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ABSTRACT

AUTOMATED ELECTRICAL MOTOR QUALITY
CONTROL VIA MACHINE LEARNING BASED
VIBRATION ANALYSIS

Industry 4.0 aims at the digital transformation to increase the reliability and
capacity of production. With the integration of Sensor Analytics (SA) and Artificial
Intelligence (AI) to manufacturing, the design of automated and optimized processes
becomes more accessible. One of the areas where Al tools and SA are used is quality
control tests of products. The main target of this thesis is to automate the quality
control step based on vibration analysis by finding mechanical failures of Brushless
Direct Current (BLDC) motors as an example of an Al-powered sensor analytics appli-
cation. In addition, the feasibility and assessment of popular machine learning models
are investigated. Two architectures are proposed to classify motors’ quality. These
methods are called sAIQC, Single-Stage Al-Powered Quality Control, and dAIQC,
Double-Stage Al-Powered Quality Control. In the first method, motors are classified
into healthy (pass) or faulty (fail), regardless of the data quality of the signal. The
second proposed method is composed of two stages. The first stage makes a binary
classification based on data quality, and then, the separated groups are classified at two
independent classifiers in the second stage as pass or fail. Unweighted accuracy (UA),
defined as the average accuracy of each class, is used as a performance metric of the
classifiers. In experiments with the dataset containing 671 samples, the performance
of SAIQC method was 84.9%; this performance with the dAIQC method was increased
t0 92.9%. Furthermore, in experiments using big data set consisting of 25580 vibration
recordings and without a data quality label, the performance of the SAIQC method is
73.5% percent. In contrast, the performance of the dAIQC method is 89.5% percent.
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OZET

MAKINE OGRENIMINE DAYALI TITRESIM ANALIZI
ILE ELEKTRIK MOTORU OTOMATIK KALITE
KONTROLU

Endiistri 4.0 tiretimin giivenilirligini ve kapasitesini artirmak icin dijital dontisimi
hedeflemektedir. Sensor Analitigi (SA) ve Yapay Zekanin (Al) iiretime entegrasy-
onu ile otomatiklestirilmis ve optimize edilmis siireclerin tasarimi daha erisilebilir hale
gelmektedir. Al araclarinin ve SA’nin kullanildigi alanlardan biri dirtinlerin kalite kon-
trol testleridir. Bu tezin ana hedefi, Al destekli bir sensor analitigi uygulamasi ornegi
olarak Fir¢asiz DC motorlarin (BLDC) mekanik arizalarimi bularak titresim analizine
dayal kalite kontrol adimim otomatiklestirmektir. Ayrica popiiler makine 6grenimi
modellerinin uygulanabilirligi ve degerlendirilmesi arastirilmigtir. Motorlarin kalitesini
siniflandirmak i¢in iki mimari onerilmigtir. Bu yontemler sAIQC, Tek Asamali Ya-
pay Zeka Destekli Kalite Kontrol ve dAIQC, Cift Asamali Yapay Zeka Destekli Kalite
Kontrol olarak adlandirilir. Ik yontemde motorlar, sinyalin veri kalitesinden bagimsiz
olarak saghkli(gecti) veya hatali(kald1) olarak simflandirilir. Onerilen ikinci yontem iki
asamadan olugur. Ilk agsamada veri kalitesine gore ikili bir smflandirma yapilir ve daha
sonra ayrilan gruplar, ikinci agamada gecti veya kaldi olarak iki bagimsiz siniflandirici
kullanilarak simiflandirilir. Her sinifin ortalama dogrulugu olarak tanimlanan agirliksiz
dogruluk, smiflandiricilarin performans metrigi olarak kullanilir. 671 6rnek igeren
veri seti ile yapilan deneylerde, sAIQC methodunun performans: %84,9 iken; dAIQC
methodu ile bu performans %92,9’a yiikseltilmistir. Ayrica 25580 titresim kaydindan
olugan ve veri kalite etiketi olmayan biiyiik veri seti kullanilarak yapilan deneylerde
SAIQC methodunun performans: 73,5%’dir. Buna karsihk, dAIQC methodunun per-
formans1 89,5% dir.
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1. INTRODUCTION

The rapid advancement of technology has increased the need for modern indus-
trial systems and facilities. This need led to the beginning of the Industry 4.0 era,
called the fourth industrial revolution. It centers around the evolution and variation
in manufacturing systems. Industry 4.0 aims at developing intelligent manufacturing
systems by adapting technology to production sites and factories. The growth of In-
dustry 4.0 is supported by several new technologies, including Cyber-Physical Systems
(CPS), Internet of Things (IoT), Big Data Analytics (BDA), and Cloud Computing
(CC). These concepts have some common goals, such as optimizing different manu-
facturing resources and intelligent decision-making in manufacturing systems [1]. CPS
is the technology that aims to associate software with physical components. Its aims
for a developed version of coordination with physical objects and computational ele-
ments [2]. Furthermore, IoT enables any physical object that includes sensors or has
software that makes it possible to connect and transfer data through the internet. IoT
and related technologies empowered the human-to-machine, machine-to-machine, and
human-to-human connections using small-sized sensors and wireless devices connected
to the internet. As a result, real-time data collection systems and the traceability
of the manufacturing processes could be realized. At the same time, these large and
complex data create Big Data. The developed effective analytical methods called BDA
provide aid to many organizations as they improve the decision-making quality and
operational efficiency. Enabling traceability and real-time data collection with the
help of intelligent sensors, developed software utilizing Machine Learning (ML) driven
decision-making, and cloud storage systems pave the way for real-time smart manufac-
turing [3]. The smart manufacturing concept impacts and causes to change many the

manufacturing processes such as quality control, maintenance, logistics, and so on.

Quality 4.0 is an emerging concept and a branch of Industry 4.0. It scopes the
context for manufacturers to consider when introducing these new technologies. It
additionally explains and categorizes the technologies and practices that Industry 4.0

contains and uses them to develop quality standards in the Industry. The key tech-



nologies of Industry 4.0 improve quality management in many ways as they enable
digitalization and thus smart production. With the help of data collection and pro-
cessing, it is now possible to predict and prevent issues related to the quality of the
overall process and monitor the maintenance needs. Conventionally, quality control
was dependent on sampling plans and inspection. However, after realizing Industry
4.0, quality control is realized by implementing BDA, CPS, and other technologies
aimed at automation in manufacturing sites. The more improved technologies help
producers catch any defects or delays earlier and take action respectively and increase

the reliability of the overall manufacturing process.

Quality 4.0 includes predictive quality analysis, machine learning-powered qual-
ity control. The predictive quality analysis provides manufacturers with forecasting
the quality of the products. It begins with the BDA; collected data is interpreted with
statistical algorithms or machine learning to get insightful information. This informa-
tion includes anomalies and critical issues in operation and predicts future effects and
outcomes. These can be addressed before any quality issues occur, and thus overall
quality can be increased [4]. The new generation of quality control systems powered
by machine learning and deep learning methods provides the manufacturer with more

reliable and generalized test systems without a human expert.

The MIL-based quality control abolished limitations such as operator dependency,
limited samples, limited calculation power, and knowledge expertise. ML algorithms
can make decisions based on collected data, and they have learning capabilities based
on mimicking the operator’s decision-making process. And thus, it can advance human-
level intelligence using the dataset. These intelligent systems took most of the work
performed by operators. Most of the tasks are linked to CPS and Al based systems, and
as a result, human errors were eliminated [5]. Thus, the product’s quality perception
increases from the customer side. With this perspective, Arcelik tries to use machine
learning supported systems more widely to make the production process more efficient.
It attaches importance to increasing the brand’s quality perception of the customers and
maintaining its competitive power by making the production stages smarter. Therefore,

it aims to make human-independent and more reliable tests with the help of machine



learning algorithms. This context seeks to fully automate the vibration and acoustic
quality control tests of BLDC motors. Thus, this dissertation covers the vibration and
acoustic quality control test of BLDC produced in the Argelik Electric Motors factory

independent from human beings with modern machine learning techniques.

1.1. Current Quality Control System

Argelik produces BLDC motors for washing machines. The drum of the washing
machine is where the clothes are washed, rinsed, and dried. BLDC motors are used to
turn drums while clothes are washed. After the production of the motor, a set of tests
are performed to be sure of the engine’s performance. Vibration and acoustic control
is one of the test methods currently used at the Arcelik plant, and passed motors are
lastly controlled by operator check to make the final decision based on its quality. The

detection of mechanical faults of the engine is the aim of this quality control step.

The existing functional vibration and acoustic test system consists of two parallel
steps: automatic testing and listening test, a manual inspection stage by the operator.
Due to the automated system’s lack of accuracy and analytic power, listening by a
human expert is required. The average proportion of faulty motors only detected by
the operator at the vibration sound control point is 40%. The motor model investigated
in this study covers nearly 50% of the annual output. The several production challenges
have also been solved. The amount of motors returned from Argelik Washing Machine
Factory, a domestic customer and end-user, is extremely low. On the other hand,
the human-dependent decision-making system violates Industry 4.0 standards. At the
same time, the lack of a quantitative evaluation methodology, the age-related changes
in human hearing ability and range, the fact that judgments concerning motor health
differ from person to person, and the absence of specialized staff make it difficult for

reliability.

The automated system is currently being used to determine each motor’s spatial
power spectrum energies of different frequency ranges by running it for a short period of

time, almost seven seconds. When the engine reaches a steady-state, vibration analysis



starts. After that, the projected energy values are compared to the R&D vibration
team’s established thresholds. In parallel, the operator mounts an accelerometer to
the motor to start above mentioned vibration analysis and listens to the produced
sound during the automatic test period in a limited noise isolated cabinet. Operators
have the authority to overturn the automated outcomes of vibration analysis, giving
them the final decision about the quality of the motor. For example, based on the
unpleasant noises detected during the test, the result of the automated system that
initially reads pass can be overridden as fail. A fail judgment being reversed to pass
by a human operator is also a possibility. The existing system only offers a limited

amount of information on the root cause of failures.

Five evaluation criteria are used in the current end-of-line vibration analysis sys-
tem, including Root-Mean-Square (RMS) energies for four frequency bands and count-
ing local maxima peaks within the given frequency range. The RMS energy between
two frequencies is computed by generating the Fast Fourier Transfrom (FFT) of raw
vibration signals and calculating the RMS of a specific frequency interval, as to be

discussed in detail in Section 4.2.

Based on knowledge gained through experience, the responsible R&D department
of Arcelik has established relevant frequency ranges. The first range is 50 to 200 Hz,
which includes the signatures of imbalance and cage faults as discussed in Section 4.2.
The second estimated value is 50 Hz to 1000 Hz, consisting of all additional bearing
fault frequencies. Third, calculated by multiplying the number of rotor magnets, which
is 8, with central frequency, 50 Hz to 1575 Hz, is another interval representing rotor
dismounting or magnet failures. The fourth and final value-based RMS computation
is 50 Hz to 2000 Hz. The number of peaks between 2000 and 6400 Hz employed for
high vibration motor detection is the last criterion. The fourth parameter’s threshold

is set to a pretty high value, and it may be claimed that it is rarely used.



1.2. Problem Statement

A fully automatic test bench capable of performing noise and vibration quality
control tests on the entire production would be desirable for motor manufacturers.
However, such a station is challenging to deploy because of the significant background
noise and vibration generated by conveyors and other moving machinery along the line,
and the production cycle is another limitation for signal acquisition and processing. For
BLDC motors, noise and vibration measurements are directly connected; but for others,

they are simply complementary.

The primary goal of this thesis is to develop a machine-learning-driven quality
control systems of BLDC motors that incorporates all of the useful features gleaned
from domain-expert and academic literature knowledge. Furthermore, the other ob-
jectives of this study are to make a feasibility study of machine learning techniques
in this field and analyze the comparison of their performance. For this purpose, an
installed test bench is used to automatically gather vibration and current signals from
the motors at the end of the production line. The test bench is low-cost and not iso-
lated from ambient noise. Therefore, preprocessing methods have been developed to
handle difficulties affecting the quality of the received data. At the same time, incon-
veniences are observed while automatically mounting the accelerometer into the motor
body. Since the improper mounting problem can not be eliminated by preprocessing,

a double-stage method has been studied to tackle this problem.

The rest of the thesis is summarized as follows: Chapter 2 introduces the construc-
tion of BLDC motors and the possible defects of engines. Then, the fault detection,
diagnosis, and classification studies in this field are reviewed. The machine learning
models and model evaluation techniques utilized are described. Moreover, the data
visualization tool is summarized. In Chapter 3, data collection infrastructure and en-
countered challenges, the procedures for data exclusion, and preprocessing techniques
on vibration signals are explained. The extracted features and created datasets are
given in detail. Proposed Al-powered quality control methods are described in Chap-

ter 4. Experiments are conducted based on these datasets provided. In addition, the



results and discussions of the experiments are discussed in Chapter 4. The final dis-
cussion is summarized in Chapter 5. Main conclusions and contributions are given in

Chapter 6.



2. BACKGROUND

The brief information about the dynamic parts of the BLDC motor and their
possible mechanical faults and the possible reasons during their production are intro-
duced in Section 2.1. State-of-the-art baseline methods for machinery diagnostic are
described in Section 2.3. The machine learning methods and evaluation techniques are

summarized in Section 2.4. The visualization method is described in Section 2.5.

2.1. Brushless DC Motors

Brushless and brushed DC motors are used to transfer electrical energy into me-
chanical energy. Their mechanical structural are similar. The BLDC motor is compa-
rable to a BDC motor, but unlike a BDC Motor, a BLDC uses electronic commutation

rather than brushes for commutation.

Brushes deliver power to the rotor in traditional BDC motors as they turn in a
fixed magnetic field. Brushed motors have permanent magnets in the stator and coils
on the main shaft. Brushes are used to apply electric current to the coils on the rotor
shaft. The magnetic field formed in the coils reacts to the applied electric current
so that it always coincides with the magnetic field of the magnets, moving the shaft.
The voltage between its two terminals is adjusted to control the motor’s speed. It is

required to reverse the current regularly to sustain rotation.

Electronic commutation combined is employed in BLDC motors, which eliminates
the need for mechanical brushes. In contrast to a BDC motor, the permanent magnets
are on the rotor, and the coils are on the stator. As current runs through the stator
coils, the poles on the rotor rotate in proportion to the electromagnetic poles formed
within the stator. While the permanent magnet located in the rotor rotates, changes
in the magnetic fields and generate rotation. The amount and direction of the current

entering the coils located on the stator to regulate the spin can control the rotation.



BLDC motors are driven by DC voltage by switching one stator windings to
the other, and current flows through one of the other three stator windings. Thus it

generates alternating trapezoidal or quasi-square signal forms.

Brushless DC motors were developed to eliminate mechanical friction, sparks,
and electrical faults caused by brushes and improve motor reliability [6]. Moreover,
they offer benefits such as high efficiency, high torque, and ease of maintenance, low
noise, and high speed [7]. BLDC motors are used commonly due to their lower energy
consumption and maintenance requirements: automotive, household appliances, white
goods, industrial controls, automation, and so on [7]. They are used for white household
appliances that required high-speed control and dynamic response to varying loads,

such as washing machines and dryers.

2.1.1. Construction

BLDC motors are consisting of two critical parts. They are stator and rotor. The
motor’s operation is accomplished by pushing and pulling forces that occur as magnetic
forces between the rotor and the stator vary. Rolling element bearings help to transfer
loads from the shaft to the motor frame. To provide non-stop rotation of the rotor,
the sequence of energized windings of the stator is critical. To know rotor position and
determine the energizing series of the windings, sensors or sensorless detection methods

are used. The main parts are given in following figure! .

Arcelik, Istanbul, TR
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Figure 2.1. The BLDC motor and its components are studied within the scope of this
thesis and produced by Arcelik Electric Motors.

e Stator: The stator is located in the stationary electrical component. The stator
generates the revolving magnetic field by the windings. A BLDC motor’s stator
comprises stacked steel laminations with windings positioned in slots cut axially
along the inner periphery [7]. Most of the BLDC motors are three-phase. Each
phase switches on in turn for the rotor’s rotation.

e Rotor: The rotor is the motor’s rotating component. The rotor is comprised of
permanent magnets with two to eight pole pairs facing the stator poles. The
rotor is positioned on the motor’s shaft and is housed within the stator. Rotor
magnet cross-sections come in a variety of shapes and sizes. Rotor magnet cross-
sections come in a variety of shapes and sizes [8]. In the following figure depicts

cross-sections of different arrangements of magnets.
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Figure 2.2. The cross-section of rotor magnets.

e Bearing: Rolling element bearings are used to stabilize the most reliable working
condition of the motor with low noise, low erosion risk. The sliding motion re-
places the rolling motion by using bearings. In this way, friction is significantly
reduced, enabling high-speed rotation with minimal power loss. The most used
roller types in bearing are ball, cylindrical, tapered, spherical [9]. Ball bearings
are a common choice in electric motors. They have low friction and can operate
at high speeds with quiet running. They are appropriate for both locating and
non-locating positions since they can carry radial, axial, and combination loads.
Cylindrical roller bearings are used to meet high load capacity where heavy ra-
dial loads prevail, such as belts-driven motors. Due to the high load-carrying
capability of spherical roller bearings, they are preferred in large electric motors.
Tapered roller bearings can support both radial and axial forces due to their as-
sembly. It has a cup and cone arrangement. The outer ring makes up the cup,
while the inner ring, rollers, and cage make up the cone assembly. This bear-
ing design can handle multiple loads and has reduced friction while motors are

running.

