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ABSTRACT

AUTOMATIC SPEECH RECOGNITION SYSTEM

ADAPTATION FOR SPOKEN LECTURE PROCESSING

The recent developments in artificial neural networks has brought significant

improvement in Automatic Speech Recognition (ASR). However the performance of

the neural network based models mostly depends on the availability of large amounts

of data and computational resources. When there is limited amount of in-domain data,

acoustic and language model adaptation methods are used. These methods utilise large

amount of out-of-domain data as well as limited in-domain data while learning the

parameters of the model. This work explores different adaptation methods in neural

network based ASR systems developed for spoken lecture processing in English and

in Turkish. We mainly investigate speaker adaptation, acoustic condition adaptation

and effect of both adaptations together with limited amount of spoken lecture data.

We show that building a source model with out-of-domain data and adapting this

model with limited in-domain data yields improvement in performance both in hybrid

acoustic model based ASR systems and in end-to-end ASR systems.
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ÖZET

SÖZLÜ DERS ANLATIMLARININ İŞLENMESİ İÇİN

OTOMATİK KONUŞMA TANIMA SİSTEMİNİN

UYARLANMASI

Yapay sinir ağlarındaki son gelişmeler, Otomatik Konuşma Tanıma’da (OKT)

önemli iyileştirmeler getirmiştir. Bununla birlikte, sinir ağı tabanlı modellerin perfor-

mansı çoğunlukla büyük miktarda verinin ve hesaplama kaynaklarının mevcudiyetine

bağlıdır. Sınırlı miktarda alan içi veri olduğunda, akustik ve dil modeli uyarlama

yöntemleri kullanılır. Bu yöntemler, modelin parametrelerini öğrenirken büyük mik-

tarda alan dışı veri ile birlikte sınırlı alan içi veri de kullanır. Bu çalışma, İngilizce

ve Türkçe sözlü ders anlatımlarını işleme için geliştirilen sinir ağı tabanlı ASR sis-

temlerinde farklı uyarlama yöntemlerini araştırmaktadır. Biz temel olarak konuşmacı

uyarlama, akustik durum uyarlama ve her iki uyarlamanın birlikte yapılmasının etk-

isini sınırlı miktarda sözlü ders anlatımları verisi ile araştırıyoruz. Alan dışı veri ile bir

kaynak model oluşturmanın ve bu modeli sınırlı miktarda alan içi veri ile uyarlamanın

hem hibrit akustik model tabanlı OKT sistemlerinde hem de uçtan uca eğitilen OKT

sistemlerinde başarım artışı sağladığını gösteriyoruz.
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1. INTRODUCTION

The task of Automatic Speech Recognition (ASR) is to transduce an acoustic

sequence into its textual representation. Historically Gaussian Mixture Model-Hidden

Markov Model (GMM-HMM) based acoustic models have been used in ASR systems

until the recent developments in neural network based modeling. While the neural

network based ASR systems showed successful results [3–6], they usually require large

amounts of data and computational resources for training. Furthermore, the perfor-

mance of ASR systems are mostly data set dependent [7], that is, the performance of an

ASR system trained on a particular data set usually doesn’t translate into other data

sets. Because of these reasons, either an ASR system is developed with the in-domain

data or adaptation methods are used when there is limited amount of data to develop

an ASR system from scratch.

The contemporary adaptation approaches in ASR ranges from unsupervised pre-

training methods [8] to transfer learning [9] and multi-task learning [10, 11] with su-

pervised methods. In the multi-task learning, usually parameters in some parts of the

model is shared among different tasks and some layers are reserved to each task during

training.

In transfer learning with supervised methods, first a source model is trained using

the generic data set and then the whole model or some part of the model is adapted to

a different but related task or domain [9,12]. Since the training of the source model is

done with supervised learning, this approach requires much less data compared to the

pre-training approach. However the benefit of the transfer learning decreases when the

dissimilarity between the source and the target datasets increases [13].

To utilise adaptation in transfer learning as much as possible, the dataset for the

source model should be picked carefully. A discrepancy in gender and dialects among

the speakers can cause a bias in the source model [14] and then this can transfer into
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the target model. Since improvements in one speaking style do not always transfer to

other speaking styles [15], it is crucial that the source data set and the target data set

have similar speaking styles (planned vs spontaneous). Another important factor is

the variation in the acoustic condition. A mismatch in the acoustic condition between

the source and the target datasets can prevent doing a successful adaptation.

In this thesis, we build various ASR systems for spoken lecture processing. We

use generic datasets that have similar characteristics with in-domain datasets to train

a source model. Then the source model is adapted with in-domain datasets. We

investigate the adaptation methods both for ASR systems with hybrid acoustic models

and end-to-end ASR systems. In order to assess the efficacy of the adaptation methods,

we also build baseline models with available in-domain data. We investigate the effect

of speaker adaptation and acoustic condition adaption separately by dividing in-domain

data into different sets.

Online learning has been an increasing practice in recent decade in many insti-

tutions. The Covid-19 pandemic has accelerated this process even further with many

institutions going completely remote-teaching in this period. Having an ASR system

for spoken lecture processing can assist learner significantly not only by providing tran-

scriptions for the video lectures but also with its usage in down stream tasks such as

Keyword Search (KWS).

The main contributions of this thesis are as follows;

(i) We collected spoken lecture data in English and in Turkish.

(ii) We built hybrid acoustic model and end-to-end ASR systems for spoken lecture

processing.

(iii) We utilised large amounts of out-of-domain data for building systems and applied

adaptation with in-domain data using transfer learning to remedy the limited data

in the lecture domain.

(iv) We investigated both speaker adaptation and acoustic condition adaptation.
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(v) We compared the performance of hybrid acoustic model and end-to-end ASR

systems in adaptation.

The rest of the thesis is organised as follows:

• In Chapter 2, background knowledge on ASR systems is provided.

• In Chapter 3, the adaptation approaches used in our research are explained.

• In Chapter 4, the dataset used for training and adaptation is described.

• In Chapter 5, the empirical results and discussion are provided.

• In Chapter 6, conclusion is given.
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2. BACKGROUND

This chapter provides background information both on Neural Network-Hidden

Markov Model (NN-HMM) and end-to-end ASR systems.

2.1. Statistical ASR

The task of Automatic Speech Recognition is to transduce a sequence of acoustic

features that belong to an utterance into its linguistic representation. This can be

expressed as predicting the most likely word sequence, Ŵ , given the acoustic features,

X. This is formularised as:

Ŵ = arg max
W

P (W |X)

= arg max
W

P (X |W )P (W )
(2.1)

where W is a word sequence. Here P (X | W ) is obtained with the acoustic model

(AM) and P (W ) is obtained with the language model (LM). For the acoustic model,

words are generally split into smaller sub-units like sub-words, phonemes, or context

dependent phonemes. The acoustic model assigns a probability to each acoustic feature

vector given a sub-unit and the language model gives the probability to each sequence

of words. The language model reduces the search space and enables to distinguish

acoustically similar word sequences by assigning higher probability to semantically

more likely word sequences [16]

2.2. GMM-HMM Acoustic Models

Before the resurgence of neural networks, the GMM-HMM acoustic modelling

was state of the art for ASR. The GMM is used to model the likelihood of an acoustic

input given the HMM state, and the HMM is used to model temporal variation in

speech. Likelihood of states are combined with other knowledge sources like lexicon
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and language model to construct a search graph. Then via a decoder possible text

sequence hypothesises for acoustic sequence are extracted from search graph. Training

is performed with Expectation Maximisation algorithm.

A typical GMM-HMM training consist of multiple stage training. In the first

stage, words are represented with Context Independent (CI) phonemes and GMMs are

initialised with flat start (i.e phonemes are aligned to feature vectors with equal amount

of time). After CI phoneme based GMM-HMM converges, training set is aligned with

this model. Then in the second stage, CI phonemes are replaced with Context Depen-

dent (CD) phonemes (typically tri-phone). Using previously aligned training dataset,

a new CD GMM-HMM is initialised and trained until it converges. Finally this model

is refined by doing an alignment followed by a retraining procedure with additional

transformation applied to input vector like Linear Discriminant Analysis (LDA) Max-

imum Likelihood Linear Transform (MLLT) and Feature Space Maximum Likelihood

Linear Regression (fMLLR) [17,18].

