	SXNDH	:	ID H, $\varnothing \varnothing$
¢322	SXNDR	:	ID IX,XSTEPI
¢323			ID B, COUNT
¢324	SXNDM	:	ID $A,($ IX $+\varnothing \varnothing$)
¢325			OUT (PORT \varnothing), A
\$326			LD E, (IY+ $\varnothing \varnothing$)
$\phi 327$			CALI VDIY
$\emptyset 328$			INC H
Ф329			ID A,GRID
$\varnothing 33 \varnothing$			CP H
$\phi 331$			JR Z, +9
$\phi 332$			INC IX
$\varnothing 333$			DJNZ SXNDM
$\phi 334$			JP SXNDR
$\phi 335$			INC IY
¢336			CALL STORE
$\phi 337$			DEC C
¢338			JP NZ, SXNDM
$\phi 339$			EXX
Ф34め			EX AF,AF'
¢341			ID HL, IOCl
¢342			ID $\mathrm{C},(\mathrm{HL})$
$\phi 343$			ID A, BYTE
¢344			AND C
¢345			JP N2, SX2
\$346			CAIL LASTST

¢347		JP SP2	
¢348	SX2	: EX AF, AF'	
¢349		EXX	
¢35 \varnothing	SP2	: XOR A	
¢351		OUT (PORTX),A	
¢352		ID $\mathrm{B}, 1 \mathrm{FH}$	
¢353	SDEL3	: CALI DIY	
¢354		DJNZ SDEL3	
¢355		ID A, STEP	
$\varnothing 356$		LD (WAY), A	
¢357		Call mvinyd	
¢358		CALL STORE	
¢359		ID B, 1 FH	
¢36¢	SDELR	: CALIL DLY	
¢361		DJNZ SDEIR	
\$361		DEC I	
¢362		JP 2,SRINZ2	
¢363		JP SXPA	
¢364	CSCAN	: ID A, (YLNGTH)	;Constant Speed Scanning Program
$\varnothing 365$		ID I, A	
\$366		CALL STORE	
¢367	CSTART	: ID A, (XLNGTH)	
¢368		ID C, A	
\$369	LCONT	: ID A,STEP	
¢37¢		ID (WAY), A	
$\varnothing 371$		CALI MVINXL	
$\varnothing 372$		CALL STORE	
¢373		DEC C	
¢374		JP NZ,LCONT	

$\emptyset 375$		EXX
¢376		EX AF,AF'
¢377		ID HL,LOCl
¢378		LD C, (HL)
¢379		ID A,BYTE
$\emptyset 38 \varnothing$		AND C
$\emptyset 381$		JP NZ, CXI
$\phi 382^{\circ}$		CALI IASTST
¢383		JP CPI
¢384	CXI	: EX AF,AF'
$\emptyset 385$		EXX
¢386	CPI	: XOR A
$\emptyset 387$		OUT (PORID), A
$\emptyset 388$		ID B,IFH
$\emptyset 389$	CDEII	: CALI DLY
Ф39め		DJNZ CDELI
¢391		ID A,STEP
¢392		ID (WAY), A
$\varnothing 393$		CALI MVINYD
$\emptyset 394$		ID $\mathrm{B}, 1 \mathrm{FH}$
$\varnothing 395$	SDEL3	: CALI: DLY
¢396		DJNZ SDEL3
¢397		DEC I
$\emptyset 398$		JP Z, SRTN 21
$\phi 399$		CALI STORE
$\phi 4 \varnothing \varnothing$		ID $A,(X I N G T H)$
$\emptyset 4 \emptyset 1$		ID C, A
$\emptyset 4 \emptyset 2$	RCONT	: ID A,STEP
$\emptyset 4 \varnothing 3$		ID (WAY), A

Ф4ø4		CALL MVINXR	
$\emptyset 4 \emptyset 5$		CALU STORE	
$\emptyset 4 \emptyset 6$		DEC C	
¢4¢7		JP NZ,RCONT	
$\emptyset 4 \emptyset 8$		EXX	
$\varnothing 4 \varnothing 9$		EX AF, AF'	
$\varnothing 41 \varnothing$		LD HI,IOCl	
$\emptyset 411$		LD C, (HL)	
$\emptyset 412$		LD A,BYTE	
$\emptyset 413$		AND C	
$\varnothing 414$		JP NZ, CX2	
¢415		CAII LASTST	
$\emptyset 416$		JP CP2	
$\emptyset 417$	CX2	: EX AF,AF'	
$\emptyset 418$		EXX	
¢419	CP2	: XOR A	
$\emptyset 42 \emptyset$		OUT (PORTめ), A	
$\emptyset 421$		ID $\mathrm{B}, 1 \mathrm{FH}$	
$\emptyset 422$	SDELR	: CALL DIY.	
$\phi 423$		DJNZ SDELR	
¢424		ID A,STEP	
$\emptyset 425$		ID (WAY), A	
$\emptyset 4.26$		CALI MVINYD	
$\emptyset 427$		DEC I	
¢428		JP Z, SRTN Z 2	
¢429		CALI STORE	
¢43ø		JP CSTART	
$\emptyset 431$	STORE	: EXX	;Store Erogrem
$\emptyset 432$		EX AF,AF'	

\$433		IN A, (PORTI)	
¢434		LD HL, LOC2	
$\varnothing 435$		ID. B, HL)	
$\phi 436$		RRC B	
¢437		OR B	
¢438		ID HI, IOCl	
¢439		LD C, (HL)	
¢44ø		ID (IOC2), A	
¢441		DEC C	
¢441		ID (HL), C	
¢442		JP Z, STM	
$\varnothing 443$		EX AF, AF'	
¢444		Exx	
$\emptyset 445$		RET	
¢446	LASTST :	: ID A, (LOCl)	; Iast store
¢447		ID B, A	
¢448		ID A, (IOC2)	
¢449	ROT	RRC A	
¢45 \varnothing		DJNZ ROT	
¢451		ID ($\mathrm{IOC2}$), A	
¢452	STM	ID A, (LOC2)	;Store to memory
¢453		RRC A	
¢454		ID HL, (STAM)	
¢455		ID (HL) , A	
¢456		INC HL	
¢457		LD (STAM), HL	
$\phi 458$		ID A, BYME	
¢459		ID (LOCL), A	
ø46ø		ID $A, \not \subset \varnothing$	

¢461		LD (LOC2), A	
¢462		EX AF,AF'	
¢463		EXX	
¢464		RET	
¢465	SRTNZ1	: LD B, FFH	;Return to zero position from
\$466	SDELX	: Call dly	;an odd numbered line
¢467		DJNZ SDELX	
¢468		LD A, (XLNGTH)	
¢469		LD (WAY),A	
¢47¢		SUB A+DSTP	
¢471		CALI 2 , MVINXR	
¢472		JP Z, SRTNZ2	
¢473		CALL C, MVINXR	
¢474		JP C, SRTNZ2	
¢475		ID $\mathrm{A},(\mathrm{XPATH})$	
ø476		LD (PATH), A	
¢477		CALL XRACC	
¢478	SRTN Z 2	: ID B, FFH	;Return to zero-position from
¢479	SDEL4	: CALI DLY	;an even-line
¢48ф		DJNZ SDEL4	
$\emptyset 481$		ID A, (YLNGMH)	
¢482		LD (WAY), A	
$\emptyset 483$		SUB A+DSTP	
$\phi 484$		CALI Z, MVINYU	
¢485		JP 2, END	
$\phi 486$		CALI C, MVINYU	
$\emptyset 487$		JP C, END	
$\emptyset 488$		ID A, (YPATH)	
¢489	\cdots	ID (PATH), A	

