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ABSTRACT

APPEARANCE-BASED COGNITION OF OBJECTS

POINTED OUT BY HUMAN HANDS

In this thesis, human-guided appearance-based object cognition in robots is addressed.

Here, the robot observes the human pointing to the object of interest based on the incoming

RGB-D data and then either recognizes or learns this object as needed. This problem is of

interest because the associated learning problem does not require objects and their labels to

be provided externally as is the case with supervised learning or learned objects can be more

human-intuitive since the robot is not completely on its own as is the case with unsupervised

learning. We propose a complete end-to-end system consisting of three stages: First, the

robot determines the pointing direction. For this, it first finds hands and humans in the in-

coming RGB image via exploiting a state-of-the-art CNN-based detector. Following, it finds

the point cloud object corresponding to the hand segment through applying a density-based

segmentation algorithm on the RGB-D data and then estimates the 3D pointing direction

vector from the implicit geometry of the 3D hand segment. We also introduce a RGB-D data

set with varied robot-human distances and pointing gesture directions - due to the unavail-

ability of such a data set. In the second stage, the robot determines the targeted object based

on the 3D pointing direction. For this, it determines a set of candidate point cloud objects

and then selects the object that is most likely to be targeted. The final stage is either to recog-

nize the target object or to learn it as necessary. In this, its objects’ memory that is organized

hierarchically plays a key role. In the latter case, the new object class is added to the memory

using an unsupervised learning algorithm. To the best of our knowledge, the proposed sys-

tem is the first end-to-end system in which the robot’s reasoning is completely autonomous.

The advantages of the proposed approach are as follows: i) Applicability in a wide-range

of robot-human interactions regardless of human proximity and background variability; ii)

Ability to continue learning new object classes through interaction with humans.
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ÖZET

ROBOTLARDA İNSANLARIN ELLE İŞARET EDİLEREK

GÖSTERİLEN NESNELERİN GÖRSEL TEMELLİ BİLİŞİ

Bu tezde, bir robotun insanlarla onların nesneleri elle göstermeleri suretiyle etkileşime

girerek, renk ve derinlik (RGB-D) verilerini kullanarak gösterilen nesneyi tanımaları veya

öğrenmeleri konusunda çalışılmıştır. Bu problemin ilginç olmasının sebebi, tam güdümlü

öğrenmeden farklı olarak görünüşlerin etiketlenmelerine gerek olmaması, ancak güdümsüz

öğrenmede olduğu gibi de robotun nesnelere ait muhakemesinde tamamiyle tek başına ol-

maması nedeniyle nesne bilişinin daha insan-benzeri olabilmesidir. Önerilen yaklaşım üç

ana aşamadan oluşmaktadır. İlk olarak, robot insanın işaret ettiği yönü belirlemeye çalışır.

Bunun için robot evrişimsel sinir ağı temelli bir yaklaşımla RGB verisinden el ve insanın yer-

lerini ve şekillerini belirler. Ardından, bu bilgiyi derinlik verisiyle tümleştirerek ve yoğunluk

bazlı bir bölütleme algoritması uygulanarak üç-boyutlu el bölütünü bulur. Bu bölütün ge-

ometrik özellikleri kullanılarak üç boyutlu işaret yönü hesaplanır. Değerlendirma amaçlı

kıyaslama veri setlerinin olmaması nedeniyle, değişken robot-insan uzaklıkları ve geniş

işaret yönü çeşitliliği içeren bir RGB-D veri seti hazırlanmıştır. İkinci aşamada, robot işaret

edilen nesneyi belirler. Bunun için, aday nesnelere ait bölütler belirlenir ve aralarından en

büyük hedef puanına sahip olan işaret edilen nesne olarak seçilir. Hedef puanı, işaret yönüne

ve nesne konumlarına bağlı olarak hesaplanır. En son aşamada, bu nesnenin tanınması ve

tanınamadığı durumda ise öğrenilmesi yapılır. Burada, sıradüzensel bir mimariye sahip nes-

neler belleği önemli bir rol oynar. Tanınamayan nesneler, bir denetimsiz öğrenme yöntemiyle

yeni nesneler olarak bu belleğe eklenir. Bildiğimiz kadarıyla, önerilen yaklaşım robotun

karar vermesinin tamamen otonom olduğu ilk uçtan uca sistemdir. Önerilen yaklaşım iki ana

avantaja sahiptir: i) İnsan uzaklığı ve arka plan değişiminden bağımsız olarak geniş bir yel-

pazede robot-insan etkileşimi senaryolarında uygulanabilir olması; ii) Nesneler bilişinin in-

sanın işaret ettiği nesneleri kapsayacak şekilde sürekli gelişebilme yetisine imkan sağlaması.
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1. INTRODUCTION

A large number of mobile robot applications requires the robots to be capable of rec-

ognizing the objects in their surroundings based on their appearances. For example, service

robots may need to recognize objects such as home appliances or tools depending on their

purpose of use. Due to the large number of objects and the variability of their appearances,

object learning needs to be continual and incremental. The proposed approaches can be

categorized to be either supervised or unsupervised. In the former, appearances need to be

associated with labels. For example, most current state-of-art convolutional neural networks

(CNNs) need large data sets for training. However, creating data sets for each object is quite

expensive. Furthermore, the addition of new object classes to CNN object detectors cannot

be done continually and incrementally. On the other hand, with unsupervised approaches,

the robot is completely on its own. While the learning of objects can potentially be continual

and incremental, the resulting object concepts need not to be ‘human-like’.

In this thesis, a third approach which is in-between these two approaches is considered

- namely human-guided appearance-based objects’ learning through pointing interaction.

In this problem, a human points to an object and the robot either recognizes the object or

realizes that it need to learn it as a new object class. In the latter case, it then expects the

human to show a small set of different views of the object which it then uses to learn the

object class. Pointing is selected as our interaction method since it is known to be one of

the most commonly used gestures for communication [1]. This approach is advantageous

because each robot can be trained by its user for any specific goal so that the resulting object

knowledge is human-like.

Object cognition through pointing interaction is a difficult problem since it consists

of various components such as hand and human detection, pointing direction estimation,

selection of targeted object, object recognition and object learning. The proposed approach

consists of three stages as shown on Figure 1.1: i) Pointing direction estimation; ii) Target

object determination and iii) Recognition or learning as needed.
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The first stage aims to estimate the three-dimensional (3D) pointing direction. There

has been extensive work on pointing direction estimation. However, many of them are not

convenient for robot applications due to restrictions such as requiring the hand to be dom-

inant object in the scene or outputting only 2D pointing directions. The proposed method

aims to reliably determine the 3D pointing directions under wide-ranging scenarios. First,

hand and human regions in the input RGB image are detected. This is a critical stage as re-

liable detection is essential to correct direction estimation and the robot being able to deter-

mine the target object. Fortunately, there are quite successful convolutional neural network

(CNN) based object detectors that can be used for this task. The YOLOv4 along with the

publicly available human and hand data sets are used to create the hand and human detec-

tor [2]. Next, the 3D hand segment is obtained through merging the RGB segment data and

depth data and then using a density based segmentation algorithm. The intrinsic geometry

of the pointing gesture is then exploited to find the pointing direction.

The second stage is to use the 3D pointing direction in order to find the targeted object.

For this task, there are score based methods in the literature such that each object in the

scene is assigned a score depending on pointing direction and the object with the best score

is selected. A similar approach is also adopted here with hierarchical ordering. First, objects

that are located within the close neighborhood of the pointing direction line are determined.

