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ABSTRACT

In this work, the adaptiye discrete-time, linear non-
recursive filters (or estimators) designed by the Least Mean

Square (LMS) algorithm are investigated.

The:deVélopmen¥‘of,adaptive tééhniquéé‘fdf‘éstimating
thébparamefefs,of’sinﬁsoidal signals in;White”ndiSe is‘im§0r—i
tant in manywépplicatioﬁs.‘ Théreféfegaa signai‘énhanéing tech-
niqﬁe for sfatiétical;y Statidnafy_signals based on conven=-= '7}
tional'Least Mé§n'Squar¢ (LMS) adapfi§é’filférihg and some
éthéf hewly devélopéd procédufés of adaptiye épectral ééfima— —E
tion of discrete time series are.presentedaigrthis'thesié.4

:vAn ad;ptlve fllter conflguratlon knowﬂ asﬁthe.Adéﬁtlve
Llne Enhancer (ALE) orlglnally suggested by Widrow [11 for
the detectlon of 31nusoadal 51gnals in w1de band noise is stu-
.dled in detall. _New.expre351ons related to the decorrelation

parameter.for the cases of one, two and mulfiple sinusoids are

obtained.

This thesis also 1nvest1gates the method in [10] for
ellmlnatlng 31nus01dal or other pePlOdlc 1nterference corrup—

ting a signal. Thls task is typlcally accompllshed by exp11—~
' N



citly measuring the frequency of the interference and imple:
menting a not@h filter at that‘freqﬁency.» )

For the colored noise case, the optimal fllter length

for ALE is obtalned by max1mlzlng the SNR. ratlo of ALE. _

The ':+ estimation in LMS algorithm will be better if
the estimatesyof the tap gain'coefficientsvgre better. - Better
estima?es are obtained by runnihg the<LMS éigorithm longer.
Therefore, it is useful to have a rapldly convergent algorlthm
and so called Ladder-or Lattice fllter. For that reason we
introduce tﬁe Lattice Filtgrvlmplemghtation of tﬁe geﬁeral ALE
.as in [36]- Also’é éiass éf'éfahle aﬁd‘éfficientArecursiye
-létticé methods for linear prediction dependiﬁg on the choosen
reflection3co§ffi¢iénté.'~Coméﬁter simulationsvaré also per-

formed to discuss everything in the thesisu
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UZETCE

Bu tezde kﬁgﬁk kérelef (KK) algoritmasi ile c¢alaisan
uyarlamali, kesikli»zamanli, dogrusal, tbansveréaleﬁzgegler
inceiénmektedir.

Beyaz gﬁrﬁltﬁ igindeki siniisoidal isaretlerin parame-
t?élerinin‘keétiriminde'kullanllan uyarlamali tekniklerdeki
gelismeler, biréok uygulamada 6neﬁli‘olmaktad1r.'~Bu seﬁeble;
‘bu tezde istatistiksel‘baklmdah duragan isaretlerin kilgik-
karelér.ile uyarlamal: éﬁzgeg;enmesi,ve'diéer'yeni.gelisen“ke-
sikli'zamanli serilerip uyaflamall gérﬁhge kestifimlefi sunul-
maktadlr; | |

\

_~Widrpw tafaflhdan'ﬁeyaz gﬁrﬁltﬁ:igindeki sinlisoidal
iéaretléfiﬁfséZﬁesihde;Rﬁl}anllan; uyérlémai1 gizgi kﬁﬁvétlen—
~dirici élarék bilinen; bir gesit uyarlaméll sﬁzéegi ﬁzérinde
¢allsmaktad1r; . Bir, iki've.gpklu siﬁﬁséidal igaretler igin,

yeni iiihtiéizlik;deéiétirgen ifadeleri elde edilmekteéir.

Bu tez ayni zamanda sinlisoidal ve difer dénemsel giri-
simleri eleme methodlarini incelemektedfr. Bu girisgimin sik-
l1ginan dlcililmesi ve buiunag siklikta notch sﬁzgegtgefgekles—

tirilmesi ile elde edilebilmektedir.

vi



isaretin éﬁrﬁlfﬁ§eudraninl ‘enbilyliikleyerek, renklendiril-
mis'gﬁrﬁltﬁ ortamlnda..uyarlamall‘Eizéi‘kquetlendiricisinin‘
ehiyi sﬁigé¢ boyuiglde edilmef£edir. A. -

Sayet kazanc¢ katsayilarz: mﬁkemmel.isé, kiiciik kareler
kestirimide mﬁkeﬁmel olacaktar. .ideal kestiriﬁ, (RK) alésritr
ma81n1vuzun.sﬁre gecistirmekle elde edilebilmektedif. Buii
éebebten, ord éﬁzgegvdiye adlanarilan ye sﬁratle yaklnsayéﬁ
bir algoritma kulléﬁisll olmaktadir. Uyarlamali cizgi kuVQet—
‘lendiricisiﬁin 6rﬁ:sﬁzgeg‘6larak ger?ékleskirilmesi yaplia:
bilmektedir. jAyni’zéméndé}Vefimli:yéﬁsima katsayilara ve on-
léflﬁAézyinéli denklémlériAvérilﬁektedir.‘ Biigisayan Benze}
timleri kezé te?‘iginde’yér alan'dﬁsﬁncelepe'fikir vermék

'_amac1yla yapllmak{adlf.
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~ INTRODUCTION

Carrier detection and estimation is based on the spec-
trum:or power spectraivdensity (PSD). Estimation of the POWET
spéqtral’dehéityror’simply‘5pectfﬁmvo£fdi$cretely'sampled de-
terministic and'stochastic»procésses is uSually based én;pro-
cedures employing‘the'FéstvFGUrierrTranstrm (FET). This
‘approach -to spectrum aﬁalysis is.computatioﬁa11y~efficient
and”pdeuces.reasonablé reSults~fof’a'1arge class. of signal
.processes.v In.spite5of>these’advantage$ therefare-several in-
‘herent performaﬁceﬂlimitatidns;of~the %FT‘approaéh_‘ The most,
important limitation is thatfof-thewfrequency7re501ution; i.e.,
-thebabilify.to9distingUish‘the»specfralfresponses-of two or
mOrefsignalsf'fThe fréduencyfresolufion in'hertz is roughly
thé:fééeiprocalfof'the.timé'interVal in seconds ovéf-whiéh
sampled data is available. These performancé,liﬁitations of
ihé FFT.approach‘aré'particularly troublesqme when analyzing
short data.fecords.' Shorfﬂdata records occur frequently in
pfactice because mény mea5qred'processe5“are brief in dura-
tion or haVe‘slowly'time«#arying spectra that may bé'conside—
red COhétant only for‘short records.

In an attempt to alleviate the inherent limitations of

1



the FFT approach many»alternative,spectral eStimation proceu

dures have been prOpoéed'within the last decade.

Modern'spectrumwestimation techniques are:;based on
‘modeling of the data by a small set of~parame£ers;H~Whengthe~
_model is én‘acéurate4reptesentationbof the data, spectrél
estimates.can bg obtained whose performance exceed that of the
claésical‘FPT; estimator. - The improvement in performance is.
manifested by higher resolution. and a lack of side lobes. It
should also be‘émphaéiied“that‘in addition‘to{an accurate mode!
of the ‘data, one must base the.spectral estimator on_é_goodh
eStimator‘Of the model paramters. ' Usually this entails a ma -
ximﬁm 1ikelih60d parameter estimator. If the model is inap-
pr0priate;ias'in-thé*caée-of.an;AR;model for‘aﬂ AR process
with addifiVe'obsetvation.ﬁoise,”pooru(biased)-spectrai‘esti-
mates will result. . If the.modelris.accurate;bgtyé poor sta-
fistical estimator.:of thé7parameters;is,emploied as in the
case of the.ARMA'specfral’éstihate,usingfthé-modified Yule;
Walker equations poor" (1nf1ated varlance) Spectral estlmates

.w111 ‘also result

" However, the most.common -analysis techniques have
» v . N e as |
been the autocorrelation and covariance methods of linear pre-

diqtion in which the observed signal is modeled as an;ARi(allj
' |

pole) process. 'Asktypically implemented these are block data5

structured approaches wh1ch create a whltenlng or inverse fll



’aétef for the availablevdata‘block These.technioueslalso as-.
'sume that the data are statlonary dur1ng the t1me w1ndow in
wh1ch autocorrelatlon measurement are taken., However,/SIgnal
lstatlstlcs may not remaln stat1onary ‘ Also 1nstead .of block
-process1ng t1me serles data in the method of 11near predlctlor
;the 1nverse fllter can be 1mp1emented as a contlnuously up-a
Vdated all zero adaptlve transversal or adaptlve lattlce struc-
~ ture. These structures have recelved con51derab1e.attentlon
‘recently - The usual approach .to. the1r derlvatlon has been: to
use a n01sy gradlent descent algorlthm to adapt the fllter
coeff1c1ents toward the1r "optlmal" values under a minimum

: mean square ‘erToT perfromance cr1ter1on.

Adaptlve fllter is a 1earn1ng mach1ne. In the-design
“~of optlmum systems, a complete knowledge of the model 1s as—:
:5f;sumed In- most reallstlc 51tuat10ns such a pr10r1 knowledge_]
Vlls not avallable and one faces the des1gn of optlmum systems;

‘w1th an 1ncomplete model knowledge. Slnce the de51gn is -done

.whlle data is be1ng taken, 1t constltutes an adaptlve problem

» In adaptlve problems we want to build a system (filter) to

: operate'efficientlyyin’an unknown or changing environment.

~ The adaptlve‘sYstems have the unique capabilitydof¢operating
wlthout aftotal priori knowledge of their input signal‘statis
t1cs and thus have been of‘contlnu;ng 1nterest to sc1entasts -

B _for the last years.m



tl"and the related Wlener fllter theory results are 1nvest1gated

. VAR
~

»‘ The traditional form of theé adaptive LMS filter is the
tapped delayfline~pfediction«error'filtef. ‘The function of
the LMS-algorithm is to adjustVthe‘weights,adaptively in the
L abéehce:ofithe a prioti knowiedge df the<input statistics to;*'
ward their optimum‘values. In thlS respect LMS filters are
adaptlve Wiener fllters [30] or as in [36] adaptive line en-.

~hancers (ALE)

"ALE 1s a prefllter or an adaptlve digital transversal
fllter that 1s de51gned to supress broad band components in
its input while pa551ng narrow band components w1th little.

attenua tl on.

In Chapter 1 the adaptlve transversal fllter is 1ntro~:

\duced ' The fundamentals of dlscrete t1me transversal fllters

h‘The operatlon of LMS fllters w1th statlonary stochastlc in-
~.‘puts;1s stud1es~and the recursive equatlcn of the weights 1is

’obtaihed.r~t

In‘ChaptersZ, the steady state behavior of the edaptiveé

- line enhance'(ALE)tand its implementation for detecting the

sinusoidal signals in broad band noise is analyzed. The de-
correlation parameter A is analyzed and its dptimum value for
. the cases of one,- two and multiple sinusoids is obtained.



In Chapter 3, a classvof notch filters is derived to

eliminate sinusoidal or other periodic interferences corrup-:

‘ting a Ssignal, whileﬁanalyzing LMS-ALE adaptive notch filter,
 the 0ptimum’value of A which waS‘found in the prerious chapter

'is used We also 1nvest1gate a constralned recursive. adaptlve

filter and 1ts advantages. At therend:of?thls chapter, we:

~.

introduce sequentlalwregressiOn'(SER);adaptive notch filter

. and We7madela-c0mparison{hetweeniLMSﬁandISER‘adaptive notch -

filters. : - ,: -

In Chapter 4 we - 1nvest1gate the opt1ma1 f11ter length

'for ALE by con51dernng different methods.. Flrst method is =

based on - the maxlmlzatlon of the SNR ratlo for whlte n01se V

case. Second method is studled by means of the weaghts of

' ‘the ALE The propertles of the welghts of the ALE are used

j;to determlne the detectlon system. The optlmal f11ter 1ength’

.‘),

- is found so. as to optlmlze the detectlon performance of ALE.,J

The last method 1s based agaln on the max1mlzat10n of the SNR

. ratlo of ALE for the colored n01se case.

‘In Chapter 5 we introduce the adaptive lattice filter

“configuration. We "also point out the advantages and necessi-

ties of using the adaptive 1attice filter. The derivation of

A step predlctor in lattlce form 1s given. Also we investiga:

the case of wh1ten1ng or inverse fllterlng

N



In Chapter 6 a class of reflectlon coeff1c1ents is .

'discussed Also thelr effects on the stability of the fllter

1s 1nvest1gated

Ih;Chaptér 7 we analyze the recursive estimation of

fthe reflection coefficients(_'The aim of ‘this chapter is to
hake an’adaﬁtivé;filter very sensitive ta_the changes in the
signal. Two methods dealing with this Situation are presen-

‘ted.

Chapter 8 summarizes the conc1u51ons of thls study and

glves ‘some’ suggestlons for further research




CHAPTER l

ADAPTIVE TRANSVERSAL FILTER

1.1, INTRODUCTION .

The term "fllter"'is often applled to any dev1ce or
system that processes 1ncom1ng 51gnals or other data in such
a way as to el1m1nate n01se or smooth the 51gnals or 1dent1fy
each 51gnal as belonglng to a part1cular class or predlct the

" next 1nput s1gnal from moment to moment

In the de51gn of optlmum systemsia complete knowledge '
| of the system model 1s assumed ' In most reallstlc s1tuat10ns,
'fhowever, such a pr10r1 knowledge 1s not avallable and th1s

fact nece551tates the de51gn of optlmum systems w1th ‘an 1ncom-i
ﬁplete model knowledge Slnce the de51gn is done wh11e data»
4'15 be1ng taken, 1t constltutes an adapt1ve problem In adap—

t1ve problems ‘we want to bu11d a system (f1lter) to operate

' eff1c1ent1y in an unknown or chang1ng enV1ronment

ThlS the51s presents an approach to 51gna1 fllterlng
u51ng an adaptlve f1lter that is 1n some sense self- de51gn1ng |

'(really self optlmlzlnp) ' Thew£1lter to be considered here



— .

"conS1sts of a tapped delay line w1th variable weight (var1~
able galn) whose 1nput 51gnals are the signals at the delay
pllne taps, a summer ‘to. add the welghted signals and a mecha—
nlsm to adjust them automat1cally The f11ter is adJusted so-
‘as to prov1de the best est1mat1on of a glven 51gna1 as a
welghted sum of a" set of inputs. ThlS is achleved by cont1e&N
nuously updatlng the~f11ter~we;ghts¢;n;suchfa;way,as,to,re;

' duce the average estimation error power in each iteration.

Among the stochastic approximation methods used in
‘adaptive filtering the simplest and the ‘most commonly used:is

‘least mean squares (LMS) algorithm in which the weights are

"”updatedﬁinrthéhneéatiué direction?offthe'gradient?of’the squar

‘of a 51ng1e error sample Two k1nds of processes take place
;1n the adaptlve f11ter, tralnlng and operatlng : The tra1n1ng
i(adaptatlon process) 15 concerned w1th adJustlng the welghts
3The operatlng process con51sts in’ form1ng the output 51gnal
as a welghted sum of the delay 11ne tap 51gnals u51ng the

welghts resultlng from the tralnlng process
1.2, THE FILTER STRUCTURE
'Thetanalysistof theéadaptiye°fi1ter’can be developed

1by considering_the“adaptiVe linear systems;as shown in Figure

1.2.1.



X ()
.- : 7 o

X, (K)

ot y(k)  output signal.
- Xy S NI

e (k) estimation error
d (k) desifed'response
FIGURE 1.2.1. The Adaptive Linear Combiner.

Invthe~systems of Figure 1.2.1 a set of stationary in-
put signals ;waeightédféhd{éﬁmmedKto.form an output signal.

" The input signals in the set are assumed to occur simultaneous-

1y ahd~discrete1y in tiﬁé.i»

j«‘2_fliH¢ Séf”Qf?iqbuﬁwéignélé:ét;ﬁhéfjtﬁkgaﬁpiiﬁg~instant'f?f
Care givem by o o U ;
The set of Wéightsfis designated by the vector .

al (j) = [élcj)_,, a,(3) ... A-,aN(j)l' )

 %he jth,butpu;<signé1‘

T~z
-

Y33 = ai(j)xi(j).A N C(1.2.1.)

