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ABSTRACT

IMPROVING IMAGE CAPTIONING WITH LANGUAGE

MODELING REGULARIZATIONS

Inspired by the recent work in language modeling, we investigate the effects of

a set of regularization techniques on the performance of a recurrent neural network

based image captioning model. Using these techniques, we achieve 13 Bleu-4 points

improvements over using no regularizations. We show that our model does not suffer

from loss-evaluation mismatch and also connect the model performance to dataset

properties by running experiments on MSCOCO dataset. Further, we propose two

different applications for our image captioning model, namely human in the loop system

and zero shot object detection. The former application further improves CIDEr score

of our best model by 30 points using only the first two tokens of a reference sentence

of an image. In the latter one, we train our image captioning model as an object

detector which classifies each objects in an image without finding their location. The

main advantage of this detector is that it does not require object locations during the

training phase.
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ÖZET

TANIM OLUŞTURMA MODELİNİ DİL

MODELLEMEDEKİ BAŞARIM İYİLEŞTİRME

TEKNİKLERİ İLE GELİŞTİRMEK

Dil modelleme konusundaki son çalışmalardan esinlenerek, bir takım başarım iy-

ileştirme tekniğinin tekrarlayan bir sinir ağına dayalı bir tanım oluşturma modelinin

performansı üzerindeki etkilerini araştırdık. Bu teknikleri kullanarak, hiçbir iyileştirme

tekniği kullanmamaya oranla performansımızda 13 Bleu-4 puan iyileştirdik. Modelim-

izde hata-değerlendirme uyumsuzluğu olmadığını MSCOCO veri setinde deneyler ya-

parak gösterdik. Ayrıca, model performansının veri kümesin özelliklerine bağladığını

gösterdik. Ek olarak, tanım oluşturma modelimizi temel alarak insan-bilgisayar hibrid

tanım oluşturma modeli ve tek seferde nesne tanıma modeli isimlerinde iki farklı uygu-

lama geliştirdik. İlk uygulama ile en iyi modelimizin CIDEr puanını bir görüntünün

referans cümlesinin yalnızca ilk iki kelimesini kullanarak 30 puan arttırdık. İkinci

uygulamamızda, tanım oluşturma modelimizi bir resimdeki nesnelerin konumlarını bu-

lamadan sınıflandıran bir nesne dedektörü olarak eğittik. Bu dedektörün temel avan-

tajı, eğitim aşaması sırasında nesne konumlarını gerektirmemesidir.
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1. INTRODUCTION

1.1. Problem Overview

Visual descriptions constitute the core of cognitive process involved in under-

standing visual scenes. Humans can describe these scenes to one another without

any difficulty thanks to their ability to make connections between visual and linguis-

tic worlds. However, modeling this task is challenging for computers for two main

reasons [1–3]:

(i) The model should be rich enough to detect objects, which is important to create

visual descriptions. Since the generated description could change significantly

from one person to another, datasets with multiple sentence annotations per

image is needed to determine important objects.

(ii) Language modeling is also necessary for describing the objects and their relation-

ship with one another in a language like English. The language model should

be capable of generating meaningful descriptions through the inferred relations

between words and detected objects.

Image classification addresses mainly the first part of this challenge. Russakovsky

et al. [4] reported that the accuracy of image classification has increased with the help

of ImageNet dataset and annual Imagenet Large Scale Visual Recognition Challenge

(ILSVRC) from 2010 to 2015. Krizhevsky et al. [5] introduced AlexNet, a type of

Convolutional Neural Network (CNN) [6], and achieved the error rate of 15.3%, which

is 10.9% better than the second-best entry on ILSVRC-2012. Afterwards, various

forms of CNNs are used in image classification (e.g. VGGNet [7], GoogleNet [8] and

ResNet [9]) and the error rate has decreased significantly.

The second part of the challenge consists of creating word representations. Each

representation should include both the desired word and its connections with other

words in the sentence. Recurrent Neural Networks (RNNs) [10], Bidirectional Recur-
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rent Neural Network [11], biterm [12] and dependency trees [13] could be used to create

these descriptions.

The generation of descriptions for visual scenes has attracted many researchers

over the last few years. Farhadi et al. [14] used a retrieval-based approach where a test

image is described with the most similar sentence in the training set. Li et al. [15] sug-

gested a similar method and combined the different parts of training sentences. Gupta

and Mannem [16] proposed a template-based method and identified the components

from the image. Several multimodal methods are also designed for both multidirec-

tional image-sentence retrieval [17] and unique description generation [1, 3, 18].

1.2. Applications

Automatically generating image descriptions could help visually impaired people

better understand the world around them. These descriptions could also be used

to support children in their education. Moreover, once an image is automatically

translated into a textual description, it could be used as a query for text-based search

engines. Last but not least, a human in the loop description generation system, where

a person creates a few words and the description generation system produces the rest

of it, could be envisioned to increase the accuracy of the generated descriptions on

one hand and to facilitate image annotation tasks on the other. People with speech

disorders could use these systems to improve their life standards. Hybrid systems could

also be used to shorten the decision-making processes for a system where a human

interpretation of a visual scene is necessary, such as surveillance.
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1.3. Related Works

1.3.1. Retrieval Based Methods

Farhadi et al. [14] suggested that the relation between images (visual scenes)

and sentences (their descriptors) could be represented in meaning space with a triplet

of <object, action, scene>. Each image and sentence is mapped to this space. A

high score between an image and a sentence is obtained when these meanings were

similar. One limitation of this method is that each component of the triplet could

take a value from a finite set. Moreover, this method creates descriptions by retrieving

sentences from the training set instead of generating unique sentences. These problems

significantly restrict the capacity of the model.

Li et al. [15] proposed an approach for generating image descriptions using web-

scale n-grams, which provides the frequency count of word n-grams from Web pages

[19]. Each image is represented with a set of triplets <objects, attributes, spatial

relationship>, similar to the work of Farhadi et al. [14]. Image features are used

to determine these triplets. Afterwards, candidate sentences, which contains similar

triplets, are collected from web scale n-gram. Descriptor generation is achieved by

combining some parts of candidate sentences. Although unique sentences are generated

with this method, candidate sentences limit the uniqueness of the descriptions.

1.3.2. Template Based Methods

Gupta and Mannem [16] generated image descriptions from the image annotation,

which is described as the labeling of images. They showed that a simple description

could be described with a set of fundamental elements, namely objects, attributes,

attribute-object pair, subject, verb and proposition. For example, “A brown dog is

sitting next to a white wall” description was represented with two objects, “dog” and

“wall”, two attributes, “brown” and “white”, two attribute-object pair, “brown dog”

and “white wall”, one subject, “dog”, one verb, “sit” and one proposition, “next to”, in

their work. Their model has produced descriptions with only two known fundamental
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elements, namely objects and attributes. Other elements are predicted from the train-

ing images. Although meaningful descriptions are generated, the sentence structure

was hand-designed. Description structure should be free of assumptions to generate

unique and complex sentences.

1.3.3. Multimodal Methods

Baltrušaitis et al. [20] defines modality as “the way in which something happens

or is experienced”. Multimodal methods refer to the models which uses multiple such

modalities (e.g. images, sound or text) [21]. Baltrušaitis et al. [20] suggested that

humans could understand the natural phenomena better by understanding the con-

nections between different modalities. Frome et al. [22] demonstrated the power of

multimodal machine learning in visual recognition by connecting image domain to text

domain. Each word in the text domain was transformed to an embedding vector via

skip-gram text model, which maps the semantically related words close to each other.

Image features were extracted with AlexNet [5] and mapped to vector embedding space

via a fully connected layer. Then, both models are trained with an objective function

which favors the equivalence of transformed image features and the embedding vector

representation of related image label (i.e. text). The authors have showed that their

model correctly classified images even when their image labels were not seen during

training.

Karpathy et al. [17] proposed to use multimodal methods for the bidirectional

retrieval of sentences and images. The retrieval problem could be stated as finding the

most relevant images for a given sentence and vice versa. The authors have showed

that the performance of the retrieval method has increased after the latent alignment

between sentence fragments, which represent the relation between two or more words

in a sentence, and image fragments, which contain the whole image and each object

in that image separately, are modeled. Each sentence is represented with multiple

fragments that are extracted with the typed dependency parser without tree structure,

which includes 48 grammatical relations [13]. Object fragments are detected with a

Regional Convolutional Neural Network (RCNN) [23]. Afterwards, the whole model
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is trained with an objective function which favors both the alignment of true image-

sentence fragments and the alignment of true image-sentence pair. The result of their

method is interpretable thanks to this image-sentence fragment alignment objective.

However, the simplicity induced by discarding tree structure also caused misalignment

of some relations.

Kiros et al. [18] used an image-text multimodal neural language model for de-

scription generation. A modified log-bilinear language model (LBLM) [24] is used to

generate the conditional probability of a word in the sentence given all previous words

and the corresponding image for that sentence. Each word in the sentence is used as

input for the model, whereas extracted image features are used as either bias or for

gating. The model was able to predict the most likely word, which should follow a given

word sequence. Image descriptions are created with extending the given word sequence

with the predicted word and repeating this process as long as desired. Although the

generated descriptions gave general information related to the image, the model had

two main drawbacks. Firstly, the variety of descriptions is limited by the initial word

sequences, since these sequences are not learned by the model but manually chosen.

Secondly, a word is related not only with the previous word sequence but also with the

following word sequence. For example, an adjective is usually followed by a noun in a

sentence. Their model ignored the influence of following word sequence on a word.

Karpathy and Fei-Fei [1] have shown that the multimodal relation between visual

and language data could be used to create image descriptions. Initially the latent rela-

tion between words and image regions are learned, similar to the work of Karpathy et

al. [17]. Afterwards, these aligned image regions and words are used to train a multi-

modal neural network for description generation. In the first part, RCNN [23] is used to

extract 19 top scoring image regions, each of which could contain one of the 200 object

classes from the detection task of ILSVRC [25]. Word representations are generated

with a Bidirectional Recurrent Neural Network (BRNN) [11]. The power of BRNN

comes from creating a word representation, which contains information about not only

with that word but also with the other words around it. Then, word representations

are aligned with a set of image regions and whole image using an alignment objective
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similar to the work of Karpathy et al. [17]. In the second part, a Multimodal RNN is

used to generate the image description. Unlike Kiros et al. [18], the authors have used

special tokens to indicate the beginning and ending of the description generation pro-

cess. The most likely word sequence for the description is found via beam search [26].

Their experiment showed that unique image descriptions could be generated with a

Multimodal RNN. Furthermore, the performance of their method has increased using

the corresponding image region-word pairs inferred by their alignment model.

Vinyals et al. [3] also used a multimodal method for description generation similar

to Karpathy and Fei-Fei [1]. Descriptions are generated with a Long Short Term

Memory (LSTM) network [27] which uses the image features as input at the first-time

step. Although the researchers did not use any alignment information, their model

outperformed the model of Karpathy and Fei-Fei [1].

1.3.4. Human in the Loop Methods

Human-computer hybrid systems have become popular in the last few years.

Holub et al. [28] proposed a human-computer hybrid technique to minimize the total

number of images that need to be labeled in order to achieve near-optimal performance

for image classification. In their work, a human labeled a set of images sequentially.

At each iteration, the expected entropy decrease introduced by labeling each image is

calculated and the image resulting in the highest decrease in entropy is labeled. They

showed that the total number of training images required to achieve near-maximal

performance with their method is less than the half of the total number of training

images required to achieve similar performances with randomly selecting images for

a human to label for text-based web image searches. In some cases, their method

achieved similar performances with less than one-tenth of total number of training

images.
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Branson et al. [29] designed a hybrid human-computer system for image classifi-

cation. In their system, humans have provided some low-level visual attributes which

are hard for computers to extract. Afterwards the class of a given object is determined

with the help of these attributes. They showed that their hybrid human-computer

system could provide up to 66% classification accuracy in comparison to 19% accuracy

obtained by only a computer vision system. Similar human-in-the loop systems could

be used to increase the accuracy of model generated descriptions for image captioning.

1.4. Contributions and Outline

In this study, we investigate the effects of a set of regularization techniques on

the performance of an description generation model using the recent advances in lan-

guage modeling [30, 31]. We aim to empirically show that the improvements achieved

with these techniques are not only specific to language modeling, but also transfers

to image captioning task as well. Similar to model proposed by Vinyals et al. [3], we

use a convolution neural network (CNN) to extract visual features from images and

and a long short-term memory network (LSTM) to generate descriptions using these

features. Using a set of regularization techniques improves our results up to 13 Bleu-4

points over using no regularizations. Further, we analyze the relationship between data

set properties and the model performance. We conclude by introducing two different

applications for our image captioning model, namely human in the loop system and

zero shot object detection. The former application further improves CIDEr score of

our best model by 30 points using only the first two tokens of a reference sentence of

an image. In the latter one, we train our image captioning model as an object detector

which classifies each objects in an image without finding their location. The main ad-

vantage of this detector is that it does not require object locations during the training

phase. We obtain up to 0.99 precision and 0.86 recall on the validation set of retail

dataset, which is described in Section 4.1, with our object detector.
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2. MATHEMATICAL BACKGROUND

This dissertation builds upon the fundamentals of machine learning. This section

presents the basic principles of machine learning and some of the main models used in

our image description generation architecture.