This is followed by assigning a target score depending on their location with respect to the

pointing direction. Finally, the object with the highest score is selected. If there are not any

object close enough to the line, then the neighborhood is expanded and the whole process is

repeated.

After finding the targeted object, the robot tries to classify this object based on its

point cloud data. First, it encodes the respective point cloud data using deformed sphere

approximation representation [3]. Then, it associates this descriptor with the knowledge

existing in its objects’ memory. The objects’ memory has a tree organized structure in which

terminal nodes correspond to distinct object classes. A hierarchical incremental clustering

method is used to construct a tree structure. In this structure, each parent node is associated

with a set of classifiers as to assign a new input to one of the child nodes.
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The robot searches a top-down search in its place memory using these classifiers in order to

determine whether it can recognize the target object through traversing down the hierarchy as

long as classification performance is not sufficient or until either a terminal node is reached.

The former case implies no recognition and the robot expects human to show the object from

different viewpoints as to form its knowledge of this object. It then adds this to its existing

objects’ memory using incremental clustering method.

Figure 1.1. General Approach.

1.1. Contributions

The major contributions of the thesis are as follows:

• A new approach to the estimation of 3D pointing direction: Our proposed approach

to the detection of 3D pointing direction from RGB-D images is suitable for a wide

range of scenarios in which hand distance, background variability or the detectability

of specific human parts all may vary. Our only assumption is that person performing

pointing gesture should be in the range of depth sensor which is around 4.5 m according

to sensor specifications. To the best of our knowledge, this is the first framework than

can accurately predict the 3D pointing direction from a single RGB-D image with the

least amount of assumptions.

• A novel benchmark RGB-D data set with 3D pointing direction annotations: To the

best of our knowledge there is no existing benchmark for the 3D pointing directions

targeted in this work, so we have built a new data set that will also be publicly available.
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This data set consists of RGB-D images of human with various pointing gestures, -

incorporating challenges such as varying robot-human distance and large pointing ges-

ture variability.

• A new approach to target object detection: The method is more complex than previous

works and it is shown to perform well on a publicly available benchmark.

• A novel end-to-end approach to human-guided appearance-based objects’ cognition in

robots: The proposed method is completely autonomous and enables the robot to learn

or recognize objects that are of interest for humans.
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2. 3D POINTING DIRECTION ESTIMATION

2.1. Introduction

A pointing gesture typically specifies a direction from a person - indicating a location,

a thing or another person. As such, it can be used to direct the robot’s attention to a place or

an object of interest. Thus, the ability to reliably and quickly detect the pointing direction is

an important tool in the HRI repertoire. It requires the robot to detect human hand reliably

and to estimate its pointing direction. This has proven to be a complex task as i) hand

appearances vary in shape and orientation; and ii) human-robot interaction scenarios are

wide-ranging with respect to hand proximity, background variability or the detectability of

specific human parts.

There has been extensive work on this both within machine vision and robotics areas.

Many work explore close-range interactions and thus assume the hand to be the dominant

object in the incoming sensory data. However, in many HRI applications such as service

robotics, such an assumption does not hold and the robot needs to estimate the pointing

direction from a wide range of distances so that detecting the pointing direction becomes

much harder. The problem is exacerbated by background variability that makes the detection

of both hand and other body parts more difficult. Interestingly, neural networks have not been

effective for this problem due to the absence of a large 3D pointing direction data set. Recent

work have addressed these challenges, however the proposed approaches have limitations as

they find two-dimensional (2D) pointing directions [4] or require specific body parts to be

detected [5, 6] or output quantized 3D directions [6]. Thus, they are not applicable to tasks

in which the nature of human-robot interaction requires a fine-grained 3D direction estimate

- with the additional need that the estimation must be possible even if specific body parts

are not easily detectable. In this work, we want our robot to be capable of detecting the

3D pointing direction precisely - regardless of hand distance, background variability and the

detectability of specific body parts.
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Figure 2.1. Pipeline of our system for the detection of 3D pointing direction. First, the robot

generates hand and human regions in the RGB image using a specially trained CNN. Then,

hand region is classified into pointing or non-pointing gesture classes. Robot then applies a

density-based segmentation on the RGB-D data of the resulting hand bounding box. The

3D pointing direction vector is computed from the implicit geometry of the hand depth

segment. As such, the robot uses only RGB data, only depth data or both together as

needed.

To tackle these issues, we present a novel approach with a pipeline of three stages as

shown in Figure 2.1. First, the robot uses a network that is built on a deep convolutional

neural network in order to find hands and humans in the incoming RGB image. The 3D

hand segment is then determined by applying a density-based segmentation algorithm on

the corresponding RGB-D data of the hand. Finally, the 3D pointing direction vector is

computed from the geometry implicit in the hand segment’s depth data.

The outline of the rest of the chapter is as follows: Related literature is reviewed in

Section 2.2. The proposed method is presented in Section 2.3. Experimental results on

comparative hand detection performance and 3D pointing direction detection are discussed

in Section 2.4.
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2.2. Related Literature

Most of the proposed approaches for detecting the 3D pointing direction take advan-

tage of the extensive work done on hand detection. First, we present a brief review of this

work. Next, we review work on the detection of 3D hand pointing direction. Finally, we

briefly review the available data sets.

2.2.1. Hand Detection

Hand detection plays a critical role in the robustness of the 3D pointing direction esti-

mation. Early work on hand detection have mostly used skin color [7–9] or shape features

via boosted classifiers [10, 11]. Context information from human body parts has also been

utilized [12–14]. A combination of skin color, shape and context have been used in [15].

However, the performance of these approaches tends to be lower if the robot is to operate in

a wide-range of scenarios with hand appearances varying greatly with respect to color, shape

and size. Recently, CNN based detectors have been addressing these issues. A multi-scale

Faster R-CNN architecture is proposed in [16], however the algorithm is slow for real-time

applications. Faster R-CNN and skin segmentation are combined in [17]. A rotation esti-

mator CNN is used to in [18]. A Region-based Fully Convolutional Network is presented

in [19]. However, their performances on benchmark data sets such as Oxford hand data set

have been reported to be low - possibly due to the lack of training data. Mask R-CNN is

used to reliably predict a bounding box segmentation of hands in cluttered environments [4],

however it is slow for real-time applications. Yang et al. have developed a modified Mo-

bileNet with SSD as a real-time hand detector [20]. A Faster R-CNN based detector that is

trained along with a CNN that can also reconstruct hands in the ROIs is presented in [21],

however the required computational resources are very high for real-time applicability.

2.2.2. Pointing Gesture Classification

In the recent years, CNN based methods have dominated hand gesture classification.

Most of these methods take RGB images as input.
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However, there are also works that use depth data as well [22]. Background removal is a

common practice among the classification methods. Segmentation is achieved using methods

such as skin color [23] or watershed algorithm [24]. In most work, the input of CNNs are

directly RGB images [25, 26]. However, other sources of information such as local binary

patterns [24] or hand edge images [27] are used as well. There are also works targeting RGB

videos [26]. Key frames are extracted for a better accuracy in [28] using image entropy.

