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ABSTRACT

IMPROVING IMAGE CAPTIONING WITH LANGUAGE
MODELING REGULARIZATIONS

Inspired by the recent work in language modeling, we investigate the effects of
a set of regularization techniques on the performance of a recurrent neural network
based image captioning model. Using these techniques, we achieve 13 Bleu-4 points
improvements over using no regularizations. We show that our model does not suffer
from loss-evaluation mismatch and also connect the model performance to dataset
properties by running experiments on MSCOCO dataset. Further, we propose two
different applications for our image captioning model, namely human in the loop system
and zero shot object detection. The former application further improves CIDEr score
of our best model by 30 points using only the first two tokens of a reference sentence
of an image. In the latter one, we train our image captioning model as an object
detector which classifies each objects in an image without finding their location. The
main advantage of this detector is that it does not require object locations during the

training phase.



vi

OZET

TANIM OLUSTURMA MODELINI DIL
MODELLEMEDEKI BASARIM IYILESTIRME
TEKNIKLERI ILE GELISTIRMEK

Dil modelleme konusundaki son ¢aligmalardan esinlenerek, bir takim basarim iy-
ilestirme tekniginin tekrarlayan bir sinir agina dayali bir tanim olugturma modelinin
performansi tizerindeki etkilerini arastirdik. Bu teknikleri kullanarak, hi¢bir iyilegtirme
teknigi kullanmamaya oranla performansimizda 13 Bleu-4 puan iyilegtirdik. Modelim-
izde hata-degerlendirme uyumsuzlugu olmadigini MSCOCO veri setinde deneyler ya-
parak gosterdik. Ayrica, model performansinin veri kiimesin o6zelliklerine bagladigim
gosterdik. Ek olarak, tanim olusturma modelimizi temel alarak insan-bilgisayar hibrid
tanim olusturma modeli ve tek seferde nesne tanima modeli isimlerinde iki farkli uygu-
lama gelistirdik. Ik uygulama ile en iyi modelimizin CIDEr puanim bir gériintiiniin
referans ciimlesinin yalmzca ilk iki kelimesini kullanarak 30 puan arttirdik. Ikinci
uygulamamizda, tanim olugsturma modelimizi bir resimdeki nesnelerin konumlarini bu-
lamadan siiflandiran bir nesne dedektorii olarak egittik. Bu dedektoriin temel avan-

taj1, egitim agamasi sirasinda nesne konumlarini gerektirmemesidir.
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1. INTRODUCTION

1.1. Problem Overview

Visual descriptions constitute the core of cognitive process involved in under-
standing visual scenes. Humans can describe these scenes to one another without
any difficulty thanks to their ability to make connections between visual and linguis-
tic worlds. However, modeling this task is challenging for computers for two main

reasons [1-3]:

(i) The model should be rich enough to detect objects, which is important to create
visual descriptions. Since the generated description could change significantly
from one person to another, datasets with multiple sentence annotations per
image is needed to determine important objects.

(ii) Language modeling is also necessary for describing the objects and their relation-
ship with one another in a language like English. The language model should
be capable of generating meaningful descriptions through the inferred relations

between words and detected objects.

Image classification addresses mainly the first part of this challenge. Russakovsky
et al. [4] reported that the accuracy of image classification has increased with the help
of ImageNet dataset and annual Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) from 2010 to 2015. Krizhevsky et al. [5] introduced AlexNet, a type of
Convolutional Neural Network (CNN) [6], and achieved the error rate of 15.3%, which
is 10.9% better than the second-best entry on ILSVRC-2012. Afterwards, various
forms of CNNs are used in image classification (e.g. VGGNet [7], GoogleNet [8] and
ResNet [9]) and the error rate has decreased significantly.

The second part of the challenge consists of creating word representations. Each
representation should include both the desired word and its connections with other

words in the sentence. Recurrent Neural Networks (RNNs) [10], Bidirectional Recur-



rent Neural Network [11], biterm [12] and dependency trees [13] could be used to create

these descriptions.

The generation of descriptions for visual scenes has attracted many researchers
over the last few years. Farhadi et al. [14] used a retrieval-based approach where a test
image is described with the most similar sentence in the training set. Li et al. [15] sug-
gested a similar method and combined the different parts of training sentences. Gupta
and Mannem [16] proposed a template-based method and identified the components
from the image. Several multimodal methods are also designed for both multidirec-

tional image-sentence retrieval [17] and unique description generation [1,3,18].

1.2. Applications

Automatically generating image descriptions could help visually impaired people
better understand the world around them. These descriptions could also be used
to support children in their education. Moreover, once an image is automatically
translated into a textual description, it could be used as a query for text-based search
engines. Last but not least, a human in the loop description generation system, where
a person creates a few words and the description generation system produces the rest
of it, could be envisioned to increase the accuracy of the generated descriptions on
one hand and to facilitate image annotation tasks on the other. People with speech
disorders could use these systems to improve their life standards. Hybrid systems could
also be used to shorten the decision-making processes for a system where a human

interpretation of a visual scene is necessary, such as surveillance.



1.3. Related Works

1.3.1. Retrieval Based Methods

Farhadi et al. [14] suggested that the relation between images (visual scenes)
and sentences (their descriptors) could be represented in meaning space with a triplet
of <object, action, scene>. Each image and sentence is mapped to this space. A
high score between an image and a sentence is obtained when these meanings were
similar. One limitation of this method is that each component of the triplet could
take a value from a finite set. Moreover, this method creates descriptions by retrieving
sentences from the training set instead of generating unique sentences. These problems

significantly restrict the capacity of the model.

Li et al. [15] proposed an approach for generating image descriptions using web-
scale n-grams, which provides the frequency count of word n-grams from Web pages
[19]. Each image is represented with a set of triplets <objects, attributes, spatial
relationship>, similar to the work of Farhadi et al. [14]. Image features are used
to determine these triplets. Afterwards, candidate sentences, which contains similar
triplets, are collected from web scale n-gram. Descriptor generation is achieved by
combining some parts of candidate sentences. Although unique sentences are generated

with this method, candidate sentences limit the uniqueness of the descriptions.

1.3.2. Template Based Methods

Gupta and Mannem [16] generated image descriptions from the image annotation,
which is described as the labeling of images. They showed that a simple description
could be described with a set of fundamental elements, namely objects, attributes,
attribute-object pair, subject, verb and proposition. For example, “A brown dog is
sitting next to a white wall” description was represented with two objects, “dog” and
“wall”, two attributes, “brown” and “white”, two attribute-object pair, “brown dog”
and “white wall”, one subject, “dog”, one verb, “sit” and one proposition, “next to”, in

their work. Their model has produced descriptions with only two known fundamental



elements, namely objects and attributes. Other elements are predicted from the train-
ing images. Although meaningful descriptions are generated, the sentence structure
was hand-designed. Description structure should be free of assumptions to generate

unique and complex sentences.

1.3.3. Multimodal Methods

Baltrusaitis et al. [20] defines modality as “the way in which something happens
or is experienced”. Multimodal methods refer to the models which uses multiple such
modalities (e.g. images, sound or text) [21]. Baltrusaitis et al. [20] suggested that
humans could understand the natural phenomena better by understanding the con-
nections between different modalities. Frome et al. [22] demonstrated the power of
multimodal machine learning in visual recognition by connecting image domain to text
domain. Each word in the text domain was transformed to an embedding vector via
skip-gram text model, which maps the semantically related words close to each other.
Image features were extracted with AlexNet [5] and mapped to vector embedding space
via a fully connected layer. Then, both models are trained with an objective function
which favors the equivalence of transformed image features and the embedding vector
representation of related image label (i.e. text). The authors have showed that their
model correctly classified images even when their image labels were not seen during

training.

Karpathy et al. [17] proposed to use multimodal methods for the bidirectional
retrieval of sentences and images. The retrieval problem could be stated as finding the
most relevant images for a given sentence and vice versa. The authors have showed
that the performance of the retrieval method has increased after the latent alignment
between sentence fragments, which represent the relation between two or more words
in a sentence, and image fragments, which contain the whole image and each object
in that image separately, are modeled. Each sentence is represented with multiple
fragments that are extracted with the typed dependency parser without tree structure,
which includes 48 grammatical relations [13]. Object fragments are detected with a

Regional Convolutional Neural Network (RCNN) [23]. Afterwards, the whole model



is trained with an objective function which favors both the alignment of true image-
sentence fragments and the alignment of true image-sentence pair. The result of their
method is interpretable thanks to this image-sentence fragment alignment objective.
However, the simplicity induced by discarding tree structure also caused misalignment

of some relations.

Kiros et al. [18] used an image-text multimodal neural language model for de-
scription generation. A modified log-bilinear language model (LBLM) [24] is used to
generate the conditional probability of a word in the sentence given all previous words
and the corresponding image for that sentence. Each word in the sentence is used as
input for the model, whereas extracted image features are used as either bias or for
gating. The model was able to predict the most likely word, which should follow a given
word sequence. Image descriptions are created with extending the given word sequence
with the predicted word and repeating this process as long as desired. Although the
generated descriptions gave general information related to the image, the model had
two main drawbacks. Firstly, the variety of descriptions is limited by the initial word
sequences, since these sequences are not learned by the model but manually chosen.
Secondly, a word is related not only with the previous word sequence but also with the
following word sequence. For example, an adjective is usually followed by a noun in a

sentence. Their model ignored the influence of following word sequence on a word.

