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ABSTRAcr' 

In this work,the adaptive discrete-time, linear non-

recursive filters (or estimators) designed by the Least Mean 

Square (LMS) algorithm are investigated. 

The dev~iopmeni of .adaptive technique~ for ~sti~ating 

the parameters o£ sin~soidal signais in white noise is i~por-' 

tional Least Mean Square (LMS) adaptive filtering and some 

other newly developetl procedures of adaptive spectral estima

tion of ~iscret~ time series arepresented,i~ this ~hesi~. 

" . 
An.adaptiye .filter configuratio~ known as the Adapti~e 

Line Enhancer (ALE) originally sugg~sted by Widrow t11 for 

the detection of sinuso~dal signals in wide band noise is stu-

died in detail. New expressions related to the decorrelation 

parameter for the cases of one, two and multiple sinusoids a~e 

obtained. 

This thesis also investigates the method in [10]' f6r 

eliminating sinusoidal or other periodic interferenc~ corrup-

ting a signal. This task is typically accomplished by expli
\. 
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citly measuring the frequency of the interference and imple~ 

menting a notch filter at that frequency. 

For the colored noise case, the optimal filter length 

for ALE is obtained. by m~ximizing th~ SNR ratio of ALE.~ 

The + estimation in LMS algorithm will be better if 

the estimates of the tap gain coefficients are better. Better 

estimates are obtained by running the LMS algorithm longer. 

Therefore, it is useful to have a rapidly convergent algorithm 
" , 

and so called Ladder-or Lattice £ilter. For that reason we 

introduce the Lattice Filter Implem~ntation of the general ALE 

.as in ~6]~ Also a class ofita~le and efficient recursive 

lattice methods for linear prediction depending on the choosen 

reflection eoef:ficie~ts.' Computer simulations are also per

formed to discuss everyth{ng in the thesis~ 

. '. 
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OZETCE 

Bu tezde kucuk kareler (KK) algoritmas~ ile cal~~an 

uyarlamal~, kesikli ~amanl~, doirusal, transversalsuzgecler 

incelenmektedir. 

Beyaz gurultu icindeki sinusoidal i~aretlerin parame~ 

trelerinin ke~tiriminde kullan~lan uyarlamal~ tekniklsrdeki 

geli~~eler, bircok uygulamada 5nemliolmaktad~r.Bu sebeble; 

bu tezde istatistiksel' bak~mdan duraian i~aretlerin kucuk 

kareler ile uya~lamal~ suzgeclenmesi. vediier'yeni geli~enke

sikli zamanl~ serilerin uyarlamal~ g5rutige kestirimleri sunul

maktad~r. 

Widrow taraf~ndan beyaz gurultu icindeki sinusoidal 

i~aretleriri se zmesinde :kul.lan~lan, . uyarlamal~ Cizgi kuvvetlen

.d£rici olarak bilinen, bir ce~it uyarlamal~ suzgeci uzerinde 

cal~~maktad~r: Bir, iki ve coklu sinusoidal i~aretler icin. 

yeni ilintisizlikdeii~ti~gen ifadeleri elde edilmektedir. 

Bu tez ayni z~manda sinusoidal ve diger d5nemsel giri-

~imleri eleme methodlar~n~ incelemektedir. 

l~g~n~n 5lculmesi ve bulunan s~kl~kta notch suzgeC'gercekle~

tirilmesi ile elde edilebilmektedir. 
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i§aretin gfirfiltfiye oran1n1 ~nbfiyfikleyerek, renklendiril-: 

mi§ gfirfil tfi ortam1nda, uyarlamal1c;izgi ku'vvetlendiricisinin 

eniyi sfizgec boyu elde edilmek~tedir. 

Sayet kazanc katsaY11ar1 mfikemmel ise, kficfik kareler 

kestirimide mfikemmel olacakt1~. ideal kestirim, (KK) algo~it~ 

mas~n1 uzun sfire geci§tirmekle elde edilebilmektedir. Bu 

sebebten, orfi sfizgec diye adlan1r11an ve sfiratle yak1nsayan 

bir algoritma kullan1§l1 olmaktad1r. -Uyarlama11 cizgi kuvvet-

lendiricisinin orfi sfizgec 'olarak gercekle§tirilmesi yap11a.:. 
} 

bilmektedir.Ayni zamanda verimli 'yans1ma katsaY1lar1 ve OD-

lar1n ozyin~li denkl~mleri verilmektedir.- Bilgisayar benze-

timleri keza tez icinde yeralan dfi§fincelere fikir vermek 

amac1yla yap1lmaktad1r. 
- . 
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INTRODUCTION 

. ~ . 

Carrier detection and estimatiori is based on the spec

trurillor power spectral density (PSD). Estimation of'the p'ower 

spe~tral 'density: or simplY,spectrum of discretely sampled de

terministic and' stochastic,'processes is usually based on ~pro

cedures employing the' F~s'tFourier Transform (FFT). 'This 

'approach to spectrum analysis is computationally efficient 

and produces reasonable results 'for'a'large class, of signal 

processes. In spite 'of these advantages there are several in

'herent performance ,limitations 'of the FFT'approach. The most 

important limitation is that :of the· frequency resolution , i .'e. , 

the abili tytojdistiriguish the' spectral' res~onsesof two or 

more 'signals. 'The frequency 'resolution in hertz is roughly 

therece~procal of the ,time interval in seconds over· which 

sampled,data is available. These performance .limitations of 

the FFT, approach are particularly troublesome when analyzing 

short data. records. Short data records occur frequently in 

practice becau'se many measured proces'sesare br:Lef in dura

tion or have slowly time'varying spectra that may be conside

red constant only for 'short records . 

In an attempt to alleviate the inherent limitations of 
) 
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the FFT approach many alternative spectral estimation procell 

dures have been proposed wi thin the .last decade .. 

Modern spectrum. estimation techniques are;based on 

modeling of the data' by a small set of parameters;, ... When the 

model is an' accurate· representation of the data, spectral 

estimates can be obtained whose performance exceed that of the 

classical FFT', estimator. The improvement in performance is 

manifested by'higher resolution. and a lack of side lohes. It 

Should also be emphasized that in addition to an accurate mode 

of; the data, one must base the spectral'estimator on a good·· 

estimator 'of the·model;paramters~ Usually this entails a ma

ximum likelihood parameter estima·tor. If the model is inap

propriate, as in·thecas·e of .an.AR model for an AR process 

with additive obser.,vation noise, .poor ,{biased} spectral esti

mates will result. If the.IIiodel·is,.accuratebut:a poor sta

tistical estimator.' of the parameters is employed as in the 

case of the ARMA spectral 'estimate using the' modified Yule

Waiker equations poor (inflated variance) spectral estimates 

will also resutt~ 

However, the most common analysis techniques have 
i 

been the autocorrelation and covariance methods of linear pre: 

di~tion in which the observed signal is modeled as an.AR (all; 
I 

pole) process. . As typically implemented these are block data., 
I 

structured approaches which create a whi tening or inverse fil~ 
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,'~:. ter for the available data·block. ,These tech:niques also as

sume that the data are, stationary d.llring the time window in 

which autocorrelation measurement are, tak'en .. , However, signal 
, • ~ ". \. -, >'. • '. ' 

statistics may not remain, stationary. Also inste,adof block 
, . 

'processing time series data in the method of linear prediction 

,the inv~rse filter can be, implemented as ,a continuously up-
l .." •• 

dated all zero adaptive transversal or adaptive lattice struc

ture. These structures have: receive'd considerable attention 

recently., The usual', approach .to. their derivation. 4as 'been to 
, , 

use a noisy gradient descent algorithm to ,adapt t!Ie"filter 
-: ",' . 

. coefficients toward 'their "optimal" values under a', minimum 
- • ~'.' ' , ' ,. ,,', ' j • • • 

mean squ.are error perfromance criterion. 

Adaptive filter,isa ,lear.ning,machine. In the design 

of optimum sy~ terns ,c. a, c<?ri1plete ~no\'lledge 0# the model is as-

.. sumed.· Ln mas t':realis tic\situa tions.such. a pr:io'riknowledge 
, " ~ i, • ~, 

wi th' an. incomplete. model knowledge. Sinc~ the design' is done 
, • ' , ' • \ - ',~. > • 

while data is being taken, it constitutes an. adaptive problem 

ln adaptive p!oble~s we want t'o build a system (filter) to 

operate efficien~ly in an unknown, or changing environment. 

The adapt:ive sy~tems have the unique capability of ,operating 

without a"':,totalprioriknowledge of thei r input signal statis 
, ,'- _., '. ,-'. -" ' 

tics. and thus ,have been of cO,ntinu.inginteres t to scien id:s ts 

for the last years. 
!'. 
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The tra,di tional form of the adaptive LMS filter is the 

tapped delay-line prediction" error filter. Thefunc tion of 

the LMS a,lgori thm is to adjust the weights adaptively in the 

absence of the a priori knowledge of. the input statistics to

ward their optimum values. In this. respect LMS fil ters are 

adaptive Wiener filters [3~ or as in [36J adaptive line en-, 

hancers (ALE).' 

'ALE is a prefilter or an adaptive digital transversal 

filter that is designed to supress'::broad-band components in 

its input while passing narrow band components with little, 

attenuation. 

In Chapter r, the adaptive transversal filter is intro-. 

\duced. The fundamentals'oi discrete-time transversal filters 

and, the related Wiener filter theorY',re's'Ultsare investigated. 

The oper~tion. of.L,MSLfilte!s.:1'li th station"ary:stochastic' in
puts is studies and the recursive equation of the weights is 

obtained. 

.' : 

In Chapter. 2, the steady state' behavior of the adapti vel 

line enhance' (ALE) and its. implementation for detecting the 

sinusoidal signals in broad band noise is analyzed.' The de

correlation parameter b. is analyzed and its optimum value for I 

the cases of' one,' two and multiple sinusoidsis obtained. 
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In Chapter 3', a class of notch filters is derived to 

eliminate'sinusoidal or other periodic interferences corrup-' 

ting a ~ignal, while analyzing LMS-ALE adaptive notch filter, 

the optimum value of ~ which was 'found in the, previous chapter 

is used. 'W~ also . investigate a constra'ined recursive. adaptive 

filter and'its advantag'es. At the end :o'f 'this chapter, we 

introduce sequential regression (SER) adaptive notch ,filte,r 

. and we 'made a comparison. between ,.LMS'and 'SERadaptive notch. 

filters. 

In Chapter 4 we ·investigate the optimal filter length 

for ALE by considering differeIitmethods .. First method is 

based on the maximization of the SNR ratio for .whi te noise 

case. 
.. . ", 

the ALE. The properties of the weights of the ALE are' used 

to determine'the detec'tion system'. The' bptimal' fi1 ter :iength 

is found so 'as "to:bptimizethe detecti'on ,performance :,of ALE~- "; 

The last method is based again on the maximization of the SNR 

ra tro 'of ALE for the colored noise case. 

In Chapter ,5 we introduce" the adaptive lattice filter 

configuration. We also point out the advantages and necessi-
. . 

, 

ties of using the.adaptiv~ lattice filter. Thederi va tion of 

~ step predictor in lattice form is given. Also we investiga' 

the case of whitening or inverse filtering: 
" ' 
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In Chapter 6 a class of reflection coefficients is 

discussed. Also their effects on the stability. cjf the fil t,er 

is investigated. 

. ',;. 

In Chapter 7 we analyze the recursive estimation of 

the reflection coefficients. The aim of this chapter is to 

inake an adaptive filter very sensitive to the changes in the 

signal. Two methods dealing with this situation are presen

·ted. 
: ~ / 

Chapter, 8 summarizes the conclusions of this study and 

gi ves some sugges ti ons :for further research. 

'.' • .1 ••• "." ,," "'pr, 
. ,~,;; 

;; 
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CHAPTER 1 

ADAPTIVE TRANSVERSAL· FILTER 

The term "filter"is often applied to any device or 

system that processes"incomi~g signals "or other data in such 

a way as to .elimina te noise or smooth the signals or identify 

each ~ignal.as belonging to a particular class or predict the 

next input signal from moment to moment. 

", 

In the· design of optimum 'systems "a complete knowledge 
. . . . . 

of the system. model·is assumed .. In most realistic -si tuations~ 
'. ,',' < ~ ~ -: .\~. ,~--'. ___ '.,., .' f--:~~' ;'~,: 

however,·such a' priori" knowl.edge is not 'available and this 

fact nece~sit~te~~'~h~-: de~ign of o~timum: systems wi th an i~c'om- . . 
pi~t~ model" knowle~ge / Since the design is done while data 

is being taken, it constitutes an adaptive problem. In adap

tive problems we want to build a system (filter) to operate 

efficiently' in anunlmownor changing environment. 

This thesis presents an approach to signal fil te-ri~g 

using an adaptiv<: filter that is in some sense self-designing 

(really self optimizing)~' The filter to be considered here 

7 
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consists. of a taI>pe,d delay line with variable weight (vari

able gain) whose'-iriputsignals are the signals at ,the delay 

line taps,' a summer, to ada the weighted signals and a mecha-

nisIn to adjust them automatica~ly.. ,The filter is .. adjusted so 

as 'to provide tl,1e best estimation o~ a given signal as a 
,_ • .' _ J_ :,' • { '. ~_. 

we~ghted ~um of,' a, set. of inputs. "This is' achieved by' con'ti-' 

nuously updating the ·fil ter weights ,iI} ~such~a ~way ,as tor~

duce the' average estimation error power in each iteration . 
.... . 

. : - . '- -" , 

Among the stochastic approxima.tion methods used in 

adaptive filtering ,the ;simp'lest and themosf conimorily us'e,ci· is 

least mean squares ,(LMS) a~gorithmin"which the we~ghts are 

upda ted,' in the _nega:ti,ye direction of '<the gradient ,Of the squar l 

, 
, , 

of'asingle error.'sample. Two kin~sof processes take place 
'-. "-. 

in the adaptive filter, training: and operating. ,', The training , 
- ' 

(adaptation pr~cess) 'is' conc'erned with \iajustirig'the' weights . 
. " .. , -. . ~ 

'The opera tirig'process consists .in' forming,t:he"output signal 

as a weighted sum.of' 1;-he ~e,~ay line tap ,signals using the 

weights resulting from the training pr~cess . 