$\emptyset 49 \varnothing$		CAIL YUACC	- .
$\varnothing 491$	END	: XOR A	
$\emptyset 492$		OUT (PORTゆ), A	
¢493		ID B,FFH	
$\emptyset 494$	SDEL5	: CALI DIY	
$\emptyset 495$		DJNZ SDEL5	.
$\emptyset 496$		ID B,9¢H	;DRILLING Program
$\emptyset 497$		LD HL, 872DH	
$\emptyset 498$	ZER \varnothing	: INC HI	
$\emptyset 499$		ID (HL), $\varnothing \varnothing$	
$\varnothing 5 \varnothing \varnothing$		DJNZ ZERØ	
$\varnothing 5 \varnothing 1$		ID A, (XINC)	
¢5¢2		ID C,A	
$\varnothing 5 \varnothing 3$		ID (OLDX), A	
$\phi 5 \varnothing 4$		SRI A	
¢5¢5		ID (HALFX), A	
¢5ø6		ID A, (YLNGTH)	
$\varnothing 5 \varnothing 7$		ID D, A	
¢5¢8		LD HL, STRAM	
$\varnothing 509$		ID IX,FRSTIX	
$\phi 51 \emptyset$		JP STR	
¢511	FTRACE	: BIT \varnothing, (HL)	;Routine to trace an even-line
$\varnothing 512$		JP NZ, FID \varnothing	
$\emptyset 513$	$F T R \emptyset$: DEC C	
$\emptyset 514$		JP Z,NXTIIN	
$\emptyset 515$		BIT 1 , (HL)	
$\varnothing 516$		JP N2, FIDI	
$\emptyset 517$	FTRI	: DEC C	
$\emptyset 518$	-	JP Z,NXTIIN	

9519		BIT 2, (HL)
$\emptyset 52 \emptyset$		JP NZ, FLD 2
$\emptyset 521$	FTR2	: DEC C
¢522		JP Z,NXTLIN
$\varnothing 523$		BIT 3, (HL)
$\varnothing 524$		JP NZ, FID3
$\emptyset 525$	FTR 3	: DEC C
$\varnothing 526$		JP 2,NXTLIN
$\varnothing 527$		BIT 4, (HI)
$\emptyset 528$		JP NZ, FID 4
$\emptyset 529$	FTR4	: DEC C
¢53¢		JP Z,NXTLIN
$\emptyset 531$		BIT 5, (HL)
$\varnothing 532$		JP NZ, FID 5
$\phi 533^{\circ}$	FTR5	: DEC C
¢534		JP Z,NXTLIN
$\emptyset 535$		BIT 6, (HL)
$\varnothing 536$		JP NZ, FID6
$\varnothing 537$.	FTR6	: DEC C
\$538		JP Z,NXTUIN
$\varnothing 539$		BIT 7, (HL)
$\varnothing 54 \varnothing$		JP NZ, FLD 7
¢541	FTR7	: DEC C
$\varnothing 542$		JP Z,NXTLIN
¢543		INC HL
$\varnothing 544$		JP FTRACE
$\emptyset 545$	$F I D \varnothing$: ID A, (XI2)
$\emptyset 546$		SUB C
$\emptyset 547$	-...	ID ($I X+\varnothing), A$

¢548			INC IX
¢549			JP FTR ${ }^{\text {P }}$
¢56ø	FIDI	:	ID $\mathrm{A},(\mathrm{XL2})$
$\emptyset 561$			SUB C
¢562			ID ($(1 X+\varnothing), A$
$\emptyset 563$			INC IX
$\emptyset 564$			JP FTRI
\$565	FLD2	:	ID $\mathrm{A},(\mathrm{XL} 2)$
$\emptyset 566$			SUB C
$\varnothing 567$			IID ($I \mathrm{X}+\varnothing), \mathrm{A}$
$\varnothing 568$			INC IX
¢569			JP FTR2
¢57¢	FID 3	:	IUI $\mathrm{A},(\mathrm{XI} 2)$
$\emptyset 571$			SUB C
$\emptyset 572$			ID ($I X+\varnothing), A$
$\emptyset 573$			INC IX
¢574			JP FTR3
$\emptyset 575$	FID 4	:	ID A, (XL2)
$\varnothing 576$			SUB C
$\varnothing 577$			IDD ($I X+\varnothing), \mathrm{A}$
$\varnothing 578$			INC IX
$\emptyset 579$			JP FTR4
$\emptyset 58 \emptyset$	FLD5	:	ID A, (XL2)
$\emptyset 581$			SUB C
$\varnothing 582$			ID (IX \dagger ($), A$
$\emptyset 583$			INC IX
$\emptyset 584$			JP FTR5
¢585	FID6	:	LD $\mathrm{A},(\mathrm{XI} 2)$
$\varnothing 586$	\cdots		SUB C

$\emptyset 616$		ID B,A	
¢617		ID A , (FRSTIX)	
¢618		ID E,A	
$\emptyset 619$		ID A, (OIDX)	
$\emptyset 62 \varnothing$		SUB E	
ø621		JP Z,I2ERO	
$\emptyset 622$		JP C, RM	
¢623		SUB B	
¢624		JP NC, FRIGHT	
$\not \chi_{625}$		JP FLEFT	
¢626	FRIGHT	: ID A, (OIDX)	;Routine to move right
$\emptyset 627$		LD E,A	
¢628		ID IX, (IASTIX)	
¢629		LD $\mathrm{A},(\mathrm{IX}+\varnothing)$	
¢63ø		SUB E	
¢631		JP Z, RZERO	
¢632		JP NC, RMOVE	
ø633	IRM	: ID A, ($\mathrm{IX}+\varnothing)$	
¢634		ID E,A	
¢635		LID A, (OLDX)	
ø636		SUB E	
$\emptyset 637$		ID (WAY), A	
¢638		ID H, A + DSTP	
¢639		SUB H	
$\phi 64 \varnothing$		CALL Z, MVINXL	
$\emptyset 641$		JP Z,RZERO	
$\emptyset 642$		CALL C, MVINXI	
$\emptyset 643$		JC C,RZERO	
$\emptyset 644$	-	LD (PATH), A	

$\emptyset 645$		CALI XIACC	
$\emptyset 646$		JP RZERO	
$\emptyset 647$	FLEFT	: ID A, (FRSTIX)	;Routine to move left
$\varnothing 648$		ID E,A	
¢649		ID A, (OIDX)	
¢65ø		SUB E	
¢651		JP LZERO	
$\emptyset 652$		JP NC, IMOVE	
$\emptyset 653$	RM	: ID A, (OIDX)	
$\emptyset 654$		ID E,A	
$\emptyset 655$		ID A, (FRSTIX)	
$\emptyset 656$		SUB E	
$\emptyset 657$		ID (WAY), A	
¢658		ID H, $\mathrm{A}+\mathrm{DSTP}$	
$\emptyset 659$		SUB H	
$\varnothing 66 \emptyset$		CALI Z,MVINXR	
¢661		- JP Z,IZERO	
$\emptyset 662$		CALL C,MVINXR	
¢663		JP C, LZERO	
¢664		ID (PATH), A	
¢665		CAII XRACC	
$\varnothing 666$		JP LEERO	
$\emptyset 667$.	RMOVE	: ID (WAY), A	
¢668	RATEST	: ID H, $\mathrm{A}+\mathrm{DSTP}$	
ø669		SUB H	
¢67¢		CALI 2,MVINXR	
$\emptyset 671$		JP Z,RZERO	
$\emptyset 672$		CALL C, MVINXR	
$\emptyset 673$		JP C,RZERO	