2.2.3. 3D Hand Pointing Direction Detection

In most work, hand detection and 3D hand pointing direction estimation are done sepa-

rately. For example, once the hand regions are determined, the direction estimation problem

is posed as an object detection problem based on the similarity of features such as hue and

surface normals [29]. The 3D pointing direction is estimated through interpolating SVM

scores of different direction classes [30]. Recently, end-to-end systems are also being devel-

oped [31]. The applicability of these methods vary depending on the sensing, hand range,

background variability, whether they require the detection of specific body parts and whether

a continuous or quantized 3D direction estimate is output. A list of the proposed approaches

along with how they fare with respect to these issues is presented in Table 2.1.

The sensor type is important because the type of data (RGB image, depth, RGB-D)

determines what can be computed from the data. For example, typically 2D fingertip posi-

tions can be found with a RGB camera [32–35]. While there are approaches that infer 3D

pointing direction from the 2D position data [31], their accuracy is limited as there is no

distance information in 2-D data. One remedy is to use multiple RGB cameras with different

locations [36]. However, this is restrictive in mobile robotics applications. The 3D pointing

direction estimation cannot be done reliably with RGB data. Thus, it has become evident

that depth data as obtained from stereo cameras [9], depth cameras [37], time-of-flight cam-

eras [38], or RGB-D sensor such as Kinect [39] is integral to the precise detection. There

are also work that assume the availability of Kinect skeletal data [40, 41]; however these ap-

proaches are only applicable if there is a movement of the pointing hand. From the robotics

perspective, it is important to detect hands in unconstrained conditions [42].
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The remaining issues pertain to the applicability of the method in different HRI inter-

action scenarios. In some works, the hand is assumed to occupy a large part of the robot’s

sensory viewing volume and hence hand detection is rather easy [34–36]. These approaches

are not applicable in many HRI applications since they require the hand to be the closest

object to camera. Hence, approaches that are applicable with varying hand distances are pre-

ferred. Another issue is regarding the background variability. In some work, the background

is either assumed to be fixed or a simple background [29, 36]. Again, it is not possible to

use these approaches in arbitrary settings. Another issue is that some approaches use the

relative geometry between the hand and another body part to determine the 3D pointing di-

rection. For example, the estimation is computed from the line from face to hand or elbow

to hand [38], wrist to hand [39] or head to hand [5]. Thus, the detection of these body parts

needs to be both possible and reliable. In addition, some approaches require specific hand

topologies - such as the back of the hand facing upwards [30] or person-specific fist mod-

els [37]. As such, these methods are not practical in most HRI tasks. Finally, in some meth-

ods, the 3D pointing direction is estimated in a quantized manner - such as the 26 direction

quanta [6]. As such, the resulting estimates turn out be very coarse due to the quantization.

2.2.4. Hand Pointing Direction Data Sets

Most of the data sets on human pointing direction are based on close range and/or

egocentric RGB images of the hand [33, 34]. As such, the hand is the dominant object in

the image. Hence, the data set is not suitable for testing performance with varying hand

distance. An RGB data set with 2D pointing directions is given in [6], but the annotations

are such that edge directions are quantized into 8 levels. They also provide a RGB-D data

set for 3D pointing directions, however, the annotations provide 3D edge directions that are

quantized into 26 directions. A 3D pointing direction data set is given in [29]. However, it’s

not suitable to assess performances wide-ranging scenarios since all the images are from a

fixed table setup.
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Table 2.1. Related work. Cont. 3D refers to whether the output is a continuous or quantized

3D vector.

Method Input Varying

Distance

Background

variability

Body parts Cont. 3D

[9] 2 RGB 3 3 Head 3

[36] 2 RGB 7 7 - 3

[39] RGB-D 3 3 Legs & face 3

[38] ToF 3 3 Head &

torso

3

[40] RGB-D 3 3 Skelatal 3

[30] 1-2 RGB 3 7 - 3

[41] RGB-D 3 3 Skelatal 3

[29] RGB-D 7 7 - 3

[31] RGB 3 7 - 3

[37] D 3 7 - 3

[43] RGB-D 7 7 Skelatal 3

[5] RGB-D 3 3 Face 3

[6] RGB-D 3 3 - 7

Proposed

Work

RGB-D 3 3 - 3



11

2.3. Method

We propose a three-stage 3D hand pointing direction detector. It operates on the RGB-

D data coming from Kinect. First, hands and human are detected using a newly trained

CNN running on the RGB image. Next, the point cloud object corresponding to the 3D

hand segment is found. Finally, using the 3D hand segment, the 3D pointing direction is

computed. The direction is parametrized by (vpd, opd, ) where vpd ∈ R3 corresponds to the

orientation and opd ∈ R3 corresponds to the 3D point it passes through. Hence, the direction

is defined by the line opd + svpd with s ∈ R.

2.3.1. Hand and Human Detection

The processing starts with the detection of hand and human regions from the RGB

image. The latter is needed as a reference for positive direction. However, no specific human

part is required to be seen by the RGB-D sensor - as this would have imposed restrictions on

our target scenarios. Unfortunately, there is no available hand and human region detector.

For this, the learning network architecture is selected. For this, we have decided to use

the YOLOv4 network - since it is a robust and fast state-of-the-art CNN. In particular, it is

known to achieve 43.5% AP on MS COCO data set with over 60 fps on Tesla V100 [2]. Its

input is a 416×416×3 RGB image. A larger image size may lead to better accuracy, but the

network would slow down. The output is a set of 2D bounding boxes corresponding to the

detected objects. The YoloV4 network is retrained or used in three stages as to detect only

hands and humans. This is done using the Darknet framework [44]. In all, its architecture

remains the same except the layers before Yolo prediction layer. This is necessary in order

to change number of classes YOLOv4 can detect.

Unfortunately, it is not possible to directly retrain the YOLOv4 network since there

is no available data set with both hand and human annotations. However, there are data

sets that provide each annotation separately. One example is the COCO-hand data set and

COCO-human data set [45]. A three-step process is applied.
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First, a hand detector is created using the COCO-Hand data set [4]. Next, the resulting hand

detector is run on human images of COCO data set as to create an annotated data set with

hand and human labels. This data set is then used to train the network once more. Hence,

the network learns to detect both hands and humans. Altogether 73672 frames are used in

learning. An example of the resulting hand and human detection is given in Figure 2.2.

Figure 2.2. Hand and Human Detection.

2.3.2. Pointing Gesture Classification

After finding hand bounding box, the robot needs to determine if the hand is perform-

ing a pointing gesture. Similar to most work, a CNN is used to classify hand regions. The

classifier outputs whether the input gesture is a pointing gesture or not. The architecture of

our classifier as given in Figure 2.3 is inspired by that of [46]. Differing from it, a normal-

ization layer is added in order to speed up the training. Here, categorical cross-entropy loss

function given by

J = − 1

K

K∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] . (2.1)

where yi is the true label, ŷi is the predicted output. Training is done for 20 epochs.

We created a RGB data set consisting of both pointing and non-pointing gestures. The

data is obtained from the robot’s Kinect sensor.
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Figure 2.3. Architecture of Pointing Gesture Classifier.
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Users in front of the robot perform pointing and non-pointing gestures at varying distances

in the range 0.5-5 m. Following, the hand detector as developed previously is applied on

the images in order to extract the hand bounding boxes. Finally, hand images are labeled

as pointing or non-pointing manually. In total, there are 2557 pointing, 3156 non-pointing

hands. The data set includes images with from varying illumination conditions, different

hand distances. Some samples from the data set are given in Figure 2.4. The data set is

divided into training, validation and test data sets.

Figure 2.4. Samples from Pointing Gesture Data set.

2.3.3. 3D Segmentation

The goal of the next stage is to determine the 3D hand segment in the RGB-D data.