Karpathy and Fei-Fei [1] have shown that the multimodal relation between visual
and language data could be used to create image descriptions. Initially the latent rela-
tion between words and image regions are learned, similar to the work of Karpathy et
al. [17]. Afterwards, these aligned image regions and words are used to train a multi-
modal neural network for description generation. In the first part, RCNN [23] is used to
extract 19 top scoring image regions, each of which could contain one of the 200 object
classes from the detection task of ILSVRC [25]. Word representations are generated
with a Bidirectional Recurrent Neural Network (BRNN) [11]. The power of BRNN
comes from creating a word representation, which contains information about not only
with that word but also with the other words around it. Then, word representations

are aligned with a set of image regions and whole image using an alignment objective



similar to the work of Karpathy et al. [17]. In the second part, a Multimodal RNN is
used to generate the image description. Unlike Kiros et al. [18], the authors have used
special tokens to indicate the beginning and ending of the description generation pro-
cess. The most likely word sequence for the description is found via beam search [26].
Their experiment showed that unique image descriptions could be generated with a
Multimodal RNN. Furthermore, the performance of their method has increased using

the corresponding image region-word pairs inferred by their alignment model.

Vinyals et al. [3] also used a multimodal method for description generation similar
to Karpathy and Fei-Fei [1]. Descriptions are generated with a Long Short Term
Memory (LSTM) network [27] which uses the image features as input at the first-time
step. Although the researchers did not use any alignment information, their model

outperformed the model of Karpathy and Fei-Fei [1].

1.3.4. Human in the Loop Methods

Human-computer hybrid systems have become popular in the last few years.
Holub et al. [28] proposed a human-computer hybrid technique to minimize the total
number of images that need to be labeled in order to achieve near-optimal performance
for image classification. In their work, a human labeled a set of images sequentially.
At each iteration, the expected entropy decrease introduced by labeling each image is
calculated and the image resulting in the highest decrease in entropy is labeled. They
showed that the total number of training images required to achieve near-maximal
performance with their method is less than the half of the total number of training
images required to achieve similar performances with randomly selecting images for
a human to label for text-based web image searches. In some cases, their method
achieved similar performances with less than one-tenth of total number of training

images.



Branson et al. [29] designed a hybrid human-computer system for image classifi-
cation. In their system, humans have provided some low-level visual attributes which
are hard for computers to extract. Afterwards the class of a given object is determined
with the help of these attributes. They showed that their hybrid human-computer
system could provide up to 66% classification accuracy in comparison to 19% accuracy
obtained by only a computer vision system. Similar human-in-the loop systems could

be used to increase the accuracy of model generated descriptions for image captioning.

1.4. Contributions and Outline

In this study, we investigate the effects of a set of regularization techniques on
the performance of an description generation model using the recent advances in lan-
guage modeling [30,31]. We aim to empirically show that the improvements achieved
with these techniques are not only specific to language modeling, but also transfers
to image captioning task as well. Similar to model proposed by Vinyals et al. [3], we
use a convolution neural network (CNN) to extract visual features from images and
and a long short-term memory network (LSTM) to generate descriptions using these
features. Using a set of regularization techniques improves our results up to 13 Bleu-4
points over using no regularizations. Further, we analyze the relationship between data
set properties and the model performance. We conclude by introducing two different
applications for our image captioning model, namely human in the loop system and
zero shot object detection. The former application further improves CIDEr score of
our best model by 30 points using only the first two tokens of a reference sentence of
an image. In the latter one, we train our image captioning model as an object detector
which classifies each objects in an image without finding their location. The main ad-
vantage of this detector is that it does not require object locations during the training
phase. We obtain up to 0.99 precision and 0.86 recall on the validation set of retail

dataset, which is described in Section 4.1, with our object detector.



2. MATHEMATICAL BACKGROUND

This dissertation builds upon the fundamentals of machine learning. This section
presents the basic principles of machine learning and some of the main models used in

our image description generation architecture.

Through this section, we use small case letters to represent scalars (e.g., z,y),
bold small case ones to represent vectors (e.g., &, y), bold upper case ones to represent
matrices (e.g., X,Y), calligraphic upper case ones to represent sequences (e.g., X', ).
If each element in the sequence is a scalar, small case letters with underscore are
used (e.g., z1, g, ...,xy); if each element is a vector, bold small case letters are used
(1, X2, - - .,xn) and so on. Additionally, an element on the i row and j** column of
a two dimensional matrix X is represented with X[i, j], i* row of X is represented
with X[i,:] and j% column of X is represented with X[, j]. Similar notations are also

h

used for vectors (e.g. x[i] for the element on i"" row) and matrices with more than two

h

dimensions (e.g. X[i,:,:] for the matrix on i*" row). In some cases, we have used these

notations to represent some other concepts, which could be inferred from the context.

2.1. Basics of Machine Learning

Machine learning is used for the extraction of latent information between an input
space and an output space when the humans are not able to obtain the exact formula
for this mapping or when the mapping is computationally expensive [32]. Let us assume
that x; and x4 constitute the input space, y forms the output space and g(. . .) is the real
mapping from the input space to the output space so that y = g(x1,z3). If Equation

(2.1) is valid, then we can use the summation for the mapping.

v<l’1, LEQ) € R2 . g(&?l,l’g) =T + X9 (21)



Let us consider another case such that the input space consists of a set of images
and we want to map each image to a description. For example, the image in Figure
2.1 could be mapped to “There is a cat.” sentence. Although this task is trivial for

us, it is impossible to represent this mapping with a deterministic function.

We could represent the cat image with I, a matrix of size WxHxN where W, H
corresponds to width and height of the image whereas IV is the number of color channels
of the image (e.g. N = 1 for gray scale images, N = 3 for RGB images). We could
also represent each word or alphanumeric symbol in the description with a vector
using either one-hot encoding or variable-sized encoding (explained in Section 2.2.5) so
that we could formulate our problem. Following the notation in Equation (2.2), the
description could be represented as Y = {y1, Y2, Y3, Ya, Ys . Our objective is to find
the function g(I) =Y

There is _a  cat, . (2.2)
RGN AN -

Y1 Y2 Y3 Ya Ys

Figure 2.1. An image with description ” There is a cat.”
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Let f(...) represent the predicted mapping between the input space and the
output space (i.e. f(I)= )>) Our main objective in machine learning is to predict the
real mapping between the input space and the output space (i.e. g(I) = )) so that

Equation (2.3) holds true.

V(I) € RWxRHxRN : fI)=g(I) (2.3)

Machine learning algorithms use a loss function, L(f(...),g(...)) ,to penalize the
deviation of the predicted output from the expected output. Let us consider Equation
(2.1) as an example. If (z1,25) = (1,2), then the expected output is y = ¢(1,2) = 3.
If the predicted output is § = f(1,2) = 8, then we could conclude that our prediction
is wrong and a loss function could be used to quantize this error. Among the many
possible alternatives, L; loss given in Equation (2.4) and L, loss given in Equation
(2.5) could be used for our case. In the case of MxN dimensional output matrix Y
and Y where y;; represents the element on ith row and jth column, Equation (2.6)

and Equation (2.7) could be used for L; loss and Ls loss respectively.

Li(g,y) =9 — vl (2.4)

Lo(3,y) = (4 — y)* (2.5)
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M N
=3 1t — il (2.6)
=1

=1 j=1

N

M
= Z (%5 — ¥is)? (2.7)

i=1 j=1

Our objective is to find a mapping function which gives the minimum expected
loss, E(L(,y)|y) over the input space (conditioning on y is omitted in the following
formulas for brevity). This expectation could be expressed with Equation (2.8) given
that we want to find a mapping f : * — y. The objective function could be formulated

with Equation (2.9), where F' is a set of possible functions which f is chosen from.

B = [ LU@).y)de 29
J* = argmin - BE(L(/(2))) (2.9)

Unfortunately, we do not have access to all data from the input space, so both

Equation (2.8) and Equation (2.9) are intractable and we cannot find f* [33].

Theorem 2.1. Weak Law of Large Numbers states that the expected value of indepen-
dent and identically distributed (i.e. i.i.d.) random numbers z1, zs, . .., x, approaches

to the mean of these numbers as n — oo [34].
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We could approximate the expected loss in Equation (2.8) with Theorem 2.1 given
that input samples, (z1,v1), (Z2,%2), - - -, (Tn, Yn), are i.i.d and the number of samples,
n, is large. The final formula is shown in Equation (2.10), where our dataset includes
all input samples. Although we can find a function f* where L(f*(x;),y;) = 0 for
0 < i < n, there is no guarantee that f* will also minimize expected loss outside of
our dataset. For example, we could define a function g(z) with Equation (2.11), where
the expected outcome is 0 for even numbers and 1 for odd ones. If our dataset only
contains even numbers, f*(x) = 0 will minimize the expected loss on the dataset ,but
the minimization will not be generalizable to the odd numbers as well. This problem

is described as over-fitting.

B(L(G, ) = = S L), w) (2.10)

3 0 if x is even,
9(z) = (2.11)
1 if x is odd.