2.2. Possible Mechanical Defects & Their Vibration Signatures

Any defects on the engine’s dynamic rolling and spinning parts as abovementioned
are the primary abnormal vibration and noises generators. The reasons for mechanical
failures in BLDC motors’ production can be that they are not perfectly aligned, im-
proper installation, material fatigues, insufficient lubrication, bearing & shaft currents.

The commonly occurred mechanical defects are listed below:
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e Eccentricity: The center of the rotor should be aligned the same as the stator
geometrical center [10]. If an uneven air gap between the rotor and the stator
occurs, the motor begins to wobble during running. Stator ovality, unbalanced
bearing assembly on the rotor shaft, or rotor and stator mounting can be causes
of this defect. Furthermore, these defects cause current leakages flowing through
the stator windings, and the motors are heated [11]. Rotor misaligment and
unbalance problems are counted in this category.

e Bearing Faults: Flaking, pitting, spalling or corrosion, brinelling defects can occur
as material fatigues of the bearing. These faults create detectable vibrations and
increased noise levels. Moreover, these damages are caused by current leakages

to bearing surfaces [11].

Vibration monitoring indicates different frequencies of mechanical vibrations that cor-
respond to distinct sources or failures in the machine. Even if all rotational components
of the motor are free of flaws and correctly aligned, vibration is still generated. Any
defect in the parts causes the vibration pattern to shift. If any rotational component
has a defect or fault, impulses will be created periodically. When there is no fault,
the rotational elements vibrate at their resonance frequency; however, when there is a
fault, the vibration begins to demonstrate various frequencies as the rolling elements

pass over it.

The extracted features from the vibration signal can serve as indicators of ap-
proaching failure. For example, the temporal and spectral characteristics of motors can
define their health condition. The calculated features are explained in Section 2.2.1

and Section 2.2.2.
2.2.1. Temporal Features
Defective rotational components in the motor can be detected using root-mean-

square (RMS), kurtosis, number of peaks, or amplitude of peaks of the vibration signal.

Other possible fault indicators are elaborated as follows [12].
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e The RMS indicates the amount of vibration energy and represents the overall

vibration level. It is the square root of the arithmetic mean of the squares of the

values and it is can be written as

(2.1)

where x is sample data with n observation sample.
e The variance is a metric for determining how variable something is. It corresponds
to how far the signal deviates from its mean value. It displays the data set’s spread

for the signal. 02 can be obtained as

o = %Z(‘Tl —7)?, (2.2)

where T is the mean of sample data.
e Shock is detected by looking at the peak amplitude of the vibration signal (PVT)

and it can be found as
PVT = max(|z;]). (2.3)

e A localized fault causes the short-duration bursts to significantly affect the peak
level but a negligible impact on the RMS level [13]. The crest factor is used to
define the amount of influence of the shock across the present signal and to find
harmonic distortion of the signal. It can only apply on steady signals. It can be

calculated by using PV'T" and RM S values of a vibration signal as follows

PVT  max(|a;|)

RMS n
PR
i=1

(2.4)

S=
SN

e Kurtosis is a statistical parameter that is used to define a signal’s characteristics.
Kurtosis determines whether the data are heavy-tailed or light-tailed in compar-

ison to a normal distribution. The high kurtosis means that a high proportion of
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data is outliers and low kurtosis tend to have lack of outliers. It quantifies the

frequency of occurrences of significant peaks in a signal and it can be obtained as

== 3 (2.5)

If the peaks are increasing fastly, it means that the product began to fail. It is
used to determine the large peak accelerations into the random vibration signal.

The clearance factor can be obtained as

PVT

)

It has high values for healthy bearings and diminishes defective balls, defective
outer races, and defective inner races.

The impulse factor is used to determine how much impact is generated by the
bearing failure. It can be ontained with division of the maximum absolute value
by the mean of absolute value. It is computed as

vr (2.7)

1 n
" > |l
=1

A shape factor is a variable influenced by the shape of an object but is unrelated
to its dimensions [14]. It is obtained as

RELE (2.8)

1 n
;;|$z‘|

The line integral is the sum of absolute differences between successive points and

it is calculated as

n

> |aisr — ). (2.9)

=0
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e Peak-to-peak gives the obtaining the maximum displacement information, and it

can be computed as
max(x;) — min(x;). (2.10)

e Entropy measures the uncertainty and unpredictability associated with a sampled

set of vibration data. The Shanon Entropy can be calculated as

2
&y

Zpilogpia pi= (2.11)
i=0

1=0

e A skewness value indicates how vibrational data deviates from symmetric behav-

ior. It is qualified as

(2.12)

Faults can affect the symmetry of the distribution and thus increase the skewness

level.

When the faults on rotational elements of the motor grow serious, the vibration signal
becomes random, and the defect indicator is hidden [12,15]. Therefore, features in the
time domain may not be adequate to detect the error in some circumstances; that’s

why spectral features are also used, as described in Section 2.2.2.

2.2.2. Spectral Features

FFT based solutions to find defects on mechanical faults are the most common
techniques. Different analysis forms of FFT such as Short Fast Fourier Transform
(STFT), Power Spectrum Density (PSD) are used in health monitoring applications.

The power or RMS values of specific frequencies or frequency bands are used. Some
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particular frequencies to detect bearing faults, unbalance, or misalignment problems
are calculated before in Taylor’s work [16]. Most bearing manufacturers provide these
signature frequencies to their users. Also, many prognostic and diagnostic applications
in this field have widely used these frequencies, such as IFM real-time motor monitoring
system in their VSE series [17]. If the geometry of bearings, the RPM of the motor
fshare is known, the following critical frequencies in Hz can be computed as follows:

N, B
Ball pass frequency inner race(BPFI) = 5 % fshast X (1 + ?d X COS qb) , (2.13a)
d

Ny B
Ball pass frequency outer race(BPFO) = -5 X fshaft X (1 — ?d X COS gb) , (2.13b)
d

sha B
Fundamental train frequency(FTF) = % X (1 - Fd X COS gb) , (2.13¢)
d
Py By ?
Ball pass frequency(BPF) = —— X fopape X |1 — | = X cos¢ , (2.13d)
2B, Py

where N, denotes the number of rotating elements, fgpq ¢ is the motor’s main frequency,
P, is the pitch diameter, B; is the rolling element diameter, and ¢ is the contact
angle [12]. In other words, the unbalance and misalignment faults, for our cases it is

eccentricity, can be observed at the following frequencies in Hz. They are defined as

Unbalance = fspasi, (2.14a)

Misaligment = 2 X fqpa 1, (2.14b)

where fonqp is the rotation frequency of rotor shaft of the engine.
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2.3. State-of-the-Art Machinery Diagnostics

Examination of the literature on quality control systems of BLDC motors reveals
that limited research has been conducted. The reason for this is twofold: The first
is that datasets for these studies are not being shared much yet, and the available
datasets are more suitable for the conduction of long-term, machine diagnosis and ma-
chine condition monitoring-predictive maintenance much more. So the main threads
that have been concentrated in the past and today’s work are fault detection, diag-
nosis, and machine monitoring. The vast of the datasets are created in a controlled
environment, and no study is working with the dataset collected from the production
line in this field. In the studies in the literature, current, vibration, and sound data
have been used commonly. In the vast majority of studies with current signals, the
motor is started after loaded. The proposed methods in the literature about the above-
mentioned topics can be grouped into two. The first group is that the conventional
methods have the formulas obtained from previous studies on the individual failures
of dynamic spinning parts used in the engine. The systems constructed in the light of
these formulas are mainly based on statistical methods for classification or detection.
The second group is machine learning or deep learning-powered methods for machine
diagnostic, prognostics, or fault detection using known features from previous studies

or by learning informative features from raw signals.

Conventional methods can be summarized as follows; they calculate the spectral
or temporal statistical features of collected signals, and then they compared them with
the healthy condition of the engine by a method, which could be distance, index,
ranges, or scores, ie. Concettoni, Cristialli, and Serrafini suggested a quality control
method, even though not a BLDC, but for small DC motors [18]. They proposed a
semi-automatic test bench prototype to collect current, noise, and vibration data on
a small sample of good and faulty motors and develop a data analysis method. They
collected signals while the motor ran at all possible assemble positions. The RMS of
vibration and current signal of the engine and spectral features are calculated for each
100 ms frame. A damage score is computed using extracted features and is compared

with a determined threshold to classify the product as healthy or faulty.
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In mechanical terms, bearing defects lead to the preferentially alternating load
torque. Trajin and colleagues have compared vibration and stator current analysis
to detect faults on the bearing [19]. To do so, on artificially damaged bearings, a
vibration spectrum analysis was proposed to detect and diagnose the faults, and it was
compared to classical techniques of scalar indicators and advanced signal processing
methods. Moreover, it has been reported that the consequences of rotating load torque
oscillations on stator current have been recognized. A stator current spectral analysis-
based automatic detector has been proposed and successfully implemented on localized

faults and bearing damage.

Studies on fault diagnostics, based on vibration analysis, have focused on which
vibrations produce which faults. For example, Agoston [20] provides a good summary
of these results. She identifies the types of vibrations regarding the electrical motors
as motor base vibrations, bearing vibrations, broken rotor bar vibrations, rotor bar
passing frequency vibrations, twice line frequency vibrations, and motor unbalance.

She also suggests detection and classification of the faults using vibration analysis.

Another study on fault classification for rotary machines, Mahalanobis-Taguchi
system [21], a health index mainly used for data classification. The anomalies and faults
in the cooling fan and induction motor were detected using feature data set extracted
from the vibration signal, and the Mahalanobis Distances (MD) were calculated to
determine different health conditions. Normal/healthy rotary machines have low MDs
and are within the defined Mahalanobis Space (MS). Indicating that a fault or incipient
fault has occurred if the MDs are larger and out of the MS. A recent study conducted
by Kudelina focused on the bearing faults that were relatively less investigated in the
literature [11]. They proposed researching bearing faults and diagnosing them. The
most common bearing failures were discussed, along with their causes. This study
proposes using acceleration sensors to detect bearing faults in BLDC motors. The
spectrum can be used to determine the type and stage of development of the damage.
The fundamental vibration frequency component’s amplitude can be used to set a
threshold. They compare the benefits and drawbacks of commonly used diagnostic

techniques such as FFT, STFT, Wavelet Transform.
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Machine learning algorithms are used frequently in recent studies. Glowacz, in
his attempt to introduce a new method for bearings, stator, and rotor fault diagnostic
methods of a single-phase induction motor [22]. The acoustic signals of the induction
motor are used in his study. Five different defect types are analyzed. Differences of
frequency spectra of acoustic signals and finding discriminative frequencies of states
by comparing a threshold were developed and implemented to feature extraction from
acoustic signals. The Nearest Neighbour (NN) classifier was used to perform the clas-
sification step. In another research, Verdugo and colleagues offering a prototype for
an automatic quality control test system for brushed DC motors indicate that four
different quantities are monitored to perform fault diagnosis, namely acoustic noise,
mechanical vibration, voltage, and current [23]. The study utilized a three-step fea-
ture extraction, a dimensional reduction, and a neural network classifier. A dataset

consisting of 66 motors and 92.4 % of the tested motors are predicted correctly.

Li [24] combined a model of Modified Gray Wolf Optimization algorithm (MGWO)
and Support Vector Machine (SVM) to diagnose the fault conditions of the engines by
using collected current signals from BLDC motors. The optimization of the hyper-
parameters of SVM to increase the diagnostic accuracy of the model, MGWO is ap-
plied. The performance of proposed method reaches at least 90 % accuracy for each

different fault types.

Lee [25] used the Hilbert—Huang transform (HHT) to extract the features of four
different fault types of brushless DC motors’ hall position sensor. The features are
selected by using a method based on distance discriminant. After choosing the most
relevant features related to different fault types, a Backpropagation Neural Network
(BPNN) and Linear Discriminant Analysis (LDA) are used as classifiers. The fault

diagnosis system obtained an accuracy rate of 96 %.

Shifat and Hur, in their two studies regarding the condition monitoring of BLDC
motors, revealed important findings [26]. In the first study, predictive maintenance of a
BLDC motor by conducting a thorough analysis of vibration signals that combined sig-

nal processing, statistical characteristics, and machine learning techniques. It is tried
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to find transition states from one operating condition to another. They determined
three operating states of a lifetime of BLDC: healthy, near to failure, and failure. To
properly decompose the signal and locate the states, Ensemble Empirical Mode De-
composition (EEMD) is used. The similarity index is used to select the Intrinsic Mode
Function (IMF). Following this, selected IMF is processed using Continuous Wavelet
Transform (CWT) for improved fault localization. To identify various defect situations,
some motor health statistic features are also extracted. Later, the dimensionality of the
features was decreased using the principal component analysis (PCA) technique and
categorized using k-Nearest Neighbor classification (KNN). They can classify motors
operating conditions with 98 % of accuracy. In their second study [27], they engaged
an artificial neural network to understand fault characteristics of BLDC motors. A
mechanical fault is created by getting a hole in the rotor body, while an electrical fault
is created by shorting two neighboring windings together. A vibration signal is used
to detect the mechanical fault, and the third harmonic motor current is used as an
indicator of electrical fault. Their abovementioned previous study analyzes vibration
signals. The main difference between the two studies the transition point between fail-
ure conditions is determined by the current signal and, an Artificial Neural Network
(ANN) is utilized to categorize various fault features. The ANN model succeeded in
classifying three distinct health conditions: healthy, mechanical failure, and electrical

failure, with 98 percent accuracy.

There are many studies on machine health monitoring with powered deep learn-
ing methods are increased recently. The primary preferred deep learning models are
Auto-encoder (AE), Convolutional Neural Networks (CNN), and Recurrent Neural
Networks (RNN) [28]. Sun [29] proposed to classify induction motor defects, a single
AE-based neural network layer. In another study, Ince suggested a 1-D CNN, which
can merge motors fault detection into a single learning system during extraction and
classification [30]. Xiao and his friends [31] proposed that without any feature engi-
neering, an LSTM (Long Short-Term Memory) neural network is used directly on raw
acceleration data to acquire meaningful representations for classifying the health status
of asynchronous motors. Another fault diagnostic and classification study belongs to

Zimnickas [32]. His study is about identifying stator health conditions and categoriza-
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tion of fault types of the stator of BLDC motors. The spectral entropy of the vibration
signals is calculated. After the standardization of these features, an LSTM model is
trained with both raw vibration signals and extracted features that standardized spec-
tral entropy. He observed that the model’s performance trained with features could

classify all working conditions and faults accurately.

2.4. Machine Learning Models Utilized & Their Evaluations

The fault diagnosis algorithms in literature can be roughly divided into two groups
as mentioned in Section 2.3; rule-based and machine learning-based methods. Rule-
based methods achieve their decision by a predefined set of rules. On the other hand,
machine learning methods work by learning these rules based on given data. ML
methods can be examined in two groups; classical methods and deep learning meth-
ods. Classical machine learning methods conduct the prediction or classification pro-
cess based on extracted features of the input data. Besides, deep learning methods
are commonly trained with raw vibration signal or frequency spectrum rather than a
feature set. This study focuses on machine learning algorithms; the proposed method-
ology is tested and compared with classical and deep machine learning methods. The
machine learning models utilized is described as follows, the methods for evaluating

and optimizing hyper-parameters of these models are summarized in Section 2.4.5

2.4.1. Support Vector Machines

Support Vector Machines (SVM) is one of the fundamental methods in classical
machine learning algorithms. It is a supervised learning method which classifies the
n-dimensional data by (n-1)-dimensional separator. This separator is called a hyper-
plane which divides the learning data into two classes linearly. Finding the optimum
hyperplane is the learning process. A hyperplane can be defined as group of points
satisfying W x + wps = 0. Where Wy is the normal vector to hyperplane and w,
determines the offset of the hyperplane.



21

Optimized
, Hyperplane

Figure 2.3. The hyperplane and support vectors are illustrated. Pink and blue points
represent two classes. The optimum hyperplane can be found by maximizing the

margin so that the distance from the closest sample from each class.

If the samples are linearly separable, the optimum hyperplane can be found by
maximizing the margin so that the distance from the closest sample from each class.
The hyperplane and margin are illustrated in Figure 2.3. In the cases where the data
can not be linearly separable, the kernel trick is applied. The input data is mapped to
a higher dimensional space with a kernel function, and the hyperplane is found in this
space. One common approach for kernel function is the Gaussian radial basis function.
Two hyper-parameters emerge for this kernel function v and C. v determines how far
a single training example affects, and C' is the punishment for the classified training
samples. A high v value will increase the variance of the Gaussian kernel function;
hence the effect of the training sample would expand. On the contrary, a low value
of ~ decreases the impact area of a single training sample. C' acts as a regularization
parameter for SVM. High values of the C' mean lower margins are acceptable. Low

values would yield more smooth decision boundaries.