First, the bounding box of the hand (as determined in the previous stage) is mapped to a 3D

volume - considering the RGB-D data. This requires the RGB data and depth data to be

calibrated. The calibration is achieved using a method as prescribed in [47]. The result is a

3D hand region as shown in Figure 2.5.

Figure 2.5. 3D Hand Region.
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Following, a density-based segmentation algorithm is applied to the 3D points that lie

within this volume in order to find the 3D hand segment. For this, we use a modified version

of density based clustering algorithm [3]. As the original algorithm is designed for point

cloud segmentation, it is modified to consider both depth and RGB data. The algorithm

is based on clustering adjacent 3D points. Let P refer to the RGB-D data. Each point is

associated with an segment label. Let L denote the index set of labels. As such, we can

determine the set of 3D segments O where each segment o ∈ O is determined by the RGB-

D data D ⊂ P having the same label l ∈ L. The algorithm uses the fact that the sensory

geometry is defined by a spherical coordinate system with the origin at Kinect optical center

with known pan angle resolution δφ and tilt angle resolution δψ. Let Q be the corresponding

point cloud data expressed in the spherical coordinates. Each point p ∈ P is associated with a

pan angle φ ∈ [0, 2π), tilt angle ψ ∈ [0, π), depth ρ(φ, ψ) and HSV data c(φ, ψ). A connected

component algorithm is applied in the spherical coordinate system. Two metrics are used for

determining if two points are adjacent. First, proximity in the spherical coordinate system is

checked. Hence, for a point q ∈ Q where q =
[
φ ψ ρ(φ, ψ)

]T
, its spherical distance

d(q, q′) to another point q′ is calculated as

d(q, q′) =
(φ− φ′)2

τ 2φ
+

(ψ − ψ′)2

τ 2ψ
+

(ρ− ρ′)2

τ 2ρ
(2.2)

where q′ =
[
φ′ ψ′ ρ(φ′, ψ′)

]T
. The parameters τφ, τψ, τρ > 0 are determined consid-

ering the respective resolutions - namely τφ = γ1δφ and τψ = γ2δψ where γi, i = 1, 2 are

determined empirically. The parameter τp is set depending on how much depth variation is

allowed. Second, color similarity is checked. This is simply defined by the L2 norm of the

difference between their respective HSV values c(q) and c(q′). A point q′ is considered to be

in the neighborhood N (q) of q:

q′ ∈ N (q) iff

 d(q, q′) ≤ τp1or

τp1 < d(q, q′) ≤ τp2 and ‖c(q)− c(q′)‖ ≤ τhsv.
(2.3)
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The cardinality of the neighboring points should satisfy a minimum neighbor criterion

- namely |N (q)| > M1 where M1 > 0 denotes the minimum number of neighbors. In this

case, q is taken as a core point for a new segment. The segment is expanded repeating this

process for all neighboring points. The parameter M1 is set to be a percentage of maximum

cardinality possible. The computational complexity of this algorithm is kept constant by

using an indexed organization of the RGB-D data.

Finally, the 3D hand segment is found based on the observation that the hand occupies

the biggest area in the 3D hand volume and is also one of the closest objects therein. Thus,

each segment can be associated with a score that measures how large it is and how close it is.

In these calculations, the points whose depth readings are outside the Kinect depth sensing

range of 0.5m − 5m are not included. The segment with the highest score is assumed to be

the hand segment.

2.3.4. Pointing Direction Estimation

The geometry common to all hand pointing gestures is that a big part of the hand is

physically gathered around a direction [48]. This is typically done either through extending

the index finger or flexing the remaining fingers into the palm with possibly with the thumb

to the side. Our estimation process considers this and consists of three steps.

The pointing direction is inferred from the geometry of the 3D hand segment. For this,

the covariance matrix Σ is constructed. Let its eigenvalues be denoted by |λ0| > |λ1| > |λ2|

with corresponding eigenvectors are v0, v1, v2. We expect the final estimation to be close to

the principal eigenvector v0. However, it needs to fine-tuned considering the hand pointing

geometry.

The pointing part of the hand is determined through finding the two planes whose nor-

mals are orthogonal to v0 and whose neighborhoods contain the largest number of 3D hand

segment points. These points will correspond to the pointing part of the hand. The first plane

has normal in the v1 direction while the other has normal in v2 direction.
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First, the two outermost planes in the v1 direction containing hand segment data are deter-

mined. Following N1 orthogonal planes are placed at equidistant locations along v1. Let the

plane separation distance be denoted by δv1 > 0. A point h ∈ H is considered to be in the

neighborhood of a plane if its distance to the plane is less than δv1
σ1

. Finally, the plane with

the largest neighborhood cardinality is determined. Let the respective neighboring points be

denoted by H1 ⊂ H. Following, the process is repeated for the v2 direction - considering

now the set of points H1. In this case, N2 planes are placed at equidistant locations with

respect to the vector v2. For each plane, the neighboring points are determined by compar-

ing their distance to δv2
σ2

. The final set of points H2 consists of 3D points corresponding to

the pointing part of the hand. The orientation of these points is our final pointing direction

estimation vpd. The 3D point opd is selected randomly fromH2. For example, in the classical

pointing gesture which consists of a fist and a pointing index finger, the final points will be

those corresponding to the index finger. For such a 3D hand segment, the two planes with

the largest neighborhoods are shown in Figure 2.6. The intersection (blue points) of these

neighborhoods is observed to be parallel to the pointing direction. The corresponding 3D

pointing direction (white line) can be seen in Figure 2.7.

After finding the line, it remains to determine which end of the line is the pointing part.

We used human detection to solve this issue. If the vector from hand center to one end of

the line makes a positive angle with the vector from human center to hand center, then the

corresponding end of the line is taken as pointing side. If not, the other part is selected.

Figure 2.6. Planes Passing Through Hand Orthogonal to v1 and v2.
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Figure 2.7. Detected 3D Pointing Direction.

Table 2.2. Parameter table.

Parameter Meaning Section Value

τφ Pan normalization 2.3.3 3

τψ Tilt normalization 2.3.3 3

τρ Radius normalization 2.3.3 0.05

M1 Neighborhood threshold 2.3.3 10

τp1 Strict spherical dist.

threshold

2.3.3 0.8

τp2 Loose spherical dist.

threshold

2.3.3 1.1

τhsv HSV distance threshold 2.3.3 0.5

N1 Number of planes ⊥ v1 2.3.4 3

N2 Number of planes ⊥ v2 2.3.4 2

σ1 Distance threshold for

plane ⊥ v1

2.3.4 2

σ2 Distance threshold for

plane ⊥ v2

2.3.4 2
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2.4. Experiments

In this section, we present our experimental results regarding hand detection and point-

ing direction estimation. First, we compare the performance of our hand detection method

with the state-of-art hand detection methods. Next, we evaluate the reliability of pointing

gesture detection. Finally, we study the performance of our pointing direction estimation

algorithm using this data set - including a study of performance sensitivity to the parameter

values. The parameter settings are as given in Table 2.2. The average execution time of our

overall method is 0.19 sec on a computer with 2.59 GHz CPU and GTX 1650 though it may

change between 0.1 sec and 0.5 sec depending on the size of the hand bounding box.

Figure 2.8. A Sample Detection with YOLOv4 [15].

2.4.1. Hand Detection

Hand detection experiments are conducted using the benchmark Oxford hand data set.