There are two main methods to prevent over-fitting. The first method suggests
that we could split the dataset into three non-overlapping sets, namely training, val-
idation and test sets. Instead of choosing the function which minimizes the expected
loss over whole dataset, we could find a few different functions which minimize the loss
on the training set. Then, the expected loss on the validation set could be utilized for
choosing the best performing function. The intuition is that given a function over-fits
on the training set, the loss on the validation set will be higher than the one on the
training set. If the validation loss is similar to the training loss, the probability of over-
fitting is small. The test set is used only once to determine the expected performance
of that best performing function. The other method is called regularization, which
includes any technique used to increase the probability of generalization even at the

cost of increasing the training loss [35]. One particular technique is to add L; norm
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or Ly norm of the function parameters (i.e. 0) to Equation (2.9) for penalizing model
complexity. We have presented final form of the objective function in Equation (2.12)

where R(f) is the regularization loss.

f* = argmin % Z L(f(x;),y:) + R(f) (2.12)

fer

Minimization of Equation (2.12) could be achieved with two methods for a given
function f(x). The first method utilizes a search space to determine the function
parameters which gives the minimum loss. This method is not scalable, since the

search space increase exponentially with the total number of parameters.

The other method is called gradient-based optimization [35]. For the sake of
simplicity, suppose that we want to minimize the function f(x) = y with respect to
x instead of #. We could determine whether the function f(z) will increase when z
is increased by a small positive number, €, by examining the sign of f’(z), namely its
derivative. Let us examine Equation (2.13) to justify this statement. There are three

cases:

(i) If f(x) also increases so that f(z +¢) > f(x), f'(z) becomes positive. If the
function f(z) stays relatively linear in range [z — €, = + €], Equation 2.14 holds
true. The inequality f(z —€) < f(x) could be inferred from the same equation,
since the left-hand side of it is positive. In this case, f(x) decreases when z is
decreased by e.

(i) If f(x) stays the same so that f(x +¢) = f(z), f'(x) becomes zero (this is called
the stationary point). In this case, either increasing or decreasing = by € does not
change f(x), if the relative linearity condition in case (1) holds.

(iii) If f(x) decreases so that f(x +¢€) < f(z), f'(x) becomes negative. In this case,

f(z) decreases when x is increased by e.
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flx+e) - f(x)

f'(w) = lim p (2.13)
fle+e) = flx) = flz) = flz—¢ (2.14)

Figure 2.2 shows f(x) = sin(z) and the sign of its derivative at 1, z1 + €, 9, 73
and x4. Our objective is to minimize f(z) by either increasing or decreasing x by €. At
point = x1, we could increase x; by € to decrease f(x1) as suggested by case 3. At
point z = x7 + €, the sign of gradient did not change. We should again increase = by
€ to decrease the function value. We could reach the minimum of f(x), point 5, by
updating x in successive steps. At point x = x4, the gradient is zero so that changing
x by € will not change f(x) (given that € is a very small number) as suggested by case
2. At point = = z3 ,case 1 applies, so we could decrease x3 by € to decrease f(x3).The
minimum of f(x) is reached by updating x in successive steps. At point x = x4 ,case 2
applies, but f(z4) decreases around x = x4 as it can be seen in figure 2.2. The decline
of f(x) is not effective in range [z — ¢, = + €], so we miss it. One way to work around

this problem is to increase € so that relative linearity does not hold true anymore.

One problem with this method is that, it is possible to stuck at the local minimum
of f(x) instead of finding the global minimum. Figure 2.3 shows that we could only
reach the local minimum, xo, by updating x; in successive steps by a small number.
There are many heuristic methods to increase the probability of finding the global

minimum as stated in [35].
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Figure 2.2. The plot of the function y = sin(z) for x € (0, 16)
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Figure 2.3. The plot of the function y = cos(3nzx)/x for x € [0, 1.2]
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Taylor series expansion [36] of function f(z + €) about point = is presented in
Equation (2.15). We want to minimize f(x + €) — f(z) with respect to € which is a
very small number (not necessarily positive). In order to do that, the first order Taylor
series expansion is used to determine €, which produces the biggest decline in the value

of f(x). This method is called gradient descent.

e—l—f”(I)EQ—I—f//(x)e3+...—|—&e"—l—... (2.15)

flete)=fa)+ f@)et+ = 3! nl

Proof. Let us use K(z,€) to denote f(x + €) — f(z). Now, from the Taylor series

expansion formula, K (z,€) could be expressed as

K(z,e):f'(x)e—l—f;(f:) €2+f”3('x) 63—{—...—|—%(;%)6n—|—... (2.16)

If the minimum of K (z,€) with respect to e exists, Equations (2.17) and (2.18) holds

true.

dK(z,e)
—. = 0 (2.17)
%) >0 (2.18)

Let O(n) represents Bachmann-Landau notation as stated by Erdélyi [37]. We

can find the derivative of K(z,¢) as follows
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dK(z,e€) ' (x)

T = f@) et e+ R Tl (2.19)
% = f'(z) + f"(z) e + O(?) (2.20)

If we use the first order Taylor series expansion, O(e?) could be ignored. The

optimum value for e could be derived by rewriting Equation (2.17).

F@) + f(z)e =0 (2.21)

__f'@)
= ) (2.22)

Now, v could be used instead of f,%(x) to reduce the computational complexity.
Since we want to keep Equation (2.18) true, v should be positive. Additionally, it
should be small so that f(z) stays relatively linear in range [z —¢, x +¢€|. The optimum

value for € is given in Equation (2.23).

—zr (2.23)

Gradient descent states that f(x+ ¢) will be smaller than f(z), given that Equa-

tion (2.23) is satisfied. In other words, we could reduce = by v f'(x) to minimize f(x).
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We have assumed that we want to minimize f(z) with respect to x for simplicity.

Our main objective is to minimize f(z) with respect to function parameters, . Given

that f’(x) is the derivative of f(z) with respect to 6, Equation (2.23) could be used to

update @ in successive steps to reach the minimum of f(z).

(i)

Let us summarize this section with the following points;

Machine learning is used to find the latent mapping from an input space to an
output space such that f: =z — .

A loss function, L(f(x),y), is used to quantize the deviation of the predicted
output, f(z), from the expected output, y.

Among the many techniques used to prevent over-fitting, regularization intro-
duces an additional loss function, R(f), to achieve generalization.

Our objective is to minimize the overall loss, as presented in Equation (2.12), on
the training set. Gradient descent is one of the methods used for this minimiza-
tion, which is achieved by reducing the loss gradually at successive time steps.
The parameters of function f(x) is updated at each step for this purpose.
Expected loss on the validation set is used to prevent over-fitting.

Expected loss on the test set is used only once to determine the expected perfor-

mance of the function on the unseen data.

2.2. Machine Learning Models

Machine learning algorithms could be split into two categories based on their

objective. In the first category, namely supervised learning, we aim to learn the latent

mapping f : x — y from an input space to an output space as demonstrated in the

previous section. In this case, it is required that the dataset should contain each sample

x; with their corresponding label ;. In the other case, these labels are also latent, so

it is not possible to supervise the model with a loss function which depends on y.

Therefore, the other category is called unsupervised learning.
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Figure 2.4. Linear classifier example with two classes, “x” and “0”

In this dissertation, supervised methods are used to build our description gener-
ation architecture. Specifically, classification, a subcategory of the supervised learning
where the output space consists of finite alternatives for each label, is utilized. Because
of that, only classification models are examined in this section. We advise Alpaydin [32]

and Goodfellow et al. [35] to the readers for the explanation of other models.

2.2.1. Linear Classifier

Consider a simple example where our objective is to design a model to separate
“x”7 and “0” symbols in Figure 2.4. In this case, the input space is two dimensional
such that z € R? |, where & = {z1, 7»}), and the output space is one dimensional
such that y € {z, o}. Since there are only two alternative outputs, we need to design

a classification model for our problem.

We can separate one class from the another with line “w” as showed in Figure 2.4.
[1Pe)] [1ed]

In other words, “z” and “0” classes are linearly separable. Let us give the definition of

linear separability [38] for the sake of completion.
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Definition 1. Two classes )V, and Y, of R? are linearly separable if there exists a
hyperplane w of R? such that the samples of ); and those of ) lie on the opposite
side of it.

The separating line between two classes could be formulated with Equation (2.24),
where wq,ws and b are the parameters of this line. Let us divide the input space
into three mutually exclusive and collectively exhaustive sets, namely .7, .%5, .%3, as
expressed with Equation (2.25). Set .% includes all the samples on this line, whereas
set .1 and set .3 contain the samples from the opposite side of it. As suggested by
the definition of linear separability, each sample in the dataset could be classified based
on the sign of [ (). Additionally, every sample in set . labeled as either “z” or “o”

class in order to construct a classification rule which spans all the input space. Final

classification rule is shown in Equation 2.26 (Rule 1).