. '1 

1.2. THE FILTER STRUCTURE 

The'analysi?·~.of the cadaptiye . fil ter can be developed 

by considering th:,e adip-tive linear systems as shown in Figure 
, : - ~ - ,. ",-

1.2.1. 



X2 (k) 

. 
. . 

~'" ' 

.; 9 -
." 

t--__._ .... y (k) output signal 
j 1 

e(k) estimation error 

desired response 
': ,. 
~' ':.'. 

FIGURE 1:2.1. The Adaptive Linear Combiner. 

In the systems of Figure 1.2.1 a set of stationary in

put signals ~sweighted, and sUmmed to form an output signal. 

The input signals in the set are assumed to occur simultaneous, 
, , _ ~ ')." 

1y and discretely in time. 

, , .' , " . - '", 

,The s~t ~f. ~Il:pu~ signals ~t·.the "jth ~amp1ing ,instant 
'." ..', ,.' ,,_ r" -. ;"'.; 't :,.. > ~ .,' 

are given by . - ; ,.' 

The set of weights is designated by the vector, 

The j th output signal 

(1.2.1.) 
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This can be written ,in vector form as 

_. (1.2.2) 

.,;'" 

Denoting the desired response fpr jth set of signal as d(j), 

the error at jth ,sampliI1g instant 

~ e(j) ,= dO) 

The. square of this error, 

e~(j) = d 2 (j}_ ,2d(j)XT~jJa(j) + 

aT(j):X(j'yxT (j)a(j) 

(1.2.3) 

- (1.2.4) 

As~uming' that d(j)and X(j) are stationary processes, the 

mean ~qu<l:reerror (MSE)is given by 
-, 

.- . 

(1.2.5) 

'" 
i. " , , I' 

where P is the' cross correlatiori vector betweenX(j) and d(j) 

given by 

P-= 13{d(j)X(j)} , (1.2.6) 

and R,is the symmetric and positive definite ,input -correlation 
. "-.-

matrix I -: 
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(1. 2 • 7) 

It 'cailbe observed from (1. 2.5) that the MSE is a quadratic 

function of the' weigh ts. " 

The .'MSE performance' furl'c tion may ~ be visualized cas :a 

bowl' shaped' surface namely, "a parabolic function of' the weight 

variables. The LMS adaptive process constitutes of continous

ly search~ng the minimum.point of this parabolic surface. 

This can be accomplished by means of the method of steepest 
. \ 

descent. The :method of steepest descentu'sesthe 'gradient of 

the' performance function in seeking its minimum. The gradient 

at any point on the parabolic surface may be obtained by dif

ferentiating the MSE,functioli' 'of equation (1.2~s) withre

spect to the weight v~cto·r. The gradient is 

,,'1 
.'-' . 

-2' , 
V (e. (j)).' = '-,2P + :2Ra c. (-1.2.8) 

The optimal weight vector a* which yields the minimum MSE 

(MMSE) is obtained by setting the gradient to zero: 

a·* =R -lp (1.2.9) 

Equation· (1.2~'9). is the ,Wiener-Hopf eql!ation in the discrete

time case. An expression for the minimum MS'E may be obtained' 

by substituting (1.29) into (1.2.5) 
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(1.2.10) 

Defining _ 

v = a - a* (1.2.11) 

as the weight error vector and inserting (1. 2 .10) ,into (1. 2.5) 

and using (1.2.11) one can express the' MSE as 

e = e. + VTRV ml.n (1.2.12) 

\-' 

Since R is symme tric and pos i ti ve definite , it can be expres-

sed as ' 

'R (1.2.13) 

where Q is'the orthonorma1moda1:matrix of R, and A is the 
, -

-·'dia.:gona1 ma trfx :;which·.consi~ ts of ;theei'genv~lue '~6f' R' which 

, " 

are real, and 1>osi tive: 

-

(1.2.14 ) 

Hereafter the matrix QT = Q-1 wi11 be used to trarisf6;m the 

vectors X(j), a,V into the "primed coordinates" whenever it 

will be convenient to do so. 
" 

The transformed wiehgt- error vector is, given by . 



. " 
V" 

" 

- --13 

T . 
= Q ,V. 

( 

(1. 2 .15) 

8ubsti t:uting (1. 2:15) in (1.212). and using (1. 2 .. 13) the MSE 

is obtained as 

e = . + V~T k V' emin 

or 

N 
e = e _ + r • Ap V ,2 m1n ' . p p=l . 

where V ' 1S the P.' th entry of V' • ,p 

1.3. THE LMS Al(30R I TH,M 

; . ;"," 

(1.2.16) 

(1.2.17) 

The purpose of the adaptation .process is to find an 

. exact or at. least an app:roxiniat~, solution ofthe':W1Emer-Hopf 
" , "J .' 

equation (1.2.9). One way of finding the optimum weight vec

tor is simply ·to solve _(1. 2'i~). .Although this solut~on is ge

nerallystraigh~ forward, it could present serious computatiOI 

problemswhen the number of weights N is large: and 'Yhen input 

data arrival rates are high. In addition to the necessity of 

inverting an NxN matrix, this method may require as many as 

n (n +1) /2 autocorrelation and cross correIa tion measurements tl 

be made in order to. obtain the element of Rand P. 

\. 
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The LMS algorithm, first proposed by Widrow and Hopf. 

[33] is a well-known stochas~ic approximation algorithm which 

resembles the steepest descent method. The algorithm utilizes 

the estimated gradient for updating, since true gradients are 

not ·avi1ab1e in adaptive filtering. The estimate ·of . the gra

dierit in the LMS algorithm is the. gradient of the square of 

the single error sample at the instant j. 

One method for obtaining the estimated gradient of the 

MSE function is to take the gradient of a single time sample 

of the squar~d error, that is 

(1~3 .. 1) 

From (1.2.3) we have 

(1.3.2) 

-Thus 

vCe 2 (j)) = - 2e(j)X(j) 

The gradient estiinate of C1. 3. 3) is tmbiased as will 

be . shown by the following argument. _. For a given weight vector 

a(j) the expected value-of the gradient estimate is 
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E[VCe2(j))] = -2E{X(j)(d(j). XT(j)a(j))} 
.~ 

- - 2 [p RaJ (1.3.4) 

' .... : 
Comparing (1.2 :8) and (1 .. 3.4) we see that 

)1.3.5) 
.. ' , 

and therefore for a giv~n we~ghtvect?r, the gradient estimate 
- - 2' --
V[E (j)1 is unbiased. 

When usi1!g the LMS· algori thm, changes in the weight 

·vector occur alo1!g.the direction of the estimated gradi~nt 

vector. Accordingly, 

. '. ~'. 

where 

. .' 

a(j+l) = a(j) + p ij ~(e2(j)) (1.3.6) 

.' ..... ·tJ 
a (j) - we~gh t vector before adaptation 

a (j + 1) ~. we ~ght' '.vector afte~ 'adapta tio'il 

/1' 
p = scalor constant controlling tate of convergence 

and stability. 

-Therefore the filter we,igh ts can be computed us ing 

(1.3.6). Furthe.r details with the filter parameters will be 

taken in 'the -next chapters. ' 
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1.4. ADAPTIVE -LINE ENHANCER (ALE) 

In recent years there has be'en: increasing interes't, in 

adaptive filters for various signal processing applications. 

Here' we ides cribe an adaptive device -, ' known as' an adaptive line 

enhancer (ALE), for detecting sinusoidal signals in wide-band 

noise. The ALE was first proposed by Widrow [1] and since 

then has been studied by Zeidler [71, Griffiths [2], Treichler 

[12], Glover [10] , Nehorai and Malah '[621, and others. 

The generally' 'used form of the ALE is shown in Figure 

1.4.1. In. the ALE the second or reference input, ins tead of 

being separately derived, is a dela'yed version of the input 

signal ... · : The delayed -i'nput is processed with an adaptive trans 

versal filter and subtracted from the original input signal 

to produce the ,error-signa:1. 'The weighti~g coefficients of 

thefil ter are recursively adjusted by means of, (1.3.6,) so as 

to minimize the expected error power . ' 

.+, 

,~(k) " 

y(k) 

AL &0 RI1)IM 

FIGURE 1.4~1. Block Diagram of ALE. 

: .. ;.:. 



. '. ~ . 

( 

- 17 -

. The input signal is assumed to be of the form 

I 

X(k) ; S(k) + n(k) k; 0,1,.;. 

where the signal is· the sum of a number os sinusoids 

S(k) ; C· Sin (w. k + <l>.) 
111 

and n(k) is a zero mean white noise with 

(1.4.1) 

. Since a re ference s ~gnal in ALE is obtained by delaying 

the received s~gnal; therefore 

(1.4.2) 

-
fro some ~ > 1. Actually the choice of ~.; 1 is sufficient 

to remove correlation between the' noise component of the re

cei ved signal X(k) and the ,delayed signal X(k-~) and therefore! 

it is called the decorrela tion parameter. In Chapter 2, we 

will analyze this problem for the case of a single sinusoid 
• 

and the case ,<;>f two sinusoids:, in noise and will see that ~ 

also has a phase adjustment role. 

The overall transfer f~ction of the ALE between the 
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input and the error output is 

G(z) = 1 - H(z) (1.4.3) 
" 

where 

L-l 
H(z) = L a

k 
Z-(~+k) 

·.k=O· 

. and the {ak } are the estimated tap-gain coefficients obtained 

via the LMS algorithmr 

.- If we consider the inverse of the overall transfe"r 

function by putting Z = e jw 

.. 
The value of 

pew) = 1 (1.4~4) 
l-H(w) 

that yields max\P(w) \2 is taken as the estimate 
w 

of the fre'quency of the sinusoid. That is ALE is also used 

as a carrier detector. 
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CHAPTER 2 

DERIVATION OF OPTIMAL VALUE OF ~ 

2.1. INTRODUCTION 

During the operation of the adaptive line enhance (ALE) 

the delay causes decorrelation between the noise components 

of :the input data'in tw'o processor channels while introducing 
, , 

a simple phase difference between the sinusoidal components. 

The adaptive filter responds by forming a transfer function 

equivalent to that of a narrowband filter centered at the fre- I 

quency of the sinusoidal, components. The noise component of 

the delayed 'input is rejected while the phase difference 'of 

the sinusoidal components is readjusted so that they' cancel 

each other ~tthe summing function, producing a minimum eIror 

s~gna1 composed of the noise component of the instantan~ous 

input data alone. 

In the use of the ALE to de~ect sinusoidal singa1s in 

uncorre1ated or white noise any value of ~ of delay can be 

choosen. But in (36) ~ has a phase adjustment role which is 

better served by a choice ~ > 1. It is' normal to take ~ > 1 

becuas~ the coice of A = 1 is only sufficient to remove corre~ 

19 
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lation between the white noise component of the original ob

servedwave:form yet) and, that of the delayed reference wave

formy(t-fi) . 

The ALE can also be used to detect sinusoidal signals 

in correlated-or colored noise. In this case it is often ne-

cessary to>,choose a' large value of 11 to ensure decorre1ation 

between the noise components and phase adjustinent betw,een the 

sinusoidal components in the' two processor channels. 

.. . . . 

2i2." THE' FREQUENCY RESPONSE OF ALE 

From [71 it is seen'thatth~ frequency response of the 

,steady state ALE which will be denoted by H(w) can be expressec 

'" as follows: 

H(w) =L~l a*k'" Z- (l\+~) 
" k=O 

(2.2.1) 

where a*k\ is' th~ Wi~ner-Hopf solution of matrix equation. 

The form of the assumed solution for a*k forN sinusoi

dal inputs ,ofth~ form is given 

: .. :'" (2.2.2) 
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where for notational convenience. W is defined as -W n+N n 

In=1,2, ..• ,N), the Wn+N are thus the neg?-tive frequency com-

ponents of the inpqt sinuso~ds. In [7] ·the equation which is 

related to the An was given as follows; 

A + r 

2N 
E. 

n=l 
nlr 

Y ·A rn n 
e 

·W " J r U 

- L+20 2/ 0 2 
o 1 

·r=1,2, ... ,2N (2 .2~. 3). 

It .is 2N equations in th~. 2N constants' AI' A2,.;., A2N .· In 

(2.2.3) 0
2 n+N is defined as 0

2 n (n=l,2, ... ,N) and Y rn is given 

by (2.2.4) 

1 
2 

- . 0 L+2 --0 ... · 

."62" . r 

(2.2 . .4) 

.;·A number of interes tiIig analytic properties of a*k can 

be.observedthrough (2~2.2J 'and (2~2~4).· Ffrst(2.2.2) implies 

that when the input to the ALE consists of N sinusoids and 

additive white noise, ·the mean steady state impulse response 

of the ALE can be expressed as a weighted sum of the input 

sinusoids. From (2.2.4) it is seen that the coefficients Yrn 

j(Wn-Wr)L-,;.. ..J(Wn-Wr )· 
are proportional to (1 - e )/(1 - e ) which is 

the L poi~t Fpurier: trans from ,of exp(jWnk) evaluated at Wr . 

Note that from the form of Y it follows that A +N ='An .rn .. n 

. (n = 1 , 2 :, • • • , N) • This relation is of cours~ necessary to ensure . 
j 

that a*k is r~al~ 

! 
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CHOICE OF ~ FOR ONE' SlNVSOIbAL SIGNAL 

For 'one sl,nusoidal we can simplify the (2.2.2), (2.2.3) 

and (2.2.4) as follows 

(2.3.'1) 

" 1 SinWlL -jWl(L-l) 
= -----=---= ------ e 

L+25 ,2/5 2 SinW
l .01 

(2 .3. 3) 

Since there is one sinusoidal therefore the transfer 

, ,function of ALE at ,l'lqfrequency must be maximum, .. i. e., 'unity 
. . '.". 

gain. We can formulate this situation as follows: 

H(w) Iw~w 
. 1 

+ 1 

or' 

min 11 '- H(wl ) I and ~im 11 - H(w) I - 0 
w+w1 

Now let us find the expression for H(w1)· From (2 .2. 1) we have, 

L-1. . -j2W
1

Jc
o -jW~ 

H(w) (AIL + Al 
' 1 ('Q. 3. 5~ = L e .) e 

w=w' k=O 1 



Z3 

By putting the values of Al and Y1Z' we have 

. H(w1) 

Since 

Let 

ThEm 

= AIL +A1 

-1 -'. -= 
L+2~ 2/ 0 2 

. 0 1 

-jW ~ 
+ (e .1 

1 

1 

-j2W-L 
e . 1 -jW1~ 

-jzw e 

- e' 1 
'. 