ø674
$\varnothing 675$
ø676
ø677
ф678
ф679
$\phi 68 \varnothing$
ø681
ø682
ø683
ø684
ф685
ф686
ø687
$\not 6688$
ф689
ф69ф
ф691
ф692
ф693
ø694
ø695
$\varnothing 696$
$\varnothing 697$
$\varnothing 698$
ø699
$\varnothing 7 \varnothing \varnothing$
$\not{ }^{\circ} \not \subset 1$
$\not \subset \not \varnothing 2$

ID (PATH),A
CALL XRACC
NOP
CALL DRILL
ID IX, (IASTIX)
ID $\mathrm{A},(\mathrm{IX}-1)$
OR A
JP Z,STRAC
FRRTL : ID E, (IX-I)
II $A,(I X+\varnothing)$; to left on an evenline
ID (SAVEIX),IX
SUB E
ID (WAY),A
ID H, A+DSTP
SUB H
CALL 2,MVINXI
JP Z,DL
CALL C, MVINXI
JP C,DI
ID (PATH),A
CALI XIACC
DL
: NOP
CALI DRILI
ID IX, (SAVEIX)
DEC IX
ID $A,(I X-I)$
OR A
JP Z,STRAC
JP FRRTL

$\phi 7 \phi 3$	LMOVE	: ID (WAY), A	
$\varnothing 7 \varnothing 4$	Latest	: ID H,A+DSTP	
$\varnothing 7 \varnothing 5$		ID A, (WAY)	
$\varnothing 7 \varnothing 6$		SUB H	
$\varnothing 7 \varnothing 7$		CALI Z, MVINXL	
$\varnothing 7 \phi 8$		JP Z,IZERO	
$\phi 7 \varnothing 9$		CALI C,MVINXI	
$\varnothing 71 \varnothing$		JP C,LZERO	
$\varnothing 711$		ID (PATH), A	
$\varnothing 712$		CALL XIACC	
$\varnothing 713$	LZERO	: NOP	
¢714		CALI DRILI	
$\varnothing 715$		ID IX,FRSTIX	
$\varnothing 716$		ID $\mathrm{A},(\mathrm{IX}+1)$	
$\emptyset 717$		OR A	
¢718		JP Z,STRAC	
$\varnothing 719$	FRLITR	: LD E, (IX $+\varnothing$)	;Routine to move from left
$\varnothing 72 \varnothing$		ID $\mathrm{A},(\mathrm{IX}+1)$;to right on on oveenline
$\phi 721$		ID (SAVEIX), IX	
$\phi 722$		SUB E	
¢723		LD (WAY),A	
¢724		ID H, A + DSTP	
$\phi 725$		SUB H	
$\phi 726$		CALU Z, MVINXR	
\$727		JP Z,DR	
¢728		CALL C,MVINXR	
¢729		JP C, DR	
¢73¢		ID (PATH), A	
$\varnothing 731$	\cdots	CALI XRACC	

$\phi 732$ DR : NOP
$\emptyset 733$ CALI DRILI
$\emptyset 734$ ID IX, (SAVEIX)
$\emptyset 735$
$\varnothing 736$
$\emptyset 737$
$\varnothing 738$
$\varnothing 739$
JP FRIIR
$\emptyset 74 \varnothing$ DRIIL : EXX ;Drill simulating routine
ф741
$\emptyset 742$
$\phi 743$
$\varnothing 744$
$\varnothing 745$
$\varnothing 746$
EX AF,AF'
XOR A
OUT (PORTØ),A
$\varnothing 747$
DR2
ID $\mathrm{A}, 8 \emptyset \mathrm{H}$
OUT (PORTI), A
ID B, 7 FH
$\emptyset 748$
$\varnothing 749$
$\varnothing 75 \varnothing$
$\varnothing 751$
$\emptyset 752$
$\emptyset 753$
RET
$\varnothing 754$ STRAC : ID A, (IX $+\emptyset$)
$\varnothing 755$
$\emptyset 756$
$\varnothing 757$
$\varnothing 758$
$\varnothing 759$
ID (OLDX),A
CALI MOVINY
$\varnothing 76 \emptyset$
LD $\mathrm{B}, 96 \mathrm{H}$
ID $\mathrm{HL}, 872 \mathrm{DH}$

$\varnothing 79 \varnothing$	R5	: DEC C
¢791		JP 2,SEELIN
¢792		BIT 6, (HL)
¢793		JP NZ, S^{6}
¢794	R6	: DEC C
ф795		JP $\mathrm{Z}, \mathrm{SECLIN}$
¢796		BIT 7, (HL)
¢797		JP N2, 57
$\not \subset 798$	R7	: DEC C
¢799		JP Z, SECLIN
ø8申¢		INC HL
$\varnothing 8 \varnothing 1$		JP STR
$\phi 8 \not \subset 2$	$s \varnothing$: ID ($\mathrm{IX}+\varnothing$), C
¢8¢3		INC IX
$\varnothing 8 \varnothing 4$		JP R \varnothing
¢8¢ $¢$	S1	: ID ($\mathrm{IX}+\varnothing$), C
¢8ø6		INC IX
$\varnothing 8 \varnothing 7$		JP RI
$\varnothing 8 \varnothing 8$.	S2	LD ($I X+\varnothing$) , C
¢8¢9		INC IX
ø81ф		JP R2
$\varnothing 811$	S3	: ID ($\mathrm{IX}+\varnothing$), C
$\varnothing 812$		INC IX
$\emptyset 813$		JP R3
¢814	S4	: ID (IX $+\emptyset$), C
¢815		INC IX
$\emptyset 816$		JP R4
¢817	S5	: ID ($\mathrm{IX}+\varnothing$), C
¢818	\cdots	INC IX

¢819		JP R5
¢82ø	S6	$: I D(I X+\emptyset), \mathrm{C}$
¢821		INC IX
$\emptyset 822$		JP R6
$\emptyset 823$	S7	: $I D(I X+\varnothing), C$
$\emptyset 824$		INC IX
$\emptyset 825$		JP R7
$\emptyset 826$	SECIIN	: DEC IX
$\emptyset 827$		ID (IASTIX), IX
$\emptyset 828$		INC HL
¢829		ID (SAVEHL), HY
$\varnothing 83 \varnothing$		ID IX,FRSTIX
$\phi 831$		ID $A,(I X+\emptyset)$
$\emptyset 832$		ID E, (IX+1)
¢834		OR E
¢835		CALI Z,MOVINY
$\varnothing 836$		JP Z,FIR
¢837		ID $A,(I X+I)$
$\emptyset 838$		ID $A,(I X+2)$
$\emptyset 839$		OR E
$\phi 84 \emptyset$		JP Z,SRIGHT
¢841		ID A, (OIDX)
$\emptyset 842$		ID E, A
$\emptyset 843$		ID A, (FRSTIX)
¢844		SUB E
$\emptyset 845$		JP Z, SRZERO
$\emptyset 846$		JP C, HLMOVE
$\emptyset 847$		ID B,A
$\emptyset 848$	-	ID IX, (LASTIX)