Effect of large values of ~, it becomes the dominant component and causes over-
fitting. If the v is too low classifier can not grasp the shape of the data. While high
C values will increase the fitting time, lower values lead to more support vector; hence

the prediction time will increase. Thus C' represents a trade-off between fitting.
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2.4.2. Random Forest

Random Forest (RF) is an ensemble machine learning method that is based on
decision trees. Decision trees build a predictive model based on observed data. Al-
though they are very simple and highly effective in representing complex data, they
also suffer from inaccuracy for the unseen data. RF overcomes this problem by an

ensemble of week decision trees.

The underlying idea of the RF is to decide based on the majority of the multiple
simple classifiers. To achieve this goal, RF creates many weak decision trees with
bagging data. The term bagging stands for bootstrapping and aggregating the training
data. Bagging data is constructed by randomly selecting the training samples of the
same size as the training data. One entry in the training data can be selected multiple
times for the bootstrapped data. A new set of data is created for each decision tree.
The bootstrapping method yields a better performance since it decreases the variance
without increasing the bias. Even if a single tree is sensitive to the noise on its training
data, the average of trees will not be if the trees are uncorrelated. To break correlation
between trees, Random Forest selects a random set of features for each tree. In a
typical project, one-third of the training data will not end up in any bootstrapped
data. This set of data is called out-of-bag data ant it is used to cross-validation the

performance of the model.

Selected hyperparameters of the RF are the number of trees, the maximum num-
ber of features to consider split at each node, the maximum depth of a tree, and the
criteria to split a node of a tree. Increasing the number of trees in the forest would cre-
ate a more robust model with less variance at the cost of a longer training time. This
parameter should be selected large enough to represent the feature space effectively

and be computationally feasible.

The number of features to be considered while splitting a node is depended on
how much the data is noise-free. For clean data, a lesser number of features would be

sufficient. If the data is noisy, this value must be set to higher values to increase high-
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quality features during the tree creation. Small values of the number of the features
will decrease the variance of the model at the cost of higher individual tree bias. Higher

values would decrease the bias of the model at the cost of a longer training time.

The depth of a decision tree determines how detailed the model represents the

data. Therefore the larger value of the depth will result in overfitting.

Gini index and entropy are two options available for the criterion on how to split
a node while using the Random Forest for classification. They are the measures for

impurity of a node and calculated as follows:

Gini =1-Y p*(ci), (2.15a)
i=1
Entropy =1 - —p(e;)logap(ci), (2.15b)

i=1

where p(¢;) is probability of the class ¢; in a node. The performance of both metrics

may vary depending on the data.

2.4.3. Extreme Gradient Boosting

Gradient boosting is a machine learning algorithm for regression and classifica-
tion, consisting of an ensemble of week prediction methods. Boosting is a method to
improve the performance of machine learning algorithms by combining series of weak
decisions. In the case of gradient boosting, the weak prediction method is a decision
tree. Different from Random Forest gradient boosting uses the boosting algorithm
rather than the majority led decision. Extreme Gradient Boosting (XGB) is an en-
hanced version of gradient boosting with additional steps and methods. In gradient
boosting, regression trees are used to create a model even if the final goal is classifica-
tion. These trees are built using residuals instead of the actual class of the samples.
The residual represents the error between the predicted and actual values of the sam-

ple. The same strategy is applied for XGBoost. Trees are restricted with a certain
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value of depth. The maximum size of the trees prevents the overfitting of training
data. Trees are combined sequentially step-by-step with a learning rate at each step.
The learning rate regularizes the contribution of each step. Hence more gradually and

steady improvement is achieved.
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Figure 2.4. XGBoost algorithm.

The visual interpretation of the algorithm is given in Figure 2.4. Gradient boost-
ing algorithm uses Mean Square Error (MSE), which is a standard metric for repre-
senting the error of the prediction that can be calculated as

n

MSE = 1 Z (Observed; — Predicted;)?. (2.16)

n <
=1

While splitting the nodes, a split point is selected where the least MSE is obtained.
On the contrary, XGB uses a different method to split the nodes. First similarity score

given is calculated for each node according to the equation:

> iy (B)?
S [Ppx (1= Pp)]+ X (2.17)

Simalarity =
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where R; is the residual which is the difference between actual and predicted values of
the data, Pp;, is the previous probability which is the output of the previous step. While
building the model, it starts with an initial guess. A is the regularization parameter

that classic gradient boosting does not offer. A gain score is calculated as

GAIN = Left—Leafsimilarity + Right—Leafsimilarity - ROOtSimilaritya (218)

for each leaf node. A split point is selected where the gain is highest. XGB provides a
hyperparameter which is denoted as «. The nodes which are gain score is less than ~

is pruned. Hence the overfitting of the model is prevented.

2.4.4. Multilayer Perceptron

Perceptron is an atomic building block of an Artificial Neural Networks (ANN).
ANNs are the computing model inspired by biological neural networks. In this analogy,
a perceptron corresponds to a neuron in a neural network, an activating unit when the
stimulus is higher than a threshold value. Neural networks consist of the connection of
perceptrons. These connections are formed into layers. Multilayer Perceptron (MLP)
consists of at least three layers; input, output, and hidden layers. More complex models
can be achieved by increasing the number of hidden layers or the number of perceptrons

in a hidden layer at the cost of a longer training time.

A perceptron stores a set of values that are called weights. It multiplies the weight
with its inputs and generates an output. If the output is higher than a threshold value,
the node is activated and generates output accordingly. This relation is represented as

f(z) =wo + Wa:g;lput, (2.19)
where ,,,; is the input data of the perceptron, W is the weights, wy is the bias value

that is used to set the threshold. The resulting multiplication is fed to an activation

function to obtain the on/off behavior of a perceptron. Thus using nonlinear activa-
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tion functions, neural networks can be used to solve nontrivial problems. The most
commonly used activation function is Rectified Linear Unit (ReLLU) function. In this
case, the Equation (2.19) becomes

f(z) = max(0,wy + sz;put).

(2.20)

It is widely used because it is easy to compute compared to sigmoid or tanh functions. It
is less likely to occur vanishing gradients; thus, it provides better gradient performance.
On the other hand, being not differentiable at zero and being not zero-centered are the
downsides of the ReLLU. A different type of activation function is used for the output
layers, which is called softmax. The softmax function gives a probability distribution

over predicted classes.

Gradient descent algorithm is an iterative search method that tries to find a
given loss function based on its gradient. It is used to train neural networks. The
loss function is an evaluation of a candidate solution of the model. The cross-entropy
function is the most commonly used method for the classification problem. For binary

classification, the cross-entropy function is given as

n

Co= 3 (ulog(P) + (1 — ylog(1 — ), (2:21)

i=1
where n is the size of the data, y; is the actual label, and the P; is the output of the

softmax function for i** sample.

Gradient descent updates the network weights based on the gradient of loss func-
tion multiplied with a learning rate. A randomly selected subset of the dataset is
preferred to calculate the gradient. The subset is called a batch, and its size is a hy-
perparameter. This method is called Stochastic Gradient Descent (SGD). It eases the
calculation burden of the training and achieves faster iterations. A commonly used
version of SGD is Adam optimizer. It uses the first and second moments of the gradi-

ent to calculate individual learning rates for different parameters. Scanning all of the
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training datasets by the optimizer is called the epoch. Optimizer runs until the error

is under a specified value or the specified number of epochs is achieved.

MLP could also face the overfitting problem like other machine learning algo-
rithms. Dropout is a method to prevent overfitting. It achieves a more generalized
model by disabling randomly selected nodes during training. The dropout rate is an-

other hyperparameter to be set.

2.4.5. Cross Validation and Hyper-Parameter Tuning

The purpose of the Cross Validation (CV) is to see if the model can predict new
data that was not used in the estimation and see if it would generalize to a different
dataset. CV is the process of splitting a dataset into subsets that are used for training,
validation, and testing. If the data is divided into a training set and a validation set, the
models’ performance metrics are highly dependent on those two sets. The performance
depends on one evaluation and varies when trained and evaluated on different data
subsets. That is why multiple subsets are picked. Thus, the model’s final estimate
of its predictive power results from accumulating all evaluations’ results. Thus, the
variability of the prediction performance of the trained model can be eliminated in this

way.

Hyper-parameters are configurable parameters of a machine learning model to be
specified for a task or dataset. Unlike other learned parameters, hyper-parameters can
be manually set to direct and optimize the learning process for a given dataset. The
optimization is started with defining a search space which is volume to search, and
each dimension corresponds to a hyper-parameter; each point is a vector for a model
configuration. Random Search (RS) is an algorithm that randomly selects points inside
the bounded search space. RS are more efficient due to not all hyperparameters require
equal tuning [33]. The models are trained with hyper-parameters selected randomly
in search space and evaluate with a determined number of cross-validation folds. This
concept is repeated for all randomly selected vectors in search space, and the final

best-performing parameter combination is returned.
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2.5. Dimensionality Reduction

The dimension reduction approaches are used for visualizing the results and
datasets. t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimension re-

duction technique preferred to visualize our dataset.

In 2008, Laurens van der Maatens and Geoffrey Hinton developed it [34]. It is
based on Stochastic Neighbor Embedding (SNE). SNE starts with calculating the prob-
ability that items s and [ are similar, as follows. Firstly, the high-dimensional Euclidean

distances are transferred into similarity conditional probabilities. It is calculated as

2
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where N-dimensional observation s; to sy and bandwidth of the Gaussian kernel func-
tion o;, the similarity probability, pj;, of s; and s;. The similarity conditional probabil-
ity pjji, which is the similarity of s; to s;, is high if they are close samples. Vice versa,
it will be nearly infinitesimal for samples that are substantially separated. SNE uses
the Gaussian distribution to determine the similarity of low-distinction samples [12].

The conditional probability gj|i can be obtained as
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where [; and [; are low-dimensional equivalents of high-dimensional points s; and s;.

Kullback-Leibler (KL) divergence between a joint probability distribution, P, in

the high-dimensional space, Q and it is minimized with

KL(PQ) =" pylog % (2.24)
i K
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Student t-distribution is utilized to measure similarity between locations of low
dimension to let unrelated objects stand apart from each other on the map. The joint

distribution ¢;; can be written as

(1411 = l15) ™

’ Zk;ﬁl(l + b — ll”;)_l

while (14 ||I; — 1;]|5)~" approaches an inverse square law for large pairwise distances

||li — ;]| in the low-dimensional space. The gradient of Equation (2.24) is

0K L .. -
T > (i — qif) (L= L)+ 1 =" (2.26)
’ j
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3. DATA COLLECTION

An automated test bench collects current and vibration signals of BLDC motors
from the end of the production line. The related test bench is explained in Section 3.1,

the encountered challenges during data collection are stated in Section 3.2.
3.1. Test Bench

The study aims to create a fully automated test system in the production line
without affecting the production cycle time, which is 12 sec. That’s why data are

collected from the automated test bench installed at the end of the production line.

" o o b, T
Al
vn +%~n Energy Socket 3

il

BLDC Motor

= & B ‘

Motor is lifted up a2 '

" Platform 4

ﬁl

Conveyor Belt
Figure 3.1. The data collection test bench.

The installed setup is given in Figure 3.1. The measurement and data collection

process follows the procedures below.

(i) The testing procedure is triggered when the motor reaches above bench.

(ii) The barcode on the motor is registered to PLC.
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(iii) The motor is isolated from the production line by a lifting mechanism during
data collection to eliminate additional noises from the conveyor.

(iv) The male connector plugs into the female counterpart of the socket after lifting
the engine. Thus, the motor becomes ready to be energized.

(v) Male connector is released to disconnect any interaction with its grabber.

M ' The grabbing tool
of the male

o MALE ENERGY SOCKET

/=g CONNECTOR SIDE

'

Figure 3.2. Another view of energy socket connection: A grabbing mechanism holds
the male side of the energy socket. The male connector plug in the female connector
on the motor when the motor is lifted. Then, the grabber releases the male connector

not to transfer on it.

Thus, the vibration transfer through the grabbing tool is prevented. Grabber and
two counterparts of power socket are depicted in Figure 3.2.
(vi) The accelerometer is mounted on the motor.
(vii) Motor is started.
(vili) Data acquisition process is started. The signals of vibration and 3-phase-current

arc recorded for seven seconds.
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(ix) The collected data is stored with the motor barcode as time series under a file-
name.
(x) Lifting mechanism goes down.

(xi) Motor is transferred to the conveyor belt.

All signals were collected with a sampling frequency of 50 kHz. ADCR 100
series data acquisition card and its user interface iProbe Platform? was used to collect
data. ADCR is hardware developed by Ascenix Corporation to provide high-speed
and continuous collection and transfer of current, voltage, and vibration data to the

processing point.

The PCB 352C34 ceramic shear ICP® accelerometer [35] is installed. Tt is
mounted onto the motor’s outer body perpendicular to the rotation direction of the
engine. Magnetic mounting bases are used to attach the accelerometer to the motor’s
surfaces. The magnetic bases are screwed to the accelerometer with a thin layer of

silicone between the base and the sensor.

3.2. The Challenges

Various mechanical issues arise during data collection. The encountered difficul-

ties are listed below.

e The accelerometer should be mounted parallel to the main sensitivity axis, per-
pendicular to the rotation direction of the engine. A gap between the sensor and
the motor can occur due to improperly mounting. During the data collection
process, this issue arose frequently. Improper mounting occurs when the 3-finger
mechanism that mounts the sensor on the motor fails to release the sensor, and
hence the sensor does not attach to the engine with full contact. Another reason
for this issue is the differences in motor holding mechanisms. For example, if the
height of each leg of the mechanism that holds the motor is not identical or if the

fastening screws of any leg are loose, in this case, the targeted sensor mounting

2 Ascenix Corporation, Washington DC, USA
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point may slide. The accelerometer can not be adequately mounted on the motor.
These differences cause the accelerometer to attach with an angle or not to stick

on the engine at all.

Figure 3.3. Two examples of the sensor mounting problems: The angles that occur as
a result of trying to mount the sensor on the protruding surface instead of the flat
surface of the motor (left). The angle is formed because it cannot cut its connection

with the three-finger mechanism holding the sensor (right).

Most common examples about sensor mounting problem are given in Figure 3.3.
These gaps are caused the distortion on the vibration signal.

e The mechanism that separates the motor from the production conveyor belt may
drop the engine during its upward movement. In this case, the data collection is
interrupted.

e Energizing problems can happen during data collection due to the power socket
not being fully inserted into the motor’s connector.

e Differences in the height of each leg of the motor holding mechanism and the
width of the notch in which the motor is placed would affect the vibration signals

as it will change the swing amount of the engine while it is running.
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The measurements that have these issues can be removed from the dataset as to be
discussed in Section 4.1. However, the problems about improper mounting of the

accelerometer on the motor’s body is still an issue after preprocessing.
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4. PREPROCESSING

Data preprocessing involves noise suppression, data exclusion, consistency check,
and reformatting to maximize machine learning models’ performance. It is a crucial

step before extracting features from all raw recorded signals.

The details of the elimination of erroneous recordings, temporal windowing, and
noise filtering are given in Section 4.1. Temporal and spectral features are mentioned

in Section 4.2. Finally, the datasets are introduced in Section 4.3.

4.1. Data Exclusion and Steady State Frame Detection

The data exclusion is a removal step of improperly recorded cases from the
dataset, which may well be caused by not energizing the motor due to improper place-
ment of the energy socket originating from the mechanical parts and not contacting the
accelerometer to the motor body. Short-Time Fourier Transform (STFT) is applied to
observe the time-dependent variations of engine operating status, ramp-up, ramp-down

and steady-state.
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Figure 4.1. The preprocessing steps: Raw current signals are used to detect the
transition points where the motor transitions from the ramp-up to steady-state by
applying STFT based algorithm. Then, the RMS of the one-second current signal is
computed and compared with a threshold. The calculated ZCR of the one-second
vibration signal is compared with the threshold. Finally, the feature extraction
process is started by using the vibration data of the samples that have passed all

stages.

The whole preprocessing steps are listed in Figure 4.1. The transition points
where the motor switches from ramp-up to steady-state are detected using an STFT-
based technique on raw current measurements. The RMS value of the one-second

current signal is computed and compared to a threshold. If the calculated value is
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lower than the threshold, all signals of the motors are removed from the dataset.
Another threshold is based on the estimated Zero-Crossing Rate (ZCR) of the one-
second vibration signal. The signals that can manage to pass all preprocessing and

removal stages are used for the feature extraction process.

4.1.1. STFT Based Steady State Detection and Data Removal

One of 3 phase current signals is used in this stage. Although each motor’s ramp
up, ramp down, and steady-state timings should be the same, they are not aligned
perfectly across all cases due to several delays. Hence, individual ramp-up, ramp-down
and steady-state periods need to be determined, and the sample that can not reach
steady-state or is not energized should be removed from datasets. All features are

extracted from the steady-state phase, where the motor runs at a constant speed.

The BLDC motors are driven with Mitsubishi FR-A820-00046-E1N6 model in-
verter from FR-A800-E series [36]. Their output frequency ranges from 0.2 to 590 Hz.
In our study, the generated current signal by the inverter should be at least 585 Hz.
Thus, the motor can run at 8800 RPM.