-j2W1 ~ jW1~ e (e 2 1 '- !r1zl 

jZW1L 
.1 1 - e 

- L+zo
o

2/0
1

Z -l-'--·)-·Z-W-' 
- ~e 1 

- Y1Z 

'Cos2W' " .. 1 

; >JZW1L 
-e 1 P = -jZW1 1 - e ' 

C, 'I - CosZW
1 

L 
K = -----

1-·CosZW1 . 

"" 

'.' ." 

-jW ~ 
e 1. )L 

(Z.3.6) 

(Z.3.7) , 

. (Z.3.8) 
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(2. 3.9) 

2 -
T -K = "13 

.. SinW"l L 
R = ---

" SinW
1 

= T [tL-K) + R(l - i)COSW1(2~ + L-1)](2.3.10) 
13 

-
L)" SinW1(2~ + L-1) (2.3.11) 

After some manipulations we have 

" R~{H(Wn)} 
46

0
2 "Cos(2~ + L~1)W1 "SinW1 L SinW1 = 

61
2 

13 (1- Cos2Yl1) 

_ ; L : 0 ~ _ : (

6 
0 ~/ + 1 

1 - 61 

(2.3.12) 

and 

At "the freQuency W
1 

~ J(W1) must be real. Therefore 

d 
the im~ginarypart of H(W1} and d~ (1 - H(W1)) must be zero 
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-to minimize [1 ~ H(W l )] .. This condition gives us the following 

relation. 
,. 

(2. 3 ~ 14) 

and-

for k= 1·, 2, ... (2.3.15) 

Als'o in [36] the same condition was demons tra ted by a 

different procedure which can be summarized as follows. 

'. " 
Consider the average error variance expression 

1 2· 21T 
;- H(W) 12 dw 0

2
11 H(W l ) 12 V = 21T 

0 f.: 11 + (2.3.16) 
0 ·1 

0 

To find the lIlinimuin value of-V we must compute the stationary 

.points given by 
". -,' 

d 2 1 _ 21T d 
o = -IT = 0 ~ 21T f R~ { r 1-11 (W) ] ax [ 1-H (W) ] } d 

. 0 

(2~3.17) 

At this point we make an approximation.' Assllmethat 
2 ~ 2 

0:1 '. is large compared to ~-o and compute the stationary' points 

from the second ter~ only, giving 

. - .. \-\{1.NES\ 
. v • ("\ U·· 1>1'\J£RS\lES\ KU)UP 
BOGA7.\~ 1'1' , . ' , 
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Combining (2.3.12),. (2. 3~ 13) ,and (2.3.18) yields 

o 2 0 2 0 2 
._ 2W1 ~inWl SinWl L I 4 (~)2, +'2L 0 4 0 ;r ~ ~ 

.. 
0

1 1 - Cos .1 . ,1 

The stationary points are thus given by 

W (L'~ 2~-1) = kn o . k integer 

(2.3.18) 

SinWl(2~+L-l) 
= 

2Wl 

(2.3.19) 

(2.3.20) 

. ' ' . . J 

,It is seen from '(2.3.13) that the above condition gives H(Wn ) 

real. .... Furthermore, -it· follows from (2.3 .1oL. tha t sOlutions 
. -,.. .,' '.. . ~ ,':' .. - ~ 

with k e~en make the real' part: c'ioser to unity'~hen 'WlL< n 

. while odd.k should be choosen whenn . .::. WnL < 2n. However 

there is still freedom in the choice ofk. Since we want only 

integer ,values Of'Ll, it 'is natural to choosekso ,that Ll given 

by (2.3.20) is an integer. 

,., J,.r 
,', The ideal performarice of the ALE would of course be 

.obtained if· the inpu't 'sinusoid appeare~ at the predictor· out-: . 
-

. put ,with the,.same amplitude and phase, thus yielding minimum' 

error variance. This means that H(W) should be equal to unity 

0 
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at W=W1 and z,ero elsewhere. It is however clear that this is 

in general impossible to achieve when the noise variance is 

non-zero ,or 'when the observations are finite in number. 

2.4. 'CHOICE OF A FOR TWOSINUDOIDAL SIGNALS 

For the case of two sinusoids in white noise, from 
-

(2.2.2) .the·fi1ter coefficients are given by 

'where 

'-,AI = A , 3 = 

= -W 1 

1 
jWA, 

" 1 e 

L+20 2/0 2 
o I, 'L+20 2/ 0 2 

,. -. 0,' 1 

-L+20 2/012 
o ' 

Therefore the transfer function of ALE is given by 

H(W) 
L-1 [ jW1 k 

= E A e . 
k=O' 1, 

(2.4.1) 

(2.4.2) 
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If we assume two sinusoids with equal power, the transfer 

-function must have a deep null at (WI +\'[2) /2. But if the power 

. of each sinusoid is different the above condition is not valid 

~ny:more. We formulate a·new condition which is related to 

the power content of the sinusoids. We can write this . condi

tion as follows; (71 

If °1 
2 

°2 
2 thEm = 

~ ... 

Tlie 'other way to 

sion 

v = I ° 2 21T 0 
o 

= miri{H(W)} (2 . 4. 3) 

Wl +W2 
H( 2 ) = min {H (W)' } . 

minimize the followi~g average error expres-

21T' 
f v Il-H(W) 1

2
dw + II-H(W1) 12 °1

2 

(2.4.4) 

The value of ~ which satisfies the above conditions 

was found as follows: 

~ + (L-l) = (2k+l)1T = (k + 1/2)/~f 
. 2 ~W 

(2.4.5) 

. where k is any non-n~-gati ve integer such that (k+l/2) / ~f 

(1;;-1)/2. The results expressed by (2.3.20) and .(2.4.5) indi-



- 29 -

cate that it may be possible to improve the resulution of one 

and,two sinusoids in HeW) by varying the delay 8 so that 

(2.3.20) and (2.4.5) are'satisfied., We observed the above 

conditions by means of c0l!lputer:s~mulat~ons. This variation 

of resolution wi th 8 is similar to the dependence of the perio-, 

dogram resolution and FFT resolution of sinusoids on their 

initial pha~~ and' zero appending. 

For·the' details 6f the 'derivation,see Appendix A-I 

and Appendix A-2.' The procedures presented so far 'were based 

mainly on 'enhancirig the si:gnal. In a similar manner we can 

enhance the noise by using the adaptive notch fil te'r. In 
/ ' 

Chapter 3we will see 'this approach~ 

; ".' .' 

: ," 

" ,,', ,: l.~ 

" 



CHAPTER 3 

ADAPTIVE NOTCH FI LTERS 

3.1. ~NTRO~UCTION 

This section investigates a method for eliminating 
,,',' ," -'I, • 

sinusoidal or other' periodic interference corrupting a signal. 
., :. ,-

In general this problem can be solved by m~asuring the fre

quency of the interference and usi~g anqtchfilter at that 

frequency. In (10] Glover, uses an adapti v~, ,filter to elimi-
( :--, ".; .,'; ~ ~:,,';. ' ': :', ,: ....• ,,: ; . I .' ~ 

nate interference. 'The procedure is called the adaptive noise' 

cancelling and it is applicable when a reference input (desired 

input) is available which contains the. interference alone. 
. . v ,,', . , _ ~" 

The reference input is filte'redin.'such a way that it closely 
.,' " ~ + ••••• ",'" •• _ • • '_,..' • " • • •••• , • , • -.J' ~ .' • • 

matches the interfering sinusoid and 1S then subtracted from 

the primary input leaving the s~gnal alone. 

In this procedure, one of'the basic needs is to.have a 

very narrow notch, which is:'usually .. desired in order to filter 

out the 'in terfereI1ce wi thout dis torting s ~ gnal. However, if 

the interference is not precisely kriown and if the notch is 
, ., 

very narrow, the center .of the notch may not fall exactly over 

the interference frequency. Also there ar~ many applications 

30 
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where the interfering sinusoid drifts slowly in frequency. .A 

iixed notch can ·not work here at all unless it is designed 

wide enough fo cover the range of the drift. In such a situa- ~ 

tion' it is often, necessary to measure the frequency of the, 

inte'iference and then use a notch filter at that frequency. 

However~ 'the 'e'stimationoffrequency of several sinusoids, can i 
" 

require a'great deal .of calculations. 

Glover~ [10] proposed, an al terna ti ve"simp'ler me thod 'whicl 

can be used when a reference for' the interference is available: 

and makes measurement of its' frequency up.necessary. This re - I 

feren'ce is 'adaptively filtered to match the interfering sinu~ 

soids as closely ,as possible,al19wing them to be subtracted 

out .. 

Pri~ary 'input. " -. '". , ~ '" 

SIGNAL + NOISE .+ _---------...,.-------+\.}: }-----I~ e: 

Reference 
input 

Related 
noise 

Nl 

Reference 
'noi'se 

S +. R ' o 

ADAPTIVE 

FILTER 

-'-' 

Y 

error 

FIGURE 3.1.1. ,Adaptive Noise Cancelling System. 
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. An ,adap.ti ve filter. is used in adaptive noise cancelling 

(ANC) as shown in Figure 3. L 1. The primary input consists 

of the signal plus noise S+Ro· •. The reference input is· the-'.' 

related 'noise n l • . The reference n l is filtered to match Ro 

and-then subtracted.f~om the primary input. The error signal 

to the adaptation. algorithm is therefore the output'.of theANC 

system . 

.. In the broad band .case, the solution for the adaptive 

filter is a constant set of filterweigl).ts. Any deviation. in 

the weigh'ts after conve!gence to this solution is considered 

to be simply .noise . in the adapti ve.process. 

- . ,'. 

Whentherefe·rence is sinusoidal, signl.ficant time 

vary.ingcomponents in the weights . give rise to a tunable notch 

filter which is centered at· the frequency-of each reference 

sinusoid. 

There are three kinds of adaptive notch filter: 

. i) LMS algorithm by Glover 

ii) SER algorithm by D.D. Parikh, N. Ahmed 

iii) The constrained recursive adaptive filter by 

Thompson 

iv) LMS-ALE.and Lattice by. us with optimumb... 
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3.2. LMS-ALE NOTCH FILTER 

Notch filters are capable of eliminating (or reducing) 

s inusoidalin terferences by creating not'ches at appropriate 

places in the overall transfer function. The adaptive filter 

which is used as :a notch filter in here is a transversal fil-

ter. The filter input is the delayed version of the primary 

input. This sequence'is then applied to, an N stage, tapped

delay-line (TDL). The values at the N taps of the TDLat time 

k constitute the elements of the reference as a vector. 

'The adaptation algorithm most· often used to set, the 

weights of the, filter is the LMS algorithm [11 given by ~the 

following equation for the weights. 

L-l 
ak(j+l) = ak(j) +211 [X(j)X(j::-t.-k) ,X(j-t.-k)i~Ox(j~!ri)ai(j: 

for k = 0,1, .•. ,L-1 (3.2.1) 

where ak(j) is the jth update of the,kth we~ght of the ALE, 

~ is a s'ca1a'r '~epresenting the influence of the input X(j) on 

the (j +1) st update of ak'-and~ Land t. are respectively the num

ber of weights and'the decorrelation parameter. 

Since 
1-1 

e:(j) = X(j) - E X(j-t.-i) Wi(j) 
i=:O 

(3.2.2) 
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x(k) 

X(k) 

z-6. 

I; 

FIGURE 3.2.l. (a) 
(b) 

Therefore 

" .. 

- 34'-

N(z) 

(a) 

. FIR 
ADAPTIVE 

" FILTER 

(b) 

Signal 
Detail 

E(k) 

S(k) 

N(z) 

E(k) 

detection ~iih Noich~ilter 
for adaptive Notch Filter 

(3.2.3) 

Let's take theZ transform of Wk(j) 

(3.2.4) 

Let the input be of the form 

X(j) - C Cos [WojT + e] (3.2.5) 
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-, 
For generality, consider the (6+k)th element ·of a general in-

,'lput X vector, X6+k(j) with~arbitrary phase angle 86+k 

'0'" 

. (3.2.6) 

',. : ~ . 
for k=O,l,: .. ,L-l 

where 

86 +k - -W T[k+6] o. + 8 

Now we can,eJ(:press the input in an exponential form as follows 

c [ iW jT . i86 +k' '-il'iojT -i86 +k ] 
. X6+k (j) = 2' e 0 e + e e 

For the scalor form we can write [k takes any value 

and L-lJ 

-ak(j +1) = a~(j), + 211 's(j)X(j-6-k) 

or 

. ak(j +1) = ak(j) + 211 e: (j) X6'+k (j) 

Therefore the Z transform of kth weight is then 

,,"'" '. :-.. 

for k = O,l' ... iL~l 

" 

... 

" 

(3.2.7) 

between 0 

(3.2.8) 

(3.2.9) 
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where 

'c i8 11 k' ,-iW T 
Z {E (j ) X~ + k ( j)} = T [e Ll + 'E [Z e ,.0] 

and 

U(z) 1 = z=l E[z1 = Z{E(j)} 

NDW let us calculate 'the .output .of the filter Y(z). Since 

L-1 
, Y(k) - E" a'.(jJ X(j-ll-i) 

i=O 1; 

(3.2.10) 

and Z trans fDrm ,.of It~is seq~ences can be gi ve~ as, fD11DWS: 

Y(z) 
-jW T' 2j8

11
+i -j2W T ' 

UeZe D) {e " E(Ze D) + E(z)} 

L-1 jWDT' -2j8 11 +; "j2WDT 
. + ,E' U(Ze ){e' Ll.L E(Ze' )+ E(z)J}, 

i=O 

(3.2.11) 

By rearranging and cD11ecting terms we have 
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"C2L l -jW T jW T 1 Y(z) -. to' 2 E(z) U(Ze 0 ') + U(Ze 0) 

2 -jW T -2jW T L-l 2j6
ll 

. ' 
+ ~ U(Ze 0 ) E (Z¢ 0 ) }.; 

, +1 e ' 
i=O 

. "2 jW T 2jW T L-l -2j6 ll +i + ll~. U(Ze 0) E(Ze 0) }.; e (3.2.12) 
i=O 

~ 

The second and third terms in the expression for Y(z) 

are time varying terms and introduce at Y(z) unwanted .fre-

quency shifte~ component of E(z). The first term represents 

the time invariant part of the response from E(z) to Y(z), 

since ,only' frequencies of E(z) appear at the output. 