Z(ZB) = W1 T, + Wa Ty + b=0 (224)
(
<0 ifxe.SA,
l(x) =0 ifxe .S, (2.25)
>0 ifxe A
\
“if € A,
y = (2.26)

“o” if x € { S, S}
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Now that a classification rule is formulated, a loss function could be used to find
the expected loss on the training set. We want to find the line “w*” which minimizes
a loss function, so that all samples in the dataset are classified correctly. Since there
are infinitely many lines, which satisfies the linear separability definition, it is possible
to pick one which overfits the training set. Intuitively, there is a higher probability of
miss-classification for an unseen sample which is close to the line “w*” than one which
is far from it. Consider two points &4, @p in the input space where |l (xq)| > |l (xp)].
Since the minimum distance between a point @ and the separating line [ (x) = 0 is
proportional to the absolute value of I (x) as shown in Equation (2.27), we can say
that the probability of making correct classification is higher for the point x, then the
point @xp. Accordingly, we can use [ (x) as an input to a sigmoid function to get this
probability which is given in Equation 2.28. The sigmoid function gives an output in

the range [0,1] as shown in Figure 2.5.

d(x) = Zﬁ—"f'w (2.27)
= L 2.28
o(z) = 1+ exp(—z) (2.28)

We could interpret the output of sigmoid as the conditional probability of a sample
being classified as either “z” or “o” given the sample coordinates (i.e. p(y|x)). Based
on the final classification rule given in Equation (2.26), the conditional probability
of “z” given the sample coordinates (i.e. p(y = “x”|x)) should be higher than the
conditional probability of “o” given the sample coordinates (i.e. p(y = “0”|x)) for
x € .. Similarly the conditional probability of “0” given the sample coordinates
should be higher than the conditional probability of “z” given the sample coordinates

for x € {F, #}. Furthermore, the sum of conditional probabilities should be one (i.e.
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Figure 2.5. The plot of sigmoid function o(x) = o)

p(y = “a”|x) + p(y = “0o”|x) = 1). We could formulate the conditional probabilities
based on the given conditions with Equations (2.29) and (2.30) (Rule 2).

o(l(®))  ifxeA,
ply = “2"|x) = (2.29)
1—o(ll(z)| ifze (S %)

« 1—o(|l(z)]) ifxeA,
ply ="0lz) = (2.30)
o(|l ()] if & € {5, %)

Consider the classification rule in Equation (2.26) (Rule 1). In the case of & € .7,
the label is always predicted as “z”, otherwise it is always predicted as “0”. In other
words, the conditional probability of “z” given the sample coordinates is one (i.e.

ply = “a”|x) = 1) for & € #. Similarly, the conditional probability of “0” given the
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sample coordinates is one, i.e. p(y = “0o”|x) = 1, for & € {F,.#3}. The conditional

probabilities for Rule I are given in Equations 2.31 and (2.32).

1 ifxe yl,
ply = “27[x) = (2.31)
0 ifwe{yg,yg}.

0 ifxe. A,
ply = “o"|x) = (2.32)
1 ifwe{yg,yg}.

Comparing Rule 1 with Rule 2, we see that the conditional probability of y given
the sample coordinates is either zero or one (i.e. p(y|x) € {0,1}) for Rule 1, whereas
it can take the continuous values between zero and one (i.e. p(y|x) € [0,1]) for Rule 2.
Because of this reason, the former rule is also called hard labeling, whereas the latter
one is called soft labeling. In both cases, our objective is to minimize the difference
between the true conditional probability distribution ¢(y|z), and predicted probability
distribution p(y|z). ¢(y|z) could be considered as a deterministic hard labeling as

shown in Equations (2.33) and (2.34).

1 ity ="2",
qly = “2”|x) = (2.33)
0 ify= “o".
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é( b

ify=
(2.34)

[13el]

if y= "0

We can use the relative entropy (i.e. Kullback Leibler distance) between these

two distribution to quantize this difference as stated by Cover and Thomas [39]. The

formula for the relative entropy is shown in Equation 2.35 and rewritten in Equation

2.36 as the difference of two terms. Since the first term on the right hand side of

Equation 2.36 does not depend on the predicted probability p(y|x), we cannot reduce

its value with optimization. However, we could minimize the second term, namely

cross-entropy. For these reasons, the optimization of the relative entropy is equivalent

to the optimization of the cross-entropy and that is why instead of using the relative

entropy, we build our loss function using the cross-entropy formula given in Equation

(2.37). Since there are two possible classes for our problem, H(q,p) is also named as

binary cross-entropy.

D(qllp) = Y alylz)log dvle)

o p(ylz)

= > qlylr)logq(ylr) —

ye{z,0}

(2.35)

> qlylz)logp(ylr) (2.36)

yE{J?,O}

H(g,p)=— Y aqlylz)logp(ylz) (2.37)

ye{z,0}

We could also simplify H(q,p) by using Equations (2.33) and (2.34)
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_logq(y — Hx”‘w) if y — 4('%.77’
H(q,p) = (2.38)
—logq(y = “o’|x) ify= “o".

Now, we can construct the overall loss function with Equation (2.39). We could
use either Rule 1 or Rule 2 for finding p(y|z). The mapping f* : * — y which
minimizes the loss function L(7,y) given in Equation (2.40) is found by applying the

gradient descent on the loss function in successive steps.

L(g,y) = % > Hlg.p) + R(f) (2.39)
= ar%?;in L(y,y) (2.40)

2.2.2. One Layer Neural Networks

We have seen that if the linear separability between the two classes exists, a
linear classifier could be used to find the separating line between two classes. In case
the linear separability does not exist, it is not possible to find such a line. Consider the
classes “z” and “0” shown in Figure 2.6 as an example. These classes are obviously
not linearly separable, and no single line could divide the input space such that the
classification is achieved without error. However, we could use a circle with formula

2 as a separating hyperplane to obtain zero classification error. In other

2 2 _
rit+xy, =71
words, we could use a non-linear hyperplane instead of linear one for classification

in case that the classes are not linearly separable. Alternatively, we could use some
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non-linear function to transform the input coordinates to another input coordinates
where the linear separability between the two classes exists. For example, we have
transformed the input coordinates (x1, r5) € R? in Figure 2.6 into the polar coordinates
(r,0) € {0, R*}x{[—m, )} where r = /22 + 22 and 6 = arctan 22 and show the result
in Figure 2.7. After the transformation, a linear classifier could be used to find the
separating line w, similar to the previous section. Now, the problem is reduced to
designing a non-linear transformation followed by a linear classifier as shown in Figure

2.8.

al| ® xclass ® )
& oclass
L L
2F ——- :
") N
M OF ® PR x ® 1
& Xy X
-7 |- -l |
® ®
4| . i
N R
T, axis

[P} [13e))

Figure 2.6. The plot of samples belonging either “x” or “o” classes which are not

linearly separable for the input coordinates (z1, ;) € R?



27

4 T T T T T T
S — w line
i X hd ¥ xclass ||
2+ : ® oclass |
v Lf o L ] .
b4
o O ’
@ 4} X ® 1
_2_ -
3L b4 ™ : : 1
_4 1 i i 1 i i
0 1 2 3 4 5 & 7 8

r axis

[P}
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Figure 2.8. Non-linear classification pipeline
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The architecture of an one hidden layer neural network is shown in Figure 2.9.
Our objective is to find a non-linear mapping from an input space to an output space
in order to separate two classes. Each circle in the architecture is named as neuron or
node and each line between the neurons is named as weight. Apart from the first layer,
each neuron takes an input and gives an output based on some activation function.
Each neuron is also named after their output for convenience (e.g. the output of the

neuron on the upper left corner is x1).

X1 Y1

X2 2

Input Layer Hidden Layer Output Layer

Figure 2.9. One layer neural network architecture

The number of neurons in the first layer, namely input layer, equals to the number
of input features & = [z1,x2]. The output of each neuron equals to the value of one
feature. The number of neurons in the second layer, namely hidden layer, depends on
the design of the architecture. Since each neuron in this hidden layer is connected to
all the neurons in the previous layer, this layer is also called a fully connected (FC)
layer. The non-linear transformation of the classification pipeline shown in Figure 2.8
is performed in this layer. Each neuron on the hidden layer takes an input s¥, passes
it through some non-linear function f*() and gives the result h¥ as the output such
that h¥ = f*(s¥). The subscript i and superscript k specifies that h¥, *(), s¥ are the
parameters of i*® neuron belonging to k" layer after the input layer. Input layer is
declared as 0" layer. The number of neurons in the last layer, namely output layer,

equals to the number of classes that needs to be classified. For example, there should be
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four neurons at the output layer given that we want to separate 4 different classes. The
linear classification shown in Figure 2.8 is performed in this layer. Depending on the
output activation function, y; could be interpreted as either the confidences score of a
sample belonging to i*" class, represented with a y; € R, or the conditional probability
of a sample belonging to " class given the input coordinates x, represented with a
y; € [0,1]. The later one is generally obtained with the normalization of the confidence

scores such that after the normalization, Zf\il y; = 1 for N different classes.

The input of the neuron hjl- on the hidden layer can be expressed as the summation
st =37 | wha;+b}, where w), is the weight between i*" input neuron z; and j* hidden
neuron hjl-, and bjl- is the bias of hj1 This summation could be rewritten as a vector

D T
multiplication s} = w}" @, where & = [z1, 2, 1]7 and w} = [w];, wy;, bj]". In order
to further simplify our representation, Equations (2.41), (2.42) and (2.43) could be
combined into a matrix-vector multiplication s* = Wz as shown in Equation (2.44),

where s = [s], s, s3]" and W' = [w], w], wg]”.

51 = w}Ta: (2.41)
55 = w;Ta: (2.42)
sy = w;Ta: (2.43)
51 wiy wy bl |2
S3| = |wiy wy byl |23 (2.44)
53 wiy Wy by 1
— N -~ 22—
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The non-linear function f(...) is usually chosen as a convex function since the

local minimum and the global minimum of a convex function are the same, so it is easier

to optimize the loss function. For a comprehensive introduction to convex optimization,

we recommend Convex Optimization book from Boyd and Vandenberghe [40]. We have

listed some popular activation functions used in neural networks below.

(i)

(i)

sigmoid

Sigmoid function given in Equation (2.45) is defined from the input space x € R
to the output space f(z) € [0, 1] as shown in Figure 2.10.