2.3. NN-HMM Hybrid Models

In hybrid acoustic models [19], a neural network is used to produce posterior

distributions over tied HMM states for each frame. These posteriors are divided by

states’ prior distribution to obtain likelihood of acoustic input given the HMM state.

Then the likelihood of the states are integrated into search graph for decoding.

Although hybrid systems are less appealing compare to end-to-end neural trans-

ducer approaches, they have the advantages of easily integrating other knowledge

sources, such as specialised lexicons [20]. They also require less data for training a

neural network model compared to training a neural network model in an end-to-end

setting that is comparable in size [21].
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2.3.1. Cross Entropy Training

In the Cross Entropy (CE) training, the neural network acoustic model is trained

with the objective of maximising the log-likelihood of a given HMM state alignment for

an acoustic feature sequence [22]. Since the output of the neural-network is a posterior-

like distribution, maximising the the log-likelihood of the given HMM state is achieved

by minimising negative cross entropy loss between the posterior distribution produced

by the acoustic encoder and the given state alignment. Then the loss function for the

neural-network becomes;

LCE = −
∑
u∈U

Tu∑
τ=0

logP (Mτ (Wu) | oτ ) (2.2)

where U is the utterance set, Wu is the word sequence for the utterance u and Mτ (Wu)

is the HMM state at time τ in the corresponding HMM state alignment and, the oτ is

the acoustic input at time τ . The HMM state alignment for the training set is obtained

through a previously trained GMM-HMM model.

During inference the posterior distribution produced by the encoder is divided by

the state priors to obtain likelihood of the states for decoding.

2.3.2. Maximum Mutual Information Training

In the MMI training, the acoustic encoder is trained by maximising mutual in-

formation between acoustic sequence and the corresponding word sequence [23]. The

objective function FMMI is;

FMMI(θ) =
∑
u∈U

log
Pθ(Ou |M(Wu))P (M(Wu))∑
û∈U Pθ(Ou |M(Wû))P (M(Wû))

(2.3)

where Ou is the acoustic sequence for the utterance u and M(Wu) is the correspond-

ing HMM state sequence. The numerator is the likelihood of the acoustic sequence



7

given the correct word sequence, and the denominator is the total likelihood of the

acoustic sequence given all possible word sequences in the dataset. The computation

of the denominator requires to loop through all the possible word sequences and it is

extremely expensive. To overcome this issue, two methods has been proposed, these

are lattice-based and lattice-free methods. Their details are explained in the following

sub-sections.

In the lattice based approach, instead of computing the total likelihood of an

utterance with all possible given word sequences, the total likelihood is approximated

with a lattice containing n-best hypothesises obtained through decoding the utterances

with a previously trained GMM-HMM system [23].

In the lattice-free approach, the corresponding HMM sequence of the utterances

is generated with a phone level sequence instead of a word sequence [24]. Additionally,

to reduce the total number of states even further a decoding graph is generated by com-

posing all HMM sequences. Finally the total likelihood of the utterance is computed

with this graph.

2.3.3. Neural Network Architectures in Hybrid Models

Different neural network architectures can be used to obtain posterior distribu-

tion of HMM states. In Deep Neural Network (DNN), Time Delay Neural Network

(TDNN) and Convolutional Neural Network (CNN) based architectures, the posterior

distribution of HMM states for a frame xτ is conditioned on its neighbours. The width

of the context in DNN based architectures is designated by how many acoustic features

are concatenated, in CNN based architectures it is a function of kernel sizes, strides

and the depth of the network architecture. In uni-directional RNN architectures, the

posterior distribution of HMM states for acoustic frame xτ is conditioned on the whole

history, x0, x1, ..., xτ , while in bi-directional RNN architectures it is conditioned on

the entire input sequence. In the recently proposed transformer based architectures,

the posterior distribution is also based on its entire input sequence, while this can be
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adjusted by a masking procedure.

The details of the architectures used in the experiments with hybrid acoustic

models are explained in the following sub-sections.

2.3.3.1. DNN-CE. Before training with DNN-CE model, first a GMM-HMM model

is trained to obtain HMM state alignments for the training data. The number of tied

HMM states in the GMM-HMM model determines the number of output classes in the

DNN-CE acoustic model.

The DNN-CE acoustic model has a DNN based network architecture and is

trained with cross entropy objective function. In the experiments, the p-norm non-

linearity function is used in-between layers for this architecture. The p-norm non-

linearity function is y = ‖x‖ = (
∑

i |xi|p)1/p where p is 2 and the vector x represents

a group of inputs [25]. The p-norm non-linearity function reduces the dimension of

the hidden vectors based on the group size. This also reduces the total number of

parameters in the model [25].

The acoustic input vectors are concatenated with a fixed number of context in

both directions, x̂Ti = [xTi−l, x
T
i−l−1, ..., x

T
i , ..., x

T
i+l−1, x

T
i+l]. A transformation matrix is

constructed with Linear Discriminant Analysis (LDA) using aligned training data, and

the input vector x̂i is pre-conditioned before being fed to the network.

At the last layer, softmax function is applied to approximate posterior distribution

of HMM states. The network is trained by minimising the negative cross entropy

between produced posterior distribution and the aligned HMM state, as explained in

the section 2.3.1

2.3.3.2. TDNN-CE. Time Delay Neural Network (TDNN) uses time dilation in hidden

layers to represent relationship between events in time [26]. Contrary to DNN based

architectures, where all the layers in the network learns representations for the same
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context, in TDNN based architectures, the first layer learns representations for a narrow

context while the higher layers learns representations for a wider context. Hidden

vectors at each layer are sub-sampled, which results in reduction in computation and

model size [6]. The forward pass procedure with sub-sampling is shown in the Figure

2.1

Layer-1

Layer-2

Layer-3

Layer-4

Layer-5

Layer-6

Softmax

Acoustic
Input

Figure 2.1. Computation in TDNN with different input context at each layer

As with the DNN-CE model, a previously trained GMM-HMM model is used to

obtain HMM state alignments for the training data. In the experiments, the training

set is augmented with speed and volume perturbation [6]. The input features are

concatenation of 5 40 dimensional Mel-Frequency Cepstrum Coefficients (MFCC) and

a 100 dimensional i-vector representation, which, in total, is a 300 dimensional vector.

The model is trained with cross entropy loss function as in the DNN-CE training.

2.3.3.3. TDNN-LF-MMI. TDNN-LF-MMI acoustic model has a similar network ar-

chitecture with the TDNN-CE acoustic model, however it is trained with Lattice-Free

Maximum Mutual Information (LF-MMI) objective function. Training a TDNN-LF-
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MMI model doesn’t require a prior GMM-HMM training to obtain HMM state align-

ment for acoustic sequences. However a previously trained GMM-HMM model is used

to obtain phone-level alignments of the training data because the forward-backward

computation for denominator graph is memory intensive [24]. These alignments are

used for building a phone level n-gram language model to construct a denominator

graph. Additionally, the phone-level alignments of the training data are utilised to split

utterances into less than 1.5 seconds of chunks. And lastly, to reduce the computation

cost further, the LF-MMI objective function is computed using neural network out-

puts at one third of the standard frame rate [24]. Dependency to a previously trained

GMM-HMM model can be avoided with adequate computation resources and some

modification to HMM topology [27]. In addition to LF-MMI training, the TDNN-

LF-MMI model is regularised with cross entropy loss function using soft alignments

obtained in forward-backward computation.

2.3.4. Language Model in Hybrid Systems

Language models in the hybrids are usually n-gram based models which can

naturally be integrated into the search graph. However, neural-network based language

models may also be used for re-scoring the n-best hypothesis or the lattices obtained

through a decoder [28].

N-gram language models are statistical models that assign a probability to the

next word given the previous n − 1 words. The n-gram language models are trained

with large text corpora, however some of the n-grams may not be present in the text

corpora. To overcome this problem different smoothing and/or back-off methods are

applied [29,30].

2.4. End-to-End Neural Transducer

In end-to-end neural transducer systems [31–33], an acoustic encoder is used

to embed acoustic input sequence, x1, x2, ...xT , into its high level representations,
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z1, z2, ..., zT , and a neural network decoder is used to obtain sequence hypotheses at

the grapheme level conditioned on the embedded representations. The encoder and

the decoder are jointly trained.

