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ABSTRACT

MULTI AGENT INTERSECTION MANAGEMENT FOR

AUTONOMOUS VEHICLES

Traditional transportation systems cause traffic congestion especially at the in-

tersections as the number of vehicles keeps increasing. This is also the main reason of

air pollution and time wasted. Most of the people lose their time and money because

of traffic congestion. Thanks to recent research on autonomous vehicles, intelligent

transportation and wireless communication systems, efficient traffic management at

the intersections with multi-agent scheduling methods will be possible.

The main objective of this thesis is intersection coordination for multi-agent sys-

tems by using time-based optimization and Model Predictive Control (MPC) methods

while considering fuel economy at the intersections. Existing results show that these

methods are efficient in comparison to the traditional methods when all the vehicles are

autonomous. However, better trajectory planning can improve the total delay of the

system. Besides, including fuel economy in the optimization function can also decrease

fuel consumption which would be good for both humanity and nature. In this thesis,

the effect of trajectory planning and different communication ranges on time-based op-

timization method is studied. It is shown that a wider communication range and better

trajectory planning provide less time delay. Another contribution of this thesis is to

propose centralized and decentralized MPC algorithms by including fuel consumption

related costs in the objective function. As a result, fuel consumption is decreased at

the expense of an increase in the time delay. In simulations, it is also observed that

centralized MPC performs better than decentralized MPC.
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ÖZET

OTONOM ARAÇLAR İÇİN ÇOK ETMENLİ KAVŞAK

KONTROL MEKANİZMASI

Günümüzde yollarda araç sayısının artması ile birlikte geleneksel taşımacılık

yöntemleri özellikle kavşaklarda trafik sıkışıklığına sebep olmaktadır. Bu da hava

kirliliğine ve yolda boşa zaman geçirilmesinin temel nedenleri arasındadır. Son yıllarda

otonom araçlar üzerine yapılan araştırmalar sayesinde yakın gelecekte kavşaklarda daha

verimli bir şekilde trafik yönetimi mümkün olacaktır.

Bu tezin temel amacı, otonom araçlar için zaman temelli optimizasyon ve Model

Öngörülü Kontrol (MÖK) yöntemleri ile yakıt tüketimini de ele alarak kavşak koordi-

nasyonu sağlamaktır. Önceki araştırmalar bu yöntemlerin, otonom araçlar için gelenek-

sel kavşak yönetim sistemlerine göre daha verimli sonuçlar elde ettiğini göstermiştir.

Fakat, daha iyi yörünge planlama teknikleri kavşaklarda gecikme sürelerini azalta-

caktır. Bunun yanında, optimizasyon problemi oluştururken yakıt tüketimi için de

bir maliyet fonksiyonu eklemek araçların yakıt ekonomisi bakımından yararlı olacaktır.

Bu tezde, verimli yörünge planlama tekniklerinin ve araçların haberleşmesi için kul-

lanılan iletişim alanının genişliğinin zaman tabanlı optimizasyona etkileri incelenmek-

tedir. Geniş iletişim alanının ve dinamik yörünge planlama tekniğinin daha az zaman

kaybına yol açtığı gösterilmiştir. Bir diğer katkı ise, model öngörülü kontrol maliyet

fonksiyonuna yakıt tüketimi maliyetini minimize edecek fonksiyonların da eklenmesi ve

yakıt ekonomisine etkilerinin incelenmesidir. Ayrıca merkezcil model öngörülü kontrol

sistemi merkezcil olmayan sisteme çevirilmiştir. Maliyet fonksiyonuna yakıt tüketimi

denklemlerini eklemek her ne kadar yakıt tüketimini azaltsa da kavşak içinde gecik-

meyi arttırdığı sonucuna varılmıştır. Ayrıca merkezcil MÖK’un merkezcil olmayana

göre daha verimli sonuç elde ettiği de görülmüştür.
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1. INTRODUCTION

Recent research in the autonomous vehicle industry pinpoints a future where

intelligent transportation systems (ITS) will be a reality and vehicles will handle most

of the driving tasks. Once autonomous vehicles become popular, the interaction of

vehicles with the environment will be possible. To handle a driving task, autonomous

vehicles (AVs) will have to interact with and understand the environment better, by

communicating with not only roadside infrastructures (vehicle to infrastructure, V2I),

but also with each other (vehicle to vehicle, V2V).

Traffic congestion is the main reason for excess fuel consumption and air pollution,

especially at the intersections. Additionally, traffic congestion causes time delays which

affect people directly. It also affects economic growth. For example, research studies

show that American people lose about 4.8 billion hours and 3.9 billion gallons of gasoline

every year because of traffic congestion. USA wastes about 115 billion dollars every

year due to traffic congestion [1].

Traditional methods such as traffic lights, traffic signs, and police officers are

insufficient in reducing the traffic congestion at the intersections as the number of

human-driven vehicles are increasing day by day. Traffic lights and signs can cause

unnecessary stops, even if the road is not so crowded. On the contrary, police officers

may not be able to control the traffic flow if the road is very crowded. All these lead

to idle time and air pollution in traffic.

As the development of V2I and V2V communication technologies are improving

thanks to the recent increase in studies on autonomous vehicles industry, these tech-

nologies may lead to smart solutions for efficient intersection management. Cameras,

road unit sensors, and other possible technologies can be placed as roadside units in

order to collect traffic data. All these developments can help in analyzing and optimiz-

ing the traffic flow at the intersections. Thus, coordinating vehicles at the intersection

without traffic lights will be possible. The primary purpose of the thesis is to find



2

an efficient solution for coordinating vehicles at the intersections without using traffic

lights.

1.1. Related Work

Some studies show that traffic light optimization at intersections can be possible

and more applicable in the near future since traffic lights are already planted to the

intersections. However, intersection management using traffic lights will be a difficult

and inefficient solution as the number of vehicles is increasing. Additionally, it is

assumed that all vehicles will be autonomous and able to communicate with the new

generation of infrastructures. Therefore most of the researchers have already started

to work on intersection management using V2I communication. There are also several

researchers who think that autonomous vehicles will able to communicate with each

other and coordinate themselves for safe passing without manipulation of infrastructure

at the intersection. In this section, some intersection management frameworks used in

the literature are reviewed.

1.1.1. Optimizing Traffic Flow With Traffic Lights

Intelligent traffic light control can be considered as the first step for traffic man-

agement as autonomous and legacy vehicles will be on the road together in a few

years and traffic lights are already planted. Optimizing traffic flow is a huge task and

intelligent control of intersections via traffic lights will decrease time delays and fuel

consumption efficiently.

There are several studies in the literature regarding traffic light optimization at

the intersections. An application called Surtract System which is set up in Pittsburgh

[2] utilizes an artificial intelligent (AI) algorithm to build a timing plan for each traffic

light by collecting data from radar and camera sensors. It is shown that the pilot

implementation of this system reduces travel time by 25 percent and idle time by over 40

percent. An adaptive traffic signal coordination approach based on V2I communication

is proposed in [3] which improves travel time and reduces queuing at the intersection.
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A dynamic predictive traffic signal control framework to minimize the intersection

delays at a signalized intersection using platoon model and dynamic programming is

proposed in [4]. Arel et al. use a reinforcement learning approach to optimize traffic

signals efficiently in terms of total intersection delay [5]. A new algorithm for short

term output maximization to avoid unnecessary stops at the intersection is given in [6].

A semi-centralized method with attribute base block-chain is proposed in [7].

1.1.2. Intersection Management Using V2I Communication

The traffic light approach is not efficient enough to minimize the delay time and

fuel consumption where all the vehicles are autonomous because it causes queues and

unnecessary stopping at the intersection. Therefore, an appropriate strategy without

traffic lights should be used to coordinate vehicles and minimize intersection delays.

Some studies focus on reservation based V2I communication technology. A multi-

agent intersection management firstly introduced by Dresner and Stone is called Au-

tonomous Intersection Management (AIM) [8]. Vehicles approaching an intersection

send a reservation request to Intersection Management Agent (IMA) to pass the inter-

section without any collision. Since IMA can calculate future states of each vehicle, it

can easily understand if there is a conflict point between vehicles or not. After IMA

evaluates all reservation requests and if there is no potential collision between vehicles,

it permits them in order to pass the intersection with a given velocity, acceleration,

and time. Dresner and Stone also proposed a method where autonomous vehicles and

human drivers met at the intersection [9].

Although non-conflicting vehicles are approved by IMA, in order to handle and

give permission to the conflicting vehicles, some prioritizing rules should be defined.

Dresner and Stone proposed the First Come First Serve (FCFS) method for AIM.

If more than one vehicle have reservation request at the same time and there are

some conflicts between the path of vehicles, the vehicle which enters the intersection

communication area first, will be approved by IMA first. In this system, in order to

detect conflict points, the intersection is divided into grids. In addition to the FCFS
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method, some other prioritizing rules are examined in [10]. For example, emergency

vehicles such as ambulance or fire truck can have the highest priority or if two conflicting

vehicles have the same priority, attending priority on the lanes would be considered.

The FCFS policy coordinates vehicles according to their entrance times to the

intersection communication area, but it may cause inefficiency when a vehicle can

pass the intersection first but enter the intersection communication area last. For

this reason, FCFS policy may have some disadvantages in terms of fuel consumption

and time delay. Zhu et al. propose a look ahead intersection control policy [11] for

intelligent vehicles to overcome the disadvantages of the FCFS policy. According to

their policy, the first comer may not pass the intersection first if the time delay of

this sequence is higher than other sequences. Their test results show that this method

performs 25% better than FCFS policy.

Stone et al. propose a planning based motion controller algorithm in order to

reduce the number of stops at intersections by using Little’s queuing law [12] to schedule

conflicting vehicles. The proposed technique relies on finding a velocity profile with

the highest possible speed at the end of the intersection with minimum time delay [13].