¢849		ID $\mathrm{E},(1 \mathrm{X}+\varnothing$)	
$\varnothing 85 \emptyset$		ID $A,(O I D X)$	
¢851		SUB E	-
¢852		JP Z,SLZERO	
$\emptyset 853$		JP C, RLM	
$\emptyset 854$		SUB B	
$\emptyset 855$		JP C,SLEFT	
¢856	SRIGHT	: ID A, (OIDX)	;Routine to move right on
$\emptyset 857$		ID E,A	;an odd-line
¢858		ID $\mathrm{A},(\mathrm{FRSTIX}$)	
$\emptyset 859$		SUB E	
$\emptyset 86 \varnothing$		JP Z,SRZERO	
$\emptyset 861$		JP NC, SRMOVE	
$\emptyset 862$	HLMOVE	: ID A, (FRSIIX)	
$\emptyset 863$		ID E,A	
$\emptyset 864$		ID A, (OIDX)	
$\emptyset 865$		SUB E	
$\emptyset 866$		ID (WAY), A	
$\emptyset 867$		ID H, $\mathrm{A}+\mathrm{D}$ STP	
$\emptyset 868$		SUB H	
$\emptyset 869$		CALI Z, MVINXI	
$\emptyset 87 \varnothing$		JP Z, SRZERO	
¢871		CAII C,MVINXI	
$\emptyset 872$		JP C, SRZERO	
$\emptyset 873$		ID (PATH), A	
$\varnothing 874$		CAIL XIACC	
$\varnothing 875$		JP SRZERO	
$\varnothing 876$	SRMOVE	: ID (WAY),A	
$\emptyset 877$	-	ID $\mathrm{H}, \mathrm{A}+\mathrm{DSTP}$	

$\emptyset 878$
ø879
ø $88 \varnothing$
ø881
ø882
ø883
ø884
$\emptyset 885$
$\emptyset 886$
$\emptyset 887$
$\emptyset 888$
$\emptyset 889$
ø89ø
ø891
$\varnothing 892$
ф893
ф894
ф895
ø896
ø897
ø898
$\emptyset 899$
$\phi 9 \varnothing \varnothing$
ø9ø1
$\phi 9 \varnothing 2$
ф9ф3
ф9ф4
ф9ф5:
$\varnothing 9 \varnothing 6$

SUB H
CALL Z,MVINXR
JP Z, SRZERO
CALI C,MVINXR
JP C,SRZERO
ID (PATH),A
CALL XRACC
SRZERO : NOP
CALI DRILL
ID IX, FRSTIX
ID $A,(I X+I)$
OR A
JP Z, FTRAC
SFRTL : ID E, (IX +1) ;Routine to move from right
ID $A,(I X+\varnothing)$;to left on an oda-line
ID (SAVEIX),IX
SUB E
LD (WAY),A
LD H,A+DSTP
SUB H
CALL Z,MVINXI
JP Z,SDI
CALL C,MVINXL
JP C,SDI
ID (PATH),A
CALL XLACC
SDL
: NOP
CALI DRIIL
LD IX, (SAVEIX)

$\emptyset 9 \varnothing 7$		INC IX	
¢9ф8		ID $\mathrm{A},(\mathrm{IX}+\mathrm{I})$	
¢91¢		OR A	
¢911		JP 2,FTRAC	
¢912		JP SFRTI	
$\emptyset 913$	SLEFT	: ID IX, (LASTIX)	;Routine to move left on
$\emptyset 914$		ID $\mathrm{A},(\mathrm{IX}+\varnothing)$;an odd-line
$\emptyset 915$		ID E,A	
¢916		ID A, (OIDX)	
$\emptyset 917$		SUB E	
¢918		JP Z,SIzERO	
¢919		JP NC, SLMOVE	
¢92ø	RLM	ID A, (OLDX X)	
¢921		ID E,A	
¢922		ITD $\mathrm{A},(\mathrm{IX}+\varnothing)$	
¢923		SUB E	
¢924		LD (WAY), A	
¢925		ID H, $\mathrm{A}+\mathrm{DSTP}$	
$\phi 926$		SUB H	
¢927		CALI Z, MVINXR	
¢928		JP Z,SLZERO	
¢929		CALL C, MVINXR	
¢93¢		JP C,SLzERO	
¢931		ID (PATH), A	
¢932		CALI XRacC	
¢933		JP SLZERO	
¢934	SLMOVE	: ID (WAY),A	
¢935		ID $\mathrm{H}, \mathrm{A}+\mathrm{DSTP}$	
$\varnothing 936$		ID A, (WAY)	

ф937
ø938
ф939
ф94ø
ф941
ø942
ø943
ф944
ф945
ø946
ø947
ф948
ф949
ф95ø
ф951
ф952
ø953
ø954
ф955
ø956
ф957
$\varnothing 958$
ф959
ф96申
ф961
ф962
ф963 SDR : NOP
ø964
ф965
SUB H

SLZERO : NOP

OR A

SFLTR

SUB E

SUB H

CALI Z,MVINXL
JP Z,SLZERO
CALL C,MVINXI
JP C,SLZERO
ID (PATH),A
CALL Xlacc

CALL DRILL
ID IX, (LASTIX)
LD $A,(I X-1)$

JP Z,FTRAC
ID E, (IX $+\varnothing$)
ID A, (IX-I) ; to right on an odd-line
ID (SAVEIX),IX

ID (WAY);A
ID $H, A+D S T P$

CALL Z,MVINXR
JP 2,SDR
CALL C,MVINXR
JP C, SDR
ID (PATH), A
CALI XRACC

CALL DRILL
ID IX, (SAVEIX)
ø966
ф967
ф968
Ø969
ф97ф
ø971
ø972
ø973
ф974
ф975
ф976
$\varnothing 977$
$\varnothing 978$
$\varnothing 979$
申98ф
$\emptyset 981$
ф982
ø983
ø984
ø985
$\emptyset 986$
ф987
ø988
ø989
ф99ø
$\varnothing 991$
ф992
ø993

DEC IX
ID A, (IX-1)
OR A
JP 2,FTRAC
JP SFLTR
FIRAC : ID A, $(I X+\varnothing)$
ID (OIDX),A
CALL MOVINY
FTR : DEC D
JP Z,RETURN
ID B,9øH
ID HL, 872DH
2R
: INC HL
ID (HL), $\varnothing \varnothing$
DJNZ ZR
ID A, (XINC)
LD C,A
ID HL, (SAVEHL)
ID IX,FRSTIX
JP FTRACE
RETURN : LD A, (OIDX) ;Return to zero-position after
ID E, A
ID $\mathrm{A},(\mathrm{XINC})$;finished
SUB E
JP Z,SRTNZ2
ID (WAY),A
CALI MVINXR
JP SRTNZ2

$1 \not 123$		CPH	
1ф24		JR Z, +9	
I¢25		DEC IX	
$1 \varnothing 26$		DJNZ RNEXT	-
1ф27		JP RLINE	
$1 \varnothing 28$		DEC C	
$1 \varnothing 29$		JP NZ, RH	
$1 \varnothing 3 \varnothing$		EXX	
$1 \varnothing 31$		EX AF, AF'	
1932		RET	
$1 \not 1633$	MVINXR	: EXX	; Routine to move right in
1934		EX AF,AF'	; x-direction with constant
$1 \varnothing 35$		ID A, (WAY)	; speed.
1936		ID C, A	
$1 \varnothing 37$	IH	: ω D H, $\varnothing \varnothing$	
1ф38	LIINE	: LD IX,XSTEPI	
1939		ITi B, COUNT	
1ф4ø	INEXT	: ID $A,(I X+\emptyset \varnothing)$	
1¢41		OUT (PORTø), A	
$1 \varnothing 42$		CALI DIY	
$1 \varnothing 43$		INC H	
1ø44		ID A,GRID	
$1 \varnothing 45$		CP H	
$1 \varnothing 46$		JR Z, +9	
$1 \varnothing 47$		INC IX	
$1 \varnothing 48$		DJNZ LNEXT	
$1 \varnothing 49$		JP LIINE	
$1 \not 150$		DEC C	
$1 \not 551$	\cdots	JP NZ, IH	