2.4.1. CTC Training

Connectionist Temporal Classification (CTC) is a way of assigning a probability

to a mapping of an input sequence X = [x1, x2, ...xT ], such as audio, to an output

sequence Y = [y1, y2, ...yU ], such as transcription, when there is no alignment present

between them [34]. To obtain probability of a sequence, CTC marginalises over all

valid alignments for the output sequence Y . More precisely, for a given single pair

(X, Y ), the CTC objective is to maximise;

P (Y |X) =
∑

A∈AX,Y

T∏
t=1

pt(at |X) (2.4)

CTC collapses repeated characters in an alignment to obtain its corresponding out-

put sequence. However a straightforward collapsing would fail to capture an output

sequence which contains repeated characters in it, such as hello. To overcome this

problem, CTC introduces a new token ε. This token is placed at the beginning, end,

and between every token in the output sequence. By doing so, the target sequence

becomes Z = [ε, y1, ε, y2, ε, ...ε, yU , ε]. After repeated characters are collapsed, finally

ε token is removed and an alignment for the corresponding sequence is obtained. An

example of this process is shown in Figure 2.2. Hence every alignments that collapses

into the target sequence after this process is a valid alignment.

Marginalising over all valid alignments can be too slow to compute. As a work

around, dynamic programming is used to compute the sum of valid alignment probabil-

ities. To achieve this, each token in the target sequence Z, is allowed to have transitions

to itself and to the next token. To account for the alignments where ε symbol doesn’t

occur between two tokens, each token that is present in the original sequence Y is

allowed to have a transition to the next token in the sequence Y , unless they are the
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First, merge repeat 
characters.

Then, remove any ϵ
tokens.

The remaining characters 
are the output.

h e l l o

h e l l o

h e ϵ l ϵ l o

h h e ϵ ϵ l l l ϵ l l o

Figure 2.2. CTC alignment steps. This figure is taken from [1] and it is licensed

under Creative Commons Attribution CC-BY 4.0 [2].

same token. An example of this computation for an acoustic input sequence of length

6 and output sequence of [a, b] is shown in Figure 2.3.

x1 x2 x3 x4 x5 x6

ϵ

ϵ

ϵ

a

b
Two final
nodes

Figure 2.3. CTC cost computation with dynamic programming. This figure is taken

from [1] and it is licensed under Creative Commons Attribution CC-BY 4.0 [2].

2.4.2. Byte Pair Encoding

Byte Pair Encoding (BPE) is used to split words into its sub-tokens to create tar-

gets for the end-to-end model training. BPE originally proposed as a data compression

algorithm [35] that iteratively replaces the most frequent pair of bytes in a sequence

with a single unused byte. BPE is slightly modified to perform sub-word tokenization,
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such that, instead of replacing a pair of tokens with the new one, they are merged and

added to the token set.

The algorithm works as follows: first the symbol vocabulary is initialised with

single characters and words are represented with the current symbol set and a special

character that indicates the end of word, </w>. Then, the algorithm loops through all

the words and counts the occurrences of consecutive tokens. Finally the most frequent

pair of tokens is merged in all occurrences and added to the vocabulary of symbols. This

process is repeated until the number of symbols in the vocabulary equals the desired

vocabulary size. BPE enables even the encoding of the unseen words by splitting them

into known tokens that is present in the vocabulary. An example for this could be

the following; athazagoraphobia = [’ ath’, ’az’, ’agor’, ’aphobia’]. BPE would only

introduce unknown token when there is a symbol in the word that is not present in the

token set.

2.4.3. Acoustic Model in End-to-End Systems

Different neural network architectures can be used to model the encoder and the

decoder in the end-to-end ASR systems.

The speech transformer [36] acoustic model is a transformer [37] based encoder-

decoder network inspired by its success in the NLP field [38,39].

The encoder part is composed of encoder-transformer blocks and a pre-processor

module, M , which consists of convolutional layers. An encoder-transformer block con-

sists of a Multi Head Attention (MHA) layer followed by a two-layer feed forward neural

network. Layer norm [40] is applied to hidden vectors both before the MHA layer and

the feed forward network. There are two residual connections in a encoder-transformer

block, one adds the inputs (before layer norm is applied) to MHA layer to its output,

and the other one adds the input (before layer norm is applied) to feed forward neural

network to its output. The acoustic input sequence is pre-processed and down-sampled
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by the pre-processor module M before being passed to the encoder-transformer.

The decoder part consists of only decoder-transformer blocks. A decoder-trans-

former block is similar to an encoder-transformer block, except it has an additional

masked MHA layer preceding to the MHA layer. The masked MHA layer is used to

attend only the previous tokens, and the regular MHA layer is used to attend the

contextual acoustic representations. A depiction of speech transformer is shown in

Figure 2.4

Layer Norm

Feed-Forward
Network

Layer Norm

Multi-Head
Attention

Linear

Pre-processor

Layer Norm

 

Layer Norm

Feed-Forward
Network

Layer Norm

Multi-Head
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Layer Norm
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Network

Layer Norm
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Attention
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Masked
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Encoder 
Outputs

Character 
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Input

Outputs
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Output
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Figure 2.4. Speech Transformer
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2.4.4. Language Model in End-to-End Systems

Language models in End-to-End systems are usually neural-network based models

which can be used for rescoring n-best hypothesis or be integrated to the system during

decoding [33]. Different neural-network architectures can be used to train a language

model.
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3. ADAPTATION METHODS

In neural networks, multi-task learning has been employed to learn intermediate

level features that are useful for various tasks [10, 11]. Pretraining is another possible

approach to implicitly learn intermediate representations for different tasks [41, 42].

It has been shown that the intermediate layers in neural networks trained on speech

data discover useful representations for various tasks, while the higher layers learn task

specific representations [43]. Multi-task learning in speech processing can be applied

to the same task (e.g. speech recognition) but on different domains (conversation vs

read speech) or it can be applied to different tasks (phoneme recognition vs audio

classification).

Numerous transfer learning approaches have been used in speech recognition for

adaptation purposes [9]. In the early works, domain and speaker adaptation have been

attempted with adapting network parameters using Linear Input Network [44]. This

has lead to more advanced methods like Linear Hidden Networks (LHN) in which the

adaptation is employed to a newly added linear network that is placed between the

last hidden layer and the output layer [45]. It has been shown that multi-task learning

by training on different level of phonemes (monophone, senone) supported by LHN

adaptation helps to deal with unseen senone problem [46]. Several transfer learning

approaches, including multi task learning, has been studied for speaker adaptation [47].

Recently popularised weight transfer methods can be taught as a type of LHN

based adaptation. In the weight transfer approach the last layer of the network is

usually not transferred for the reason that the phone set in the source domain and

in the target domain are different. Hence the last layer is either replaced with a

domain specific layer or a new layer is added and the whole or a part of the network

is adapted [12]. However, if the source and the target domain share the same phone

set, the last layer modification may not be needed. In fact it is shown that the best

improvement in Word Error Rate (WER) is obtained when the adaptation was done
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on the whole network with the last layer included while adapting a model trained

on Librispeech data with WSJ data [12]. This is particularly useful when the target

dataset is very small compared to the source dataset [48].

In this work we apply adaptation with transfer learning in 2 different setups for

spoken lecture domain adaptation in both hybrid acoustic models and the acoustic

models in the end-to-end systems. To apply transfer learning for cross entropy based

hybrid models, first frame level alignments of the adaptation sets are obtained using

the GMM-HMM source model trained with the out-of-domain data. Then, the cross-

entropy based hybrid source model is adapted using frame level alignments of the

adaptation data. For the LF-MMI based hybrid models, lattices that contain different

pronunciations for the adaptation dataset are generated first using the same GMM-

HMM source model. Then using the lattices, the nominator and denominator graphs

are built for adaptation sets that will be used for transfer learning on LF-MMI based

hybrid source models. In the end-to-end system, tokenizing the transcription of the

adaptation set with the same tokenizer used in the source model is sufficient to apply

transfer learning with CTC training. The details of the adaptation setups are described

in the following sections.

3.1. Adaptation in Setup-1

In this approach we train the source model with an out-of-domain data and then

adapted the whole network with an in-domain adaptation data. A depiction of this

process is shown in Figure 3.1. In order to adapt the whole network without modifying

the output layer, we use a phone set for the source models that encompasses the phone

set for the target data in the hybrid acoustic models. For the acoustic model in the

end-to-end, simply using the same tokenizer with the same vocabulary enables us to

adapt the whole network. For the hybrid-acoustic models, we simply pick the last

model obtained during source model training and we retrain it with the adaptation

data for a certain number of epochs. For the end-to-end models, we train the source

model for a fixed number of epochs and then we pick a model at a recent epoch for
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adaptation. We retrain the model with the adaptation data with an early stopping

criteria.