-
Now let ,us look at the ~xponentiai summation terms. 

Since we are ~sing TDL filter the 6ll +i arbitrary phase shift 

for the ith element of the X vector iswritten'as 

- a - W T [i + ll] o . for i=O,l, ... ,L-l (3.2 .. 13) 

Subs1:it.u~ ''; for Sll+i' the summations are easily found to be 

. where 

11.-1 '::'j2S ll +i }.; e 
i=O 

+2j [S-W T(L-l-ll)] 
_ . e - 0 f3 (W . L) 

0 1 
(3.2 .14) 
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From Ch~pter 2 we found the optimal decorre1ation para-
1, k1T'-' 

meter f:" is equal to 2" {W- - (L-1)} therefore by replacing it 
o 

with equation (3.2.13) we have 

+j 28 +j{W T[2l~+L-:1]} 
o " ' = e 

+j{WoT[-3L+31} 
e e 

f3 (W o,L) 

+j28 ~+j{3WoT(1-L)} +jk1T 
= e e e f3(W o ,L) 

(3.2.14) 

By rewriting Y(z) we have' 

Y(z) 
.. '-~. 

2 . - j W T - j 2W T 
.+ ll~ . , f3(W o ,L) A[lJ(Ze ,0) E(Ze ': 0.) 

., ..•.... 

jW T ,- , j2Wt;T, 1 
+ U(Ze 0) E(Z~ ) (3.2.15) 

Since ' ~ -is· exponen tia1term therefore it has' unity 

amplitude., Now we can build up "the relation between wanted 

~nd unwanted term and make an' approximation for Y( z). It is 

clear that the following statement is true for approximation. 

+jW'T f3 (W 0' L) 
Y( z) = i{U(Ze- 0 ), E (z)} If L «.1 

Y(z) = 
, ' . + j W T " + j 2 Wo T. . f3(Wo,L) < Y(z)=f{U(Z~o ),E(z),E(Ze )} If L > 1 
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I;rom here the number of weigh':ts .. L in the adaptive filter can 

be increased to obtain a better e(Wo,L)/L ratio. If the pro

per choice of parameters is made, the transfer function be-

tween· E(z) and Y(z) is approximated by an LTI filter. In 

Chapter '4 we analyze this problem which is related to the fil

ter length. 

Tf e(Wo,L)/L is very small we ccan write' the- notch fil

ter expression as follows \10 \ : 

H(z) 

= 
2 Z 

2 z; ...,; 2 Z Cos W·.T· + ·1 . o· .. 

2 (1 
2 

L~C ) 

(3.2.16) 

It is clear ·tha t this is 'the trans fer function for a 2nd order 

digital notcl.!filter .at.the frequency Wo·. The zeros of H(z) 
. +jW T . 

are at Z = e 0 ,precisely on the unit circle. 
2 

If llLC . « 1, 
2 

the. pol,e_J~ocations are approxima ted by 

Z::: (1 (3.2.17) 

The zeros lie.ontheunit circle at frequen~ies+Wo with the 

poles a distance approximately llC 2L/2 behind them radially to-
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ward the center of the circle. Near the frequency W=W H (zJ 
. 0 

can be approximated by the nearby pole and zero 

H(z) = z -
. C2L jWoT 

Z - (1 - y) e 

(3.2.18) 

The 3db bandwidth (BW) is then obtained by finding the 

two points on the unit circle which) are l2 times as far from 

the pole as they are from ·the zero and is given by [10] 

BW (3.2.19) 

.. 

3.3. A CONSTRAINED RECURSIVE ADAPTIVE FILTER FOR ENHANCEMENT 

OF NARROWBAND SIGNALS IN WHITE NOISE 

3.3.1. The Constrained Recursive Filter 

A constrained recursive adaptive filter can be used as· 

a notch fil~er and enhance the narrowband signals in white 

noise. Among the most popular of such filters is adaptive 

line enhancer (ALE) which consists of a linear predictor :with 

a tapped delay line (TDL) introduced by Widrow and studied in 

the previous section ~~ an adaptive notch filter. 

A recursive filter structure offers the significant 
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advantage of an arbitrary narrowband frequency response with 

only a few memory elements and weighting coefficients, but· 

the adaptation of those coefficients is much more difficult 

than for a TDL filter. 

The·recursive filter is as shown in Figure 3.3.1 with 

the transfer function of the signal enhancement filter taking 

the form 

Y(k) 

Signal' 
.+ White 

Noise. 

G(z) = 1 - H(z) 
! ".".. -

-.- . 

Notch Filter H(z) 
V(k) 

C(z) 

~----~ ADAPTATION 
ALGORITHM 

A(z) 

Bandpass Filter G(z) 

+ 

TDL 
Filter 

t 

(3.3. 1) 

e(k) 

Sup:ressed . 
Signal 

Enhanced 
Signal 

", ' .. -

FI GURE 3~. 3.1. A Constrained Recursive Adaptive Line Enhancer. 
. \, 

... 
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where 

__ 1 - A(z) H(z) - - (3.3.2) 
1 - C (z) 

with 

A(z) = a z-l + a z-2 + + 
~, -n' 

(3.3.3) a z 1 2 ... n 

arid 

C (z) -1 C z-2 + Cz-n (3.3.4) = Clz + + 2 n 

The motivation for this filter structure stems from the .fact 

that H(z) is desired to form a notch in its frequency response 

at the frequency of a narrowband signal. In this manner the 

narrowband signal is suppressed and the noise ,is passed with 

,a littledistrotion, then G(z) in (3.3.1) will represent a 
, ~ 

bandpass, fil ter ,tha twill e'nhance the signal wi th re~pect to 

,the noise. 

In order to facilitate the formation of notches in the 
. ..~ 

-

£requency respo~se of H(w), a constraint is imposed between 

its feed-forward- and feed~back coefficients. It consists of . . , 

cons training each feedback coefficient to the corresponding 

fe~d-forward one by the relation I63] 

i C. = ex. a. 
11 

i=1,2, ... ,n (3.3.5) 

,suggested in ~3], in which ex. is a selectable parameter which 

is chos'en close to, but sl~-ght:iy less than one. The reason 
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"" for choosing this particular constraint, becomes' clear when we 

observe the location of poles"and' zeros of H(z) . under this'"· 

constraint. 

By substituting (3.3.5) into (3.3.3) and (3.3.4) implies that 

C(z) = A(zla). Therefore the zeros and poles of H(z) which 

are denoted ·by (l;i) and (TI i ) (i=l, 2, ••• ,n)respecti ye ly , must 

satisfy the relation: 

TI. = al;.· 
1 1 

i=I,2, ... ,n (3.3.6) 

From (3.3.6) we see that the constraint places the poles of 

H(z) at the same polar-coordinate angles as its zeros but with 

slightly reduced magni tudes, causing H(z) to form the desired 

notch response whenits,zeros are located on'or near the unit 

circle as shown in Figure 3 .. 3.2 . 

. . " .' 
i , 
I 

......... ~ ....... . 

. . . 
\.'; -I- : 
,..... .. .. d""L la\,.1 ......... ..... 

a .. "Poles .and zeros ofH(z) 

. ................. . 

. 
: f/ 
,! 

~-------+------~!~~Re(z) 

"~ / ..... , ... ' 
.......... ., . 

b. Poles and zeros of 
G (z) 

FIGURE 3.3.2. Pole"jZero Pat'terns for G(z) and H(z). 
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The role of the . 'parameter (). in the constraint is to 

control the notch width of H(z) by controlling pole-zero se-
, . 

paration. Also in ALE the notch width depends on ~ called 

the adaptive step size. 

As a measure of the signal-enhancement capability. of 

the constrained filter the signal enhancement factor SEF de

fined as the ratio of signal power gain to noise power, gain 

for filter G(z), is used. For a sine wave signal whose fre

quency coincides wi th ·the peak response of G (z) ,. the SEF is 

simply the reciprocal of the, (equi valent-noise) bandwidth of 
-

G(z). When the nagni tude ~ of a conj~ga teO pair of zeros, of 

H(z) is near one, then G(z) whose poles are constrained to 

,have magnitude ().~) for.ms a b~ndpass response with. bandwidth 

approximately -1 - ().~, making 
.', ' 

'. SEF = 1 (3.3.7) 

3.3.2. The B90tstrap Adaptation Algorithm 

The filter represented by the transfer .function H(z) 

in (3.3.2), (3.3.3) and (3~3.4) can be represented in the time 

domain by the :equations_ 

V(k) = Y(k) + tT(k) C(k) (3.3.8) 
" 
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e(k} 
T -

= V(k) - X (k).~a(k) .' , .(3~3';9) 

where Y(k) an:d e (k) . represent the input and output: respective

ly; 

.X(k) ~.[V(k-l), V(k-2), ... , V(k-n)]T (3.3.10) 

represents a s,tate vector; and .' , 

~(k) ~,[al(k),. aZ (k) , .' .. ', an (k) 1 (3.3.11) 

and 

(3.3.12) 

represen tfeed::- forward and feedback parameter vectors respec-
. , 

tively. -In addition, the parameter constraint(3.3~5) can be 
. "; , 

rep.resented by , 

C(k) = ~ ~(k) (3.3.13) 

in which M is the diagonal matrix 

The bootst rap adapta tfon algorithm is motivate d by the 

observation that the·feed~fdrward portion' bf 'the filter' H(z), 

repre'sen ted 'by (3.3.9) ':has 'exactly the forin of an ordinary 
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linear predictor for which there exist adaptation algorithms 

for minimizing mean square error. The bootstrap cons ists 0:1;: 

uti1i;ing one of these a~gorithms for updating the feed

forward parameter vector a(k) and then computing the feedback 
" . . 

parameter vector C(k) simply to maintain the constraint 

(3~3.l3) . 

The simplest form of the bootstrap algorithm involves 

the use of a normalized version of the Widrow-Hoff LMS algo"-:

rithm represented by the recursions 

a(k+l) = a(k) +. r !,(k) e (k) 
r(k) 

r(k) "= (l-y) r(k-l) + y XT (k) X(k) 
" . 

(3.3.14) 

(3.3.15) 

in which r(k) is an on-line estimate of E{XT(k)X(k)}, and y 

is a selectable scalar constant satisfying a < y « 1. 

3.4. SEQUENTIAL REGRESSION ADAPTIVE NOTCH FILTERS 

3.4.1. Introduction 

The main objec.tive of thfs part is to present a class 
"-

of_~daptive notch filters which are derived using an SER 

approach (66]. -In (lOJ the .notion of using Widrow's -LMS al-

~ gorithm to derive a class of notch filters was introduced. 
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In [66] it was shown that the SER adaptive notch filters have 

the following advantages, relative tQ the.LMS counterparts, 

when each of the filters has the same number. of coefficients 

(weights): (1) The rate of adaptation is substantially fas

ter and (2) a s~arper notch is realizable over a large band

width. The advantage·:of the LMS app~oach however, is that 

it resu1t$ in filters that are easier to implement. 

3.4.2." SER Algorithm 

SER algorithm cost func;:ion is defined as follows: 

r 
= q L Ld(k) 

k=l 

where q is a scalar and 

a
k 

T = [q'o (k) a
1 

(k) 

X T = [X(k)X(k-l) 
k . 

T x]2 + T 
q r+l k a r+lar+1 (3.4.1) 

d
k 

denotes the desired output at time k (see Figure 

3.4.1.) 

The fil ter, weights can he computed using the relation as in 6( 

-1 
a = a + q' P

k 
. Xk e(k) ,k+l k 

(3.4.2) 
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d(k) 

+ 

- X(k) FIR Y(k) 
'---~Adaptivel----------~ 

Filter 

e (k) 

FIGURE 3.4.1. SER Adaptive Noise Cancelling Mode. 

where e(k) = d(k) - Y(k) is the error-at the kth iteration and 

P =, I+'q r ", 

r 
r. 

k=l 

-1 The (N+1) x (N+1) matrix PI can also he computed recursively 

~sing the matrix inverse Lemma 

Pk 
-1 -1 1 -1 Xk 

T -1 (3.4.3) = Pk- 1 Pk - 1 Xk Pk'-l Y 

where l/q 
, T -1 

y = + Xk Pk - 1 Xk is a scalar and implies that 

Po 
-1 = I, • 

3~4.3. 'Derivation of Notch Filter 

For the --input':' be form 
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(3.3.4) 

the Z transform of the weights and filter output can be given' 

respectively as follows. [66} and [101 

where 

and 

Y(z) = 

" OLe -jWoT N 2" U(Z) {E(Ze ' ) L 
n=O 

·W T , J 0 
+ E (Ze ) 

N -j e 
L Pi,~ e n 

n=O 

P. ]., n 

. e 
J n 

e 

for i = 0, 1, •.. , N 

N 
L 

i=O 

P. denotes the (i,n)th element of Pk- l 
l.,n 

U(z) 1 = z-l 

E(z) = Z{eJk)} 

(3.3.5) 

(3.4.6) 

Again after some modification, Y(z) can be approxi

mated by discarding the time-varying term to obtain [66] 

Y( z) 
2 '-jW T . jW T 

- ~ E(z)' {U(Ze ,0) + U(Ze o)} 
4 (3.4.7) 
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where 

N N 
I; = ~ ~ b. ' P. Cos [(i-n)WoT] 

i=O n=i 1,n 1,n 

and 

1 i=n 
f 

bi,n = ' 

2 i~n 

The notch filter e?Cpression is' given as, follows 

G(z) = 

, I, + qC
2

1; 
4 

1 

, -jW T jW T 
, 0 0 
~U(Ze ',) + U(Ze )} 

and whose 3db bandwidth is ,given by 

, BW 
2 

= q~i ,rad/s. 