1



\'*-,mean square error (MSE) 1s glven by

- 10 -
"~This can be writtenrin‘ve;tor‘form as’
»Y(;) a cs)xu) X (J)a(J) L (12,2

Denoting the desired response for jth set of signal as d(j),

the errdr:at jth”sémpiing instant ..
Ce(d) .= A - v6E) = d@) - e (DXG) . (2.2.3)
The_square-of,this.éirorfw

Le2G) = a2y - 2a X (e ¢
B aT‘c“j)fX'(L‘j‘:)?xT(‘j‘)a(j)_"" T aa

"Assumlng that d(J) and X(J) are statlonary processes, the

K (J) - Bl ) - E{dZ(J)} 2p’a + a'Ra - (1.2.5)
ﬁﬂéfethis>tHé Erdss'Cdrfélafioﬁ vé¢£br:befwéen'X(jj and d(j)
.‘givén by

P = BE{d(j)X(§)} - » . (1.2.6)
f_and'R,is;thg‘stmetric.and positivepdefiniteAinput-correiation

matrix



- 11 -
= BIX(HNX(H | | .(1‘».'.5..7)

It“can be observed from (1.2.5) that the MSE is a quadratic

,Vfunctlon of the’ welghts

»ThéQMSE~performanceffuﬁCinn'may;bé?Visuélizediaéiav-”
,bowl*shapedfsurface namely,*a;pérabolic“fuﬁction of the weight
variables} The LMS adéptive pfocess constifﬁtes of continous-
ly searching the minimumrpoinfuof this pafabolié surfaée'

Thls can be accompllshed by means of the method of steepest

. descent. ‘The ‘method of: steepest descent uses ‘the gradlent of
the’peffqrmance,functlon in seeklng its m1n1mum. The gradlent
at any pdint oh.fﬂe parébolié surface may be obtained by dif—

ferentlatlng the MSE functlon of equatlon (1.2: 5) w1th re—'*

7

. spect to the welght vector. The gradlent is

~

V(e (J)) == ZP + ZRa L .(«1‘:.’2.8) |

The 0ptima1 weight vector a%* Which yields- the minimum MSE

' (MMSE) is obtained‘byasetting-the gradient to zero:
a* =R "P. . o (1.2.9)

Equatlon (1.2. 9) is the Wlener -Hopf equation in the dlscrete-j

time case.: An expre551on for the minimum MSE- may be obtalned

by’substitutlng_(l.zg) into (1.2.5) _ ] N



Co- 12 -
e =E{a*() - pTax (1.2.10)
min v
*  Defining | |
RN V=a-a* | (1.2.11)

,AS'the‘weight'érror Veétof and‘insertingv(1,2.10)_into (1.2.5)
~and using (1.2.11) one can express the MSE as

e = ®nin *ﬂVTRY S o (1.2.12)

Since R is symmetric and positive definite, it can be expres-

- sed as

'”1» ; 3155QhQ~1}= QAQTf'_v_;“ - (1.2.13)

B where_Q iéftheibrthohérmallﬁodaifmatfix:qf R;véﬁde is the

__'giﬂaiéﬁbﬁél'@atfiwahi¢hiconéiéf$'ofltﬁeféigénvéiueTOf{R;WhiEh

are real;énd:poéitiﬁe:y
LA = dfag (Mg, g, s A 0 (1.2.14)

‘Hereafter the matrix QT = Q-liWillvbeIUSed to transform the
17VVéctbrs'X(j); a,V into the “primed‘coordinatés"'whenever it
will bexconvehientrto'do sd. R

.Thé'tiansformed wiehgt.errpr vector is given by -



v =y S (1.2.15)

Substituting (1.2.15) in (1.212) and using (1.2.13) the MSE

is obtained as = .

e = egy *VII AV . (l.2.16)

or =

2

A VYR (zan

min . 1,:,p P

b

- where fo_is‘the p'th entry of V',

1,3, THE LMS ALGORITHM

The purpose of the adaptation process is to. flnd an

"7'exact or at 1east an approx1mate solutlon of the Wlener Hopf

v“equatlon (1 2 9) One way of f1nd1ng the optlmum welght vec-
tor 1s 51mp1y to solve (1. 2 9) Although thlsfsolutlon is ge-
'pnerally stralght forward 1t could present serious computatlox
h problems ‘when the number of welghts N is- large and when input
' ’data arrlval rates are h1gh In addltlon to the nece551ty of
~1nvert1ng an NxN matrlx, thls method may requlre as many as

n(n+1)/2 autocorrelatlon and cross correlatlon measurements £

be made 1n order to obtaln the element of R and P



- 14 -

ThévLMS algorithm,,first proposed‘by Widrow and Hopf
[33] is a well-known stochastic‘approximation algorithm which
résembles,the steepeét descent‘method. The algorithm utilizes
the estimated gradient fof updating, since true gradients are
not'aviiéﬁie in édaptive filtering. The estimate of the gra-
‘diéﬁt in the LMS algorithﬁ is the gradient of the quafe of

the single error sample at the instant j.

One method for obtaining the estimated gradient of the
MSE function is'to)takeithe.gradient of a singlertime sample
of the squaréd error, that is

CVERGY = Ve - 2e()VCEGY) T (18D

'Ffom (1.2.3) we have

Ve = VA - aT(XGI] = - XG). (1.3.2)
" Thus

CFETG) - - ze(IXG) o .3.3)

‘TheAgradient estimate of (1.3.3) is unbiased as will

be‘shOWn'by the following argument. - For a given Wéight‘vector

.- : i ’ : _ SO L - . !
a(j) the expected value of the gradient estimate 1s



s
B(2(3)] = -2 BUXG) (@G) - X (aG))}

-2 [P-R] (1.3.4)
N éomparing (1;2:8} gn& (itj?A)Vﬁe eee‘theth

- EVEIGNT = Vet o )1.5.5)
and therefore for a glven welght vector, the gradlent estlmate

[e (J)] is unblased

When using the LMS algorlthm, changes in the Welght
vector occur along the dlrectlon of the estlmated gradlent

_vector, Accordlngly, AR
- a(J+1) a(J) tu ¥ (e (J)) .38

where o
a(J) -»welght vector before adaptatlon
-‘a(j+1) = welght vector after adaptatlonx
”Uf’éAscalor constant controlllng fate of convergence

" and stability.

Therefore the fllter welghts can be computed using
(1 3 6) » Further detalls w1th the fllter parameters W111 be

_'taken in the next chapters
. AN




1.4, ADAPTIVE LINE ENHANCER (ALE) - °¢

hIn recent Yeaiehthere/has been;increaeing interest in
adaptive filtere‘fer_varieue signal'proceSSing applications.
Here we' describe an adaptive~device;'known‘a§ an adantive line
.enhancer (ALE), for detecting sinusoidal signals in wide-band
noise. The ALE was first proposed by Widrow [1] and since
then has been studied by Zeldler [7], Griffiths [2] Treichler
hZ],‘Glover ﬁO] Nehora1~and"Ma1ah ‘&2], and othere.

The genefaily*need form of the ALE is shown in Figure

. 1.4.1. 1In the ALE the second or refefence input, instead of
~ being separatel& derined ieja‘delayed Version{of‘the input -
51gna1 The delayed 1nput is processed with an adaptlve trans
“versal fllter and subtracted from the orlglnal 1nput 51gnal
-to produce the‘error 51gna1 The welghtlng coeff1c1ents of
’the f11ter are recur51ve1y adJusted by means of (1 3. 6) so as

to minimize the expected error;power.

X

YK

LMS ALGORITHM

FIGURE 1.4.1. Block Diagram of ALE.
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" The input signal is assumed to be of the form

X (k) =:’S(k) + n(k) k =0,1,... (1.4.1)
where the signal is the sum of a number os sinusoids

1

II'L;dz
‘I—'

and n(k) is a zero mean white noise with

E@On(m)} = o 26 (k-m)

Slnce a reference 51gna1 1n ALE is obtalned by delaylng‘

the recelved 51gna1 therefore
X(k-8) = S(k-A) +m(G-0) . (1.4.2)

fro some A'> 1’ "Aotually’the‘choice!of A =1 is sufficient
to remove correlatlon between the noise component of the Te-
ce1ved ‘signal X(k) and the delayed signal X(k-A) and therefore
it is called the decorrelation parameter. In Chapter 2, we ‘
will ana}yze this‘problem for the case of a single sinusoid
and the casevofjtwo'sinusoids?in noise and will'see-that A
also has-a phase adjustment role. ‘ ' ' -

The overall tranSfer function of the ALE between the
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input and the érror output is

. g(z) =1 - H(i)‘ | - ‘ (1.4.3)
where

H(z) = T a, 2 (470
k=0 -

-and the {a;} are the estimated tap-gain coefficients obtained

via the LMS_algorithmr -

If we consider the inverse of the overall transféi )
function by putting Z = el¥ -
1

— (1.4.4)
lfH(Q).

~P(w) =

BRI

The vélue of that Yiélds max | P(w)

2
I
W .

is taken as the estimate

of the fréQUency of the sinusoid. That is ALE is also used

~as a carrier detector.



; © CHAPTER 2

DERIVATION OF OPTIMAL VALUE OF &

2,1, INTRODUCTION

During the Operatioh oftthe edaptivevline enhenée (ALE)
the delay causee.decorrelation between the noise components
.of the input_data'in twe}processor channels while introducing
a simple phase:diffetence between -the sinusoidal componente
The adaptive f11ter responds by formlng a transfer function
equ1va1ent to that of‘a narrowband f11ter centered at the fre-;
'_hquency‘of_the 51nu501da1,components. The noise component of
the delayed”input is rejeéted while the phase difference'of
the 51nu501da1 components is readJusted so that they" cancel
each other at the summing functlon, produc1ng a minimum error f
_.51gna1 composed of the noise component of the instantaneous

" input data alone.

In the use of the ALE to detect 51nu501da1 51ngals 1n
~uncorrelated or white noise any value of A of delay can be
choosen. But in [36] A has a phase adjustment role which is
better served by a ch01ce A > 1. It is normal to take A.> 1
becuase the co;ce of L = 1 is only sufficient to remove corre-

19
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lation between the white noise: component of the original ob-
served waveform: y(t) and. that of the delayed reference wave -

form:y(t-A).

The ALE can'aieo be used to detect sinusoidal signals
in eorrelafed:on'colored neise. In thisbeasefit is often ne-
cessary toﬁcheose ailarge valne ova to ensure decerrelation' 3
between the noise components and phase adjustment between the

51nu501da1 components in the two processor channels
2:2, THE FREQUENCY RESPONSE OF ALE

Ffom‘[7]-it‘is seen~thatlﬁhe frequency fesponse'of'the

.steady state ALE which wiilgbe denoied by H(w) can be expresse

Ty

as follows:

L=l xgxi'
H(w) Toar 77

L A+k)

V(Z,Z.l)’
Z=ejwv

where a*g\is‘the Wiener-HOpf solution of_matrix equation.

}-The(forn‘dfbthe'essumed solution for a*, for N sinusoi-
dal inputs of the form is_given |
>2N ”'jw k

‘*a*ku:_lzg uAnéﬂ
n=1

o

(2.2.2)
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,where for notat10na1 convenlence W N;is;defined as -W
@n =1, 2 ...,N), the W +N are thus the negative frequency com-
ponents Qf’the input sinusoids.. In [7] the equation which is

related to the A was given as follows;

N o JW_A './

2 T .
A+ 5 y_ A =-—2_ © r=1,2,...,2N (2.2.3).
T L2 T™n L+2602/6i2 _ 34 ’ v
n#r .
It,is:ZNJequations in the 2N constants~A1, Az,.;., AZN" Ih

v‘(2.2.3) °2n+Nils deflned as 0 (n 1,2,...,N) andfyrn is given
by (2.2.4) - |

J(WnFWr)L

X3 vy - . R

A number of 1nterest1ng analytic pr0pert1es of a*k can
be .observed. through (2.2.2) ‘and (2.2.4) . - First’ (2.2.2) 1mp11es
 that when the,1nput to the ALE consists of N sihusoids and
additive white noise, ‘the meah steady state impulse response
of the ALE.can be expresseduas a weighted sum of the.input
siﬁusoids. From (2.2.4) it is seen that the coefficients vy,

FON WL, o W)
e

‘are proportional to (1 - e )/ - ) which is

‘the L point Fourier transfrom of exp(jW k) evaluated at W_.

Note that from the form of'yrn it followg that_An+N

. . . . = x o ; |
‘(n=1,2,...,N). This relation is of course necessary to ensure
. g : . . |

=An

" that a*k is real. o



2.3, CHOICE OF A FOR ONE' SINUSOIDAL SIGNAL

For ‘one sinusoidal we can simplify the (2.2.2), (2.2.3)

‘and (2.2.4) as follows’

| . "y | .
a¥y =.A1e Tt Ay e o o (2.3.1)
B A S GW.A -jWA
; - 1 1 M1 .
A, = A, = : [e - e Yi,] (2.3:2)
1° 72 PP 7 12
| (287787111 - v, 171 | .
Cojw.L . .
S Tl”> e 1 g - SinW L . jwy(L-1)
Y12 —727W 7 2

2 _ — .
L+26 /6 1-e 1 ‘“2L+256 /84 _slnwl

S f'(z;3.3)"

Slnce there is: one 51nu501da1 therefore the transfer ;
*'@functlon of ALE at Wq frequency must be max1mum, e, unlty

'h:galn ‘We can formulate this 51tuat10n as’ follows

HW| o o+ 1 N oo
. weWy

oY -

min|1 - H(w1)|‘and gim |1 - Hw)| = TT(2.3.4)

. - . w—)wl R o '

i

Now let us find the expressioh for H(wl);' From<(2.2,l)ywe'have

| | B 7 SRS £ 07 SUNIES | S .
- H(w) = - I (AlL + Al e ) e (2.3.5)

.-w=w1 ‘ka

-



" By putting

- HGep)

-Since

‘le I = - 1, — —
o (ezsgfregfy BT BT

Let

‘Then .
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the values Qf'Ai,and Yié,‘we have
~J2WqL -jW

, VA €

1

L +A

1 - e
Ay 1~

/

A WA -2 L
'lee ) 1 -e -

T ,\'jzw .
1 -e 1

L

, 4,1‘ 1 -e
D :
IRELT A T e LU

Yy

2 _ L 1 = Cos2W L |
2'..

3

o ;
e
+

o Sj2W,L
1 -8 1

T32Wy

1 -e

-
'

Cos2W; L
K = - ' :
: 1 ijo$2W1,

(2.3.6)

(2.3.7)

Co (2.3.8)



S 1L Y- MU
Hw,) = ——— (L - K) + e P(1 - & | 2.3.9
D a-n s a-p (2.3.9)
Let
T2.X =
N SinWiLf
R = 1
'Sinwl
Then
Ré{Hle)} =1 [FL-K) + R(1 - %acOswl(ZA + 1-1)](2.3.10)
I_{H(W)} = ;%'(T - L) SinWy (24 + L-1) .- (2.3.11)

After some manipulations we have .

. .48 Cos(zA + L-1)W, ‘SinW L SinW,
RAH(W )} |

2z ; .
S8T B (L-Coszw)
2 2 | o | -
S : § “ 2 R ’
- %L O -2 (% o+l (2.3.12)
s .2 B g
1 °1 -
" and
4SinW; SinW;L SinW (2A + L-1) & 2 ,
- - () (2.3.13)

I_{HW)} .
m _ ;;. B (1 - Cos2W;) - 1

At’the_frequency,wll J(W1) must be real. Therefore

the_imagihary’part of H(Wll and %K (1 - H(Wl)) must be zero
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"~ ‘to minimize'[lf¥~H(W1)].:,This condition gives us the following

relation.
SinW, (24 -+ L-1) = Sinkm - (2.3:14)
and o . o
Wy (28 + L-1) = kn for k=1,2,...  (2.3.15)

Also in [36] the same condition was demonstrated by a

d1fferent procedure wh1ch can be summar1zed as follows

. Consider the average error variance expression

12 zn o |
V=80 L H(w)| dw + 5 |1 - H(w1)| (2.3.16)
) . O

: To f1nd the m1n1mum Value of V we must compute the statlonary

°‘h‘p01nts glven by
P -
T fp'yff; / Re{II-H(W)]33{1-H(W)]}d |

"?;'2" R’ {[1 A1 - H(Wl)l} ) (2:3.17)

g

At this p01nt we make an approximation. Assume that

rtdla is lerge compared to §02 and compute the statlonary points

__from the second term only, giving

SR
 pOGAZIG) DNVERSITES! OTUPHANES
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.lRé{[1-H(W1)J§3[1;H(W1J]} = Re[1-H(wl)]§K”Re{1-H(wi)j'
FIGHO g LT =0 (2.5.18)

Combining (2.3.12), (2.3.13).and (2.3.18) yields

2

2, . i
o1 §o 12 " :60, , tooie‘;2W1§1nW181nW1Lp$an1(24+L-1)
4 (—29?% 421 40 =

FYERR Ao 5.2 5, - | 1 - Cos 2W

AT I e ;;AOS 1
- (2.3.19)

The stationary points are thus given by =

'WO(L'& 20-1) = km k"integer '(2;3.20)

" with k even make the real part closer to unlty when W

-

[

It is seen from (2.3. 13) that the above cond1t10n glves H(W )
real Furthermore, 1t follows from (2 3. 10) that solutlons
1L < T
-while odd k should be choosen when w.< W L < Zn ‘ However
there is st111 freedom in the ch01ce of k. Slnce we want only‘

1ntegerrva1ues of~A 1t ‘is natural to choose % so. that A glven

by (2 3. 20) is an 1nteger

P

The ideal'performanCe of the ALE would of course be

' obtalned 1f the 1nput s1nuso1d appeared at ‘the predlctor out-

put w1th the same amplltude and phase, thus y1eld1ng m1n1mum‘vv

| ‘error varlance. This means that H(W) should be equal to unlty



“at W=W1 and ;ero»elsewhere. It is however clear that this is
in general impossible to achieéve when the noise variance is .

non-zero.or ‘'when the observations are finite in number.
2.4, “ CHOICE OF A FOR TWO SINUDOIDAL SIGNALS

For the case of two sinusoids in white noise, from

(2.2.2).the‘£i1ter coeffiéiénts are -given by

k- W,k W

. Wy 2 3K JWek |
g x = Ale‘ . +,A2?' + Aze + A4e_,} | (2.4.1)
"where
Sf% —Wl
- W4 = -W, -
A _‘A = 1 e : C 12

:A1 iA 3 ‘:1fY1272177L¥2502/éi%- f;fZﬁoZ/slz  '

| iW,a 33W1A
F U | e Y21

A, = . —
275 2 2, 2
L+28,7/6,5  1+28.7/8;%

Ay

4
EERETALS]
Therefbre.the‘transfer function of ALE is given by

) :/7;5W>k‘:—:',jw i . ;. ;jw.k “:i"}_ikf
+ Aie - 1' + A2'e_2 + Aze 2 é»ﬂwké jWa

L-1 [' Wk

3(W)'= % 1%

(2.4.2)
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" If we assume two sinusoids with_equal-power,'the traﬁsfer
“function musthgve/a deep null at (w1+w2j/z. But if tﬂe powef

-of éaCh sinusoid is different the above condition is not valid

gnyfmore; We formﬁlate‘a~new»condition which is related to

" the power content of the sinusoids. We can write -this condi-

tion as follows; [7]

s 2 5 2 )
, 1 2 ..
H (—5—. W * —5~— Wy) = nin{H(W)} (2.4.3)
8. 24§, 8§, 248 ,; ‘
%1 P2 1 792
ﬁ o WV+W o
1f 6,7 = 6,7 then H(—2) = min{H(W)}.