For the purpose of assessing the contribution of speaker adaptation and acoustic

condition adaptation separately, we employ adaptations in three different settings. In

the first setting we use single speaker data from target dataset for adaptation. The

development and the evaluation datasets contain speeches from only this speaker, hence

we would be able to asses the contribution from speaker adaptation. In the second

setting we exclude this speaker and adapt the source model with the remaining data.

Doing so, we would be able to asses acoustic condition adaptation free from speaker

adaptation effect. In the last setting we use all target data available for adaptation,

this is considered as acoustic condition and speaker adaptation together.

Source Model 
Training

Out-of-Domain
 Data

In-domain 
Data

Model Adaptation

Adapted 
Model

Figure 3.1. Adaptation method in Setup-1.

3.2. Adaptation in Setup-2

To mimic multi-task learning with multi-domain training, we mix the target

dataset with source dataset while building the source model. A depiction of this pro-

cess is shown in Figure 3.2. Because we use the same phone set in hybrid acoustic
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model for both source data and target data we do not use separate last layers for the

source domain and the target domain. Instead we explicitly share all the parameters

by doing training on the mixed dataset. Since we use all the adaptation dataset during

training the source model, we do not apply speaker adaptation and acoustic condition

adaptation analysis in this setup as we did in Setup-1. We apply the same transfer

learning approach to the source model as we did in Setup-1 approach, which is, we

fine-tune the hybrid models with adaptation set for a fixed number of epochs.

Even tough the adaptation in Setup-2 has the advantage of getting a better source

model by exposing it to the adaptation set during training, it needs to be trained from

scratch every time a new batch of in-domain data arrives. However, the source model

in Setup-1 can be trained for once and later it can be adapted every time a new batch

of in-domain data arrives.

Source Model 
Training

Out-of-Domain 
Data

In-domain 
Data

Model Adaptation

Adapted 
Model

Figure 3.2. Adaptation method in Setup-2.
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4. DATASET

This chapter explains English and Turkish datasets used in ASR system devel-

opment and adaptation.

4.1. English Dataset

4.1.1. English Lecture Dataset

For English lecture dataset, we have collected video lectures prepared at MEF

University for flipped learning. The video lectures were recorded in a studio setting

and they mostly contain planned speech.

The English lecture dataset is composed of 119 video lectures, representing about

10 hours of speech, of which female speakers comprise about 7 hours and 45 minutes

and male speakers comprise about 2 hours and 15 minutes. The dataset contains

courses from engineering (6 hours) and social sciences (4 hours). The dataset is divided

into disjoint adaptation, development and evaluation parts. The development and

evaluation sets contain video lectures from one female speaker. The development set is

composed of 8 video lectures for Circuit Analysis course and contains about 45 minutes

of speech. The evaluation set contains 15 video lectures for Signal and Systems course

and contains about 1 hour and 15 minutes of speech. The remaining data is set apart

as the adaptation part.

The adaptation part of the English lecture dataset is divided into 2 parts. These

parts are named as SLP-1 and SLP-2 adaptation sets. SLP-1 adaptation set contains

27 video lectures given by one female speaker with a total duration of 2 hours and 15

minutes. This speaker is the same speaker that development and evaluation sets are

composed of. In other words the video lectures in SLP-1, development and evaluation

sets are all prepared by the same speaker. The SLP-2 adaptation set contains 69 video
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lectures for engineering and social sciences courses with a total duration of 5 hours and

45 minutes. There are 3 female and 3 male speakers in this set. The details of the

English lecture dataset are summarised in Table 4.1 and 4.21 .

Table 4.1. Text characteristic of English lecture dataset.

SLP-1 SLP-2 Development Evaluation

Number of lectures 27 69 8 15

Number of segments 1073 5485 385 652

Number of words

in transcriptions
16 735 43 064 5574 9787

Table 4.2. Audio characteristic of English lecture dataset.

Characteristics SLP-1 SLP-2 Development Evaluation

Total duration 2h 15m 5h 45m 45m 1h 15m

-Female 2h 15m 3h 30m 45m 1h 15m

-Male 0 2h 15m 0 0

Mean duration 5m 4s 5m 5m 44s 4m 58s

Unique speaker 1 6 1 1

-Female 1 3 1 1

-Male 0 3 0 0

To build a text corpus for English lecture dataset, we collected transcriptions of

MIT open lectures given in Digital Signal Processing [49], Circuit Analysis [50] and

Signal and Systems [51] courses. We also use the transcriptions of SLP-1 adaptation

dataset along with content of the slides for lectures in SLP-1 set. It contains 23.215

sentence composed of a total of 400.1k words.

4.1.2. TEDLIUM

Tedlium dataset [52] is a curated corpus developed for building ASR systems, ex-

tracted from TED video talks. The recordings are generally uninterrupted and planned

1h: hour, m: minute, s: second.
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talks as in the English lecture dataset.

Table 4.3. Tedlium corpus text characteristics.

Train Dev

Number of talks 774 19

Number of segments 56.8k 2k

Number of words 2.56M 47k

The training set of the corpus is composed of 774 talks, representing 118 hours

of speech. This set consists of 666 unique speakers, of which male and female speakers

constitute 82 and 36 hours of speech respectively. The development set is composed

of 19 talks, representing 4 hours of speech, which contains 3 hours of male and 1 hour

of female speakers. The characteristics of the corpus in terms of text and audio are

shown in more detail in Table 4.3 and 4.4 respectively.

Table 4.4. Tedlium corpus audio characteristics.

Train Dev

Total duration 118h 4m 48s 4h 12m 55s

-Male 81h 53m 7s 3h 13m 57s

-Female 36h 11m 41s 58m 58s

Mean duration 9m 9s 13m 18s

Number of

unique speakers
666 19

A text corpus is also shared with Tedlium data for language modelling. The total

number of sentences in the corpora is about 12.2M, the details are given in Table 4.5.

The total number of words is about 229.19M.
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Table 4.5. Collection of corpus for LM training.

Corpus
Number of

Sentence

Common Crawl 1.194.029

Europarl V7 180.541

109 FR-EN 900.530

News-com. v8 32.234

News 9.593.018

Yandex 1M 350.000

Total 12.250.352

4.2. Turkish Dataset

4.2.1. Turkish Lecture Dataset

For Turkish lecture dataset, we have collected video lectures prepared for Law

courses offered in Turkish at MEF University for flipped learning. The video lectures

were recorded in a studio setting and they mostly contain planned speech. The dataset

is divided into disjoint adaptation, development and evaluation sets.

The adaptation set, which is called SLP-3, is composed of 194 video lectures

coming from 17 different law courses. The total duration of the dataset is about 31

hours and 17 minutes. It contains 4 female and 4 male speakers. The mean duration

of the recordings is about 9 minutes and 40 seconds and they are split into 27.488

segments with mean duration of 3.2 seconds. The data set contains 183.970 words in

total.

The development set is composed of 22 video lectures coming from three different

law courses with a total duration of about 4 hours. It contains 2 male speakers and

1 female speaker. Total duration of the recordings coming from the female speaker

is about 2 hours and 14 minutes. While the SLP-3 adaptation dataset contains some

recordings that belongs to the male speakers, it doesn’t contain any recording from
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Table 4.6. Audio characteristics of Turkish lecture data.

SLP-3 Developement Evaluation Total

Number of Lectures 194 22 28 244

Total Duration 31h 17m 4h 3h 51m 39h 8m

Male 18h 14m 1h 46m 2h 59m 22h 59m

Female 13h 3m 2h 14m 0h 52m 16h 9m

Number of Unique Speaker 8 3* 4* 11

the female speaker. The mean duration of the recordings is about 10 minutes and 48

seconds and they are split into 4081 segments with a mean duration of 3.2 seconds.

The development set contains 24.276 words.

The evaluation set is composed of 28 video lectures coming from 4 different law

courses with a total duration of about 3 hours and 51 minutes. It contains 3 male

speakers and 1 female speaker. The recordings belong to the female speaker comprise

of about 52 minutes. The SLP-3 adaptation dataset contains some recording from the

two of the male speakers while others are excluded. The recordings have about a mean

duration of 8 minutes and 16 seconds and they are split into 3146 segments with a

mean duration of about 4 seconds. The evaluation set contains 20.793 words.