(3.4.8) 

",(3.4~9) 

W:e see that the expression for G(z). is different from the 

previous.5'ne. In three derivations and previous chapter we 

can see that, the filter length is a very important parameter 

during the design. In Chapter 4, by taking some criterion we 

try to find the optimal filter length to use in allapplica-

tions. 
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CHAPTER 4 

DER1VATI ON OF THE OPTIMUM-FI LTER 'LENGTH 

4.1. INTRODUCTION,; 
.... I' 

During the derivation of the optimal value of filter 

length for an adaptive line enhancer, two critical points.must 

be considered: stabili ty and optimal operation. There are 

two ways to derive the optimal length. 

rises from the following observation: 

-
The first method a-

By improving the esti~ 
. '.' '-' , 

mate ~f th~ steady state; mean squared e;rror (MSE) a-tighter 

s~abili~y is obtained and at the same time,;the SNR gain at

taiiled by the' ALE is also- improved. The MSE -is minimized by 
" 

using the LMS algorithm to adapt the ALE weights. The SNR is 
. . ~.: . 

optimized by chossing 'the filter leng~h optimally. Since the 

transversal filter impl~ments a bandpass fi.1 ter, the number 

of weights L determines thebanclwidth of this, filter and im

proves the gain in the s~gnal to noise ratio: 

In particular it can be shown that for a given step

size parameter II whic?satisfies the stability constraint the~ 

exists an optimal number of weights which maximizes the SNR 

gain that is used as a performance measure. 

51 
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Anot'her method can be- summarized as,;'fpllows. The co

efficients which are adapted by usi~g LMS a~gorithm converge 

to a set of zeros when no sinusoid'is present in the input 

data and to a sinusoidal distribution when a sinusoid is pre'-" 

sent.' Therefore one can obtain ,a detection system for the 

sinusoid by computing the Fourier Trans~orm of the weights and 

comparing the magnitude of the transform with a fixed thres

hold. The detection performance can be improved by employing 
, , ' 

optimal filter length. 

4.2., MAXIMUM SNR METHOD FOR WHITE NOISE 
'" 

The purpose of this method is to present a better esti

mate for the steady state MSE, which enables" th~ derivation of 

more accurate expression for the SNR gain achievedbY,the ALE 

as well asa more acctiratestability constraint. 

Since the LMS algorithm uses an estimate of the MSE, 

gradient ~or adapting the weights, 'the actual instantaneous 

values of the a(k)'s fluctuate after convergence about their 

mean value causing a degredation in the performance of 'the 

adaptive filter. Assuming that the weights have converged" 

let 

a(k) = E{a(k)} + V(k) = a* + V(k) (4.2.1) 
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Then the output from the transversal filter y(k) can be des

cribedas the sum of two terms 

(4.2.2) 

where y* (k) . is the output expected from the optimal Wiener, 

filter and yV(k) is' a noise component added due·to the weights' 

fluctuations. With the assumption of no correlation between 

y* (k) and yV (k) 

(4.2.3) 

Using the derivation in Adaptive Transversal filter 

section, we have 

p trace[Rxx1 ~min_ .(4.~.4J 

where ~m~n is the minimum .MSE achieved by the Wiener' solution. ! 

Thus using (4.2.4) the steady state .MSE, ~ss is.given by 

= [1 + ptrace(Rxx)] ~min. ( 4."2 .5) 
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In [56] A. Nehorat and D. Malah pointed out the··interesting 

problem which was related to.11 and misadjustmeht. In parti

cular the misadjustment is defined as the ratio of the excess 

MSE to be mini"mum MSE and is given by 

M =~trace [RxxJ (4.2.6) 

But this result is proper only for very small values 

of 11. In an attempt to extend the above results for larger 

values of 11 as well. as to adequately predict the divergence 

of the adaptation process, let us derive the upper and lower 

limits for 11 which is important for stability constraint. 

From the previous section; the weights expression is given by 

a(k+l) = a(k) - 211Rxx X(k) (4.2.7) 

Subtracting a* from both sides of (4.2.7) yields 

V(k+l) - V(k) 

Equation (4.2.8) is a linear homogeneous vector difference 

equation whose solution characterizes the dynamic behavior , 
~ 

of the weight vector as it begins at a(o) and if the process 

is convergent, relaxes toward a*., as seen by Equation (4.2.1) 

~he solution of· (4.2.~) is given by 



SS--

V(k) = [1 

This solution is stable (convergent)·if 

Since 

and 

tim [I - 2~Rx'x]k = 0 
k~ 

Condition (4.2.10) will be satisfied if 

tim [1'- 2~A]k = 0'" 
k+co 

Condition (4.2.13)' 'will be met when 

[12}lAp] < 1 

"". 
for p=1,2, ..•• , n. Since all eigenvalues are positive 

(4.2.9) 

(4.2.10) 

(4.2.11) 

(4.2~12) 

(4.2.13) 

(4. 2 ~ 14) 

~> ~ > 0 (4.2.lS) 
I\max 

where A is the largest eigenvalue of R. Equation (4.2.lS) max 
gives the stable range for ,~. 
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. ~ " . The upper limi tin. (4 .2 .15) was. found to be too high 

by A. Neharoi and D. Malth w.ith computer simulation. In 

(4.2.4) ~~£ti is replaced by the actual steady-state ~SE ~ss' 

and iIi ·place of (4.2~;5) .we;obtain· J 
", 

.. ;.. I 

(4.2.16) 

and hence 

(4'.2.17) 

resulting in a misadjustment of 

~ i • I 

M = ~trace(~x~)/[l (4;2.18) 

.' 
Clearly, if ~ is sufficiently small (~trace(Rxx)«l) the 

results in (4.2.17) and,(4.2.l2) coincide with'. those in (4.2.5) . . 

. and (4.2.6) resp'ectively •. ' However, (4.2.16) and (4.2.18) are 

proper for higher values of ~,~ven up to divergence which 

is predicted from (4-: 2.17) to occur when preaches l/trace (Rxx: 

Thus, the stabi~ity constraint on ~ which replaces (4.2.15) 

is given by 

: 1 o .1 <". ~; <'. -----.;.---. trace Rxx (4.2.19) 

. It is interesting to note that (4.2.19) is usually used as a 

" sufficient condtionfor stability since trace{Rxx} ~ Amax and 
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is usually easier to evaluate. The. above shows ·that (4~. 2.19) 

is also a necessary condition. 

Now let us continue with the derivation of L by using 

the above results. In ALE operation, for a g~ven step-size. 

parameter 11 which satisfies the stabili ty constraint there 

exists an optimal number of weights which maximizes the SNR 

gain. 

Let the total power of the input s~gnal be P x. Then since 

the reference input signal X(k-b) is a delayed version of the 

lnput signal and the transversal filter hasL taps we- can 

write the following formuia 

(4.2.20) 

Assuming an input signal of the form 

N 
x(k) = S(k) + n(k) = L CmCos(Wmk + <Pm) + n(k)" (4.2.21) 

m=l 

l 
i.e., N sinusoidal signals with an addive zero mean white 

noise sequence n(k), the autocorrelation sequence TXXCR.) which 

determiv~s Rxx is given by 

(4.2.22) 
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where crn
2 

is the noise power and a(~) is kronecker a.function. 

Since the Wiener solution fo-r a single sinusoidal in ~whi te 

noise at frequency Wo is g~ven by [71 

, *' a k 

where 

-'SNR. ,-. 1m 
------------- COSWo(k+8) 
l' + SNR. L/2 1m 

( 4.2. 23) . 

a*k = [a*l' ..• , a*L-l]T and SNRi is the input SNR, 

SNR.· 1m = 

. 2 . 
C 

m 
z;-r 

n 

m=l, 2, ••• ,N 

Then the o~timal Wiener solution'for the case'of N sinusoidal I 

, . . . 
signals can be given by 

(4.2.24) 

~ The corresponding output of the transversal filter is given 

by 

L-l 
" y~ (k) = E . a*.(k) X(k-8-i) = 

i=O 1 

'(4.2.25) 

X(k-8-L-l) 

... 

The total. power of the output signal' from the transversal 

filter is given by 
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E{(y*(k))2j '= 2 --2 .~. (b* .)2 +' ~, "(b* C )2/2 
on L m=l m m=l m m 

.where 

b* 
m ~ ) 

The overall output SNR is given therefore by 
I 

and we de fine 

SNRALE = 
SNR 

o = 
SNR 

o 

(4.2.26) 

. ~" 

(4.2.27) 

(4.2.28) 

'SNRALE is the gain in SNR achieved by the ALE which has the 

Wiener solution weights, 

,The decrease in SNRALE with the increase in number of 

sinusoidal signa'ls is due to the corresponding larger number 

of bondbass filters,' each passing'not only the desired signal , ' 

l _ 
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-' , 
,}' , 

but:'- also a _band of the noise, thus increasing the' overall 'out.;;, 

put noise •. 

For the particular case -of equal power; N sinusoids; SNRALE is 

given by 

L = -2N (4.2.29) 

-, 

We turn now to the performance of the ALE with the actual 

weights a' as obtained with the LMS a~gorithm. From (4~2.16), 

(4\.2.17) and' (.4.2.18) we -conc1udetha t in order to,.find the 
/- . . 

actual total o~tput power Olle has to add to the right hand 

side of, ,( 4.2.25) . an additional term which is equal to the 

excess MSE given by ~ ~min~ Thus, (4.2.28) is 'replaced by 

SNR o 

L" N -- C 2 -- N,' " -' 
L .. (b * ) 2 + ~ ~min 

.;. ... -

. :",' 

= _ 2" -L . (' m) (b * ) 2 I 
'_" __ .m=1,,-2.c!n 2,,>, ,m, ::_~, 1

m, 
m=. ._ 

(4.2.30) 

Now let us find the expressio;n for ~min. The output e(k) has 

three components: the, desired. w'ide":band component n(k), its 

filtered version from the predictor output which is a distor

tion component, and the attenuated sinusoids. We find that 
,,-

the sinusoids at e(k) are given by 

(4.2.31) 
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N:ow let us consider the avera-ge p:~w~~' of e (k). Noting 

that all the component of e{k) areuncorrelated we find that 

;:?hek -

( 

, N 
E', : b* m n(k) 

m=l 

n(k) , 

Therefore we can express 

• '. 2 -' 
~min=~Ele (k)}, 

.. '. 

(4.2.32) 

, (4.2',.33) 

" -(4~2.34) 

'. : 

(4.2.3ST 

'. "'f' 

~or the particul~r case "of equal-::-;pow,er sinusoids so that, 

SNRT = N SNRim and b* = h* m=1,2,.· .. ,N we obtain 
m 

(4.2.36) 
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With the substitution of (4.2.27) for b* in (4.2.36) we have 

= 
SNRr' '2N 

L+ 

'T' 
LP , 

11 x "I' + L2N (1 ' '2)' 4N
2

' (1 1) 'I 
+SNR- '+ 2 ' + SNR-

1'-11LP x' --r L SNRr --r 

(4.2.37) 

Since the LMS algorithm attempts to minimize th'e MSE 

it does not maximize, in general, the output SNR as would be 

, desired for the ALE. This can be seen from ' 

= E{n2 (k)} + minE{(S(k) - Y(k))2 + 
a 

(4.2.38) 

which is clearly not equivalent to maximizing SNRo where 

"F ,.', 

,:. + -.. '.:: .'~ .. 

(4.2.39) 

It is therefore of importance to properly choose the number 

of weightsL and the step-size parameter 11 ,in order to opti

mize the performance of the ALE for a given application. In 
, . . - -" 

- p'ractice:~L can not' be increased 'beyond' a certain Lmax and 11 

cannot be decreased below a 

110 = 11m in the optimal value 

(4.2.37) with respect to L, 

certain 

for L is 

to be 

11riiin > 

found 

O. 

by 

By selecting 

differentiating 
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'. , " .. 
~ 

L~p1: -r 2N" + 4N' + AN ] - U"P 
(SNRT) 2 SNRT llo x 

·if also 211 .p « (SNRr)2/(SNRT 
" + 1) , (4.2.40) . 0 x 

to 

... :: 

. ~ 

:. ' < 

Lopt = [2N/( lloP xl] 

The. maximum SNR gain ,is then given by, .. 

L 
~ 

4N 

--
.' -

(4.2.40) 

is simplified 

,(4.2.41) 
.' 

(4.2.42) 

( 

Equation (4.2.42) is the half of the Equat:i:on (4~2.28) . which 

was derived from the. optimal Wiener.·solution. 

, , 
: ".' • f.;.' -. ." • . , _ , . . .~ 

.' '. -.: :', 

, 4.3. OPTI MAL DETECTOR 'M~THOD(DETECTI ON PERFORMANCE METHOD) 

This method is concerned with the application. of a 

linear predictive fi1~er which employs time-varying coeffi-
". '", 

.cients, to.sets of data consisting of white noise which may 
"-

or may not contain a sinusoid. The coefficients are adapted 

using th~ LMS algorithm. It has been shown (2] that the set 
... 

of ocefficients converges to a.set of zero mean, independent 

values when no· sinusoid is .present in the. input data and to 

.' >--~-:...;.. .• 

a sinusoidal distribution wh~n a' sinusoid ·is present. One can 

, . .' 
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/ 

therefore obt~in a de"tection system for the sinusoid by com..; 

P\lting the Fourier Transform of,the weights and comparing the 

m~gni tude of the transform with a fixed threshold., 

, . ,. : 

Adaptive 1inear,predictors used ,in this ,manner have 

, been termed "Adaptive Line Enhancers" ate ALE IS. This section 

descussesthe detection performance of an ,ALE containing L 

coefficients which., adapt on"N samples of the input data. The 

performance is compared with the optimal detector for a sinu

soid in white noise which consistsof'a Fourier Transform of 

the entire N data samples. 

':, ."- '10" "'" 

It has, been, shown previously 50 that under certain 

assumptions, the probability density function of the detection 

statistic 'used ;in' the ALE;weight ,transform detector can be 

modelled u~ing thenon-c~~tra1 clii di'stribution. 'Brief,~Y if 

W" (k) denotes the LthALEweigh tafterk adapta.tions ~nd 'the " e ", """ "" 

frequencyo.f interest is ,Wo,we define real and imaginary 

parts of the DFT -of the ALE weights at time k as U~(k) and 

V~(k) respectively, which can be written as 
, .-

...... ~. 