The 'other way tolminimizejthe following average error expres-
sion
2 2T 2

S . 2 ‘ . 2
R e

+”|1'ffﬂ(w2)|2 5,° (2.4.4)

The value of A which satisfies the above conditions

waé found as followsﬁ

L (L-1) _ (2k+D)m _ N o .
o+ LB o BT -+ 1/2) /a8 (2.4.5)

._where k'isJany non-négative integer such that'(k+1/2)]Af

(L-1)/2. The results expressed by (2.3.20) and (2.4.5) indi-
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' cate that\it.may'be possible to improve the\re501ution'of one
and: two sinusoids in H(W) by varylng the delay A so that

(2 3. 20) and (2.4.5) are: satlsfled _ We observed the above
conditions by means of computer 51mu1at10ns This Variation

of resolutlon w1th A is similar to the dependence of the perlo—

dogram resolution and FFT resolutlon of 51nu501ds on thelr

‘¢1n1t1al phase and zero appending.

For the detalls of the derlvatlon,.see Appendlx A-1
and Appendlx A 2 The procedures presented so far weTe based
malnly on enhanc1ng the 51gna1 In a 51m11ar manner ‘we can
enhance the n01se by u51ng the adaptlve notch f11ter In

Chapter 3 we w111 see thls approach



CHAPTER 3

* ADAPTIVE NOTCH FILTERS
3.1, INTRODUCTION

Th1s sectlon 1nvest1gates a method for e11m1nat1ng
51nu501da1 or, other perlodlc 1nterference corrupting a 51gnal
'In general thlS problem can be solved by measuring the fre-
quency of the 1nterference and u51ng a notch fllter at that
_trequency In [10] Glover .uses an adaptlve fllter to e11m1—
nate 1nterference The procedure is called the adaptlve noise’
cancelllng and it is appllcable when a reference input (desired
‘1nput) 1s avallable which contalns the 1nterference alone.im
The reference 1nput 15 flltered 1n such a. way that it closely

matches the 1nterfer1ng 51nu501d and 1is then subtracted from

. the primary input leav1ng the signal alone,

In this procedure, one of'the basic.needsiis to haVe a
'very narrow’ notch Whlch is usually de51red in order to filter
out the 1nterference w1thout dlstortlng 51gna1 ‘However, if
the 1nterference is not. preclsely known and if the notch is
very narrow,_the center of the notch may not fall exactly over
. the interference frequency.' Also there are many applications

—~ - | 30



"where the‘interferrng‘sinusoid drifts 51ow1yfin frequency; A
fixéa notch can not work here at all'unless it/is,designe&
‘wide" enough to cover the range of the drift. In such a situa-
tion it is’ often necessary to measure the frequency of the
1nterference andrthenruse'a notch filter at that frequency
However, the ‘eéstimation of frequency of . several sinusoids . can

frequlre a’ great deal of calculatlons

Glover. {1d proposed an alternatlve ‘simpler method whic
can be used when a reference for the interference is avallable
'and makes measurement of its: frequency unnecessary ‘This re-
ference ‘is - adaptlvely f11tered to match the 1nterfer1ng 51nu—

- soids as close1y~as p0551b1e,;allow1ng them tovbe_subtracted
out.<r | | | |

EERN

© Primary input © oo oo o
N ' - SIGNAL + NOISE

o NAL + NC 'j;\? '.i——+:€
: : : : ) %- -

S + RO
' Related o
“‘noise SR
Ny ADAPTIVE| Y -
. Reference ‘e o '
input =~ Reference FILTER
- ‘noise

R \Z{ ~" " error

~

FIGURE 3.1.1.3_AdaptiVe Noise Cancelling System.
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gAn~gdéptive‘filterwis‘used in adaptive noise cancelling
(ANC) as shoWn‘in Figure 3.1,1. The'ﬁrimary input consists
of the s?gnal piuS‘noise S+R6; .The reference input isftﬁe*#:,
related*noise ni; fThe_réference ni‘is filtered'to match R
~?ndwthen sﬁbtractedéfromlthe'primaryfinput. The error signal
_tOGthe:adaptation:algoriﬁhm_is thérefdre.the output-.of the ‘ANC

system.’

“In the broad band .case, the solution for the adaptive
‘filter~i§.a;c6n5tant set of filter weights. Any deviation. in
‘the weigh%s;aftér convergence to this solution is considered

to be simpiy;noisé;in the.adaptivé“proceés.u

7+ :When the reference is sinusoidal, significant time
_ varying~cbmponehts-in the Weights'give rise to a tunable notch
.filter whi¢h_i$ centered at the frequency of each‘ieference

sinusoid. . -

There ére>ﬁhree kinds of adaptive notch filter:
i) LMS.algofithm.bY Glover |
ii) SER algorithm by D.D. Parikh, N. Ahmed
iii) The constrained recursive adaptive filtef by
A Thompson-.

iv) LMS-ALE and Lattice by;us with’optimum-A.
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3.2, LMS-ALE NOTCH FILTER

Notch filters are‘capable of eliminating'(or'reducing)
: s1nuso1dal 1nterferences by creatlng notches at approprlate
places in the overall transfer functhn. The adaptive fllter
which is used aS'a notch filter in’here is-a transversal fil-
ter, The f11ter input is the delayed version of the prlmary
input. ThlS sequence is then applied to an N stage. tapped-
delay- 11ne (TDL) | The values at the N taps of the TDL at time

k constltute the elements of the reference as a vector

The adaptatlon algorlthm most often used to set. the
| welghts of the fllter is the LMS algorlthm [1] g1ven by the
followrng equation for the weights.

' ’ ) L1 ~
k(J+1) = ak(J) * Zu [X(J)X(J A-K) - X(J "Ack) 2 X(3k1)e; (5

i=0

for k = 0,1,...,L-1 " (3.2.1)

where ak(J) 1s the Jth update of the kth weight of the ALB
U is a scalar representlng the 1nf1uence of the 1nput X(J) on
~the (j+1)st update of ak ‘and L and A are respectlvely the ‘num-

ber of welghts and the decorrelatlon parameter

Since _ ‘— . L.l .
e(3) = X(i) - . X(j-b-1) W, (3) (3.2.2)

(O o IO



o

I N(z)

()

X (k)

| 7 FIR
- ADAPTIVE
-FILTER

: / _

(b)

FIGURE 3.2.1. (a) Signal detection with Notch Filter

(b) Detail for adaptive Notch Filter

Therefore « = "=

a, (3+1) = a; (3) + 2ue (k) X(j-4-k)
Let's take fﬁe~Z transform of Wy (j)
2{ay (j*1) - a, ()} = 2uz{e(K)X(G-2-K)}

- Let the input bé_of the form

X(3) = C,Cos'[WojT.+ o]

(3.2.3)

(3.2.4)

(3.2.5)
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Eqr generality, consider thev(A+k)th elemehtléf a general in-

“put X vector, XA+k(j) with;arbitrary'phase angle:éA+k

Xp4x(3) = C Cos[W IT + 6, 1 = X(j-4-K) (3.2.6)
‘for k=0,1,%..,L-1
where

X, 03) = X(j),and" 6A+k'= “WAT + 8y = —WdT[k+A] + 0

Now wevcan\express the input in an exponential form as follows

| AW ST de..  -iW4T  -ie, .|
. C -k A+k
Xy 43 (3) =_7-[e A° e 4+H.+ e ° e - 3.2.7

For the scalor form we can write [k takes any value between 0

- and 1-1]

A () = ey () + 2w (XGAR)

or

a0 = () e G (3.2.8)

Aiherefore the Z transform of kth weight,is\then

k‘;kfz):% éﬁ_ﬁfgj“_’i{é(j)xA;k(j)} - (3.2.9)

for k = 0,1,...,L-1
N N — . . \
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- where

| ; i, -AW T ~i0, 1~
e ()X, (D) = 7 (e "M E[ze O+ AEE[ze O

and

=

U(z) = lE[z] - 2{e(i)}

Now let us ca1cU1atefthé'output of the filter Y(z). Since

T |
YK = 0 an(3) X(§-a-1)
'~1?f0 e o

a (DXG-D) + a,(NXG-6-1) + ...

4

 §1&1£j)x(i~AiLﬁ1) s S ST _; (3-2.10)j

and Z transfqim of this seqpencés can be given as follows:

2 L-1 -§W.T O 2§6... -j2W.T - 1
Y(z) = 3%—;_[}20 U(Ze. vo ) {e Af%‘E(Ze’ ,‘Qb) + E(z)}
S -1=0 \ S )
L-1 §W.T - -238,.. - j2Ww.T . - .
w3 U(Ze ) fe T Bl E(ze’ 9y 4 E(2)}]
i=0 | 1
(3.2.11)

By rearranging and collecting terms we have
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2 -3W T C5W.T
Y(z) =*“§ F E(z) [U(Ze °')f+ U(ze - ° )1
2 -3W.T  -2§W.T L-1 2§68, .
+ M y(ze T 9y B(ze ) § e A
A » i=0
52 WLT 25W. T L-1 -2j6, ..
+ B uze” ©) E(ze  °) 3z e M1 (3,2.12)

The'seéohd énd third terhstinbthe expression for Y(z)
‘are time varying terms and intfoducérat Y(z) unwanted fre-
quency shifte§ COmponept of E(z). Ihe first term represents;
the time invariant part of the response from E(z) to Y(z),

éinCe;oﬁlthrequencies of E(z) appear‘at‘the output.

".Now‘1é£,US*}odi'at,thengponentiai summétion terms.

- Since we are ﬁsing TDL filter the 6A+i arbitrary phase shift
'forvthébith-element.of:the X vectorkngwfitteﬂﬂas-

8,,; =8 - WT[ira]  for i=0,1,...,L-1 (3.2.13)

A+

the summations are easily found to be

SUbstitur':g;for eA+i"
L-1  +j2e, . +2j [8-W _T(L-1-2)]
C el e AL e o B(W, L)  (3.2.14)
: where\ o
- . iSin L W_T
B(Wy L) = —————
- %7 - sin W,T
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From Chapter 2 we found the optimal decorrelatien para-
‘meter A is equél to T {W—' - (L-1)} therefore by replac1ng it

‘with equat1on (3 2. 13) we have

+j20 ,lj{on[-3L+51} lj{on[zA+§{1]}

e © : © B(Woﬁ,fL) |
- ¥j2e *+J{3W T(1-L)}  Fjkm
= e . e : e’ B(W,,L)
= A BMW,,L) O (3.2.14)
By rewriting Y(z) wewhave{
2 - SWT jW_T
Y(2) = ¥l g [U(Ze %y sueze” )]
M ~B(WO,L)MA[U(Ze ) B(ze T °)
W T szoT - 4 T
+ U(Ze ) E(Ze ) ] : _ . (3.2.15)

Since: A is- exponentlal term” therefore it has unlty .
amplitude. Now we can: bu11d up the relatlon between wanted
and unwanted term.and make-an approx1mat10n for Y(z). It is

clear that the following statement is true for approximation.

o wwWT B(W,,L)
Y(z) = £lU(ze © 7)), E(z)} CIf "‘I""<<“1
Y(z) = L - | o
’ JFW T L FjaN T B(W L)

Y(z)=£{U(Ze ~ ©),E(z),E(Ze )} If —2—
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Erqm,hére_thg number of weigﬁts4L in the adaptive filtéf_cén
bebincreaéed to bbtain a better B(WO,L)/L ratio. If the pro?i
per“choice of parameters is made, the fransfér function be-
tween\E(g) and Y(z) is approximated by an LTI filter. In
Chapter 4 we analyze this problem which is related to the fil-

ter length.

';'*If~B(Wo,L)/L is very smallfWe;can.wiite‘the‘notch fil-

ter expression as follows [10]: -

S | .
Alz) = c‘L IWT o IWGT
‘ 1+ 5= [u(ze " 7 ) + U(zZe )]
vvw?=_,C_ZZL1;ZZ«Cos:W6$Z+:1 o CoT i
= — ‘ — (3.2.16)
2% - 2°(1- 2 Z CosW T + (1 - =)

It is cleér that‘this is the transfer function for a 2nd order

digital notch filter at the freduency>W6. ‘The zeros .of H(z)

‘+jWOT : ‘uLCZ
are at Z = e - , precisely on the unit-circle. If”f57f3<< 1,
the pole locations are approximated by
2 W T ) .
. zw (- By e (3.2.17)

"The zeros 1ie¢on,thefunit circle at frequensiesuiwo with the
poles a distance approximately uCZL/Z_behind'them‘radially to-

P S PR I ~i
IRBCUNNN USRS A AR I SAN :,

- s 3
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ward the center of the circle. Near the frequency W=W H(zj*

can-be‘aﬁproximated by the ﬁéarBy pole and zero

| | JW,T
H(z) = —2 "8 — (3.2.18)
. . M J .
z = (1 - “g Ly e ©

The 3db bandwidth (BW) is then obtained by finding the
two points on the unit circle which-are v2 times as far from

the‘pole as they are from .the zero and is given by [1ﬂ

By = RCL s (3.2.19)

3.3. A CONSTRAINED RECURSIVE ADAPTIVE FILTER FOR ENHANCEMENT
OF NARROWBAND SIGNALS IN WHITE NOISE |

3.3.1. The Conétrained Recursive Filter -

A conStrained‘recurSive adaptive filter can‘bebused'aé-
a notch filter and énhaqce the nérfowband~signals ih white
noise, Among the most popular of such filters is adaptive
line enhancer (ALE) which éonsists of a 1inear‘pfédictor with

a tapped delay 1inev(TDL) introduced by Widrow and studied in

the previous section as an adaptive notch filter.

A recursive filter structure offers the significaht

’



.

‘advantage of an arbitrary narrowband frequency response with

only a few memory elements and weighting coefficients, but:

the adaptation of those coefficients is much more difficult

than for a TD

L filter.

/

The recur51ve fllter is as shown in Figure 3.3.1 with

the transfer function of the signal enhancement filter taklng

—

the form |
o G(z) = 1 - H(z)
, 'Nofch,Filter H(zj
Y (k) | V(k) .
. ) . A
Signal ~ . o
.+ . White v . ; ‘
“Motae C(z) - - A(2) .
TDL [ {,-1 771 TDL
|Filter - Filter|
o -gonEEra{E;
| ADAPTATION . ;
ALGORITHM

e e

FIGURE 3.3.1.

Bandpass Filter G(z)

AN

(3.3.1)

e(k)

SﬁpreSSed‘

Signal

.
*‘é—-— Enhanced

Signal

AuConstraine& Recursive Adaptive Line Enhancer.




where. - t ) Y
H(z) = =4 (3.3.2)
-1 - C(z) ° S ,
with
‘ : S K -2 : L -n ‘
- A(z) = alz_‘ *ayz + ... *anz o - (3.3.3)
and _ :
C(z) = C 271 (;‘z'2 + . +Cz ® o (3'3 4)
1 ) . 2 * o o n o » a »

Thevmotivation for this‘filter‘strqcture stems from the fact
that.H(zj is desired to form a_notch in its frequency response
atAthe'freduency of a narrcwband signal. 1In this manner the
narrowband signal‘is suppressed'and the heise is paésed with
a 11tt1e dlstrotlon, then G(z) in (3. 3 1) w111 represent a |
‘:bandpass fllter that W111 enhance the 51gna1 Wlth respect tc

,the n01se

In order to fac111tate the formatlonvof notches in the
vfrequency response of H(w), a constraint is 1mposed between
its feed-forwardAand feedeback coeff1c1ents It consists of
constra1n1ng each feedback coefficient to the corre5pond1ng

feed- forward one by the relation [63]

c. = ol a. i=1,2,...,n - (3.3.5)

_suggested in ES] in which o is a selectable parameter which

"15 chosen close to, but sllghtly less than one. The réason
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~for choosing this>particu1ar constraint becomes clear when we
observe the location of poles and zeros of H(z) under this -

cqnstraint.

By . substltutlng (3 3. 5) into (3.3.3) and (3.3.4) implies that
C(z) = A(z|a). Therefore the zeros and poles of H(z) which
are denoted by (E ) and (H ) (1 1,2, ..,n)‘re5pect1yely, must

f’satlsfy the relatlon
i=1,2,...,n . (3.3.6)

VFr0m7(3.3}6)‘we’$ee that the constraint places the poles of

_ HCz) at the same polat-Coordinate ahgles as its zeros but with

sllghtly reduced magnltudes,.cau51ng H(z) to form the de51red

notch response when its. ZeTos ‘are located on or near the un1t

_c1rc1e as shown in Flgure 3;3.2.

A L ‘
' R
i g A3 T
: ——  R_(2) : O*R, (2)
- hd SN dl'als" . -:‘ -
‘ ,a.42P61eskand.zeros of H(z) b. Poles and zeros of
' _ - G(z)

FIGURE 3.3.2. Pole/Zero Patterns for G(z) and H(zji
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The’role of the parameter o in the constraint is to
control the notch width of H(z) by controlling péle—zero se-
pa:i*ation.»j Alsokih5ALE'the’n6tch widthjdepénds'on u called

the adaptive step size.