The details of the dataset are shown in Table 4.6. Two speakers from the devel-

opment set and 2 speakers from the evaluation set have recordings in SLP-3 adaptation

set, this is indicated with an asteriks symbol in the table.

4.2.2. TuskishBN dataset

Turkish Broadcast News (TurkishBN) dataset is a collection of news segments

from 4 news outlets curated for ASR applications [53]. It contains about 194 hours of

speech and 1.3M words in the reference transcriptions. The dataset is partitioned into

disjoint training, held-out, and test sets. Tuskish News corpus is a collection of news

collected from Turkish newspapers during the collection of TurkishBN dataset and it

contains 182.3M words.
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5. EXPERIMENTS AND RESULTS

5.1. Experimental Setups

In this section we describe the experimental setups in hybrid acoustic models and

in end-to-end systems.

5.1.1. ASR Systems with Hybrid Acoustic Models

In this section we describe the language model and acoustic models used in ASR

systems with hybrid acoustic models. We built two baseline models one with SLP-1

data and the other one with SLP-1 and SLP-2 data. For adaptation we built source

models in two setups, in Setup-1 the source models were trained using only Tedlium

dataset, and in Setup-2 they were trained using Tedlium, SLP-1, and SLP-2 datasets.

We used the same language model when decoding development and evaluation sets in

English Lecture data in all setups. We will start with explaining the language model

in the following sub-sections, then, we will provide details of the acoustic models and

training procedure for both the baseline acoustic models and the source acoustic models

used in the adaptation experiments.

5.1.1.1. Language Model. For the English system, we used the text data explained

in the section 4.1.1 for building the language models. The final model used in the

experiments is a 4 gram Kneser Ney [54] smoothed language model. We built 3-gram

and 4-gram language models with various smoothing approaches. The model yielding

the lowest perplexity in the development set was chosen for the experiments.

5.1.1.2. DNN-CE Acoustic Models. The network architecture for the DNN-CE mod-

els is shown in Table 5.1. The Layer column shows the transformations applied to

each layer. The Input Context column indicates that the splicing done over time of the
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input vectors to that layer. The square bracket implies that all the vectors in-between

boundaries are concatenated, and the curly bracket indicates the splicing is done with

selection. So an input context of [−4, 4] means that the input vectors are concate-

nated from t− 4 to t + 4. Since the input context is constant through the network in

DNN-CE architecture, there is no splicing over time in the hidden layers. The LDA

Transform layer is an LDA-like transformation matrix constructed with accumulated

statistics of the spliced acoustic features and it is kept constant during training. This

layer serves as a normalisation layer. The Affine-PNorm-Norm layer is composed of an

affine transform, p-norm non-linearity function and a normalisation step respectively.

The p-norm non-linearity function is applied with p = 2 and group size of 5 in baseline

models, while in source models the group size is 10. The normalisation step is just

an l2 normalisation applied to hidden activations; x̂ = x
‖x‖2

. The output dimensions

of the hidden layers in the baseline models are shown in Table. 5.1, (400 − 80) indi-

cates the output dimension of the affine transform and p-norm non-linearity function

respectively. For the source models, the output dimension of the affine transform is

3000. Since the p-norm is applied with a group size of 10, the output dimensions of

the hidden layers in source models become (3000−300) with the same notation. While

the number of hidden layers in the baseline acoustic models is 4 as shown in Table 5.1,

there are 6 hidden layers in the source models. The total number of parameters in the

baseline acoustic models is around 560k while in the source models it is around 6.81M.

The input features are 13 dimensional MFCC with delta, delta-delta and pitch features

which adds up to a 40 dimensional input vector.

The DNN-CE acoustic models is trained for 20 epochs with decaying learning

rate starting from 0.02 until it reaches 0.004 in both baseline setups. For the source

acoustic models, they are trained for 10 epochs with a mini-batch size of 256 and

decaying learning rate starting at 0.001 and it until reaches 0.0001 in both setups.

5.1.1.3. TDNN-CE Acoustic Models. The network architecture for the TDNN-CE

models is shown in Table 5.2. The LDA Transform layer is obtain in the same way as

in DNN-CE acoustic models. The Affine-ReLU-Norm layer is composed of an affine
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Table 5.1. DNN-CE network architecture for baseline systems.

Layer No Layer Input Context Input Dim Output Dim

0 LDA Transform [-4, 4] 360 360

1 Affine-PNorm-Norm {0} 360 400-80

2 Affine-PNorm-Norm {0} 80 400-80

3 Affine-PNorm-Norm {0} 80 400-80

4 Affine-PNorm-Norm {0} 80 400-80

5 Affine-Softmax {0} 80 3680

transform matrix followed by a ReLU non linearity and an l2 normalisation step. The

input features to the LDA Transform layer is concatenation of 5 consecutive 40 dimen-

sional MFCC feature vectors, xt−2, xt−1, xt, xt+1, xt+2, and a 100 dimensional i-vector

representation of the acoustic input at time t. The input to a hidden layer H l with an

Input Context of {-3, 0, 3} is the concatenation of hidden activation of the layer H l−1

at the times t − 3, t, t + 3. The receptive field of the last layer is 21 frames with 13

at the left context and 7 at the right context. The network architectures for baseline

acoustic models and source acoustic models are exactly the same in both setups except

for the output dimension of the last layer which depends on the number of tied HMM

states in the previously trained GMM-HMM acoustic models for the respective models.

The total number of parameters for the baseline acoustic model trained with SLP-1

data set is 7.67M and it is 7.86M for the model trained with SLP-1 and SLP-2. For

the source model in Setup-1, the total number of parameters is 7.89M and it is 7.85M

in Setup-2.

The training sets are augmented with speed and volume perturbation in advance

to training. This effectively increases the training examples by 2 fold. All the acoustic

models are trained for 2 epochs with decaying learning rate starting at 0.0015 and until

it reaches to 0.00015.

5.1.1.4. TDNN-LF-MMI Acoustic Models. The network architecture for the TDNN-

LF-MMI acoustic models is shown in Table 5.3. The definition of the layers is the same
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Table 5.2. TDNN-CE network architecture.

Layer No Layer Input Context Input Dim Output Dim

0 LDA Transform [-2, 2] + [i-vector] 300 300

1 Affine-ReLU-Norm {0} 300 650

2 Affine-ReLU-Norm {-1, 0, 1} 1350 650

3 Affine-ReLU-Norm {-1, 0, 1} 1350 650

4 Affine-ReLU-Norm {-3, 0, 3} 1350 650

5 Affine-ReLU-Norm {-6, -3, 0} 1350 650

6 Affine-Softmax {0} 650 3680

with those in the TDNN-CE model except the hidden layer in the TDNN-LF-MMI

model applies batch normalisation instead of l2 normalisation after ReLU non-linearity

step. The batch norm is applied with the following formulation along side the batch

dimension,

X̂ =
X − E[X]

std(X)

where E[·] is the expectation operation and std(·) is the standard deviation of the

input. During inference, the expectation and the standard deviation are replaced with

the accumulated statistics of the hidden activations in training. The training for the

baseline model with SLP-1 didn’t converge despite the efforts of training the model

in different sizes. The total parameters for the baseline model trained with SLP-1

and SLP-2 datasets is about 8.37M, for the source models it is about 8.52M in both

adaptation setups.

The input to the model is the same with the TDNN-CE model, five 40 dimensional

MFCC vectors and i-vector representation of the middle feature vector. The receptive

field of the last layer with the given splicing options in Table 5.3 is 27 time frames, 16

on the left and 10 on the right context. The training set is augmented with speed and

volume perturbation as in the TDNN-CE training. The baseline model is trained for

12 epochs with a decaying learning rate starting at 0.001 and stopping at 0.0001, and

the source model is trained for 4 epochs with the same scheduler.
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Table 5.3. TDNN-LF-MMI network architecture.