L':-1: 
E: 

L=O 

L-1 
V'" (k) ,= E' 

w L-O 

(4.3.1) 

W "(k)', Sin, W $/" e , 0 
'(4.3.2), 
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Detection c(:msists, oXcofIlPtitiJ.lg Uw and Vw at a time k 

corresponding to the last.data sample processed and then com

paringthe',~um of the.~quares of Uw and Vw, with ~}ixed tl1r~s

hold., In order to avoid adverse s.tarttransien ts" ,w.e"as~urne; 
. "" .. . . , .' ~ .', .. '. 

th,at the filter is initially filled,w~th data prior ;to the 
~. ...:. . ' 

.oI1;se,t of ad'aptation .. Wi th,t.his . assumption" ,a ·tota,l, of N-L" ' 
, . ) , . - , ..,. ,'- ". - .' ~ ,. .. '" ~ -' ....; ~. , 

samples; ~re available:i;or a,da~t_~ tio~i ~nd.the detection ,sta-: 

tis tics Z 2 becomes w' ' ," ,; " 

,(4.3.3) 

The mean val.ue of, ,the weig~ts at time" N-L when a sinusoidal 
;. ;." 

signal is present are given by 

Za*(N-L) 
E{W~(N-l)} = L - Cos(Wot + $) 

where. 

and 

L SNR 
a*(N-L) =' [1--,' (l-11A*)~-Ll ~Z~_ 

1 + -L SNR Z 

. "\' '= "i..* 
, I\max 

(4.3.4) 

In these"expressions, no is the white noise power level at 

the'ALE input, A is amplitude of the sinusoid and SNR = A2/ zno 

is theiriput signal to noise,ratio. - When the signal is not 
., (-
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" pr'esen't, the weights ,have zero' mean value. 
. ~ . 

Since LMB algorithm uses an estimate of the MSE gra

dient for adapting 'the weights, the actual instantaneous va

lues of We'fluctuat,e (~fter 'con\T'~rgericer ~'bouttheir mean 

vah.ie'E{We(N~L)} "i'W* :~aJsing ad~g;adatioriin"the perfor'~ance 

of the adaptive filter, therefore the we~ght vector also con

tains misadjustment noise, (wei'ght noise) . 

. . 

E (We (N-L)'f ~ E cWe(N-LJ 
j 
r 

and it is clear that 

'( 4 . 3.5) 

(4.3.6) 

(4.3.7) 

Under the assUmptions used above in ALE analysis, the weights 

are modelled as Gaussian with a variance of 

..... "7 

" (4.3.8) 

The terms U (N-L) and V (N-L) are then also Gaussian w w 

, with variance llnoL/2 and / meansa*(N-L)Sin1jJ anda*(N-L)CoS1jJ, 
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respecti vely, under HI' i.e"'., the signal present hypothesis.' 

Under the null hypothesis Ho,:.both terms have zero mean and ' 

vari'ance llnoLl2 .. 

Given these s ta tistical descriptions, the probability 

density functions for \Z~\.z in (4.3.3) can be derived \51,54,55\. 

Sample at 
t,= tLlt 

J Input~------------~----+(+ 

,', 

.Fil.ter / 
Weight 
Vector 

·DFT at 
'. Freq.uency fs 

y<T. 

... 

~ __ ~~Adaptive~' ____ • 
Filter 

Magnitude Square 

Comparator 
Thresh~ld 

Weight • 
. ,Update . 

Algorithm 

FIGURE ·4.3.1. General Detection System 

' .. ~ 
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The,theoretica1 density function--_.for the squared magni

tude of the DFT of the weights has' the form of a' two d~gree 

of freedom chi':square density function. :That is,' 

P(z) = 1 exp (-
' z 

'w ) (4.3.9) 
z z 

where [W 12 and - 2 'z = z = E I [Wk ]\ = Oz· w k ' 

It can 'be shown that by an appropriate substitution of I 

- -
variables, the 'detection and false-alarm 'statistics can be 

-expressed i~ terms of integrals over ~ chi-sqiu1.red pdf and 

a non-central chi--square9- pdf, each having two degrees of 

freedom. For the case of-fixed ~fa, maximization of Pa then 

reduces to that of maximizing a scalar parameter y which is 

defined as 

.. - 00 
~" . 

z 

o 

1 -(z lIz , w e . _' , 
/-

1..1ll L o 

W 2 
k 

(4.3.10) 

FIGURE 4.3.2. Density Functions for Detection P~ob1em. 
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,By allowing 1..1 and L to.vary simultaneously such that y and 

.consequently the ALE detect~on performance, are both maximized. 

The obvious approach is to evaluate the partial de.ri vat i ves 

.of Y wi th respect to 1..1 and L and then set these partials to 

zero.so as to obtain ~wo equations in the two unknowns .. But 

this method does not yield c10sed,form analytical expressions. 

An al ternati ve approach. is ,to assum~, tha t the final solution 

satisfies the condition N»L. 

Under these conditions, Reeves (491 has shown that the opti

mal value of ~daptive step~size 1..10 g~ven~y -

1.25643 
1..1 = 

. 0 no (N- L) (1+ ~ SNR) 
(4.3.11) 

Substituting this value into Equations (4.3.10) results in an 

.exp'ression·for,y 'in ,(4.·3;11) ,Which depencls,only on L"N and 

SNR. ' The' resulting. value ,Lo"which' maximizes y is 

Lo _, /1 + Ni SNR/2 ~ 1 
-0' SNR/2 

(4.3.12) 

It is clear that the optimal filter length depnds-oh 

SNR, N-and it is true for N»L. 
". 

.; 
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4.4. MAXIMUM SN~ METHOD FOR COLORED NOISE 

" , " ' 

We use the matrix formulation of the enhancement of 

sinusoids in colored noise to obtain new expressions for the 

optimal least squares., coefficients and frequency response of 

the 6. step predictor. From this analysis we can approach the 

similar results to obtain optimum filter length. 

Main notation 

IT. 
a L- l optimal coefficient vector (LxI) 

,', -( 4.4. la) 

6. ., 
Xk ,= Idk -6.' d k -6.-l' ... ' dk_A_L+ll'data vector (LxI) 

, Rxx ~ iHXkXk H}, data'corre)ation mC3:trix (~?<.l) 

p ,~ E{Xkd
k

} " cross correlation matrix (LxI) 

. , 

(LXI) 

(LxI) 

(4.,4.lb) 

(4.4.lc) 

(4. 4.ld) , 

(4.4.le) 

.c 4.4. If) 

r = \y l' ... , Y N I observabil i ty type matrix (LXN) (4.4. 19) 
" .. ~, 
.. , 

where T denotes, transpose, H is the Hermitian transpose, and 

(-J is the complex conj~ga te, W is the frequency and Am will' 

denote the amplitude of the mth complex sinusoid at the input' 
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and Cm for real sinusoids.'" Notice that while Am and' Cm are 

scalars, all, other capital letters are used for matrices. In 

ihis notation,' the predictor output· is 

Yk 

and its err/or 

Primary 
. Input 

Delay 
(Pre-filter) 

L-l 
-' ' E' 

i=O 
w. d

k 
. 

1 -/:.-1, 

Transversa 
Filter 

(4.4.2) 

(4.4. 3) 

Broad-·band 
Output 

Narrow-band 
Output 

FIGURE 4 • .4.1. 'Block Diagram of the ./:.-step Predictor or 
(Pre~iltered) ALE. 

~ ! ".' .' 

It 

To determine the optimal cgefficients, assume that 
~ ~ . 

the input consists of N complex sinusoids with additive zero-

mean colored noise, i.e., 
j , . ~ r. '''':'-

I 
1 
'I 
i 

j 
, 
1 

I 
1 

1 



72. 

N jeW k+$ )_ 
Sk + nk =' L . A e' m m + n 

m=l, m k 
(4.4.4) 

where' {$ni} are. independent and uniformly distributed .over 

.10, 27T I· and nk is n~,t necessarily ~hi te.· The autocorrelation' 

s~quence of the input (4.4.4) is 

~ 
N 2 jWmq 

rdd(q) E{dk dk _q } = L Am e + rnn(q) 
m=l 

(4.4.5) 
.. 

where rnn(q) denotes the noise correlation. 

The vector W* minimizes E~IEkI2} hence, by the matrix 

Wiener-Hopf equation 

,. 

W* = R- I P 
.xx (4.4.6) 

In our case, where the input is described by (4.4.4) and' 

(4.4.5) the matrix R can be.written as xx 

N 
= 'L 

m=l 
- rrH + R nn (4.4.7) 

where Rnn' is. the covariance matrix .of n k . Applying the well 

known matrix Inversion 'lemma for (4.4~ 7)th-en in {62} 

.~ . 

... 

= (4.4.8) 

where IL is theLXL identi tymatrix ,and 
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'. To find the'vectorP, we assume .that the dea1yl). has. 

been chosen correctly, i. e., large neo~gh to sufficiently de~ 

correlate nk', the wide band component of the input: In this 

case P includes only the sinusoiq.aJ part. given by 

where the delays vector VI). is defined by 

-J"W I). ·1 e , ... , 

(4.4.9) 

The optimal (complex weight vector (4.4.6) can now be rewrit 

as 

'R- 1 TIL rR- 1 rH R- 1 f '" 
W* = rvl). nn nn~. '. 

R- 1 , rR~l [R rH -1 
r1 VI). - Rnn nn (4.4.10) 

... 
'or using the definition (4.4.9) of R, we finally get 

1<. 
(4.4.11) 

or the optimal Wiener solution W* can be described by the sum 



N 
W* =:" E 

m=l, 
W* m (4.4.12) 

. ." ~ 

·where w* is the Wiener solution for a single sinusoidal Sl,'g-, m 
. 

na1 in colored noise at frequency Wm. given by ~2J 

W* = 

and 

A 2 
m 

1 + A 2$(W W) m m' m 

$(Wm,Wm) = 1 IrH R- 1r] = yH(Wm)Rn-n1 y(Wm) 
A 2 nn m,m 
'm 

Since 

~. 

H(W) = 
L-1 - -(~+i) EW,Z . 

. l' 
i=O 

= w*Hy6'l)e-jw~ 1._ = 
w=o, 

z=1 
z=l 

R(o) .=V/ R- 1 rHRri:~'y(w)e-jW~)' = W.H 

w=o 

The sinusoidal component at the predictor output is 

\t. 

N 
E 

IIi=l 

j (W k +$ ) 
H(W )A e m m 

m m 

(4.4.13) 

) . 

(4.4.14 ) 

whereSk .denotes the sinusoidal component of the data vector 

xk given by 

(" 

, 
", 

.! 

j 

I 
• .1 

I 
I 
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N j (W (k-ll) +1JI ) 
L 'A em" "m 

m=l m 
(4.4.15) 

where 

. . . , 

Therefore the output signal component is 

(4.A.16) 

For the particular input' of real sinusoids in 56 and 

62 Syk is given by 

M 
L 

m=l 
(4.4.17) 

where the input SNRand the likelihood variable ,of the m'th 

sinusoidal component are defined by 

P ,"~, C 2/ 26 2 
m m n 

Thus, each real sinusoid has amplitude gain giyen by 

b* ~ 
'm 

,Pmn (Wm)L/2 

1 +' Pmn (Wm) L/2 
(4.4.18) 

" 
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Formula (4.4.18)genera1i~es previous results which were 
, . . 

found for a white noise merely by introduci~g the likelihood 

weighting factor n(Wm). It shows that amplitude distortions 

'Jliayoccur at the predictor output when the noise is c.o1ored 

through the dependency of n(Wm) on the sinusoid frequencies 

arid noise' spectrum. (Note. that n (Wm) = 1 for white noise.) 

. The total power 'of. the output signa1 .. fr.om the transver

'sal filter having the' ideal weights is :~the:refore given,by 

(4.4.19) 

The overall o,utput SNR is given by 

L [(b* mem) 2/2} 
2 M 

(b* ) 2) P * = 2 / [rnn L 
o. 'm=l m (4.4.20) 

" .,.' 
L M 'M 

* L 
-- ··'2 

/ L (b* ) 2 : 
Po = 2 Pim (b*m) 

m=l m=l m 

C 2 
h 

. m,. 
were Pl.-m·=' 

2 · 2 
.... rnn 

The overall input SNR . i is give~ by 

"":. M 
\<, P - = L Pim 1. i=l 

(4.4.21) 
),' ' 

. and we define 
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.-,', 

" 

P * o 

p. 
1. 

= 
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" . " 

M 
/ Pi L 

m=l 
(4.4.22) 

P* is the gain in.SNR achieved by the ALE which .has the Wiener 

'solution weights. [T1ier~ is no difference between colored and 

white noise case.] 

For the actual we~ght case (LMS a~gor~thm) we can re::

place the value of b * in (4.4.18) to the (4.2.36) in white' .m 
noise case. 

P* 
L 

. "',,' ,. ' 

(4.4.23) 

With the practical assumption that iILPx«l' the' optimal v'alue o 

for L is . found by· differentiating PL*with r~spect to L, to 

be ) 

1 . 
~ 

which is similar for the case of white noise . 

.... ;: . 

.... 

'(4.4.24) 

If the noise is colored through the dependency of n(Wm) the 

t opt will be different from (4.4.24)~ 
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CHAPTER 5 

ADAPTIVE LATTICEFI LTER 

INTRODUCTION 

• I,... 

In the field of signal process4ng it is sometim~s de

. sirable to make use of a filter which adapts itself to the 
'- .. ,. " ., 

input signal in such a way that the error output of the fil-

ter is minimized. (i.e., . the £ilter is designed to eliminate 

noise, interference echos or other unwanted signals). Such 
, 1< . , 

an adaptive filter is one aspect of linear prediction, the 

basic assumption of which is that the signal in question can 

b.e modeled as a linear combination of previous inputs and/or 
., ~'" 

outputs of the filter. The traditional form of the adaptive 
'-',.' . 

filter is the tapped-de lay-line prediction error fiI ter (TDL) 
,) , 

;, ... c· 
'However, depending on the form of calculation used 

this PEF _~ay suffer from either poor resolution or lack of 
,~ : 

stabili ty as well as a number of other calculation .limi tation 

[31.]' " (25] 

• ~ f 

.78 

I 
.! 
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For .example, in LMS a~gori thm the -iden tif:lcation will 

be better if the estimates of the tap: gain coefficients are 

better. Better estimates are obtained by rUnning t~e LMS 

a~gorithm lo~ger. However, the s~gnal statistics may not 

remain .stationary over such longer. intervals.. Therefore it 

is useful to.have a rapidly conve!gent algorithm and so called 

ladder or lattice fil ter implementations have been suggested 

for such purposes (36). 