Through this section, we use small case letters to represent scalars (e.g., x, y),

bold small case ones to represent vectors (e.g., x,y), bold upper case ones to represent

matrices (e.g., X,Y ), calligraphic upper case ones to represent sequences (e.g., X ,Y).

If each element in the sequence is a scalar, small case letters with underscore are

used (e.g., x1, x2, . . . , xN); if each element is a vector, bold small case letters are used

(x1,x2, . . .,xN ) and so on. Additionally, an element on the ith row and jth column of

a two dimensional matrix X is represented with X[i, j], ith row of X is represented

with X[i, :] and jth column of X is represented with X[:, j]. Similar notations are also

used for vectors (e.g. x[i] for the element on ith row) and matrices with more than two

dimensions (e.g. X[i, :, :] for the matrix on ith row). In some cases, we have used these

notations to represent some other concepts, which could be inferred from the context.

2.1. Basics of Machine Learning

Machine learning is used for the extraction of latent information between an input

space and an output space when the humans are not able to obtain the exact formula

for this mapping or when the mapping is computationally expensive [32]. Let us assume

that x1 and x2 constitute the input space, y forms the output space and g(. . .) is the real

mapping from the input space to the output space so that y = g(x1, x2). If Equation

(2.1) is valid, then we can use the summation for the mapping.

∀(x1, x2) ∈ R2 : g(x1, x2) = x1 + x2 (2.1)
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Let us consider another case such that the input space consists of a set of images

and we want to map each image to a description. For example, the image in Figure

2.1 could be mapped to “There is a cat.” sentence. Although this task is trivial for

us, it is impossible to represent this mapping with a deterministic function.

We could represent the cat image with I, a matrix of size WxHxN where W,H

corresponds to width and height of the image whereas N is the number of color channels

of the image (e.g. N = 1 for gray scale images, N = 3 for RGB images). We could

also represent each word or alphanumeric symbol in the description with a vector

using either one-hot encoding or variable-sized encoding (explained in Section 2.2.5) so

that we could formulate our problem. Following the notation in Equation (2.2), the

description could be represented as Y = {y1, y2, y3, y4, y5}. Our objective is to find

the function g(I) = Y

There︸ ︷︷ ︸
y1

is︸︷︷︸
y2

a︸︷︷︸
y3

cat︸︷︷︸
y4

.︸︷︷︸
y5

(2.2)

Figure 2.1. An image with description ”There is a cat.”
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Let f(. . .) represent the predicted mapping between the input space and the

output space (i.e. f(I) = Ŷ). Our main objective in machine learning is to predict the

real mapping between the input space and the output space (i.e. g(I) = Y) so that

Equation (2.3) holds true.

∀(I) ∈ RWxRHxRN : f(I) = g(I) (2.3)

Machine learning algorithms use a loss function, L(f(. . .), g(. . .)) ,to penalize the

deviation of the predicted output from the expected output. Let us consider Equation

(2.1) as an example. If (x1, x2) = (1, 2), then the expected output is y = g(1, 2) = 3.

If the predicted output is ŷ = f(1, 2) = 8, then we could conclude that our prediction

is wrong and a loss function could be used to quantize this error. Among the many

possible alternatives, L1 loss given in Equation (2.4) and L2 loss given in Equation

(2.5) could be used for our case. In the case of MxN dimensional output matrix Y

and Ŷ where yij represents the element on ith row and jth column, Equation (2.6)

and Equation (2.7) could be used for L1 loss and L2 loss respectively.

L1(ŷ, y) = |ŷ − y| (2.4)

L2(ŷ, y) = (ŷ − y)2 (2.5)
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L1(ŷ, y) =
M∑
i=1

N∑
j=1

|ŷij − yij| (2.6)

L2(ŷ, y) =
M∑
i=1

N∑
j=1

(ŷij − yij)2 (2.7)

Our objective is to find a mapping function which gives the minimum expected

loss, E(L(ŷ, y)|y) over the input space (conditioning on y is omitted in the following

formulas for brevity). This expectation could be expressed with Equation (2.8) given

that we want to find a mapping f : x→ y. The objective function could be formulated

with Equation (2.9), where F is a set of possible functions which f is chosen from.

E(L(ŷ, y)) =

∫ ∞
x=−∞

L(f(x), y) dx (2.8)

f ∗ = argmin
f∈F

E(L(f(x), y) ) (2.9)

Unfortunately, we do not have access to all data from the input space, so both

Equation (2.8) and Equation (2.9) are intractable and we cannot find f ∗ [33].

Theorem 2.1. Weak Law of Large Numbers states that the expected value of indepen-

dent and identically distributed (i.e. i.i.d.) random numbers x1, x2, . . . , xn approaches

to the mean of these numbers as n→∞ [34].
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We could approximate the expected loss in Equation (2.8) with Theorem 2.1 given

that input samples, (x1, y1), (x2, y2), . . . , (xn, yn), are i.i.d and the number of samples,

n, is large. The final formula is shown in Equation (2.10), where our dataset includes

all input samples. Although we can find a function f ∗ where L(f ∗(xi), yi) = 0 for

0 < i ≤ n, there is no guarantee that f ∗ will also minimize expected loss outside of

our dataset. For example, we could define a function g(x) with Equation (2.11), where

the expected outcome is 0 for even numbers and 1 for odd ones. If our dataset only

contains even numbers, f ∗(x) = 0 will minimize the expected loss on the dataset ,but

the minimization will not be generalizable to the odd numbers as well. This problem

is described as over-fitting.

E(L(ŷ, y)) ≈ 1

n

n∑
i=1

L(f(xi), yi) (2.10)

g(x) =

0 if x is even,

1 if x is odd.

(2.11)

There are two main methods to prevent over-fitting. The first method suggests

that we could split the dataset into three non-overlapping sets, namely training, val-

idation and test sets. Instead of choosing the function which minimizes the expected

loss over whole dataset, we could find a few different functions which minimize the loss

on the training set. Then, the expected loss on the validation set could be utilized for

choosing the best performing function. The intuition is that given a function over-fits

on the training set, the loss on the validation set will be higher than the one on the

training set. If the validation loss is similar to the training loss, the probability of over-

fitting is small. The test set is used only once to determine the expected performance

of that best performing function. The other method is called regularization, which

includes any technique used to increase the probability of generalization even at the

cost of increasing the training loss [35]. One particular technique is to add L1 norm
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or L2 norm of the function parameters (i.e. θ) to Equation (2.9) for penalizing model

complexity. We have presented final form of the objective function in Equation (2.12)

where R(f) is the regularization loss.

f ∗ = argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi) +R(f) (2.12)

Minimization of Equation (2.12) could be achieved with two methods for a given

function f(x). The first method utilizes a search space to determine the function

parameters which gives the minimum loss. This method is not scalable, since the

search space increase exponentially with the total number of parameters.

The other method is called gradient-based optimization [35]. For the sake of

simplicity, suppose that we want to minimize the function f(x) = y with respect to

x instead of θ. We could determine whether the function f(x) will increase when x

is increased by a small positive number, ε, by examining the sign of f ′(x), namely its

derivative. Let us examine Equation (2.13) to justify this statement. There are three

cases:

(i) If f(x) also increases so that f(x + ε) > f(x), f ′(x) becomes positive. If the

function f(x) stays relatively linear in range [x − ε, x + ε], Equation 2.14 holds

true. The inequality f(x − ε) < f(x) could be inferred from the same equation,

since the left-hand side of it is positive. In this case, f(x) decreases when x is

decreased by ε.

(ii) If f(x) stays the same so that f(x+ ε) = f(x), f ′(x) becomes zero (this is called

the stationary point). In this case, either increasing or decreasing x by ε does not

change f(x), if the relative linearity condition in case (1) holds.

(iii) If f(x) decreases so that f(x + ε) < f(x), f ′(x) becomes negative. In this case,

f(x) decreases when x is increased by ε.
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f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε
(2.13)

f(x+ ε)− f(x) = f(x)− f(x− ε) (2.14)

Figure 2.2 shows f(x) = sin(x) and the sign of its derivative at x1, x1 + ε, x2, x3

and x4. Our objective is to minimize f(x) by either increasing or decreasing x by ε. At

point x = x1, we could increase x1 by ε to decrease f(x1) as suggested by case 3. At

point x = x1 + ε, the sign of gradient did not change. We should again increase x by

ε to decrease the function value. We could reach the minimum of f(x), point x2, by

updating x in successive steps. At point x = x2, the gradient is zero so that changing

x by ε will not change f(x) (given that ε is a very small number) as suggested by case

2. At point x = x3 ,case 1 applies, so we could decrease x3 by ε to decrease f(x3).The

minimum of f(x) is reached by updating x in successive steps. At point x = x4 ,case 2

applies, but f(x4) decreases around x = x4 as it can be seen in figure 2.2. The decline

of f(x) is not effective in range [x− ε, x + ε], so we miss it. One way to work around

this problem is to increase ε so that relative linearity does not hold true anymore.

One problem with this method is that, it is possible to stuck at the local minimum

of f(x) instead of finding the global minimum. Figure 2.3 shows that we could only

reach the local minimum, x2, by updating x1 in successive steps by a small number.

There are many heuristic methods to increase the probability of finding the global

minimum as stated in [35].
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Figure 2.2. The plot of the function y = sin(x) for x ∈ (0, 16)

Figure 2.3. The plot of the function y = cos(3πx)/x for x ∈ [0, 1.2]
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Taylor series expansion [36] of function f(x + ε) about point x is presented in

Equation (2.15). We want to minimize f(x + ε) − f(x) with respect to ε which is a

very small number (not necessarily positive). In order to do that, the first order Taylor

series expansion is used to determine ε, which produces the biggest decline in the value

of f(x). This method is called gradient descent.

f(x+ ε) = f(x) + f ′(x) ε+
f ′′(x)

2!
ε2 +

f ′′(x)

3!
ε3 + . . .+

f ′′(x)

n!
εn + . . . (2.15)

Proof. Let us use K(x, ε) to denote f(x + ε) − f(x). Now, from the Taylor series

expansion formula, K(x, ε) could be expressed as

K(x, ε) = f ′(x) ε+
f ′′(x)

2!
ε2 +

f ′′(x)

3!
ε3 + . . .+

f ′′(x)

n!
εn + . . . (2.16)

If the minimum of K(x, ε) with respect to ε exists, Equations (2.17) and (2.18) holds

true.

dK(x, ε)

d ε
= 0 (2.17)

d2K(x, ε)

d ε2
) > 0 (2.18)

Let O(n) represents Bachmann-Landau notation as stated by Erdélyi [37]. We

can find the derivative of K(x, ε) as follows



17

dK(x, ε)

d ε
= f ′(x) + f ′′(x) ε+

f ′′(x)

2!
ε2 + . . .+

f ′′(x)

(n− 1)!
εn−1 + . . . (2.19)

dK(x, ε)

d ε
= f ′(x) + f ′′(x) ε+O(ε2) (2.20)

If we use the first order Taylor series expansion, O(ε2) could be ignored. The

optimum value for ε could be derived by rewriting Equation (2.17).

f ′(x) + f ′′(x) ε = 0 (2.21)

ε = − f
′(x)

f ′′(x)
(2.22)

Now, γ could be used instead of 1
f ′′(x)

to reduce the computational complexity.

Since we want to keep Equation (2.18) true, γ should be positive. Additionally, it

should be small so that f(x) stays relatively linear in range [x−ε, x+ε]. The optimum

value for ε is given in Equation (2.23).

ε = −γ f ′(x) (2.23)

Gradient descent states that f(x+ ε) will be smaller than f(x), given that Equa-

tion (2.23) is satisfied. In other words, we could reduce x by γ f ′(x) to minimize f(x).
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We have assumed that we want to minimize f(x) with respect to x for simplicity.

Our main objective is to minimize f(x) with respect to function parameters, θ. Given

that f ′(x) is the derivative of f(x) with respect to θ, Equation (2.23) could be used to

update θ in successive steps to reach the minimum of f(x).

Let us summarize this section with the following points;

(i) Machine learning is used to find the latent mapping from an input space to an

output space such that f : x→ y.

(ii) A loss function, L(f(x), y), is used to quantize the deviation of the predicted

output, f(x), from the expected output, y.

(iii) Among the many techniques used to prevent over-fitting, regularization intro-

duces an additional loss function, R(f), to achieve generalization.