Layer No Layer Input Context Input Dim Output Dim

0 LDA Transform [-2,2]+[i-vector] 300 300

1 Affine-ReLU-BatchNorm {0} 300 512

2 Affine-ReLU-BatchNorm {-1, 0, 1} 1536 512

3 Affine-ReLU-BatchNorm {0} 512 512

4 Affine-ReLU-BatchNorm {-1, 0, 1} 1536 512

5 Affine-ReLU-BatchNorm {0} 512 512

6 Affine-ReLU-BatchNorm {-3, 0, 3} 1536 512

7 Affine-ReLU-BatchNorm {-3, 0, 3} 1536 512

8 Affine-ReLU-BatchNorm {-6, -3, 0} 1536 512

9 Affine-ReLU-BatchNorm {0} 512 512

10 Affine {0} 512 3152

5.1.2. End-to-End English ASR System

Due to fact that the acoustic model in end-to-end systems require large amounts

of training data, we didn’t train baseline models in end-to-end framework. We only

trained the source models. Even tough it is shown that RNN based acoustic models

can achieve good results, they require high computational resources. Considering our

limited resources, we only did experiments with transformer based acoustic models.

We trained the acoustic model in only Setup-1 settings as explained in Section 3.2. In

the following sub-sections we will first describe the details of the speech-transformer

acoustic model and the training procedure. Then we will explain the language model

used during decoding.

5.1.2.1. Speech-Transformer Acoustic Model. We utilise ESPnet [55] toolkit for test-

ing the speech-transformer based end-to-end system. The encoder part of the acoustic

model is composed of a pre-processor module consisting of 2 convolution layers, and

a stack of 12 layers of encoder-transformer blocks. The decoder part consists of 6

layers of decoder-transformer blocks. The total number of parameters in the model
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is about 330M. The input features are 80 dimensional mel filter banks and the pitch

extracted from the acoustic input. Speed perturbation and SpecAugment [56] aug-

mentation methods are applied to the input during training. The model is trained

with minimising CTC loss function as explained in Section 2.4.1 with a target of 500

byte pairs. The byte pair model is trained with transcriptions in Tedlium dataset as

explained in the section 2.4.2. The model is trained with ADAM optimiser [57] for 50

epochs and the last 10 models are averaged to obtain the final model in both setups.

5.1.2.2. Language Model. The language model that is used during decoding is a LSTM

based model trained with byte pair tokens. The Byte Pair Encoder (BPE) is trained

with Tedlium training transcriptions targeting 500 tokens. The corpus used for LM

training was described in Section 4.1.2. The total number of words in the corpus is

about 229.19M and after tokenization with the BPE model, the total number of tokens

in the training corpus becomes 478.48M. The transcriptions of the development set in

Tedlium dataset is used for validation purpose.

The language model is a 4 layer stacked LSTM model with a unit size of 2048.

The network is trained for 2 epochs with SGD optimiser and training takes about 66

hours and 42 minutes. The total number of parameters in the model is about 136.33M.

5.1.2.3. Adapted Language Model. The adapted language model is obtained by fine-

tuning the generic LM with the text corpus prepared for English lecture data as ex-

plained in Section 4.1.1. The transcriptions of the development set are used for vali-

dation purposes during adaptation. The model is fine-tuned until its perplexity on the

validation set doesn’t decrease for 5 epochs. The model that has the lowest perplexity

on the validation set is picked as the final model.
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5.1.3. End-to-End Turkish ASR System

We train a speech-transformer model on Turkish Broadcast News dataset to ob-

tain source model in Turkish by utilising EspNet toolkit. The acoustic model has

exactly same architecture with the source model in English. A byte pair model with

vocabulary size of 500 is trained on the source dataset transcriptions to create targets

for the model. As in the source model for English, the training set is augmented with

speed and volume perturbation in advance, and SpecAugment augmentation method

is applied during training. The network is trained with ADAM optimiser for 50 epochs

and the checkpoints in the last 10 epochs are averaged to obtain the final model.

For the LM, we train a 4 layer LSTM model with a unit size of 2048 on Turkish

News Corpus [53]. The targets of the model is byte pairs obtained by tokenizing the

text corpus with byte pair model trained for the acoustic model. The corpus is a

collection of news segments in Turkish newspapers and it contains about 181M words

with about 15.13M sentences. After tokenization the total number of tokens becomes

523M. The model is trained for 2 epochs with SGD optimiser and the training takes

about 80 hours. The total number of parameters in the model is about 136.33M. We

adapt the LM with the reference transcriptions of the SLP-3 adaptation set as we did

in the English system.

5.1.4. Adaptation Methods

We adapt source models in both setups by fine-tuning all the parameters with all

or some parts of the lecture data. The details of the adaptation procedures are given

in the following subsections.

5.1.4.1. Adaptation in Setup-1. We adapt the source model in 3 different settings in

Setup-1. In the first setting the SLP-1 lecture dataset is used for adaptation. Because

the SLP-1 dataset contains recordings from the same single speaker which the develop-

ment and evaluation datasets also are comprised of, this adaptation approach is aimed
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to test adapting the source model for the speaker.

In the second setting, the SLP-2 dataset is used during adaptation phase. The

SLP-2 dataset doesn’t contain any recordings from the speaker in the SLP-1 dataset.

However, because all the lecture datasets are recorded in the same settings, this adap-

tation approach aims to test the acoustic condition adaptation scenario.

In the last setting, we use both SLP-1 and SLP-2 for adaptation. In this approach

we aim to test the adaptation when both the acoustic and speaker conditioning is

applied.

The hybrid-acoustic models in each setting are adapted by fine-tuning all the

parameters of the models for 2 epochs with a learning rate 0.0001. For the end-to-end

acoustic model, we fine-tune the the whole model with a learning rate of 0.0001 and

with an early stopping criteria. The early stopping criteria is that if the accuracy in

estimated byte pair tokens of the model does not increase for four consecutive steps

the fine-tuning process stops.

5.1.4.2. Adaptation in Setup-2. Since the source model in Setup-2 is already exposed

to the adaptation datasets (SLP-1, SLP-2) during training, we do not analyse the

acoustic and the speaker adaptation effect separately in this setup. Instead, we finetune

the whole model using both the SLP-1 and SLP-2 adaptation sets. We only build source

models in this setup with hybrid acoustic models and we finetuned the source models

for 2 epochs with a learning rate of 0.00015.

5.2. Results and Discussions

In this section we provide the empirical results for the baseline and adapted ASR

systems developed for English and Turkish spoken lecture processing (SLP).
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5.2.1. Baseline Results With Hybrid Acoustic Models for English ASR Sys-

tem

Word Error Rates (WERs) of the baseline systems on the evaluation and devel-

opment sets are given in Table 5.4. From the table we see that the baseline system is

benefited from the SLP-2 dataset significantly. Using the SLP-1 and SLP-2 datasets

together in acoustic model training improves the results in all models more than %1

in absolute compared to training the models using only the SLP-1 dataset. When we

compare the performance of different model architectures, the TDNN-LF-MMI model

outperforms the TDNN-CE model and the TDNN-CE model outperforms the DNN-

CE model. This is inline with the findings in the literature [6]. All the models perform

better on the evaluation set than on the development set. This might be because the

corpus used for training the language model contains transcriptions of the Digital Sig-

nal Processing and Signals and Systems video lectures collected from MIT open course

ware which has a significant overlap in context with the evaluation set. Note that,

the evaluation set is composed of video lectures of Signals and System course at MEF

University.

Table 5.4. WER with baseline systems.

Training Set Test Set DNN-CE TDNN-CE TDNN-LF-MMI

SLP-1
dev 7.70 7.00 -

eval 6.18 5.79 -

SLP-1 + SLP-2
dev 6.48 6.24 5.79

eval 5.21 4.38 4.15

5.2.2. Adaptation Results with Hybrid Acoustic Models for English ASR

System

5.2.2.1. Adaptation Results in Setup-1. WER results of the adapted models on the

development and evaluation sets are shown in Table 5.5. In the speaker adaptation

setting, first row of the table, the best results are obtained by adapting the TDNN-LF-

MMI model. This model yields 4.14% WER on the evaluation set and 5.40% WER on
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the development set. The TDNN-LF-MMI model outperforms the TDNN-CE acoustic

model by about 0.8% in absolute on the evaluation set and 1.5% on the development

set. On the other hand, the DNN-CE model yields the highest WERs after adaptation,

which are 9.58% on the development and 6.84% on the evaluation set.