A sample detection of the proposed YOLOv4-based model is shown on Figure 2.8. Average

precision and speed of hand detection are compared with the previous approaches in Table

2.3. Computation time of the algorithms is given in Table 2.4. It is observed that our model

achieves a good balance between average precision and run-time. While the approach of [21]

is the only one that has better average precision, its run-time is significantly higher than our

detector. On the other hand, the fastest model [20] has significantly lower precision. Hence,

the experimental evaluation of our proposed YOLOv4-based model indicate that that we

achieve hand detection performance comparable with the state-of-the-art methods.
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Table 2.3. Average precision (AP).

Method AP

Faster R-CNN + skin [17] 49.51%

RPN [18] 57.7%

RPN + Rotation Estimator

[18]
58.1%

MS-RFCN [19] 75.1%

Hand-CNN [4] 78.8%

MobileNet-SSD [20] 83.2%

Faster R-CNN + GAN [21] 87.6%

Proposed YOLOv4-based

model
84.78%

Table 2.4. Computation time.

Method Time (sec.) Hardware

RPN [18] 0.1 Titan X

RPN + Rotation Estimator [18] 1 Titan X

MobileNet-SSD [20] 0.0072 Titan X

Faster R-CNN + GAN [21] 0.1121 GTX1080Ti

Proposed YOLOv4-based model 0.032 GTX 970

2.4.2. Pointing Gesture Detection

Experimental results on pointing gesture detection are given on Table 2.5. As ex-

plained, the data set has been divided into learning, validation and test sets. The accuracy

of detection of positive samples is 94.5% while that negative samples is 94%. As it can be

seen, we have reached satisfactory results considering that pointing gestures have been made

at a wide range of distances to the camera. Still, gesture classification data set needs to be

expanded to include various scenarios to have a more robust classifier.
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Table 2.5. Accuracy ratings for pointing gesture classification.

Data # Pointing

Images

Accuracy # Non-

Pointing

Images

Accuracy # Total Accuracy

Training 1860 99.9% 2253 98.8% 4113 99.3 %

Validation 441 95.0% 587 92.5% 1079 93.5 %

Test 256 94.5 % 316 93.7 % 572 94.0 %

Table 2.6. 3D Pointing direction data set.

Range
Hand Distance

range (m)
# of Images

Close 0.5 - 1 41

Mid 1 - 1.7 169

Far 1-7 - 4.5 77

2.4.3. 3D Pointing Direction Data Set

The 3D pointing direction data set is introduced as a benchmark for future studies. To

the best of our knowledge, there are no such data sets with continuous 3D pointing direction

annotations in varying backgrounds. The data is obtained with a Kinect sensor. The rotation

and translation parameters between RGB and depth sensors and the camera parameters that

map 2D RGB-D data to 3D point cloud data along are provided. However, while saving depth

images, we wrote them to ”.jpg” files which are unable to hold 16 bit pixel information. So,

the written depth pixels are in 8 bit format, which causes them to be more noisy then usual

Kinect depth readings.

The data set consists of 287 RGB-D images with varying hand pointing gesture scenar-

ios as viewed by a mobile robot. The viewing distances ranges from close to far as shown in

Table 2.6. We have also tried to include various pointing gestures that may be encountered

in real-life applications. For example, the pointing finger is not always parallel to arm as

one would expect. RGB and depth samples from data set are given in Figure 2.9. Image

labels contain 3D pointing directions. The pointing hand locations in the RGB images are

also provided for studies that focus purely on the performance of the direction estimation.
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Figure 2.9. RGB and Depth Samples from Pointing Direction Data Set.

2.4.4. Pointing Direction Detection

In this section, we study the performance of 3D pointing direction detection. The

evaluation is done using the benchmark 3D pointing direction data set. We study the accu-

racy of the detected 3D pointing direction in different distance scenarios and that choice of

parameter values are not critical for the performance of the algorithm.

The estimation error is defined as the angle between the estimated direction and the

ground truth direction. Overall, average estimation error is 14.34◦ as seen in Table 2.7.

We also consider accuracy performance considering three different thresholds 10◦ to 30◦.

Estimations with errors larger than the given threshold are considered to be failures. The

resulting accuracy rates are seen in Table 2.7. It is observed that 87.1% accuracy is achieved

for 30◦.

Finally, the effect of parameter selection on the 3D pointing direction performance is

studied.
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Table 2.7. Accuracy results for varying thresholds and average accuracy for 30◦.

Average angle error <10◦ <20◦ <30◦

14.34◦ 27.8% 66.6% 87.1%

Table 2.8. Accuracy rates and average angle errors for different parameter selections.

Parameters are given in the order : (N2, σ2) , (N1, σ1).

Parameters <10◦ <20◦ <30◦ Average an-

gle error

(3,2),(2,2) 27.8% 66.6% 87.1% 14.34◦

(4,3),(2,2) 28.6% 61.7% 87.8% 14.72◦

(4,3),(3,3) 29.6% 62.4% 86.8% 14.97◦

There are 5 parameters to consider: compression parameter τc, (n, σ) values for planes paral-

lel to v3 and (n, σ) values for planes parallel to v2. The results for different set of parameters

are given in Table 2.8. It is observed that similar accuracy rates are obtained. Hence, varia-

tions in the used values of these parameters do not seem to affect the resulting accuracy.

We have also investigated failure cases - namely the angle error is more than 30◦. For

example, a failure case is shown in Figure 2.10. Failure tend to occur when the pointing

direction is towards to the robot. This is attributed to the fact that only the front part of the

hand is seen by depth sensor. As such, the clustering of hand points around another direction

is more dominant than that of the pointing direction.

Figure 2.10. A PDE Failure Case.
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3. TARGET OBJECT DETECTION

3.1. Introduction

After finding the 3D pointing direction, the next stage is to have the robot determine the

pointed object. This problem has been addressed in some of the related work such as [29].

The typical approach is to assign a score to each object and then select the object with the

best score. Although this approach seems reasonable, it is not easy to find a reliable single

score for the target object detection. One common approach is to use the angle between the

pointing direction and the line from hand to object [41]. However, such a score fails in many

scenarios such as another object intersecting with pointing direction. Another score formu-

lation is based on the orthogonal distance of the object to the pointing direction. However,

in this case, objects that are close to the hand becomes a problem. An example is shown

in Figure 3.1. The user is pointing to the ‘plate’but the cans’s orthogonal distance to the

pointing direction is small as well. These suggest that the score formulation should include

various criteria.

For this method, a novel reasoning method is proposed. In this method, the robot first

considers the cone with the pointing direction set as its axis and with a small apex angle.

All point cloud objects within this volume are then determined. If no objects are found,

then the apex angle is enlargened until some objects are determined. The objects are then

associated with a target score that is constructed in a weighted manner considering several

criteria such as angle, distance to the hand and another metric to eliminate objects that are

close to the hand but not in the way of pointing direction. In the remaining part of this

chapter, related literature is presented followed by our approach to the target object detection

problem. Finally, experimental results are reported.
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Figure 3.1. An Example Where Orthogonal Distance Score May Fail to Detect Correct

Object [49].

3.2. Related Literature

In the literature, target object detection algorithms are generally presented along with

the pointing direction estimation. The pointed object is determined assuming that a pointing

direction is found. Most commonly, a score is assigned to each object and the object with

the top score is set to be target object.