1.1.3. Intersection Management Using V2V Communication

Although there are numerous intersection management strategies where inter-

section is controlled by an IMA, there are also many in which vehicles coordinate

themselves by communicating with each other and pass the intersection without any

collision. Two V2V based intersection protocols are proposed by Azimi et al. in order

to detect a collision and schedule the conflicting vehicles [14]. In these works, the in-

tersection is defined as a perfect square grid divided into small cells and every vehicle

in the intersection communication area sends their cell list to be occupied during the

intersection pass. Figure 1.1 shows an example scenario with no space conflict. In

this scenario, the algorithm will detect no conflicting space. On the other hand, in a

scenario, as shown in Figure 1.2, the algorithm will detect conflicting spaces. This colli-

sion detection algorithm, named as Concurrent Crossing-Intersection Protocol (CC-IP)
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Figure 1.1. Example Scenario With No Conflict Point Occurs at the Intersection [15]

runs on all vehicles. If more than one vehicle has a conflicting point, the vehicle with

the highest priority will pass the conflict point first, while other vehicles have to hold

outside of the intersection area and wait until the prior vehicle passes the conflict point.

Another intersection protocol called Maximum Progression Intersection Protocol (MP-

IP) which can solve the inefficiency of CC-IP is also introduced by Azimi et al. This

approach, unlike the CC-IP, lets the prior vehicle pass the conflict point first, while

letting other vehicles pass the intersection till the conflict point and wait until prior

vehicle pass. The CC-IP and MP-IP have performance improvements over the traffic

lights [15]. It is also concluded that MP-IP has 71% better performance than CC-IP.

This study is also modified for traffic coordination through roundabouts [14]. Azimi

et al. have also designed and developed a new intersection protocol with a realistic

ground positioning system (GPS) model [16].

Jin et al. propose an intersection management protocol by considering the line

of vehicles as a platoon and combines V2V and V2I communication to schedule traffic

flow [17]. In this system, a platoon communicates with the intersection control unit

through a leader vehicle agent (LVA) by sending their estimated arrival time to the

intersection and estimated departure time from the intersection and receiving a reser-

vation confirmation. LVA is also responsible for the trajectories of the follower vehicles.

Figure 1.3 shows a detailed architecture of platoon based intersection management.
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Figure 1.2. Example Scenario With Conflict Point Occurs at the Intersection [15]

1.1.4. Intersection Management Using Optimization Methods

Some researchers consider intersection management as an optimization problem.

Jin et al. describe a V2I based improved multi-agent intersection management ap-

proach by optimizing departure times at the intersection instead of the first come first

serve policy [18]. To minimize the total travel time, IMA takes entrance times in the

controlled region into account and optimize departure time rather than arrival time

to the intersection. To overcome connection lost and connection range limits at the

communication area, a dynamic scheduling approach is proposed. In this approach, at

each time step, the intersection management agent reschedules the departure time of

the vehicle agents if there is a difference between the current and previous time step

in terms of vehicle agents. To minimize the total travel time for all vehicle agents, the

cost function is described as,

J =

n1∑
i=1

(tDi,w − tEi,w) +

n2∑
j=1

(tDj,n − tEj,n) (1.1)

where n1 and n2 are the total numbers of VAs traveling through west and north direc-

tion respectively; tDi,w and tEi,w are the departure and entrance times at the intersection,

for the ith vehicle agent through the west direction; tDj,n and tEj,n are the departure and

entrance time at the intersection for the jth vehicle agent through the north direction.

The objective is to minimize the total time delay controlling departure times of vehi-

cle agents within the communication area under safety constraints by giving entrance
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Figure 1.3. Platoon Based Intersection Management Architecture [17]

times of vehicles to the cost function as known variables. After all the vehicles within

the communication area receive their proposed departure times from the optimal sched-

uler, they are responsible for planning their trajectory. In order to depart from the

intersection at the scheduled time, the velocity profile is calculated based on [10].

Fayazi et al. propose a centralized mixed integer linear programming algorithm

in order to minimize the total delay at the four-way intersection [19] as an extension

of their previous work [20], subject to safety constraints. Like most of the previous

studies, they assume that all vehicles are autonomous. In [20], the objective is to

minimize the total travel time for each vehicle while preventing potential collisions

by setting some constraints. Unlike the optimal scheduling approach, position and
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velocity of each vehicle are taken into account to solve the linear optimization problem

which is separated into two cost functions with weights. The objective of this work

is to minimize the total travel time by calculating the arrival times of each vehicle

instead of departure times under several safety constraints which are processed by a

central server. After sending all the desired access times for all vehicles, they plan their

trajectory. The proposed intersection model for the simulation is similar to [18].

1.1.5. Intersection Management Using Model Predictive Control Frame-

work

Some studies are found in the literature where Model Predictive Control approach

is used to coordinate vehicles at the intersection for collision-free travel. Kamal et al.

study centralized Model Predictive Control framework as an intersection coordination

method for smooth flows of vehicles without using any traffic light at the intersec-

tions [21] as an extension of their previous work [22]. In [21], a risk function is defined

to estimate the potential collision risk of vehicles approaching the intersection. An

Intersection Control Unit (ICU), which coordinates the intersection, receives state in-

formation from vehicle agents and sends them new control inputs after solving the

optimization problem.

In [23], a fast and online V2V based decentralized optimal control schema is

proposed by exploiting the low complexity of model-based heuristics. The results are

presented in terms of efficiency, feasibility, and optimality.

1.2. Contributions of the Thesis

There exist different theories in the literature aiming to develop more efficient

algorithms applied to intersection management with different control techniques using

V2I or V2V communication topologies. Studies such as [10] have shown that safe

intersection management is possible by using a centralized time optimization method,

but trajectory planning of vehicles at the intersection is limited to acceleration and

deceleration rates. In view of this fact, this thesis proposes a dynamic trajectory
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planning algorithm in order to overcome the limitations of acceleration and deceleration

rates.

A great deal of previous research into intersection management has also focused

on centralized and decentralized model predictive control approaches. This thesis also

aims to implement an efficient centralized MPC approach to coordinate vehicles at the

intersection as it is known as providing smooth flows [21]. Additionally, decomposition

of the centralized MPC into decentralized MPC based on [24] is studied.

It has been argued that minimizing the acceleration can also lead to minimum

fuel consumption [21]. Along similar lines, investigating solutions for further decreasing

fuel use by fuel consumption minimization is also in the scope of this thesis.

In view of the items discussed above, the main contributions of this thesis can be

summarized as follows:

• Optimal scheduling approach calculating the desired departure time at the in-

tersection is extended to four-way intersections. Dynamic trajectory planning to

arrive at the intersection exit at a settled time is implemented.

• The minimum allowed communication range is formulated and the effects of dif-

ferent communication range at the intersection in terms of travel time are inves-

tigated.

• Centralized and decentralized model predictive approaches are studied consider-

ing fuel efficiency. To decrease fuel consumption, formulations of traction force,

fuel efficiency, and hybrid vehicle dynamics are given.

• A simulation environment is constructed using SUMO simulation environment

and all the numerical analysis are implemented using MATLAB environment.

1.3. Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the intersection model

and simulation environment that will be used throughout the thesis are introduced.
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Communication topology between vehicle agents will be defined. Assumptions for

designing the system are given. Optimization concept and MATLAB function that is

used while solving the optimization problem are introduced.

In Chapter 3, intersection coordination using optimal scheduling approach and

extension of the four way intersection are introduced. Vehicle coordination using depar-

ture time optimization is formulated. Formulation and topology of dynamic trajectory

planning are given.

In Chapter 4, centralized intersection coordination using model predictive control

(MPC) framework is explained. Vehicle models used for model predictive control are

given. Necessary safety constraints for a safe intersection pass are defined. Risk func-

tion to estimate the risk of collision and traction force to decrease fuel consumption are

formulated. To use in MPC, the objective function and its elements are introduced.

Simulation results with and without traction force cost element are compared.

In Chapter 5, hybrid vehicle dynamics and fuel efficiency formulation to minimize

fuel consumption are given. Conversion of a centralized optimization problem into a

decentralized optimization problem via primal decomposition is defined. To solve the

decentralized conflict resolution problem, assigning a consensus policy is explained.

Comparing the results with and without fuel consumption cost, its contribution to

minimize fuel consumption and travel time is examined.

In Chapter 6, the simulation results of the centralized and the decentralized MPC

frameworks are compared in terms of travel time and fuel consumption. Finally, the

thesis concludes with a short summary and future research directions in Chapter 7.
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2. SYSTEM DESCRIPTION

In this chapter, an overview of intersection coordination for multi-agent systems

is described. Based on the previous studies, some existing works on both centralized

and decentralized strategies will be studied, and the effects of different factors on those

will be examined. Some assumptions will be made to develop a common strategy and

implementation. Once problem definition and assumptions are described, a simulation

environment that is used in this thesis will be explained.

2.1. Problem Statement

In Figure 2.1, an overview of intersection collision concept is illustrated. If the

vehicle agents are not updated, a potential collision at the intersection would be in-

evitable. This thesis seeks for an efficient way to coordinate vehicle agents in a safe

way using optimization methods.

Figure 2.1 depicts a basic intersection definition being used in this thesis. The

intersection consists of a communication zone and an intersection box. Outside of

the communication zone, vehicles keep moving with their default velocity. Within the

communication zone, vehicles start to communicate with either the intersection control

unit (ICU) or each other based on V2V, V2I communication and broadcast their current

states. In this zone, both vehicle scheduling and control tasks are handled. At each

time step, once vehicles are given a new control input, they adjust their current states.