(iv) Our objective is to minimize the overall loss, as presented in Equation (2.12), on

the training set. Gradient descent is one of the methods used for this minimiza-

tion, which is achieved by reducing the loss gradually at successive time steps.

The parameters of function f(x) is updated at each step for this purpose.

(v) Expected loss on the validation set is used to prevent over-fitting.

(vi) Expected loss on the test set is used only once to determine the expected perfor-

mance of the function on the unseen data.

2.2. Machine Learning Models

Machine learning algorithms could be split into two categories based on their

objective. In the first category, namely supervised learning, we aim to learn the latent

mapping f : x → y from an input space to an output space as demonstrated in the

previous section. In this case, it is required that the dataset should contain each sample

xi with their corresponding label yi. In the other case, these labels are also latent, so

it is not possible to supervise the model with a loss function which depends on y.

Therefore, the other category is called unsupervised learning.
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Figure 2.4. Linear classifier example with two classes, “x” and “o”

In this dissertation, supervised methods are used to build our description gener-

ation architecture. Specifically, classification, a subcategory of the supervised learning

where the output space consists of finite alternatives for each label, is utilized. Because

of that, only classification models are examined in this section. We advise Alpaydin [32]

and Goodfellow et al. [35] to the readers for the explanation of other models.

2.2.1. Linear Classifier

Consider a simple example where our objective is to design a model to separate

“x” and “o” symbols in Figure 2.4. In this case, the input space is two dimensional

such that x ∈ R2 , where x = {x1, x2}), and the output space is one dimensional

such that y ∈ {x, o}. Since there are only two alternative outputs, we need to design

a classification model for our problem.

We can separate one class from the another with line “w” as showed in Figure 2.4.

In other words, “x” and “o” classes are linearly separable. Let us give the definition of

linear separability [38] for the sake of completion.
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Definition 1. Two classes Y1 and Y2 of Rd are linearly separable if there exists a

hyperplane w of Rd such that the samples of Y1 and those of Y2 lie on the opposite

side of it.

The separating line between two classes could be formulated with Equation (2.24),

where w1, w2 and b are the parameters of this line. Let us divide the input space

into three mutually exclusive and collectively exhaustive sets, namely S1, S2, S3, as

expressed with Equation (2.25). Set S2 includes all the samples on this line, whereas

set S1 and set S3 contain the samples from the opposite side of it. As suggested by

the definition of linear separability, each sample in the dataset could be classified based

on the sign of l (x). Additionally, every sample in set S2 labeled as either “x” or “o”

class in order to construct a classification rule which spans all the input space. Final

classification rule is shown in Equation 2.26 (Rule 1 ).

l (x) = w1 x1 + w2 x2 + b = 0 (2.24)

l (x)


< 0 if x ∈ S1,

= 0 if x ∈ S2,

> 0 if x ∈ S3.

(2.25)

y =

“x” if x ∈ S1,

“o” if x ∈ {S2,S3}.
(2.26)
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Now that a classification rule is formulated, a loss function could be used to find

the expected loss on the training set. We want to find the line “w∗” which minimizes

a loss function, so that all samples in the dataset are classified correctly. Since there

are infinitely many lines, which satisfies the linear separability definition, it is possible

to pick one which overfits the training set. Intuitively, there is a higher probability of

miss-classification for an unseen sample which is close to the line “w∗” than one which

is far from it. Consider two points xa, xb in the input space where |l (xa)| > |l (xb)|.

Since the minimum distance between a point x and the separating line l (x) = 0 is

proportional to the absolute value of l (x) as shown in Equation (2.27), we can say

that the probability of making correct classification is higher for the point xa then the

point xb. Accordingly, we can use l (x) as an input to a sigmoid function to get this

probability which is given in Equation 2.28. The sigmoid function gives an output in

the range [0,1] as shown in Figure 2.5.

d(x) =
|l (x)|√
w2

1 + w2
2

(2.27)

σ(x) =
1

1 + exp(−x)
(2.28)

We could interpret the output of sigmoid as the conditional probability of a sample

being classified as either “x” or “o” given the sample coordinates (i.e. p(y|x)). Based

on the final classification rule given in Equation (2.26), the conditional probability

of “x” given the sample coordinates (i.e. p(y = “x”|x)) should be higher than the

conditional probability of “o” given the sample coordinates (i.e. p(y = “o”|x)) for

x ∈ S1. Similarly the conditional probability of “o” given the sample coordinates

should be higher than the conditional probability of “x” given the sample coordinates

for x ∈ {S2,S3}. Furthermore, the sum of conditional probabilities should be one (i.e.
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Figure 2.5. The plot of sigmoid function σ(x) = 1
1+exp(−x)

p(y = “x”|x) + p(y = “o”|x) = 1). We could formulate the conditional probabilities

based on the given conditions with Equations (2.29) and (2.30) (Rule 2 ).

p(y = “x”|x) =

σ(|l (x)|) if x ∈ S1,

1− σ(|l (x)| if x ∈ {S2,S3}.
(2.29)

p(y = “o”|x) =

1− σ(|l (x)|) if x ∈ S1,

σ(|l (x)| if x ∈ {S2,S3}.
(2.30)

Consider the classification rule in Equation (2.26) (Rule 1 ). In the case of x ∈ S1,

the label is always predicted as “x”, otherwise it is always predicted as “o”. In other

words, the conditional probability of “x” given the sample coordinates is one (i.e.

p(y = “x”|x) = 1) for x ∈ S1. Similarly, the conditional probability of “o” given the
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sample coordinates is one, i.e. p(y = “o”|x) = 1, for x ∈ {S2,S3}. The conditional

probabilities for Rule 1 are given in Equations 2.31 and (2.32).

p(y = “x”|x) =

1 if x ∈ S1,

0 if x ∈ {S2,S3}.
(2.31)

p(y = “o”|x) =

0 if x ∈ S1,

1 if x ∈ {S2,S3}.
(2.32)

Comparing Rule 1 with Rule 2, we see that the conditional probability of y given

the sample coordinates is either zero or one (i.e. p(y|x) ∈ {0, 1}) for Rule 1, whereas

it can take the continuous values between zero and one (i.e. p(y|x) ∈ [0, 1]) for Rule 2.

Because of this reason, the former rule is also called hard labeling, whereas the latter

one is called soft labeling. In both cases, our objective is to minimize the difference

between the true conditional probability distribution q(y|x), and predicted probability

distribution p(y|x). q(y|x) could be considered as a deterministic hard labeling as

shown in Equations (2.33) and (2.34).

q(y = “x”|x) =

1 if y = “x”,

0 if y = “o”.

(2.33)
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q(y = “o”|x) =

0 if y = “x”,

1 if y = “o”.

(2.34)

We can use the relative entropy (i.e. Kullback Leibler distance) between these

two distribution to quantize this difference as stated by Cover and Thomas [39]. The

formula for the relative entropy is shown in Equation 2.35 and rewritten in Equation

2.36 as the difference of two terms. Since the first term on the right hand side of

Equation 2.36 does not depend on the predicted probability p(y|x), we cannot reduce

its value with optimization. However, we could minimize the second term, namely

cross-entropy. For these reasons, the optimization of the relative entropy is equivalent

to the optimization of the cross-entropy and that is why instead of using the relative

entropy, we build our loss function using the cross-entropy formula given in Equation

(2.37). Since there are two possible classes for our problem, H(q, p) is also named as

binary cross-entropy.

D(q||p) =
∑

y∈{x,o}

q(y|x) log
q(y|x)

p(y|x)
(2.35)

=
∑

y∈{x,o}

q(y|x) log q(y|x)−
∑

y∈{x,o}

q(y|x) log p(y|x) (2.36)

H(q, p) = −
∑

y∈{x,o}

q(y|x) log p(y|x) (2.37)

We could also simplify H(q, p) by using Equations (2.33) and (2.34)
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H(q, p) =

− log q(y = “x”|x) if y = “x”,

− log q(y = “o”|x) if y = “o”.

(2.38)

Now, we can construct the overall loss function with Equation (2.39). We could

use either Rule 1 or Rule 2 for finding p(y|x). The mapping f ∗ : x → y which

minimizes the loss function L(ŷ, y) given in Equation (2.40) is found by applying the

gradient descent on the loss function in successive steps.

L(ŷ, y) =
1

n

n∑
i=1

H(q, p) +R(f) (2.39)

f ∗ = argmin
f∈F

L(ŷ, y) (2.40)

2.2.2. One Layer Neural Networks

We have seen that if the linear separability between the two classes exists, a

linear classifier could be used to find the separating line between two classes. In case

the linear separability does not exist, it is not possible to find such a line. Consider the

classes “x” and “o” shown in Figure 2.6 as an example. These classes are obviously

not linearly separable, and no single line could divide the input space such that the

classification is achieved without error. However, we could use a circle with formula

x2
1 + x2

2 = r2 as a separating hyperplane to obtain zero classification error. In other

words, we could use a non-linear hyperplane instead of linear one for classification

in case that the classes are not linearly separable. Alternatively, we could use some
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non-linear function to transform the input coordinates to another input coordinates

where the linear separability between the two classes exists. For example, we have

transformed the input coordinates (x1, x2) ∈ R2 in Figure 2.6 into the polar coordinates

(r, θ) ∈ {0,R+}x{[−π, π)} where r =
√
x2

1 + x2
2 and θ = arctan x2

x1
and show the result

in Figure 2.7. After the transformation, a linear classifier could be used to find the

separating line w, similar to the previous section. Now, the problem is reduced to

designing a non-linear transformation followed by a linear classifier as shown in Figure

2.8.

Figure 2.6. The plot of samples belonging either “x” or “o” classes which are not

linearly separable for the input coordinates (x1, x2) ∈ R2
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Figure 2.7. The plot of samples belonging either “x” or “o” classes which are linearly

separable for polar input coordinates (r, θ) ∈ {0,R+}x{[−π, π)} where r =
√
x2

1 + x2
2

and θ = arctan x2
x1

Figure 2.8. Non-linear classification pipeline
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The architecture of an one hidden layer neural network is shown in Figure 2.9.

Our objective is to find a non-linear mapping from an input space to an output space

in order to separate two classes. Each circle in the architecture is named as neuron or

node and each line between the neurons is named as weight. Apart from the first layer,

each neuron takes an input and gives an output based on some activation function.

Each neuron is also named after their output for convenience (e.g. the output of the

neuron on the upper left corner is x1).

Figure 2.9. One layer neural network architecture

The number of neurons in the first layer, namely input layer, equals to the number

of input features x = [x1, x2]. The output of each neuron equals to the value of one

feature. The number of neurons in the second layer, namely hidden layer, depends on

the design of the architecture. Since each neuron in this hidden layer is connected to

all the neurons in the previous layer, this layer is also called a fully connected (FC)

layer. The non-linear transformation of the classification pipeline shown in Figure 2.8

is performed in this layer. Each neuron on the hidden layer takes an input ski , passes

it through some non-linear function fk() and gives the result hki as the output such

that hki = fk(ski ). The subscript i and superscript k specifies that hki , f
k(), ski are the

parameters of ith neuron belonging to kth layer after the input layer. Input layer is

declared as 0th layer. The number of neurons in the last layer, namely output layer,

equals to the number of classes that needs to be classified. For example, there should be
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four neurons at the output layer given that we want to separate 4 different classes. The

linear classification shown in Figure 2.8 is performed in this layer. Depending on the

output activation function, yi could be interpreted as either the confidences score of a

sample belonging to ith class, represented with a yi ∈ R, or the conditional probability

of a sample belonging to ith class given the input coordinates x, represented with a

yi ∈ [0, 1]. The later one is generally obtained with the normalization of the confidence

scores such that after the normalization,
∑N

i=1 yi = 1 for N different classes.

The input of the neuron h1
j on the hidden layer can be expressed as the summation

s1
j =

∑2
i=1w

1
ijxi+b

1
j , where w1

ij is the weight between ith input neuron xi and jth hidden

neuron h1
j , and b1

j is the bias of h1
j . This summation could be rewritten as a vector

multiplication s1
j = w1

j

T
x, where x = [x1, x2, 1]T and w1

j = [w1
1j, w

1
2j, b

1
j ]
T . In order

to further simplify our representation, Equations (2.41), (2.42) and (2.43) could be

combined into a matrix-vector multiplication s1 = W 1x as shown in Equation (2.44),

where s1 = [s1
1, s

1
2, s

1
3]T and W 1 = [w1

1,w
1
2,w

1
3]T .

s1
1 = w1

1

T
x (2.41)

s1
2 = w1

2

T
x (2.42)

s1
3 = w1

3

T
x (2.43)


s1

1

s1
2

s1
3


︸ ︷︷ ︸

s1

=


w1

11 w1
21 b1

1

w1
12 w1

22 b1
2

w1
13 w1

23 b1
3


︸ ︷︷ ︸

W 1


x1

x2

1


︸ ︷︷ ︸

x

(2.44)
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The non-linear function f(. . .) is usually chosen as a convex function since the

local minimum and the global minimum of a convex function are the same, so it is easier

to optimize the loss function. For a comprehensive introduction to convex optimization,

we recommend Convex Optimization book from Boyd and Vandenberghe [40]. We have

listed some popular activation functions used in neural networks below.