There are two main problems with the sigmoid function when it is used as an
activation function. It is shown by LeCun et al. [41] that the output of an
activation function should be zero centered in order to reduce the number of steps
required for optimization. The sigmoid function is not zero centered. Another
problem rises from the fact that the gradient of the sigmoid function for the
majority of the input space is almost zero, which in turn makes the gradient of
the loss function very small. Although sigmoid function was widely used as an
activation function over the past few years [35], it is not preferred anymore for

these reasons.

f(z) = (2.45)

tanh

LeCun et al. [41] used tanh as an activation function in order to eliminate the
problems arising from the fact that the output of the sigmoid function is not
zero-centered. tanh function given in Equation (2.46) is defined from the input
space x € R to the output space f(z) € [—1, 1] as shown in Figure 2.11. Although
the output of this function is zero centered, the gradient of it is also almost zero

for the majority of the input space.
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fl@)=——- (2.46)
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Figure 2.10. The plot of sigmoid function o(z) = Tre(=a)
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Figure 2.11. The plot of tanh function f(z) = £=¢
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(iii) ReLU (Rectified Linear Unit)

ReLU function given in Equation (2.47) is defined from the input space € R to
the output space f(z) € [0,+00] as shown in Figure 2.12. Nair and Hinton [42]
used ReLLU activations to increase the performance of the restricted boltzmann
machines, whereas Krizhevsky et al. [5] achieved the best performance on both the
classification and the localization tasks on ImageNet Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC-2012) [4].

Although the output of the ReLU is not zero-centered, the gradient is not zero
for the half of the input space (i.e. z € R™) which in turn reduces the number

of iterations required to reach the minimum of loss function.

f(z) = max(0, x) (2.47)
15 T
— RelU(x)
10
"
CR- o
o
]
_5 1 1 1
-10 -5 ] 5 10
X axis

Figure 2.12. The plot of ReLU function f(z) = max(0, x)

(iv) LReLU (Leaky ReLU)
Maas et al. [43] verified that LReLU given in Equation (2.48) converges slightly
faster than the ReLLU resulting from the non-zero gradients for x € R~ as shown

in Figure 2.13.
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0.1z if z <0,
fa) = (2.48)

T ifxz>0

— LRell(x) 1

¥ axis

Figure 2.13. The plot of LReLLU function

PReLU (Parametric ReLU)
As suggested by He et al. [44], PReLU function given in Equation (2.49) uses «
as a parameter of the activation function in order to avoid zero gradients. « is

optimized with the gradient descent.

ar ifr <0,
f(x) = (2.49)

z x>0

ELU (Exponential Linear Units)
Clevert et al. [45] showed that ELU activation function given in Equation (2.50)
ensures robustness to noise unlike ReLLU, LReLLU and PReLLU without sacrificing

the generalization performance. « is a constant positive number.
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Figure 2.14. The plot of ELU function
ale® —1) ifzx <0,
f(x) = (2.50)

T ifxz>0

Although it is not necessary, usually the same activation function is used for each
neuron in the same layer. The hidden layer outputs are calculated using Equations
(2.51), (2.52) and (2.53). These equations could be rewritten as h' = f1(Wjx), where
h' = [hl, i, R and f!is applied element-wise to the vector Wz. The mathematical

formulation between the input layer and the hidden layer is summarized in Figure 2.15

hi = fl(w}z) (2.51)
h = fH(wl ) (2.52)

hi = flwi'z) (2.53)
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The input of the neuron y; on the output layer can be expressed as the summation

s2 = Y0 wihl + b2, where w? is the weight between i hidden neuron h} and j*

output neuron y;, and b? is the bias of y;. This summation can also be expressed as a

matrix-vector multiplication s? = W2h! with Equation (2.54).

hy
S1 wy w21 wsp by
ho
Sp| = |wia wa ws b L (2-54)
3
53 w3 Wz wsr by
S~—~— ~~ |1
S2 Wa N——
hi

As mentioned before, depending on the activation function f2(...), y; could be
interpreted as either the confidence score of a sample belonging to " class or the
conditional probability of a sample belonging to i*" class given the input coordinates
. For the first case, we could use the identity mapping f(z) = z as the activation
function. On an intuitive level, each neuron in the output layer splits the input space
with a hyperplane and the confidence score represents the distance between a sample

and this hyperplane. Multiclass SVM loss [46] shown in Equation (2.55) could be used

1
hl
X1
1 h' =f1(Wlx)
h2
b%) hl — [l’ll,hl,h%]T
1
h3
Input Layer Hidden Layer

Figure 2.15. Mathematical formulation between the input layer and the hidden layer
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to calculate the loss of a particular sample, where N is the number of output neurons
(e.g. 2 for our classification problem), k € {1,2,..., N} is the true class of that sample
and A is a constant scalar, namely margin. Notice that the loss becomes zero when
the confidence score of the true class ¥y, gets higher than the confidence score of all
the other classes by margin A. A sample is classified with the class i, if the confidence

score of i’ class (i.e. y;) is higher than the confidence score of all the other classes.

N
L= Zmax((), Yi — Y+ A) (2.55)

=1
itk

For the second case, the softmax function [35] given in Equation (2.56) could be
used as the activation function in order to obtain the conditional probabilities. N in
this equation equals to the number of output neurons. Similar to the linear classifier,
we could use the cross-entropy loss for the optimization. Equation (2.57) shows the
multiclass cross entropy loss, where y is the true class label, g is the predicted class
label, q(y = i|z) is the true conditional probability of a sample belonging to i*" class
and p(§ = i|x) is the predicted conditional probability of a sample belonging to "
class such that p(g = i|x) = y;. Assuming that k£ € {1,2,..., N} is the true class of a
sample, ¢(y = i|x) becomes deterministic so that ¢(y = k|xz) = 1 and ¢(y = ilz) =0
for i # k. We could simplify Equation (2.57) to Equation (2.58) by explicitly writing
each term of the summation. A sample is classified with the class 7, if the conditional
probability of i* class (i.e. ;) is higher than the conditional probability of all the

other classes.

f(s5) = =— (2.56)
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L=-) qly=ilx)logp(j = i|x) (2.57)
L 1“( A (2.58)
= —log(——) = —logy; :

° Zfil e% o

The mathematical formulation between the hidden layer and the output layer is

summarized in Figure 2.16 for convenience.

hy
1 y =f>(W?h!)
hy =2 (W1 (W'x))

2 y=D1ynl!
h3

Hidden Layer Output Layer

Figure 2.16. Mathematical formulation between the hidden layer and the output layer

2.2.3. Multi-Layer Neural Networks

In some cases, the accuracy achieved with one layer neural network could be
non-sufficient for our classification problem. Although it is not always true, we could
get a better classification accuracy when the number of hidden layers increases. In
particular, He et al. [9] showed that as the number of hidden layers increases, the
accuracy could decrease because it gets harder to optimize the parameters of a neural
network. Although we will not dive into the details, they have also showed a way to
overcome this problem in their work [9]. For our case, we could use two layer neural
network shown in Figure 2.17 to increase the classification accuracy. For simplicity, the
same network is also shown as a block diagram in Figure 2.18, where ReLU activation

function is used in the hidden layers and softmax activation function is used in the
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output layer. We have used “FC-M” to indicate the fully connected structure of a
layer whose output is a “M” dimensional vector. For instance, FC-2 performs the
operation 82 = W3h? between the hidden layer 2 and output layer, where s3 is a two

dimensional vector.

! %
X1 V1
h 2 y =W f2(W2 1 (Wlx)))
2 Y2
s i
Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.17. A neural network architecture with two layers

x s! h! s h? 53 y
Input FC-3 RelLU FC-3 RelLU FC-2 Softmax Output

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.18. Another way to represent a neural network architecture with two layers
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2.2.4. Convolutional Neural Networks

As stated earlier, each neuron in a FC layer is connected to all neurons in the
previous layer. In other words, each neuron in a FC layer sees all the neurons in the
previous layer. Formally stated, FC layers have global receptive field. For example,
a neuron in a FC layer, which comes after WxHxN dimensional input image, has
WxHxN dimensional receptive field. Consequently, FC layers do not preserve the

spatial structure of the input, such as images and sound spectrogram.

Lecun et al. [6] showed that convolutional neural networks (CNNs) could be
used to preserve spatial structure of the input by ensuring shift, scale and distortion
invariance to some degree. Now, we will explain two main layers used in CNNs, namely

convolutional and pooling layers.