After a vehicle passes the intersection box without any collision, it is not included in

the optimization problem and adjusts its velocity profile subject to speed limits.

2.2. Assumptions

In order to develop a multi-agent control protocol, some conditions should be

taken into account. In this work, the following assumptions are the basis for optimally

scheduling the intersection.



12

Figure 2.1. Basic Intersection Definition

• Each vehicle is autonomous and equipped with the required networking system

to communicate with each other and intersection control unit within a commu-

nication zone;

• Each vehicle has a global position system (GPS) in order to calculate their dis-

tances to the intersection;

• Robust and efficient communication between vehicles and ICU is assumed to be

available. No latency in communication is considered;

• Only light-duty passenger vehicles are used in this work;

• All the vehicles have the same 2.5 meters length and 1000 kilograms weight;

• The maximum speed limit is 23 m/s and the minimum speed limit is 3 m/s (to

avoid full stop);
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Figure 2.2. Optimization Schema

• Vehicles are assumed to obey the traffic rules.

• The intersection has four arms (West, East, North, and South) with one lane in

each direction;

• Weather conditions are not considered.

2.3. Optimization Problem

In this work, an optimization approach is utilized to centralized and decentralized

coordination strategies. In general, the main objective is to coordinate vehicle agents

by minimizing either travel time or fuel consumption or both. This goal is achieved

by formulating an objective function and minimizing it by adjusting decision variables

subject to some auxiliary conditions that need to be satisfied. The optimization schema

is shown in Figure 2.2.
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In this work, MATLAB optimization toolbox [25] is used to solve both linear and

nonlinear constraint optimization problems. As a function fmincon is used with the

formulation as

minimize
x

f(x)

subject to c(x) ≤ 0,

ceq(x) = 0,

A · x ≤ b,

Aeq · x = beq,

lb ≤ x ≤ ub.

where b and beq are vectors, A and Aeq are matrices. c(x) and ceq(x) are functions that

return vectors, and f(x) is a function that returns a scalar. f(x), c(x) and ceq(x) can

be nonlinear functions. x, lb and ub can be considered as vectors or matrices. As an

optimization method, interior point method (IPM) is used [26].

2.4. Simulation Environment

In this work, SUMO (Simulation of Urban Mobility) [27] is used to build the

intersection model in order to evaluate the performance of the proposed strategies.

SUMO is a microscopic traffic simulation environment which uses real-world vehicle

model, car following, and lane changing algorithms to model the lateral and longitudinal

movements of vehicles. Traffic control framework is implemented in SUMO over TraCI

[28] which is MATLAB interface for SUMO.

2.5. Summary of the Chapter

In this chapter, an intersection coordination problem statement is defined along

with the concepts of the experimental platform. In particular, first the intersection

model and the assumed limitations (i.e. maximum speed and dimensions of the vehi-

cles) on the model are detailed. These assumptions, although can be relaxed in the
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Figure 2.3. SUMO Crossroad intersection environment

future, maintain the focus on the solution for the intersection coordination problem

similar to the previous studies on the literature. Based on this problem definition, the

optimization problem definition with its schema and constraints is formed. Finally, the

simulation environment which is used to show the applicability of this method is given.

Overall, with the necessary implementation details and the problem given in this

chapter, Chapter 3 will provide the departure time optimization based intersection

coordination problem by considering different communication ranges and using better

trajectory planning algorithm.
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3. MULTI-AGENT INTERSECTION MANAGEMENT

USING DEPARTURE TIME SCHEDULING APPROACH

Travel time optimization under safety constraints is one of the most popular

methods for intersection management. In this chapter, the main objective is to cal-

culate the departure time of each vehicle within communication range by obtaining

entrance times subject to safety constraints. In [18], the two-way intersection is stud-

ied. To make this study more realistic, the optimal scheduling approach is extended

to a four way intersection. Previous studies such as [18], [8] and [19] investigate dif-

ferent communication ranges. In this chapter, the minimum required communication

range for efficient acceleration and deceleration to full stop is formulated. Additionally,

a dynamic trajectory planning approach is introduced to overcome the limitations of

acceleration and deceleration rates.

This chapter is organized as follows. Firstly, the time minimization problem

arranging departure times subject to safety constraints in a four way intersection is

defined. Then, the trajectory planning concept and minimum allowable communication

range to control vehicles are formulated. Finally, the proposed controller algorithm and

the simulation results are presented.

3.1. Optimization Problem

The main objective of this chapter is to minimize travel time of vehicles at the

intersection. To calculate this, all vehicles in the communication range broadcast their

entrance time and after obtaining these values, ICU decides the departure time of all

vehicles. Finding efficient departure time also leads to minimize the delay time of the

vehicles which is defined as the difference between departure time at maximum speed

and the calculated departure time. Figure 3.1 illustrates the scenario where a vehicle

agent is approaching the isolated intersection.
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Figure 3.1. Illustration of VA approaching the isolated intersection [18]

To calculate departure times of all vehicles at the four way intersection, the

optimization problem studied in [18] is extended as below,

min

(
n1∑
i=1

(tDi,w − tEi,w) +

n2∑
j=1

(tDj,n − tEj,n) +

n3∑
l=1

(tDl,e − tEl,e) +

n4∑
k=1

(tDk,s − tEk,s)

)
(3.1)

where

n1, n2, n3, n4 : the total number of vehicle agents travelling throughout west, north,

east and south direction, respectively.

tDi,w, tDj,n, tDl,e, t
D
k,s : Departure times at the intersection for the ith, jth, lth and kth vehicle

agent along the Westbound, Northbound, Eastbound and Southbound respectively,

which are defined as the decision variables for the optimization problem.

tEi,w, tEj,n, tEl,e, t
E
k,s : Entrance time within the communication area for the ith, jth, lth

and kth vehicle agent along the Westbound, Northbound, Eastbound and Southbound

respectively which should be considered as known variables.
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Note that the decision variables, tDi,w, tDj,n, tDl,e, t
D
k,s, appear linearly in the opti-

mization problem (3.1).

3.2. Constraints

To schedule vehicle agents to pass the intersection without any collision, safety-

related constraints such as

• Speed limits and maximum acceleration/deceleration of the vehicles,

• Safety time gap between vehicles in the same direction,

• Overtaking in the same lane,

• Safe time gap between two vehicles along the conflicting direction

should be defined. These constraints are explained in more detail below.

3.2.1. Speed Limits and Maximum Deceleration

It is assumed that each vehicle is travelling through the intersection at maximum

speed. Since a vehicle at the intersection travelling with maximum speed departs from

the intersection fastest, departure time at the intersection with maximum speed can

be considered as the lower bound of decision variables. In other words, the departure

time of each vehicle agent cannot be less than the departure time at maximum speed.

This constraint can be formulated as

tDi ≥ tDilb (3.2)

where tDilb is the departure time of the ith vehicle at the maximum speed. Note that

this is a linear constraint.
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3.2.2. Safety Time Gap along the Same Direction

There should be a safe time gap between two consecutive vehicle agents which

are travelling in the same direction (e.g. northbound) so that rear and front collisions

between two vehicles are prevented. The linear constraint can be formulated as

tDi+1 − tDi ≥ ∆T1 (3.3)

where ∆T1 is the minimum necessary safe time gap between two consecutive vehicles

that are travelling in the same direction. In this thesis, ∆T1 is calculated by dividing

the minimum safety distance by the speed limit.

3.2.3. Overtaking

In this optimization problem, overtaking in the same lane is not allowed. In other

words, if tEi ≤ tEj , then tDi ≤ tDj where tEi , tEj are entrance times within the intersection

of ith and jth vehicle agents, tDi , tDj are departure time at the intersection of ith and jth

vehicle agents in the same direction.

3.2.4. Safety Time Gap along the Conflicting Direction

There should be a safe time gap between two vehicles on conflicting directions to

prevent a collision. This time gap assures that a vehicle agent can only depart from the

intersection after all other conflicting vehicles leave the intersection or vice versa. This

safe time gap is strictly dependent on the intersection box width and vehicle speed

limit. This nonlinear constraint can be formulated as

| tDi,W − tDj,N |≥ ∆T2 (3.4)

where ∆T2 is the minimum safe time gap between two vehicles on different approaches

which is calculated by dividing the length of the intersection by the speed limit.



20

Note that ∆T2 should always be higher than ∆T1 since conflicting vehicles ap-

proaching the intersection from different lanes should have a safer time gap than ve-

hicles travelling along the same lane. This also ensures that the safe distance gap

between two consecutive vehicles along the same direction cannot be more than the

intersection box width to provide non-conflicting headway.

3.3. Trajectory Planning

After calculating the desired departure times for each vehicle agent, a trajectory

planning algorithm should run on each vehicle to depart from the intersection at the

desired time. This algorithm should run on each vehicle individually, and all the

vehicles are responsible for their velocity profile.

A piece-wise linear function stated in [10] is used for planning the trajectory

of each vehicle so that they can exit from the intersection at the desired time. In

this approach, each vehicle travels with the maximum allowed speed outside of the

communication range, and once a vehicle enters the intersection, the vehicle adjusts its

velocity according to the settled departure time.

The main fact is that, if remaining travel of the vehicle agent time to exit point

of the intersection at current speed is equal to the remaining time to its assigned

departure time, the VA does not need to adjust its speed. This means that it is enough

for this vehicle to maintain its current speed if ∆t = tdes,i − t0 = di
vi

, where di and

vi are the current distance and velocity at current time t0, and tdes,i is the departure

time assigned to the VA by ICU. However, in most cases, acceleration or deceleration

is necessary to adjust vehicle speed as explained based on [19].