(i) sigmoid

Sigmoid function given in Equation (2.45) is defined from the input space x ∈ R

to the output space f(x) ∈ [0, 1] as shown in Figure 2.10.

There are two main problems with the sigmoid function when it is used as an

activation function. It is shown by LeCun et al. [41] that the output of an

activation function should be zero centered in order to reduce the number of steps

required for optimization. The sigmoid function is not zero centered. Another

problem rises from the fact that the gradient of the sigmoid function for the

majority of the input space is almost zero, which in turn makes the gradient of

the loss function very small. Although sigmoid function was widely used as an

activation function over the past few years [35], it is not preferred anymore for

these reasons.

f(x) =
1

1 + e−x
(2.45)

(ii) tanh

LeCun et al. [41] used tanh as an activation function in order to eliminate the

problems arising from the fact that the output of the sigmoid function is not

zero-centered. tanh function given in Equation (2.46) is defined from the input

space x ∈ R to the output space f(x) ∈ [−1, 1] as shown in Figure 2.11. Although

the output of this function is zero centered, the gradient of it is also almost zero

for the majority of the input space.
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f(x) =
ex − e−x

ex + e−x
(2.46)

Figure 2.10. The plot of sigmoid function σ(x) = 1
1+exp(−x)

Figure 2.11. The plot of tanh function f(x) = ex−e−x

ex+e−x
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(iii) ReLU (Rectified Linear Unit)

ReLU function given in Equation (2.47) is defined from the input space x ∈ R to

the output space f(x) ∈ [0,+∞] as shown in Figure 2.12. Nair and Hinton [42]

used ReLU activations to increase the performance of the restricted boltzmann

machines, whereas Krizhevsky et al. [5] achieved the best performance on both the

classification and the localization tasks on ImageNet Large Scale Visual Recog-

nition Challenge 2012 (ILSVRC-2012) [4].

Although the output of the ReLU is not zero-centered, the gradient is not zero

for the half of the input space (i.e. x ∈ R+) which in turn reduces the number

of iterations required to reach the minimum of loss function.

f(x) = max(0, x) (2.47)

Figure 2.12. The plot of ReLU function f(x) = max(0, x)

(iv) LReLU (Leaky ReLU)

Maas et al. [43] verified that LReLU given in Equation (2.48) converges slightly

faster than the ReLU resulting from the non-zero gradients for x ∈ R− as shown

in Figure 2.13.
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f(x) =

0.1x if x < 0,

x if x ≥ 0

(2.48)

Figure 2.13. The plot of LReLU function

(v) PReLU (Parametric ReLU)

As suggested by He et al. [44], PReLU function given in Equation (2.49) uses α

as a parameter of the activation function in order to avoid zero gradients. α is

optimized with the gradient descent.

f(x) =

αx if x < 0,

x if x ≥ 0

(2.49)

(vi) ELU (Exponential Linear Units)

Clevert et al. [45] showed that ELU activation function given in Equation (2.50)

ensures robustness to noise unlike ReLU, LReLU and PReLU without sacrificing

the generalization performance. α is a constant positive number.
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Figure 2.14. The plot of ELU function

f(x) =

α(ex − 1) if x < 0,

x if x ≥ 0

(2.50)

Although it is not necessary, usually the same activation function is used for each

neuron in the same layer. The hidden layer outputs are calculated using Equations

(2.51), (2.52) and (2.53). These equations could be rewritten as h1 = f 1(W1x), where

h1 = [h1
1, h

1
2, h

1
3]T and f 1 is applied element-wise to the vectorW 1x. The mathematical

formulation between the input layer and the hidden layer is summarized in Figure 2.15

h1
1 = f 1(w1

1

T
x) (2.51)

h1
2 = f 1(w1

2

T
x) (2.52)

h1
3 = f 1(w1

3

T
x) (2.53)
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The input of the neuron yj on the output layer can be expressed as the summation

s2
j =

∑3
i=1w

2
ijh

1
i + b2

j , where w2
ij is the weight between ith hidden neuron h1

i and jth

output neuron yj, and b2
j is the bias of yj. This summation can also be expressed as a

matrix-vector multiplication s2 = W 2h1 with Equation (2.54).


s1

s2

s3


︸ ︷︷ ︸

s2

=


w11 w21 w31 b1

w12 w22 w31 b2

w13 w23 w31 b3


︸ ︷︷ ︸

W2


h1

h2

h3

1


︸ ︷︷ ︸

h1

(2.54)

As mentioned before, depending on the activation function f 2(. . .), yi could be

interpreted as either the confidence score of a sample belonging to ith class or the

conditional probability of a sample belonging to ith class given the input coordinates

x. For the first case, we could use the identity mapping f(x) = x as the activation

function. On an intuitive level, each neuron in the output layer splits the input space

with a hyperplane and the confidence score represents the distance between a sample

and this hyperplane. Multiclass SVM loss [46] shown in Equation (2.55) could be used

Figure 2.15. Mathematical formulation between the input layer and the hidden layer
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to calculate the loss of a particular sample, where N is the number of output neurons

(e.g. 2 for our classification problem), k ∈ {1, 2, . . . , N} is the true class of that sample

and ∆ is a constant scalar, namely margin. Notice that the loss becomes zero when

the confidence score of the true class yk gets higher than the confidence score of all

the other classes by margin ∆. A sample is classified with the class i, if the confidence

score of ith class (i.e. yi) is higher than the confidence score of all the other classes.

L =
N∑
i=1
i 6=k

max(0, yi − yk + ∆) (2.55)

For the second case, the softmax function [35] given in Equation (2.56) could be

used as the activation function in order to obtain the conditional probabilities. N in

this equation equals to the number of output neurons. Similar to the linear classifier,

we could use the cross-entropy loss for the optimization. Equation (2.57) shows the

multiclass cross entropy loss, where y is the true class label, ŷ is the predicted class

label, q(y = i|x) is the true conditional probability of a sample belonging to ith class

and p(ŷ = i|x) is the predicted conditional probability of a sample belonging to ith

class such that p(ŷ = i|x) = yi. Assuming that k ∈ {1, 2, . . . , N} is the true class of a

sample, q(y = i|x) becomes deterministic so that q(y = k|x) = 1 and q(y = i|x) = 0

for i 6= k. We could simplify Equation (2.57) to Equation (2.58) by explicitly writing

each term of the summation. A sample is classified with the class i, if the conditional

probability of ith class (i.e. yi) is higher than the conditional probability of all the

other classes.

f(sj) =
esj∑N
i=1 e

si
(2.56)
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L = −
N∑
i=1

q(y = i|x) log p(ŷ = i|x) (2.57)

L = − log(
esk∑N
i=1 e

si
) = − log yi (2.58)

The mathematical formulation between the hidden layer and the output layer is

summarized in Figure 2.16 for convenience.

Figure 2.16. Mathematical formulation between the hidden layer and the output layer

2.2.3. Multi-Layer Neural Networks

In some cases, the accuracy achieved with one layer neural network could be

non-sufficient for our classification problem. Although it is not always true, we could

get a better classification accuracy when the number of hidden layers increases. In

particular, He et al. [9] showed that as the number of hidden layers increases, the

accuracy could decrease because it gets harder to optimize the parameters of a neural

network. Although we will not dive into the details, they have also showed a way to

overcome this problem in their work [9]. For our case, we could use two layer neural

network shown in Figure 2.17 to increase the classification accuracy. For simplicity, the

same network is also shown as a block diagram in Figure 2.18, where ReLU activation

function is used in the hidden layers and softmax activation function is used in the
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output layer. We have used “FC-M” to indicate the fully connected structure of a

layer whose output is a “M” dimensional vector. For instance, FC-2 performs the

operation s3 = W 3h2 between the hidden layer 2 and output layer, where s3 is a two

dimensional vector.

Figure 2.17. A neural network architecture with two layers

Figure 2.18. Another way to represent a neural network architecture with two layers
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2.2.4. Convolutional Neural Networks

As stated earlier, each neuron in a FC layer is connected to all neurons in the

previous layer. In other words, each neuron in a FC layer sees all the neurons in the

previous layer. Formally stated, FC layers have global receptive field. For example,

a neuron in a FC layer, which comes after WxHxN dimensional input image, has

WxHxN dimensional receptive field. Consequently, FC layers do not preserve the

spatial structure of the input, such as images and sound spectrogram.

Lecun et al. [6] showed that convolutional neural networks (CNNs) could be

used to preserve spatial structure of the input by ensuring shift, scale and distortion

invariance to some degree. Now, we will explain two main layers used in CNNs, namely

convolutional and pooling layers.

(i) Convolutional (CONV) layer performs the convolution operation on its input with

a set of filters. First, we will show this operation with an example by convolving

a WxHxN dimensional image X with a F1xF2xN dimensional filter W . Then,

we will generalize this result to a case where a WxHxN dimensional input X

is convolved with F1xF2xNxK dimensional filters W , where the last dimension

represents the total number of filters.

Consider 8x8x3 dimensional cat image X shown in Figure 2.19, where each chan-

nel of the image is represented with Xk such thatXk = X[:, :, k]. We will con-

volve this image with 3x3x3 dimensional filter W shown in Figure 2.20, where

each channel of the filter is represented with Wk such that Wk = W [:, :, k]. We

have omitted the bias vector for brevity in this example.
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Figure 2.19. A cat image which is represented with a 8x8x3 dimensional matrix X

Figure 2.20. A convolutional filter which is represented with 3x3x3 dimensional

matrix W
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Figure 2.21 illustrates convolution operation for the calculation of S[1, 1], where

S is the output of CONV operation (not to be confused withH , i.e. the output of

CONV layer, as shown in Figure 2.22). Initially, each filter channelWk is element-

wise multiplied with a 3x3 portion of corresponding input channelXk (highlighted

3x3 matrices in Figure 2.21). The resulting 3x3 matrix is represented with Lk−ij ,

where ij indicates that this operation is performed for the calculation of S[i, j].

Each element of Lk−11 in Figure 2.21 is calculated with Equation (2.59). Since

there are 3 channels in this example, a total of 3x3x3 element-wise multiplication

is performed. In other words, each neuron in this layer sees only 3x3x3 neurons in

the previous layer. Formally stated, CONV layers have local receptive field (e.g.

3x3x3 in this example). Additionally, X and W should have the same number of

channels in order to perform the convolution operation. Afterwards, the elements

of L1−11, L2−11 and L3−11 are added together to calculate S[1, 1] as shown in

Equation (2.60).

Lk−11[m,n] = Xk[m,n] ·Wk[m,n] for m,n ∈ [1, 3] (2.59)

S[1, 1] =
3∑

k=1

3∑
m=1

3∑
n=1

Lk−11[m,n] (2.60)

Figure 2.23 illustrates convolution operation for the calculation of S[1, 2]. Similar

to the previous calculation, each filter channelWk is element-wise multiplied with

a 3x3 portion of the input channel Xk (highlighted 3x3 matrices in Figure 2.23).

Unlike to the previous calculation, the 3x3 portion of Xk is now shifted one pixel

to the right as shown in Equation (2.61). In other words, we slide the filter

Wk by one element to the right on Xk in order to calculate one element shifted

version of S[1, 1], namely S[1, 2]. The number of elements which the filter is

slided horizontally comparing the computation of S[i, j] and S[i, j + 1] is called

horizontal stride. Similarly, the number of elements which the filter is slided

vertically comparing the computation of S[i, j] and S[i + 1, j] is called vertical

stride. In this example, the convolutional filter has horizontal and vertical stride

one. S[1, 2] is also calculated similar to the calculation of S[1, 1] (i.e. the elements
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Figure 2.21. Illustration of the convolution operation for the calculation of S[1, 1]
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of L1−12, L2−12 and L3−12 are added together as shown in Equation (2.62)).

Lk−12[m,n] = Xk[m,n+ 1] ·Wk[m,n] for m,n ∈ [1, 3] (2.61)

S[1, 2] =
3∑

k=1

3∑
m=1

3∑
n=1

Lk−12[m,n] (2.62)

We could compute every element of S by sliding 3x3 filter Wk on 8x8 input

Xk. Considering that we are using horizontal and vertical stride one for the

convolution, Wk could be slided 6 times horizontally and 6 times vertically. This

will generate a 6x6 dimensional matrix S, whose elements are calculated with

Equations (2.63) and (2.64), where k,m, n ∈ [1, 3] and i, j ∈ [1, 6]. Finally, ReLU

activation function f(. . .) is applied element-wise to S to calculate the output of

CONV layer ,i.e. H , as shown in Equation (2.65).