As a méagure of the signai—enhancémeﬁt capability,of- 
the constrained'fiiterbthé signal enhancement factor SEF de-
fined’aé'thé ratio of signal power gain to noise power gain
for filter G(;),.is used. For a'siné‘wave signal whose fre-
quenéy‘coincides With‘fhe'peak responséidf G(z), the SEF is
s;mply the reciprocal of the.(équivalent-noise) bandwidth of
G(z). When.fhe nagﬁitude u‘of a'conjpgate?pair of zeros.of
~H(z) is.ﬁeér‘phe,vtﬁen é(z) whqsq_poleg-afe constrained to
.have magnitude qu,vfo;ms‘a bandpass iespoﬁée‘with.bandwidthb

approximatelyflk-'du, making

" SEF = ..__..___ : : N : ' (337)

'3.3.2. The Bootstrap Adaptation Algorithm
The filter represented by the transfer function H(z)
in (3.3.2), (3.3.3)ﬁénd (3.3.4) Can-belrepresented in the time

| domain by the-equations

v s Y +xT) c) . (3.3.8)
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e(k) = V(k) - X (K).a(k) - - i o (3:3:9)
where Y(k) and e(k) represent theainput;and.output{respectivef

ys =
X(k) [V(k 1), V(k 2)yeee, Vk-)]T (3.3.10)
represents a state vector; and

a0 & 0,00, 2,00, 2,001 (5.3.11)

N
Y
1

and

TCR) = [Cy(K), CHK), ..y € ()] (3.3.12)
represent feedrforWard and'feedbackfparameter vectors'respec;j
tlvely -In addltlon, the parameter constralnt (3 3 5) can be
'represented by S o - | ; a
. C(k) = M a(k) . _ (3.3.13)

in which M is the diagonal matrix

= di 2 n
M= diag [a, % veey o]

‘The bootstrap adaptatlon algorlthm is motlvated by the

observat1on that the feed forward portlon of the fllter H(z),

\
represented by (3.339)ihas exactly'the form ofvan‘ordlnary'_
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linear predictor for which there exist'adaptationAaigorithms
for minimizing meanisouare error.. The bootstrap consists of
utilizing one of these algorithms for updating the feed-
forward'paremeterrvector a(k) and then computing the feedback
perameter vector C(k) simply to maintain the constraint

(3.3.13).

The 51mp1est form of the bootstrap algorithm involves
the use of a normallzed version of the Wldrow Hoff LMS algo-

r1thm represented by the recur51ons

N

a(k+1) = a(k) +—Y X(K) e(k) | (3.3.14)

(k)
Cr(k) = (1-y)r(k-1) + v '_)ET_(k‘). g(kj, - ©(3.3.15)

|
- L |

in Wthh r(k) is an on- 11ne estimate of E{XT(k)X(k)}, and Yy

’15 a selectable scalar constant satisfying 0 < Y << 1.

3,4, SEQUENTIAL REGRESSION ADAPTIVE NOTCH FILTERS

3.4.1. Introduction .

The main objective of this part is to present a class
of adaptive notch f11ters which are derived using.an SER
approach [66] . ~In [10] the. notlon of u51ng Widrow's LMS al—

~gorithm to derive a class of notch filters was 1ntroduced
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In [66] it was éhewn that the SER adaptive ne;ch}filters have
“the foliowing advantageé; ieiative‘to the»LMS copnterparts
’when each of the filters has the same number of coefficients

(welghts) (1) - The rate of adaptatlon is substantlally fas-

ter and: (2) a sharper notch is reallzable over a large band-
w1dth The advantage of the LMS approach however, is that

it results in filters™ that are ea51er to implement.

3.4.2.° SER Algorithm
SER algorithm cost function is defined as follows:

T 2 T ’
[dx) - ¢q 1~+1)(1(] taqan, (3.4.1)

(

N~

R(ap,q)

k=1

where q is a scalar and -

/

akT : [q.o (k) al(k) - . aN(k)]

[X(k) _X(k-vl).,... X(-N‘)]" )

';, . o d denotes the desired output at time k- (see Figure

k
3.4.1.)

The filter weights can be computed using the relation as in. 6¢

?k+1 =a, *4q Pk- Xy e(k) (3.4.2)

~



- 48 -
a(x)
| / o e (k).
- X(k)  FIR Y (k)
e——»{Adaptive -
Filter
L

FIGURE 3.4.1. SER Adaptive Noise Cancelling Mode.

wheré e(k)'=7d(k) - Y(k)-is the error at the kth iteration and

Pr=. T+ q % XX

R =
171 can also be computed recursivelyf
using the matrix inverse Lemma | |

_ The (N+1) x (N+1) matrix P

P

-1 _ -1 1 -1 T -1 :
Pk =Py ] ¥ ?k_l Xy Xk Pk—l_ (3.4.3)
y SORL S SR N -
where v = 1/q + Xk Pk—l Xk is a scalar and implies that |
-1 - I | ) : . : -
o

3.4.3. Derivation of Notch Filter

For thé4input?be~form*, S ;. | S
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x(k) = C COS(WqFT +8.) ” (3.3.4)

the Z\fransfdrm'of the weights and filter output can be givenf

respectively as follows [66] and [10]

o | -jW.T N je
Az =95 u) (B(ze " %) 3 P, e P
1 2 . i,n
A v . n=0 -
CJW T N -j8 . o
+E(Ze °) T P, e T (3.3.5)
: . n=0 7 i
for i = 0,1,...,N
N . -iW.T je. jW.T -je.,
Y(z) = % %,[Ai(Ze ©je” 1+ A; (Ze °je " 1]
: i=0 »
(3.4.6)
where

-1

L &enotes the (i,n)th element of Pk

1’

_ 1
U(z) = z-1
. and -

B

Z{e(k)}
Again after some modification, Y(z) can be approxi-
mated by discarding the time-varying term to obtain [66]

e il W
¥(z) = E E(2) {U(ze 0%y s uze’ ©y3 (3.4.7)



- where

N N }
£ = 120 nzl b;n Pin Cos [(i-n)W _T]
and
1 i=n
bign B
2 ifn

The notch filter expression is given as follows

6(2) = ———— 'l'w 'T v j__W'T - (3.4.8)
' -J - J ,
18R wize T 0 su@e” C))

andehpse‘3@b,bandwi§th is given by

9§9— rad/s. . (3.4:9)
Wg_sge.thgt;the expression_for G(z)‘is.diﬁferént from the
pfevipus,gné, -Inithreekderivations and preyidusbchapter we
can see that the filter length is a_very;important pafameter
during the design. In Chaptef 4, by taking some criterion we
try to find the optimal filter length to use in all applica-

tions.



CCHAPTER 4
o “D:ERI'VATION"‘OF THE OPTIMUN FILTER LENGTH -~ |

4,1, INTRODUCTION.

» During the derivation of the optimal value of filtéf |
1éngth fof an adaptive 1ine_enhancer,.two ciiticai points .must
beconsi@ered}‘istabé}ity,and:optimal operation. There are
two ways to defive'the optiﬁairlengfh; »The.fifst\metﬁod a-
rises frqmlthé_ﬁqlléwing_observétibn: By:impfgving;the‘estij

mate of the*steady,stateimean squared erfor (MSE) a-tighter .

- = : . |
stability is obtained and at the same time the SNR gain at- -

tained by QhefALEgis,also;improved. The»MSE;is mihimigéd by_
using the LMS_algofithm ﬁpwédapt thé ALE weights. The SNR isj
optimized»by chdssing the fiiter<1eng§h optimally. Since the
transversal filter implgméntg;avbéﬁngss:filter, the number
of weights L detérmines the,bangwidth qfvthisifiltér;and.ims
proves thé_gain_in the signai to noise ratio.

In particular it can be éhown that for a given step-
~size parameter'ﬁ whicp/satisfies the stability constraint the%
exists an optimal hﬁﬁbér'bf Weights‘Whichimakimizes the SNR %

gain that is used as a performance measure. ' ;

51
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Another method‘can be summarized as:follows.: The co-
efficients\which are adaptediby using LMS algorithm converge
to a set of zeros when no sinusoid is present in the input -
data and to a sinusoidal distribution when a sinusoid is pre--
,sent.l Therefore one can obtain a detection'system for the
sinusoid by computing the Fourier Transform of the welghts and
comparing the magnltude of the transform with a flxed thres-
hold. The detection performance can be improved by employing

optimal filter iength;‘

14,2, MAXIMUM SNR Mstnon FOR WHITE NOISE
The purpose of thls method is to present a better esti-
mate for the steady state MSE|Wh1Ch enables the derlvatlon of

more accurate expre551on for the SNR gain achleved by the ALE

as well as a more accurate stab111ty constralnt

. Since the LMS algorithm uses an estimate of the MSE .
.gradient for:adapting the weights,éthe actual instantaneous
values of the a(k)'s fluctuate after convergence about their
mean value cau51ng a degredatlon in the performance of the
,adaptlve fllter. Assumlng that the welghts have converged

let

a(k) = Ela(k)} R V(K) = a* + V(K) (42,1



_53‘_
Then the output from fhe'transversal:filter.y(k) can be ‘des-

cribed -as the sum of two ‘terms

y) = aTmx0 = afTx) + VIRXW

PROESHOR (4.2.2)

where y*(k)_is»the‘qqtput expetted_from the'optimal Wiener,
filter and yV(k)_iS'a‘ncisewcompqnent added due to the weights'
fluctﬁatiqns. With the assumption of no correlatibn between

y* (k) and y' (k)
Ely2(0)] = E[(r*(x)) %] + B[OV (x)) 2] (4.2.3)

Using the derivation in Adaptive Transversal filter
section,»we'have '

}y,‘E[[YV(k)]Z]'=‘ﬁ:tracé[Rxx]:Emin_ N | . (4.2.4)

wherg gmin is the minimum MSE échievedvby the Wiener ‘solution. |

. - Thus using (4;2.4) the‘steady‘state}MSE,>£ssvisdgiven by

Ess gmin +_E[(yv(kj)?].= gmin + utracg[Rxx]_gmin

[1 + ptrace(Rxx)] Emin. (4.2.5)




In [56] A. Nehorat and D. Malah pointed out the interesting
problem which was related to.uy and misadjustment. In parti-
cular the misadjustment is defined as the ratio of the excess

MSE to be minimum MSE and is_given by
M = ﬁtrace[Rxx] ' N (4.2.6)

But this result is proper only for very small values
of wu. Ih an attempt to éxtend the above results for larger
Qélués of u as well as to adequately predict the divergence
of the adapfétiqn process, let us derive the upper and lower
' 1imits'for'u which is important for stability constraint.
Frbmkthe previous section; the weights expression is givén by

X(k) B (4.2.7)

a(k+1) =’a(k) - 2uR

XX

Suﬁtracting a* from both sides of (4.2.7) yields
V(k+1) = V(k) - 2u Rxxvgk) = [I - ZuRXX]V(k) (4.2.§)

Equation (4.2.8) is a linear homogeneous vector difference
equation whose solution characterizes the dynamic behavior
of the weight vector as it begins at a(o) and if the process

is convergent, relaxeé/toward a*, as seen by Equation (4.2.1)

The solution of (4.2.8) is given by




~

V(k)

This solution is stable (convergent): if .

2im I - 2uR 0
oo [ ¥ xxJ
Since
\'v ' _ _l
[T - 2R, ) = Q@ - 2um)Q

[1 - 2uR 1" = Q[T - 2un]* Q7!

Condition (4.2.10) will be satisfied if

2im [I - ZuA]k

© koo

.

Conditién (4.2;13}'Wiil be met when

[1 - Zuap] < 1

for p=1;2,.,., n. Since all'eigenvalués are positive

1

max

Rowigl e

where A max is the 1argest e1genva1ue of R.

glves the stable’ range for u

L
1 - 2k, I* Vo)

(4.2.9)

(4.2.10)

(4.2.11)

(4.2:12)

(4.2.13)

(4,2;14)'

(4.2.15)

"Equation (4.2.15)
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- The upper limit 'in (4.2. 15) was .found to be too hlgh
by A. Neharoi : and D. Malch w1th computer simulation. In

(4.2.4) Eﬁ{u is replaced by the actual steady state MSE E

and in place of,(QfoS)nwejobtaln' =
Egg = Epgn* Wtrace R E_. _(4.2,16)7
| and.heneev |
»»gés = mln/(1 : utrace R ) . o (4}2717)
 resulting in a misadjustment of
ddfﬁ ;'ﬁt£55ék3¥;j/[r - utrace(Rx¥)] . (4;2.18)

'Clearly, if u isisufticientlp smalld(utrace(R )<<l) the
b. results in: (4 2 17) and (4 2. 12) co1nc1de w1th those in (4.2.5)
';Tand (4 2 6) respectlvely However, (4.2, ,16) and (4. 2. 18) are
' proper for h1gher values of M, even up to d1vergence Wthh
is pred1cted from (4 2.17) to ‘occur when u reaches 1/trace(R
L Thus the stab111ty constralnt on u which replaces (4 2 15)

is glven by

1

S < Eraee T (4.z.19)

It is‘interesting to note that (4.2.19) is usually used as a
N sufficient condtion for stability since trace{R ,} 3:Anax and-
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is usually easier to evaluate. The above shows -that (4.2.19)

is also a necessary condition.

Now 1let us'continue with the derivation of L by using
.the above results. In ALE operatlon, for a glven step 51zeA
parameter u which satlsfles the stablllty constralnt there |
exists an optimal number of weights which maximizes the SNR
g‘e‘lin .
-Let the totalAPOWer df thé inpﬁt signéilbe P#. Then since
 the reference inpﬁt(siénal X(k-Aj is a deiayed version of éhe
input-sigﬂal and the’transvérsal filter has L taps we. can
write the following formula

trace[R ] = L r, (0) = L P 1 (4.2.20)

xx]

Assuming an input signal of the form

ez

X = S(k):{fn(kj \CﬁCOS(wmk'+.¢m) + n(k) (4.2.21)

m=1

i.e., N 51nu501da1 signals w1th an addlve zero mean white ‘
noise sequence n(k), the autocorrelatlon sequence T, (2) Wthh
depermiges Ryx 1s given by

rxx(z).=~6§i\ —— Cos W L + s 6(2)‘ (4.2.22)
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' 2 . L . | .
where o," is the noise power and §(R).is kronecker 6 function.
Since the Wiener solution for a single sinusoidal inxwhitey

noise at fréquency W, is given by [7]

*.SNR. _

"1 + SNR._ L/2 |
Timo
where
a*, = [a%], ..., a*L-1]T and SNR, is the input SNR,
SNRim = ;;—Z' . m=l,2,...,N
n

Then the optimal Wiengi;solution?for the case of N sinusoidal |

signals can be given by
at - aaze

~The corresponding output of the transversal filter is given

by
X(k-A)
o L-1 o f T P
SyE(k) = rooa¥ (k) X(k-a-i) = [a* ] 1 (4.2.25)
i=0 ; '
s AR , X(k-A-L-1)

The total power of the output signal from the transversal

filter is given by




- : o 9 ~ N . N ,
O R T G L R G RE
_ = m=1

n L =2
” (4.2.26)
.~ .where e '
b* = (3) ———ZAsz '/‘(1-+ sz ) | 4227)v
m 27 — 7 7 , (4.2.
_ 20 20, ‘
The overall output SNR is given therefore by
<
RIS TR SR N
= * %
SNRo = 7 E;(b C)/z /oy §(b)
i m=1 .. : R m=1
Nt T R
= 7 I (= (*pT / . *p°  (4.2.28)
and we define
) SNRim T
m=1" :

. .SNRy; g is the gain in SNR achieved by the ALE which has ‘the

‘Wiener solﬁtionvweights.

- The decrease in~SNRALE7with the increase in number of
sinusoidal_signéls is due to the corresponding larger number
of bondbass filters, each passing not only the desired signal

O .



| For the partlcular case- of equal power N 51nu501ds SNR

- excess MSE glven by M Emin, _Thus, (4 2. 28) is- replaced by

2 60 = -
{

but: also a band of the poisé;‘thuslincreaSingwthe’overall7out%:f'

put noise. -

ALE S

«glven by

SNRyip < 7§ | (4.2.29)

We turn new to'the‘ﬁerformanee of the ALE with the actual

‘weights a' as obtalned w1th the LMS algorlthm From (4.2. 16),

(4.2, 17) and (4 2. 18) we conclude that in order to £find the

actual total output power one has to add to the r1ght hand

51de of (4 2. 25) an’ addltlonal term Wthh is equal to the

i
e N c 2 - SN e .
s L oyt s Bt e

| _L(4.2.30)
Now let us’ find the expression for g&min, The output e(k) has
three compdnenté: the;desireﬂ wide-band component n(k), its
filtered version from the predictor output'which is a distor-
tion component, and the attenuated sinusoids. We find that
the sinusoids at e(k) are given by
S mil'\(l b*)C, Cos(W k + ¢.) | ._(4.;,31)




el -

 Now let us considet the aﬁétagé %BWé}'bf‘é(k)Q1tﬁb£ing
- that all the component of e{k) are uncorrelated we find that

'”N‘“' ‘-_. ’IV K o )
~ (4.2.32)

o imgg s ILbtom() L
;Q:ffxek Com=l 0 T ’ "

o ‘
Bl )+ B2} v BSE ) L (402.34)

Ele?(X)}

o ) 2
* - h*
1 (b* )" + mil“(l' ‘b o) -

T T S RS
CBle?() = cnz +_on2 (%Q L
= g R T

 Therefore we can express .