3.3.1. Velocity Calculation For Acceleration

To reach the intersection exit at the settled time, a vehicle agent may need to

accelerate. In other words, if tdes,i < t0 + di
vi

, vehicle agent needs to be accelerated in

order to exit from the intersection point at the settled time [19]. In this case, cruising
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velocity can be calculated as

vcruise,i = vi + aacc∆t−
√

2aacc(
1

2
aacc∆t

2 + vi∆t− di) (3.5)

where aacc is the acceleration value, ∆t is the remaining time to the settled departure

time, di is the remaining distance to the intersection exit point, and vi is the velocity

of vehicle i at the current time. In this study, aacc is set to 2.4 m/s2.

3.3.2. Velocity Calculation For Deceleration

In this work, it is assumed that all vehicles are cruising at their maximum speed

until they reach the communication area. This means that most of the vehicles should

decelerate in order to reach the intersection exit at the settled delayed time. In other

words, if tdes,i > t0 + di
vi

, the vehicle would reach the departure point earlier if it

maintains its current velocity. Therefore, the vehicle needs to decelerate. In this case,

cruising velocity can be calculated as

vcruise,i = vi + adec∆t+

√
2adec(

1

2
adec∆t

2 + vi∆t− di) (3.6)

where adec is the deceleration rate. It should be noted that in this work, adec is set to

-2.4 m/s2.

3.3.3. Dynamic Trajectory Planning

To handle the state errors and overcome the limitations of acceleration and de-

celeration capabilities of vehicle agents, in this dynamic trajectory approach, reference

velocity is re-calculated in every simulation step to reach the intersection exit at the

exact assigned departure time. To achieve velocity reference tracking, a PID controller

is used.
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Figure 3.2. Actual and Reference Velocity Profile of a Vehicle

As seen in Figure 3.2, the vehicle agent cannot follow the reference velocity profile

correctly because of the limitations in acceleration and deceleration rates. Because of

this, some of the vehicles cannot exit from the intersection at the desired time.To

overcome this problem, the desired speed for the vehicles is calculated at each time

step. Thanks to this approach, the velocity of the vehicles can be updated according

to the state errors and vehicles can exit from the intersection at the desired time.

3.4. Communication Range

In the ideal case, all vehicles within the communication range send their state

information to ICU. The maximum speed limit on urban roads can be considered as

80 km/h. Under these conditions, it is assumed that vehicles are obliged not to the

exceed speed limit and all the vehicles approach to the intersection at the maximum

speed limit. Deceleration distance to the intersection from 80 km/h (22.2m/s) to full

stop should be as

xdec =
v2

2adec
=

22.22

2× 2.4
= 102.67m (3.7)
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The desired distance for a full stop is rounded to be 100 meters. Hence, the minimum

communication and velocity profile adjustment range should be at least 100 meters.

Otherwise, it can be said that vehicle agents cannot be accelerated or decelerated to

their desired velocity and passing intersection will not be possible. The Maximum

deceleration is chosen as 2.4 m/s2, as stated in [29].

3.5. Optimal Scheduling Controller Algorithm

In order to coordinate vehicle agents at the intersection, entrance time of the

vehicles to the communication are taken into account. In this pattern, all vehicle

agents within the controlled region should keep communicating with ICU and update

their states. In this study, it is assumed that there is no lack of communication between

vehicle agents and ICU. In other words, all the vehicles and ICU are equipped with

perfect V2I and I2V communication devices and ICU has enough hardware and software

capability to calculate all the vehicles’ departure times in an optimal way.

We illustrate the system architecture as in Figure 3.3. ICU is responsible for

scheduling departure times of all the vehicles, and vehicle agents are responsible for

adjusting their trajectory due to the departure time that is assigned for them.

Since it is not convenient to obtain entrance time and run optimization formula

at once, a dynamic scheduling approach is presented. At each time step, ICU scans

for the vehicles which have newly entered the communication area. Whenever a new

vehicle agent which does not have any assigned departure time shows up, ICU runs

the optimization problem and calculates departure time of that vehicle. There is no

need to include the vehicles that have pre-assigned departure times in the optimization

problem anymore.

3.6. Numerical Analysis

In this section, numerical analysis of the proposed method in this chapter is

presented. SUMO is used as a simulation environment and a four-way intersection
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Figure 3.3. Optimal Scheduling Controller Diagram

model is set up, which is mentioned in Chapter 2. The proposed algorithm is tested

with different numbers of vehicles (8, 16, 24, 32, 40, 60 vehicles) at the intersection.

Different communication ranges (50m, 100m, 150m, 200m, and 250m) are examined

and effects of the range of communication circle in terms of average travel time, total

delay time and fuel consumption are discussed. The efficiency of the dynamic trajectory

planning approach is also explained.
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3.6.1. Simulation Setup

The simulation setup of this study is as follows:

• Each arm of the intersection is 250 meters long from the starting point of the

road to the center of the intersection;

• SUMO vehicles are used for this simulation;

• The minimum safe distance between consecutive vehicles in the same lane is 2.5

meters;

• Vehicles are allowed to accelerate and decelerate between -2.4 m/s2 and 2.4 m/s2;

• Simulation step is 0.1 seconds, and all the vehicles are processed every 0.1 seconds;

• ∆T1 is taken as 0.2 and ∆T2 is taken as 0.8 seconds;

• Sample time is chosen as 0.1 seconds.

Although the first three constraints are linear, because of the non-linearity of the

fourth constraint in (3.2.4), the optimization problem becomes nonlinear. In this study,

the nonlinear optimization problem is solved by using the interior point method [30]

in the MATLAB environment.

Figure 3.4 illustrates simulation results in terms of position of the vehicles accord-

ing to the intersection. All the vehicles travel with the same speed, and after a while,

they start to accelerate or decelerate to avoid any collision and pass the intersection

within different time slots.

3.6.2. Effects of Different Communication Circles

As mentioned in Section 3.5, the minimum communication circle range should

be at least 100 meters. When we simulate the proposed algorithm with 50 meters

communication range, it is seen that there is no possibility to have travel without

collision at the intersection.
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Figure 3.4. Distance to Intersection Values for All Vehicle : 8 Vehicles Simulation

Scenario

As seen in Figure 3.5, total delay decreases with increasing communication range.

The reason is that increasing the communication circle leads to decelerate the vehicles

to a higher velocity. This means vehicle agents can follow the reference velocity profile

with better settling time, as illustrated in Figure 3.6. It can be concluded that a higher

communication range also leads to the higher average velocity. Higher average velocity

also leads to less delay. It can be seen also that the higher communication range leads

to more fuel-efficient travel, as depicted in Figure 3.7.

3.6.3. Effects of Dynamic Trajectory Planning

In this part, the benefits of dynamic trajectory planning in terms of total travel

time are investigated. As discussed in Section 3.4.3, updating the desired velocity

at each time step leads to a decrease in the total delay time of vehicle agents at

the intersection. In Figure 3.8, the comparison of the efficiency of the dynamics and

static trajectory planning is depicted. It can be seen that dynamic trajectory planning

performs 13% better than static planning.
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Figure 3.5. Total Time Delay Under Different Communication Ranges

Figure 3.9 illustrates the velocity profile of the two trajectory planning approaches.

It can be seen that in the dynamic trajectory planning approach, the reference velocity

is updated according to the state error so that the vehicles can exit from the intersection

at the desired time.

3.7. Summary of the Chapter

In this chapter, the two-way approach of [18] is extended to four-way intersections

by also including dynamic trajectory planning in the formulation. It is shown that

the dynamic trajectory planning approach overcomes the limitations of deceleration

capabilities. Minimum necessary communication range is formulated and numerical

analysis confirms that fuel consumption and total delay decrease if communication

range increases.

In Chapter 4, the intersection coordination problem is studied by using a central-

ized model predictive control approach in order to decrease fuel consumption of the

vehicles at the intersection.



28

0 5 10 15 20 25

70

75

80

85
100m Communication Range

Vehicle Velocity Profile

Vehicle Actual Velocity

0 5 10 15 20 25

Time [s]

75

80

85

V
e
lo

c
it
y
 [
k
m

/h
]

250m Communication Range

Vehicle Velocity Profile

Vehicle Actual Velocity

Figure 3.6. Reference and Actual Velocity Profile of a Vehicle with 100 meters and

250 meters Communication Ranges respectively

0 10 20 30 40 50 60

Traffic Volume [# of Vehicles]

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
o
ta

l 
F

u
e
l 
C

o
n
s
u
m

p
ti
o
n
 [
m

l]

100m

150m

200m

250m

Figure 3.7. Total Fuel Consumption Under Different Communication Ranges



29

0 10 20 30 40 50 60

Traffic Volume [# of Vehicles]

5

10

15

20

25

T
o
ta

l 
D

e
la

y
 [
s
]

Dynamic Trajectory Planning

Static Trajectory Planning

Figure 3.8. Total Delay Time Comparison Between Dynamic and Static Trajectory

Planning

0 5 10 15 20 25
76

78

80

82

84
Dynamic Trajectory Planning

Vehicle Velocity Profile

Vehicle Actual Velocity

0 5 10 15 20 25

Time [s]

76

78

80

82

84

V
e
lo

c
it
y
 [
k
m

/h
]

Static Trajectory Planning

Vehicle Velocity Profile

Vehicle Actual Velocity

Figure 3.9. Reference and Actual Velocity Profile of a Vehicle with Dynamic and

Static Trajectory Planning Approaches Respectively



30

4. A CENTRALIZED INTERSECTION MANAGEMENT

USING MODEL PREDICTIVE CONTROL

Another intersection management method which is commonly used in the litera-

ture is model predictive control. It can be appraised as a quite powerful feature to have

as it provides smooth flows and collision free travel at the intersections. An intersection

coordination scheme by using a centralized MPC approach is proposed by Kamal et

al. in [21] based on their previous work [22]. In these studies, it is pointed out that

minimizing acceleration can also decrease the fuel consumption while providing smooth

flows. In this chapter, the centralized MPC approach in [21] is extended by considering

traction force minimization in the problem formulation.