Another interesting difference between TDL and lattice 

structures for approximately the same amount of s~gnal dis- . 

tortion is that the latti.ce algorithm will produce consider-

. ably less harmonic distortion than the TDL eLMS) a~gori thm [64J, 

In addition to these there are a number of important 

advantages to using the lattice structure. One of the most 

important advantages is the fact for· each st~ge· the backward 

prediction error at the output is orthogonal to both predic

tion erros' at the. input. This decouples successi ve st~ges, 

thereby enabling independent optimization of each stage ,of the 

lattice. This is.in contrast to the TDL structure where the 

coefficien ts are adjus ted jointly, leading to poor conyergence. 

proper-ties. The convergence time' of the TDL structure is de

termined by the ratio of largest -to smallest e~genvalue of the 

correlation matrix of th~ signal set in the filters. However, 
.. 

no analytical studied of the convergence properties of the 



.( 
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. adaptiva lattice structur~. 

Since the input-output relations of the TDL and lattice . . . 

structure are identical their transfer functions in steady 

state \'1ill be the same. However, steady state will in general 

be attained much more rapidly with the lattice structure. 

There is also a difference between TDL and lattice 

. structure which is related to the optimization technique.' For 

. TDL the usual approach 0 for the deri va tion of coefficients has 

. been to use a noisy gradient descent· algorithm to adapt the. 

filter coefficients "towar.d their" optimal" values under al 

minimum mean square error performance criterion. The coeffi

cien ts of the lattice structure proposed by Morf [35) have 

. been derived in a significantly different manner ln that they 

satisfy a global least squares optimality criterion at every 

point in/' time.· . 

Also a more °re'cent form of adaptive filte_r providing 

/ 

a solution, is the lattice prediction error filter originally 

proposed by Burg for use in spectral estimation and indepen

dently derived by Itakura and Saito and they guarantee the 

stabi1:ity of. the .estimated all pole filter wi thout requiring 

windowing of the observed signal [15], [8], [9]. 
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5.2. DERIVATION ,OF ~ STEP PREDICTOR IN LATTICE FORM 

As mentioned in the introduction, a lattice form im-

p1ementation of the TDL will be considered due to its poten

"tial1y superior convergence properties. All derivations are 

performed for the case of known statistics. 

Let" {y(.)J be a zero mean stochastic process and" {y(t)} 

be random variables from this process. 

A 
Let y{t t-1,t-n) be the linear least squares estimate 

(LLSE) of yet) given y(t-~), ... , y(t-n). 

Define the nth-order forward and backward prediction 

errors as; 

en(t) = yet) "- ~(tlt-r,t-n) 

and I 

rn(t) =y(t-n) - ~Ct-n]t-n+l,t) 

respectively. Let 

e (t+b-l) = y(t+~-l) - y(t+~-lft-l,t-n) n 

1<" 

(1) (5 .2. 1)· ; 

(2) (5.2.2) 

(5.2.3) 

Suppose that we-have one more random variable y(t-n-l) 

and we wish to obtain the LLSE of y(t+b-l)" gi\1"en y(t-l), ... , 

y(t~n-l). From the innovation approach to linear least squ~re 
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"" estimation we have [65}, [361 

~[t+A-llt-l,t-n-l] = ~It+6~1Ii-l,t-n]· 

+ [LLSE of y(t+6-l) given the new informa~ion 

received with y(t-n-l)] (5.2.4) 
,-.< ' 

.. 
Since the new info'rmatiori received wi th 'y(t-n-'-l) is given by 

y(t-n-l) -~·Y(t-n-llt-n,t-l). and from Equation (5.2.2) ,this 

is equal to r (t-l) we can'rearrange (5.2.4) as foilows: n .'-

A A 
y(t+A-llt-l,t-n-l) = y(t+A-llt-l,t-n) +. 

(5.2.5) 

which can be expressed as 136], [571 . 
. ' 

' .. 

~It+A-l\t-l;t-n-ll = ~(t+A-1It-1,t-n) 

E (y ( t + A-I.) r n (.t-1) 
+ Z-- r (t-1) (5.2.6) 

. E(lrn(t-l)\J n . 

Let us substract y(t+A-1) from both sides of (5.2.6) 

~ .. 
A 

y(t+A-l\ t-l, t~n-l) 

• '1 • '" 

A . 

y(t+A-1) = y(t+6-1\t-1,t-n) 

, .'. 

.. E ly (.t +6 -.1) r n ( t.;. 1)]' .. 
;: . " ., ". r (t-1) 

. E [lrn (t-l) \2) ._n.· . '. 

- y(t+6-1) (5.2.7) 
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From (5.2.3) we have 

en +l (t+b.-l) 

(5.2.8) 

y(t-1) 

From the. definition of LLSE rn (t-1) is orthogonal to 

y(t-n). Hence (5.2.8) can be computed as 

en +l (t+b.-1) = 

where. 

e (t+b.-l) n 

Ele .(t,+b.-l)r (t-1)1 
n n. r (t-1) 

R (t-l) n. 
n 

. (5.2.9) 

Similarly we can derive the following relations for 

the (n+1) th order forward and ~ackward prediction errors: 

en +1 (t) 
E(en(~)r (t-1)) . 

. n 'r (t-1) 
R (t-l)' .'; .n 

(5.2.10) 

n . 

(5.2. 11) 

where 

.. ~ 'EnCt) = E ( \ eil Ct ) \2) 

Changing the'time iridex t+b.·_lto tin (5.2.9), (5.2.10) 
. , 

and (5.2.11) and. varyi~gthe value of n·fro'm zero to.,L-?-, we 
• !" 

l. 

. '.~" 
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obtain the Lt~ order lattice filter structure of Figure S.2.1 

where 

, 
In 'TDL the input and error output at time t are given 

,.. 
by yet) and yet) - -yet 1 t-l'>, t-l'>-L+1). Since eo(t) = yet) 

and eL(t) = yet) - y(tlt-l'>,t~ I-L+1) the structure of Figure 

S.2.1 is the lattice form structure filter. 

" 

" 
FIGURE S.2.1. 
FI GURE 5.2.:2. 

--<->---ri--i, 

Lattice Form of TDL (ALE). 
E qui..,Q\en\:' r.e.pr-ese.ntQtiol'\ of the. lQtUc.e form ot "Tt>L CAL 
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Redrawi~gthe circuit of Figure 5.2.1 as shown in 

,F,igure 5.2.2, w.e see that the :structure s,hownin.the dotted 

box,Cl_cts as a,il-step predictor .. Not that when il=l,Cl
il

, = P!+l 

and hence, the lattice .form TDL (ALE) reduces tQ' the well 

known latti.ce form linear prediction error filter [36} •. 
c 

5.3 I LATTICE FORM LINEAR PREDICTION ERROR FILTER 
.... ,"" 

Several lattice and ladder structures have been pro

posed for the implementation of all pole and pole-zero digi

tal filters. However, only a si~gle lattice structure due to 
" 

. Itakura and ,Saito [91. is available for t~e implementation of 

all zero filters. The lattice of itakurCi. ,and Saito had two 

. multipliers in each stage. There are a;Lso 'one, two, three and 

,:four multiplier lattice structures .. In particular the pro-
/. 

per one ~$ of :the cO,urse the one 'multiplier .formb,ecause of 

.. ,decreased number of multiplications. 

In linear prediction, the signal spectrum is modeled 

by an. all ,pole spectrum,with a transfer'function given by 

in [8], [3] and (!3] 

H(z) G = ACzT (5 . 3 ~ 1) 

where 0' 

P 'Z-k .. A(z) = L: a . a' = 1 
k=O k 0 
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-;, 

is, known as the inverse filter.~. G .is . a gain' factor, .. ak are 

the .. predictor coefficieri ts; and Pis the number of :poles or 

predictor coefficients in the model. 

In order to analyze the spectral prop~rties of the lat:.". 

tice filtering algorithm, it is useful to first consider the 

re.lationship of the.reflection coefficients to the 'coefficients 

of the TDL. The TDL coefficients obey the constraints 

am,i = 1 'for i=O (S.3.2) 

- I < a < 1 m.,m 
and 

a· = 0 for i > m ,or i ,<.:0 m.1 

The basic relationship,between.: :latticeand :;TDLtype~:filters . 

is that the ~eflection ~oe~ficient Pi(n) ~quals the ~inal co

efficient a· . of· an ith order TDLforl <i·<m., 1,1 

The .fil teeT ,coefficients of this TDL are ;then calculated 

·from the Levinson recursion algorithm [8]. 

a* m-l,m-i (S. 3.3) 

by starting with m;'Z and working up to·the ·order of the filter. 

After each recursion the coefficients am i l<i<m are the cie-, 

i.: 
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sired coefficients for.. the m'th order predictor. The algo

rithm proceeds recursively to compute the following parameter 

sets 

i=l '{all} 

.. -./"'. i=2 '.-ia
21

, a 22 } 

i=3 ' {a
31

, 
~32' a 33 } 

i=4 '{a
41

, a 42 , a 43 , a 44} 

The parameters· {all' a 22 , a 33 " •.. , amm} ___ are often 'called the 

reflection coefficients and are . designated as' {PI' P2":" Pm}' 

Therefore desired coefficients are'{am1 , am2 , ... , 

The theory of linear prediction lends an important 

in terpretation to the Levinson-Durbin algori thm. Denote ,the 
~ 

p'rediction error for a mth' order linear predictor a's fm(n) 

x + n 

m 

m 
L 

k=l 

= L imk X(n-k) 
'k=O 

" 'By using the Levinson-Durbin algorithm we have 

(S. 3. 4) 
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(a'm" -l","'k + amm a* ') X(ri~k) ,m-l,m-k 

+ a 'X(n:'m) +'X(n) = m,m 

m-l 
X(n) + E 

k=l 
am-l,k X(n-K} 

Let 

Therefore 

+ a X(n-m) + m,m' 

m-l 
E 

k=l, 

bm(n) = 
m 

~(ri-m)·+ E 
k=l 

a* ') X( k) ,m-l;m-,k n-

'a* 'X(n-m+k) m,k 

fo (n) . = b 0 (n) = X(n) 

(5.3.5) 

(5.3.6) 

The. term bm(n) ,is th,e ba,ckward predic~ion error, ic;e., the 
., ':.. '." .' - .,"'. . ... :, 

error when .one attempts to predict X(n-m) ,on the basis of 

samples X(n-m+l) ; .• X(n). The relationships of (5.3.4) and 

(5.3.5) give again the lattice·filter structure as shown in 

Figure 5.3.1. 
, , -

FIGURE 5.3.1." Lattice Formulation, of Prediction error 
(Whitening or inverse filter). 

.j 
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Note that the transfer function of the entire filter is just 

H(z) = '1. (5.3.7) 

1. + 

This fil.te£ is often called either the "inverse" fil ter or 

"prediction error" filter. If X(n) is the input signa~, fm(n) 

is the forward residual a tst~ge m and b m (n) is the backward 

residual at stage m. In z transform notation (5.3.6) can be 

written .as 

=B (z)"= X(z)· o .., 

. Bm(z) 
-1 

= amm Fm_1 (z) + Z . Bm-l(z) (5.3.8) 

. ,I 

Let th'e forward·andbackwardctransfer functions at sta.ge m 

. be defined by 

-"," 
Fm(z) Fm(z) 

Am(zt = = 
X(z) Fo(z) . 

and .\ 

B .(z) Bm(z) 
Gill (z) 

m .. (5.3.9) - . = 
.,. .... X(z) Bo (z) 
" 

Then from (5.~.8). and (5.3.9) it is ,easy to see that -Am(z) 

and Gm(z) . obey the .recursioJ;l relations 



, .' , . ' 

~ .,' 
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A (z) 
" 0 

= G (z) "~ 
'0 " 1 

, ~ ~ " .. 

Am(z) = Am- l (z) + amm Z -1 
Gm_l(z) 

Gm(z) = amm Am- l (z) + Z 
-1 

Gm- l (z) . (5.3.10) 
, 

Furthermore one can 1 show'·from, (5.3 .,lO) that 

(5.3.11) 

Thus"if Am(z) is ,given by 

'. : 

(5.3.12) 

where am(k)' are', the polynomial coeff:lcients' for' an m stage 

lattice then 

•• ' _ c ~ 

.: 

.~ . ", 
-" -' 

m, -k 
" , G ,Cz) =:':Lam(m-k)Z ,m ' ' 

k=O 
, '>~- (5.3.13) 

arrd.Gm(z) is, the reverse'polynomial:corresponding to Am(z). 

From (5.3.10) and (5.3.12) we also have 

, , 

== a ' , m.m (5.3.14) 

, , 

Now, given some polynomial Ap(z) with ap(o) = lone 

can generate all the polynomials ~(z), m<p and the coeffi-
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-
cients am,m using the following reverse recursion derived 

from (.5.3.10) 

a = a m,m ,m(m) 

= Am(z) - am,mGm(z) 

I - a 2 
m,m 

(5.3.l5) 

along witll(5.3.li)an'dbegirihing with m=p. Itis clear 'from 

C.5~'3.l5) that should la", ','l := l-~for some m' =,m,.then the mc7m . 
sOlution fbi" Am' ~·1.'(zr is indeterminate.' 'Therefor~ the r'everse 

recursion (5.:3'.15) Ts pos~ib le iff ra: ' : I: f' 'lfo-r all m. m,m 

It also follows from (5.:3.'11), (5.3.12) and (5.3.13) 
-

that the zeros of Gm(z) are the reciprocal of the zeros of 

AmCz), In particular if ali the zeros of Am(z) fall iiiside' 

'the unit Circle, in wh~ch case Am(z) is minimum phase, then 

Gm(z) is maximuniphase.:,'One can- s-lio~' that the minimum phase' 

condition 'for Am(z) is guaranteed iff 

- 1 < a ..<1 
1,1 

l<i<m (5.3.16) 

The co(fficients am,m are taken as' reflection coefficients, 

or partial correlation coefficients. Therefore from '(5.3.16). 

~(z) and Gm(z) are mJ.nimum and maximum phase respectively,. 