" For the particular case of equal-power sinusoids so that . .-

, ) e s . -
SNRT 7 N SNRim and b‘; b m‘m‘l,z,...,N we obtain

. L . 2.
L ZsNRp (%4
SNR = Z_ —

. v 2 E . ’ -
*
o=+ M By

(4.2.36)

L 10 .
. “uLP o ,

- 2N 2, M™% 1. . 2N 2 L2

S = (b%)F v —==|1 + 7= (b*)7 ¥ SNRp(1 -:b*)”

o 1-NLP, ﬁ" L . ™ ]

N
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~ With the substitution of (4.2.27) for b* in (4.2.36) we have

S.NRo ....... ,.;_lf
i —— |17+ T QO rgpe) * 50— (L + s |
1-uLp "7 1fsne, o SNRp

(4.2.37)

Since the LMS algorithm attempts to minimize the MSE
it does not maximize, . in general, the output SNR as would be
- desired for the ALE. This can be seen from .
2 S T T SN2 2

minE{e“(k)} = E{n“(K)} + minE{(S(k) - y(k))* + n% ,}

-(4.2.38)

r;Which is clearly_notyequiValent to maximizing SNR_ where

“lek }‘

It is therefore of 1mportance to properly choose the number

v_of welghts L and the step size parameter u-in order to Optl-'
mize the performance of the ALE for a glven appllcatlon. In

-practlce “L can not be 1ncreased beyond a certaln L X and u

cannot be. decreased below a certaln “'1n > 0. By selecting |

uo % umin

the opt1ma1 value for L is found by dlfferentlatlng |
‘(4 2.37) w1th respect to L, to be o



ies-

e el s Tl g o
Lopt [u 5+ SNRT - _ (4.2.40)

, . 52
1 S (SNRT);

~ eifdalsq'zpopx v<§‘(SNRT)2/(§NRT‘+ 1),‘(A;zf40) is simplified

[ZN/(U )] 'jb S (4'2.41)

The:maximpm SNR:gain,is”then.given_byT,u

- SNR, ‘:ﬁo e
;,(-———9;>53. z- _opt S (4.2.42)
I o |

B Equatlon (4 2. 42) is the half of the Equatlon (4.2, 28) ‘which

was derlved from the 0pt1mal Wlener solutlon

*_»4i3 OPTIMAL DETECTOR MEbeD (DETECTION PERFORMANCE METHOD)‘:"

-

ThlS method 1s concerned w1th the eppllcatlon of a
11near predlctlve fllter Wthh employs tlme varylng coeffl-
;c1ents, to sets of data con51st1ng of wh1te noise wh1ch may»
or may not contaln a 51nu501d. The coeff1c1ents are adapted
'u51ng the LMS algorlthm It has been shown [2] that the set
of oceff1c1ents converges to a.set of zero mean, independent-
 values when no~51nu501d 1sepresent 1nuthe5;nput data and to
a sinueeidalﬂdistfibution wﬁenva'sindsoid-is present; One can

O ,

LT



r'.therefore obtaln a. detectlon system for the 51nu501d by com-

puting the Fourier Transform of - the weights and comparing the

magnltude_ofithe_transform with a: fixed threshold..

Adaptlve 11near predlctors‘used in. thls -manner have
" been termed "Adaptlve L1ne Enhancers" are ALE' s. ~This section
descusses~the'detect1on performance of.an:ALE;containing L
coefficfents‘whichaadapt on N samples ofathe input data. The
performance is compared with the’optimal detector for a sinu-
soid in wh1te n01se wh1ch con51sts of'a Fourler Transform of -

the ent1re N data samples

~ It has been. shown preViously 50 that under certain
assumptlons, the probab111ty den51ty functlon of the detectlon
statlstlc used ‘in the ALE welght transform detector ¢an be |
] modelled u51ng the non- central ch1 dlstrlbutlon.i Brlefly 1f
.fW (k) denotes the Lth ALE welght after 'k adaptatlons and ‘the
frequencyjof rnterest_lsjwo,;we defrne»real_and‘1mag1naryv"”
&~parts.of the_DFT~of;the}ALE‘meights at.tlme k as ﬁ%{k)‘andr

Vé(k) respectively, which can be written as

L-1%

= m - nm s (s
- V(). »Li:«. _W‘e‘(k).,Sln:Wol‘ o 432y
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-~;Detectieh ceheigts\efthmpgtthg Uw:and Vw at a time h
eorresponding to the last data sample proeessed and then com-
'”paring the*sﬁmtof the sQueres of U and V. with a fixed thres-l
vi_hold In. order to av01d adverse start transients, we assume, )
that the f11ter is 1n1tlally fllled w1th data prlor to the
.onset of adaptatlon 3 W1th thls assumptlon, a total of N L.
samples. are avallable for adaptatlon and_ the detection ;sta- ..
tistics VZW_?Mhecohes,,~~

Lz teuloen VR EL 0 (4.3.3)

The mean valpeﬁqﬁ,ghe weights;at;timefN-L’when a sinuééi@elA

signal isfpreseht_are’given by

E{Wé(N 1)} —E—iﬁ—él Cos(W o+ w) .‘;Thi:°W'(£.§l4) :

O ML, Bsw
S a¥*(N-L) ='[1--(1 - m%)" ] =g
T 1 + > SNR-
and
e —“"¥'LA2:="n‘(1‘+lﬁ”SNR);
Amax,_~ S0y T T BT 3

Ihithesekexpressione; no}iS'the'white noise power level at
lthe ALE 1nput A is amplltude of the 51nu501d and SNR = A2/2n

is the 1nput 51gna1 to n01se ratlo When the 51gna1 1s not
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. Y

present, the weights have zero mean value.

_ A‘  Slnce LMS algorithm uses an esflmate of the MSE gra;
dlent for adaptlng ‘the welghts, the actual 1nstantane0us va-
1ues of W fluctuate (after convergence) about ‘their mean
value E{We(N—L)} - WE cau51ng a degradatlon in the performance
of the adantive filter, therefore the weight vector also con-

tains misadjustment noisee(we;gn; noise).
_ Therefore (4.3.4) can be rewritten s follows:
Etw%(g;Lji,%E[gé(N;Liﬁg—wélﬂitatiu.\ é(4.3.5)
‘and,it is e;ear¥§het'
| E[(we(n-L)‘: ﬁ{ne(ﬁ;L)})Z] %\uno _: (4.3.7)

 Under‘the‘aSSUmptions‘useﬁ above in ALE analysis, the weights

are modelled as Gaussian with a variance of

o}

© o Varli (-] = g - (4.3.8)
The terms U (N-1L) and V (N-L) are then also Gau551an

-

w1th variance un L/2 and’means a*(N L)Slnw and a*(N L)Cosw,
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respectively, under Hl,'i.é.,vthe signal present hypothesis;.jf

Under the null hypothesisaHo;fboth terms have zero mean and -

—

variance ﬁnoL/Z.' T e e T o

J

Given these statiSticalkdescriptions, the probability

“density functions for |z |® in (4.3.3) can be derived |51,54,55|

‘Sample at
t = tht

e Input _ —— _l . +‘6:\

Adaptivel: '\f{ g

Filter

V,I.v’ . Weight
~.Update

~|" Algorithm

—> Déléy'

"o Filter - _ ' o E
Weight v v o o e
- Vector _ : o .

DFT

DFT at .- _
-~ Frequency fs

‘Magnitude Square

| - S
o v<T. Comparator ' ‘-YZTr -
e _l | _Threshold [ ‘1
- HO;:“;_ - ] DR ;Hl
FIGURE 4.3.1. General Detection System



L
x"ThEutheoreticalfdehsity fuhctiongfor’the squared hagni-
tude of the DFT of the weights has the form of.a'twe;degree‘
of ‘freedom chi-square density function. ‘That is,’
L,

exp (- Xy - (4.3.9)

P(z) =

N

where czw'= [wkl, and z = E[[Wkn2 =>Sz‘
- It can be shown that by an appr0pr1ate ‘substitution of

var1ab1es, the detect1on and false alarm statlstlcs cah be

‘expressed 1n terms of 1ntegrals over a chi- -squared pdf and

a nonfcentral ch1-squared pdf each having two degrees of

‘freedomﬂ "For the case of flxed Pfa, max1mlzat10n of Pd then

reduces to that of max1mlzlng a scalar parameter Y wh1ch is’

‘deflned as

-(z )/z *,f'lﬁ‘e REE S

'1
f - dz.
£z v
ey la*(N L)I2 T
L (4.3.10)
z ' pn L : o

=

FIGURE 4.3.2. Density Functions foriDetection Problem.
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@By allowing u and L to. vary simultaueeusly Sueh that ¥ and

| t”consequently the ALE detectlon performance,’are both maxlmlzed.

" The obV1ous approach is to. evaluate the partial. derlvatlves
";of,y wlth respect to u and L and then,set‘these partlals to

d:zero so. as to obtain two equatlons in the two unknowns But
this method does not yleld closed form analytical expre551ons.
‘An_alternatlve approach_lswto,assume;that the final solution

‘satisfies the condition N>>L.

Under these conditions, Reeves_[49] has shown that the opti-

malfvalue,ofhadaptive Stepfsize pblgiven“byqsx

L 1.25643 : LN
‘n (N-L)(I + 7 SNR) I

Yo

AN

Subst1tut1ng thls value 1nto Equatlons (4 3. 10) results 1n an

'",fexpre551on for Y 1n (4 3. 11) Wthh depends only on L, N and

,'SNR.‘ The resultlng value L wh1ch max1mlzes ¥ is

_ Y1+ N. SNR/2 - 1

(4.3.12)
SNR/2 -

It is clear that the opt1ma1 fllter length depnds on

SNR N and 1t is true for N>>L
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4,4, MAXIMUM SNR METHOD FOR COLORED NOISE = -
» We use the matrix formulatibh‘of the enhancement of

'Sinusoids in colored noise to obtéin'new expressibns fof the

optimal least sqﬁaresﬂcoefficients and freqﬁency responsé of

the A step predictor. From this analysis we can approach the

similar results to obtain optimum filter length.
Main notation

an b |a§, 815 ees aL_llT"optima1>cqéffi¢ient vector (Lx1)

., d

|'idata vector (Lx1)
" ' (4.4.1b)

A - B
L VS EEETI e %

R ® B XM data correlation matrix (Lx1)  (4.4.1c)

: P'é Ekaak}‘;crossicdrrelation,matrix (Lx1) “t4.4.1d)>
. B L pANWe T T
vy & 11, e W e JL-1)W)E (Lx1) - (4.4.1e)
A 5. _ ' o ' ,
Y = ApY (W) = (L¥1),.w¢ S s | ,(4.4.1f)

T = [Yl;...; YN[ obsérvability type matrix (LxN) (4.4.1g)

.

where T denotes. transpose, H is the'Heymitian.tran5pose?-and,

(-) is the complex conjpgatg, W is the frequgncy and A will

denote the amplitude of_the mth complex sinusoid at the input -



and C for real sinusoids.’

- 7'1" -

Nptice that while A, and'C_ are

scalars, all. other capital letters are used for_matrices; in'

this notation,* the predictor output- is

v cowsH v
Yk'f“w* ,ka_

and its error

L-1
2o M %%ea-d

‘ek

s ¢ S Broad-band

ex = dy - Yy
IS . |
Primary ' 47.
. Input
TransVefsal
Delay , : :
(Pre filter) 21 Filter
—= W 4
’ Adaptation
.“Algorithm

/

(4.4.2)

(4.4.3)

. Output

L YpeSi
o kYR TR

dNarrowaahd‘W”
Output

'FIGURE 4.4.1. Block Dlagram of the A-step Predlctor or -
, (Preflltered) ALE ’

"To determine_the optimal coefficients, assume that

- the ihput-consigts“of Nlcomplex sinusoids with additive zero-

mean colored noise, i.e.,



. | N j(W_k+p ).
dy = Sy r oy =5m§1‘:Amveul'm Toeng (4.4.9)

where {y_} are independent and uniformly distributed over _
IO,gwl.and nk is not necessarily white. The autocorrelation
sequence. of the input (4.4.4) is |

N AT

Tdd(C{) = E.{dk ,dk-q} = mil ‘Am e + rnn(q) - (4.4.5)

where r__(q) denotes the noise correlation.

The vector W* minimizes E(Iék]z} hence, by the matrix
. " .
Wiener-Hopf equation

P | ;  (4.46)

'  In our case, where the inputiis described'by (4.4;4)'aﬁd'

(4.4¢$) the yatrix1Rx;

can be written as
N -

R., =2 ¥

XX g

H o ol | :A .
wYm * Rpp = TTT F R (4.4.7)

where,Rnh"is the“coVariance_matrix,of'nk.. Applying the well
known matrix Inversion lemma for (4.4.7) then in [62]
-1

S . B GNP, P
Rie = Rgn [ = RUTURGT (449

where I, is the LxL identify matrix‘and



L S o
. To find- the vector P, we assume that the dealy A has

‘been chosen cOirectly, i e., large'neough'tofSUfficiently de -
correlate nk, the wide band component of the 1nput. In this
case P 1nc1udes only the 51nu501da1 part glven by o

N O -3jW A

P=3 A e ™y =r7TVaA  (4.4.9)
T R no- SR

wherebthebdelays'féctor VA”iS'définéd by

: -jW A ~jWA T
A A N
VA = |A1 e 3 e e vy AN e l .

The optimal (cqmpléx weight vector (4.4.6) can now be rewritten

. as
‘_** -, q o u o1 _
W_ Rnn [;; rR_ T Rnn'.]. _' I'VA
arE R @R - RS r] A (4.4.10)

R
‘orT usinéithe definitioﬁ (4.4.9) of R, we finally get

e e -1 -1 . 4 .
* 4 .
o W Rnn,?R v, (4.4,11)

or thé”bptimél»Wiener solution W* can be described by the sum

N\

I
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; L .‘ o S 11‘ "' -\ N N . . | . R ~ B ' .
s CWR=TDOoWE o (4.4.12)
R m=1 : S ;
5 :

~where W*m is the Wiener solution for a single sinusoidal sig-

- nal in>coloréd:noise,at frequency W, given by (GZ]A, 

2 .
A -JW_A . ‘
| _ _ - 1
LA N —— e~ " Rz ov(W)
S 1o+ A SpQu Wy
"and
| L. 1 rH -1 CHlo oLo-1
| (W W) = A2 [r R'nnF]m,m =y (WR L Y(Wy)
S m o :
SinCe
C . : L_l -. ‘(A+1) i—I . -.WA '_A'z'«i_i
HOW) | = I WsZ Wity (Wye ™) W
o ' z=1
z=;
CH(9) =V, R FH.R;%'Y(W)efJWA'] = (4.4.13)
: - W=0

The sinusoidal component at the predictor output is

)
A N. v j(ka+wm) H
V= . . . = ®*
- _ syk m‘ii H(Wm) Ame W Sk, (4.4.14)

.

'Where;Skldenotes'the‘Sinusoidal component of the data vector

xkbgiven by.'
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N O (k-8) )

S.o= £ A e M~ UMWy o v. (4.4.15 :
k m=1 W S (W - Sy ( )
where
BRI SR B (UM SV

Therefore the output signal component is

1 pHpl oy . (4.4.16)

Sy = R ‘ AVg L
“yk A nn oSy

- For the partlcular 1nput of real 51nu501ds ‘in 56 and

62 Syk is glven by

M p n(W ) L/2 S
Sox = I , €y Cos(W_+y ) (4.4.17)
Tom 1z Eo R T

‘where the 1nput SNR and the 11ke11hood varlable of the m'th

51nu501da1 component ‘are deflned by

B2, 2
2’/ 28y
n(W,) =k—z—-*¢(wm,wm)

e

Thus, each real-§inusoid,hasiamplitude.gain given by

| 6. n(W_)L/2 '
pr 4B m o (4.4.18)
| 18)

" m . '
Sl +p (W L/2
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o Formula (4 4. 18) generallzes prev1ous results Whlch were
vfound for a whlte noise merely by 1ntroduc1ng the 11ke11hood
f{ we;ghtlng factor,n(WnQ. It shows that amplitude d;stortions
?maY‘OCCﬁr at the predictor output when: the noise is colored ..
”bthrodgh'the dependency of n(Wm)4on the sinﬁsoid frequencies,‘.

and noise spectrum. (Note that n(Wm) = 1 for white noise.)

-The totai‘power‘of.the output'sighallfrom the transver-
“sal filter having the ideal weights is&thdrefore;given:by

N

M

| Byt 2|} = 1 (b* C)2/z + 22 3 (b* )2 (4 4v19)~
k I o m,m) CA N - m <
.o m=l e S .m=1 S _
The overall output SNR is given by -
e L s e a2 2 M2
R [(b* Cp) (2]1/ [rnn ~m§1 (b*np”]' .‘_»§4.§fzq)
L»‘M~' ;J_. ;2;@ ‘M
P* =5 I i (* )7/ T (b* )
: S om=l T m=1
S L
Swhere o5, = By
T 7%nn

The overall input SNR , is given by

| (4.4.21)°

“aha we define ’
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N ETH oy ~
0 L :
e 2 = Loy oo * )% S, 3 (b*)2 (4.4.22)
Py Som=l T T m=l ' ‘

P* is the gain in;SNR‘achieved~by,fhe ALE which has the Wiener

~ ’ . = > . .
solution weights. [There is no difference between colored and

white noise case.]