The rest of the chapter is organized as follows. After introducing, the longitudinal

vehicle dynamics, the concept of cross collision point and the risk function, the effect of

traction force on total cost and fuel economy is discussed. Subsequently, the proposed

control algorithm and simulation results are presented.

4.1. Vehicle Dynamics

To calculate the control input with MPC framework, the discrete time longitudi-

nal mathematical model of a vehicle is formulated as

xi(t+ 1) = xi(t)− vi(t)ts −
1

2
ui(t)t

2
s

vi(t+ 1) = vi(t) + ui(t)ts

(4.1)

where xi(t) is the position (distance to the intersection), vi(t) is the velocity and ui(t)

is the acceleration/deceleration value (control input) of the ith vehicle at time step t;

ts is the time step interval.
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Figure 4.1. Demonstration of the CCP: (a) safe situation, (b) unsafe situation [21]

4.2. Cross Collision Point (CCP) and Risk Function

The cross collision point is demonstrated in Figure 4.1. Using position and veloc-

ity values of vehicles, their predicted trajectories are intersected at a common point. In

other words, this common point is the point at which these two vehicles have potential

collision risk if they travel with their current velocities. To avoid this, they should

pass the collision point one after the other. The circle centering the collision point

demonstrates the approximate safe area where only one vehicle is allowed to enter. For

example, Figure 4.1(a) shows that, while one vehicle is approaching the safety circle,

the other vehicle has already left the zone, and this provides a safe pass for both vehi-

cles. However, in Figure 4.1(b), both vehicles enter the safety circle at the same time

interval and this leads to a collision. It can be deduced that a necessary condition

for avoiding the collision of any pair of vehicles around their corresponding CCP is

to prevent them from entering the safe zone at the same time. This way, the whole

intersection can be safe.
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Based on the CCP concept, a common risk indicator Ri,j(t) which calculates the

potential collision risk between the ith and jth vehicles at time t, can be described as

Ri,j(t) = e−(αi(xi(t)+pφiφj )
2+αj(xj(t)+pφjφi )

2) (4.2)

where αi and αj are positive constants and pφiφj and pφjφi are the distances to the CCP

from the end of each lane where the ith and jth vehicles travel. In a case as shown in

Figure 4.1, pφiφj = b/2 and pφjφi = 3b/2. αi and αj are the safety circle constants, and

by adjusting these values, the safety circle can be tuned according to vehicle lengths.

In order to use risk the indicator in the cost function, it should be generalized.

Since not all the vehicles in the simulation has a CCP, risk indicator should be set to

0 for such collision free cases. To this end, a binary variable σφi,φj is defined. If two

vehicles have a CCP, σφi,φj = 1, otherwise σφi,φj = 0.

The risk function, Fi,j(t), which can be used in the cost function, by using risk

indicator (4.2) for vehicles i and j at time t can be formulated as,

Fi,j(t) = Hσφi,φje
−(αi(xi(t)+pφiφj )

2+αj(xj(t)+pφjφi )
2) (4.3)

where H is a positive high value that defines the weight of the risk function.

4.3. Model Predictive Control Framework

Model Predictive Control (MPC) is a control method that uses the system mathe-

matical model to make a prediction for its future behaviour subject to some constraints

so that the controller can better calculate the control input by considering future be-

haviour which is called the prediction horizon. MPC has several advantages which are

summarized in [31]:

• Constraints for inputs and outputs can be considered in predictions.

• By estimating potential problems, it can offer accurate solutions for the model.
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• Dynamic and static interactions between input and outputs are covered.

The main goals of an MPC framework have been well-described by Qin and

Badgwell in [32] as follows:

(i) Control input can always be calculated by satisfying the input and output con-

straints.

(ii) Provides smooth control input.

(iii) Control as many process variables is possible even if there is no feedback mecha-

nism from the system.

(iv) Maintains the outputs within specified constraints.

MPC framework is also widespread in decentralized control systems for formation

control thanks to its flexibility [33]. Dunbar stated in [34] that the formation of vehicles

could be maintained by using a local MPC controller that generates smooth outputs

without too much deviation.

4.4. MPC Optimization Problem

In this work, the MPC framework is used for solving nonlinear constrained opti-

mization problem with finite horizon to acquire optimal control strategy to coordinate

vehicles. To design a centralized MPC objective function to provide safe and smooth

travel through the intersection, the following objectives should be considered:

• Acceleration,

• Potential of a collision,

• Desired velocity tracking.
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In the light of these information, the overall objective function can be formulated

as

J =
T−1∑
t=0

N∑
i=1

wvi(vi(t+ 1)− vd)2 +
T−1∑
t=0

N∑
i=1

wu(ui(t))
2 +

T−1∑
t=0

N−1∑
i=1

N∑
j=i+1

Fi,j(t) (4.4)

where T (step size) is the MPC prediction horizon, N is the number of vehicles ap-

proaching the intersection, vd is the desired velocity, wvi and wu are the weights.

In this cost function, three terms effect the performance of the whole system. The

first one is related to velocity deviation from the desired velocity and the second term

aims to minimize the acceleration of the vehicles. Minimizing these two terms mainly

provide smooth velocity profile through the intersection. Setting vd at a higher speed,

rapid intersection crossing would be available. The third term is related to the risk of a

potential collision defined in (4.3). This term calculates and sums all the potential risks

at the collision point through their prediction horizon and used to provide collision safe

travel for all vehicles.

4.4.1. Traction Force

In (4.4), although the second term is related to fuel economy, minimizing the

total traction force that is applied to the vehicles will also lead to minimize total fuel

consumption. Traction force, including aerodynamic, rolling and gradient forces can

be formulated based on [35] as

FT (t) = M
dv(t)

dt
+Mgfr cos(α) +

1

2
ρAfCdv

2(t) +Mg sin(α) (4.5)

where M is the mass of the vehicle, fr is the rolling coefficient, Af is the frontal area,

Cd is the drag coefficient of the vehicle, and ρ is the air density. In (4.5), it can be seen

that the required traction force for a vehicle agent to follow its speed profile is increased

during acceleration. Although the derivative of the speed is zero at a constant speed,

the counter force will be generated, when the vehicle agent intends to accelerate.
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Since minimizing the total traction force is related to reducing both the accel-

eration and the velocity, adding this value to the cost function as an objective will

contribute to reducing the total fuel consumption of the system. However it will also

increase the delay time. In this scenario, agents can decide on whether fuel economy

or time delay is significant.

By adding the traction force element to the cost function in (4.4), the final ob-

jective function is formulated as

J =
T−1∑
t=0

N∑
i=1

wvi(vi(t+ 1)− vd)2 +
T−1∑
t=0

N∑
i=1

wu(ui(t))
2

+
T−1∑
t=0

N−1∑
i=1

N∑
j=i+1

Fi,j(t) +
T−1∑
t=0

N∑
i=1

wf (FTi(t))

(4.6)

4.5. Constraints

In the MPC framework, a constrained nonlinear optimization problem is solved

subject to linear and nonlinear constraints. To provide smooth velocity profiles and

safe flows through the intersection, linear and nonlinear constraints are defined such as

• Speed limits and maximum acceleration/deceleration of the vehicles,

• A safe distance gap between the vehicles along the same lane,

• A safe distance gap along the conflicting direction.

These constraints are explained in more detail below.

4.5.1. Speed Limits and Maximum Acceleration/Deceleration

It is assumed that all the vehicles travel within speed limits and cannot exceed

the acceleration-deceleration limits. Linear speed and acceleration/deceleration limits
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can be formulated as

vmin ≤ vi ≤ vmax

umin ≤ ui ≤ umax

(4.7)

where vi and ui are the velocity and acceleration of ith vehicle; vmax and vmin are the

maximum and minimum allowable speeds as constant values; and umax and umin are

the maximum and minimum permissible acceleration limits as constant values.

4.5.2. Safety Distance Gap Along the Same Lane

To avoid collision between two vehicles through the same direction, a safe distance

between two consecutive vehicles should be defined, which can be formulated as

xi+1 − xi ≥ rmin (4.8)

where xi+1 and xi are the two consecutive vehicles along the same lane, and rmin is the

minimum allowable gap, which can be formulated as in [36].

4.5.3. Safety Time Gap along the Conflicting Direction

To avoid any collision between vehicles along the conflicting lanes at the intersec-

tion, a safe distance gap should be defined. Since the vehicles may cross the intersection

at different angles, a nonlinear inequality constraints is formulated as

(xi(t) + pφiφj)
2 + (xj(t) + pφjφi)

2 ≥ R2
min (4.9)

where Rmin is a constant value that provides a minimum safe distance gap between con-

flicting vehicles to avoid any collision at the intersection; φi and φj are the destination

definition of vehicle i and vehicle j.
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Step 1: Collect position, velocity and destination information from all vehicles

in the communication range.

Step 2: Calculate assumed states according to the prediction horizon using (4.1).

Step 3: Compute the control signals by minimizing the centralized optimization

problem for all vehicles using (4.6).

Step 4: Compute speed value using vehicle dynamics in (4.1).

Step 5: Apply the speed value as an input to the vehicles in SUMO;

Step 6: Simulate one step and go to Step 1.

Figure 4.2. Centralized Model Predictive Control Algorithm

4.6. Controller Algorithm

The main advantage of the centralized MPC framework is that it controls the

whole environment, and it is not constrained with any traffic policy. The only task of

the controller is to minimize objective function. Therefore, vehicles can pass through

the intersection more efficiently. However, increasing the number of vehicles within the

intersection causes more computational cost for ICU.