Commonly, the score is formulated based on the angle between the pointing direction

and the line from elbow to object [41] - assuming that the pointing direction is along the line

from the elbow to the wrist. In some work, the target object is found from the 2D pointing

direction. For example, scores are defined for the bounding boxes associated with the objects

based on the ratio of the length of intersection of pointing direction and object to the length

of diagonal of object bounding box [50]. It is observed purely that angle based methods tend

to perform poorly when there are multiple objects intersecting with pointing direction.

Similar to the angle score, the distance of the objects to the pointing direction has also

been considered. For example, each point in 3D space is assigned a score based on its dis-

tance to the pointing direction. Object score is computed by summing the scores of all points

belonging to it. The object with the highest score is selected [51].
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In [29], the target object is selected considering the weighted sum of the distances of an

object to all potential directions with each weight being equal to the confidence score of

the direction. These methods tend to favor objects close to the hand and may yield wrong

detections when the target object is not necessarily the closest object.

Figure 3.2. The target object is first searched in a smaller neighborhood and then in a larger

neighborhood.

3.3. Method

In the proposed approach, the robot first determines all the point cloud objects in the

scene. This is achieved using the point cloud segmentation algorithm as presented in Sec-

tion 2.3.3. As this algorithm assumes that objects are located on ground and separately from

each other, a ground removal algorithm is applied prior to segmentation [52]. As such, it is

not possible to segment objects that are located on another object such as objects sitting on a

table top.

Following, the robot finds the pointed object via doing a search among the resulting

point cloud objects. Our approach to the problem tries to mimic the human way of finding

the pointed object. Let p1 ∈ R3 and p2 ∈ R3 denote two outermost hand points in the

pointing direction. When people want to identify the targeted object, they firstly look for

objects that are in the close neighborhood of pointing direction as shown in Figure 3.2. This

corresponds to a cone with apex angle α1. An object is deemed to be in this neighborhood if

it contains at least one point that falls within this volume.
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If it cannot find any object within this volume, then the search volume is expanded to a cone

with a larger apex angle α2. Similarly, this is determined by checking for at least one point

overlap. Let S denote the index of point cloud objects.

The robot then computes a ‘targetness’ score for each object. The scores are con-

structed using three different measures:

• The angle between the pointing direction and the line connecting p1 to the object: θ1(i)

• The smallest distance of the object to the hand d(i)

• The angle between the pointing direction and the line connecting p2 to the object: θ2(i)

For i ∈ S, if θ1(i) < α1, this suggests that the object i is the smaller volume region. Then

let s1 : S → R≥0 denote the corresponding function that is defined as follows:

s1(i) = d(i) sin θ31(i) sin(θ2(i)− θ1(i))2. (3.1)

In this case, the robot needs to select an object that is close to the hand and has a

small angle with pointing direction. The first two terms check for this. The last term is

to eliminate objects that are close to hand but does not make small enough angle with the

direction line. If the difference between them is large, we can assume the particular object

is not intersecting with pointing direction. An example of such an object is given in Figure

3.3. As it can be seen, difference between θ1 and θ2 for ketchup bottle is large, which causes

s1(i) of the object to be large. Therefore, ketchup bottle will not be selected.

If α1 < θ1(i) < α2, then the object is in the larger search region. Let s2 : S → R≥0

denote the corresponding score map. It is defined as follows:

s2(i) = d(i) ∗ sin |θ1(i)− θ2(i)|3 . (3.2)
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In this score, θ1 since it is not a reliable metric. The summary of our approach is given

in Algorithm 1.

Algorithm 1 Find pointed object
for i ∈ S do

θ1(i) = calcAng(i, p1);

θ2(i) = calcAng(i, p2);

if θ1(i) < α1 then

s1(i) = d(i) sin θ1(i)
3 sin(θ1(i)− θ2(i))2;

closeScores.add(s1(i));

end if

if θ1(i) < α2 then

s2(i) = d(i) sin |θ1(i)− θ2(i)|3 ;

restScores.add(s2(i));

end if

end for

if closeObjs.size() > 0 then

return arg min
i

closeScores

else

return arg min
i

restScores

end if

3.4. Experimental Results

This section presents experimental evaluation of the proposed target object selection

method. In the experiments, α1 = 15◦ and α2 = 30◦ based on experimental observations.

The experiments are done using the Multimodal Human-Robot Interaction data set (MHRI)

presented in [49]. The data set consists of video frames of 10 users pointing to 10 different

objects in varying scenarios. The environment is rather restricted with the users pointing to

a variety of objects on a table.
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Furthermore, pointing gestures occur in only a small subset of the frames in each sequence -

as the scenes before and after the pointing gestures are made are also recorded. For testing,

only the frames containing the pointing gestures are used. Here, ground truth pertaining to

the target objects is provided. A sample scene is as shown Figure 3.4.

Similar to [49], the goal is to only evaluate the target object detection algorithm. Thus,

table removal is done and then segmentation is applied on the resulting scene data. The

parameters of the ground segmentation algorithm are manually adjusted in each frame as to

correctly remove the table pixels. Even so, only 45 out of 100 videos can be used - since

in the rest it is not possible to completely remove the table. As the number of frames with

pointing gestures is not the same across all the videos, a fixed number of frames per video is

used in the experimental evaluation. Here, this is arbitrarily set to be 4. Hence, it total, the

evaluation is done considering 45 × 5 = 225 frames. Let it be noted that in [49], only 90

frames are considered.

The results of our experiments on the data set are given in Table 3.1. Target object

detection is taken to be correct if it actually overlaps with the ground truth target object. For

example, in some frames, it is observed that the part of the targeted object is removed after

applying ground segmentation. An example of such a case is given in Figure 3.4. Also, part

of the table pixels remained even after ground segmentation and segmented as part of the

target object. We considered them correct if no other object in the table setup is not included

in the particular segment. Overall, target object is found correctly in 72.4%. As it can be

seen from the table, we did not include frames from User 10. That’s because User 10 was

touching the target objects, which is not our target scenario i.e. segmentation does not work.

Uneven distribution of data taken from other users stems from similar reasons.

The results are compared with those presented in [50]. The results are given in Table

3.2. Since there are some images in the data set that can not be used for testing , one has

to select which images to use manually. Also, to remove the effects of the segmentation on

results, one has to choose correctly segmented images. These are done both in our work and

in [50] did.
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Table 3.1. Results on MHRI data set.

Users # Frames Successful Frames Success Rate (%)

User 1 25 19 68.0

User 2 25 15 60.0

User 3 35 16 45.7

User 4 35 29 82.8

User 5 25 24 96.0

User 6 15 5 33.3

User 7 15 15 100.0

User 8 35 25 71.4

User 9 15 15 100.0

Total 225 163 72.4

Table 3.2. Comparative results on MHRI data set.

Method Success Rate (%)

[50] 46.7

Proposed Method 72.4
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Figure 3.3. θ1 and θ2 for the Ketchup Bottle [49].

Figure 3.4. Sample Target Object Detections on MHRI Data [49].
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4. OBJECT LEARNING

4.1. Introduction

The final stage of the proposed approach is classifying or learning the pointed objects

as necessary. After target object detection, the robot needs to either recognize the object

as belonging to a previously learned class or to use the object for learning if it can not

be classified. When the target object is not recognized, we assume that the robot can get

multiple views of the object. This can be achieved either through having the human can

show the object from different angles or through the robot actively exploring the object

from different angles. In this way, the robot will have the knowledge of which objects are

from the same class during learning. Thus, this problem can be seen as a semi-supervised

incremental learning problem. This is a challenging problem as robot needs to learn an

accurate representation of a class from a small amount of data.