For the actual weight case (LMS algorithm) we can Te-
vplace the value of b * in (4 4 18) to the (4 2 36) in wh1te

noise case.

uLP_

Pr. o= 1 /{5 —= [1 a2y . (1 * ——0]}
. L , g L - ULP - a0 p"i LZD

(4 4 23)

‘With the practical“éssumbtionethat ﬁdLPx<<1fthe-dp£imal_vaiue

for L is found by differentiating P;* with réspect to L, to

N T I ‘
wo'x eyt Pl | -

which is similar for the casevof\White noise.
If the n01se is colored through the dependency of n(Wp) the

'Lopt will be dlfferent from (4.4. 24)




: n01se, 1nterference echos or other unwanted 51gnals) Such

 CHPTRR 5
- ADAPTIVE LATTICE FILTER = - . -

5.1, INTRODUCTION

= In the field of signal processdng it is sometimes de-
’,51rab1e to make use of a fllter wh1ch adapts 1tse1f to the

1nput 51gna1 in such a way that the error output of the fll-‘

ter is m1n1m1zed (1 e. ,_the fllter is de51gned to ellmlnate

“an adaptlve fllter is one aspect of 11near predlctlon, the S
- basic assumptlon of which is that the 51gna1 1n questlon can

be modeled as a 11near comblnatlon of prev1ous 1nputs and/or |
'.outputs of the f11ter f The tradltlonal form of the adaptlve

fllter is the tapped delay 11ne predlctlon error f11ter (TDL)

[36] f31]

However, dependlng on the form of calculatlon used ﬂ 5
' h15 PEF may suffer from elther poor resolutlon or lack of ‘

stablllty as well as a number of other calculatlon 11m1tat1on%
E U . . B Do X \

E NS

e e
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. For exampie, in LMS algorithm the’idenfification'will
‘be better if the estimates of the tap gain coefficients are.
better.v:Better estimates are obtained by fﬁnning_the LMS
algorithm longer. However, the signal statistics may ﬁot
remain stationary over 5uéh longer infervals, Therefore.it,
is useful to.haVe a Tapidly convergent algorithm and so called
ladder or iattice filter impiementations.haVe been suggested

for such purposes [36};

" Another interesting difference between TDL and lattice
structures for approximately the same amount of signal dis-.
tortion is that the lattice algorithm will produce consider-

‘ablf less harmonic distortion than' the TDL (LMS) algorithm [64}.

Y ~

In addition fb'theSe.there ére é number of important
'a&vanfégésAto,using’thé 1attiée'5tru§ture. ‘One of the most
importantAadvanfééeé'is-the'facf for -each stage;the backWard
predictioh error at the output is'orthpgonél to both predic-
tion erros at the»input. This déCOuples successive stages,

‘ theréby;enabling independent optimization of each sfagekof»fhe
flaftice.w This is.in contrast tduthe TDL stfucture where the
coefficients are‘adjusted jointly, 1eadiﬁg to poor convergence
propergies.‘ The convergénde time of thé TDL structﬁre is de-
termined.by the ratio of largest -to smallgst eigenvalué of the
correlation métrix of thg signal set in the filters. However,

no aﬁaiytical studied of the convergence properties of the



* adaptive lattice structure.

Since the inpﬁt—odfput relations of the TDL and lattice.
~ structure are identical their transfer functions in steady
~state will be the same. However, steady state will in general

be attained much more rapidly with the lattice structure.

There 1s also a dlfference between TDL and 1att1ce
’structure which is related to the- optlmlzatlon technlque.' For
"TDL the usual approach.for the derivation of coeff1c1ents has
“been to use a noisy gradient descent'algorithm to adapt the.
filter coefficientS‘foward their "optimal" values under ac
minimum mean square error performance crlterlon. The coeffi-
i»c1ents of the 1att1ce structure proposed by Morf [35] have
-been derived in a significantly different manner in that they
éatisfy'e global_leastfsquares optimality criterioh at every

point in- time..

Also a more recent form of adaptlve filter prov1d1ng
a solutlon, 1s the lattice predlctlon error fllter originally §
proposed by'Burg for use in speotral estimation and indepen-
~dently derived by Itakura and Saito and they guarantee the
| stabilfiy of.the"estimated all pole filter without‘requiring
Wipdowing of the.observed‘signal [15], (e}, [9].

S
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5,2, DERIVATION.OF A STEP PREDICTOR IN LATTICE FORM
As mentioned in the introduction, a lattice form im-
plementation of the TDL will be considered due to its poten-

"tially superior convergence properties., All derivations are

performed for the case of known statistics.

Let {y(.)} be a zero mean stochastic process and {y(t)}

be random variables from this process

A ' ,
Let y(t t-1,t-n) be the linear least squares estimate

(LLSE) of y(t) given y(t-1),..., y(t-n).

Define the nth-order forward and Backward prediction

errors as;

e (1) = y(t) - y(tlt-1,tn) (1 (5.2.1)"
and )

rn(t) = y(t-n) —"&(t-n]tfnfl,t) (2)_ (5.2.2)

respectiVely. Let

e (t+A-1) = y(t+A-1) - y(t+a-1]t-1,t-n) (5.2.3)
Sﬁppose that ﬁe~haVe one more random variable y(t-n-1)
and we wish to obtaln the LLSB of y(t+A 1) given y(t-1),...,

y(tfn-l). From ‘the irnovation approach to linear 1east square
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estimation we have [65], [36]

Ylt+a-17¢-1,t-n-1] = $lt+d-1]¢-1,t-n]

+ [LLSE of y(t+A-1) given the new information

received with’y(t-n-l)] (5.

i

2.4)

Since the new information received with'y(t-n-1) is given by

y(t-n- 1) -*y(t n- llt n,t- 1) and from Equatlon (5 2.2) this

is equal to T (t 1) we can rearrange (5 2.4) as- follows

y(t+A-1|t-1,t-n-1) = y(t+A-1|t-1,¢t- n) + .

N

. + [LLSE of y(t?All)Wrn(t-l)]'
whicﬁinan be‘ekpressed as 136];4[57]1

¥{t+Aa-1]t-1,t-n-1] = .§r(t+A-1 lt-l,t-n)

CE(y(t+h- 1)r (t-1)
BEIEACS 1)Ir~

Let us substract y(t+A-1)\from both sides of (

=
el

§Ct+A-1|t-1ét4n-I)---y(t+A-1) = ;(t+A-1[t—1,t5n)
T By (ta- 1)r (t=1)] -
L = n(t 1)
Ellr (t-13 1°] -

- y(t+a-1)

(5.

2.5)

rn(t 1) (5.2.6)

5.2.6)

-(5.2.7)



From (5.2.3) we have ; :

E{&(t+Ae1)rn(t-1)]
77 Tn
E(lrn(t-l)l )

e 4q(t+A- 1) =den(th—1),+ (t-1)

- . - . (5.2.8)

“From the,definitiondof LLSE“rn(f-l) is orthogonal to
y(t-1) ... y(t-n). Hence (5.2.8) can be computed as
Ele (t+a-1)1 (t-1)]

" e (t¥A-1) = e (t+A-1) - — — 1 (t-1)
n , o B . R (t-1) one T

2 (5.2.9)

~where :

R (t-1) =;E[trn(t-1)2]

Slmllarly we can- derlve the follow1ng relatlons for

the (n+1) th order forward and backward predlctlon errors:

E(e (t)r (t- 1))

eh+1(f) e (t) TR T (t-1) (5.2.10)
' (8 = (D) - E'-(‘r“(t_l)eﬁ;(.t)) (1) (5.2.11)

T = r - - — € . .

LT RO " |

where

E_() = E( ]e’ﬁ"(?t) 1%

L2

Changlng the’ tlme 1ndex t+A-1 to t in (5 2. 9), (5.2.10)

and (5.2. 11) and varylng thn value of n from Zero to L 1, we,,,'“

\



obtain the Lth order lattice filter structure of Figure 5.2.1

where

a .= E(e (1) rn(t-A)) /_Rn(f-A)

pn+l = E(en(t~A+1) rn(t-A)) / Rn(t—A)

Pa+y - E(r,(t-2) e (t-2+1)) / En(t-A.+‘1‘)

In'TDL the inpuf and error outputvat tiﬁe t are given

by y(t) and y(t) - -y(t|t-a,t-A-1+1). Since e (t) = y(t)

and eL(t) = y(t)_-,?(tlt—A;th—L+1).the structure of Figure

5.2.1 is the lattice form structure filter.

5.2.1. Lattice Form of TDL (ALE). .
FIGURE 5-2.2. Equivalent representation of the Latbice -form of TDL (AL



Redraw1ng the c1rcu1t of Flgure 5.2.1 as shown in
.Flgure 5 2 2 we see that the Structure shown Jin . the dotted
{box acts as a A step predlctor - Not that when A=1,a = p§+1

and hence, the lattice form TDL (ALE) reduces to-the well =

known lattice form linear prediction error filter [367].

5.3, LATTICE FORM LINEAR PREDICTION ERROR FILTER

. Several lattice and 1adder structures have been pro-
posed for. the 1mp1ementat10n of all pole and pole-zexro digi-
tal t}lters;‘ However, euly a‘single lattice structure due to
_fItakura and Saite_[gj_isfauailable for the‘implementationbof
all zero filters.f'Ihe 1attice’of itakura,and Saito had-two
‘multiplierstiu each ;tagé, ‘There are alse.ene,_two, three and
;fouf multiplierflattieerstructures .In uarticuiar the pro-
' Lper one . 15 of the course the one mu1t1p11er form. because of
;decreased number of multlpllcatlons- ' - ':" | -

"~Iﬁ’}iueat.predietion, the signal_spectrum is modeled
,by*an:ail poie spectrum.with,a transfer~function_given by

in [8], [3] and [3]

“ HD - XGT '» (5.3

where = |

?‘-I
it M
m S
e ,
N .
o4
I
—

Al2)



is: known as the inverse fllter - G.is. a galn factor, ay are
the“predlctor‘coeff1c1ents,_and P:is ‘the number of poles or

‘predictor coefficients in the model.

In order to analyze the spectral pr0perties of the lat:a
tlce f11ter1ng algorlthm, 1t is useful to flrst consider the
relatlonshlp of the reflectlon coeff1c1ents to the coeff1c1ents

of the TDL. The:TDL coefficients obey the,constralnts

am,i 541 - vlfor i=0 | '.. (5.3.2)
| -1z ?m,m <1
cand o s ST B SR S
a 0 for - i->m or 1i:<:0

The basic relatibnship‘betWeenvlattice»andfTDL-types filters
: 1s that the reflectlon coeff1c1ent p (n) equals the flnal co-"
eff1c1ent aj 4 of ‘an - 1th order TDL for 1 < 1< m.:
3> . .
rThe;filtei»coefficients of this. TDL :are ‘then calculated

from the Levinson recursion algorithm [8].

am,i:f amfl,i + am,m.a m-1,m-i for (1<izm) (5.3.3)
'by startlng with m=2 and worklng up to "the .order of the fllter.

After each recur51on the coeff1c1ents an i 1<1<m are the de-
3
~ : .
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sired coefficients for the m'th order predictor. The algo-

rithm proceeds recurSively tg'éomﬁute the following parameter

Séfs'

i=1 '{all} —
o s _ : ’ i

172 dagy, 2y} |

=4 ey, 2y, 243 2

i=m {aml’.amz*

The pérametérs'{all, as9s aSS""" amm}Jaré oftenicalled the -

reflection coefficients and»are'designated as'{pl, pz,.f., pm}*

Therefore desired coefficients are'{aml,-amé; ieey 8 }o
. The theory 6f_1inear prediction lends an important
T"':'L:vnte"rpretat.i'on_'to the Levinson-Durbin algorithm. Denote the

}‘brédictiOn error for a mth order linear predictor as £ (n)

. -fm(n)' .

]
>4
+
Mg

. 'amk‘X(n—k),

]
nm~ms

. .aﬁk X(n-k) | (5.3.4)

0

f”By>hSingfthe Levinson-Durbin\algorifhmvwe have
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m-1 . . , ‘ .
fa(m) *'kﬁl (o1, * %nn @1, paad X(00K)
- ' . m-1 o
+ m mn X(n m) +- X(n) =~X(n‘) -+ kzl am-l,k X(n-k) :
-1
+ m n - X(n-m). + kE afﬁ—lfm-k X(n-k)
=1 R
Let .
b (n) = X(n-“‘),'f"kil “n,k X@-mek) 00 (5.3.5)

Therefore
fo(n1;=.bo(n) = X(n)

:fm(n)jf m- 1(n) m m m 1(n 1

bm(n), am nfn- l(n) *b chnjl) (5'3'6)
The term b (n) 1s the backward predlctlon error, ice., the

Aerror when one attempts to predlct X(n m) on the ba31s of
samples X(n m+1) Ce X(n); The relationships of (5. 3 4) and

(5.3.5) give again the~1att1ce“f11ter structure as shown in

Figure 5.3.1.

T T i T
- . 'D_(n’ Caet '|(n) C - - 'l‘("‘) P-o B (ﬂ _.n(n)

)] o RN kNS >< BT

oL LN T N oEh CoE

AL 1 A N [ [P0 R N

Fro o Temsen T s T o T T T

FIGURE 5.3.1.° Lattice Fbrmulation.of Prediction error
(Whitening or inverse filter).




Note that the transfer function of the entire filter is just

L4

A ,'{', P

‘,"predlctlon error" fllter. If X(n)'ls the’lnput 51gna1, fm(n)
- 1s the fOrward‘rosidual'at'stége m and b, (n) is the Backward'
k‘_residual'at stage m.‘»Ih,z transform notation (5.3.6) can be

written as -

F (z),

o

Bolz) = X(2)
[ RN o
F (z) = Fm_l(z) + amm Z

3 s T S S

B (z) i amm‘ o 1(z) + 2z

Pn-1(2)
13 (2  (5.3.8)
- m_ 1 ‘ ' [ [
‘~Let the forward aﬁdrbackwérdefransfer_functiohs atﬂstqge m
"be defined by |

F (z) . F(z)

A _(z) = - =
\ .m(Z),. X ""F'O(Z)'

B(2) BL(2)
SRS

"and_'

G,.(2) (5.3.9)

.

Then from (5 3. 8) and (5 3 9) it is easy to see that A (z)

and G (z) obey the recur51on relatlons
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Ay(2) = 6 (2) =
_ Amtz) - Am-lcz) T % Zhl}Gm-lcz)
S Bp(2) =ag AL 4(2) 2Tt G () (5.3.10)

~

Furthermore one,;anﬁshbwiffom-(si3;1015fﬁat
G,(z) = 2™ A (271 o (5.3.11)
Thus, if Ah(z)fiswgivenuby;;}

SR o \ "-k-: |
';‘Am(z)-frégb ;am(k)jzf : (5.3.12)

"where am(k):arejthe.polynomial«coefficieﬁtsiforaén m stage"
lattice then -
k

o |
G (z) I a (m k) 7

KRS 0 (5.3.13)
. k 0 ) L

and G (z) is. the Treverse polynomial- correspondlng to A (z)

From (5.3. 10) and (5 3.12) we also have

"
=

ap (0)

n
o

) e, (5314

wa,_giVeh éomé‘pbi&noﬁiéllkp(25 with agtbjf}‘l'oﬁe

can generate all the paiynbmiais Am(z), m<p and the coeffi-
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~clents am’m u51ng the follow1ng reverse recursion derived

~ from (5 3. 10)

Ayp(m) = 2 : - (5.3.15)

along witﬁf(5;3.ii)*and*b¢giﬁﬁing with m=p.‘ It is clear ‘from
(5.3.15) thatHSHGnIdM{é;;;ﬁ}jf?'ifforvsomérm‘ = m, ‘then the
solﬁtidn‘fdr'éirlsz)‘isfindeterminete}“-Therefore the reverse

;recnrsibn‘(S.SllS)sishnbsgihle i%f!{ém”ﬁri¥*1‘fb} all m.
. . . ?

It also follows from (5.3. 11), (5 3 12) and (5. 3 13)
that the zeros of G (z) are the rec1proca1 of the zeros of
Am(z) - In partlcular 1f a11 the zeros of A (z) fall 1n51de
'hthe unit C1rc1e, 1n Wthh case A (z) is minimum phase then
G (z) is maximum phase.f ‘One can show that the minimum phase

-

cond1t10n for A (z) 1s guaranteed iff

- 1<a: s <l 1<i<m . (5.3.16)
, i,i S |
The coefficients amhm are taken as reflection coefficients
. N s ’ . - N

or pertial correlationtcOefficients.' Therefore from (5.3.16)

A,(2) and Gm(z)’ere'ninimum‘and maximum phase respectively.



- CHAPTER 6

" ALGORITHHS FOR THE CALCULATION OF
©LATTICE FILTERS. =~~~ =« . =

6.1,  INTRODUCTION

The algorithms suggestedufdr the calculation of the
reflectlon coeff1c1ents ¥ (n) a11 have 1n common the ba51c
| _obJectlve of m1n1m1z1ng the mean square forward and backward

errors (the output of each fllter stage) i.e. , to obtaln the

ylowest Values of-Fi(n) and Bi(n) defined by the expectations

LEE

CRmoeElE®T 0 (6.1D)

and

Bi(n) = E[[b;(n)|"] 0 (6.1.2)
"bifferentiafdﬁg%these2dﬁahtitiesiwithbrespect to the
. reflectlon coeff1c1ent gives  two Values for the coefficient

by mlnlmlzlng ‘the forward and backward mean. square €rrors

separately. The equatlon

- :C i- 1(n)
(n) . 11[111)

L (6.1.3)

minimizes the forward error, and

B E ;.92‘,, ;;"
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- » C:_-(mn) o -

S e - EL S e
, S1=1M :
minimizes’the:baCRWard error. The factor C;(n) is the-expec-

tation of theanegativexcroés—power of forward-and backward
~errors, givén by R

Ci(n) = - E[f;(m) * b,;*(n-1)] (6.1.5)

(where * denotes complex conjugation) This section looks at

four. algorlthms suggested for m1n1m121ng both forward and

backward error expectatlons

6,2, FORWARD AND BACKWARD (F+B) ALGORITHM .

The most direct of these algorithms.was suggested by

Griffiths and simply.uses piF(n)qand,pig(n) as the.forward and -

backward reflection..coefficients respectively or.

oifm) = 0Fm)
' AP (6.2.1)

(F+B) Algorithms . )
| S B
| ' B pib(n}-:-piw(n)) o

~This;is the only algorithm for which the forward and

backward féflection coefficiénts-ére not the complex conjuga-

tes of each other.