The main algorithm for centralized MPC is given in Figure 4.2. In Step 1, ICU

collects state information from all vehicles within communication range. In Step 2,

assumed vehicle future dynamics are calculated through the prediction horizon T by

(4.1). In Step 3, ICU runs the optimization problem and computes the control input

by minimizing (4.4). In Step 4, ICU sends control input values to the corresponding

vehicles and each vehicle calculates its velocity value by using (4.1). In Step 5, the

reference velocities, which are calculated in the previous step are applied to the vehicles.

After running simulation one step, new states are generated, and iteration starts over

in Step 1.
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4.7. Numerical Analysis

In this section, evaluation of the proposed framework is carried out in SUMO,

and the simulation results are presented.

4.7.1. Simulation Setup

The simulation setup for the numerical analysis of this chapter is as follows:

• SUMO vehicle dynamics are used as a plant model;

• Eight vehicles are deployed to the simulation.

• Maximum and minimum allowable acceleration and deceleration capabilities are

5 m/s2 and -6 m/s2;

• Minimum safe distance between two consecutive vehicles is set to 2.5 meters;

• Minimum safe distance between two conflicting vehicles (Rmin) is set to 7 meters;

• Desired velocity (vd) is chosen as 16.67 m/s;

• Rolling coefficient (fr) is set to 0.015, the frontal area (Af ) is set to 2 m2, air

density (ρ) is set to 1.2 kg/m3, drag coefficient (Cd) is set to 0.3;

• Weights for the cost functions wvi , wu and wf are chosen as 2, 5, 0.001;

• Preceding horizon T is chosen as 20;

• Sample time ts is chosen as 0.2 seconds;

• In the risk function, H is chosen as 1000 and α is chosen as 0.05.

In the simulations, we test our study with and without traction force cost element

and inspect the efficiency of traction force minimization in terms of fuel economy

and travel time. It can be stated that, at each time step, only the first two vehicles

approaching the intersection at each lane are involved in the optimization problem. In

Figure 4.3, the position of the vehicles according to the intersection, is illustrated. It is

shown that all vehicles pass through the intersection without any collision by adjusting

their velocities depending on the control input calculated by ICU.
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Figure 4.3. Distance to Intersection Values for All Vehicles

Table 4.1 shows the detailed result of the simulation for all vehicles at the inter-

section. It can be seen that the traction force cost element decreases the average fuel

consumption of the overall system while increasing the average travel time. However,

fuel consumption of some vehicles (e.g., vehicle 8) increase with the use of the traction

force cost. The reason of this is that, since the main objective of the centralized MPC

framework is to optimize the whole system (all the vehicles), it has to sacrifice some

vehicles in terms of fuel economy to minimize total fuel consumption.

4.8. Summary of the Chapter

In this chapter, the centralized model predictive control (CMPC) approach is dis-

cussed by introducing the risk function to estimate potential collisions and the traction

force to minimize the fuel consumption. The details of the controller algorithm for

ICU is explained. Simulation results support that traction force minimization has an

advantage in terms of reducing the fuel consumption at the expense of increased travel

time.

The next chapter moves on to discuss the decomposition of the centralized MPC

approach into decentralized MPC. Fuel efficiency formulation of a combustion engine
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Table 4.1. Detailed Travel Time and Fuel Consumption Results for All Vehicles With

and Without Traction Force Cost

With Traction Force Cost Without Traction Force Cost

Vehicles Direction Travel Time

(s)

Fuel Consumption

(ml)

Travel Time

(s)

Fuel Consumption

(ml)

vehicle 1 Eastbound 31 180.42 30.6 185.77

vehicle 2 Eastbound 32.4 165.23 31.8 169.09

vehicle 3 Northbound 33.6 168.44 33 169.85

vehicle 4 Northbound 35.6 153.18 14.8 157.25

vehicle 5 Westbound 30.6 187.81 30.2 194.65

vehicle 6 Westbound 32.6 163.28 32 169.09

vehicle 7 Southbound 34 163.53 33.8 169.14

vehicle 8 Southbound 35.4 155.53 33.8 150.66

Average 33.15 167.19 32.62 169.43

will be included in the objective function to also provide more efficient travel in terms

of fuel consumption.
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5. DECENTRALIZED INTERSECTION CONTROL

USING MPC AND FUEL CONSUMPTION

Traffic coordination at intersections is being frequently analyzed using decentral-

ized MPC (DMPC) methods. The main motivation is due to the increase in V2V

capabilities of vehicles, since they will be able to communicate with each other seam-

lessly, enabling decentralized approaches. With these approaches, minimizing delay

time of the vehicles as well as fuel consumption under safety constraints is the main

goal to coordinate vehicles at the intersection.

This chapter will present a DMPC method to coordinate the vehicles at inter-

sections. In order to solve the consensus problem which is stated in [24], a prioritizing

method which is commonly used in the literature will be defined. In addition to acceler-

ation optimization which is stated in [21], fuel efficiency optimization will be explained

to take fuel economy more into consideration.

5.1. Hybrid Vehicle Model Dynamics

In this MPC framework, fuel economy is also considered while providing smooth

flows for the vehicles approaching the intersection. Therefore, basic longitudinal vehicle

state dynamics are re-formulated by also taking traction force which is applied against

the vehicle into consideration. To calculate MPC model future states, the longitudinal

dynamics of a vehicle at intersection are modified based on [37], [38] as

xi(t+ 1) = xi(t)− vi(t)ts −
1

2
ui(t)t

2
s

vi(t+ 1) = vi(t)− (
1

2Mi

CdρAfivi(t)
2 − frg + gθ − u)ts

(5.1)

where vi, xi, Mi and Afi are velocity, distance to intersection, mass and frontal area

of vehicle i respectively; ui is the control input of vehicle i; ts is the time step of the

controller. In this system, acceleration is used as control variable. M is mass, fr is
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rolling coefficient, Af is frontal area, Cd is drag coefficient of the vehicle, g is the gravity

and ρ is the air density. θ is the angle of the road slope which is assumed to be 0 in

this thesis.

5.2. Fuel Consumption Minimization

One of the main goals of each vehicle, apart from crossing the intersection with

minimum time delay without any collision, is to minimize fuel consumption by control-

ling vehicle traction and braking force per unit mass while satisfying other constraints.

To minimize fuel consumption, the problem definition is given by [39],

arg min
ui(t)

1

Si(t)

T∑
t=0

ṁifuel(t)ts (5.2)

where Si is the total headway distance that vehicle i has through the preceding hori-

zon T (in other words travelled distance through prediction horizon). In (5.2), the

equivalent fuel consumption rate ṁifuel is formulated as

ṁifuel(t) =
1

ηieffHLHV

Picons(t) (5.3)

where ηieff is the propulsion efficiency of the vehicle i and HLHV is the lower heat-

ing value of gasoline. Picons is the effective power consumption for vehicle i that is

formulated as

Picons(t) = 1
2
ρCDAfivi(t)

3 +Migvi(t)(f + θ) + β[vi(t)Miui(t)] + (1− β)[−ηirec(t)Miui(t)vi(t)] (5.4)

where ηirec is the recuperation efficiency of vehicle i; M is the mass; fr is the rolling

coefficient; Af is the frontal area and Cd is the drag coefficient of the vehicle and ρ is

the air density. In general, Picons should be always greater than zero. To ensure that,
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a binary β coefficient is defined as follows:

β =

 0 if ui ≤ 0

1 otherwise
(5.5)

5.3. MPC Optimization Problem

Once vehicles in the communication range broadcast their position and velocity

profile to the network, each vehicle can calculate its optimal velocity profile with the

MPC framework. To design a distributed MPC framework considering fuel economy,

the following objectives should be considered:

• Fuel consumption for unit distance,

• Desired velocity tracking,

• Acceleration.

The overall minimization problem can be formulated as

min
ui(t)

(
T∑
t=0

[w1
ṁifuelts

xi(T )− xi(0)
+ w2(vi(t+ 1)− vd)2 + w3ui(t)

2]

)
(5.6)

where w1, w2, w3 are the weight factors, xi(t) is the distance to the intersection at time

t, vd is the predefined common desired velocity which is the same value for all vehicles,

T is the model predictive horizon, vi(t) is the velocity of vehicle i at time t and ui(t)

is the control input which is the acceleration/deceleration value of vehicle i.

The first term of the objective function minimizes the total fuel consumption

per unit distance through the model predictive horizon for vehicle i; the second term

optimizes the deviation of the desired velocity which ensures that vehicle i will not

stop during the optimization period; the last term focuses on the minimization of the

acceleration/deceleration value. By obtaining current velocity and position of vehicle

i within the communication area, the optimal velocity profile can be calculated.
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The weights in the objective function are given by [39]

w1 = 10 + 100e(0.05vd)

w2 = 10 + 500e(−0.07vd)

w3 = 2000 + 1000e(−0.1vd)

(5.7)

where vd is the desired velocity for all vehicles. When the desired velocity decreases,

velocity tracking and acceleration weight factors will increase while the weight factor

of the fuel consumption term will decrease. In other words, if the desired velocity

increases, fuel consumption will be more important for the cost function and vice

versa.

In this work, interior point method [40] is used to solve the nonlinear model

predictive control optimization problem, so that the optimal solution can be found

over a given prediction horizon [41].

5.4. Decentralized Conflict Resolution Problem

In the previous chapter, the intersection coordination problem has been solved by

a centralized model predictive control method. This section explains how a centralized

coordination problem can be converted into a decentralized coordination problem by

splitting the problem into smaller pieces so that each vehicle agent can solve its own

coordination problem.