This is done in three steps. First, the robot encodes the respective point cloud data using

deformed sphere approximation representation [3]. Then, it associates this descriptor with

the knowledge existing in its objects’ memory. The objects’ memory has a tree organized

structure in which terminal nodes correspond to distinct object classes. In this structure, each

parent node is associated with a set of classifiers to assign a new input to one of the child

nodes. The robot conducts a top-down search in its objects’ memory in order to determine

whether it can recognize the target object or not. This is accomplished through traversing

down the memory hierarchy and using the classifiers associated with the reached node to

decide on which child node to move to. This is repeated until either classifiers’ responses are

all low or or a terminal node is reached. The former case implies no recognition and the robot

expects human to show the object from different viewpoints as to form its knowledge of this

object. It then adds this to its existing objects’ memory using an incremental hierarchical

clustering method.
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The outline of this chapter is as follows: Related literature is discussed in Section 4.2.

The proposed approach is presented in Section 4.3. Experimental results are then reported in

Section 4.4.

4.2. Related Literature

In the literature, incremental learning of objects’ classes has been studied extensively.

Most work consider learning without any human interaction. Some of these work only al-

low the learned class models to be updated and hence do not enable the learning of new

classes [53, 54]. As this is rather restrictive, a plethora of approaches that enable continual

learning has been developed. These are categorized depending whether supervision (labels)

is required or not and whether the method is offline or online.

As an example, with supervised offline learning methods, CNNs are retrained in a fast

and efficient way when new training data appears [55] or new nodes are added to the output

layer of the architecture for new classes [56]. The problem of having unbalanced proportion

of learning examples per class is addressed by introducing a regularized least squares method

[57]. The supervision is done through checking the correctness of recognition decisions by

a human operator with incorrect decisions being fed back to the Hough forest detector for

updating [54]. Alternatively, unsupervised incremental approaches to learning have also

been developed. As explained, these methods are advantageous as they do not require label

to be externally provided. For example, a probabilistic decision making strategy is proposed

for classifying objects into robot body part, human body part or manipulable objects [58].

There are also work that use incremental learning and propose end-to-end systems in

the context of objects’ learning through pointing gestures. For example, the robot recognizes

or learns the objects pointed and labeled by a human based the similarity of their spin image

descriptors [59]. However, its application requires the usage of skeleton tracking library

for finding the 3D pointing direction. Furthermore, target objects need to be labeled by the

human operator and hence requires supervision. In [50], pointing direction is found without

tracking.
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However the estimation is done in 2D which can possibly lead to wrong target detection and

thus low recognition accuracy. Hence, both learning and recognition are done with small

variations in objects’ appearances.

4.3. Method

The proposed approach consists of the following steps:

• First, the target point cloud object is encoded internally using the Deformable Sphere

Approximation (DSA) Descriptor [3].

• Next, it is associated with the existing objects’ memory.

• In case of no association, the robot learns the pointed object through getting Ns differ-

ent views of the object as pointed by the human and then adding the resulting knowl-

edge to its objects’ memory.

4.3.1. Deformable Sphere Approximation Descriptor

The DSA descriptor is based on the approximation of double trigonometric Fourier

series (DTFS) representation of the point cloud data. The first step is to encode the original

object cloudDo ⊂ R3 data via deforming a sphere with radius ρ0. Following, the coefficients

of the double trigonometric series representation of the deformed sphere are found. The DSA

descriptor is obtained from the rotational invariants of these coefficients [60]. In the rest of

this section, the descriptor is briefly explained for completeness. For details, the interested

reader is kindly referred to [3].

4.3.2. Deformed Sphere Mapping

The first step is to map the object cloud data is mapped to a deformed sphere. For this,

the object’s point cloud dataDo is the transformed so that its origin is at µo - the mean ofDo.

The transformed data is then used to deform a 2-sphere S2 with radius ρ0.
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For each point p ∈ Do, define its spherical coordinates as f(p) = [f1(p) f2(p)]
T with

f1(p) ∈ [−π, π] and f2(p) ∈ [−π
2
, π
2
] being pan and tilt angles respectively and r(p) is the

radial distance. The deformation map ρo : S2 → R is defined as follows:

ρo(f) =

 ρ0 + r(p) ∃p ∈ D′o s.t. f(p) = f

ρ0.
(4.1)

The deformed sphere is then approximated using double trigonometric Fourier series:

ρo(f) =

H1−1∑
h1=0

H2−1∑
h2=0

λh1h2zoh1h2(c)eh1h2(f) (4.2)

where H1 and H2 denotes the number of harmonics and the parameters λh1h2 are calculated

as

λh1h2 =


0.25 if h1 = 0, h2 = 0

0.5 if h1 > 0, h2 = 0 or h1 = 0, h2 > 0

1 if h1 > 0, h2 > 0.

(4.3)

For each (h1, h2) pair, eh1h2(f) ∈ R4 is of the form :

eh1h2(f) =


cos(h1f1)cos(2h2f2)

sin(h1f1)cos(2h2f2)

cos(h1f1)sin(2h2f2)

sin(h1f1)sin(2h2f2)

 . (4.4)

The vector zoh1h2 ∈ R4 is defined as:

zoh1h2 =
2

π2



∫ π
−π

∫ π
2

−π
2
ρo(f)cos(h1f1)cos(2h2f2)df1df2∫ π

−π

∫ π
2

−π
2
ρo(f)sin(h1f1)cos(2h2f2)df1df2∫ π

−π

∫ π
2

−π
2
ρo(f)cos(h1f1)sin(2h2f2)df1df2∫ π

−π

∫ π
2

−π
2
ρo(f)sin(h1f1)sin(2h2f2)df1df2

 . (4.5)
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Finally, the DSA descriptor Io ∈ RH1H2 is constructed as

Ioh1h2 = zToh1h2zoh1h2 . (4.6)

4.3.3. Recognition & Objects’ Memory

The robot first attempts to recognize the target object. This is done via forming its DSA

descriptor and then relating it with its objects’ memory. The robot retains its knowledge of

objects’ classes in its objects’ memory. The objects’ memory is an hierarchically organized

structure with terminal nodes corresponding to distinct objects. All nodes except the leaf

nodes are associated with a set of support vector machine (SVM) classifiers pertaining the

node’s children nodes. As such, the objects’ memory enables the robot to associate the

incoming objects data with its existing knowledge.

Memory association is done by starting at the root note and traversing down the hier-

archy. At each node N at each level, the robot uses the SVM classifiers associated with that

node as to decide which node to proceed to at the next level. It chooses to move to the node

N ′ ∈ C(N ) among the children C(N ) nodes of nodeN with the highest classifier response

d(N ′) - pending that its classification response is sufficiently high:

N ′ ∈ arg max
N c∈C(N )

d(N c) d(N ) ≥ τr. (4.7)

This is repeated until either a terminal node is reached or the classifier responses of all

children nodes are low. In the latter case, the object is deemed to be ‘unrecognized’. In that

case, the robot goes into learning mode in order to learn the target object.

4.3.4. Object Learning

In learning, the robot then assumes that the human will point to Ns different views

of the same object. As such, its learning set will consist of a set of object’s appearances.
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Figure 4.1. Some Objects Learned by Pointing Gestures.

Figure 4.2. Objects’ Memory Hierarchy After Learning 5 Objects.