$1 \varnothing 52$		EXX	
1953		EX AF, AF'	-
1954		RET	
$1 \not \subset 55$	ACONS	: EQU $\varnothing 70 \varnothing \mathrm{H}$;Acceleration constants
$1 \varnothing 56$	DCONS	: EQU \emptyset TDøH	;Deceleration constants
1957	YUACC	: EXX	; Routine to move the detector
$1 \not 058$		EX AF, AF!	;up in y -direction by accelera.
$1 \varnothing 59$		ID IY,ACONS	; tion.
$1 \varnothing 6 \varnothing$		LD C, ACOUNT	
1ф61	YRTH	: LD H, $\varnothing \varnothing$	
$1 \varnothing 62$	YARTN	: LD IX, YSTEP4	
1ф63		ID B,COUNT	
1.964	BMOVE	: ID A, $(1 X+\emptyset \emptyset)$	
$1 \not 665$			
$1 \varnothing 66$		LD E, (IY+ $\varnothing \varnothing$)	
$1 \varnothing 67$		CALI VDIY	
$1 \varnothing 68$		INC H	
$1 \varnothing 69$		ID A,GRID	
$1 \varnothing 7 \varnothing$		CP H	
$1 \varnothing 71$		JR Z, +9 ${ }^{\circ}$	
$1 \varnothing 72$		DEC IX	
1673		DJNZ BMOVE	
$2 \not 774$		JP YARTN	
1675		INC IY	
$1 \varnothing 76$		DEC C	
1ф77		JP NZ, YRTH	
$1 \varnothing 78$		ID HL, PATH	
$1 \varnothing 79$		ID $\mathrm{C},(\mathrm{HT})$	
Iф8ø	YMAXH	: ID H, $\varnothing \varnothing$	

$1 \not 181$	YMAX	: LD IX,YSTEP4
$1 \not 182$		ID B, COUNT
$1 \not 183$	Yamv	: ID $A,(I X+\phi \phi)$
$1 \not 184$		OUT (PORTø),A
$1 \not 185$		ID E,MAXSPD
$1 \not \subset 86$		CALL VDLy
$1 \not 187$		INC H
$1 \not 188$		LD A,GRID
$1 \not 189$		CP H
$1 \varnothing 9 \varnothing$		JR Z, +9
$1 \not 191$		DEC IX
$1 \not 192$		DJNZ Yamv
$1 \not 193$		JP YMAX
$1 \not 194$		DEC C
$1 \not 195$		JP NZ, YMAXH
1096	YDEC	: LD IY,DCONS
$1 \varnothing 97$		LD C,DCOUNT
1998	YDRTH	: LD H, \varnothing ¢
$1 \varnothing 99$	YDRTN	: LD IX, YS TEP4
$11 \varnothing \emptyset$		LD B,COUNT
$11 \varnothing 1$	IDMV	: ID $A,(I X+\emptyset \emptyset)$
1162		OUT (PORTD),A
1163		ID E, (IY+ \varnothing ($)$
$11 \not 64$		CALL VDLY
1165		INC H
1166		ID A,GRID
$11 \varnothing 7$		CP H
1168		JR Z, +9
1169	\cdots	DEC IX

$111 \varnothing$	DJNZ YDMV
1111	JP YDRTN
1112	INC IY
1113	DEC C
1114	JP NZ, YDRTH
1115	XOR A
1116	OUT (PORT申), A
1117	EX AF,AF'
1118	EXX
1119	RET

112ø	MVINYU	EXX	;Routine to move the detector
1121		EX AF,AF'	;up in y -direction with
1122		ID A, (WAY)	;constant speed.
1123		ID C, A	
1124		ID H, $\varnothing \varnothing$	
1125	ULINE	: ID IX,YSTEP4	
1126		ID B,COUNT	
1127	UNEXT	- ID $A,(I X+\emptyset \varnothing)$	
1128		OUT (PORTD), A	
1129		CALI DIY	
$113 \varnothing$		INC H	
1131		ID A,GRID	
1132		CP H	
1133		JR Z, +9	
1134		DEC IX	
1135		DJNZ UNEXT	
1136		DEC C	
1137		JP NZ, UIINE	
1138		EXX	
1139		EX AF,AF'	
$114 \emptyset$		XOR A	
1141		OUT (PORT \dagger) ; A	
1142		RET	

1143	MVINYD	EXX	; Routine to move the detector
1144		EX AF, AF'	; down in y -direction with
1145		ID A, (WAY)	; constant speed.
1146		ID C,A	
1147		ID H, $\varnothing \varnothing$	
1148	DLINE	: ID IX,YSTEPI	
1149		ID B,COUNT	
$115 \emptyset$	DNEXT	: ID A, (IX+ $\varnothing \varnothing$)	
1151		OUT (PORTD), A	
1152	.	CAII DIY	
1153		INC H	
1154		ID $A, G R I D$	
1155		CP H	
1156		JR Z, +9	
1157		INC IX	
1158	.	DJNZ DNEXT	
1159		DEC C	
$116 \emptyset$		JP NZ, DIINE	
1161		EXX	
1162		EX AF, AF'	
1163		XOR A	
1164		OUT (POR'¢ $)$, A	
1165		RET	

1166	XRACC	:	EXX	; Routine to move the detector
1167			EX AF, AF'	;right in x -direction by
1168			ID IY,ACONSI	;acceleration.
1169			ID C,ACOUNT	;Acceleration starts.
$117 \varnothing$	XRTH	:	$\pm D \mathrm{H}, \varnothing \varnothing$	
1171	XARTN	:	LD IX,XSTEPI	
1172			ID B,COUNT	
1173	AMOVE	:	ID $\mathrm{A},(\mathrm{IX}+\varnothing)$	
1174			OUT (PORTめ),A	
1175			ID E, (IY+ \dagger)	
1176			CALI VDIY	
1177			INC H	
1178			ID A,GRID	
1179			CP H	
$118 \emptyset$			JR Z, +9	
1181			INC IX:	
1182			DJNZ AMOVE	
1183			JP XARTN	
1184			INC IY	.
1185			DEC C	
1186			JP NZ, XRTH	
1187			ID HL, PATH	
1188			ID $\mathrm{C},(\mathrm{HI})$	
1189	XNMXH	:	ID $\mathrm{H}, \varnothing \varnothing$; Maximum speed is reached,and
$119 \varnothing$	XNMAX	:	ID IX,XSTEPI	; the stage moves with that
1191			ID B,COUNT	; speed PATH long.
1192	XAMV	:	ID $A,(I X+\varnothing)$	
1193			OUT (PORT \varnothing), A	