5.4.1. Converting Centralized Problem into Decentralized One

In order to solve the conflict resolution problem at the intersection in a decen-

tralized manner, the centralized optimal MPC problem should be decomposed into

local optimal MPC problems by applying the primal decomposition technique based

on [24]. Similarly, the system dynamics, input and state constraints can be used in-

dependently. However, the safety constraints should be re-implemented especially for

conflicting vehicles. To achieve this, the following issues should be handled:
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(i) As formulated in (4.8) and (4.9), these safety constraints are the absolute value

constraints which can be satisfied easily by the centralized solver, because the

centralized solver control all the vehicle agents. For the decentralized problem,

the constraints should be reformulated accordingly in order to be solved by vehicle

agent instead of a central agent. In addition, this reformulation should provide

efficient solution for the optimization problem.

(ii) A simple decomposition may not solve the conflicting resolution problem, because

in a distributed scheme with non-convex coupled constraints, this approach may

lead to convergence issues.

5.4.2. Policy for the Safety Constraints

Since (5.6) with coupled constraints has a non-convex nature, it is a challenging

task to solve this kind of optimization problems. For decomposed objective functions

and the coupled constraints, there are several methods like distributed sub-gradient

methods [42], [43], proximal methods [44], or the alternating direction method of mul-

tipliers [45] to solve the decentralized convex optimization problem. These approaches

generally utilize that Lagrangian multiplier of the coupled constraints can be handled

as a consensus variable for the optimization problem. This consensus is obtained by

satisfying constraints for two or more coupled subsystems. These convex optimization

problems can be easily divided into local optimization problems and can be solved in a

sequential manner, therefore fully parallelized computations are available. To consider

the experimental simulations, parallelized and nested iterations may cause additional

communication effort and because of the time consuming nature, solving these kind of

optimization problems increase the overall computation time and may not be realistic

when we consider the real time experimental simulations. Therefore, for the conflict

resolution problems at the intersection, fully parallelized computations should be cho-

sen. While aforementioned general methods are reasonable for convex decentralized

problems, there is no only one way to solve non-convex problems.

In our decentralized non-convex optimization problem, without any consensus,

safety constraints may cause to the dead-lock or collisions while solving the optimiza-
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tion problem in a fully parallelized manner. If there is no common consensus between

agents in simulation, each agent can change their intention according to cost of their

minimization function. In other words, if there is no common traffic rule, each vehicle

agent will intend to pass the intersection before others and without any collision. As

a result of this, there will be no such a way for all the vehicles to pass the intersection

without any collision, minimum time delay and fuel consumption.

To deal with the consensus problem, Katriniok et al. propose prioritized safety

constraints instead of pairwise safety constraints in [24]. The basic idea is to introduce

some priorities on agents such that only one of two conflicting vehicles can pass the

conflicting point at one time. This idea is summarized in the following definition.

Definition 5.4.1. (Prioritized Safety Constraints) A prioritization function γ : A →

N+ is defined which appoints a unique passing priority to vehicle i, where i ∈ A and

the vehicle agent with higher priority will pass the conflict point always first. The

vehicle with lower priority will always know that it has to pass the conflict point after

the vehicle with higher priority. The formulation of this approach is as

A[i]
c,γ =

{
l ∈ A[i]

c |l 6= i ∧ γ(l) < γ(i) ∧ s[i]c,l 6=∞
}

(5.8)

which requires that the vehicle agent l with higher priority than vehicle agent i, has to

pass the conflict point before vehicle agent i.

In this thesis, as a prioritization policy, we use the first come first serve policy

studied in [8]. Basically, the vehicle agent which is closer to the intersection will pass

the conflict point first. We can formulate the safety constraint with the prioritization

as

xl(t)− xi(t) > Rmin if xi(t) ≥ xl(t)

xi(t)− xl(t) > Rmin otherwise
(5.9)

where xi and xl are the positions of the ith and lth vehicles which have a common

conflict point and Rmin is the minimum safe distance to pass the intersection.
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Step 1: Collect position, velocity and destination information to all vehicles in

the communication range.

Step 2: Calculate assumed states according to the prediction horizon using (5.1);

for i = 1 to Nvehicles do

Step 3: Compute the control signals by minimizing the optimization problem

for the vehicle i using (5.6);

Step 4: Compute speed value to apply using vehicle dynamics in (5.1);

Step 5: Apply the speed value as an input to the vehicle i in SUMO;

end for

Step 6: Run the simulation for one step and go to Step 1.

Figure 5.1. Decentralized Model Predictive Control Algorithm

5.5. Controller Algorithm

The main advantage of the decentralized model predictive control (DMPC) is

that it is capable of providing a solution for all vehicles independent from the number

of vehicles at the intersection. However, increasing the number of vehicles at the

intersection, computational and communication complexity will also be increased due

to the vehicle to vehicle constraints.

The main algorithm for the DMPC is given in Figure 5.1. In Step 1, all vehicles

broadcast their position and velocity information to other vehicles within the intersec-

tion and receive their state values. In Step 2, assumed vehicle dynamics are calculated

through the prediction horizon T by (5.1). After all vehicles know each other’s current

and assumed position, velocity and destination information, the aforementioned non-

linear constraint optimization problem runs for each vehicle to calculate the control

input signal in Step 3. Although the control signal for the entire horizon is calculated,

the velocity input corresponding to the current time is calculated by using the control

input at current time in Step 5. After one step simulation, new velocity, position, and

destination values are generated and iteration starts over from Step 1.
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5.6. Numerical Analysis

In this section, the evaluation of the algorithm in the SUMO simulation environ-

ment and simulation results are presented.

5.6.1. Simulation Setup

The simulation setup for the numerical analysis of this chapter is as follows:

• SUMO vehicle dynamics are used as a plant model;

• 8 vehicles are deployed to the simulation.

• Maximum and minimum allowable acceleration and deceleration capabilities are

5 m/s2 and -6 m/s2;

• Minimum safe distance between two consecutive vehicles is set to 2.5 meters;

• Minimum safe distance between two conflicting vehicles (Rmin) is set to 7 meters;

• Desired velocity (vd) is chosen as 16.67 m/s;

• The propulsion (µieff ) and recuperation (µirec) efficiency values are set to 0.2 and

0.8, respectively;

• Rolling coefficient (fr) is set to 0.015, the frontal area set to (Af ) is set to 2 m2,

air density (ρ) is set to 1.2 kg/m3, drag coefficient (Dd) is set to 0.3, the lower

heating value of gasoline (HLHV ) is set to 10;

• Preceding horizon T is chosen as 20;

• Sample time ts is chosen as 0.2 seconds.

In the simulation setup, we have tested our decentralized system with hybrid and

basic vehicle (which is described in Chapter 4) longitudinal dynamics. We also have

tested the algorithm with fuel consumption and without fuel consumption term in the

objective function and inspected the effects of the fuel consumption elements to the

decentralized model predictive control model.

In Figure 5.2, distance to intersection values of the vehicles through the simulation

are depicted. It can be seen that, after 13 seconds, vehicles start to accelerate or
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Figure 5.2. Distance to Intersection Values for All Vehicles

decelerate for safe travel. All the vehicles pass the intersection without any collision.

As seen in Table 5.1, simulation results show that using hybrid vehicle dynam-

ics in (5.1) as MPC control model leads to travel with less energy loss compared to

basic vehicle longitudinal dynamics in (4.1). Also, the fuel efficiency related cost in

(5.6) provides fuel economic travel when we consider the overall system. However, the

vehicles have the most delayed travel time with hybrid vehicle dynamics and the fuel

efficiency related cost. These results confirm the association between fuel efficiency

and travel time. In order to provide fuel efficient travel using fuel efficiency related

costs, we should compromise the average travel time.

The detailed simulation results for all vehicles at the intersection are summarized

in Table 5.2. Fuel consumption cost is beneficial for all vehicles in terms of fuel economy

except Vehicle 1 which has to sacrifice itself in order to stick to the consensus policy

and for the sake of fuel economy and travel time of all vehicles.
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Table 5.1. Results of Decentralized MPC

Fuel Consumption

(ml)

Travel Time

(s)

Basic Vehicle Dynamics

With Fuel Economy Related Cost
178.32 35.9

Basic Vehicle Dynamics

Without Fuel Economy Related Cost
181.81 33.83

Hybrid Vehicle Dynamics

With Fuel Economy Related Cost
171.30 36.9

Hybrid Vehicle Dynamics

Without Fuel Economy Related Cost
179.74 34.57

5.7. Summary of the Chapter

In this chapter, converting the centralized MPC of Chapter 4 into a decentralized

controller is examined. To provide collision-free passing through the intersection, FCFS

policy is defined and included in the objective function.

In order to provide fuel efficient travel, basic longitudinal vehicle dynamics are

reformulated to take traction force into consideration and called as hybrid model dy-

namics. By using hybrid model dynamics as MPC model and adding fuel efficiency

formulation to the optimization problem, it is seen from numerical analysis that fuel

consumption decreases comparing the basic vehicle dynamics and without fuel effi-

ciency formulation. However, the fuel efficiency related costs increase the total travel

time of the vehicles.

It should be also noted that some vehicles sacrificed themselves to obey the con-

sensus policy and they are not able to decrease their fuel consumption in spite of

including fuel efficiency formulation in the objective function.
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Table 5.2. Detailed Travel Time and Fuel Consumption Values Using Hybrid Vehicle

Dynamics for each Vehicles With and Without Fuel Consumption Cost

Hybrid Vehicle Dynamics With

Fuel Consumption Cost

Hybrid Vehicle Dynamics Without

Fuel Consumption Cost

Vehicles Direction Travel Time

(s)

Fuel Consumption

(ml)

Travel Time

(s)

Fuel Consumption

(ml)

Vehicle 1 Eastbound 31.8 189.12 32 187.71

Vehicle 2 Eastbound 41.4 135.51 36.8 161.70

Vehicle 3 Northbound 40.6 170.19 37.8 180.50

Vehicle 4 Northbound 46 170.6 39 177.28

Vehicle 5 Westbound 31.8 183.26 32 184.79

Vehicle 6 Westbound 41.8 138.80 37 162.21

Vehicle 7 Southbound 30 209.88 30.4 209.10

Vehicle 8 Southbound 31.7 173.05 31.6 174.68

Average 36.9 171.30 34.58 179.74

In Chapter 6, simulation results for both centralized and decentralized MPC

approaches are compared in detail.
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6. EXPERIMENTS AND RESULTS

In this chapter, the performance of the centralized MPC of Chapter 4 is com-

pared with the decentralized MPC of Chapter 5 by considering both basic and hybrid

longitudinal vehicle dynamics. Additionally, the efficiency of both approaches with and

without fuel economy related cost is examined.