(i) Convolutional (CONV) layer performs the convolution operation on its input with
a set of filters. First, we will show this operation with an example by convolving
a WxHxN dimensional image X with a FixF>x/N dimensional filter W. Then,
we will generalize this result to a case where a WxHx/N dimensional input X
is convolved with FixFyxNxK dimensional filters W, where the last dimension
represents the total number of filters.
Consider 8x8x3 dimensional cat image X shown in Figure 2.19, where each chan-
nel of the image is represented with X} such thatX, = X[:,:, k]. We will con-
volve this image with 3x3x3 dimensional filter W shown in Figure 2.20, where
each channel of the filter is represented with Wy, such that Wy, = W1, i k]. We

have omitted the bias vector for brevity in this example.
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Figure 2.19. A cat image which is represented with a 8x8x3 dimensional matrix X

N

o] 1] 2

oll 21212

ol 31 4]s
1 W3

F 1l o] 2] 2
2 W2
1|01

Wi

F

Figure 2.20. A convolutional filter which is represented with 3x3x3 dimensional

matrix W



41

Figure 2.21 illustrates convolution operation for the calculation of S[1,1], where
S is the output of CONV operation (not to be confused with H , i.e. the output of
CONYV layer, as shown in Figure 2.22). Initially, each filter channel Wy, is element-
wise multiplied with a 3x3 portion of corresponding input channel X, (highlighted
3x3 matrices in Figure 2.21). The resulting 3x3 matrix is represented with L _;;,
where 27 indicates that this operation is performed for the calculation of STz, j].
Each element of Lg_1; in Figure 2.21 is calculated with Equation (2.59). Since
there are 3 channels in this example, a total of 3x3x3 element-wise multiplication
is performed. In other words, each neuron in this layer sees only 3x3x3 neurons in
the previous layer. Formally stated, CONV layers have local receptive field (e.g.
3x3x3 in this example). Additionally, X and W should have the same number of
channels in order to perform the convolution operation. Afterwards, the elements
of Ly_11, La_11 and L3_1; are added together to calculate S[1, 1] as shown in

Equation (2.60).

Ly_11[m,n] = Xg[m,n| - Wi[m,n] for m,n € [1, 3] (2.59)

S =YY" Li_1i[m,n] (2.60)

k=1 m=1 n=1

Figure 2.23 illustrates convolution operation for the calculation of S|1,2]. Similar
to the previous calculation, each filter channel Wy, is element-wise multiplied with
a 3x3 portion of the input channel X}, (highlighted 3x3 matrices in Figure 2.23).
Unlike to the previous calculation, the 3x3 portion of X} is now shifted one pixel
to the right as shown in Equation (2.61). In other words, we slide the filter
W by one element to the right on X in order to calculate one element shifted
version of S[1,1], namely S[1,2]. The number of elements which the filter is
slided horizontally comparing the computation of S[i, j| and S|[i,j + 1] is called
horizontal stride. Similarly, the number of elements which the filter is slided
vertically comparing the computation of S[i, j| and S[i + 1, j] is called vertical
stride. In this example, the convolutional filter has horizontal and vertical stride

one. S[1,2] is also calculated similar to the calculation of S[1, 1] (i.e. the elements
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Figure 2.21. Illustration of the convolution operation for the calculation of S[1, 1]
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of Ly_12, La_12 and L3_j5 are added together as shown in Equation (2.62)).

Ly_12[m,n] = Xg[m,n + 1] - Wi[m,n] for m,n € [1, 3] (2.61)

S[L.2] =YY" Ly_12[m,n] (2.62)

k=1 m=1n=1

We could compute every element of S by sliding 3x3 filter Wy, on 8x8 input
Xj. Considering that we are using horizontal and vertical stride one for the
convolution, Wy, could be slided 6 times horizontally and 6 times vertically. This
will generate a 6x6 dimensional matrix S, whose elements are calculated with
Equations (2.63) and (2.64), where k,m,n € [1,3] and 7,5 € [1,6]. Finally, ReLU
activation function f(...) is applied element-wise to S to calculate the output of

CONYV layer i.e. H, as shown in Equation (2.65).

RelU ——» K

\

Convolutional

Input Layer Layer

Figure 2.22. The output of convolutional layer in this example, H, is calculated after
the input image, X, is passed through a CONV operation followed by a ReLLU

activation function
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Figure 2.23. Illustration of the convolution operation for the calculation of S|1, 2]

44




45

Lk_ij[m, TL] = Xk[m + 17— 1,71 +] - 1] : Wk[m, TL] (263)

Sl =Y > Li—ijlm,n] (2.64)

k=1 m=1 n=1

:ZZZXk[m+i—1,n+j—1]'Wk[man]

k=1 m=1 n=1

H = f(S) (2.65)

Notice that the convolution of 8x8x3 dimensional input X with 3x3x3 dimensional
filter W produced 6x6 dimensional output matrix H. In some cases, it could
be desirable to keep the width and height of input and output of a convolutional
layer same. In order to achieve 8x8 output matrix, the input could be padded
with zeros at the borders as shown in Figure 2.24 before the CONV operation.
Assuming that each border is padded symmetrically with P zeros (e.g. P =1 in
Figure 2.24) the convolution of WixH;xN dimensional input X with a FixFoxN
dimensional filter W with vertical stride S; and horizontal stride S, will produce
a WoxH, dimensional matrix H with width (W — F} + 2P)/S; + 1 and height
(H—F,+2P)/Sy+ 1.

In general, the convolution operation is performed with a set of K independent
FixFyx N dimensional filters instead of one filter. This will produce a total of
K independent WyxHy dimensional matrices. These matrices are then stacked

together to produce WoxHox K dimensional output matrix H.



46

(ii) Pooling (Pool) layer performs a sub-sampling operation on the output of a CONV
layer to ensure shift and distortion invariance to some degree as stated by Lecun et
al. [6]. Unlike CONV layers, activation functions are not used in the Pool layers.
Moreover, the number of input channels stays the same after the pooling operation
In other words, the pooling operation performed on a WixH;xK dimensional
matrix produces a WoxHox K dimensional matrix as the output. For example, we
could use a 2x2 filter W with horizontal and vertical stride 2 to down-sample a
matrix H; by two as shown in Figure 2.25, to produce Hy (i.e. the output of the
pooling layer). In this example, we have used max-pooling (MaxPool) operation

as a filter, which gives the maximum of its four inputs as the output.

X1 Xz X3
10| 4 | 3 |24 44 |42 |55|21 2|/1|5|0 2|4(33| 4 314,43 3|1|2]|1
20| 6 | 1 | 5 |88 /233|67 |89 33|01 3|3|6 |46 1,020 1|/0|4) 1
50 (12| 7 |66 | 85(33(14| 1 5|47 |55 54(22| 1|1 412141 7|5|8|9
40|13 |11 |44 63|53 (43| 2 77| 8 | 1 |55 44(79(22| 4 0O 14,4 22|18
50 (5573|9097 |3 |1 | 4 98| 1 (44|12 64|56| 0 | O 74|66 21|28
30(11|62|64 57| 5|5 |2 645 /99| 0 66|46| 0 |64 6 3/, 6|2 52|28
8024|248 5| 0|86 8|9 |12|1 55(95(22| 4 21|33 ' 71517
10 255/ 10 |20 | 20 | 40 | 50| 70 63 | 73 |150(244 60 | 80 ({100({200 1/6|(9(0 7|5|0]|6

w
©

Figure 2.25. Max-pooling operation performed on matrix H
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1 1 2 3
convae. S H H s y
Input 5 xes RelLU MaxPool 2x2 FC-2 Softmax Output

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.26. A convolutional neural network architecture with two hidden layers

Different CNN architectures are constructed by successively stacking CONV and
Pool layers until the output layer. For example, Figure 2.26 shows a two layer CNN,
where the convolution operation with FixFox NxK filters is represented with “CONV
FixFy, — K7 and the max pooling operation with FixF; filter is represented with “Mazx-
Pool FixFy”. We have discarded N from the representation of the convolution opera-

tion since it can be inferred from the dimension of its input.
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2.2.5. Recurrent Neural Networks

Recurrent neural networks (RNNs) are used to preserve the sequential information
in the input space. In order to show this explicitly, we assume that our dataset contains
N sequences {X, Xy,..., Xy} and each of &; contains |X;| elements such that X; =
{1, 22,..., 21, }. For example, each of X; could be a movie review (e.g. “watching

this movie was not a mistake”) which consists of a sequence of words x; (e.g. “movie”).

In order to process each review in a computer, each word in the dataset should
be represented with a vector (i.e. word embedding). Initially, we should determine the
number of distinct words we want to represent. The set which contains all the words
we want to represent is called vocabulary. We could use a distinct word embedding for
either each word in the training set or each word in a subset of the training set. In a
simple way, we could count the number of times each word is used in the training set.
Then, we could create this subset from the words with count more than some fixed
number (e.g. three). In both cases, it is possible to encounter some words which are
not in the vocabulary. For instance, the test set could contain some words which are
not present in the training set. An extra embedding vector < UN K > is used for such

words.

After the vocabulary size |V (i.e. the number of distinct words we want to rep-
resent plus one for < UNK >) is determined, either one-hot encoding or variable-
sized encoding is used to represent each element in the vocabulary with a vector
v; for 1 < i < |V/|. In the former method, each element is represented with a sparse
vector of size |V, such that only " element of the vector is one (i.e. v;[i] = 1) and
all the other elements of the vector is zero (e.g. v;[j] =0 for 1 < 7 < |V|and j # 7).
This method does not preserve the semantic similarity between the words since each

element of v; is an independent scalar.
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On the other hand, the latter method encodes each element in the vocabulary
with a dense vector of size K < |V such that semantically similar words have similar
entries on the same vector positions. More concretely, a fully connected layer with the
activation function f(z) = x and |V|zK dimensional weight matrix W is used for the
variable-sized encoding. Each row of the weight matrix represents an embedding vector
such that v; = WTi,:|. The weight matrix is optimized during the training with the

gradient descent to preserve the semantic information in the vocabulary.