Figure 2.22. The output of convolutional layer in this example, H , is calculated after

the input image, X, is passed through a CONV operation followed by a ReLU

activation function
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Figure 2.23. Illustration of the convolution operation for the calculation of S[1, 2]
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Lk−ij [m,n] = Xk[m+ i− 1, n+ j − 1] ·Wk[m,n] (2.63)

S[i, j] =
3∑

k=1

3∑
m=1

3∑
n=1

Lk−ij [m,n] (2.64)

=
3∑

k=1

3∑
m=1

3∑
n=1

Xk[m+ i− 1, n+ j − 1] ·Wk[m,n]

H = f(S) (2.65)

Notice that the convolution of 8x8x3 dimensional inputX with 3x3x3 dimensional

filter W produced 6x6 dimensional output matrix H . In some cases, it could

be desirable to keep the width and height of input and output of a convolutional

layer same. In order to achieve 8x8 output matrix, the input could be padded

with zeros at the borders as shown in Figure 2.24 before the CONV operation.

Assuming that each border is padded symmetrically with P zeros (e.g. P = 1 in

Figure 2.24) the convolution of W1xH1xN dimensional input X with a F1xF2xN

dimensional filter W with vertical stride S1 and horizontal stride S2 will produce

a W2xH2 dimensional matrix H with width (W − F1 + 2P )/S1 + 1 and height

(H − F2 + 2P )/S2 + 1.

In general, the convolution operation is performed with a set of K independent

F1xF2xN dimensional filters instead of one filter. This will produce a total of

K independent W2xH2 dimensional matrices. These matrices are then stacked

together to produce W2xH2xK dimensional output matrix H .
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(ii) Pooling (Pool) layer performs a sub-sampling operation on the output of a CONV

layer to ensure shift and distortion invariance to some degree as stated by Lecun et

al. [6]. Unlike CONV layers, activation functions are not used in the Pool layers.

Moreover, the number of input channels stays the same after the pooling operation

In other words, the pooling operation performed on a W1xH1xK dimensional

matrix produces a W2xH2xK dimensional matrix as the output. For example, we

could use a 2x2 filter W with horizontal and vertical stride 2 to down-sample a

matrix H1 by two as shown in Figure 2.25, to produce H2 (i.e. the output of the

pooling layer). In this example, we have used max-pooling (MaxPool) operation

as a filter, which gives the maximum of its four inputs as the output.

Figure 2.24. Zero padded input matrix X

Figure 2.25. Max-pooling operation performed on matrix H
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Figure 2.26. A convolutional neural network architecture with two hidden layers

Different CNN architectures are constructed by successively stacking CONV and

Pool layers until the output layer. For example, Figure 2.26 shows a two layer CNN,

where the convolution operation with F1xF2xNxK filters is represented with “CONV

F1xF2−K” and the max pooling operation with F1xF2 filter is represented with “Max-

Pool F1xF2”. We have discarded N from the representation of the convolution opera-

tion since it can be inferred from the dimension of its input.
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2.2.5. Recurrent Neural Networks

Recurrent neural networks (RNNs) are used to preserve the sequential information

in the input space. In order to show this explicitly, we assume that our dataset contains

N sequences {X1,X1, . . . ,XN} and each of Xi contains |Xi| elements such that Xi =

{x1,x2, . . .,x|Xi|}. For example, each of Xi could be a movie review (e.g. “watching

this movie was not a mistake”) which consists of a sequence of words xi (e.g. “movie”).

In order to process each review in a computer, each word in the dataset should

be represented with a vector (i.e. word embedding). Initially, we should determine the

number of distinct words we want to represent. The set which contains all the words

we want to represent is called vocabulary. We could use a distinct word embedding for

either each word in the training set or each word in a subset of the training set. In a

simple way, we could count the number of times each word is used in the training set.

Then, we could create this subset from the words with count more than some fixed

number (e.g. three). In both cases, it is possible to encounter some words which are

not in the vocabulary. For instance, the test set could contain some words which are

not present in the training set. An extra embedding vector < UNK > is used for such

words.

After the vocabulary size |V | (i.e. the number of distinct words we want to rep-

resent plus one for < UNK >) is determined, either one-hot encoding or variable-

sized encoding is used to represent each element in the vocabulary with a vector

vi for 1 ≤ i ≤ |V |. In the former method, each element is represented with a sparse

vector of size |V |, such that only ith element of the vector is one (i.e. vi[i] = 1) and

all the other elements of the vector is zero (e.g. vi[j] = 0 for 1 ≤ j ≤ |V | and j 6= i).

This method does not preserve the semantic similarity between the words since each

element of vi is an independent scalar.
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On the other hand, the latter method encodes each element in the vocabulary

with a dense vector of size K < |V | such that semantically similar words have similar

entries on the same vector positions. More concretely, a fully connected layer with the

activation function f(x) = x and |V |xK dimensional weight matrix W is used for the

variable-sized encoding. Each row of the weight matrix represents an embedding vector

such that vi = W [i, :]. The weight matrix is optimized during the training with the

gradient descent to preserve the semantic information in the vocabulary.

After the number of elements in the vocabulary and the encoding method is

decided, our objective is to classify each review Xi with either “good” or “bad” label

yi (e.g. “good” for this example). The length of each review is not the same, so we

cannot use a FC layer which requires a fixed size input. RNNs process each word in a

review sequentially in order to use a variable sized input. In other words, x1 is used

as the input at the first step, x2 is used as the input at the second step and so on.

Additionally, the outcome of the classification should depend not only on each word

but also on their alignments. At each step of RNN, the information in the present step

(i.e. xt) is combined with the information coming from the previous steps (i.e. ht−1)

to produce the vector ht. Then, ht is passed to the next step and the whole process

is repeated recursively. On an intuitive level, ht stores word alignment information of

the sequence {x1,x2, . . .,xt} and passes it through the next step. More rigorously,

Equations (2.66) and (2.67) are used for the computation of ht at tth step, where Wx

is the weight matrix of x , Wh is the weight matrix of h, b is the bias vector and f() is

the activation function. Same weight matrices and bias vector are used at every step.

Additionally, h0 stores the prior knowledge about the sequence. We could use either

a constant vector (e.g. a matrix whose each element is zero) for h0 or treat it as a

parameter of the network and learn it during the training.

st = Wx xt +Wh ht−1 + b (2.66)

ht = f(st) (2.67)
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Figure 2.27. A RNN architecture designed to classify movie reviews as either good or

bad

Figure 2.27 illustrates a RNN structure which is designed to classify a movie

review X = {x1,x2,x3,x4} with either “good” or “bad” label y. We have used REC-

N to represent a recurrent layer with N hidden neurons. Since there are only two

output classes, FC-2 layer is used at the output layer.
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We could also design a RNN structure to predict the next wordwt+1 in a sentence

W based on all the previous words {w1,w2, . . . ,wt}. In practice, a sentence W which

contains T words such thatW = {w1,w2, . . . ,wT } is represented with T+2 embedding

vectors Ŵ = {< SOS >,w1,w2, . . . ,wT , < EOS >}, where < SOS > and < EOS >

symbols indicate the start of a sentence and the end of a sentence respectively. In

order to represent both < SOS > and < EOS > symbols with embedding vectors, the

vocabulary size |V | is increased by two. The final vocabulary includes all the distinct

words we want to represent together with < UNK >, < SOS > and < EOS >.

In the training phase, our objective is to predict the next word with the current

word embedding and the hidden layer output coming from the previous step. As a

consequence, all the embedding vectors except < EOS > could be used as an input for

the training. At each step of RNN, the expected output will be the embedding vector in

Ŵ coming after the input embedding vector. For instance, < SOS > is used to predict

the first word of the sentence (i.e. w1) at the first step. w1 is used to predict the second

word of the sentence (i.e. w2) at the second step and so on until the last word of the

sentence (i.e. wT ) is used to predict < EOS >. More concretely, our objective is to

find the mapping between the input sequence X = {x1,x2, . . . ,xT+1} and the output

sequence Y = {y1,y2, . . . ,yT+1} for a sentence W = {w1,w2, . . . ,wT }, where X and

Y are given in Equations (2.68) and (2.69). Additionally, we have used the softmax

function at the output layer to obtain the conditional probabilities of each embedding

vector vj . Each dimension of the output vector gives the conditional probability of a

different embedding vector as shown in Equation (2.70).

X = {< SOS >,w1,w2, . . . ,wT } (2.68)

Y = {w1,w2, . . . ,wT , < EOS >} (2.69)
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p(vj|xi) = yi[j] for i ∈ {1, 2, . . . , T + 1}

j ∈ {1, 2, . . . , |V |} (2.70)

xi∈ RK ,yi ∈ R|V |

In the test (i.e. inference) phase, our objective is to predict the whole sentence

W = {w1,w2, . . . ,wT }. However, we only know that all sentences start with < SOS >

and end with < EOS >. Assuming that h0 stores the prior knowledge about the

sentence W , there are three main methods to generate this sentence.

(i) Greedy Search

x1 (i.e. the embedding vector of < SOS > symbol) is used to compute y1 at

the first step. The embedding vector with the highest conditional probability is

chosen as the first word of the sentence (i.e. ŵ1). Then, ŵ1 is used as the input

at the second step (i.e. as x2) to compute y2. Similar to the previous step, the

embedding vector with the highest conditional probability is chosen as the second

word of the sentence (i.e. ŵ2). This process is repeated recursively to generate

a sentence until < EOS > is chosen as the word embedding with the highest

conditional probability. The maximum number of recursive steps are fixed to

ensure that the generation process terminates eventually.

(ii) Beam Search [26]

Similar to Greedy Search, x1 (i.e. the embedding vector of < SOS > symbol) is

used as input to compute y1 at the first step. Instead of choosing a single word at

this step, β words (i.e. also called beam width) with the highest conditional prob-

abilities are chosen as candidate words for the first step. Then, each candidate

word from the previous step is used as the input at the second step (i.e. as x2) to

obtain β candidate words. Since we are using β candidates from the previous step,

there are a total of β2 candidate words for the second step. Considering vi as one

of β candidates at the first step and vj as one of β candidates at the second step
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for x2 = vi, then the conditional probability of two-word sequence {vi,vj} could

be calculated with Equation (2.71). Since our objective is to generate the word

sequence with the highest probability, we choose β two-word sequences with the

highest conditional probabilities as candidate two-word sequences at the second

step. This process is repeated recursively T times to obtain β candidate T-word

sequences. The predicted sentence is chosen as the candidate sequence with the

highest conditional probability.

p(vi,vj |x1,x2) = p(vj|x1,x2,vi) ∗ p(vi|x1) (2.71)

= y2[j] ∗ y1[i]

(iii) Maximum Likelihood Estimation

Since our objective is to generate the sentence with the highest probability p(Ŵ|X )

we could calculate the conditional probability for all |V |T word sequences to gen-

erate a sentence with T words. Although this method will give us the most likely

sentence, it is computationally expensive than both Greedy Search and Beam

Search.
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Figure 2.28. RNN diagram designed for the sentence generation

Although RNNs could store some form of sequential information, Bengio et al. [47]

showed that they are not suitable for preserving long-term dependencies in a sequence.

In particular, the gradient of the loss with respect to the weight matrices could get

either very large (i.e. exploding gradient) or very small (i.e. vanishing gradient) during

the optimization. In order to overcome these problems, Hochreiter and Schmidhuber

[27] proposed Long Short-Term Memory (LSTM) Networks. Equations (2.72)-(2.77)

are used for the computation of ht at tth step, where σ is the sigmoid function and ◦

is the element-wise multiplication.
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Figure 2.29. Another way to show RNN diagram designed for the sentence generation

it = σ(Wix xt +Wih ht−1 + bi) (2.72)

ft = σ(Wfx xt +Wfh ht−1 + bf ) (2.73)

ot = σ(Wox xt +Woh ht−1 + bo) (2.74)

gt = tanh(Wgx xt +Wgh ht−1 + bg) (2.75)

ct = ft ◦ ct−1 + it ◦ gt (2.76)

ht = ot ◦ tanh(ct) (2.77)

Note that, ct (i.e. cell state) stores the alignment information of the sequence

{x1,x2, . . .,xt} and passes it through the next step (i.e. next cell) in LSTM Networks.

ft ◦ct−1 represents the information coming from the previous cell. ft (i.e. forget gate)

modifies the previous cell state ct−1 to determine how much of the previous information

should be forgotten. it ◦ gt represents the amount of information which is added to

ft ◦ ct−1 at the current cell. it (i.e. input gate) modifies gt with a value in range [0, 1].