Comparing the speaker adaptation performance of the source models with the

baseline models, it is apparent that the DNN-CE model does not beat any baseline

models. For the TDNN-CE model however, it slightly surpasses the TDNN-CE baseline

model trained with SLP-1 and under-performs the TDNN-CE baseline model trained

with SLP-1 + SLP-2. For the TDNN-LF-MMI model, the evaluation results are almost

on par with the TDNN-LF-MMI baseline model (4.14% vs 4.15%), and the results on

development set is better by about 0.4% in absolute (4.40% vs 4.79%). These can be

seen by comparing the first row of Table 5.5 with Table 5.4

When the test speaker is not included in the adaptation dataset, the second

row in Table 5.5, there is a smaller margin between the performance of the TDNN-LF-

MMI and TDNN-CE models compared to their performances in the speaker adaptation

setting. The TDNN-LF-MMI model yields 9.76% and 7.80% WERs, and the TDNN-

CE model yields 9.90% and 7.37% WERs on the development and the evaluation sets

respectively. The performance of the adapted models in this setting does not beat

any baseline model, which can be seen by comparing the second row in Table 5.5 with

Table 5.4. This suggest that, when the adaptation data is small and the test speaker

is excluded, the adaptation approach does not outperform the baseline models.

When both adaptation sets are utilised, third row in Table 5.5, performance of

the models follows a similar pattern as in the speaker adaptation setting, such that

the TDNN-LF-MMI model achieves the best results with 5.20% and 3.71% WERs

on the development and on the evaluation sets. The DNN-CE model, on the other

hand, yields the highest WERs among the three models with 9.58% and 6.45% WERs

on the development and on the evaluation sets respectively. When comparing the

performances of the adapted models with the baseline models, it can be seen that
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the adapted DNN-CE model doesn’t outperform any baseline model. For the adapted

TDNN-CE model, there is a similar situation with the speaker adaptation setting. The

adapted TDNN-CE model achieves better results than the baseline TDNN-CE model

trained with SLP-1, however it doesn’t outperform the baseline model trained with

both SLP-1 and SLP-2. It also fails to surpass the TDNN-LF-MMI baseline model.

For the adapted TDNN-LF-MMI model, it can be seen that it consistently achieves

lower WER than all of the baseline models. These findings suggest that the TDNN-LF-

MMI models have greater capability in adaptation than other models which is inline

with the findings in the literature [12]. The DNN-CE models fail to surpass baseline

models after adaptation in Setup-1.

Table 5.5. WER results with hybrid adapted models.

Training

Set

Adaptation

Sets

Test

Sets

DNN

CE

TDNN

CE

TDNN

LF-MMI

Tedlium

SLP-1
Dev 9.58 6.91 5.40

Eval 6.84 4.95 4.14

SLP-2
Dev 12.59 9.90 9.76

Eval 8.89 7.37 7.80

SLP-1 +

SLP-2

Dev 9.58 6.44 5.20

Eval 6.45 4.53 3.71

To investigate the effect of data size in speaker adaptation, we create different

subsets from the SLP-1 data set with different sizes and adapted the TDNN-LF-MMI

model with each subset. The WER results after adaptation with these subsets are

shown in Table 5.6. EE 202 and Math 226 are the courses that SLP-1 dataset is com-

posed of, Subset 1, Subset 2 and Subset 3 are random subsets of SLP-1 with different

number of utterances. The number of utterances and the total duration of the utter-

ances are given in the table.

5.2.2.2. Adaptation Results in Setup-2. WER results in Setup-2 is shown in Table

5.7. The performance of the models follows the same pattern as in Setup-1 which

is the TDNN-LF-MMI model outperforms other two models and DNN-CE model has
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Table 5.6. Speaker adaptation results with different subset of SLP-1.

Adaptation Sets
number of utterance /

total duration
Dev Eval

SLP-1
1073

121m
5.40 4.14

EE 202
503

59m
6.37 4.92

Math 226
570

62m
6.51 4.60

Subset 1
486

54m
6.30 4.61

Subset 2
686

78m
5.69 4.14

Subset 3
886

101m
5.36 4.40

higher WERs than other models. Before adaptation is applied to the source model, the

TDNN-LF-MMI model achieves 6.10% and 4.07% WERs on the development and on

the evaluation sets respectively and it outperforms the TDNN-CE model with about

0.4% in absolute. After adaptation is applied, the performance of the TDNN-LF-MMI

model improves by about 0.7% on the development set by reducing the WER from

6.10% to 5.44% and by about 0.15% on the evaluation set by reducing the WER from

4.07% to 3.92%.

Table 5.7. WER results with hybrid adapted models in Setup-2.

Training

Set

Adaptation

Set

Test

Set

DNN

CE

TDNN

CE

TDNN

LF-MMI

Tedlium

+ SLP-1

+SLP-2

-
Dev 7.45 6.60 6.10

Eval 5.55 4.49 4.07

SLP1 + SLP-2
Dev 7.28 6.40 5.44

Eval 4.87 4.11 3.92

The best results obtained with the baseline models and the adapted models in
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Setup-1 and Setup-2 are shown in Table 5.8. It is evident that adaptation methods

improve the model’s performance. It can also be seen that the model in Setup-1

outperforms the model in Setup-2 by about 0.4% in absolute on both the development

and the evaluation sets. This maybe because the source model in Setup-2 has already

been exposed to adaptation sets during training and consequently there remain less

room for improvement.

Table 5.8. Best results in the Baseline, Setup-1 and Setup-2 experiments.

Trainng Set Adaptation Set Test Sets TDNN-LF-MMI

SLP-1 + SLP-2 -
dev 5.79

eval 4.15

Tedlium SLP-1 + SLP-2
dev 5.20

eval 3.71

Tedlium +

SLP-1 + SLP-2
SLP-1 + SLP-2

dev 5.44

eval 3.92

5.2.3. Adaptation Results in End-to-End English ASR Systems

We only apply Setup-1 adaptation scheme to the end-to-end ASR system. We

apply both AM and LM adaptation in end-to-end English ASR systems. For AM adap-

tation we employ the adaptation in the same settings with the hybrid-models adapta-

tion, namely speaker adaptation, acoustic condition adaptation and both speaker and

acoustic condition adaptation. The WER results of the source and the adapted models

with no-LM, generic LM and finetuned LM are shown in Table 5.9

The speaker adaptation, second row of Table 5.9, improves the performance by

reducing the WER from 30.8% to 5.2% on the development set and from 33.7% to 7.1%

on the evaluation set without using an LM during decoding. Before the acoustic model

adaption is applied, first row of Table 5.9 the language model adaptation decreases the

WER by about 10% in absolute, by reducing the WER on the development set from

23.9% to 14.6% and reducing the WER on the evaluation set from 26.3% to 16.1%.

After acoustic model adaptation, the gain from LM adaptation become 0.7% in absolute
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for the development set, and by about 2.4% for the evaluation set. The best result

is obtained with both acoustic model and language model adaptation, which is 3.9%

on the development and 4.1% on the evaluation set. Figure 5.1 shows the accuracy

of the acoustic model on the generated byte pair tokens during adaptation. It can

be observed that the accuracy on the SLP-1 adaptation set surpasses the accuracy on

the development set in 3 epochs and it keeps increasing, while the accuracy on the

development set stays in a narrow margin. This suggests that the source model tends

to overfit on the adaptation set during adaptation fairly quickly.

Table 5.9. Adaptation results with end-to-end systems.

Acoustic Model Test Sets No-LM Generic-LM Finetuned-LM

Generic AM
dev 30.8 23.9 14.6

eval 33.7 26.3 16.1

Adapted with SLP-1
dev 5.2 4.6 3.9

eval 7.1 6.5 4.1

Adapted with SLP-2
dev 17.1 11.7 7.6

eval 16.7 13.6 6.0

Adapted with SLP-1 + SLP-2
dev 5.6 4.6 3.4

eval 6.3 5.5 3.3

When only acoustic condition adaptation is applied to the source model, third

row in Table 5.9, the reduction in WER is about 13.7% in absolute on the development

set and by about 17% in absolute on the evaluation set which is less than speaker

adaptation method. However the relative gain with LM adaptation is higher than

the relative gain in the speaker adaptation method. This might be because there is

more room for improvement with LM adaptation. It can be seen from Figure 5.2,

that the accuracy of the acoustic model on the generated byte pair tokens during

adaptation follows a different pattern from the the speaker adaptation method. Such

that, the accuracy on the adaptation set (SLP-2) does not surpasses the accuracy on

the development set and they stay at a similar level. This might be because the SLP-

2 dataset is larger in amount by about 105 minutes (4h vs 2h 16m), which prevents

the source model to overfit quickly. The adaptation stops because the accuracy on



39

the development set does not increase for 4 epochs before the model overfits on the

adaptation set (SLP-2).