 The problem with this approach is that as p (p)*
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under almosthall cirCumstanCes eithe§;piftn)'or pib(n)nwill

,be greater than One,fwherea§ for a stable filter the reflec-h

tion coeff1c1ent should have a value 1ess than one. Note that
since F 1(n) and B 1(n-l) are both non-negative and the
numerators in (6.1.3) and (6;1.4) are identical pif,and pib

always'have the‘same\sign S‘
_ . f_ . . V " . .
S = sign p~ = sign p (6.2.2)
6.3, FORWARD/BACKWARD — MINIMUM-(M) ALGORITHM -

« It follows that if either piF(n)Aor piB(n) is greater

- than one, then the other will be less than one. Thus an al-

ternatlve to the (F+B) approach (1n order to guarantee stabl-

11ty) is to choose the’ Value w1th the smaller magnltude as

\

(n) for all values of i and n. ‘Such an algorlthm was sug-

gested by Makhoul l8| and is formulated as ]9]’ e

SEe M i r"‘TT
p;7(m) =p; (n) "max{F 1(ﬁ) By 1 r

RV
Algorithm. - ..

R o (e

or -we can write
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o) = s min Ep,Fl 0Py (6.3.2)
‘1 p i ). pi . ’ e
Since (Dif)(pib)i’- 1
[P T by
If |91_|a> 1? then |pi | < 1v’
. b . " f
~or if lpi | >1 then lpi:l <1

It.satisfies‘agaihE[piyl < 1,uand.lpifl,{'?1;

, ThlS says that at each stage compute Py b and Ps £ and
choose as the reflectlon coeff1c1ent the one with the smaller

magnitude.

6.4,  GEOMETRIC-MEAN (G) -ALGORITHM

fhererate two»major algorlthms presently in use Wthh
attehft ‘to minimize the forward and backward error eXpectatloﬁ
j01nt1y These algorlthms were developed 1ndependent1y at |
about the ‘same t1me. The algorlthm orlglnated by Itakura and

Saito uses the geometrlc mean of the forward and backward ex-

pectatlons and 1s.g1ven by

) | | C. . (n)
: £ P ¢ _ i-1
e e ) @ T E DT
G o | i-1+ 7
Algorithm _ i; o th iy _ S
_pib(n) = ey m| N (6.4.1)
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(n) is the negatlve of the stat15t1ca1 correlatlon

,between f (n) and b (n 1) From the propertles of the geo—v'

metrlc mean, 1t follows that N
o ’ - ~

y £1, by | by,
min|lo F et < le;°l < maxile;fle %11 (6.4.2)

SN

“Now 51nce | l < 1 it follows that 1f the magnltude

of eltherpf pib is greater than one, the magnltude of the

other is necessarlly 1ess than one ThlS property brlngs to

mlnd another p0551b1e def1n1t10n for the reflectlon coeff1-7

c1ent that guarantees stablllty.

6.5, HARMONIC MEAN (H) ALGORITHM

‘ *The1otherlmajor*algorithm@was developed by Burg for
use in spectral estimation;and.uses the harmonic mean- of the

forward and backward values '

T SEN | S 1(") |
Lo ) pi (n) :— pi ( 1F1 1(11) .,_. 1 1—(11 17'
Algorithm : ' , R
and one can show that
oy I < legl < log™1 (6.5.2)
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One of the important property of piH that is not shared
G M. N ' L e .
by p; and Py 1is that piH results directly from the minimiza-

tion of error criterion.

In'additioﬁ’to”thetalgorithms presented here, there are
an ihfinite'number'bf;pOSSibié’élgoiithms'fdllingﬁihto a’ class
for which the forward or.backward'éfrbi*hiniﬁum,'geomeffic‘
mean and harmoﬂic“ﬁean‘algorithms:are spécial Céses."However,
Burg's harmonic-mean:éigorithm can .be seeh to result directly
from the minimiigtion of-a §e11'défihéd error criterion. This
criterion minimizes the sum of the vafiénces of the forwards
and backwards residﬁa1sJa'

S . < o
.~ The error-is defined as the sum of the variances of

“the' forward and backward residuals.

Ej(@) = Fy () + By () - (6.5.3)
"Using.thé recursive equation fOr‘fi(n) and bi(n) one
cahAshow.;hat the forward and backward minimum errors at étagé
(i+1) are felated to those at stage.i by the following4

2

. Fi+1(n)'= [1'5 (pi+lH) ]4Fi(n) - (6.5.4)

| o |
By = [0 - cpile);l Bi(n-l)  (6.5:8)



This formulation is originally due to Burg.

6.6, GENERAL METHOD

Between 'iM7and’ifﬁ there iare infinity of values that

can be choosen as valid reflectlon coefficients (1 e., |p|<1).

These can be convenlently deflned by taking the generallzed

f b

rth mean of Py and Py

S R SR S :',f,ff > SRR Tb":r"f 1/1‘ ; Crad REEEIN

As r -+ 0 irk% piG; the geometrlc mean ‘ For r > 0

bir‘can not be guaranteed to satlsfy |p|<1 Therefore forV
Pi T
pir to be a reflectlon coeff1c1ent we must have T < 0 In

_partlcular

e KT e Tt T (6.6.2)

. U R S AL
and thad
-1 £ _ b | . |
e ='pi"f Py for.all T ”._(6'674)‘



CHAPTER 7
* RECURSIVE ESTIMATION OF THE
- REFLECTION COEFFICIENTS

7,1, INTRODUCTION - .~ . o o oo

When deallng with, adapt1ve fllterlng of 51gnals whose
’.statlstlcs are expected to change (e1ther contlnuously or ab-
-ruptly),wlt;rs de51rahle_tqkde51gn;thebf;ltervto)be‘contlnuous-
1y adaptive so that the filter characteristics map change a-
'long w1th those of the 51gnal ~The general approach to make
the system adaptlve is to modlfy the reflectlon coefficients
by maklng them recur51ve (i.e., updated w1th each sample) at
the same t1me by allow1ng them to forget past samples as they
bbecome more d1stant in t1me | The forgettlng feature of the
.algorithmlis controlled by an adaptlve we1ght1ng constant that
1s exponentlal in nature, g1v1ng more welght to the ‘more re—\
cent samples whlchbbetter represent the current s;gnal statis-
tics. It is a kind.of alsliding exponential window technique.

W

Lo

The adaptlve constant alone sets the rate at which the
parameters of the 1att1ce structure filter converge to a new
set of values unllke the tradltlonal tapped delay 11ne adap-
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“tive algorithms7(e§g£,”1ea§t;mean:squares) whereathe_éignal

StatistiCSzalso Play -a part.in convergence behavior. .. .. _

-"vTherefareeth basic,methods;forsreqursive,estimat;on; L
of the adapﬁivenform;o£~theereflecfionzcoefficients;g;TheSe:‘
methods ere-presentedghere'using Burg's harmonic mean algo-
rithm, buflthey_can be equaily'well‘used with any of the other
‘available algorithms which were studied in Chapter 6 before.

The first method adds an update’term directly to the
reflection coefficients at each fecursion while the second
-method updates the summation of'pi(n) separately. .

7.2, meTHOD 1
B I S o T . T
The‘simplest apprbach to the. recuréi#e estimation of
the reflectlon coeff1c1ents is to con51der the new coefficient
as belng the sum of éhe old coeff1c1ent andﬂa correet;ehuterm

-The correctlon term is just the’ dlfference between the new

and old values of the coeff1c1ents as given by [68]. -

- n - . ) o
-2 % Ifm(i)bm*(i—l)l
oi=1- SN

m+1(n3 m+1(n 1) E—— Z'A
[If @ 1* + 1oyl 1]

1'|fm(i)bm*(i-1)l o
| ,, DU — (7.2.1)
U@ 1* + Popa-n T

2
ci

4

=
R =N

-z
i=
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Note that the difference Between n and .n-1-as the limits on
the’summationsg*:This‘equatfon‘canube.wfitten as.:the sum of
the old coefficient and a new update:fermawhichzcdntgins.oﬁlyy
inforﬁétionzfromﬂfhe!presentﬁtime:interval;(;.e;,,the.inpﬁt
to that filter stage) both multiplied by a third term. This

results in the equation

- é|f‘(n)b *(n-1) . ‘
Py (™) 7 Py (n1) - — " Pney (1)
S ang RERl \bulnl‘~“

= 2.;.,.,.-_2 |
M+ by, Fn 1){ _ )
Ufcnl 41q“fnyﬁ<~au—. e

;1|v15
=

SO l
Rearraﬁging'(7;zlzy‘gives
o 2y (n) fm(n)bm*(n—ly
a1 (@) = 11 - Y@ | Py () - ——— B

2 112
£, m) |2 + |by(a-1) |

L (7.2.3)

where
B PR L O Ll L M S
. :Yﬁn) = 5 — T . o .
| o HE@ T+ b (-1 7]
cg=p o o LT R T e
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It can belseenhthaf fof the steady State (cohstaht;
power) case Y(n) % where n is the number, of data samples
“processed If however Y(n) Y 1s held constant 1n the calcu-~
'1at10n, then 1t may be replaced by using the welghtlng factor .
w as deflned by the formula

= -1/nL

vaﬁhl -y =1-1/n 2e 17 (for n'>>0)

(724)

‘where n' .is the theoretical dataladaptive 1ength of the fil-
tering'action;*?(For n'.ngO the ‘exponential form of (7 2. 4)

is less than 0 5 percent from the actual value.)

l
: |
Also in |67] there is such a 51tuat10n Whlch is sum- (
\
marized as: follows. "In: determlnlstlc least” squares algorlthm

we choose the adaptation crlterlon-for the filter as the mini-

T

‘mization '0f~:.,"' 2 = e FES T ,_' : / o

el(s) ) (7.2.5)

<3

[
- DN e
™ et

s
with respect to the filter parameters. When the statistics
‘of ‘the observed process vary*slow1y, an exponehtiaf7weighting

“is applled to-‘the data so- as to track the slowly varylng para-

" meters of the process Welghtlng of the data ‘With a’ slldlng

exponentlal window is equlvalent to minimizing
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AtS e2(s) A< (7.2.6)

™M+

,Y_— >

- s=0

| where A is a so called forgetting factor. The effect of A
" reflects itself in the recursion of error covariance.

' Rewritin
Ppaq(@) = mpﬁ;l(nii)’+”&m(n)f§m(n)bm*(n-1) (7.2.7)

where

Ppea(0)  (for the mormal case)

' and the adaptive step size o (n) is given as

i = -2 - ) / [g@I? + b2 (7.2.8)

Thé“ieéhisiVé réléiibnShip inj(7.2.7)‘cénaalio be

VO e e e . . B <. .
- e D S L O U

- written as-the sum

SR

o 'pﬁ;i(n)'=‘i i'[w(n'l)*aﬁti) fm(i)pm*(iji)]' 7 (7.2.9)
Again (7.2.9) i's similar to (7.2.6). An implicit condition
' on.this;recursivg'rglationship is that the power of the pre-

diction error fm(n);br bm(hfljvis hot»a'timéfvaryigg function.

t



7.3, METHOD 2 "~s?,;~a

~A7second;approath is'-to: retain both“Summationsras in-
P m+1(n) and enlarge them: at each time 1nterva1 ~Thus the

'nequat10n;becomes~%v'wfv‘»

o () = WL (7.3.1)
T Yaa@
~:where;;_
Ve (@) = w Ve (@-1) - me(n)bm*(n-l)

_and
Y @) = Yo (m-1) + |£.m |2 + |b.(n-1) 2
m+1 EoTm+l : m . m

— " The rnltlal‘cond1t1ens are Vm+1(o)-;iYm+1(o) .;‘ The
-we1ght1ng factor ‘ 1s'1ntroduced to regulate the 1mportance
4of the new term in the summatlon w1th respect to the preV1ous
'term and thus control the adaptlve speed of the f1lter Nor-
mally, _41; in the rangezof 0 _l. This recurs1ve relation:

,sh1p is equlvalent to the equatlon

P B . il : N i

. -

b (3 g )b *(a-1)]

N
nets

ii=1

ﬁpﬁl;i‘(n)"?’ (7.3.2)

ll. e Bt & IR

NEo) [If (m b1 ]

1
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which’ in tnrn«de%eonivalent to actual ph+i(n) with the for-
ward predlctlon error f (1) and the delayed backward predlc-
tlon error b (1 1) welghted by the factor u(n 1)/2 ’ThlS form
of welghtlng does not affect the statlonarlty of the 1nput
Method 2 has the advantage over Method 1 of not assumlng con-

stant_power;. However, Method 2 is more complex computatlonally

Here 1t should be noted that the,factors w and o have
_no relatlonshlp to each other except that they both approach

to zero

7.4, CONVERGENCE PROPERTIES OF METHOD 1
An important characteristic of the adaptive filter is.
the rate at which the reflection coefficients convergence to
theirfoptimumivaluesxfor'given'(stationary)-input signal sta-
tistics. This-rate-of convergence is controlled by the adap-

tive weighting parameter (w or 1).

7 The instantaneous estimate of the first reflection co-
efficient at time n can be defined as -
. - -2 f (n) b *(n 1)

S lf (n)l lbocn-l)l2 o

/cdﬁsiniﬁgkcvﬁz.j); (7(2:8)“and{f7.5.1) we have
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o e @) (W) eyt ) (.42

. For a truly statlonary process beg1nn1ng at time n=0 the 1n-

stantaneous estlmatlon of (7. 4 1) for n>1 will in fact be

/ 2

equal to the optimum Value_of~the reflection coefficient Py~

Using this fact and given the initial value of the reflection

'Icoeff1c1ent p (o) (for example, the fllter s start- up values,

or the value for a prev1ous time series to which the f11ter
has adapted) the filter's convergence equation can be computed

by repeated applicatieh of the,recursiehiequatidn\(7,472) as

| L
@ = @ ey G T
- . ; : '1 . _1 A
= wTey(e) .+ (1- @) Pyt @ - W ey

(7.4.3)

~ From this, the fractional error in the reflection coefficient

AN

at time nccaq?be“computed'as ;;‘Le

méi(bJLfbﬁli"iw)bi(iji

e 1 I R

eg(n) = ———— W _[.j e |
CH ) P1

(7.4.4)

The factor pi(l) need not be known for the most prac-

tical applicatioﬂs of this filter. Indeed, for the initial
start-up case where py(0) = X(o0) = 0, we have py'(1) = 0, re-
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sulting in the simplified versions

-

ppm) = (1 -w™Ny o - (7.4.5)

and -

n-1.

e @) = w “(7.4.6)

for (7.4.3) and (7.4.4) respectively.

For the :transition case where p;(0) is known bu; not
equal to zero, given values. of w approachiﬂg unity (which 1is
the common case) and therefore py"(1) * py(0), (7.4.3) and
»(7.4.4.).can be simplified respectively as follows:

B

e

pr(m) = (1 - W™ HBy + WP, (0) (7.4.7)
and - ' e S |
e (@) 2 o™t (1 - 0 (0)/B)) (7.4.8)

- This measure of convergence error can also be written
in terms of the ratio of the data 1ength actually processed

to the_theoretical‘data»adaptive length n' by applying (7.2.4).
Thus (7.4.6) becomes

6 (n) = ¢ D/ for n>0 and n'>>0  (7.4.9)

N
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7.5, CONVERGENCE PROPERTIES OF METHOD 2

Similar/tb‘the disCusSion for_Methédii,'instantanequs
estimates can befﬁade for the numerator and»denominafor terms
used inktheicgléulatibnfof the first reflection coefficient
by Methdd 2. For a truly statibnary-process, these estimates

Vlt(n) and yl'(g), as -defined by

Vi) = -2~féﬁn)bo*(n-1)  | o | (7.5.1)
T:and : '

| Y - [£, ()| + |b(n-1) |2 (7.5.2)

are equal to the<dptimum vales vy and §1 (for n 1) such that
1/Y1 = B p1 ‘ Comblnlng denomlnator and numerator of (7.3.1)

"with (7 5 1) and (7.5. 2) give the recur51on relatlonshlps

v, (n) = ﬁvlkn;l)-+ NO) o (7.5.3)
e ot | | o |

xlcn)'=.pY1(n41)'f Y '(n) : (7.5.4)

Repeated'hpplicatiOns of these recursions results, in the fol-

“lowing formulas for -the reflection coefficient

”

n-2

M

Vgl + v ) Wi
- : — —  (7.5.5)
W T T ¢ Y () |

V(@)

- _ 1=0
P17 Yl(n) -n-2

"o
o

i
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or for wfl - .
P ;n—l A »"‘
1-u n-1 !
I Vq tw V(1) + wvy (o)
py(m) = =y Al -1 L (7.5.6)
. "1_:'—"'_ .Yl + unulYl'(l) + Uncho)
-1 - ST

These equations~are-difficu1t to simplify significantly, ex-
cept for the initial start-up where V;(0) = Y,(0) = X(o) = 0.
2

Then b (o) = 0 and therefore Vi'(1) = 0 and Y;'(1) = [£,(1)]
In a stationary environment, the. forward and backward pfedic-

tion error powers are edual,'so that Yl'(l) = Y1/2 simplifying

(7.5.6) to
. n—l A o

- - \1 B ,Vlﬁ no1

Cpl(m) = 1 - u -2 (1-w ) o

1 1 _un-T - n'l A n-1 n 1

x e X )y, -t
1 - 2 : .
‘ (7.5.7)

From'this; the fractional error in the reflection coefficient
at time n éaﬂ be computed as

P 1-1

Py- - pp(@) . m- n

ggm) = — = M (7.5.8)

Another special case of interest is when =1, for which

(7.5.5) simplies to -

"(ﬁfl)G + V !(15'+ V. (0)
ey (@) = 1 1

~ (7.5.9)
(n-1)Y; + Y;' (1) + Y;(0)
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For the initial start-up case as described above, this sim-

pliefies further to

(n-1) Vo o, L | .
o (n) = Lo nz g . (7.5.10)
T ¥, men

The correspondlng value of the fractlonal error in pl(n) then

becomes

_ pl = pl(n) = 1
.- 2n-1

€1 ()

N

(7.5.11)
As w1th Method 1, these convergence rates can also be
applled to the relevant 51gna1 component at’ the filter stage

output.