After the cell state is calculated, it is passed through tanh activation function and

modified with ot (i.e. output gate) to produce the cell output ht. The whole process

is repeated recursively.
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2.2.6. Batch Normalization Layer

Each layer of a neural network learns the mapping between its input and output

distribution. However, the input distribution of a layer changes as the model parame-

ters are updated during the training. In other words, this layer experiences covariance

shift [48], which increases the time required for the optimization. Ioffe and Szegedy [49]

showed that the normalization of layer inputs reduces the severity of this problem. In

order to achieve this, each dimension of the layer input x is initially normalized to

have zero means and unit variance using Equation (2.78), where x is a d dimensional

vector, x[k] is kth dimension of x and both expectation and variance are calculated in

the training set D. Then, the linear transformation given in Equation (2.79) is applied

to each x̂[k], where y is the batch normalization layer output, ε is a small number

which is added to the denominator for numerical stability and both γ and β are d

dimensional vectors which are learned during the training.

x̂[k] =
x[k]− E(x[k])√
V ar(x[k] + ε)

(2.78)

y[k] = γ[k] x̂[k] + β[k] (2.79)

Using gradient descent in the entire dataset D could be slow and infeasible be-

cause of high GPU memory requirement. Instead we could apply mini-batch gradient

descent by splitting the training set into N mutually exclusive and collectively ex-

haustive sets (i.e. mini-batch) each of which has m samples and updating the model

parameters for each mini-batch. Assuming we have a mini-batch B with m samples,

both the expectation and variance in Equation (2.78) are calculated for each mini-batch

B instead of whole training dataset D. More concretely, consider a batch normalization

layer with m inputs {x1,x2, . . . ,xm} each of which has d dimension. Following steps

are applied in the training phase to calculate m batch normalization layer outputs
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{y1,y2, . . . ,ym} each of which has also d dimension.

(i) The mean and variance for each dimension of x in the mini-batch is calculated.

µB[k] =
1

m

m∑
i=1

xi[k] (2.80)

σ2
B[k] =

1

m

m∑
i=1

(xi[k]− µB[k])2 (2.81)

(ii) Each dimension of x is normalized to have zero mean and unit variance.

x̂i[k] =
xi[k]− µB[k]√
σ2
B[k] + ε

(2.82)

(iii) Linear transformation with parameters γ and β is applied to the normalized

inputs. These parameters are updated during the training with the other model

parameters using mini-batch gradient descent.

yi[k] = γ[k] x̂i[k] + β[k] (2.83)

During the test phase, the output of a neural network should depend only on

the input in order to get the same output every time we use the same input, since we

want to build a deterministic model not a stochastic one. For this reason, the mean

and the variance for each dimension of x are calculated over mini-batches during the

training phase as shown in Equations (2.84) and (2.85). Then, the resulting mean and

variance is inserted into Equations (2.78) and (2.79) to calculate batch normalization

layer output during the test phase.
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E(x[k]) = EB(µB[k]) (2.84)

V ar(x[k]) =
m

m− 1
EB(σ2

B[k]) (2.85)

2.2.7. Dropout

Dropout [35, 50] is a popular regularization technique which is used to increase

the generalization probability of neural networks. Specifically, each neuron in a layer is

independently set to zero with probability pdo ∈ [0, 1] during only the training phase.

This operation is repeated for each minibatch so that different neurons are set to zero

for different minibatches.
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3. REGULARIZING DESCRIPTION GENERATION

MODEL

In this section, we describe our main model, which is used for generating image

descriptions. Our objective is to design a model, which takes an image as the input

and generates a sentence at its output as shown in Figures 3.1. More concretely, our

model uses a Convolutional Neural Network architecture (see Section 2.2.4) to extract

the image information. Then, a Long Short Time Memory Network (see Section 2.2.5)

uses this information to generate a sentence.

Figure 3.1. An overview of our description generation model, which takes an image as

input and generates a sentence at its output

In the training phase, we use both images and their descriptions to train our

model. However, our objective is to generate these descriptions with using only images

in the test (i.e. inference) phase. Because of this reason, our model behaves differently

in the training and inference phase similar to the sentence generation model described

in Section 2.2.5. We will explain both the training phase and the inference phase

behavior of our model in the following sections.
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3.1. Description Generation Model

3.1.1. CNN Architecture

Our objective is to design a CNN architecture to extract the image information as

a fixed size vector. In order to reduce the over-fitting, we employ the data augmentation

techniques used in [5, 7, 9]. More concretely, each image is resized into 256x256x3 size

initially. Then, a 224x224x3 dimensional crop is randomly sampled from either the

resized image or its horizontal flip. We extract the per-channel mean from each pixel

and divide the resulting value by the per-channel standard deviation to normalize the

random crop. Mean and standard deviation values are calculated for each channel only

in ImageNet training set [51]. However, they are used for the normalization of the

pixels in the same channel during both the training and inference phase. The resulting

224x224x3 dimensional image is used as CNN input.

As the CNN architecture, we use 152 layer CNN structure (referred as ResNet-

152 ) proposed by He et al. [9], which won the 1st place in the ILSVRC 2015 image

classification competition [25], to extract image information. However, the last layer

of ResNet-152 uses a fully connected layer with 1000 dimensional output and the

softmax activation function to calculate the conditional probabilities of 1000 classes

present in ImageNet. Instead, we use a fully connected layer with 512 dimensional

output followed by a batch normalization layer [49] (see Section 2.2.6) to calculate the

image information. We rename the resulting CNN architecture as modified ResNet-152

and use it to calculate a 256 dimensional vector for each image.

In order to train the modified ResNet-152, we are not using any explicit labels.

Instead, we will train the modified ResNet-152 together with LSTM to learn the net-

work parameters. These parameters could be initialized randomly at the start of the

training phase. Alternatively, several works [52–54] showed that instead of initializing

the weights of a neural network randomly for one task, we could initially train a similar

neural network on a different dataset for a different task and then use the weights of

the trained neural network for parameter initialization. This idea is referred as transfer
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learning [55–57] and arises from the fact that the initial layers of the neural networks

which are trained on natural images learn task and dataset independent features such

as Gabor filters or color blobs as stated by Yosinski et al. [54] and shown in the work

of Zeiler and Fergus [58]. Following this approach, we use the weights of ResNet-152

trained on ImageNet for image classification in order to initialize the weights of all but

the last two layers of modified ResNet-152. The last FC layer is initialized with the

weights drawn from a normal distribution with mean 0 and standard deviation 0.02.

We could optimize either all the transferred layers or some of them together with

the last two layers. Although these approaches increases the performance as shown in

the work of Yosinski et al. [54], they require high GPU memory during the training

to keep both the activations and the gradients of each layer in the memory. As a

consequence, we optimize only the last two layers of the modified ResNet-152 during

the training and use the transferred weights without any change to fit our description

generation model to GPU memory.

3.1.2. LSTM Architecture

We use all unique words in the training set together with < unk > and < eos >

tokens to construct vocabulary V with size of |V|. < unk > token represents words

that are not in the vocabulary, while < eos > token indicates the end of a sentence.

Each token in this vocabulary is represented with a h dimensional embedding vector.

The embedding vector of i-th token in V is computed using the equation xi = WV Ii,

where xi is the embedding vector, WV is the word embedding matrix with dimensions

h x |V| and Ii is a sparse column vector of size |V|, such that only i-th element of Ii

is one and all the others are zero.

Similar to the work of Vinyals et al. [3], we use a LSTM architecture (see Section

2.2.5) to obtain the probability distribution of a word in a sentence given the previous

words and the image I. Formally, the probability distribution of (t + 1)-th word

yt = p(wt+1|I,w1, . . . ,wt) is calculated using the following formulations:
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x0 = CNN(I) (3.1)

it = σ(Wix xt +Wih ht−1 + bi) (3.2)

ft = σ(Wfx xt +Wfh ht−1 + bf ) (3.3)

ot = σ(Wox xt +Woh ht−1 + bo) (3.4)

gt = tanh(Wgx xt +Wgh ht−1 + bg) (3.5)

ct = ft ◦ ct−1 + it ◦ gt (3.6)

ht = ot ◦ tanh(ct) (3.7)

yt = softmax(Wp ht + bp) (3.8)

where [Wix,Wih,Wfx,Wfh,Wox,Woh,Wgx,Wgh] are LSTM weight matrices,

[bi, bf , bo, bg] are LSTM bias vectors, ct is the vector storing cell state at timestep t,

ht is the vector storing hidden state at timestep t, ◦ is the element-wise multiplication,

wt is the t-th word in a sentence, xt is the embedding vector of wt for t ∈ {1, . . . , T}

and x0 is the modified ResNet-152 output which is used as 0-th word of sentence

representing a-priori information about the sentence. In these equations, ct (i.e. cell

state) stores the alignment information of the sequence {x0,x1, . . .,xt} and passes it

through the next step (i.e. next cell) in LSTM Networks. ft ◦ ct−1 represents the

information coming from the previous cell. ft (i.e. forget gate) modifies the previous

cell state ct−1 to determine how much of the previous information should be forgotten.

it ◦ gt represents the amount of information which is added to ft ◦ ct−1 at the current

cell. it (i.e. input gate) modifies gt with a value in range [0, 1]. After the cell state

is calculated, it is passed through tanh activation function and modified with ot (i.e.

output gate) to produce the cell output ht.Then, ht is passed through a linear layer

with weight matrix Wp and bias vector bp together with a softmax activation function

to obtain yt.
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Figure 3.2. Training phase of our image captioning model

Training phase. The training phase of our image captioning model is shown in

Figure 3.2. LSTM architecture is trained to maximize the probability of the correct

word given the previous words and an image. Initially, we set both c−1 and h−1 to

zero and use the image information x0 as input to obtain the probability distribution

of first word, y0. Then, the embedding vector of first word x1 is used together with

c0 and h0 to obtain the probability distribution of second word y1 and so on. On the

last step, we maximize the probability of < eos > token using xT , cT−1 and hT−1 as

inputs.

Inference phase. Figure 3.3 illustrates the inference phase of our image cap-

tioning model, where the word with the highest probability at t-th step is represented

with ŵt. We aim to generate a sentence representing the contents of an image during

this phase. Similar to training phase, initially we set both c−1 and h−1 to zero and
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Figure 3.3. Inference phase of our image captioning model

use the image information x0 as input to obtain the probability distribution of first

word, y0. We pick the word with the highest probability from y0, namely ŵ1 using

greedy search (see Section 2.2.5) and use its embedding vector as input to obtain y1.

Then, we repeat this process until we pick < eos > token or a sentence with length of

20 is generated.

3.2. Regularization Description Generation Model

Merity et al. [30] used a set of regularization techniques to improve the perfor-

mance of word-level language models. Inspired by their work, we used some of these

techniques to improve the performance of our model. In this section, we explain these

regularization techniques.
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3.2.1. Weight-dropped LSTM

Dropconnect is introduced by Wan et al. [59] as a generalization of dropout.

Unlike dropout, each weight before a layer is independently set to zero with probability

p ∈ [0, 1] during only the training phase. This operation is repeated for each minibatch

so that different weights are set to zero for different minibatches.

Weight-dropped LSTM method suggests using dropconnect technique on hidden

to hidden weight matrices [Wih,Wfh,Woh,Wgh] in order to regularize LSTM net-

works. Dropconnect technique is applied to the weight matrices once at the start of

each minibatch, so that the same weights remain zero for each time step within the

same minibatch.

3.2.2. Variational Dropout

Variational dropout is proposed by Gal and Ghahramani [60] as a regularization

method for recurrent neural networks. Dropout technique (see Section 2.2.7) is applied

to each neuron in a layer at the start of each minibatch for variational dropout, so

that the same neurons remain zero for each time step within the same minibatch.

This operation is applied for each sample in a minibatch independently. Note that

the difference between dropout and variational dropout is that we sample a random

dropout mask for each time step within a minibatch for the former technique, whereas

we use the same dropout mask for each time step within a minibatch for the latter one.

3.2.3. Embedding Dropout

Gal and Ghahramani [60] used embedding dropout as a regularization method for

word embedding matrixWV ∈ RV xE, where V is the number of words in the vocabulary

and E is the size of embedding vector. Assuming that embedding dropout is performed

with probability pe, each row of weight matrix is set to zero with probability pe. After

the dropout operation applied, the rows with non-zero entries are scaled by 1
1−pe to

keep the expected value of a word embedding constant. Embedding dropout enforces
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model to give equal emphasis on each word, instead of relying on a few words to solve a

problem. Considering our description generation model, this regularization technique

is equivalent to erasing some words in a sentence randomly.

3.2.4. Weight Tying

The total number of parameters in a neural network affects the memory consump-

tion during both the training and the inference phases. [61,62] suggested using weight

tying in language modeling, which not only decreases the memory consumption but

also increases the generalization probability of a model. The core idea behind weight

tying is using the same weights for both the embedding and output layer. Since most

of the model parameters for our description generation model belongs to linear layers,

applying weight tying reduces the total number of parameters in our model from 87

million to 74 million, 14.8% relative decrease in the total number of parameters. Only

one embedding vector is updated per time step for a sample during the training phase

of a recurrent neural network without weight tying. Introducing weight tying increases

the generalization probability of a model and decreases the convergence time because

all embedding vectors are updated at each time step thanks to the coupling between

embedding and output layer.