After the number of elements in the vocabulary and the encoding method is
decided, our objective is to classify each review X; with either “good” or “bad” label
y; (e.g. “good” for this example). The length of each review is not the same, so we
cannot use a FC layer which requires a fixed size input. RNNs process each word in a
review sequentially in order to use a variable sized input. In other words, x; is used
as the input at the first step, x5 is used as the input at the second step and so on.
Additionally, the outcome of the classification should depend not only on each word
but also on their alignments. At each step of RNN, the information in the present step
(i.e. @) is combined with the information coming from the previous steps (i.e. hy_1)
to produce the vector hy. Then, h; is passed to the next step and the whole process
is repeated recursively. On an intuitive level, h; stores word alignment information of
the sequence {@y,®2,..., s} and passes it through the next step. More rigorously,
Equations (2.66) and (2.67) are used for the computation of h; at t"* step, where W,
is the weight matrix of & , W, is the weight matrix of h, b is the bias vector and f() is
the activation function. Same weight matrices and bias vector are used at every step.
Additionally, hq stores the prior knowledge about the sequence. We could use either
a constant vector (e.g. a matrix whose each element is zero) for hg or treat it as a

parameter of the network and learn it during the training.

St = Ww T + Wh ht—l -+ b (266)

hi = f(st) (2.67)
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Figure 2.27. A RNN architecture designed to classify movie reviews as either good or

bad

Figure 2.27 illustrates a RNN structure which is designed to classify a movie
review X = {@y, @2, X3, x4} with either “good” or “bad” label y. We have used REC-
N to represent a recurrent layer with N hidden neurons. Since there are only two

output classes, FC-2 layer is used at the output layer.
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We could also design a RNN structure to predict the next word w41 in a sentence
W based on all the previous words {wy, ws, ..., w}. In practice, a sentence VW which
contains 7" words such that W = {w;, wa, . .., wr} is represented with T+2 embedding
vectors W = {< SOS >, wq, wa, ..., wr, < EOS >}, where < SOS > and < EOS >
symbols indicate the start of a sentence and the end of a sentence respectively. In
order to represent both < SOS > and < FOS > symbols with embedding vectors, the
vocabulary size |V| is increased by two. The final vocabulary includes all the distinct

words we want to represent together with < UNK >, < SOS > and < FOS >.

In the training phase, our objective is to predict the next word with the current
word embedding and the hidden layer output coming from the previous step. As a
consequence, all the embedding vectors except < FOS > could be used as an input for
the training. At each step of RNN, the expected output will be the embedding vector in
w coming after the input embedding vector. For instance, < SOS > is used to predict
the first word of the sentence (i.e. w;) at the first step. w; is used to predict the second
word of the sentence (i.e. ws) at the second step and so on until the last word of the
sentence (i.e. wr) is used to predict < EOS >. More concretely, our objective is to
find the mapping between the input sequence X = {x1,s,...,Tr11} and the output
sequence Y = {y1,Ya2, ..., Y141} for a sentence W = {w, wa, ..., wr}, where X and
Y are given in Equations (2.68) and (2.69). Additionally, we have used the softmax
function at the output layer to obtain the conditional probabilities of each embedding
vector v;. Each dimension of the output vector gives the conditional probability of a

different embedding vector as shown in Equation (2.70).

X = {< SOS >,'w1,w2,...,wT} (268)

Y ={w,ws,...,wr,< EOS >} (2.69)
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p(vjlx;) = y;ly] for i €{1,2,...,T+1}
je{L,2,....[V[} (2.70)

x; € RK,yi c RV

In the test (i.e. inference) phase, our objective is to predict the whole sentence

{w1,wa, ..., wr}. However, we only know that all sentences start with < SOS >

and end with < FOS >. Assuming that hg stores the prior knowledge about the

sentence W, there are three main methods to generate this sentence.

(i)

(i)

Greedy Search

x; (i.e. the embedding vector of < SOS > symbol) is used to compute y; at
the first step. The embedding vector with the highest conditional probability is
chosen as the first word of the sentence (i.e. wy). Then, wy is used as the input
at the second step (i.e. as x2) to compute yy. Similar to the previous step, the
embedding vector with the highest conditional probability is chosen as the second
word of the sentence (i.e. ws). This process is repeated recursively to generate
a sentence until < EFOS > is chosen as the word embedding with the highest
conditional probability. The maximum number of recursive steps are fixed to
ensure that the generation process terminates eventually.

Beam Search [26]

Similar to Greedy Search, x, (i.e. the embedding vector of < SOS > symbol) is
used as input to compute y; at the first step. Instead of choosing a single word at
this step, § words (i.e. also called beam width) with the highest conditional prob-
abilities are chosen as candidate words for the first step. Then, each candidate
word from the previous step is used as the input at the second step (i.e. as x3) to
obtain [ candidate words. Since we are using (3 candidates from the previous step,
there are a total of 3% candidate words for the second step. Considering v; as one

of 8 candidates at the first step and v; as one of 3 candidates at the second step
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for &5 = v;, then the conditional probability of two-word sequence {v;, v;} could
be calculated with Equation (2.71). Since our objective is to generate the word
sequence with the highest probability, we choose S two-word sequences with the
highest conditional probabilities as candidate two-word sequences at the second
step. This process is repeated recursively T' times to obtain 8 candidate T-word
sequences. The predicted sentence is chosen as the candidate sequence with the

highest conditional probability.

(i, V5|1, B2) = p(vj|21, @2, vi) * p(vil21) (2.71)

= Yalj] * ya[i]

Maximum Likelihood Estimation

Since our objective is to generate the sentence with the highest probability p(W!X )
we could calculate the conditional probability for all ]V!T word sequences to gen-
erate a sentence with 7" words. Although this method will give us the most likely
sentence, it is computationally expensive than both Greedy Search and Beam

Search.
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Figure 2.28. RNN diagram designed for the sentence generation

Although RNNs could store some form of sequential information, Bengio et al. [47]
showed that they are not suitable for preserving long-term dependencies in a sequence.
In particular, the gradient of the loss with respect to the weight matrices could get
either very large (i.e. exploding gradient) or very small (i.e. vanishing gradient) during
the optimization. In order to overcome these problems, Hochreiter and Schmidhuber
[27] proposed Long Short-Term Memory (LSTM) Networks. Equations (2.72)-(2.77)
are used for the computation of hy; at t" step, where ¢ is the sigmoid function and o

is the element-wise multiplication.
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X S! H! S? y
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Figure 2.29. Another way to show RNN diagram designed for the sentence generation

iy = o(Wig s + Wip, hy 1 + b;)
fi=0Wg e + Wy hy_q + by)

0 =0(Wog e + Wop hy—1 + by)

gr = tanh(Wyg &y + Wy hy—1 + by)
¢t = ftoci1+1i0g;

ht = 0¢ ©O tanh(ct)

Note that, ¢; (i.e. cell state) stores the alignment information of the sequence
{x1, xa,..., x4} and passes it through the next step (i.e. next cell) in LSTM Networks.
ftoci—q represents the information coming from the previous cell. f; (i.e. forget gate)
modifies the previous cell state ¢;_1 to determine how much of the previous information
should be forgotten. 2; o g; represents the amount of information which is added to
fetocg—1 at the current cell. 3, (i.e. input gate) modifies g; with a value in range [0, 1].
After the cell state is calculated, it is passed through tanh activation function and
modified with o; (i.e. output gate) to produce the cell output h;. The whole process

is repeated recursively.
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2.2.6. Batch Normalization Layer

Each layer of a neural network learns the mapping between its input and output
distribution. However, the input distribution of a layer changes as the model parame-
ters are updated during the training. In other words, this layer experiences covariance
shift [48], which increases the time required for the optimization. Ioffe and Szegedy [49]
showed that the normalization of layer inputs reduces the severity of this problem. In
order to achieve this, each dimension of the layer input x is initially normalized to
have zero means and unit variance using Equation (2.78), where x is a d dimensional
vector, x[k] is k™" dimension of & and both expectation and variance are calculated in
the training set D. Then, the linear transformation given in Equation (2.79) is applied
to each Z[k|, where y is the batch normalization layer output, € is a small number
which is added to the denominator for numerical stability and both v and 3 are d

dimensional vectors which are learned during the training.

Var(z[k| + ¢€)
ylk] = (k] z[k] + B[K] (2.79)

Using gradient descent in the entire dataset D could be slow and infeasible be-
cause of high GPU memory requirement. Instead we could apply mini-batch gradient
descent by splitting the training set into N mutually exclusive and collectively ex-
haustive sets (i.e. mini-batch) each of which has m samples and updating the model
parameters for each mini-batch. Assuming we have a mini-batch B with m samples,
both the expectation and variance in Equation (2.78) are calculated for each mini-batch
B instead of whole training dataset D. More concretely, consider a batch normalization
layer with m inputs {X1,X2,...,Xm} each of which has d dimension. Following steps

are applied in the training phase to calculate m batch normalization layer outputs
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{¥1,¥2,.--,¥m} each of which has also d dimension.

(i) The mean and variance for each dimension of x in the mini-batch is calculated.

plh] = = > il (2:50)
o*alk] = = > (ailk] - plh) 281

(ii) Each dimension of x is normalized to have zero mean and unit variance.