- CHAPTER 8

~ CONCLUSIONS

For the cases of one and two 51nu501ds, we showed that
substantlal 1mprovements could be obtained by choosing a
suitable value of the delay parameter rather than the usual
cho1ce of A=1. But there 1s a problem'whlch is related to, the
computat1on of the optlmal value of A. Calculatlon of the
opt1ma1 value of A requlres knowledge of W and L. This pro-
blem can be solved by con51der1ng the following dlecu551on
Ch0051ng the 1n1tal value of A as unlty, carry out the recur-r
51ons of (1. 3 6) for a de51red number of 1terat10ns and com-
,pute IP(w)I2 from the resultlng coefficient estimates. From
‘the computed~value of IP(W)JZ, estlmatevthejvalue of’Wi and -

use the formula whichfis‘related»to‘the optimal value of A,

Comparlng the 51mulat10ns f1gure, 1t}1s seen that the
51mu1at10n results agree very closely w1th the theory The
ALE w1th near optlmum value of A glves a sharper spectral
estimate -It is clear that the sharpness indicates how accu-
rate the estlmate 1s .This situation can’also'heeseen easily
by observ1ng-a deep null for the case of ‘two 51nu501ds ”By »
taklng the . near the optimum value‘glves more information

o } v _ .
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~than the choice .°.f<'A'§1-. S RN

In ALE leJWA AL

acts like an all pass filter
and consists-only of‘polesfand zeros at.2=0.0r at:Z=w, input
and output of it both:have the same_magnitude~on the .unit
»circle_ahd the transfer function mustfhe_ehtirely all-pass

with unity magnitude.b

For thlS ‘reason we can determlne the f1n1te 1mpulse
"response (FIR) filter such that the output energy is minimized
~subject to the folloW1ng constraints.. First constraint is

aTa = 1*andfthegsecondgcohstraint dncludes the dynamic beha-
vior of AhE which-ie-givenAby (1. 3‘65 ~ With thiS"mihimiza~
tlon, the performance of ALE ‘in noise. concelllng will be. bet—
ter. than the preV1ous case.~

Also thechange of the position of 2%

,willmchange the
performance. of the ALE;;eByiputtingLZ_é_ih the first processor‘
channelithat;ishiﬁ’the-primery,inpdt»weucan_ohange the per- .
formance,bot,we can guarantee the decorrelation prooess in
the noise components for two channels.

'éAs the decorreiation parameter A is increased, a time
w1ndow is produced within which the error-process may be cor-

.related at lag A and beyond its correlation remains zero. 1In

general A plays a role for_stability.“;With suitable time
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delays in filter design, causal approximations to delayed

version of noncausal impulse responses are realizable.

In Chapter 4 guidelines for the optimal selectibn of
the ALE parameters 4namely the number of welghts L and the.
adaptatlon step size’ parameter u are given by con51der1ng

two different methods. .

By u51ng the opt1mal value of L we can get the more

accurate expre551ons for A,

The results 1n Chapter 4 have clearly shown that the
longest ALE fllter 1s not necessarlly the best and that 51gn1-
flcant performance reductlons can be expected 1f 1ncorrect

fllter lengths are employed

: In Chapter 6 dlfferent a1g0r1thms results yleld diffe-
rent spectrum~asAshown 1n‘the 51mulat1ons The best one .is
Burg algorlthm wh1ch spec1fy the peak more clearly than others

in the spectrum
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+ A,T
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where .
Sin(W, - W)L/2
T, = ‘
1 sinqw, - W)/2
L Sin0i - W, )L/2
 sin(W, - W)/z
T =
5 sin(W, + W))/2
. Sin(W, + W_)L/2
4 sinqw, + W)/2
Since m1.+‘m2 = ;

Therefore, we can write
W, - W_ =m, AW = mZ(W1 - W2)
AW

Wy - Wy =my AW - W= -m(W -W,)=-n

W, + W_ = 2W, + m, AW ‘ " (A1.3)
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-5W_A . -jm,AW(L-1)/2 jm, AW(L-1)/2
_ a ‘2 , 1
- € A » T, e o

o HQ) + AT, e
3(20)) (L-1)/2  -j(*m. ,AW) (L-1)/2
1 =280
+ AT, e . e :
£33
o 3(2wy) (L-1)/2 -+j(myaW) (L-1)/2 |
+ AyT, e e (Al.4)
o SJWA L -imyAW(L-1)/2
Hl(Wa) = § - [AlT1 e
JAW(L-1)/2  -jm,AW(L-1)/2
+ A2T2 e _ e . ‘
WA -im AW(L-1)/2 e AW(L-
- jAW(L-1)/2
= e e . . (AlT1 * AT, e ' ]
-§W_A j2W (L-1)/2
» HZ(wa).= e [(A3T3‘e | |
| F2W, (L-1)/2  Lspwcr- -jm, AW(L-1) /2
Y 2 ” e+;AW(L 1) /2 e 2
~JW A -jmyAW(L-1)/2 i AW(L-
H(W)) = e e . AjTy + A,T, 700
: JW, (L-1) W, (L-1)
"1 2 joaW(L-1)/2
+ AS?S e + A4T4 e | e
Ciw A WA
. N el T Yi,e 2 Sin(myAW)L/2
My = - 2 |

' ' 2 < 2 2 R
1’Y12Y21. L&ZSO /61 L+26O /62 Sln(mzAW)/Z

PN
-
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ejAW(Lfi)/Z

Since . Y12 = 1 > 5 » Sin(AWL)/2
| : L+28 “/6.° - sin(aW)/2 |
1 o-iAW(L-1)/2
Ypp = — ‘Sin (AWL/2)
A Le28 /s, _ Sin(AW/2) RO

s 278 2 _ Sin (AWL/2
| Let Lo#w28,7/8,7 = My M3 = sTnaw/Z)

2 2 _
L+ 260 /61 = M

1
Thereforé
Yiz " M = Y M
B - 2 M2
BV [sin AWL/Z)]_ M
T12¥21 T MM, §IH%ZW7§Tf4‘ MM
- W, A
: AJWlA ¥ eJ 2 ,
“A.T. = 1 e - 12 T
171 2 M. M. 1 -
R M |
MM, |
. WA jsz}
AT . 1 M, e = Myvyp © T
B VI VAR Vi .
~ 172~ M3
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_ U3 jAW(L-1)/2
Yiz2 ~ M ° ,
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QIMW(L-1)72 o o1 e o Y21 T eJAW(L-1)/2
2°2 w2 LTy » 2
1 . 3 1 1
MM,
‘ WA JW A . »
- _ 1 M, e - M,Y,q € T, LJAW(L-1)/2
- 2 - o | -
MlMZ-M3 . . ,
' WA j(W.A - AW(L-1)/2] . i
- 1 [Mle 27 M3 e L ;TZeJAW(L 1)/2
= L |
MM, -M,
- -3WA -3 (AW(L-1)/2+W,A
W, (L-1) 1 Mee © T - Mge : W (L-1
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33 T Y om.2 3©
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FW. A
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a 2 . 1
— M,T.e

o e e .
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JAW(L-1)/24W,8) 3B, .+ W(L-1)/2

- M3T1e | | + leze

j(Wyb) jAwl(L+14A)
‘—;M3T2e B + MZTse‘ ,
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where  © 61 = WlA
92 = Wb
0, = AW(L-1)/2
0, = Wy(L-1)
8. = W,(L-1)

I 08N (Le1) /2) je

| | 1
- - .(MZTl - M3T2)e

i}

MM, - M

H(W,)
: . 172 3

i(8,485) 3(8,-87)
(MlTZ_MSTl)e' 0 + M2T3e ,

+

5(6,-6.-8.) 38, 'j(85-8,) j(0:+0
4772773 2 MT.e 3 1)e 57°3

- M. T.e 374

33 v (MyTye

Note that; since -

- - “1) .- Sw L) L 2y
6,-6,+6 .»Wl(Lul): WZA‘ Wi _+_2 (L 1)

5

4 "2 73
(W, W) o
= L 2 (1) - Wy
" :
“and
r » _ Wl “Wz ' '
e +93-92w=:W2(L—1) * z~(L-1) - 7—(L'1? - Woh

LW AW,
= ( 12'2)(L—;) - WyA
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therefore h
05+050, = 0,-6,705
and we can rewrite H(Wa);
IO maN (1 /2) iy
H(W,) = _ . (M, T, -M,T,)e
' (MyMy - Mz7)
‘ j(62+63) 7 j(64-61)
v (MyTp-MgTyde 77+ MyTge
: | j(8,-0,-82) ’ j(6g+2
* (M T, -MTo)e -7 M3Tye
Similarly,

8,767 = 85+20,-6;
0NN /2) jo,
o) - ——— oM.

(M My - Mg7) ’
(6,+6.) j(

b (MT,-M T e 2 3 4+ (M, T -MT,)e

. . | §(6,-6,-6,)
ot (4T, MgT e
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. je j(e.,+6 ) j(0,-96,)
_e 1 - 72773 4 "1
HWa) = = [plev ¥ P2t - T Ps®
5(08,-6,-6..) | ;
+ by 4792703
where ‘
= w A+m AW(L 1)/2 V
. ; R 2 —~
R = Mle M,
Py = MpTy - MgT,
Py T M1T2 T MgTy o
Pz = MyT; - MiTy

Py = MyT, - M;To

o N2 22 o2 22, - R
,,ﬂ1H(wa)l = pj° +\924“+,p3 +;p4: +”2[p192 Cos (8,-06,+6,)

PPy Cos(e

3 Cosk(‘6.1+6 -6

1% 93'92*64)'f'°193 17%4)

++plg4 Cos(e +63+6 4) + p2p4 Cos(e +63+63+62-e4),

+ 9293 Cos(e +93+e 4)]

By neglectlng the terms Ty andVT4 we found the value

of Auas follows

g (2k+1) _ (L-1)°
AW 2




APPENDIX A2

, For two 51nu501da1 51gnals, the transfer functlon of

ALE can be glven as follows

¢ " le 1 " - (A2.1)

By neglectlng the COntrlbutlon of negatlve frequency

components we - can approx1mate (AZ 1) aszi;f

1 . jw.kx W,k . ﬁ
e 1 v aye’ 2] o TIWIRHA) g 9

The‘errorhwhich is“Cansed’bY”ALE"conSi§t$ of’three"w'

componénts‘ The flrst component is due to wh1te noise sprea-
dlng, the second and third components are the attenuatlon of
the first and second 51nu501da1 51gnals. This situation can

be formulated by (AZ 3)

.H.

) 2
vV = ..2_. TT|1 H(w)l dw '+ |1 H(wl)l |1:H(W2)'|2
a mT O '

(A2.3)
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where 602 is the power of the white noise. Glz.and 612 are
the power of the first -and” second sinusQidai siénals respec-

tively.

Our aim is tomminimize V with respect to A. At this

point we make an approximation again. Assume that 602<<612
. . : / .
and 602<<622. Therefore by neglecting the first term of
(A2.3) we find | |
dv : o ca - }
gr = 0 = R [1.- H(WI}I“HK R, [1 - H(W]
. 7 d k
+Ip[1 - BV ] g5 I [1 - HW))]
o d S
+ Re[l\j H(wz)],aK-Re[l - H(W,) ]
- d' ; o o
+ 1 [1 - HW)I a5 Inl - HW)] | (A2.4)

The real and imaginary parts of the transfer function

can be giVen-by (A2.5)

R HWT -

= Cy *+ C, Cos [AWT(L-1)/2 + a]]
1) = - ¢, sin aW([L-1]/2 1)
“ARe[H(WZ)I = Cy * Cy Cos AW[(L-1)/2 + A] ~ |
1_[H(W,)] = €, Sin AW[(L-1)/2 + ] (A2.5)
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where

a

. : 2
L(L + 2502/&22) i [Sln AW L/Z]

Sin AW/2
! 1 2,2 /2]°
2. 2 SinAWL
[L +28,%/8, 1[L'f 28,7784 I - [ SlnAW72]
© . SABBWL/2 (., 55 2,4 2y SindWL/2 '
Ca- SinAW/2 o '"17 .. SinAW/2 . . )
Gy = 2 _ . 7_
2,0 2 2, 2 {SlnAWL/Z]
(L o+ 28,7/8,") (L + 28,7/6:7) “SInAW/2
| 2, 2y SlnAWL/Z] .
e A B ﬁ~{"IHKW77“ .
3 . ~
. 2
2, 2 2, 2 SlnAWL/Z]
(Lt 28,778, 0 (L + 28,°/857) [m‘mi—
S _ _SinAWL/2 2,. 2
‘4 - . ,
e o - . 2
S 2,0 2 2,0 2¢ [SlnAWL/Z]
(L +28,7/8,) (L + 28,7/8:") - | SToaw/z
From (AZ.4) we have
%% =0 = f[clc2 + C3C4] Sin AW|(L-1)/2 * A] (A2.6)

- Therefore, the bptimum value of A can belgiven

[

A+ (L-1)/2 = (2k+1) o (A2.7

- (A2.7 is identical with (Al.17).



APPENDIX A3

The optlmal value of A for the case of mu1t1p1e 51nu-
501da1 average error variance for N 51nu501da1 51gnals can
be wrltten as i” -

S 2 o

21 ‘o, - . g

262 (a3.1)

1 - HGw) |

, II"M =z
(=)

In a 51m11ar manner as in Appendlx A2, we try to mini-
mize V with respect to V by neglectlng the first term in
(A3.1) . The_transfer functlon othLEtfqr,N 51nusolda1:slgnals

case is as follows

HOO) = 3 a2 (07 (A3.2)
- k=0 ‘
where
2N Wk 3 .
ay =% An e U = ‘
I t

qurom the formula Wthh is related to the A and Y
we can flnd H(w) . But 1n here we want to make an approx1ma—
tlon by assumlng L is very large | Then Y >0 for a11 n and
T, the An unqougle_andvatejglven'toAalgood approximatiqh by 7

132
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- ; '\;jWnA. . W R C
: Anf= e - ‘g=1,g;...,2N__WL(A3.3)_‘
: L + 26 /6 F SR T B ' B

ﬁquatioh”(ASfST‘is:idéﬁfical tbwtﬁeﬁéxpresgion"fdr the ampli-
tﬁdé%of the"méaniétéady state ALE implﬁéé¥rés§bﬁSe for one
éinﬁsoid‘at W in white noise. Therefore the frequency re- .
sponse of the steady state ALE whiéh,ﬁill be*déhoté& by H*(w)

~can be simply expressed in the term of the A:

SRS 1 :
CHE(wW) = 1 ay e dW(KTAY
- k=0 . —
N AL S
_ 5 A e—JWA 1l -e

‘ .e. e A3.4

As L becomes 1arge, so that (A3 3)- 1s va11d H*(w) is given to

a good approx1mat10n by

N 3 O ) -ch +W)L
- "o
N eJ(Wn-W)A 'i~— eJ(Wn-W)L
+ L — — (A3.5)
‘n=1 ‘ I, -W

2 2
L + 26.0 /Gn 1 - e

Equation (A3.5) corresponds to a sum of bandpass‘filte;s

(centered at-+ Wh) each having a peak vaiué;giVEn'by

"(L/Z) SNRn/((L/Z)SNRn + 1) | "(A3.6)
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2

'where SNRn /6 2

o+ As ‘Lol e a11 of the peak values in (17)
approach 1, and the‘ALE becomes a 11near superp051tlon of per-
fectly resolved bandpass filters, each with unity galn at its
:frequency Cautlon mus t- be exerc1sed 1n ch0051ng L however,
because as L 1is 1ncreased the welght vector noise. is: also
increased. | Therefore, in practlce,_a value of for L Wthh

prOV1des a trade off between welght vector noise and enhance -

ment ab111t1es should be chosen as in Capter 4
‘Aédindby returning to (A3.5) we have

1#j(WﬁfW}{A+L-1/Z]’ Siﬁ(wh+wa/é‘

H* (1)

- .
n=l |, 542,52 - Sin(W *W)/2
N eJ(Wn‘W)[A+L'1/2] Sin (W _-W)L/2
¢ 3 — — 2 (as.7)
p=l, ¢L~+f2662/6h?% eS;n(Wn-W)/Z

From-(A3;7y=we ¢én find‘the‘realjahd imaginary'part of H(w)

respectively, as follows:

2
R - Z2,. 2
1 Slncwnfw)/?i, S Lov2s, /6n,

N Sin(W *W)L/2  Cos(W_+w) [a+ 121
T _ '

n

L-1

N . Sin(W -W)L/2  Cos(W_-W) (a+
z | : (A3.8)

SR . _ ' o 2, 2
- n=1 . Sln(Wn w)/2 L+ 260 /on
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e N “Sin (W_+W) [a+ E%l] Sin(W_+W)L/2
I {Hwlr= = - — T
. o n=1 I+ 28 2/ 32 Sln(;an-W)/zm.
-0 , o

I; N Sin(W fW)[i+’L'I] .«Sin(W -W)L/z
LN L iy N N
© n=1 L + 26 2/6 2 ;Sip(Wn-W)/Z

’ (o} - n -
| (A3.9)

Now our problem is a simply traditional minimization of
- (A3.1) with respect’to>A and it is given in general (i.e.,
~not neglecting the first term in (A3.1)) by (A3.10)

8 2 2w

_ _ . g _ ’ d -
=0 = —g— of R[1 - Aw)] 5 [1 - Hw)]dw

B2

+ 2

™M

- i d
R([1 - Awy)] Ery [}‘iﬁ(wi?]} (A3.10)

i=1

‘and-by neglecting the first term (A3.11)

N L '

;%%’— 0 = zl R [1 - H(w;)] %K [1 - Hw;)]

’,-' -n= E - . ) : .
Lo wepl - §ol- Bl @sa

and from (A3.11) we find the statiqnaryipoint'of’it.t

W
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