The frequency of the provided current is increased over time until the motor
reaches the targeted speed. Thus, STFT analysis is chosen to find time-varying fre-
quency information. The transition points between motors’ operating conditions over
the current signal are found using STF'T. For computing STFTs, a longer time signal
should be divided into equal-length segments. Each segment is multiplying with a
window function. As the window is moved along the time axis, the Fourier transform
of the resulting signal is obtained, as explained in Figure A.1. As a result, the signal is
represented in two dimensions. Then, the maximum amplitude and its corresponding
frequency are found for each STFT frame. The detected frequencies are stored in an
array. Then, the first and last points of the array greater than or equal to 585 are

determined.
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input : Current Signal: x. = {Zc1, T2, -+, Ten ),
Window length: wlen, Rectangle Window: Win
The number of samples between each successive FF'T window: hop,
The number of FFT points: nf ft, Sampling Rate: fs

output: The mid-point of steady state: p,,, the status of measurement: status

begin
compute STFT as matrix(using Algorithm given Figure A.1)

take the number of rows Le of STFT

for [ < 0 to Le do
| find maximum peak and its index i of STFT,, set MaxIndex(l) =i

end
find the first iy and the last point i, where MaxIndex >= 585

if (i = 0) or (i = 0) then
| status = improper and p,, = 0 break

end
SteadyFrame = MaxIndez;, ; Framelndex = {ry,re,...,7m}
compute difference Rdif f = [r(2) —r(1)r(3) —r(2)...r(m) —r(m —1)]

if > | Rdif fi, is not equal to 0 then
| status = improper and p,, = 0 break

end

if 4y —iy <= fs/hop then
| status = improper and p,, = 0 break

end

status = proper and p,, = i’;i

end

Figure 4.2. Steady-state detection and data removal algorithm. The transition points

between motors’ operating conditions over the current signal are found using STFT.

The maximum amplitude and its corresponding frequency are found in each STFT

frame. The first and last values of the array that are greater than or equal to 585 are

detected. Then, the difference between successive array elements is calculated.
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The given algorithm in Figure 4.2 provides the details about the algorithm to
remove improper recording and detect steady-state frame. If any detected points are
0, the engine can not run properly, and all recordings of this instance should be removed
from the dataset. After then, the part of the array between the first and last points
is taken. The difference between successive array elements of the part is calculated.
If the motor runs with constant speed, the sum of the calculated difference should
be 0. Otherwise, the sample should be excluded from the datasets. Three things are
checked. First and foremost, it determines whether the motor is running, if it has run,
if it can reach the target revolution per minute (RPM), and if it is capable of working
at that RPM for at least one second. It is removed from the dataset as an improper
measurement if the aforementioned initial conditions are not met. The 1000 msec time
window at the center of the thus detected steady-state period is marked for feature

extraction.

The Spectrogram of the Current Signal

ESTFT
—— The max frequencies

Frequencey, Hz
)

Time, s

Figure 4.3. The STF'T of the current signal, which is belonged to the motor running
properly, and the highest amplitude frequency array, which is obtained by detecting

max amplitude and corresponding frequency for each STFT segment.
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_The Current Signal

Figure 4.4. The current signal in time domain and the detected steady-state frame.

The exact midpoint is calculated by using the seconds when the motor starts and
ends with constant RPM, as illustrated in the below figure and stored. A one-second
frame from the current, as given in Figure 4.4 and vibration signal are taken around
the detected mid-point, as described in Figure 4.2. The correctly collected signals and

their STFT visualizations are given in Figure 4.3.

The Spectrogram of the Current Signal

=__JI
—— The max frequencies

Frequency,Hz

Time,s

Figure 4.5. The STFT illustration of the current signal of the improperly run engine.
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The Current Signal

Amper A

Time,s

Figure 4.6. The visualization of the current signal in case the power socket can not

plug into the motors’ energy socket.

The current signal samples, in which the motor can not run properly, are given
in Figure 4.6. Figure 4.5 shows the STFT illustration of the current signal if the power

socket can not plug into the motors’ energy socket.

4.1.2. RMS & ZCR Thresholding

The minimum desired current RMS value under steady-state conditions is de-
termined by the R&D department of Arcelik as 1.7 A. All recordings with current
RMS less than 1.7 A are excluded from the dataset. Moreover, the three-finger mecha-
nism that attaches the accelerometer to the motor is another cause of improper sensor
mounting. All fingers must open after the accelerometer has been mounted on the
engine to isolate itself from the accelerometer. The accelerometer will not fully contact

the motor if all three fingers do not open, resulting in an improper measurement.

The ZCR of vibration signals are used to determine improper signal recordings.
The ZCR is calculated over all vibration signals that can pass from STFT based data
removal steps as mentioned in Section 4.1.1. The minimum ZCR threshold is applied on
one-second steady-state vibration signals. The lower limit is calculated by subtracting

the standard deviation 20 from the mean of the ZCR across the dataset and it is 0.08.
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Figure 4.8. The improperly collected vibration signal in time domain.
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The properly collected vibration signal, as shown in Figure 4.7, and improperly

collected vibration signal are given in Figure 4.8. In this case, the accelerometer moves

and drops after data acquisition starts.
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4.1.3. Removing DC Component & BandPass Filtering

The mean of the vibration signal, which is the Direct Current (DC) component,
is subtracted from the signal. Then, a bandpass filter is used to remove the spikes on
the vibration signal and minimize the effects of the additional mechanical vibrations
from the production process on the signal and DC components. Finally, a bandpass
filter is used to remove the spikes on the vibration signal, minimize the effects of the
additional mechanical vibrations. The low cutoff of the filter was 40 Hz since the
minimum frequency of interest was line frequency 50 Hz. Because the accelerometer’s
frequency range is limited to 10 kHz, it is employed as the filter’s high cutoff. Finally
the bandpass filter works between 40 Hz to 10kHz frequency range.

4.2. Feature Extraction

The one-second vibration signals, where the motor is running at a steady-state

condition, are used during the feature extraction process. The one-second frame is

determined as discussed in Section 4.1.

Table 4.1. Characteristics of bearing in usage.

Rolling element per row N, | 8

Pitch diameter Py 25.26 mm
Roller diameter By 6 mm
Contact angle phi 0,2617 rad

Twelve temporal features mentioned in Section 2.2.1 are extracted from the deter-
mined one second vibration recordings and also the critical frequencies are calculated
by using Equations (2.13a), (2.13b), (2.13c) and (2.13d) by taking the motor rotation

frequency as 146.7 Hz. The calculated characteristic frequencies of the faults on bear-
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ing are given in Table 4.1. The related frequencies about bearing faults are computed.
BPFI is 721.27 Hz, BPFO is 452.06 Hz, FTF is 56.51 Hz, BPF is 584.96 Hz. The

unbalance and misalignment faults are also computed.
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Figure 4.9. The spectral frequencies of main frequency fopas, 146.7 Hz. The
frequency ranges are calculated as 10 Hz intervals around the mentioned particular

frequencies and all harmonics.

Some frequency bands, which are used already in the current semi-automatic
quality control system, are determined by the Arcelik R&D department, and other
frequency ranges are calculated as 10 Hz intervals around above mentioned partic-
ular frequencies and all harmonics of main frequency fenep, 146.7 Hz, as depicts in

Figure 4.9.

After determination of to be calculated frequency ranges, power spectrum density
P(f) of the vibration signal is computed with pwelch method [37] as following. Signal
is x = {z1,29,...,2,} divided into segments, xx(j) in which j = 0,...,L — 1 and
k=1,..., K. This segments arc possibly overlapping, and the length of segments is
L. They slips D units until the end of the signal, suppose K segments that include the
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all signal. The periodograms of each segment can be obtained as [37]

xe(j) x W(j)e M8 k=12 ... K, (4.1)

where y(7) is the kth segments and jth frame of the signal and W (j) is the selected

window. K periodograms [37] are obtained as

L
&%J=5MMMR k=12,...,K, (4.2)
where [37]
n L
n — 7 :0717"'7_7 4.
fo=%. om 5 (43)
and
1 L—1
U=+ w2(5). (4.4)
=0

The power spectra is calculated as [37]

P(f) = 2 S Til) (45)

Then, the RMS of the periodogram of the signal in determined frequency ranges is

computed as

The current parameters, which are used for the semi-automatic system as aforemen-
tioned in Section 1.1, and the 10 Hertz intervals around particular frequencies are

computed. They are explained in detail below:
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e First: The RMS value of the power spectrum between 50 and 200 Hz exceeds the
determined threshold. This frequency range contains the main frequency (146.67
Hz), dependent on the motor’s rotation speed (8800 RPM).

e Second: The second defect checker is the RMS value of the power spectrum
between 50 and 1000 Hz.

e Third: The third criterion is the computed RMS value of the power spectrum
between 50 and 1575 Hz.

e Fourth: Computing the logarithmic sum of the power spectrum gives the fourth

parameter.

All harmonics of the main frequency up to 10 kHz are calculated. A total of 76

frequency bands are used as spectral features.

Table 4.2. The computed frequency ranges.

Abbreviation Detail Low Frequency - High Frequency
First First Band 50 Hz - 200 Hz
Second Second Band 50 Hz - 1000 Hz
Third Third Band 50 Hz - 1575 Hz
Fourth Total Band 50 Hz- 10000 H =z
BPFI Inner Raceway 716.27 Hz - 726.27 Hz
BPFO Outer Raceway 447.06 Hz - 457.06 Hz
FTF Cage Defect 51.561 Hz - 61.51 Hz
BPF Ball Defect 579.96 Hz - 589.96 Hz
Unb Unbalance Defect 141.67 Hz - 151.67 Hz
Mis Rotor Misalignment 288.33 Hz - 388.33 Hz
" Remaining Harmonics 146.67*k - 5 Hz ) 146.67*k + 5 Hz
k=3,4,...,68 k=3,4,....68
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The number of used frequency ranges are given in Table 4.2. First, Second, Third,
and Fourth frequency ranges are coming from the standard quality control procedure
applied at the manufacturing plant and others are commonly used frequencies to detect

failures in literature.

4.3. BLDC Motor Datasets

Vibration and current signals are captured by using the automated data collection
system as meantioned in Section 3. After all, recordings where the motor failed to
start are excluded. The samples in which the recordings are acquired under improper
conditions where the vibration sensor has been unable to attach to the body of the

motor properly can not be excluded by using the preprocessing stage in Section 4.1.

Two datasets are created. While the first one has recordings from 750, the second
dataset has recordings from 32120 motors. The first set, 750 recordings, were manually
labeled as proper and improper with checking how the accelerometer mounts to the
engine’s body. This subset is called Quality Labelled Dataset (QLD), while the other
is called Quality Unlabelled Dataset (QULD).

Apart from the binary labeling of the recording quality in the QLD, both Quality
Labelled and Quality Unlabelled recordings are labeled following the standard quality
control procedure applied at the manufacturing plant. These labels are Healthy/Pass,
Vibl, Vib2, Vib3, Vibl&2, Vib, Sound. Except for Pass labeled instances, all other
failure types are labeled as Fail during binary classification. They are explained in

detail below:

e Vibl: First computed spectral feature, 50 and 200 Hz, exceeds the determined

threshold. This frequency range detects the unbalance and cage failures.
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_ Power Spectrum of Vibration Signal
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Figure 4.10. The power spectrum of a Vibl motor.

The power spectrum of the vibration signal of the motor labeled as Vib1 is shown
in Figure 4.10.

e Vib2: The second calculated spectral feature between 50 and 1000 Hz exceeds
the second criterion. In this range, we can see the typical fault frequencies for

bearings and rotor misalignment.

Power Spectrum of Vibration Signal
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Figure 4.11. The power spectrum of a Vib2 motor.

Figure 4.11 shows the power spectrum of the Vib2 labeled motor.
e Vib3: The third obtained spectral feature, 50 and 1575 Hz is higher than the
threshold. Finally, the 8th harmonic of the central frequency is also utilized to

discover rotor defects because the motor’s rotor contains eight poles.
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~ Power Spectrum of Vibration Signal
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Figure 4.12. The power spectrum of a Vib3 motor.

The power spectrum of the Vib3 labeled engine is given in Figure 4.12.
o Vib1642: The first two calculated values are above the threshold values.

Power Spectrum of Vibration Signal )
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Figure 4.13. The power spectrum of a Vib1&2 motor.

The power spectrum of the vibration signal of the Vib1&2 motor is given in
Figure 4.13.

e Vib: If the threshold values for the fourth and fifth criterion are surpassed, the
operator gives a label to the motor as Vib. Counting the number of peaks in
the power spectrum yields the fourth parameter and computing the fourth spec-
tral feature. These numbers are utilized as an indicator of unusual motor noises.
However, these two parameters are unable to detect all sound-related failures. Fi-
nally, while the motor is operating, an experienced operator listens to the engine’s

sound and determines if it is pass or fails.
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Power Spectrum of Vibration Signal
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Figure 4.14. The power spectrum of a Vib motor.

Frequency, Hz

Figure 4.14 shows the power spectrum of the vibration signal labeled as Vib.
e Sound: Some faults are not detectable by the vibration control system, and as a
result, the operator must make the final choice. The operator must listen to the

motor noise before making the final pass/fail judgment.
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Figure 4.15. The power spectrum of a Sound motor.

The power spectrum of this fault is shown in given in Figure 4.15. This failure la-
bel is applied to samples that have been identified as failures by only the operator

as they transit through the measuring system.
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Figure 4.16. Figure illustrates the power spectrum of a healthy motor.

Figure 4.16 depicts the power spectrum of the vibration signal of a healthy motor.
The main harmonics can reach a limited amplitude, and high-frequency noises almost

disappear.

4.3.1. Quality Labelled Dataset

Vibration and current signals are collected from 750 motors. The samples with
energizing issues are removed by applying the proposed preprocessing stage. After then,
only 671 acquired signals remain. However, the vibration sensor improper placement
problem is still present in the gathered signals. Therefore, the data is separated into two
groups depending on whether the accelerometer could be properly placed on the motor.
Properly collected data, i.e., proper sensor attachment, is called proper, improper
recordings where the sensor was misplaced are called improper. QLD has more than
one label. One of them is related to the engine’s health status, pass or fail, and another
one is related to the mounting of the accelerometer properly during data gathering,

proper or improper.
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Figure 4.17. t-SNE visualizations of QLD: The distribution of QLD according to the
engine’s health status (left). The distribution of QLD in the aspect of data quality
(right).

Figure 4.17 shows the distribution of QLD according to health status labels and

data quality labels.
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Table 4.3. Quality Labeled Dataset(QLD) descriptions

Mounting
Number
Health Status Staif;us Label | Label Detail of
o
Accelerometer Samples
Healthy Proper Pass - 438
Vibl 0
Vib2 3
Vib3 0
Faulty Proper Fail Vib1&2 19
Vib 1
Sound 7
Healthy Imroper Pass - 162
Vibl 0
Vib2 4
Vib3 0
Faulty Improper Fail Vib1&2 28
Vib 1
Sound 8

Table 4.3 depicts the number of samples according to data quality and motor’s
health status. Properly collected data, i.e., with proper sensor attachment, is called
proper. Improper recordings where the sensor was misplaced are called improper.
Binary motor health status is labeled as pass, healthy motor, and fail unhealthy or

faulty motor.
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4.3.2. Quality Unlabelled Dataset

Vibration and current signals from 32120 motors are collected for a month. In
this dataset, there is no label about the improper conditions where the vibration sen-
sor cannot mount to the engine properly. Only 28194 engines were able to be run
during data collection, and only 25580 signals remain after our preprocessing stage, as
explained in Figure 4.1 and Section 4.1. Data exclusion criteria do not include sensor
misplacement; hence the 25580 remaining recordings can potentially have improperly

recorded signals, but they are not labeled in QULD.

60
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t-SNE-2
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Figure 4.18. t-SNE visualizations of QULD according to the engine’s health status.

Figure 4.18 shows the distribution of QULD according to its health status label.
Healthy motors are labeled as pass, while all other types of failure are labeled fail. The
pass label is assigned to the negative class and represented with red dots, while the fail

label is assigned to the positive class and represented with blue color.
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Table 4.4. Quality Unlabeled Dataset (QULD) descriptions. Binary motor health

status is labeled as Pass, healthy motor, and Fail, unhealthy or faulty motor.

Number
Health Status | Label | Label Detail of
Samples
Healthy Pass - 25180
Vibl 65
Vib2 58
Vib3 5
Faulty Fail Vib1&2 83
Vib 110
Sound 79

The fault types and their distribution are given in Table 4.4. The vast majority

of samples have a pass label, and other classes are under-represented. The imbalance

ratio of the QULD is 1:63. It is highly imbalanced in terms of the motor health labels,

which poses an extra challenge for the pursued machine learning approaches.