Figure 5.1. Accuracy of the model during adaptation with SLP-1 dataset.

Figure 5.2. Accuracy of the model during adaptation with SLP-2 dataset.

Applying both speaker and acoustic condition adaptation, fourth row in Table

5.9, achieves lower WER than speaker adaptation on evaluation set by about 0.8%

and higher WER by about 0.4% on the development set when no LM is used during

decoding. This can be interpreted that doing adaptation with both SLP-1 and SLP-2

datasets generalises better than doing adaptation with only SLP-1 dataset based on
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the fact that it achieves lower WER on the evaluation set. Adapting the acoustic

model with the SLP-1 and SLP-2 dataset using fine-tuned LM in decoding result in

the lowest WERs in Table 5.9. The best results are 3.4% and 3.3% WERs respectively

on development and evaluation sets. Figure 5.3 show the acoustic model accuracy on

the generated byte pairs during acoustic model adaptation. It can be seen that, the

model underfits during adaptation and increasing the amount of data can result in even

better results.

Figure 5.3. Accuracy of the model during adaptation with SLP-1 + SLP-2 datasets.

Comparison of the best results obtained with the ASR systems with hybrid acous-

tic model and end-to-end ASR system is shown in Table 5.10. It can be seen that while

the best results are obtained in end-to-end system, the difference between the perfor-

mances on the development set is higher than the difference between performances on

the evaluation set. This is because the end-to-end model is adapted with the early ac-

curacy criteria on the development set, however the hybrid acoustic models are adapted

with fixed number of epochs. The development set is used to chose the weights of the

acoustic and the language models during decoding in hybrid acoustic model based ASR

systems.
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Table 5.10. Hybrid and end-to-end system comparison.

System Training Set Adaptation Set Test sets Best Results

Hybrid

TDNN-LF-MMI
Tedlium SLP-1 + SLP-2

dev 5.2

eval 3.7

Hybrid

TDNN-LF-MMI

Tedlium +

SLP-1 + SLP-2
SLP-1 + SLP-2

dev 5.4

eval 3.9

End-to-End

Speech Transformer
Tedlium SLP-1 + SLP-2

dev 3.4

eval 3.3

5.2.4. Adaptation Resulsts in End-to-End Turkish ASR System

We adapt all the parameters of the source model with Turkish spoken lecture

data by finetuning the model. Since the amount of Turkish lecture data is much larger

than English lecture data we do not stop the adaptation with an early criteria. Instead

we let the fine-tuning to run for 50 epochs and average over best 10 models in accuracy.

However it can be seen from Figure 5.4 that the validation accuracy start to decrease

after 5 epochs of fine-tuning while the training accuracy keeps increasing.

Figure 5.4. Accuracy of the model during adaptation with SLP-3 data set.

Apart from acoustic model adaptation, the language model is also adapted with

the transcriptions of the adaptation (SLP-3) dataset. Because the transcription size is
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small compared to Turkish News Corpora (183k words vs 183M words) we apply fine

tuning with early stopping criteria that if the validation perplexity doesn’t increase for

5 epochs the fine-tuning stops. Validation set is generated with transcriptions of the

development set.

The WER results of the adapted models are shown in Table 5.11. It can be seen

that, the gain in acoustic model adaptation is higher than the gain in language model

adaptation. In fact, WER gets slightly higher with adapted language model for the

development set. This suggests that the acoustic mismatch between the source dataset

and the target dataset is higher than the dissimilarity between the transcription of the

SLP-3 dataset and the news corpora.

Table 5.11. Adaptation results for Turkish spoken lecture.

Test Set Acoustic Model No-LM Generic-LM Adapted-LM

Dev
Generic AM 16.8 12.6 12.9

Adapted AM 13.6 11.8 12.2

Eval
Generic AM 15.3 14.4 13.5

Adapted AM 11.3 10.4 10.2

The WER results per speaker in the development and adaptation sets are shown

in Table 5.12. Speaker-1 has about 5 hours and 20 minutes of speech in the adaptation

set. Speaker-2 has about 3 hours and 30 minutes of speech in the adaptation set. The

adaptation set does not contain any speech from other speakers.

Table 5.12. WER results in Turkish per speaker.

Test Sets Speaker WER

Dev

Speaker-1 3.8

Speaker-2 10.7

Speaker-3 17.9

Eval

Speaker-1 11.0

Speaker-2 8.57

Speaker-4 17.7

Speaker-5 9.8
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6. CONCLUSION

Adaptation methods for limited data have been studied extensively in the liter-

ature and various approaches have been proposed for different situations. The speech

dataset collected from video lectures contains technical terms and it has its own speech

style. To apply adaptation methods to spoken lecture data successfully, the dataset

used for training the source model needs to be chosen carefully.

In this thesis, we use the Tedlium corpus as the source data set to employ adapta-

tion for English lecture data set. It has similar characteristics with the spoken lecture

data set. The speakers in the Tedlium dataset give talks about a topic in a planned

manner and in a relatively controlled environment. However it differs from the in-

domain English lecture data in terms of the content, and contrary to our in-domain

English lecture data, it mostly contains native English speakers. For the Turkish lec-

ture dataset, we utilise the TurkishBN corpus which also has similar characteristics

with the Turkish lecture dataset such that it mostly contains planned or read speech.

However, unlike the Turkish lecture data, it contains speech from various acoustic en-

vironments in addition to the speech in controlled environment generated by the news

anchors. It contains only Turkish native speakers which is also the case in the Turkish

lecture dataset.

For the English lecture dataset, we apply adaptation in two different setups with

ASR systems with hybrid acoustic models, and in only one setup with end-to-end ASR

system. In the first setup, Setup-1, we investigate the efficacy of speaker adaptation

by adapting the source model with different amount of data coming from the test

speaker. We show that with only speaker adaptation 4.1% WER can be achieved on

the evaluation set in both ASR systems. By excluding the test speaker and doing

adaptation with the remaining adaptation data, which conditions the source model to

the changes in the adaptation set like accent, acoustic environment etc., achieves 7.8%

WER in the hybrid acoustic models and 6.0% WER in the end-to-end system on the
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evaluation set. We obtain the best result when all the available in-domain data for

adaptation is used, yielding 3.7% WER with hybrid acoustic model and 3.3% WER

with end-to-end system.

In the second setup, Setup-2, we train the source model by using both Tedlium

data and English lecture data. The aim of this setup is to implicitly mimic multi-task

learning by sharing the model parameters while training the source model on different

domain data sets. We do not assign a specific output layer for each domain, instead, by

using the same phone set for both domains, we use only one output layer. Even tough

the Tedlium dataset is much larger than the in-domain data ( 118h vs 6h), the source

model is able to achieve 4.1% WER on the evaluation set. We find that while adapting

the source model trained in Setup-2 improves the performance, it fails to surpass the

adapted model obtained in Setup-1.

For Turkish lecture data we do adaptation only with end-to-end system and using

Setup-1. The performance of the source model, before adaptation is applied, on the

evaluation set is about 16.8% WER when no LM is used during decoding. Here it is

important to note that the WER obtained in the same setup with the English end-to-

end system is 33.7%. This could be because of the accent mismatch between Tedlium

and English lecture data. We observe that adapting the acoustic model improves the

results, and this isn’t always the case for language model adaptation in end-to-end

Turkish ASR system. We also observe that the performance of the model on the

development and evaluation sets varies per speaker significantly depending on how

much data from each speaker is included in the adaptation set.
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7. Saraçlar, M., H. Nock and S. Khudanpur, “Pronunciation model-

ing by sharing Gaussian densities across phonetic models”, Com-

puter Speech & Language, Vol. 14, No. 2, pp. 137–160, 2000,

https://www.sciencedirect.com/science/article/pii/S0885230800901402.

8. Dahl, G. E., D. Yu, L. Deng and A. Acero, “Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition”, IEEE Transactions on

Audio, Speech, and Language Processing , Vol. 20, No. 1, pp. 30–42, 2011.



46

9. Wang, D. and T. F. Zheng, “Transfer learning for speech and language processing”,

2015 Asia-Pacific Signal and Information Processing Association Annual Summit

and Conference (APSIPA), pp. 1225–1237, IEEE, 2015.

10. Bengio, Y., F. Bastien, A. Bergeron, N. Boulanger–Lewandowski, T. Breuel,
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