1194		LD E,MAXSPD	
1195		CALL VDLY	-
1196		INC H	
1197		ID A, GRID	
1198		CP H	
1199		JR $2,+9$	
$12 \phi \varnothing$		INC IX	
$12 \not 11$		DJNZ XAMV	
$12 \not 2$		JP XNMAX	
$12 \phi 3$		DEC C	
$12 \emptyset 4$		JP IVZ, XNMXH	
$12 \not 15$	XDEC	: ID IY,DCONSI	;Deceleration begins.
$12 \emptyset 6$		ID C,DCOUNT	
$12 \emptyset 7$	XDRTH	: ID H, $\varnothing \varnothing$	
$12 \emptyset 8$	XDRTN	: ID IX,XSTEPI	
$12 \emptyset 9$		ID B,COUN'	
$121 \varnothing$	XDMV	: ID $A,(I X+\varnothing)$	
1211		OUT (PORTめ), A	
1212		ID E, (IY+ \varnothing)	
1213		CALI VDİ	
1214		INC H	
1215		ID A, GRID	
1216		CP H	
1217		JR 2; +9	
1218		INC IX	
1219		DJNZ XDMV	
$122 \emptyset$		JP XDRTN	
1221		INC IY	

1222		DEC C	
1223		JP NZ, XDRTH	
1224		XOR A	;Deceleration lasts, and the
1225		OUT (PORTD), A	;x-stage stops. Then the routine
1226		EXX	;returns to where it is called.
1227		EX AF,AF'	
1228		RET	
1229	XIACC	: EXX	; Routine to move the detector
1236		EX AF, AF'	; left in x-direction by
1231		ID IY,ACONSI	;acceleration using the same
1232		ID C, ACOUNT	;procedures described in XRACC
1233	SXPAH	: ID H, $\varnothing \varnothing$;routine.
1234	SXPAR	: ID IX,XSTEP4	
1235		ID B, COUNT	
1236	SXPAM	: ID $A,(I X+\emptyset)$	
1237		OUT (PORT ($)$,	
1238		LD E, (IY+ $\varnothing \varnothing$)	
1239		CALI VDLY	
$124 \varnothing$		INC H	
1241		ID A, GRID	
1242	,	CP H	
1243		JR 2, +9	
1244		DEC IX	
1245		DJNZ SXPAM	
1246		JP SXPAR	
1247		INC IY	
1248		DEC C	
1249		JP NZ, SXPAH	

125ø		LD HL, PATH
1251		LD $\mathrm{C},(\mathrm{HL})$
1252	SXAPH	: LD H, $\emptyset \varnothing$
1253	SXAPS	: ID IX,XSTEP4
1254		LD $\mathrm{B}, \mathrm{COUNT}$
1255	SXAPM	: ID A, (IX $+\varnothing$)
1256		OUT (PORT \dagger), A
1257		LD E, MAXSPD
1258		CALI Vdiy
1259		INC H
126ø		ID $A, G R I D$
1261		CP H
1262		JR Z, +9
1263		DEC IX
1264		DJNZ SXAPM
1265		JP SXAPS
1266		DEC C
1267		JP NZ, SXAPH
1268	SXPD	: ID IY, DCONS 1
1269		ID C, DCOUNT
127 \%	SXPDH	: ID H, $\varnothing \varnothing$
1271	SXPDR	: LD IX,XSfEP4
1272		ID B, COUNT
1273	SXPDM	: ID A, ($\mathrm{IX}+\varnothing$)
1274		OUT (PORI \varnothing), A
1275		ID $E,(I Y+\varnothing)$
1276		CALI VDIY
1277		INC H

1278	ID A,GRID
1279	CP H
$128 \emptyset$	JR Z, +9
1281	DEC IX
1282	DJNZ SXPDM
1283	JP SXPDR
1284	INC IY
1285	DEC C
1286	JP NZ, SXPDH
1287	EXX
1288	EX AF, AF!
1289	RET

Appendix B.

OPERATING INSTRUCTIONS
1). PREPARATION OF THE DOT-MASK
i. After the printed circuit layout is drawn,
it is placed on a grid pattern in which node separation is $1 / 10$ inch as shown below.On top of these two, the clean transparency is located.
ii. The frame lines of the dot mask are drawn onto the transparency such that every side of the dot-mask is $1 / 10$ inch greater than the frame of the circuit layout. Frame line thekness of $1 / 10$ inch is enough. A 0.5 mm drawing pen of black colour can be used. (RAPIDO 0.5). Or rather than drawing the frame lines, a strip of 2 mm . thickness can also be used.

iii. Then hole-positions are marked on to the transparency by locating them at the nodes of the grid pattern. (one more hole can be marked between each node of the above grid pattern, because the scanning resolution of the system is $1 / 20$ inch).

If there are hole-positions on the layout which do not coincide with the nodes of the grid pattern, they should be placed onto the nearest node (with an error less than 0.54 mm).

After the dot-mask is prepared,it is correctly placed onto the glass plate of the scanner, carefully matching the upper right corner of the mask frame to the right-engled marker on the glass.
2). RUNNING THE SYSTEM
i. System is turned on using the switch on the control penel as shown below.Fower on reset,runs the reset routine and HALT LED is on,located on the microprocessor card. Then using the manual control switches $1,2,3,4$, the detector is positioned somewhere in the dot-mask frame.

Control Panel

STR Button : START
STP " : STOP
NMI " : Emergency stop(when useả system must be reset)
1 " : X-motor (stage moves towards the x-motor)
2 " : X-motor (stage moves away from the x -motor)
3 " : Y-motor (stage moves towards the y-motor)
4 " : Y-motor (stage moves away from the y-motor)
ii. Pressing the START button commences the programs.After the scenning of the whole card is finished, detector returns to the upper right corner (zero-position), and stops. HALI IED turns on again.
iii. This time START button starts the arilling program. (At each drilling hole position a LED flashes on for a few seconds to simulate drilling time.)
iv. After the completion of the drilling process, detector(now it is the drill) returns to zero-position and stops (again the HALT LED is on).Drilling process can be repeated as many times as desired by pressing the STR button. v. For a new dot-mask scanning,a reset must be given to the system. Then continue from step ii.

2.0 2-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in figure 2.0.1. The diagram shows all of the major elements in the CPU and it chould be referred to throughout the following description.

2.1.CPU REGISTERS

The Z=80 CPU contains 208 bits of R/W memory that are accessible to the progammer. Figure 2.0.2 ilfustrates how this memory is configured into eig 'ren 8 -bit registers and four 16 -bit registers All $2-80$ registes are implemented using stalic RAM. The tegisters indude iwo sets of six general purpose registers thas may be used indridually as 8 -bis registers of ir. patrs as 10 -bit registers. There are also two sets of sccumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counte: hele: the 16 -hit addtess of the curcent instruction being fetched from memory. The PC is automatically incremented after its contents have been transferred to the address lines. When a program jump oceurs the new value is automatically placed in the PC. overiding the incrementer.
2. Stack Pointer ($\mathbf{S P}$). The stack pointer holds the lebit address of the current top of a stack located anywhere in external system RAM! memory. The externa! stack memon is organized as a last-in firstout (LIFO) file. Data can be pushed onto the stact from specific CPU registers or popped off of the stack into secific CPL registers through the exection of PUSH and !OP instructions. The data popped frorn the stach is aluas the last data pusted onro it. The stick allows simple inplementation: of multiple level interrupts, unlimited subroutime nesting and simpl:fication of many typas of data manipulatio:.

main reg set		altepmate reg set		
accumulator	FLAGS	ACOMMLATOR	$\underset{F}{\text { FLAGS }}$	
-	c	${ }^{*}$	c	
D	E	D	E'	GENEBAL PURPDSE
H	1	H	t'	

2.80 CPU REGISTER CONFIGURATION figure 2.0.2

ミ. Two Index Registers (DX \& M). The two independent index registers hold a 16 fit hase adress that is used in mexwd addressirg modes. In th:s mode, an index register is usid as a hase to point to a - tegion in memory from which data is to be stared or renteved. An addetior al byte is included in indexed instructions to specifity a displacement from thas base. This displaiement is specified as a twe complement signed intege:. This mode of addjessing grathy simplifies many types of programs, -. especially where tables of data are used.
4. Intemupt Fage Address Register (1). The $\mathrm{Z} \& 0 \mathrm{CPL}$ can be operated in a mode where an indirect call to any memory location can be achievedin response to an intrirupt. The I Rogister is used for this purpose to store the high erder 8 -bits of the indirect address while the intercupting device provides the

- Lowe: 8 -bits of the address. This feature allows inte:rupt :outines to be dynamically located anywhere in memory with absolute minimal access time to the rostine.