Zilk] = zilk] — pup|k] (2.82)

o?plk] + ¢
(iii) Linear transformation with parameters 4 and 3 is applied to the normalized
inputs. These parameters are updated during the training with the other model

parameters using mini-batch gradient descent.

yi[k] = (k] z:[k] + B[K] (2.83)

During the test phase, the output of a neural network should depend only on
the input in order to get the same output every time we use the same input, since we
want to build a deterministic model not a stochastic one. For this reason, the mean
and the variance for each dimension of x are calculated over mini-batches during the
training phase as shown in Equations (2.84) and (2.85). Then, the resulting mean and
variance is inserted into Equations (2.78) and (2.79) to calculate batch normalization

layer output during the test phase.
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E(x[k]) = Es(ps(k]) (2.84)

Var(xzlk]) = Ep(o?5k]) (2.85)

2.2.7. Dropout

Dropout [35,50] is a popular regularization technique which is used to increase
the generalization probability of neural networks. Specifically, each neuron in a layer is
independently set to zero with probability ps, € [0, 1] during only the training phase.
This operation is repeated for each minibatch so that different neurons are set to zero

for different minibatches.
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3. REGULARIZING DESCRIPTION GENERATION
MODEL

In this section, we describe our main model, which is used for generating image
descriptions. Our objective is to design a model, which takes an image as the input
and generates a sentence at its output as shown in Figures 3.1. More concretely, our
model uses a Convolutional Neural Network architecture (see Section 2.2.4) to extract
the image information. Then, a Long Short Time Memory Network (see Section 2.2.5)

uses this information to generate a sentence.

Description Generation A man and a woman with three dogs

Model read the menu outside of the deli.

Figure 3.1. An overview of our description generation model, which takes an image as

input and generates a sentence at its output

In the training phase, we use both images and their descriptions to train our
model. However, our objective is to generate these descriptions with using only images
in the test (i.e. inference) phase. Because of this reason, our model behaves differently
in the training and inference phase similar to the sentence generation model described
in Section 2.2.5. We will explain both the training phase and the inference phase

behavior of our model in the following sections.
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3.1. Description Generation Model

3.1.1. CNN Architecture

Our objective is to design a CNN architecture to extract the image information as
a fixed size vector. In order to reduce the over-fitting, we employ the data augmentation
techniques used in [5,7,9]. More concretely, each image is resized into 256x256x3 size
initially. Then, a 224x224x3 dimensional crop is randomly sampled from either the
resized image or its horizontal flip. We extract the per-channel mean from each pixel
and divide the resulting value by the per-channel standard deviation to normalize the
random crop. Mean and standard deviation values are calculated for each channel only
in ImageNet training set [51]. However, they are used for the normalization of the
pixels in the same channel during both the training and inference phase. The resulting

224x224x3 dimensional image is used as CNN input.

As the CNN architecture, we use 152 layer CNN structure (referred as ResNet-
152) proposed by He et al. [9], which won the 1°* place in the ILSVRC 2015 image
classification competition [25], to extract image information. However, the last layer
of ResNet-152 uses a fully connected layer with 1000 dimensional output and the
softmax activation function to calculate the conditional probabilities of 1000 classes
present in ImageNet. Instead, we use a fully connected layer with 512 dimensional
output followed by a batch normalization layer [49] (see Section 2.2.6) to calculate the
image information. We rename the resulting CNN architecture as modified ResNet-152

and use it to calculate a 256 dimensional vector for each image.

In order to train the modified ResNet-152, we are not using any explicit labels.
Instead, we will train the modified ResNet-152 together with LSTM to learn the net-
work parameters. These parameters could be initialized randomly at the start of the
training phase. Alternatively, several works [52-54] showed that instead of initializing
the weights of a neural network randomly for one task, we could initially train a similar
neural network on a different dataset for a different task and then use the weights of

the trained neural network for parameter initialization. This idea is referred as transfer
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learning [55-57] and arises from the fact that the initial layers of the neural networks
which are trained on natural images learn task and dataset independent features such
as Gabor filters or color blobs as stated by Yosinski et al. [54] and shown in the work
of Zeiler and Fergus [58]. Following this approach, we use the weights of ResNet-152
trained on ImageNet for image classification in order to initialize the weights of all but
the last two layers of modified ResNet-152. The last FC layer is initialized with the

weights drawn from a normal distribution with mean 0 and standard deviation 0.02.

We could optimize either all the transferred layers or some of them together with
the last two layers. Although these approaches increases the performance as shown in
the work of Yosinski et al. [54], they require high GPU memory during the training
to keep both the activations and the gradients of each layer in the memory. As a
consequence, we optimize only the last two layers of the modified ResNet-152 during
the training and use the transferred weights without any change to fit our description

generation model to GPU memory.

3.1.2. LSTM Architecture

We use all unique words in the training set together with < unk > and < eos >
tokens to construct vocabulary V with size of |V|. < unk > token represents words
that are not in the vocabulary, while < eos > token indicates the end of a sentence.
Each token in this vocabulary is represented with a i dimensional embedding vector.
The embedding vector of i-th token in V' is computed using the equation x; = Wy, I;,
where x; is the embedding vector, Wy, is the word embedding matrix with dimensions
h x |V| and I; is a sparse column vector of size |V|, such that only i-th element of I;

is one and all the others are zero.

Similar to the work of Vinyals et al. [3], we use a LSTM architecture (see Section
2.2.5) to obtain the probability distribution of a word in a sentence given the previous
words and the image I. Formally, the probability distribution of (¢ + 1)-th word

ys = p(wgrq|I,wy, ..., wy) is calculated using the following formulations:
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where (Wip, Win, Wi, Wen, Woz, Won, Wy, W] are LSTM weight matrices,
[bi, by, by, by| are LSTM bias vectors, ¢; is the vector storing cell state at timestep ¢,
h; is the vector storing hidden state at timestep ¢, o is the element-wise multiplication,
w;, is the t-th word in a sentence, x; is the embedding vector of wy for t € {1,...,T}
and xg is the modified ResNet-152 output which is used as 0-th word of sentence
representing a-priori information about the sentence. In these equations, ¢; (i.e. cell
state) stores the alignment information of the sequence {xg,x1,...,:} and passes it
through the next step (i.e. next cell) in LSTM Networks. f; o ¢;—q represents the
information coming from the previous cell. f; (i.e. forget gate) modifies the previous
cell state ¢;_1 to determine how much of the previous information should be forgotten.
4 o g¢ represents the amount of information which is added to f; o c;_1 at the current
cell. 4; (i.e. input gate) modifies g, with a value in range [0,1]. After the cell state
is calculated, it is passed through tanh activation function and modified with oy (i.e.
output gate) to produce the cell output hg.Then, h; is passed through a linear layer
with weight matrix W), and bias vector b, together with a softmax activation function

to obtain ys.
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CNN Embedding Embedding Embedding Embedding

Architecture Layer Layer Layer Layer

Image
Preprocessing

Figure 3.2. Training phase of our image captioning model

Training phase. The training phase of our image captioning model is shown in
Figure 3.2. LSTM architecture is trained to maximize the probability of the correct
word given the previous words and an image. Initially, we set both ¢_; and h_; to
zero and use the image information g as input to obtain the probability distribution
of first word, yo. Then, the embedding vector of first word x; is used together with
co and hg to obtain the probability distribution of second word y; and so on. On the
last step, we maximize the probability of < eos > token using &, cr_1 and hp_; as

inputs.

Inference phase. Figure 3.3 illustrates the inference phase of our image cap-
tioning model, where the word with the highest probability at ¢-th step is represented
with w;. We aim to generate a sentence representing the contents of an image during

this phase. Similar to training phase, initially we set both ¢_; and h_; to zero and
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CNN Embedding Embedding Embedding Embedding

Architecture Layer Layer Layer Layer
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Figure 3.3. Inference phase of our image captioning model

use the image information xg as input to obtain the probability distribution of first
word, yo. We pick the word with the highest probability from yg, namely w; using
greedy search (see Section 2.2.5) and use its embedding vector as input to obtain y;.
Then, we repeat this process until we pick < eos > token or a sentence with length of

20 is generated.

3.2. Regularization Description Generation Model

Merity et al. [30] used a set of regularization techniques to improve the perfor-
mance of word-level language models. Inspired by their work, we used some of these
techniques to improve the performance of our model. In this section, we explain these

regularization techniques.



65

3.2.1. Weight-dropped LSTM

Dropconnect is introduced by Wan et al. [59] as a generalization of dropout.
Unlike dropout, each weight before a layer is independently set to zero with probability
p € [0, 1] during only the training phase. This operation is repeated for each minibatch

so that different weights are set to zero for different minibatches.

Weight-dropped LSTM method suggests using dropconnect technique on hidden
to hidden weight matrices [Wip, Win, Wop, Wyp| in order to regularize LSTM net-
works. Dropconnect technique is applied to the weight matrices once at the start of
each minibatch, so that the same weights remain zero for each time step within the

same minibatch.
3.2.2. Variational Dropout

Variational dropout is proposed by Gal and Ghahramani [60] as a regularization
method for recurrent neural networks. Dropout technique (see Section 2.2.7) is applied
to each neuron in a layer at the start of each minibatch for variational dropout, so
that the same neurons remain zero for each time step within the same minibatch.
This operation is applied for each sample in a minibatch independently. Note that
the difference between dropout and variational dropout is that we sample a random
dropout mask for each time step within a minibatch for the former technique, whereas

we use the same dropout mask for each time step within a minibatch for the latter one.
3.2.3. Embedding Dropout

Gal and Ghahramani [60] used embedding dropout as a regularization method for
word embedding matrix Wy, € RV*E where V is the number of words in the vocabulary
and F is the size of embedding vector. Assuming that embedding dropout is performed
with probability p., each row of weight matrix is set to zero with probability p.. After
the dropout operation applied, the rows with non-zero entries are scaled by ﬁ