56

5. AI-POWERED QUALITY CONTROL (AIQC)

Two Al-assisted BLDC motor quality control methods are described. The first
method is Single-Stage Al-Powered Quality Control (sAIQC) which only tries to classify
data as healthy (pass) or faulty (fail), blind to data acquisition quality, which is related
to how the accelerometer is mounted on the motor. The second proposed method is
Double-Stage Al-Powered Quality Control (dAIQC) which is composed of 2 stages. The
first stage makes a binary classification based on data quality as proper or improper,
and the second stage is a binary classification as pass or fail. For both cases, multi-
classification is not preferred due to problems with data quality and the limited number

of samples in some failure types. Instead, binary classification is favored.

The preprocessing steps are applied to all datasets to exclude erroneous record-
ings, suppress external noises, and detect the transition points of steady-state opera-
tion, as summarized in Figure 4.1. The steady-state phase, in which the motor runs
at a constant speed, provides all of the features. And, as explained in Section 4.2,
temporal and spectral features are extracted for both dataset, QLD and QULD, as
mentioned in Section 4.3. All of the above stages are employed as standard processes

in both sAIQC and dAIQC.

1
Data 1 ( Data | Fodture | iy ) Cross | 1
Preprossesin yperparameter Validation in | 1
Cofiection H &:;xr.:lusit:mg IExh'action |_’: Optimization Training and | !
- - S o _ Test | :
l‘. ________________ 7
TWO PROPOSED METHODS
HAVE DIFFERENCES FOR
THESE STEPS
.—‘4 /\A
SINGLE STAGE Al DOUBLE STAGE Al
POWERED QUALITY POWERED QUALITY
CONTROL sAlQC CONTROL dAlQC

7 b

Figure 5.1. The schema of the following steps of SAIQC and dAIQC.
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Each method uses hyper-parameter optimization and cross-validation for the
evaluation process. Figure 5.1 shows the schema of applied steps. Data collection,
preprocessing, feature extraction are common stages of both sAIQC and dAIQC. Hy-
perparameter optimization and cross-validation are also used in both methods. But
according to the structure, how many times these blocks should be used may vary, and

labels can change.

Hyperparameter optimization of each classifier is another essential step in both
sAIQC and dAIQC before the actual training process begins. To choose the right com-
bination of hyper-parameters based on the performance of the feature set, the random
search method is used as described in Section 2.4.5. The random search algorithm
picks a random combination and evaluates the model using 3-fold cross-validation and
getting the best hyper-parameters. Balanced accuracy is used as the scoring parameter
of this process. After performing optimization, the top-performing parameters of the

classifier are fixed.

The efficiency of the suggested models has been demonstrated using three dif-
ferent ML models, which are support vector machine (SVM), random forest (RF),
extreme gradient boosting (XGB), and multilayer perceptron (MLP). The details of
these classifiers explained in Section 2.4. Radial Basis Function (RBF) is used as a
kernel function of SVM, and C' and ~ parameters are optimized. The hyper-parameters
of RF are the number of trees in the forest, n_estimators, the maximum depth of the
tree, max_depth, the criterion for splitting attributes, criterion. Learning rate, n, the
maximum depth of a tree, max_depth, the number of trees, n_estimators and sub-
sample percentages, subsample parameters of XGB are optimized. Finally, the size
of each hidden layer, the drop-out rates, batch size, the number of epochs, and the
learning rate of the optimizer are selected for hyper-parameter optimization of MLP.
MLP consists of three hidden layers. Binary cross-entropy is used for the loss function,

Adam optimizer is preferred for compiling the model.
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Cross-validation is used for performance assessment of the classifiers with opti-
mum hyper-parameters in both sSAIQC and dAIQC. Stratified k-fold cross-validation is
prefered [38]. The dataset is split into three folds. The class ratio and the distribution
of defect types are preserved in ecach fold. Two sets of folds are used for training,
whereas one set is used for the test. In this case, the entire dataset becomes test data
in any cross-validation fold. The fixed hyper-parameters are used for each training CV
fold, with model parameter initialization for each fold. All predicted test results are
stored, and after the cross-validation process is completed, the final evaluations of the

classifier are made on this stored data.

While training, class imbalance is always taken into consideration. The class
weights are distributed inversely proportional to the number of samples in classes. In

other words, unweighted class weights are used for each classifier.

Finally, True Positive Rate (TPR or Sensitivity), True Negative Rate (TNR or
Specificity), and Unweighted Accuracy (UA) are used as performance metrics of the
classifier. They are chosen to deal with the imbalanced class ratio. It should be
known which label represents the positive and negative class to calculate performance
indicators, which are True Positive (TP), True Negative (TN), False Positive (FP),
False Negative (FN). In pass and fail classification, the pass class is considered the
negative class and labeled as 0. The fail class is set as the positive class and labeled
as 1. In proper and improper recording classification, proper recordings are labeled as
0, which is the negative class, and improper recordings are labeled as 1, which is the

positive class. TPR can be obtained as

TP
TPR - tivity = —————. 1
R - Sensitivity TP © N (5.1)
TNR is calculated as
TN
TNR - Specificity = (5.2)

TN + FP’
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Finally, UA is the average of the recall scores for each class. It can be computed as

TPR + TNR

. (5.3)

Unweighted Accuracy =

5.1. Single-Stage AIQC
5.1.1. Method

The proposed sAIQC method aims to separate the samples as pass or fail regard-
less of data quality for both QLD and QULD. To compare the performance of sAIQC’s
classifiers and discuss the effects of data quality on the classifier’'s performance, the
classifiers are also trained with only pre-labeled proper and improper labeled instances
of QLD separately. Due to the lack of data quality labels in QULD, only QLD are used

to compare the performance of classifiers.

FEATURES
¥
Pass & Fail
Classifier
P |
an
| PASS | FAIL
\ 4
"

Figure 5.2. The structure of sAIQC which aims to separate the samples as pass or fail

regardless of data quality.
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Figure 5.2 shows the structure of sAIQC method. After the abovementioned
steps are passed, the feature sets of two datasets, QLD and QULD, become ready for
classification. Before the training step, hyper-parameters of four selected classifiers are
optimized by employing 3-fold cross-validation. Cross-validation is also used for model

evaluation, as mentioned above.

Whole QLD samples, the proper labeled subset of QLD, and the improper la-
beled subset of QLD are used for training and testing separately. Hyperparameter

optimization is also applied with these datasets respectively.

sAIQC are analyzed and compared for the defined problem in the following sec-
tion. The experiments of QLD are presented in Section 5.1.2. Section 5.1.3 gives the
training details. All results of the experiments are shown in Section 5.1.4. The results

of the experiments are discussed on various aspects in Section 5.1.5.

5.1.2. QLD Experiments

Three cross-validation folds are used for both optimizations of hyper-parameters
and model evaluation. Each folds are created with keeping class balance ratio and the
distribution of defect types. As mentioned in Section 4.3.1, all defect types are labeled

as fail.

Table 5.1. The content of a cross-validation fold of QLD for the sAQIC.

Pass Fail
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
Train Fold | 400 0 4 0 31 2 10
Test Fold | 200 0 3 0 16 1 5
Total 600 0 7 0 47 3 15
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A cross-validation fold of QLD is shown in Table 5.1. After finding optimal
parameters of classifiers, the training folds are fitted to the frozen classifier, respectively,
and the test fold is predicted. Before passing another train fold, test results are kept.

The following values are used to optimize the hyper-parameters of classifiers trained

with QLD:

e SVM: The C parameter is 100 and the + parameter is 0.1.

e RF: The n_estimators is 313, the max_depth is 10 ,criterion is entropy.

e XGB: The n_estimators is 3400 , the max_depth is 9 ,the subsample is 0.368 ,the
1 is 0.03.

e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.5, the size of
hidden layer two is 32, drop-out rate two is 0.4, the size of hidden layer three is
8, the learning rate of optimizer is 0.001. The number of epoch is 500 and batch

size 16.

Table 5.2. The content of a cross-validation fold of the proper labeled subset of QLD
for the sAQIC.

Pass Fail
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound

Train Fold | 292 0 2 0 13 1 5
Test Fold 146 0 1 0 6 0 2
Total 438 0 3 0 19 1 7

A training and test fold content of the proper labeled subset in QLD is given in Ta-
ble 5.2. Healthy samples are labeled as pass, and faulty motors are labeled as fail. The
distribution of defect types in the fail class is preserved for each fold. The following list
summarizes the hyper-parameters of classifiers trained on only proper labeled instances

of QLD:
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e SVM: The C parameter is 1 and the v parameter is 0.1.

e RF: The n_estimators is 117 ,the max_depth is 98, criterion is entropy.

e XGB: The n_estimators is 1800 , the max_depth is 3,the subsample is 0.243 ,the
1 is 0.08.

e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.4, the size of
hidden layer two is 32, drop-out rate two 0.3, the size of hidden layer three is 8,
the learning rate of optimizer is 0.001. The number of epoch is 100 and batch

size 16.

Table 5.3. The content of a cross-validation fold of the improper labeled subgroup of
QLD for the sAQIC.

Pass Fail
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
Train Fold | 108 0 3 0 19 1 5
Test Fold o4 0 1 0 9 0 3
Total 162 0 4 0 28 1 8

The improper labeled subset in QLD has a training and test fold content, as shown in
Table 5.3. The pass label represents healthy instances, and it is a negative label, 0.
Fail label shows the faulty samples with the positive label, 1. The hyper-parameters

of classifiers trained with only improper labeled instances are shown below:

e SVM: The C parameter is 1 and the v parameter is 0.01.

e RF: The n_estimators is 451, the max_depth is 27, criterion is entropy.

e XGB: The n_estimators is 733, the max_depth is 9,the subsample is 0.458,the 7
is 0.1.

e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.4, the size of
hidden layer two is 16, drop-out rate two 0.3, the size of hidden layer three is 8,
the learning rate of optimizer is 0.01. The number of epoch is 300 and batch size

8.



5.1.3. QULD Experiments

As mentioned in Section 4.3.2, this data set does not have data acquisition qual-
ity labels. Thus sAIQC can be applied to the whole dataset. The standard hyper-

parameter optimization step as mentioned in Section 4.3.2 is also employed before

training.
Table 5.4. The detailed content of a cross-validation fold of QULD.
Pass Fail
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
Train Fold | 16787 | 43 39 3 55 73 53
Test Fold | 8393 22 19 2 28 37 26
Total 25180 | 65 58 5 83 110 79

The details of a cross-validation fold of QULD about the pass and fail distribution

and the number of failure types in the fail class are also shown in Table 5.4. The hyper-

parameters of classifiers trained with QULD are given below:

e SVM: The C parameter is 100 and the v parameter is 0.0001.

e RF: The n_estimators is 460 ,the max_depth is 5, criterion is entropy.

e XGB: The n_estimators is 1266 , the max_depth is 3,the subsample is 0.672 ,the

1 is 0.0001.

e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.6, the size of
hidden layer two is 32, drop-out rate two 0.3, the size of hidden layer three is 16,

the learning rate of optimizer is 0.0001. The number of epoch is 500 and batch

size 128.
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5.1.4. Results

The evaluation results of each classifier trained with all different dataset and
their subset in the sAIQC method, which are TPR, TNR, and UA of classifiers, are

summarized with following tables.

Table 5.5. The final evaluation results with SVM, RF. XGB, and MLP classifiers for
QLD in sAIQC. All classifiers have similar UAs. RF, which is colored blue, has the

highest unweighted accuracy among other classifiers.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.859 0.810 0.835
RF 0.887 0.810 0.849
XGB 0.873 0.777 0.825
MLP 0.955 0.676 0.816

The evaluation results of each classifier trained with the whole dataset QLD in
the sAIQC method are given in Table 5.5. RF is the best performing classifier trained
with QLD. It reaches 0.849 unweighted accuracy.
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Table 5.6. The results of RF as a sAIQC classifier trained with QLD, which have the
highest unweighted accuracy, are given in the below table. True predicted instances

are shown with blue color, and false predicted samples are represented with red color.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
fg Pass | 486 0 2 0 4 1 1
ES) 0.810
o)
[
[ TPR
Fail 114 0 5 0 43 1 14
0.887
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.810 - 0.714 - 0.915 0.500 | 0.933 0.849

Table 5.6 shows a detailed analysis of the result of RF classifier. TPR and TNR
are computed for each defect type. TPR shows the percentage of actual fails which are
correctly identified, and TNR is the outcome where the model correctly predicts the
pass motors. The fail samples are taken positive class, and vice versa, pass instances
are the negative class as abovementioned in Chapter 5. Furthermore, the prediction

details of other classifiers are given in Table B.1, Table B.2, Table B.3, respectively, in

Appendix.
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Table 5.7. The final evaluation results of SVM, RF, XGB, and MLP classifiers
trained with only proper samples in sAIQC. MLP, which is colored with blue, is the

best-performing classifier with 0.936 unweighted accuracy.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.870 0.967 0.916
RF 0.870 0.967 0.916
XGB 0.799 1.0 0.900
MLP 0.933 0.938 0.936

Table 5.7 depicts the results of each classifier trained with only proper collected
samples. Sensitivity, Specificity, and Unweighted Accuracy are given as the perfor-

mance metrics.

Table 5.8. The results of the best-performing classifier trained with samples labeled
as proper, MLP, are given. Blue-colored samples are correctly predicted samples, and

red-colored instances represent incorrect predictions.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 411 0 0 0 0 1 1
S 0.938
o)
[
[ TPR
Fail 27 0 3 0 19 0 6
0.933
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.938 - 1.000 - 1.000 0.000 | 0.857 0.936
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The detailed results of MLP trained with proper samples are shown in Table 5.8.
TPR and TNR are computed in the same way as described before. Another experiment

results belong to classifiers trained with only improper collected samples.

Table 5.9. The final evaluation results with SVM, RF, XGB, and MLP classifiers
trained with only improper samples of QLD in sAIQC.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.976 0.722 0.849
RF 0.951 0.728 0.840
XGB 0.878 0.728 0.803
MLP 0.951 0.722 0.837

The sensitivity, specificity, and unweighted accuracy of each classifier trained
with only improper collected samples are shown in following table. The sensitivities,
specificities, and unweighted accuracies of the classifiers are shown. SVM has the

highest unweighted accuracy with 0.849.
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Table 5.10. The results of SVM trained with improper labeled instances are given.
The correct predictions are shown with blue and incorrect predictions are represented

with red color.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
fg Pass | 117 0 0 0 1 0 0
ES) 0.722
o)
[
[ TPR
Fail 45 0 4 0 27 1 8
0.976
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.722 - 1.000 - 0.964 1.000 | 1.000 0.849

The prediction results of SVM trained with only improper collected instances are
given in Table 5.10. The calculated unweighted accuracy of SVM is 0.849. The details

of the result on other faulty types are also given. TPR and TNR are calculated for

each fault type separately.
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Figure 5.3. t-SNE visualizations of the prediction outcomes of the best-performing

classifier RF trained QLD with 0.849 unweighted accuracy.
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Figure 5.4. t-SNE visualizations of the prediction outcomes of MLP trained with
proper subset of QLD, which has the highest unweighted accuracy with 0.936.
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Figure 5.5. t-SNE visualizations of the prediction outcomes of SVM trained with
improper subset of QLD, which has the highest unweighted accuracy with 0.849.

Figure 5.3, Figure 5.4 and Figure 5.5 show the predicted labels of best-performing
classifiers trained respectively with QLD, properly labeled samples, and improper col-
lected instances. TP, FP, TN, FN results are demonstrated at plots. TP corresponds
to the fail class having been correctly predicted by the model. Also, TN is the model’s
predictions where the pass class is correctly predicted. FP is an outcome where the
model predicts the fail class when it should instead have predicted the pass class. FN
are situations where the model predicts the pass class, even though the pass class is,
in fact, not present. The dots represent the same measure in Figure 5.3, Figure 5.4
and Figure 5.5. Blue points represent TN. Orange points symbolize FP. Green points
are FN. Red dots correspond to TP. Figure 5.3 shows the prediction results of best-
performing classifier RF trained with properly labeled samples with 0.849 unweighted
accuracy. Figure 5.4 depicts the predicted outputs of MLP, which has the highest
unweighted accuracy with 0.936. Figure 5.5 describes the prediction outputs of SVM

with 0.849 unweighted accuracy, which classifier best suits on improperly collected

istances.
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Table 5.11. The evaluation results with SVM, RF, XGB, and MLP classifiers trained

with QULD in sAIQC. XGB is the best-performing classifier with 0.747 unweighted

accuracy.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.665 0.787 0.726
RF 0.508 0.918 0.713
XGB 0.640 0.853 0.747
MLP 0.708 0.713 0.710

Table 5.11 depicts the outputs of the evaluation results, which are sensitivity,

specificity, and unweighted accuracy of each classifier trained with QULD. Sensitivities,

Specificities and Unweighted Accuracies of the classifiers are shown. XGB is the best-

performing classifier with 0.747 unweighted accuracy.

Table 5.12. The outputs of XGB trained with QULD in sAIQC are given. TPR, TNR

an UA metrics are given.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
% Pass | 21487 8 18 3 12 50 53
S 0.853
o)
[
[ TPR
Fail | 3693 57 40 2 71 60 26
0.640
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.853 | 0.877 | 0.690 | 0.400 0.855 0.545 | 0.329 0.747
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The prediction results of XGB trained with QULD in Table 5.12. The true
predicted and false predicted samples in each class and the prediction outputs of faulty
types are shown in Table 5.12. TPR and TNR of each subgroup are also depicted. In
addition, the prediction details of other classifiers are given in Table B.4, Table B.5,
Table B.6, respectively, in Appendix.