5. Mermory Refresh Register (B). The Z-80 CPU contains a memory refresh counter to enable dynamic memories to be used with the same ease as static memories. Seven bits of this 8 bit register are automatically incremented after each instruction fetch. The eighth bit will remain as programmed as the result of an LD R. A instruation. The data in the refrech counter is sent oui on the lower portion of the address bus along with a refresh control signal while the CPL is decoding and executing the fetched_ instruction. This mode of refresh is totally transparent to the programmer and does not slow down the

- CPU operation. The programmer can load the R registe: for testing purposes, but this register is normally not used by the programmer: During refresh, the conients of the I register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8 -bit azcumulators and associated 8 -bit flag repisters. The azziniiis. hator holds the results of 8 -bit arithmetic or logial operations while the flag register indicates specific conditions for 8 or 16 -bit operations, such as indicating u hether or not the result of an operation is equal to zero. The programmer selects the accumulator and flag pair that he wishes to work with with a single exthange instruction so that he riay easily work with either pait.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8 -bit registers that may be used indwidually as 8 -bit registers or as 16 -bit registe: pairs by the programmer. One se: is called $B C, D E$ and HL while the complementary set is called $\mathrm{BC}^{\prime}, \mathrm{DE}^{\prime}$ and HL^{\prime}. At any one time the programme: can select either se: of registers to work with though a single exchange command for the enture set. In systems where fas! interrupt response is required, one set of general purpose registers and an accumulator' flag register may be reserved for handling this very fast routine. Only a simple exchange commands need be executed to go betueen the routines. This greaty reduces interrupt service time by eliminating the require' ment for saving and retrieving register contents in the external stack during interrupt or subriutine processing. These genera! purpose registers are used for a wide range of applications by the programmer. They also sumplify programmmg. especially in ROM based systems whe:e little external read,write memory is . available.

2.2 ARITHMETIC \& LOGIC.UNIT (ALU)-

The 8 -bil arithmetic and logical instructions of the CPL are executed in the ALU. Internally the ALL' communicates with the registers and the external data bus on the internal data bus. The type of functions performed by the ALU include:

- 2.3 - INSTRUCTION REGISTER AND CPU CONTROL

As each instruition is fetched fromemem. it isplaced in the instruction regisler and decoded. The control sections performs this function ${ }^{*}$ and then generates and supplies all of the control sigids necessary to read or write Z_{2} :a from or to the registers. control the ALU and prowide all required external control signals.

2.0 PIO ARCHITECTURE

A block diagram of the Z80-PIO is shown in Figure 2.0-1. The internal structure of the Z80-P1O consists of a Z80-CPU bus interface, internal control logic, Port A I/O logic, Port B I/O logic, and interrupt control logic. The CPU bus interface logic allows the PIO to interface directly to the $280-\mathrm{CPU}$ with no other extemal logic: However, address decoders and/or line buffers may be required for large sysiems. The internal control logic synchronizes the CPU data bus to the peripheral device interfaces (Port A and Port B). The two $1 / O$ ports (A and B) are virtually identical and are used to interface directly to peripheral devices.

The Pört l/O logic is composed of 6 registers with "handshake" cöntrol logic as-shown in Figure 2.0.-2. The regirers include: an 8 bit data input regstet, añ 8 bre data output register, a 2 bit mode control - register, an 8 bit mask register, añ 8 bit inpuyoutput elect register, and a 2 bit mask control register.

The I-bit mode control register is loaded by the CPC' to select the desired operating mode byte output, byte input, byte biditectional bus. or bit control madel. All data transfer tetween the periphera! device and the CPL is sehieved through the data input and data waput eggiters. Dats may be written into the vuiput :egister by the CPU or read back to :he CPU from the input register at any time The handshake lines associated with each port are used to control the data transfer between the PIO and ties peripheral device.
he 8 -bit mask :egister and the 8 -bit input'output sateit register are used onty in the bit control mode !a :his mode any of the 8 peripheral data or cental bus pins ean be programined to be an input or an ot: at as speaffed by the select register. The mask regriter is used in this mede in conajuaction with a

 dest: : cond tion) or when any unmasked pin is active (OR condition). This ieature reduces the requirement for
 per:pheral status conditions. For example, in a system whth 3 alarm condtions. an matrupt may be generated if any one cacurs or if all three uciur.

The interrupt control logic section handles all CPL interrupt protocol ior nested priority interrupt structures. The priunty of any device is determened by its physical hozation in a daisy chan confrguration. Two hnes are provided in each PIO to form this daisy than. The device closest to the CPV has ihe haghest priority. Within a PIO, Port A interrupts have higher priority than thuse of Port B. In the byte input, byte , putput or biditectional modes, an interrupt can be generaed whenevet a new byte transfer is requested by the perapheral. In the bit control mode an interrupt can be geneated then the peripheral itatus matches a progranmed value. The PIO provides for complete control of aested interrupts. Thas is; lower priority
 pleted by the CPL. H: gher primity devises may merrupt the servicing of fuwer prority dences.
 interrupt vector ion the CPU. This vector as uxed to form a pointe: to a luatuon in the computer memory where the address of the interrupt service routine is located. The 8 bit vector from the intertupting device Forms the least significant 8 bits of the indirect pointer while the I Register in the CPU provides the most signifizant 8 bits of the pointer. Each port (A and B) has an independent inserrupt vector. The least significant bit of the vector is automatically set to a 0 within the $P I O$ singe the pointer must point to two. adjacent memory locations for a complete 16 -bit address.

- The PIO decodes the REFI (Return frem interrupt) instruction directly from the CPU data bus so that each PIO in the systern knows at all times whether it is being serviced by the CPU interrupt service routine without any other communication with the CPU.