3.2.5. Activation Regularization and Temporal Activation Regularization

As the number of parameters in a neural network increases, the probability of

overfitting increases as well. L2 regularization [35], which uses the norm of the weights

as additional loss term, is generally used to decrease this probability. Instead of the

weights, the works of [30, 63] used L2 regularization on the hidden layer outputs and

on the difference of consecutive hidden layer outputs of a recurrent neural network to

improve their word level language model. These techniques are named as activation

regularization (AR) and temporal activation regularization (TAR) respectively.
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More technically, AR uses RAR given in Equation 3.9 and TAR uses RTAR given

in Equation 3.10 as an additional loss term, where T is the total number of time steps,

α and β are scaling coefficients, ht is the hidden layer output at tth step, ◦ is the

element-wise multiplication operation and dt is the dropout mask applied to ht.

RAR =
1

T

T∑
t=1

αL2(ht ◦ dt) (3.9)

RTAR =
1

T − 1

T−1∑
t=1

βL2(ht − ht+1) (3.10)
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4. DATASETS AND EXPERIMENTS

4.1. Datasets

We use MS COCO (i.e. Microsoft Common Objects in Context) dataset [64,

65] to evaluate the performance of our image captioning models. There are 82, 783

images in training set, 40, 504 images in validation set and 40, 775 images in testing

set. Each image is annotated with 5 different descriptions. Two of these images are

shown with their descriptions in Figures 4.1 and 4.2. Human generated descriptions

are only provided for training and validation sets. We train our model on MS COCO

training set, use 20, 000 images in MS COCO validation set as our validation set and

use the remaining 20, 514 images in MS COCO validation set as our test set.

Figure 4.1. An image from MS COCO dataset with descriptions; (i) a passenger train

that is pulling into the station. (ii) a train engine carrying carts into a station.

(iii) people watching a train arrive at a train station. (iv) a red and black train some

people and tracks (v) there is a red train that is coming up the tracks
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Figure 4.2. Another image from MS COCO dataset with descriptions; (i) a baseball

player swinging a bat at a baseball game. (ii) the batter hits the ball while his

opponents look on (iii) a baseball player swings a bat at a ball (iv) a baseball player

hits a ball as the other team looks on. (v) a baseball player holding a bat on top of a

field.

We use a small object detection dataset (i.e. retail dataset) to evaluate the

performance of our zero shot object detector described in subsection 5.2. There are

1, 249 images in training set, 157 images in validation set and 155 images in testing

set. Each image contains at least one cabinet, poster, pricecard, umbrella or wastebin.

Accordingly, we annotate each image with at least one label. An image from retail

dataset containing a cabinet, a poster, a pricecard and a wastebin is shown in Figure

4.3.
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Figure 4.3. An image from retail dataset containing a cabinet, a poster, a price card

and a waste bin

4.2. Evaluation Metrics

We use the evaluation server of Chen et al. [65] in order to calculate the evaluation

metrics in MS COCO dataset. In this section, initially we explain these metrics, namely

CIDEr [66], BLEU [67], ROUGE [68] and METEOR [69]. Then, we define the metrics

used to measure the performance of our zero shot object detector, which is explained

in Section 5.2, namely true positive (TP), false positive (FP), false negative (FN), true

negative (TN), precision and recall.

Each image Ii in MS COCO has five human generated (i.e. reference) descriptions

Si = {si1, . . . , sim} ∈ S and one model generated (i.e. candidate) description ci ∈ C

for which we want to compute evaluation metrics. Each description is represented with

n-grams, where an n-gram wk ∈ Ω is a set of n ordered words and Ω is the vocabulary of

all n-grams. All evaluation scores are calculated with n grams with one to four words.
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The number of times wk occurs in the model generated description ci is denoted as

hk(ci), whereas the number of times it occurs in the human generated description sij

is denoted as hk(sij).

CIDEr [66] uses term frequency inverse document frequency (TF-IDF) weighting

for each n gram wk to predict the human consensus in generated image descriptions.

Equation 4.1 is used to compute TF-IDF weights gk(sij) of each wk, where I is the set

of all images in the data set and |I| is the size of this set (i.e. the number of images).

gk(sij) =
hk(sij)∑
wl∈Ω hl(sij)

log(
|I|∑

Ip∈I min(1,
∑

q hk(spq))
) (4.1)

These TF-IDF weights are used to compute the score for n-grams of length n,

CIDErn, between candidate sentence ci and the reference sentences, Si, for image Ii as

shown in Equation 4.2, where gn(ci) is a vector created by concatenating gk(ci) for all

n-grams of length n and ‖gn(ci)‖ is its magnitude.

CIDErn(ci, Si) =
1

m

∑
j

gn(ci) · gn(sij)

‖gn(ci)‖ ‖gn(sij)‖
(4.2)

CIDEr score is computed by combining CIDErn as given in Equation 4.3. How-

ever, CIDEr sometimes gives a high score to a candidate sentence which gets low

scores from humans. Vedantam et al. [66] suggested a modification to CIDErn, named

as CIDEr-Dn to solve this problem. Equation 4.3 shown the computation of CIDEr-Dn,

where l(ci) is the length of the candidate sentence ci, l(sij) is the length of the reference

sentence sij and σ = 6.
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CIDEr(ci, Si) =
1

4

4∑
n=1

CIDErn(ci, Si) (4.3)

CIDEr-Dn(ci, Si) =
10

m

∑
j

exp(
−(l(ci)− l(sij))2

2σ2
) ·min(gn(ci), g

n(sij)) · gn(sij)

‖gn(ci)‖ ‖gn(sij)‖
(4.4)

CIDEr-D computed similar to CIDEr as shown in Equation 4.5. We use CIDEr-D

instead of CIDEr in our evaluations because of its robustness.

CIDEr-D(ci, Si) =
1

4

4∑
n=1

CIDEr-Dn(ci, Si) (4.5)

BLEU [67] uses corpus level clipped n-gram precision, CPn, between the candidate

sentences and reference sentences to evaluate the performance. CPn is correlated with

the number of n-gram overlaps between the candidate and reference sentences as shown

in Equation 4.6. However, it is easier for a small candidate sentence to get a high

score with this metric. Brevity penalty given in Equation 4.7 is used to overcome

this problem, where lC is the total length of candidate sentences and lS is the total

length of reference sentences. When there are multiple human generated sentences

Si = {si1, . . . , sim} ∈ S, only the sentence sij whose length is the closest to the length

of ci is used for the calculation of lS.

CPn(C, S) =

∑
i

∑
jmin

(
hk(ci),max

j∈m
hk(sij)

)
∑

i

∑
j hk(ci)

(4.6)
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b(C, S) =

1, if lC > lS

exp(1− lC/lS), if lC ≤ lS

(4.7)

BLEU score is calculated using Equation 4.8, where N = 1, 2, 3, 4. We use

BLEU1, BLEU2, BLEU3 and BLEU4 in our evaluations, where (C, S) is dropped

for brevity from now on .

BLEUN(C, S) = b(C, S) exp
( 1

N

N∑
n=1

logCPn(C, S)
)

(4.8)

ROUGUE [68] uses the largest common subsequence (LCS) between candidate

sentences and reference sentences to measure the performance. An LCS is similar to n-

grams in a way that they both search for sequential words in a sentence. However, two

sentences shares the same LCS even if there are extra words in between the consequetive

words of LCS, unlike n-grams.

ROUGE is computed using Equations 4.9-4.11, where Pl is LCS precision, Rl is

LCS recall, l(ci, sij) is the length of LCS between the candidate sentence ci and the

reference sentence sij, | . | is the absolute value symbol and β = 1.2.

Pl = max
j

l(ci, sij)

|ci|
(4.9)
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Rl = max
j

l(ci, sij)

|sij|
(4.10)

ROUGE(ci, Si) =
(1 + β2)RlPl
Rl + β2Pl

(4.11)

METEOR [69] is computed by matching the identical words between the candi-

date and reference sentences. The matching is performed so that the total number of

chunks, where a chunk is a series of exact matches, is minimized. METEOR is calcu-

lated using Equation 4.12-4.16, where m is the total number of matched words, ch is

the number of chunks, Pm is the precision, Rm is the recall, Fmean is a parameterized

version of harmonic mean of Pm and Rm, Pen is the term penalizing the high number

of chunks and favoring the exact word matches. α, β and γ take the default values

given in METEOR [69] .

Pm =
|m|∑
k hk(ci)

(4.12)

Rm =
|m|∑

k hk(sij)
(4.13)
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Fmean =
PmRm

αPm + (1− α)Rm

(4.14)

Pen = γ
(ch
m

)β
(4.15)

METEOR = (1− Pen)Fmean (4.16)

True positive (TP), false positive (FP), true negative (TN) and false negative

(FN) are generally used to evaluate the performance of either an image classification

model or an object detection model. Assuming an image from retail dataset contains

objects from both class A and class B, we could explain these metrics for class A as

follows:

(i) TP → Our model correctly predicted this image to contain an object belonging

to class A.

(ii) FP→ Our model incorrectly predicted this image to contain an object belonging

to class A, whereas there is no such object from class A in this image.

(iii) FN → Our model incorrectly predicted this image not to contain an object be-

longing to class A, whereas there is such object from class A in this image.

(iv) TN→ Our model correctly predicted this image not to contain an object belong-

ing to class A.
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Precision is calculated for a class as the ratio of true positives to the sum of true

positives and false positives as shown in Equation 4.17.

Precision =
TP

TP + FP
(4.17)

Precision is calculated for a class as the ratio of true positives to the sum of true

positives and false negatives as shown in Equation 4.18.

Recall =
TP

TP + FN
(4.18)

4.3. Experiments

4.3.1. Data Preparation and Optimization

In all experiments, we use modified ResNet-152 introduced in Section 3.1.1 to

extract image information. Following Vinyals et al. [3], we use transfer learning to

initialize the weights of all but the last two layers of modified ResNet-152. The weights

of last FC layer is initialized with values drawn from a normal distribution with mean

0 and standard deviation 0.02.

All unique words in the training set is used to construct vocabulary, which results

in vocabulary size of 25122. Each token in this vocabulary is represented with a 512

dimensional embedding vector. A LSTM network with input size of 512 and hidden size

of 512 is used to process the modified ResNet-152 output together with the embedding

vectors. Then, the output of the LSTM network is passed through a linear layer with

output size of 25122 and the softmax function to obtain the probabilities of tokens.
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We optimize only the last two layers of the modified ResNet-152 during the train-

ing and use the transferred weights without any change to fit our description generation

model to GPU memory. The parameters of embedding matrix, LSTM and linear out-

put layer are also updated.

For the optimization, we use Adam algorithm [70] with learning rate 0.001, β1 =

0.9, β1 = 0.999 without weight decay. All models are trained for 50 epochs with a

batch size of 256, which performed better than smaller batch sizes. The maximum L2

norm of the gradients is clipped to 0.25 before updating the model parameters.

In order to regularize LSTM network, weight dropping is applied to hidden to

hidden weight matrices with probability 0.5. Variational dropout is applied to both

embedding vectors and the output of LSTM with probability 0.4. Embedding dropout

with probability 0.1, AR with α = 2, TAR with β = 1 and weight tying are also used.

4.3.2. Comparative Analysis

In order to assess the effectiveness of regularization on image captioning, we com-

pare the performance of our base model, which is trained without any regularization

method, to its variants, which are trained with such methods. Table 4.1 shows the vali-

dation scores for our base model and its variants. The first row gives the performance of

our base model, whereas the other rows include the performance of its variants trained

with one or more regularization methods.

The inclusion of variational dropout created the biggest jump in CIDEr score,

4.3% increase, and all other scores. Although AR and TAR are also increased CIDEr

score, 1.5% increase, they failed to change the other scores on the same level. Other

regularization techniques did not make much impact on evaluation scores. However,

the addition of all regularization techniques were essential in getting the best scores on

most of the evaluation metrics.
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Table 4.1. Evaluation scores of model generated captions on the validation set. The

first row includes the performance of the base model without any regularization. The

other rows shows the performance of the base model trained with one or more

regularization techniques. RI column for each metric shows the relative improvement

of a model compared to the base model in percentage.