6.1. Effects of Vehicle Dynamics to Centralized MPC

In Chapter 4, centralized MPC with basic vehicle dynamics is explained. In this

section, the efficiency of hybrid vehicle dynamics which is formulated in Chapter 5, to

CMPC is investigated. All approaches are simulated with the same test setup and the

results are compared in terms of fuel consumption and travel time.

Table 6.1 summarizes the average results for four conditions (hybrid vehicle dy-

namics with fuel economy related cost, hybrid vehicle dynamics without fuel economy

related cost, basic vehicle dynamics with fuel economy related cost, basic vehicle dy-

namics without fuel economy related cost). Note that using hybrid vehicle dynamics

and fuel efficiency related cost decrease the fuel consumption. However, fuel efficient

travel increases time delay as in real life. Nevertheless, it can be acceptable when we

consider the air pollution and the cost of the carbon-dioxide emission to nature.

6.2. Performance Evaluation of CMPC and DMPC

In this section, the performances of centralized and decentralized MPC studied in

Chapter 4 and 5, are compared. While doing this, all the configurations are simulated

with the same simulation setup and numerical values for both approaches.

Table 6.2 summarizes the simulation results of centralized and decentralized MPC

studies in terms of travel time. The results, as shown in Table 6.2, indicate that central-

ized MPC performs better than decentralized MPC with all configurations. Detailed
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Table 6.1. Results of Centralized MPC

Fuel Consumption

(ml)

Travel Time

(s)

Basic Vehicle Dynamics

With Fuel Economy Related Cost
167.19 33.15

Basic Vehicle Dynamics

Without Fuel Economy Related Cost
169.43 32.62

Hybrid Vehicle Dynamics

With Fuel Economy Related Cost
166.26 33.32

Hybrid Vehicle Dynamics

Without Fuel Economy Related Cost
167.97 33.15

results of the centralized and the decentralized approaches for all vehicles in the sim-

ulation are given in Figures 6.1 - 6.2. It should be noted that in general, travel times

decrease with the basic vehicle dynamics and without using fuel related cost optimiza-

tion. In other words, considering fuel efficiency in the optimization problem increases

the travel times of the vehicles. The second major finding is that some (e.g. veh7)

vehicles are not be able to decrease their travel time unlike other vehicles. A possible

explanation for this is that some vehicles have to compromise their travel times for the

sake of the whole system.

The simulation results of the centralized and decentralized MPC studies in terms

of fuel consumption are summarized in Table 6.2. Overall, these results indicate that

CMPC performs better than DMPC in terms of fuel consumption. Results depicted in

Figures 6.3 - 6.4 show that fuel consumption is decreased by including the hybrid lon-

gitudinal vehicle dynamics and fuel efficiency related cost in the optimization problem.

In general, the centralized MPC performs better than the decentralized MPC

in terms of both travel time and fuel consumption with all configurations. This result
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Table 6.2. Travel Time Average Results

Travel Time (s)

Centralized MPC Decentralized MPC

Basic Vehicle Dynamics

With Fuel Economy Related Cost
33.15 35.92

Basic Vehicle Dynamics

Without Fuel Economy Related Cost
32.62 33.82

Hybrid Vehicle Dynamics

With Fuel Economy Related Cost
33.32 36.9

Hybrid Vehicle Dynamics

Without Fuel Economy Related Cost
33.15 34.575

may be explained by the fact that the centralized approach minimizes the whole system

without any consensus and optimizes the trajectories of the whole system under safety

constraints. On the other hand, the decentralized framework is constrained with the

traffic policy.

The computational cost of the centralized framework is higher than the decen-

tralized framework because, in the centralized framework, all the computations are

done by one central intersection controller while in the decentralized framework, the

computations are carried out by each agent individually. On the other hand, we can

say that the centralized framework is better than the decentralized framework in terms

of communication costs because the centralized framework only needs V2I communica-

tion while the decentralized framework needs both V2I and V2V communication which

is another research area.

6.3. Summary of the Chapter

In this chapter, first, the effects of the hybrid vehicle dynamics on centralized

MPC in terms of fuel economy and travel time are examined. In summary, the simu-
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Figure 6.1. Detailed Travel Time Results for Decentralized MPC

lation results show that hybrid vehicle dynamics have the advantage to decrease fuel

consumption. However, hybrid vehicle dynamics, as well as fuel efficiency related cost

in the optimization problem, increase the travel time of vehicles.

Second, the comparison of centralized and the decentralized MPC is carried out.

The centralized approach performs better than the decentralized approach in terms of

travel time and fuel consumption. However, managing all the vehicles with only one

agent causes computational and management costs. In other words, to handle central-

ized control task, ICU should be well equipped with communication and computation

tools. On the other hand in the decentralized approach, the whole computation is

decomposed into smaller agents. This decreases the amount of computation at the

expense of increased communication.
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Figure 6.2. Detailed Travel Time Results for Centralized MPC

Table 6.3. Fuel Consumption Average Results

Fuel Consumption (ml)

Centralized MPC Decentralized MPC

Basic Vehicle Dynamics

With Fuel Economy Related Cost
167.19 178.31

Basic Vehicle Dynamics

Without Fuel Economy Related Cost
169.43 180.78

Hybrid Vehicle Dynamics

With Fuel Economy Related Cost
166.26 171.30

Hybrid Vehicle Dynamics

Without Fuel Economy Related Cost
167.98 179.74
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Figure 6.3. Detailed Fuel Consumption Results for Decentralized MPC
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7. CONCLUSION

Multi-agent intersection management is a huge task including safe passing, time

delays, and fuel economy. There are several studies in the literature which have used

various methods for coordinating vehicles at the intersection. In this thesis, the objec-

tive of the overall system has been to develop a multi-agent intersection coordination

scheme based on minimizing time delays and energy loss. Three optimization prob-

lems have been studied; namely (1) departure time-based optimization, (2) centralized

optimization with MPC and (3) decentralized optimization with MPC. Finally, the

efficiency of centralized and decentralized MPC to intersection management has been

studied in Sumo with TraCi Matlab interface.

The first contribution of this thesis is an improvement in the V2I and I2V commu-

nication model. The optimal departure time scheduling approach which is already 50

% better than the FCFS policy has been extended to the four-way intersection model.

Vehicles communicate with ICU planted at the intersection and ICU optimizes the de-

parture time of vehicles. Dynamic trajectory planning approach is defined for vehicles

to depart from the intersection at the settled time. Simulation results confirm that the

dynamic trajectory planning approach overcomes the limitations of acceleration and

deceleration rates. The algorithm is also tested with different communication ranges

and it has resulted that the travel time of the vehicles decreases as the communication

range increases.

Another contribution of this thesis is to provide smooth flows at the intersec-

tions by using a centralized MPC approach. The main focus of this study has been

to construct the CMPC algorithm in terms of nonlinear costs and constraints to solve

the identified problem by also considering fuel efficiency. In addition to the nonlinear

risk function, the traction force is formulated and included in the optimization prob-

lem. The simulation results confirm the association between traction force and fuel

consumption. It is noted that minimizing traction force applied to the vehicles leads

to a decreased energy loss of the vehicles.
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Although V2I based centralized intersection management is a common study in

literature, there are also various studies relying on V2V communication. The final con-

tribution of this thesis is a V2V based decentralized intersection coordination scheme

in order to coordinate vehicles to pass the intersection with minimum time delays and

fuel consumption. To this end, the centralized MPC scheme of Chapter 4 is decom-

posed into decentralized MPC. To solve the consensus problem between vehicles, the

common policy of FCFS is implemented as a constraint to the optimization problem.

Additionally, hybrid vehicle dynamics and fuel efficiency cost are formulated in order

to decrease fuel consumption. It is concluded that hybrid vehicle dynamics and fuel

efficiency related cost are more efficient in terms of fuel economy. However, these terms

also increase the average travel time of the vehicles.

The proposed CMPC and DMPC algorithms have been implemented and tested

in the same simulation environment and conditions. Numerical analysis shows that the

centralized MPC approach performs 8% better than the decentralized MPC in terms

of travel time and fuel consumption. Centralized and decentralized control approaches

have advantages and disadvantages in some cases. Doing a whole optimization problem

in only one agent may cause computational costs which would be non-realistic when

we consider applying this framework to real life. Additionally, if ICU is destructed, the

whole communication will be lost and intersection management will not be available.

On the other hand, decomposing the whole optimization problem into multi-agents

induces communication costs which is another research area in telecommunications.

Finally, in light of the work done so far, these findings help us to shape our further

improvements. In this thesis, all the vehicles travel with a constant speed before they

reach to the communication area and all the vehicles have the same weight. As future

work, a scenario where all the vehicles travel with different velocity and different vehicle

types can be considered. Communication delays in V2I and V2V should also be taken

into account. As human-driven legacy and autonomous vehicles will travel together

in a very near future, a further study with more focus on coordination of legacy and

autonomous vehicles at the intersections is therefore necessary.
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