Z-80 INSTRUCTION SET

Figure A8－2．（Continued）

Opreration	MNE：	Or	，Description furss＝	Al：	S ${ }^{\prime}$	BC：	$\begin{aligned} & \text { es (iyc } \\ & \text { IN!. } \end{aligned}$	11.	IX	$\overrightarrow{I Y}$	$\begin{aligned} & \text { !luk } \\ & \text { : }: S \text { PN } \end{aligned}$
Move，register－pair	L．ILIDI．JLUPUSHPOPEXEXEXXEX		ss ann		3110	316	3．10	310）	414	414	－．．－．．－．－
			$\begin{array}{ll} \text { ss nn } \\ \text { ss (nin) } \end{array}$		$4 / 20$	4／20	4120	3116	4120	$4: 0$	－
		ss，（nin）	SS．$-(1111)$		4／20	4120	420	316	420	$4: 20$	－－－
		（ nin ）．ss	$(\mathrm{nn}) \ldots \mathrm{ss}$			410		16	2110	2111	－－－－
Exchange，register－pair		SP，ss	SP－ss			1111	$1 / 11$	1.11	215	2115	－－－
			Stack \longrightarrow ss			110	1：10	1.10	2.14	2114	－－－
		ss	ss ¢ Stack				$1 / 4$				－－－．
		DE． 111.	IJF \longrightarrow HL								－－
		$\Delta r^{\circ} \cdot \lambda{ }^{\prime}$	$\mathrm{AF} \longrightarrow \mathrm{AF}^{\prime}$	14		$1 / 4$					－－
		$\left(S^{\prime}\right) . \mathrm{ss}$	$\mathrm{BC} \longleftrightarrow \mathrm{BC}^{\prime} ; \mathrm{DE} \longleftrightarrow \mathrm{DF} \cdot ; \mathrm{HI} . \longleftrightarrow \mathrm{HI}$. Stack \longleftrightarrow ss					1，19	223	223	$\cdots-$－－
Increment，register－pair	IN： DEC：	$\begin{aligned} & \text { ss } \\ & \text { ss } \end{aligned}$	$\begin{aligned} & \mathrm{ss} \longleftarrow \mathrm{ss}+1 \\ & \mathrm{ss} \longleftarrow \mathrm{ss}-1 \end{aligned}$		$\begin{aligned} & 1 / 4 \\ & 1 / 6 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 1,6 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 1,6 \\ & 3: 6 i \end{aligned}$	$\begin{aligned} & 2: 111 \\ & 2: 10 \end{aligned}$	$\begin{aligned} & 2 i 110 \\ & 210 \end{aligned}$	－ーーー －－－
Duuble add suburact	A（1） A1II） ADD ADC SBC	H11．，ss IX，ss 1Y．ss H1．， 5 s HL．ss	$\begin{aligned} & \mathrm{HI}-\mathrm{HI}+\mathrm{ss} \\ & \mathrm{IX}-\mathrm{IX}+\mathrm{ss} \\ & \mathrm{IY}-\mathrm{IY}+\mathrm{ss} \\ & \mathrm{HI}-\mathrm{HL}+\mathrm{ss}+\mathrm{C} \\ & \mathrm{HI}-\mathrm{HL}-\mathrm{ss}-\mathrm{C} \end{aligned}$		$1 / 11$	1111		111	－15		1－－
					$2 / 15$	2.15	215		－	31	
					2115	2115	215				，
					215	$2: 15$	$2!15$	215			1 ：i ${ }^{\text {d }}$
					2115	2115	2．15	2.15			

（）puration	MNE：	（1）	Descriplion	Hytuslycles	
Sel tarry Complement carry Enable interrupts Disahte interrupts Selent imerrupt mode Halt No operation	SCF Cx： El DI IM IM IM HAI．T NOP	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & C \backsim 1 \\ & C \longleftarrow \frac{1}{C} \\ & \mathrm{IFF}=1 \\ & \mathrm{IFF}=0 \end{aligned}$ Select bubo interrupl mode Select \approx bi800 interrupt mode（vector to address 003 BH ） Select Z．80 interrupt mode（vectur through table） Stop $P C \backsim P C+1$	－ 14 14	
Jump unconditionally Branch unconditionally Jump conditionally Branch conditionally Junip indirect Decrement and jump	J JR JP JR JP JP DJNZ	nn A cc， nn $\boldsymbol{c}_{\text {，}}, \mathrm{e}$ （HI．） （ss） ，e	PC ـ nn［jump anywhere］ PC \ldots PC + e（jump within $-12 t i$ and +129 bytes from the presem locationg $\mathrm{PC} \longleftarrow \mathrm{nn}$ if $\mathrm{cc}=1$ for $\mathrm{cc}=\mathrm{C}, \mathrm{NC}, \mathrm{Z}, \mathrm{N}, \mathrm{NZ}, \mathrm{M}, \mathrm{B}, \mathrm{PE}, \mathrm{PO}$ $\mathrm{PC} \ldots \mathrm{PC}+\mathrm{e}$ if $\mathrm{cc}=1$ for $\mathrm{CL}=\mathrm{C}$ ．NC．，Z ，NZ PC：HL PC — ss for ss $=\mathrm{IX}, \mathrm{IY}$ 	$\begin{aligned} & 3110 \\ & 2112 \\ & 316 \\ & 27.12 \\ & 1 / 4 \\ & 2: 8 \\ & 28.13 \end{aligned}$	
Call subroutine Return from subroutine Return frumi interrupt	CAL．L RST CAl． RET RET KLTI KETN	nn p cc． nn cc	Stack $\longleftarrow P C ; P C+n n$ Stack - PC：PC $-p$ for $p=00,08.10,20.28 .30$ ．or 38 （hex） PC：Stach PC \curvearrowleft Stach if ct $=1$ for ct $=$ C．NC．Z．NZ．M．P．PE．PO PC \longleftarrow Slack；Reset interrupting peripheral interface chip PC－Stach：Restute IfF as it was before this nom－mashathe interrupt	$\begin{aligned} & 3.17 \\ & 1.11 \\ & 1.111 .17 \\ & 1 / 10 \\ & 1.5 .11 \\ & 2: 14 \\ & 2.14 \end{aligned}$	

SSIPANGE HYBRID TYPE

\square
\square

Single Shaft

Double Shaft

SPECIFICATIONS (2-phase full-step)

Motor type		Voltage	Current per phase	Holding Torque		Resistance per phase	Inductance per phase
Single Shaft	Double Shaft	V	A/phase	02-in	N.cm	ohm/phase	$\mathrm{mH} / \mathrm{phase}$
PH296-01	PH296-01B	1.8	4.5	174	123	0.4	1.4
PH296-02	PH296-02B	5.5	1.25	174	123	4.4	14
PH296-03	PH296-03B	14	0.7	174	123	20	60

- Rotor Inertia $3.10 z-\mathrm{in}^{2}\left(560 \mathrm{~g}-\mathrm{cm}^{2}\right) \quad$ Weight $3.3 \mathrm{lbs}(1.5 \mathrm{~kg})$

APPENDIX F.

Drawing of mechanical scanner
(not to scale)

BIBLIOGRAPHY

1. Zilog Component Data Catalog, 1981.
2. National Component Data Book, 1976 .
3. Telefunken Opto-Electronic Data Book,1978.
4. Motorola Transistor Data Manual, 1979.
5. TI Linear and Interface Circuits Applications Data Book, 1981.
6. SHARP Z-80 CPU/PIO/CTC Technícal Nanual, 1978.
7. AIRPAX Stepper Motor Handbook, 1979.
8. BODINE Electric Company Stepper Motors and Controls,1981
9. Slo-Syn DC Stepping Motors Handbook, 1982.
10. Modulynx Motion Controls for Stepping Motors, 1981.
11. Slo-Syn Stepping Motor Controls, 1980.
12. Leventhal, Lance. Introduction to Microprocessors. PrenticeHall Editions, 1978.
13. Peatman, John B. Microcomputer-Based Design. Mc.Graw Hill Book Co.,1977.
14. Millman, Jacob. Microelectronics. Internetional Student Edition, Mc.Graw-Hill Co.,1983.
15. Halkias,Christos. Electronic Applications. Pic.Graw-Hill Co.,1976