Model
CIDEr Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L

Score RI(%) Score RI(%) Score RI(%) Score RI(%) Score RI(%) Score RI(%) Score RI(%)

Base Model 815 679 501 357 254 233 501

+ weight tying 806 −1.1 681 +0.3 501 356 −0.3 253 −0.4 233 501

+ weight-dropping 812 −0.4 681 +0.3 501 357 254 233 501

+ embedding dropout 821 +0.7 688 +1.3 509 +1.6 363 +1.7 258 +1.6 234 +0.4 504 +0.6

+ AR and TAR 828 +1.5 685 +0.9 505 +0.8 359 +0.6 255 +0.4 234 +0.4 504 +0.6

+ variational dropout 850 +4.3 694 +2.2 514 +2.6 370 +3.6 265 +4.3 239 +2.6 510 +1.8

+ all regularizations 842 +3.3 701 +3.2 524 +4.6 376 +5.3 267 +5.1 236 +1.3 511 +2.0

4.3.3. Deeper Analysis of Experiments

4.3.3.1. Loss Evaluation Mismatch. We analyze the correlation between the cross en-

tropy and evaluation scores to determine whether our model suffers from loss evaluation

mismatch [71, 72]. This phenomenon arises from the fact that we train our model us-

ing a word level loss during training phase, whereas we aim to improve sequence level

evaluation metrics during inference phase.

Figure 4.4 shows the loss and CIDEr score of our base model with all regular-

izations after each epoch on the train set and the validation set. There is an inverse

relation observed between the loss and CIDEr score. As such, we can state that there is

no behavioral mismatch between the metric with respect to which the model is trained

and the one with respect to which its performance is evaluated. In other words, our

model does not suffer from loss-evaluation mismatch commonly encountered in the

literature [71,72].
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Figure 4.4. Cross-entropy loss and CIDEr score of our base model with all

regularizations evaluated after each epoch during the training phase on both the train

set and the validation set

We also plot the average probability of a token as a function of its position

in a sentence conditioned on the correct tokens up to that position in Figure 4.5 to

investigate the effect of token position on the performance of our model. The first

word of the sentences in both the training and validation set are predicted with a high

probability, whereas we expect it to be very low similar to the results reported in the

work of Merity et al. [31] on language modeling.

In order to explain this discrepancy, we count the total number of times each

word is used as the first word of ground truth sentences in the training set. Then, we

take the top 10 most frequent words based on their count and evaluate the percentage

of sentences starting with these words. We also count the total number of times each

word is used as the first word of model generated sentences in the same set. Then, we

take the top 10 most frequent words based on their count and evaluate the percentage of

model generated sentences starting with these words. Moreover, we evaluate the same

statistics in the validation set. We show these statistics for the training set in Table 4.2

and for the validation set in Table 4.3. The word count is shown in thousands (k) in

both tables. Almost 70% of sentences start with ”a” word in both sets. Consequently,

98% of sentences generated with our model start with ”a” word, reducing the diversity
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Figure 4.5. Average probability of a token as a function of its position in a sentence

conditioned on the correct tokens up to that position

of these sentences. This means that this discrepancy is caused by the memorization of

MSCOCO dataset by our model.

Table 4.2. The statistics of the top 10 most frequent first words (both from the

ground truth and the predicted sentences) in the training set.

Training Set First Word Statistics

Ground Truth Words Predicted Words

Word Count(k) Percent Word Count(k) Percent

a 283.1 68.37 a 405.1 97.83

two 23.4 5.66 two 7.9 1.9

the 18.3 4.42 an 0.6 0.15

an 13.2 3.20 three 0.3 0.07

there 8.4 2.03 four 0.1 0.02

three 5.4 1.30 people 0.05 0.01

people 4.2 1.01 donuts ∼ 0 ∼ 0

several 4.1 0.99 sheep ∼ 0 ∼ 0

some 3.9 0.94 minnesota ∼ 0 ∼ 0

this 3.3 0.80 carrots ∼ 0 ∼ 0
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Table 4.3. The statistics of the top 10 most frequent first words (both from the

ground truth and the predicted sentences) in the validation set.

Validation Set First Word Statistics

Ground Truth Words Predicted Words

Word Count(k) Percent Word Count(k) Percent

a 68.6 68.57 a 98.190 98.13

two 5.5 5.47 two 1.585 1.58

the 4.5 4.48 an 0.145 0.14

an 3.1 3.12 three 0.100 0.10

there 2.1 2.10 four 0.15 0.01

three 1.2 1.19 bananas ∼ 0 ∼ 0

people 1.0 1.02 donuts ∼ 0 ∼ 0

several 1.0 0.99 yellow ∼ 0 ∼ 0

some 0.9 0.90 pasta ∼ 0 ∼ 0

this 0.8 0.83 orange ∼ 0 ∼ 0

Excluding the first word, the average probability increases up until token position

of 15, then shows almost a steady decrease afterwards. We believe that this is related

to caption lengths in MSCOCO dataset, for which the total number of tokens at each

position is shown in Figure 4.6. As a result, our model is unable to learn long term

dependencies.

Figure 4.6. Total number of tokens at each position in MSCOCO dataset
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4.3.3.2. Word Frequency. In this analysis, we investigate the relation between word

frequency and word embedding vector for our image captioning models, similar to the

work of Gong et al. [73] in language modeling. We evaluate 2-rank approximation

of embedding weight matrix from its Singular Value Decomposition using two largest

eigenvalues, then plot 2-rank approximation of each embedding vector. Through this

section, the top 20% frequent words in the vocabulary is denoted as popular words

(blue points in the following figures), while the rest are denoted as rare words (red

points in the following figures).

We show 2-rank approximation of each embedding vector of our base model which

is trained with all regularization techniques in Figure 4.7. One would expect seman-

tically similar words to be in the close proximity of each other in this 2-dimensional

embedding space. Instead of semantic similarity, we observe that the words populate

this space based on their frequency. Gong et al. [73] suggested that one of the possible

reasons for this unexpected behavior is the imbalanced update frequency of embedding

vectors during the training phase. Since rare embedding vectors are updated less fre-

quently than popular ones, our model is unable to learn the semantic of a rare word.

In order to test this hypothesis, we have measured the frequency of each word in the

training set. Figure 4.8 shows the total number of unique words versus word frequency

in the training set. We also plot the same graph for only the rare words in the training

set in Figure 4.9. We observe that there is imbalanced word distribution in the training

set. This observation supports the hypothesis proposed by Gong et al. [73].
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Figure 4.7. 2-rank embedding vector approximation of our base model trained with

all regularization techniques

Figure 4.8. Word frequency of all words in the training set
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Figure 4.9. Word frequency of less frequent words in the training set
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5. APPLICATIONS

5.1. Human in the Loop System

In this section, we introduce a human in the loop description generation system,

in which humans provide the start of a caption and the model generates the rest of it.

People with speech disorders could use these systems to improve their life standards.

Hybrid systems could also be used to shorten the decision making processes for a

system where a human interpretation of a visual scene is necessary, such as surveillance.

Formally, in order to generate a caption with length of T , we take N consecutive words

from the start of a human generated caption and use them to generate the rest of the

words. Then, we compute evaluation scores for the generated caption as a function of

N .

Figure 5.1. An image from MS COCO dataset

In order to subjectively evaluate human in the loop system, we have listed the

sentences produced by our method for an image from MS COCO dataset shown in

Figure 5.1 below, where the number before each sentence indicates N (e.g. (5) indicates

N=5) and each model generated token is written in italic:

• (0) → a dog is standing in the grass near a fence . < eos >

• (1) → black and white photo of a dog in a field . < eos >
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• (2) → black and white photo of a dog in a field . < eos >

• (3) → black and white photo of a dog in a field . < eos >

• (4) → black and white photo of a dog in a field . < eos >

• (5) → black and white photo of a dog in a field . < eos >

• (6) → black and white photo of woman in a field with a dog . < eos >

• (7) → black and white photo of woman pushing a horse . < eos >

• (8) → black and white photo of woman pushing away from a dog . < eos >

• (9) → black and white photo of woman pushing away a dog . < eos >

• (10) → black and white photo of woman pushing away a dog . < eos >

• (11)→ black and white photo of woman pushing away a dog with a dog . < eos >

• (12) → black and white photo of woman pushing away a dog with broom .

< eos >

• (13) → black and white photo of woman pushing away a dog with broom .

< eos >

• (14) → black and white photo of woman pushing away a dog with broom .

< eos >

Considering the first sentence, only ”black” token is provided by a human and

the rest are generated by our model. Notice that same sentences are generated for

1 ≤ N ≤ 5 for the same image. This indicates that using only one human generated

token improves the performance as much as using five human generated tokens for this

particular image. We have also made similar observations for other sentences in MS

COCO dataset. In general, our model generated reasonable sentences even for N = 0

and the information in the generated sentences have increased slightly as N increases.

Figure 5.2 shows CIDEr score of human in the loop system for our best image

captioning model trained with all regularization techniques on our validation set for

the objective evaluation of our method. We used the consecutive words from one of the

five human generated sentences to generate a caption. Then, we compared this caption

with other four human generated sentences to calculate CIDEr score of our system. As

expected, validation set score generally increases as N increases. More strikingly, our
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results show that providing only a few words was enough to drive up the evaluation

scores to levels which are acceptable for practical applications, while reducing human

involvement in the process. More concretely, introducing human in the loop system

improves CIDEr score of our best model by 30 points using only the first two tokens

of a reference sentence of an image.

Figure 5.2. CIDEr score of human in the loop system for our best image captioning

model trained with all regularization techniques

5.2. Zero Shot Object Detection

Object detection is a computer vision task that aims to detect, localize and

classify objects in an image, where each object location is generally annotated with a

rectangular bounding box. Neural network based object detection models [23, 74–76]

demonstrated high performance on this task over the past few years. Given that these

models requires a great number of labeled images and it takes a long time to label each

object location, it is desirable to develop a system that only classifies all objects in an

image without needing their locations. We train our image captioning model for this

purpose and refer to this task as zero shot object detector through this section.
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In order to train our model, each image has to be annotated with at least one

caption. Assuming that an image is annotated with N labels (e.g. poster, price card

and umbrella for N = 3), a random permutation of these labels with length N is used

as the target caption (e.g. [poster pricecard umbrella], [pricecard umbrella poster] or

some other permutation of poster, price card and umbrella) at each epoch during the

training phase. We trained our model for 100 epochs on the training set of retail

dataset and evaluated its performance on both training and validation set.

Figure 5.3 shows TP, FP, FN, TN, precision and recall scores of our zero shot

object detector. We used total tags column to explicitly show the total number of

images belonging to each class (i.e. TP + FN). As the total number of images per

class increases, both precision and recall also increase. In particular, we obtained 0.99

precision and 0.86 recall on the validation set for cabinet class which only has 1080

images in the training set. These results show that our zero shot object detector is

a viable alternative to other neural network based object detection models when it is

not required to find the locations of detected objects and there are enough images per

class in the training set.

Figure 5.3. TP, FP, FN, TN, precision and recall scores of zero shot object detector
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6. CONCLUSION

In this work, we analyzed the effects of a set of regularization techniques on the

performance of an image captioning model. We showed that the majority of evaluation

scores increases with the addition of all regularizations, while the most significant

increase comes from variational dropout. Further, we found that our model does not

suffer from loss-evaluation mismatch arising from the difference between word-level

training loss and sequence-level evaluation metrics. On the other hand, our model was

unable to learn long term dependencies due to lack of long sentences in the training

set. Moreover, we showed the effects of imbalanced word frequency on the embedding

vectors. Finally, we explored two different applications of our image captioning model,

namely a human in the loop image captioning system, in which human intelligence was

leveraged to generate more accurate sentences, and zero shot object detection. In the

former one, our results showed that incorporating humans in this process increased the

performance of our image captioning model significantly even with only a few words,

making such systems usable at practical applications. In the latter, we detected each

object in an image without finding their locations using our image captioning model.

In the future work, we will explore several directions to improve the performance

of our best image captioning model. Firstly, we will use beam search instead of greedy

search to generate sentences during the inference phase of our model. Similar to the

work of Karpathy and Fei-Fei [1], this could give a little boost to objective evaluation

scores. Secondly, we will investigate the effects of pretrained word embeddings on

the performance of our model. In the recent years, several different pretrained word

embeddings were used to achieve state of art performances on different natural language

processing tasks [77,78]. Instead of randomly initializing weights of the embedding layer

in our image captioning model, we will use such embedding vectors. Thirdly, we will

perform hyper-parameter search for each regularization method. Our objective is to

measure the relative importance of each hyper-parameter similar to the work of Merity

et al. [31] on language modeling. In this way, we could also find the hyper-parameters

which result in the highest increase in performance for each method. Moreover, we
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will repeat each experiment on several different image captioning datasets such as

Flickr8K [79], Flickr30K [80] and Conceptual Captions [81] with several different state

of the art image captioning architectures to assess the generality of our results.

We have introduced two different applications for our image captioning model,

namely human in the loop system and zero shot object detection. In the former one,

we have used consecutive words provided by a human to generate a complete sentence.

Given that one would easily detect each object in an image, it is desirable to build a

system that could generate a sentence including the classes of these objects. In order

to do that, we will explore different ways to provide tokens to our human in the loop

description generation system. In the latter one, we have only trained our model on a

small dataset, which contains only five different object categories. In order to test the

performance of our model, we will train and test our model on ImageNet [4], which

contains 200 object categories and thousands of images for each class.
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