The robot’s operation is then switched to the recognition mode. In this mode, the robot

views a scene in which a human points to an object and makes a recognition decision.
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This classification is correct if the pointed object is both determined and classified

correctly. Recognition performance is evaluated considering both one-class and subclasses

approaches. Prior to recognition performance tests, learning validation is done using learning

samples. The results are shown in Table 4.2 for both approaches. The object classes shown

by Oi represent following classes in order: Blue chair, chair, trash can, pipe, demijohn.

Following, recognition performance in new scenes is evaluated. The results are pre-

sented in Table 4.3. It is observed that average accuracy is around 44% with no subclasses

while it is slightly lower (39.8%) with subclasses. In both, worst performance occurs with

objects O1 and O2. We attribute this to two reasons: First, their appearances change com-

pletely when looked from different perspectives compared to other objects in the data set.

Hence, the learning set needs to be larger. Secondly, the segmentation of these objects tend

to problematic. For example, the upper part of the blue chair is sometimes found as a dif-

ferent object as seen in Figure 4.3. As a result, learning is harder for blue chair objects. In

general, classification without subclasses is observed to perform better that with subclasses.

This is not surprising since we are dealing with a small amount of data. As we divide classes

into sub-categories, number of instances in each cluster get smaller, which makes learning

task harder. If we had more data for each object, subclasses approach would be expected to

have better performance. The success of the algorithm on objects likeO3 and O4 can could

be explained by their simpler geometry with appearances not changing much when looked

from different perspectives. Hence a small number of samples suffices for reliable learning.

Finally, it should be noted that while overall performance around 40% needs to be improved,

it is still much better than around 10% average accuracy reported in [50].

In order to increase number of test samples, we used a testing method similar to k-fold

cross validation. Samples of the each class in the test data is split into 2 data sets. In total we

have 3 sets, 2 sets coming from original test data and our original training data. In each of

the 3-fold cross validation test phases, one of the 3 sets are used to train the robot while the

remaining two is used for testing. Average results of 3 testing phases are give in Table 4.1.
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Overall, the success of the one-class approach is close to the success of the algorithm when

original training set is used. However, overall success of the subclasses approach increased

from 39.8% to 47.4%. This might be related to the fact that the data distributions of the 2

sets coming from original test set are similar.

Table 4.1. 3-fold cross validation average results.

No subclasses Subclasses

Class Accuracy(%) Accuracy

(%)

O1 39.6 36.8

O2 26.1 19.2

O3 61.8 60.8

O4 72.7 93.2

O5 29.3 26.9

Overall 45.9 47.4

Table 4.2. Learning validation.

No subclasses Subclasses

Class # Scenes # Correct

Recognitions

Accuracy(%) # Correct

Recognitions

Accuracy

(%)

O1 24 24 100 20 83.3

O2 26 25 96.2 22 84.6

O3 24 24 100 23 95.6

O4 21 21 100 21 100

O5 18 8 100 8 100

Finally, in order to isolate the performance of correct target detection with that recog-

nition, we also consider recognition performance with only correctly found target objects.

The results are shown in Table 4.4. The performance with O5 object is observed to increase

significantly.
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Table 4.3. Recognition performance.

No subclasses Subclasses

O1 45 10 22.2 6 13.3

O2 46 7 15.2 4 8.7

O3 35 17 48.5 22 62.9

O4 38 34 89.8 34 89.8

O5 23 8 34.8 8 34.8

Unknown 25 10 40.0 13 52.0

Overall 206 91 44.1 82 39.8

Figure 4.3. Under-segmentation of Blue Chair.

Table 4.4. Test data results when pointed object is found correctly.

No subclasses Subclasses

Class # Scenes # Correct

Recognitions

Accuracy(%) # Correct

Recognitions

Accuracy

(%)

O1 40 10 25 6 15

O2 40 7 17.5 4 10

O3 28 22 78.9 17 60.1

O4 34 34 100 34 100

O5 11 8 72.3 8 72.3

Unknown 19 10 52.6 13 68.4

Overall 172 91 52.9 82 47.6
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5. CONCLUSION

This thesis provides an end-to-end approach to robot learning through human-robot

interaction. Human pointing gestures are chosen as a means to communicate with the robot

as they are naturally used between humans as well. The proposed approach consists of three

stages: 3D pointing direction estimation, target object detection and object learning. The 3D

pointing direction estimation is accomplished using a novel approach. Differing from previ-

ous work, we do not require any special background or the detectability of specific human

parts. Rather, the only assumption is that the person performing the pointing gesture should

be withing the coverage of the RGB-D sensor. Experimental results that are conducted with

a mobile robot endowed with a RGB-D camera in a wide-ranging scenarios demonstrate that

exhibits both accuracy and robustness to variations in the hand proximity and pointing di-

rections. As part of this work, we also release a new RGB-D data set of with precise 3D

pointing direction annotations that can be used as a benchmark. As part of pointing direction

estimation, a pointing gesture classifier is trained. It classification accuracy is evaluated on

a new data set of pointing gestures. For target object detection, a score-based approach is

proposed - similar to related work. However, differing from them, the score depends on a

variety of different criteria. Experiments on a benchmark data set show that the accuracy

of the proposed method is comparatively higher than those of previous work. Finally, the

robot either recognizes or learns the pointed object as necessary. This is done in three steps.

First, the robot encodes the respective point cloud data using deformed sphere approximation

representation. Then, it associates this descriptor with the knowledge existing in its objects’

memory through traversing down the memory hierarchy and using the classifiers associated

with the reached node to decide on which child node to move to. This is repeated until either

classifiers’ responses are all low or or a terminal node is reached. The former case implies

no recognition and the robot expects human to show the object from different viewpoints as

to form its knowledge of this object. It then adds this to its existing objects’ memory using

an incremental hierarchical clustering method.
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For future work, information from successive frames can be utilized to improve the

pointing direction detection accuracy through temporal processing. Also, the pointing di-

rection data set can be expanded accordingly. The pointing gesture classification network

is successful in learning the given data but our training set does not fully cover real-world

scenarios. New data would need to be added to training set to include more scenarios. Ob-

ject learning results need to be improved for objects whose view change substantially when

perspective changes. To do so, sub-categorical approach should be used. Robot will need to

acquire more data from the object for a robust learning in the sub-categorical approach. This

could be achieved by defining a second object from the same class. That is, algorithm could

be improved so that robot scans two objects pointed by human to learn a class. Another

extension would be addition of other human related cues - such as natural language labels

during learning. Right now, the robot recognizes an object, but does not have a label or name

for it. If the robot is made to recognize human language, then communication and learning

can both become easier.
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• PCL library [65]

• cv bridge with OpenCV 4

• ALGLIB [66]

A.3. Project Software

The header (*.h) files associated with this project are as follows:

• cloudmerging.h

• clusteringClasses.h

• detection.h

• ground segmentation.h

• lidar seg.h

• object finder.h

• RGB HSV.h

• util.h

The code (*.cpp) files are as follows:

• cloudmerging.cpp

• clusteringClasses.cpp

• detection.cpp

• ground segmentation.cpp

• lidar seg.cpp

• main.cpp

• object finder.cpp

• RGB HSV.cpp

• util.cpp
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A.4. Usage

The associated processing can be invoked by executing the following commands on

different terminals in order:

• roslaunch freenect launch freenect.launch

• rosrun object finder find object



55

APPENDIX B: Permissions

Permission to use the images from MHRI data set [49] is given below in Figure B.1.

Figure B.1. MHRI data set permission