20

t-SNE-2

Figure 5.6. t-SNE visualization of the prediction results of XGB trained with QULD
in sSAQIC. TP is shown with red dots. Additionally, TN is represented by blue dots.

FPs are indicated by orange dots. FNs are shown with green dots.

Figure 5.6 depicts the predicted results of best-performing classifier (XGB with
0.745 unweighted accuracy) trained with QULD. TP, FP, TN, and FN results are shown

in plots.
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5.1.5. Discussion

The sAIQC method is applied on QLD, its proper labeled subset, improper la-
beled subset, and QULD. Table 5.5 depicts the performance of each classifier trained
with the whole dataset QLD. The unweighted accuracy is 0.849 as a result of the RF.
The RF’s sensitivity is 0.887, and its specificity is 0.810. Specificity values for each
classifier are less than their sensitivities in Table 5.5. It means that all classifiers tend
to label this data as positive, which means fail. This suggests that recordings mimic
failure to a great extend. TPRs are not evenly distributed across different failure types
in Table 5.6. Vib failure types are harder to detect, while the Vib1&2, Sound, and
Vib2 failure can be predicted correctly. This is probably due to the limited number of
samples in Vib defect type. Figure 5.3 shows that the vast majority of FP are clustered
around 70 on the t-SNE 1 (x-axis) and 0 on the t-SNE 2 (y-axis) and standing apart
throughout the dataset. This cluster in Figure 5.5 consists of improper labeled sam-
ples, and the majority of it is pass samples. In this case, it is seen that the majority of
FPs gather in this cluster. Moreover, the fail samples overlapping with pass instances

are predicted as pass, and most of the FNs occur around the border of two classes.

Table 5.7 displays the performance of the classifier trained on properly labeled
QLD samples. Each classifier’s performance is significantly improved. While the sen-
sitivity values increase, the most significant improvement is seen in the classifiers’
specificity values in Table 5.7. The best performing classifier MLP with 0.936 UA,
0.933 TPR and 0.938 TNR in Table 5.8 achieve to classify each class properly. Vib
failure type could not be detected in this case either, and one sample from sound failure
type is predicted as pass. This is likely to be caused by incorrectly labeled samples. Af-
ter all, those labels are generated automatically by the standard (commercial) quality
control system and have not been confirmed manually. Listed below is the prediction
performance of the MLP, as shown in Figure 5.4. When similar features and overlaps
are found in samples of various classes, these samples lead to misclassification. Most

of the FPs are found around decision boundaries between pass and fail classes.
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Table 5.9 list the performance of the classifier trained with improper labeled
instances. The sensitivities of the classifiers are higher than the specificities, and each
classifier tends to label as positive. The highest unweighted accuracy belongs to SVM
with 0.849. TNR value of this classifier is 0.722, and its TPR is 0.976. Table 5.10 shows
the prediction result of SVM in detail. The vast majority of fails are predicted correctly,
SVM and other classifiers struggle to classify improperly collected pass samples due to
lower specificity values than sensitivities. Figure 5.5 depicts the prediction results of
SVM. All pass samples placed near 0 on the t-SNE 1 (x-axis) and -25 to 5 on the t-SNE
2 (y-axis), close to fail samples, are mispredicted. On the other hand, other samples
are correctly predicted except for FPs because they are linearly separable. The reason
for the occurrence of FPs, in this case, is that those labels are then provided manually

by observation during data collection and can be incorrectly labeled.

If all results in Figure 5.3, Figure 5.4 and Figure 5.5 are considered together,
if the instances from different data quality are not the same training group, samples
become linearly separable. Especially pass samples that collect improperly have a

major degradation effect on the performance of the classifier.

To sum up, if the training data are properly collected, the best-fitting classifier’s
(MLP) performance can reach 0.936 unweighted accuracy, and it can separate the
classes correctly with high sensitivity of 0.933 and high specificity of 0.938. However,
improperly labeled instances, especially pass samples, gets harder to classify. This
problem causes the performance degradation of classifiers. The classifier’s (SVM) sen-
sitivity is 0.976, but its specificity is only 0.722. Finally, if the data quality is not
known, the classifier’s performance reaches only 0.849, and the fundamental limiting
factors on the model’s performance have pass samples with improper labels and class
overlapping problems. Hence, rather than classify the improperly recorded data, it
may be preferable to detect improper data and flag it without performing motor qual-
ity control (healthy/failure). It is understood from here that when there is improperly
recorded data in the training set, classification becomes difficult, and prediction per-
formance decreases. sAIQC performance gets stuck at one point if the quality of the

data is unknown.
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Table 5.11 shows the performance metrics of each classifier trained with another
dataset, QULD. The best-fitted classifier on this dataset is XGB with 0.747 UA. The
classifier’s low sensitivity score of 0.640 shows that it is more likely to label datasets as
pass. This is most likely due to class imbalance and the overlapping of samples from
different classes. These samples cause uncertainty in decision boundary determination,
affecting classification performance. TPRs in Table 5.12 are not equally distributed
among various types of failures. Vib2, Vib3, Vib, and Sound failures are difficult to
detect, whereas Vib1&2 and Vibl failures can be predicted correctly. This is probably
related to limited Vib3 samples, and that different failure types and pass samples may
share similar characteristics. Moreover, as mentioned above, improper collected pass
samples can cause misclassification of fail samples. Besides that in Figure 5.6, four
clustered subsets can be observed. The cluster around 50 on the t-SNE 1 (x-axis) and
-30 on the t-SNE 2 (y-axis) that distinct from the rest of the dataset seem to have high
FPs and FNs. The number of FPs in this cluster is higher than other narrow clusters,

as shown in Figure 4.18. This is likely caused by data quality, which is missing in

QULD.

5.2. Double-Stage AIQC

5.2.1. Method

The proposed dAIQC is a two-stage classification method. First, binary classi-
fication is made based on data quality, and then pass or fail classification processes
are made based on the result of the first stage. The second stage comprises two dif-
ferent binary classifiers. One of them, Pass & Fail Classifier 1, tries to classify the
samples, which are predicted as proper, as pass or fail. The second classifier, Pass &

Fail Classifier 2, categorizes the improper predicted instances into pass and fail.
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Figure 5.7. The structure of dAIQC: The first step of this method is to categorize the
data into its quality labels, proper or improper at First-Stage Classifier. The
separated subsets are tried to classify as pass or fail. Pass & Fail Classifier 1

categorizes the proper predicted data into the pass and fail. Pass & Fail Classifier 2 is

to classify improper predicted data as pass and fail.

The proposed method structure is shown in Figure 5.7. Due to the absence of

QULD quality labels, the first stage of dAIQC can only be trained using QLD.
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Figure 5.8. The content of a cross-validation fold for QLD. Each fold equally contains
samples with both proper and pass labeled, both proper and fail labeled, both
improper and pass labeled, and both improper and fail labeled, which are divided

with preserving the balance between each subset in the data set.

The prepared feature set of QLD is split into three cross-validation folds as shown
in Figure 5.8. In this case, each fold equally contains samples with both proper and
pass labeled, both proper and fail labeled, both improper and pass labeled, and both
improper and fail labeled, which are divided with preserving the balance between each
subset in the data set. The first stage classifier and each second stage classifier are
trained with different subsets on the same training set. Firstly, the whole samples in
a training fold are used to train the First-Stage Classifier using proper and improper
labels. The Pass & Fail Classifier 1 is trained with proper labeled samples in this
training fold using the pass and fail labels. Likewise, the other Pass & Fail Classifier 2
is trained with improper labeled samples in the training fold. After training processes
are finished, the test fold, as shown in figure with red dashed box, is predicted at the
first stage classifier. The proper or incorrect predicted samples are used to test the
second stage classifiers separately, depending on the outcome of the first stage. This

procedure is repeated for each fold of cross-validation.



78

The hyper-parameters of the First-Stage Classifier are tuned by using three folds
in Figure 5.8. The classifiers, SVM, RF, XGB, and MLP, as abovementioned in Sec-
tion 5 are considered for each classification process. The optimized hyper-parameters of
second-stage classifiers are already found in sAIQC for QLD. The proper and improper

labeled samples are used for optimizing classifiers in SAIQC separately.

QULD is classified as proper or improper by the First-Stage Classifier trained
with QLD. QULD is considered as a test set. Following that, seccond-stage classifiers

are trained with the prediction results of the first stage of dAIQC separately.

5.2.2. QLD Experiments

Table 5.13. The content of training and test fold of QLD for dAIQC. The entire
training fold is used for training of First-Stage Classifier, which categorizes the
samples as improper or proper. While Pass & Fail Classifier 1 is trained with the
proper labeled subset of the training fold, Pass & Fail Classifier 2 is fitted on the

improper labeled part of the training fold.

Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound | Total
Training | Proper 292 0 2 0 13 1 5 313
Fold Improper | 108 0 3 0 19 1 5 136
Test Proper 146 0 1 0 6 0 2 155
Fold Improper | 54 0 1 0 9 0 3 67

The content of a cross-validation fold is given in Table 5.13. The fold contains
proper and improper labeled samples while preserving the pass/fail distribution. The
First-Stage Classifier uses the entire training fold. Pass & Fail Classifier 1 is trained
on the training fold’s proper labeled samples, while Pass & Fail Classifier 2 is fitted

on the training fold’s improper labeled samples. After training, the testing process is
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made end to end. The test fold is predicted as proper or improper at the First-Stage
Classifier. Based on the results of the first-stage classifier, second-stage classifiers are
evaluated on the relevant subset. The hyper-parameters of First-Stage Classifier are

listed below:

e SVM: The C parameter is 1 and the v parameter is 0.1.

e RF: The n_estimators is 333, the max_depth is 49, criterion is entropy.

e XGB: The n_estimators is 1266, the max_depth is 3,the subsample is 0.672, the
1 is 0.0001.

e MLP: The size of hidden layer one is 32 , drop-out rate one is 0.2, the size of
hidden layer two is 32, drop-out rate two 0.2, the size of hidden layer three is 16,
the learning rate of optimizer is 0.001. The number of epoch is 300 and batch

size 32.

The hyper-parameters of second-stage Pass & Fail Classifier 1, which classify

proper predicted samples into pass or fail, is shown below:

e SVM: The C parameter is 1 and the v parameter is 0.1.

e RF: The n_estimators is 117 ,the max_depth is 98, criterion is entropy.

e XGB: The n_estimators is 1800 , the max_depth is 3,the subsample is 0.243 ,the
1 is 0.08.

e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.4, the size of
hidden layer two is 32, drop-out rate two 0.3, the size of hidden layer three is 8,
the learning rate of optimizer is 0.001. The number of epoch is 100 and batch

size 16.

The hyper-parameters of second-stage Pass&Fail Classifier 2 is given below:

e SVM: The C parameter is 1 and the v parameter is 0.01.

e RF: The n_estimators is 451, the max_depth is 27, criterion is entropy.

e XGB: The n_estimators is 733, the max_depth is 9,the subsample is 0.458,the n
is 0.1.
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e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.4, the size of
hidden layer two is 16, drop-out rate two 0.3, the size of hidden layer three is 8§,
the learning rate of optimizer is 0.01. The number of epoch is 300 and batch size

8.

5.2.3. QLD Results

Table 5.14. The evaluation results of First-Stage Classifiers, which are SVM, RF,
XGB, and MLP, trained with QLD. RF is the best-performing classifier with 0.839

unweighted accuracy.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.729 0.912 0.821
RF 0.704 0.974 0.839
XGB 0.690 0.972 0.831
MLP 0.768 0.885 0.827

The First-Stage Classifier of dAIQC’s prediction results, which include sensitivity,

specificity, and unweighted accuracy, are summarized in Table 5.14.
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Table 5.15. The outputs of RF in the first stage of dAIQC. The samples are classified

as improper and proper. The performans metrics are given.

Actual
Performance
Proper | Improper
metrics
ge TNR
g Proper 456 60
o 0.974
T
= TPR
A& | Improper 12 143
0.704
TNR TPR UA
0.974 0.704 0.839

The detailed prediction results for RF, the model with the highest unweighted
accuracy of 0.839, are shown in Table 5.15. TPR represents the ratio of correctly
predicted improper samples to given actual proper instances. TNR denotes the propor-
tion of proper labeled samples that are correctly identified. The average of TNR and
TPR represents the classifier’s unweighted accuracy. Moreover, the prediction results

of SVM, XGB and MLP is shown in Table B.7, Table B.8 and Table B.9, respectively.
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Table 5.16. The prediction performances of the SVM, RF, XGB, and MLP classifiers
for Pass & Fail Classifier 1. TPR, TNR and UA of the classifiers trained with the
proper subset of QLD and tested with samples predicted as proper from the
best-performing First-Stage Classifier, RF, are shown. MLP is the best-performing
classifier with 0.927 UA.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.878 0.968 0.923
RF 0.732 0.973 0.853
XGB 0.805 0.994 0.899
MLP 0.927 0.926 0.927

The evaluation results of each classifier for Pass & Fail Classifier 1 at the second
stage are given in the Table 5.16. The samples of test fold, where the best performing
classifier RF in the first stage of dAIQC predicts as proper, are predicted as pass or
fail.
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Table 5.17. The prediction outcomes of MLP as best-performing Pass & Fail

Classifier 1. True predicted samples are indicated in blue. Incorrectly predicted

instances are highlighted in red.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
fg Pass | 440 0 1 0 0 1 1
ES) 0.926
o)
[
[ TPR
Fail 35 0 3 0 22 1 12
0.927
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.926 - 0.750 - 1.000 0.500 | 0.923 0.927

With 0.927, MLP achieves the highest unweighted accuracy value. The results

of MLP’s prediction are summarized in Table 5.17. TPRs for each defect type in the

fail class and TNR are calculated using the best-performing Pass & Fail Classifier 1,

MLP. In addition, the prediction results of SVM, RF and XGB is shown in Table B.10,

Table B.11 and Table B.12, respectively.
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Table 5.18. The performance metrics of each classifier for Pass & Fail Classifier 2 at

the second stage of dAIQC. MLP has the best performance with 0.950 unweighted

accuracy.
Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.933 0.936 0.935
RF 0.867 0.992 0.929
XGB 0.900 0.992 0.946
MLP 0.900 1.000 0.950

The outcomes of each classifier for Pass & Fail Classifier 2 at the second stage of

DAIQC. Performance metrics are summarized in Table 5.18. Sensitivities, specificities,

and unweighted accuracies of the classifiers trained with the improper subset of QLD

and tested with samples predicted as improper from the best-performing first-stage

classifier, RF, are shown.
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Table 5.19. The prediction results of MLP as best-performing Pass & Fail Classifier
2. True predicted samples are indicated in blue. Incorrectly predicted instances are

highlighted in red.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
fg Pass | 125 0 0 0 3 0 0
= 1.00
o)
[
[ TPR
Fail 0 0 3 0 22 0 2
0.900
TNR | TPR | TPR | TPR TPR TPR | TPR UA
1.000 - 1.000 - 0.880 - 1.000 0.950

The detailed results of MLP’s performance as the best classifier for Pass & Fail
Classifier 2 are shown in Table 5.19. The performance metrics for the pass and each
failure type in the fail class are calculated. Furthermore, the prediction details of SVM,

RF and XGB is shown in Table B.13, Table B.14 and Table B.15, respectively.
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Figure 5.9. t-SNE visualizations of the prediction outcomes of the best-performing
First-Stage Classifier, RF, which categorize QLD as improper or proper, with 0.839
unweighted accuracy. Black points denote TNs. Pink points represent FPs. Gray
points indicate FNs. Yellow dots mark TPs .
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Figure 5.10. t-SNE visualizations of the prediction outcomes of MLP as Pass & Fail
Classifier 1, which has the highest unweighted accuracy with 0.927. TNs are denoted
by blue dots. Orange points are used to denote FPs. FNs are denoted by green

points. Red dots indicate TPs.
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Figure 5.11. t-SNE visualizations of the prediction outcomes of MLP as Pass & Fail
Classifier 2 with 0.950 UA. TNs are denoted by blue dots. Orange points are used to
denote FPs. FNs are denoted by green points. Red dots indicate TPs.

Figure 5.9, Figure 5.10, Figure 5.11 depict the prediction outputs of best-performing
classifiers for each stage classifier. Plots illustrate the TP, FP, TN, and FN results.
For the result of the First-Stage Classifier, TPs correspond correctly predicted im-
proper labeled samples. Also, TN is that correctly predicted proper instances. FP is
an outcome where the model predicts the improper class when it should instead have
predicted the proper category. FN are situations where the model predicts the proper
class, even though it is from an improper class. For second stage classifiers, TPs are for
true predicted fails, TNs are used for true predicted passes. FNs represent incorrectly

predicted fails, and FPs shows incorrectly predicted passes.
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Table 5.20. Summary table of results of Pass & Fail Classifiers at the second stage of
dAIQC for QLD.

Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics

Pass & Fail | TNR | TPR | TPR | TPR TPR TPR | TPR UA
Classifier 1 | 0.926 - 0.750 - 1.000 0.500 | 0.923 0.927
Pass & Fail | TNR | TPR | TPR | TPR TPR TPR | TPR UA
Classifier 2 | 1.00 - 1.000 - 0,880 - 1,000 0.950

TNR | TPR | TPR | TPR TPR TPR | TPR UA

Total
0.942 - 0,857 - 0,936 0.500 | 0.933 0.929

Suppose the prediction outcomes of Pass & Fail Classifiers at the second stage of

dAIQC in Table 5.17 and Table 5.19 are combined. In that case, the total performance

of dAIQC for the pass or fail binary classification is given in Table 5.20.

5.2.4. QULD Experiments

Due to the lack of quality labels in QULD, the best-performing First-Stage Clas-

sifier trained with QLD, RF, is utilized to make data quality predictions on QULD.

According to the prediction results of the first stage classifier, the dataset is split into

proper or improper labeled subsets. Hyperparameter optimization procedures are ap-

plied on these two subsets to find the best hyper-parameters of second-stage classifiers

by using 3-fold cross-validation. The model evaluation processes are completed.
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Table 5.21. The prediction results of the First-Stage Classifier RF that trained with
QLD on QULD. As quality labels are not available at QULD, the most efficient
First-Stage Classifier with QLD, RF, is used to make predictions of data quality for
QULD. After all, QULD is divided into two quality classes as improper and proper.

Quality | Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound

16897 | 56 39 1 7 55 49
proper

16897 277

8283 9 19 4 6 55 30
improper

8283 123

The prediction results of QULD in the first stage classifier trained with QLD are
shown in Table 5.21. The majority of the samples in QULD are predicted as proper,
while %33 of the dataset are predicted as improper. After samples of QULD are
grouped at the first stage of dAIQC, train and test folds are created for second-stage

classifiers.

Table 5.22. The content of a training and test fold of QULD for Pass & Fail Classifier
1 of dAIQC.

Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
Train Fold | 11265 | 37 26 1 o1 37 33
Test Foldl | 5632 19 13 0 26 18 16

A training and test fold of QULD for Pass & Fail Classifier 1 are given in Ta-
ble 5.22. All fault types in fail and pass classes are depicted below. The following are
the optimized hyper-parameters for the second-stage Pass & Fail Classifier 1 that are

used to classify predicted samples as pass or fail:
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e SVM: The C parameter is 1000 and the v parameter is 0.0001.

e RF: The n_estimators is 460, the max_depth is 5, criterion is entropy.

e XGB: The n_estimators is 1266, the max_depth is 3, the subsample is 0.672, the
n is 0.0001.

e MLP: The size of hidden layer one is 64 , drop-out rate one is 0.6, the size of
hidden layer two is 16, drop-out rate two 0.5, the size of hidden layer three is 16,
the learning rate of optimizer is 0.0001. The number of epoch is 500 and batch
size 128.

Table 5.23. The content of a training and test fold of QULD for Pass & Fail Classifier
2 of dAIQC.

Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
Train Fold | 5522 6 13 3 4 37 20
Test Fold1l | 2651 3 6 1 2 18 10

Figure 5.23 contains the training and test folds of QULD for Pass & Fail Classifier 2.
The following diagram illustrates all fault types in the fail and pass classes. For the
second-stage Pass & Fail Classifier 2, the following are the tuned hyper-parameters

that are used to classify predicted samples as pass or fail:

e SVM:The C parameter is 1 and the v parameter is 0.01.

e RF: The n_estimators is 460, the max_depth is 5, criterion is entropy.

e XGB: The n_estimators is 1266, the max_depth is 3, the subsample is 0.672, the
1 is 0.0001.

e MLP: The size of hidden layer one is 32 , drop-out rate one is 0.2, the size of
hidden layer two is 32, drop-out rate two 0.2, the size of hidden layer three is 8,
the learning rate of optimizer is 0.001. The number of epoch is 200 and batch
size H12.
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5.2.5. QULD Results

Table 5.24. The prediction performances of the SVM, RF, XGB, and MLP classifiers
for Pass & Fail Classifier 1 for QULD. Sensitivities, specificities, and unweighted
accuracies of the Pass & Fail Classifier 1 trained with proper predicted samples in the

First-Stage Classifier are demonstrated.

Classifier | Sensitivity | Specificity | Unweighted Accuracy
SVM 0.874 0.963 0.918
RF 0.614 0.987 0.801
XGB 0.823 0.939 0.881
MLP 0.906 0.948 0.927

The evaluation results of each classifier as Pass & Fail Classifier 1 for QULD are

listed in Table 5.24. MLP can reach the best performance metrics with 0.927 UA.
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Table 5.25. The prediction results of MLP as best-performing Pass & Fail Classifier 1
of dAIQC for QULD. Correctly predicted samples are shown as blue-colored.

Incorrectly predicted instances are red-colored.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
4"5 Pass | 16012 | 2 3 1 3 12 5
ES) 0.948
o)
[
[ TPR
Fail 885 54 36 0 74 43 44
0.906
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.948 | 0.964 | 0.923 | 0.000 0.961 0.782 | 0.898 0.927

MLP has the highest unweighted accuracy value of 0.927. Figure 5.25 contains
predictions for MLP and calculated TPRs for each defect type in the fail class and
TNR. In addition, the prediction results of SVM, RF and XGB is shown in Table B.16,
Table B.17 and Table B.18, respectively.

Table 5.26. The performance metrics of the SVM, RF, XGB, and MLP classifiers for
Pass & Fail Classifier 2 for QULD.

Classifier | Sensitivity | Specificity | Unweighted Accuracy

SVM 0.683 0.892 0.788
RF 0.195 0.959 0.577
XGB 0.512 0.865 0.689

MLP 0.707 0.880 0.794
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In Table 5.26, each classifier’s evaluation results as Pass & Fail Classifier 2 for
QULD are listed. Sensitivities, specificities, and unweighted accuracies of the Pass &

Fail Classifier 2 trained with proper predicted samples in the First-Stage Classifier are

shown.

Table 5.27. The prediction results of MLP as best-performing Pass & Fail Classifier 2
of dAIQC for QULD. Blue-colored values represent true predicted samples.

Incorrectly predicted instances are highlighted in red.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
4“5 Pass | 7289 3 9 1 3 10 10
S 0.880
D
[
[ TPR
Fail 994 6 10 3 3 45 20
0.707
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.880 | 0.667 | 0.526 | 0.750 0.500 0.818 | 0.667 0.794

The prediction details of best-performing classifier with 0.794 unweighted accu-
racy, MLP, are given Table 5.27. The predicted, actual labels and performance metric
TPRs, TNR are shown in detail. Blue-colored values represent true predicted samples.
Incorrectly predicted instances are highlighted in red. Moreover, the prediction details

of SVM, RF and XGB is shown in Table B.19, Table B.20 and Table B.21, respectively.
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Table 5.28. Summary table of outputs of Pass & Fail Classifiers at the second stage of
dAIQC for QULD.

Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics

Pass & Fail | TPR | TNR | TNR | TNR| TNR | TNR | TNR UA
Classifier 1 | 0.948 | 0.964 | 0.923 | 0.000 0.961 0.782 | 0.898 0.927
Pass & Fail | TPR | TNR | TNR | TNR| TNR | TNR | TNR UA
Classifier 2 | 0.880 | 0.667 | 0.529 | 0.750 0.500 0.818 | 0.667 0.794

TPR | TNR | TNR | TNR| TNR | TNR | TNR UA

Total
0.925 | 0.923 | 0.793 | 0.600 0.928 0.800 | 0.810 0.895

The average performance metrics of best fitted pass-fail classifiers are summed
up and the results of Pass & Fail Classifiers are summarized in Table 5.28. The total

prediction performance are increased significantly.
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Figure 5.12. t-SNE visualizations of the prediction results of the best-performing
First-Stage Classifier trained with QLD, RF, and tested on QULD. Black points
denote the predicted samples as proper. Instances predicted as improper are marked

by yellow dots.
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Figure 5.13. t-SNE visualizations of the prediction outcomes of MLP as Pass & Fail
Classifier 1 trained with QULD subset, which has the highest unweighted accuracy
with 0.927. TNs are denoted by blue dots. Orange points are used to denote FPs.

FNs are denoted by green points. Red dots indicate TPs.
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Figure 5.14. t-SNE visualizations of the prediction outcomes of MLP’s output
prediction as Pass & Fail Classifier 2 trained with QULD subset with 0.794 UA. TNs
are denoted by blue dots. Orange points are used to denote FPs. FNs are denoted by

green points. Red dots indicate TPs.

Figure 5.12 shows the evaluation outputs of First-Stage Classifier trained with
QLD and tested on QULD. The outputs of best-performing classifiers for each second-
stage classifier are depicted in Figure 5.13 and Figure 5.14. TP, FP, TN, and FN are
represented in plots. TPs for true predicted fail samples, TNs for true predicted passes,
FNs for incorrectly predicted fails, and FPs for false predicted passes are marked with

red, blue, green, and orange, respectively.

5.2.6. Discussion

The first stage classification step of dAIQC can only be trained with QLD, and
it is tested on QULD. Table 5.14 shows the performance metrics of classifiers trained
with QLD in the first stage; RF has the highest unweighted accuracy with 0.839.
The calculated specificity values in Table 5.14 greater than sensitivities indicates that
all classifiers tend to label as proper. The vast of FNs is located near to TNs in

Figure 5.9. By examining Figure 5.10, it can conclude that most of the FNs are pass
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samples from improper classes that overlapping with proper class. Thus, the issue of
mounting the sensor at an angle to the motor body can be tolerated up to a point.
A few proper labeled motors overlapping with the improper class are only confused
with a low number of FPs. Almost all instances from the small-sized cluster, which
clusters around 70 on the t-SNE 1(x-axis) and 0 on the t-SNE 2 (y-axis), are classified

as improper in Figure 5.9.

Table 5.16 lists the performance of Pass & Fail Classifier 1 on QLD, which catego-
rizes the samples predicted as proper into the pass and fail. MLP is the most accurate
classifier, with a unweighted accuracy of 0.927, a sensitivity of 0.927, and a specificity
of 0.926. Although improper labeled samples are predicted as proper at the first stage,
the actual true prediction rate of Pass & Fail Classifier 1 is still sufficient. The distri-
bution of TPRs across different failure types is not uniform in Table 5.17. Vib failures
are still more difficult to detect, whereas Vib1&2, Sound failures can be accurately
predicted. This is probably due to the limited number of samples in Vib defect type.
If the data is collected properly, it can be concluded that the distinguishing features
between the two classes are clarified. The majority of FPs in Figure 5.10 are seen
borders pass and fail classes. The number of FNs is quite low, and fail samples near

pass instances cannot be accurately predicted.

Table 5.18 shows the prediction performance of Pass & Fail Classifier 2 on QLD,
which categorizes the samples predicted as improper into the pass and fail. MLP is the
best-performing classifier with a unweighted accuracy of 0.950, a sensitivity of 0.900,
and a specificity of 1.000. Due to reducing the number of samples after the first stage
classifier and eliminating the overlapping samples by predicting as proper at the first
stage, fail and pass classes become linearly separable. The vast of the pass samples
locate far away from fail motors in Figure 5.11. Thus, the final prediction performance
of the classifier makes significant progress. Only three samples from the Vib1&2 failure
type are mispredicted in Table 5.19, and these FNs in Figure 5.11 are seen close to
clustered pass samples, where locates around 70 on the t-SNE 1(x-axis) and around 0

on the t-SNE 2 (y-axis).
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As seen in Table 5.20, MLP within each group with separately trained classifiers
shows the best classification performance due to a clarification of distinctive features
after separation of the dataset according to data quality. In the overall performance
summary in Table 5.20, TPRs are making considerable progress except for the Vib

failure type due to its limited number of instances.

Table 5.21 shows the predicted data quality labels of QULD. Sixty-seven percent
of the dataset is predicted as proper. Although difficult to visualize the dataset with
t-SNE, most of the samples from the cluster, where places around 50 on the t-SNE
1(x-axis) and -30 on the t-SNE 2 (y-axis), another cluster, where locates around 20 on
the t-SNE 1(x-axis) and -40 on the t-SNE 2 (y-axis), and the cluster, where locates
around -40 on the t-SNE 1(x-axis), and 50 on the t-SNE 2 (y-axis), are predicted as

improper, as shown in the Figure 5.12.

The performance metrics of each classifier for Pass & Fail Classifier 1 on QULD
are listed in Table 5.24. MLP achieves to reach the highest unweighted accuracy with
0.927 as same as unweighted accuracy of MLP trained with QLD at the second stage
of AAIQC. TPRs are not evenly distributed across failure types in Table 5.17. The Vib
failure type is still more difficult to detect, whereas the Vib1&2, Sound, Vib1 failure
can be correctly predicted. This is likely caused by incorrect labeling during label
generation from the current commercial quality control system. In Figure 5.13, FPs

are distributed close to fail classes, and FNs are located among pass samples.

Table 5.26 shows the evaluation outcomes of each classifier as Pass & Fail Classi-
fier 2 on QULD. All classifiers’ specificity is lower than their sensitivities, and they are
inclined to predict this subset as pass. MLP has the highest prediction performance
among other classifiers, with a unweighted accuracy of 0.794. The details of MLP is
given in Table 5.27. TPR of the classifier is 0.707, and except Vib failure type, all
fail samples are confused with the pass. In Figure 5.13, the number of FP is given as
994 in Table 5.27, and the vast majority of FPs are clustered between -40 and 20 on
the t-SNE 1(x-axis) where the fail samples are also located in this range. Most of the
samples in the cluster around 50 on the t-SNE 1 (x-axis) and around -30 on the t-SNE
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2 (y-axis) are predicted as pass, and this cluster can be same characteristics with the

cluster in Figure 5.11 where locates apart from the remaining subset of QLD.

The summary of dAIQC on QULD is depicted in Table 5.28. As in QLD, MLPs
are the best performing classifiers of the second stage of dAIQC in QULD. Although
Pass & Fail Classifier 2 has low TPR, which is 0.707 since the majority of the fail class
is predicted as proper in the First-Stage Classifier and the total TNR of the Pass &
Fail Classifier 1 is high, with 0.906, the overall TNR with 0.845 is not decreased much.
Especially the samples that are predicted as proper in the first stage can be classified as
pass and fail easily. In this case, it can be said that the first stage classifier trained with
QLD can detect proper labeled samples among QULD; on the other hand, the samples
predicted as improper can predict limited. This indicates other problems affecting the
data quality apart from improper mounting of the accelerometer on the body of the

motor.
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6. DISCUSSION

Two methods are proposed, SAIQC and dAIQC, in this thesis. It has been tried
to overcome the difficulties in collecting sensitive data with high sampling in mass
production conditions. sAIQC is a classical classification method for categorizing a
motor’s health status as pass and fail. dAIQC is composed of 2 stages. The first stage
makes a binary classification based on data quality, and the second stage is a binary
classification as healthy or faulty. dAIQC employs two different second-stage classifiers,
one for each group as identified by the first stage.

In Table 6.1, proper labeled samples of QLD are separable with 0.938 TNR, 0.933
TPR, and 0.936 UA. On the other hand, both improper labeled samples and the whole
QLD have the same UA value, with 0.849. Thus, if the sAIQC method is applied to
the dataset without knowing the data quality label and there are samples in the data
that degrade the data quality, we see that the performance of the classifiers is limited.
This limited performance of sAIQC is that the data set contains all or part of the
improper labeled data. Especially pass (healthy) instances are quite similar to the fail
labeled if they are not collected properly. This resulted in significant reductions in the
TNR with 0.810. Therefore, after separating the data according to the data quality,
the increase in the TNR value is the main factor contributing to classifier performance
improvement. The TNR of sSAIQC on QLD increases from 0.810 to 0.942 after dAIQC
is applied on QLD. Likewise, TPR rises from 0.887 to 0.915. Although sAIQC with
improper labeled samples of QLD has a 0.722 TNR value, some pass samples in this
subset are predicted as proper after the division of this subset at the first stage of
dAIQC improper predicted subset became a linearly separable dataset with 1.0 TNR.
Thus, it can be concluded that the classifier can tolerate problems in data quality up
to a point. Even though The TPR value, which was 0.976 in the sAIQC method,
decrease to 0.900 in the dAIQC method. This is because the fail labeled samples in
the subset, which is predicted as improper, have decreased. Thus, it is said that fail
samples show different characteristics than pass instances, whether it is quality label

proper or improper.
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Table 6.1. The comparison of SAIQC and dAIQC on QLD. The total results of
sAIQC on QLD, a proper labeled subset of QLD, and improper labeled subset of
QLD are given, respectively. After splitting of QLD at the first stage of dAIQC, each

second stage classifiers of dAIQC and total evaluation results are shown.

Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound | Performance
Method Dataset
TNR | TPR | TPR | TPR| TPR |TPR | TPR Metrics
TPR = 0.887
QLD 0810 | - |o0714]| - 0.915 | 0.500 | 0.933 | TNR = 0.810
UA = 0.849
TPR = 0.933
sAIQC Actual Proper QLD 0.938 - 1.000 - 1.000 0.000 | 0.857 | TNR = 0.938
UA = 0.936
TPR = 0.976
Actual Improper QLD 0.722 - 1.000 - 0.964 1.000 | 1.000 | TNR = 0.722
UA = 0.849
TPR = 0.927
Predicted as Proper QLD 0.926 - 0.750 - 1.000 0.500 | 0.923 | TNR = 0.926
UA = 0.927
TPR = 0.900
dAIQC | Predicted as Improper QLD | 1.000 - 1.000 - 0.880 - 1.000 | TNR = 1.000
UA = 0.950
TPR = 0.915
Summary of dAIQC 0.942 - 0.857 - 0.936 0.500 | 0.933 | TNR = 0.942
UA = 0.929

The proposed two methods are applied on QULD, and the comparison of the
results is shown in Table 6.2. A significant increase in unweighted accuracy is observed
from sAIQC with 0.747 UA to dAIQC with 0.895 UA. The sAIQC method on this
dataset has 0.853 TNR and 0.640 TPR. Thus, sAIQC on QULD tends to label this
dataset into pass due to class overlapping, imbalance class ratio, and absence of data
quality labels. After the First-Stage Classifier of dAIQC, which is trained on QLD,
divides the QULD with labels improper and proper, the performance of second-stage

classifiers is improved for each group. The main progress among performance metric
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is that TPR of sAIQC increase 0.640 to 0.845 in dAIQC when dAIQC results are
summarized. While the change in the TNR came to the fore when switching from
the sAIQC method to the dAIQC method on the QLD, the increase in the TPR in
the QULD essentially improved the performance. This is probably due to having a
high-class imbalance ratio from QLD. The samples predicted as proper, which is 67
percent of QULD, can be classified with 0.927 UA, as same as the result of QLD in
Table 6.1. Therefore, it is possible to say that the samples separated as proper in the
first stage of dAIQC are valid in QULD by looking at the similar performance results,
which have the same UA with 0.927, in both datasets.

Table 6.2. The comparison of two methods on QULD.

Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound | Performance

Method Dataset
TNR | TPR | TPR | TPR| TPR | TPR | TPR Metrics
TPR = 0.640
SAIQC QULD 0.853 | 0.877 | 0.690 | 0.400 | 0.855 | 0.545 | 0.329 | TNR, = 0.853
UA = 0.747
TPR = 0.906

Predicted as Proper QULD | 0.948 | 0.964 | 0.923 | 0.000 0.961 0.782 | 0.898 | TNR = 0.948

UA = 0.927

TPR = 0.707
dAIQC | Predicted as Improper QULD | 0.880 | 0.667 | 0.526 | 0.750 0.500 0.818 | 0.667 | TNR = 0.880

UA = 0.794

TPR = 0.845

Summary of dAIQC 0.925 | 0.923 | 0.793 | 0.600 | 0,928 | 0.800 | 0.810 | TNR = 0.925
UA = 0.895

On the other hand, the evaluation results with the samples of QULD predicted
as improper are close to the outcomes of SAIQC. This is likely to be caused that this
subset still contains some factors affecting data quality, which are not labeled before.
The rate of correct prediction of Vib and Sound failure types that are detected by an

operator and have not been confirmed manually increase.
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To sum up, the results of the methods on both datasets show that the data can
be classified if the data quality problem is exceeded or the factor that affects the data
quality is labeled.

At the same time, when we compare the dAIQC method with the currently used
vibration analysis system, the TPR of the dAIQC method is over %90 in both datasets
when the data is collected properly. In contrast, the TPR of the current vibration
analysis system is %60. The TPR of the classification made under the condition that
the data is not collected properly is greater than %60. Therefore, it is said that the
currently working quality control system can detect limited errors. At the same time,
the operator dependency of the quality control process is reduced with the dAIQC
system. The operator ceases to be a part of the quality control step. If the mechanical
problems related to the data quality are overcome and the sensor is mounted properly,
the vibration quality control test can be fully automated, and the labor allocated for

this process can be reduced.
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7. CONCLUSIONS AND FUTURE WORKS

This thesis focuses on machine-learning-driven quality control systems of BLDC
motors despite the negative factors affecting data quality. Background noise effects
can be eliminated in the laboratory environment during data collection. However, it is
necessary to install high-cost infrastructures to collect high-precision vibration signals
from a manufacturing plant by preserving data quality. These vibration data collection
infrastructures should be acoustically isolated from the environment with an acoustic
anechoic chamber, mechanically isolated from any vibration that may come from the
production line, and vibration measurement is taken non-touch. In systems with this
infrastructure, the proposed sAIQC method will classify the motors’ health status
correctly. The experiments show that data quality has a significant role in the accuracy
of the classifier. The method answers with at least 0.934 of unweighted accuracy on the
subset consisting of properly collected samples. The bottleneck of the proposed method
is that there is limited tolerance on improper gathered samples, and the robustness of
the model is highly dependent on the data quality. This conclusion can be reached by
looking at the performance of the sAIQC on whole datasets, both QLD with 0.849 of
unweighted accuracy and QULD with 0.747 of unweighted accuracy. Therefore, sAIQC
with high accuracy is challenging to achieve in cost-constrained production systems.
Besides, even an improper recording can still include meaningful information about the
quality of motors. For this reason, despite the mounting problem of the accelerometer
on the body of the motor, the creation of automatic and Al-powered quality control

systems of BLDC motors are the primary concern in this thesis.

It is not always possible to prevent noise from external factors in production
conditions. Many factors can affect the quality of the vibration signal collected from
the engine. The most important among these factors is that the accelerometer is not
mounted properly on the engine’s body. Therefore, adding a data quality label consid-
ering this situation and using this label to eliminate the negative effect of the factor
on the classification has increased the classifier’'s performance. In the experiments

conducted with the dAIQC method, unweighted accuracies reach 0.929 for QLD and
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0.895 for QULD. With this approach, when using the dAIQC method instead of the
sAIQC method, the UA performance metric of the QLD increases by 0.08, and the
QULD’s increases by 0.148. The prediction performance of the second-stage classifiers
in dAIQC could not be further improved due to the possible presence of factors affect-
ing the data quality in data sets. Therefore, in case of improper data recording risk,
pre-stages should be placed to minimize the effect of factors affecting data quality on

classification performance.

To sum up, the usage of the dAIQC in test systems with a limited budget and
non-isolation is ideal for the improvement of the accuracy of test results. If the data
is below a certain quality, this situation can be given to the user as an alarm. Thus,
the system can be arranged, the test can be repeated, or when the system cannot
produce a response in an inevitable repetition, the model can be retrained by taking
expert opinion. Moreover, a model that makes valuable inputs for the transition from a
highly dependent system on the operator to a fully automatic system is also produced.

The following conclusions based on our findings can be deduced.

e Data collection quality is curial for AIQC systems.

e The performance of AIQC systems remains limited in low-quality collected data.

e For such an AIQC system to be feasible in the field, either the data collection
setup should be very controlled and properly collected data should be guaranteed,
or the dataset should be classified according to data quality before being classified
healthy or faulty.

e It is observed that the best-performing first stage classifier of dAIQC is RF as a
proper or improper data quality classifier.

e In the motor quality classification, which is pass or fail, of groups separated by

data quality in dAIQC, the best performance belongs to MLP.
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The following studies can be made in the future based on this study.

If the number of factors affecting the data quality is unknown, the first stage of
the dAIQC method can be designed as unsupervised clustering, and in the second
stage of dAIQC, Pass & Fail Classifiers can be added to the model as much as
the number of clusters. Thus, classification performance can be increased even
without labeling data quality.

If there is known the number of factors affecting the data quality, a multi-class

classification can be established in the first stage of the dAIQC method.
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The below figure shows the calculation of STFT that are used in Figure 4.2. The

STFT divides the time-domain input signal into overlapping frames by multiplying the

signal with a window function, W, and then applies the FFT to each block.Finally, the

spectral range of the signal over different time intervals is obtained. As a result, the

input signal is represented in two dimensions.

10:

11:

12:

13:

14:

15:

16:

D Xe = {Te1, Tezs o Ten }

Win = {winy, wing, ..., win,}

The number of samples between each successive FF'T window: hop
The number of FFT points: nf ft

Sampling Rate: fs

Determination of signal length x e,

: Determination of window length w,

: Compute the number of uniq FFT points Ny, = Lin/Jt

2
Compute the number of frames L = 1 + elen—Ylen

hop
for I =1,...,L —1 {For each frame} do

windowing of signal frame zw = y.[1 + lhop : wie, + thop|W
nfft—1 o m
compute fit FFT = ) xwme_ﬂ”# k=0,...,nfft—1
m=0

store fft in a STFT matrix STFT[:,l 4+ 1] = FFT[1: Ny

end for
compute time vector ¢t = {#n =k 4 hop, ... #en 4 (L — 1)hop}
compute frequency vector f = {0, nfc?t, vy (N — 1)n))ijct}

Figure A.1. Short-Time Fourier Transform Calculation.
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APPENDIX B: PERFORMANCE TABLES

B.1. sAIQC
B.1.1. QLD Results

Table B.1. The results of SVM as sAIQC classifier trained with QLD.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
) TNR
g Pass | 486 0 2 0 4 1 3
ES) 0.810
o)
S
[ TPR
Fail 114 0 5 0 43 1 12
0.859
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.810 - 0.714 - 0.915 0.500 | 0.800 0.835
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Table B.2. The results of XGB as sAIQC classifier trained with QLD.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
o) TNR
g Pass | 468 0 2 0 2 1 4
ES 0.777
g
R~ TPR
Fail 132 0 5 0 45 1 11
0.873
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.777 - 0.714 - 0.957 0.500 | 0.733 0.825
Table B.3. The results of MLP as sAIQC classifier trained with QLD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
8 TNR
< Pass | 404 0 0 0 1 1 1
= 0.676
¢
R~ TPR
Fail 196 0 7 0 46 1 14
0.955
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.676 - 1.000 - 0.979 0.500 | 0.933 0.816
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Table B.4. The outputs of SVM trained with QULD in sAIQC.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
'8 TNR
= Pass | 19828 5 20 2 11 50 46
bS] 0.787
o)
[
[ TPR
Fail | 5352 60 38 3 72 60 33
0.665
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.787 | 0.923 | 0.655 | 0.600 0.867 0.545 | 0.418 0.726
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Table B.5. The outputs of RF trained with QULD in sAIQC.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
o) TNR
g Pass | 23104 | 12 37 4 11 71 62
S 0.918
g
R~ TPR
Fail | 2076 53 21 1 72 39 17
0.508
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.918 | 0.815 | 0.362 | 0.200 0.867 0.355 | 0.198 0.713
Table B.6. The outputs of MLP trained with QULD in sAIQC.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
8 TNR
= Pass | 17947 6 19 3 10 37 42
S 0.713
¢
R~ TPR
Fail | 7233 59 39 2 73 73 37
0.708
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.713 | 0.908 | 0.672 | 0.400 0.880 0.664 | 0.468 0.710




B.2.1. QLD Results

B.2. dAIQC
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Table B.7. The outputs of SVM ,trained with QLD, in the first stage of dAIQC.

Table B.8.

Actual
Performance
Proper | Improper
metrics
ge TNR
g Proper 427 55
° 0.912
g5
= TPR
A& | Improper 41 148
0.729
TNR TPR UA
0.912 0.729 0.821

The outputs of XGB ,trained with QLD, in the first stage of dAIQC.

Actual
Performance
Proper | Improper
metrics
ge TNR
9 Proper 455 63
° 0.972
g5
= TPR
A& | Improper 13 140
0.690
TNR TPR UA
0.972 0.690 0.831




118

Table B.9. The outputs of MLP .trained with QLD, in the first stage of dAIQC.

Actual
Performance
Proper | Improper
metrics
ge TNR
o Proper 414 47
° 0.885
T
= TPR
A& | Improper 54 156
0.768
TNR TPR UA
0.885 0.768 0.827

Table B.10. The prediction outcomes of SVM, trained with QLD, as Pass & Fail
Classifier 1.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 460 0 2 0 1 1 1
S 0.968
g
R~ TPR
Fail 15 0 2 0 21 1 12
0.878
TNR | TPR | TPR | TPR| TPR | TPR | TPR UA
0.968 - 0.500 - 0,955 0.500 | 0.923 0.923
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Table B.11. The prediction outcomes of RF, trained with QLD, as Pass & Fail

Classifier 1.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 462 0 2 0 3 1 5
ES) 0.973
)
(=]
[ TPR
Fail 13 0 2 0 19 1 8
0.732
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.973 - 0.500 - 0.863 0.500 | 0.615 0.853
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Table B.12. The prediction outcomes of XGB, trained with QLD, as Pass & Fail
Classifier 1.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 472 0 2 0 0 1 5
ES) 0.994
)
(=]
[ TPR
Fail 3 0 2 0 22 1 8
0.805
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.994 - 0.500 - 1.000 0.500 | 0.615 0.899
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Table B.13. The prediction outcomes of SVM, trained with QLD, as Pass & Fail

Classifier 2.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
% Pass | 117 0 0 0 2 0 0
ES) 0.936
)
(=]
[ TPR
Fail 8 0 3 0 23 0 2
0.933
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.936 - 1.000 - 0.920 - 1.000 0.935
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Table B.14. The prediction outcomes of RF, trained with QLD, as Pass & Fail

Classifier 2.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 124 0 0 0 3 0 1
ES) 0.992
)
(=]
[ TPR
Fail 1 0 3 0 22 0 1
0.867
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.992 - 1.000 - 0.880 - 0.500 0.929
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Table B.15. The prediction outcomes of XGB, trained with QLD, as Pass & Fail

Classifier 2.

Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 124 0 0 0 3 0 0
ES) 0.992
)
(=]
[ TPR
Fail 1 0 3 0 22 0 2
0.900
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.992 - 1.000 - 0.880 - 1.000 0.946




B.2.2. QULD Results
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Table B.16. The prediction results of SVM as Pass & Fail Classifier 1 of dAIQC for

QULD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
E TNR
£ Pass | 16266 3 11 1 5 11 4
= 0.963
9]
[
R~ TPR
Fail 631 53 28 0 72 44 45
0.874
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.963 | 0.946 | 0.718 | 0.000 0.935 0.800 | 0.918 0.918
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Table B.17. The prediction results of RF as Pass & Fail Classifier 1 of dAIQC for

QULD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 16683 | 10 30 1 7 40 19
ES) 0.987
)
(=]
[ TPR
Fail 214 46 9 0 70 15 30
0.614
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.987 | 0.821 | 0.231 | 0.000 0.909 0.272 | 0.612 0.801
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Table B.18. The prediction results of XGB as Pass & Fail Classifier 1 of dAIQC for

QULD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 15866 | 3 8 1 7 18 12
= 0.939
)
(=]
[ TPR
Fail | 1031 53 31 0 70 37 37
0.823
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.939 | 0.946 | 0.795 | 0.000 0.909 0.673 | 0.755 0.881
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Table B.19. The prediction results of SVM as Pass & Fail Classifier 2 of dAIQC for

QULD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 7388 3 9 2 11 11
ES) 0.892
)
(=]
[ TPR
Fail 994 6 10 2 44 19
0.683
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.892 | 0.666 | 0.526 | 0.500 0.500 0.800 | 0.633 0.788
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Table B.20. The prediction results of RF as Pass & Fail Classifier 2 of dAIQC for

QULD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 7947 8 17 3 6 39 26
= 0.959
)
(=]
[ TPR
Fail 336 1 2 1 0 16 4
0.195
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.959 | 0.111 | 0.105 | 0.250 0.000 0.291 | 0.133 0.577




129

Table B.21. The prediction results of XGB as Pass & Fail Classifier 2 of dAIQC for

QULD.
Actual
Pass Fail
Performance
Pass | Vibl | Vib2 | Vib3 | Vib1&2 | Vib | Sound
metrics
ke TNR
g Pass | 7167 5 13 2 4 21 15
= 0.865
)
(=]
[ TPR
Fail | 1116 4 6 2 2 34 15
0.512
TNR | TPR | TPR | TPR TPR TPR | TPR UA
0.865 | 0.444 | 0.316 | 0.500 0.333 0.618 | 0.500 0.689
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APPENDIX C: TEZDE KULLANILAN SEKILLER ICIN

1ZIN

Ilgili izin Figure 2.1 i¢in alimmig olup geriye kalan figiirlerin tamami tarafimca

olugturulan altyapiya dair ¢ekilmis gortintiileri ve ¢izilmis grafikleri icermektedir.
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ilgili Makama

Calisanimiz Sibel Sentiirk’iin Bogazici Universitesi Elektrik Elektronik Miihendisligi yiiksek
lisans tezi kapsaminda kendisine saglamis oldugumuz BLDC motor datasetlerine ait icerik tablolarinin
ve veriye ait yapilan gorsellestirmelerin, ayni zamanda motora ait pargalarin gérselinin(Fig2.1)
kullanilmasina tez yazimi kapsaminda izin verilmistir.

Turgut Koksal Yalgin
Arcelik Uretim Teknolojileri Direktorligi

Endustriyel Robotik Yoneticisi