, ' , . 
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CHAPTER 6 

ALGORITH~lS FOR THE CALCULATION OF 
,LATTICE FILTERS, 

6.1. INTRODUCTION 

The a~gor:lthms s~ggested for the calculation of the 

reflection coefficients Pi (n,) ,all have in common thebaslc: 

,objec,tive of ,minimizillg the'mean square forward- and backward 
, , 

errors (the output of each, fil ter st~ge) i. e., to obtain the 

lowest values of'Fi(n) and Bi(n) defined by the expectations 

(6.1. 1) 

and 

B ( )' == E [ lb. (n.)' '12]' in" 1 
(6.1.2) 

, .-
'~ '. . 

, ., 

Differentiati~g 'these quantities 'with respect to the 

reflectionco:fficien~ gives'two ,values, for the coefficient 

,by mininii~ill'g"the" forward and ba~~ward mean square errors 

~eparately. The equation 

' .. -. 
. Ii'" 
Pi (n) 

'\t . . < 

= 
C. 1 (n) 1-

Bi~l (n:l) 

minimizes the forward ,error, and 

;92 

(6.1. 3) 
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= 
Ci_l(n) 

(6.1'.4) 

minimizes 'the'backward error. The factor Ci(n), is the,expec

tation of the ,negative cross-power of forward'aIldbackward" 

errors,giv~nby 

(6.1.5) 

(where * denotes complex conjugation). This section looks at 

four a1gori~hm,s, suggest:ed for minimizi~g both forward and 
',."',-

backward error expectations. 

,6.2. FORWARD AND BACKWARD (F+B) ALGORITHM 

The most d~re<:!: of th.~sea:1gorithms:~§.s suggested py 

, F· d B Griffiths andsilJlply ,uses Pi (n) ,an . Pi> en) as the,,·,forward and, 

backward ref1ec.ti~n.:coe~ficientsre~pectively or, 

(F+B) Alg,?rithms 

,f F 
Pi (n) = Pi (n) 

B ' "", 
= Pi,en ) , 

(6.,2. 1) 

This' is the only a~gorithm for which the forward and 
" 

backward reflection coefficients, are not the complex conjuga:-' , 

tes of each other . 

. The problem with this approach is that as pF(pB)* = 1 
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under almost all circumstances either, PifCn) or Pib(~)' will 

be greater than one, 'whereas for a stable fiiter the reflec

tion coefficient should have a value less than one. Note that 

since Fi_l(n) and Bi_l(n-l) are both non-negative and the 
", f b 

numerators in (6.1.3) and (6.1.4) are identical p. and p. 
]. ]. 

always have the same~sign S 

S = sign pf = sign pb (6.2.2) 

.... ".. . .. .-. ..- ..... ' .. 

6.3. FORWARD/BACKWARD MINIMUM' (M) ALGORITH~ 

F ' B 
lIt follows that if either ~i (n) or Pi (n) i~. greater 

than one, then the other will be less than one. Thus an al

ternative to the (F+B) approach (in order to, guaran~ee stabi

Ii ty) is to choose the'va'luewi th 'the smaller magnitude as 
\ 

PiM(~) ,for all values of i and n.Such an algorI thm was sug-

, gested by Makho~l lsi and i~ 'form~late'd as 19 ;,,' 

f' M 
Pi (n) - Pi (n) - maxUozi_1 en) , ""l3:i-l tn'-lr} 

:." 

M 
:Algorithm ,I 

(6. 3.1-) 

or'we can write 



* Since Cp·f)(p.b) = 1 
1 " 1 

'\ 

If 1 p. f I> 1, 
,1 

if b or I p. I > 1 
1 

- 9S -

(6.3.2) 

then 'Ip·b 1 
1 

< 1 

Ip:fl ·then < J, 
1· 

This ,~ays that 'ateac~ ,stage compute Piband Pi f and 

choose as thi reflection coefficient the one with the smaller 

magnitude. 

',' , 

6.4. GEOMETRIC-MEAN (G) ,ALGORITHM , 

,There' are two major algorithms presently in use which 
"., " ., 

attempt ,to minim~ze the forward ana backward error expectation 

jointly., These'algori thmswere deyeiope~'independ_entlY a f 

about the same time. The algorithm originated by Itakura and 

Saito uses the ge~metric mean of the forward and backward ex-
, .' 

pectations and is. given by 

p. f{n) 
.,,1 

G Ci_l(n) 
= P1· Cn) = 1 IFi - l (n)B i _l Cn-I) I~ 

G 
Algorithm 

\. (6.4.1) 
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·piG(n) is the n~gative of the st~tistical correlation 
, .": ".' 

between f. (n) and b. (n-l)~ "From the properties of the, geo~ 
.. 1 1.. . ... , , ',' . ,. ~ 

metric mean, 'it follows that 

G f b 1 p. 1 < max 1 I P . lip· 1 I· 
1 .-:-' 1 1 .. - '.-' 

(6.4.2) 

. ~ 

< 1 it follows that if the m~gnitude Now since 
'f 

of either P.. 
1. 

greater than one, the m~gnitude of the 

other' is necessarily less than one. This property bri~gs to 

mind another possible definition for the reflection coeffi- . 

cient that g~arantees stability. 

6.5. HARMONIC MEAN (H) ALGORITHM~ 
'.-

T~e', othermaj or al'gori thni .was developed by Bu!g for 

use in spect,ral estimation;, and uses the harmonic mean . of the 

forwar.d and hackward 'value~': 

t .' 

.' . H· ,. 
J.\~gori thm 

(6.5 • 1) 

... 
aI1d one can show that 

(6.5.2) 
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':1· 

One of the important ~property of Pi
H that is not shared 

by PiG and Pi
M is that PiH results directly from the minimiza

tion of error ctit'erion. 

In addition to the algorithms presented here, there are 

an infinite number of possible algorithms falling: into ~.- class 

for' which the·· forward or backward:error': minimum, geometric 

mean and harmonic mean algorithms are special cases. However, 

Burg's harmonic-mean· algorithm can.be seen to result directly 

~rom th~ minim!z~tion of i ~ell defined error criterion. This 

criterion minimizes the sum of the variances of the forwards 

and backwards residuals.;' 

\. 

'The error is defined as the sum of the variances of 

',the forward and backward residuals . 

... 
Ei+l(n) = Fi+l(n) + Bi+l{n) (6.5.3) 

. Us ing the recursive equation for fi (n) and b i (n) one 

can show ,that the forward and backward minimum errors at stage 

(i+l) are related to those at stage.i by the following 

..... ",: 2 
.... 

Fi +1(n) [I' - H ] Fi(n) = (Pi+l ) (6'.5.4) 

.. H 2 
B i +l'(n) -= . [1 - (Pi+l ) 1 Bi (n-l) ,(6.5:5) 
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This formulation is originally due to Burg. 

6.6. ,GENERAL METHOD 

Between i M and': "1~; th~.re: areinfini ty of values that 

can be choosen as valid reflection coefficients (i.e., \p\<l). 

These can be conveniently defined by taking the generalized 
"f 1 b 

rth mean of p. and p .. 
,1. 1. 

r p. 
i1., 

p.r 
: ,1. 

'(6.6.1) 

, " 

~s r ~ OP1..
r ~ p.G, the geo~etri~ mean. For r > 0, 

1., 

can not b~ g~a~anteedto sati~fy \pj<i. Therefo~'~'for 
-j ,', 

to be a reflection coefficient, we mu;st have r < O. In 
. \., .' 

particular, 

o r, 
p. = K 

" 1. 

'-00 M 
p. = p. 

1. ,1. 

,>', ,.: t" , • t 

If the signal is sts'_ionary one can show that 

,.-:. 

b' f p. 
, ,1. 

= P ,i' 

f 
= ,P'i = p. 

1. 

b for ,all r 

(6.6.2) 

(6.6 .3) 

" (9. 6 • 4)' 
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CHAPTER 7 

RECURSIVE ESTIMATION OF THE 
REFLECTION COEFFI CIENTS 

7.1. INTRODUCTION,' ";'-.: 

. : ..... . 

. , r· 
.: ... 

When dealing ';l~th: adapt~ ve,fil teriIlg c:>f s i.gnals whose 

statistics ~ are exPected to change J~i ~heT. continuously or ab

ruptly) "it,i.s desirahle to.design ,the f:tJter to be continuous-
< : .'" ",: ,'. , 

" ' 

ly adaptive so that the filter characteristics may change a-

long with those ,of the signal. The general' approach~to make 
-":~. ' 

the system adaptive is to modify the reflection coefficients 

by 'making them recursive (i.e. , updated with each sample) ,at 

the same' time'by" allowing' them to forget' p~J't 5 ~mples a,s they 
,~ f" . • ; \ • ',' ',' 

The for'get t:Lng feature of 'the 
" "c,'", "" ,," _, " ""', r, , ' .:' " " 

a.lgorithm "is cop.trolled by an adaptive 'we'ightiIl& ccmstant that' 

i~""exponential in riature,'giv:lng 'more weight to the 'more 're

cent sampleswhich'better r~present 'thectirrent~~gnal statis

tics. It is a kind· of a slidiIlg exponential window technique. 

The adaptive constant, alollesets iherate' a.t which the 

parameters" of 'the' lattice s,tr,ucture ,filter converge_ to a new 
. ,", 

set of values ~like the 'ttadi tioIl.a.ttapped delay line B:-dap-
" 99 ;, -: . .., ~! ; , : 
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. tive algorithms '(e.g","leas.t,.mean:squares) where ,the signal 

statistics ,also plaY'apart<in convergence, ,behavior. ;:;,,' 

.. ;. There:are two basic .methods .' fo.r·recursi ve estimation 

'. 

of the adaptiv,e·form;of the'reflection·coeffj.cients •. ; The'se" 

methods arepres'e,ntedihere using Burg's harmonic mean algo

rithm, but they can be equally well used with any of the other 

available algorithms which were studied in Chapter 6 b,efore. 
) ". \ ".J 

The first method adds· an update"'term"directly to the 

reflection coefficients at each recursion while the 'second 

'method updates the summa~ton of ~i(n) separately. 

! • 

, , 

< 7.2. METHOD i 
'-- . 

• - > ~..' 

.. 

The simplest approach. to the recursive estimation of 

the.reflection coefficients is to consider·thei:q.ew coefficient 
-. , " '\ ' ! ' .-...... ~ --. --" • - -. 

as being 'the s~m of 'the ~ld coefficient and~'a correction. term. 
~; i ',' ~. • : ~ ~ •• . • l 

," 

The correction term is just the'difference between the new 

[ 
, . 

and old values of the coefficients as given by 68 j • 

n , 
- 2 L If (i) bm * (i -1) I 

i=l' ,m. .' , .. 
- p (n -1) . =:~ . : . 

. m+ 1· ',-'" ····n, . , ... . ... "' 2 . . .. ."" '. 2 

. . .. ·L .. [I fm(i) 1..+ Ibm(i-l) I 1 
i=,l'·· .... ' 

Ii 
2 L 
:i=l 

+ n-l 
L 

i=l 

If (i)b *(i-l) I m m. 
(7 .2. 1) 

. J 
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Note that the difference oetween:n and,n-:-1"as thelimits:on 

the summations, This, equa tfbncan ,bewri tten as ,the sum of, 

the old coefficient and <a new update term .which iccint.ains .only, 
0' 

information from .. the present. time in terval (i.e." the input 
\ 

to that filter st'age) both multiplied by a third term. This 

results in the equation 

Pm+l(n) 

\ 

2\.fm{n) bm * (n-l) 
Pm+l(n-l) = ---------------------

\ fm(n) \2 + \ b
m 

(n ~ 1) \2 ': ,: 

." ~nf.m(i} \2 +: '\bmci-l) \:21 ' 
i=,l 

, , , 

RearrangiIlg (7.2.2) 'gi Yes 

Pm+l (n) 

where 

... yen) = n 
E 

. ;"i=l 

\, 

Pm+ l (n-1) 

(7.2.2) 
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It can be seen that for the steady state (constant 

Power) ( ) - 1 h ~-. h b f d ~ '/ case y n ~ n wer: n ~s t, e num er. 0 " a ta, sampl~s 

': '" 1 
I 

-I 

processed. If however yen) := y is held constant in the calcu-. 

lation, then it may be replaced by using the weighting factor' 

w as defined by the formula 

w =.1 - y = 1 ~ lin' - e -lin '-
(f~r. n' >>.0) . 

(7.2.4) 

where n' --is the theoretical data adaptive length of the fil

tering action." (For n' .;10~ the exponeritial form of (7.2.4) 

is less than ~.5 percent from the actual value.) 

Also in \67\ there is such a situation which is sum

mari zed -as .-follows ~ . In-deterniinis ticle-~s i':squares algorithm 

we choose the adaptation criterion for the filter as . the mini-
"" .. ' 

mization: of .• ·· . :,'~ .' - ~ .. ' ... : 

1 t 2 
V = 2" L e (s) 

s=O 
(7.2.5) 

;'. , 

with respect to the filter parameters. When the statistics 

'of the observed ~rocess vary slowly, an expo~en tial'~~igh ting 

isa.pplied to;th~ data so' as to trac'k ~he slowiy varying'para 
i<. 

meters of the process .. Weighting of the data 'wl-ihasliding 

exponential window is equivatent to minimizing 
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1 t 
V ="2 L 

s=O 
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A < 1 (7.2.6) 

where A is a so called forgetting factor. The effect of A 

'reflects itsel'f in the recursion: of error covariance.' 

, ;,< 

Rewritirig (7.2.3) with ~ gives 

where 

(for the norma+,~ase) 
"- . ~ ~ <' ". 

and the adaptive step size amen) is given as 

. " 

, , ~ ~ . 
" ·····2 

am(n) = -2(1 - w) / [!fm(n)! + 

. . . 

!bm(n-l)!2] (7.2.8) 

The' recursive relationship in (7.2.7)' can.al'so be 
1 ' ... ~ , 

wrl.tten as'the sum 
. . ~ , 

... (7.2.9) 

Again (7.2.9) is similar 'to (7.2.6). An implicit condition 

on.. this .. ,recursi ve relationship is that the power of the pre-
It. 

diction error fm(n) or bm(n-l) is not· a time. varyiIlg function. 
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.: A . s~econd~,. approa~ch is'~<:to retain both summations as .in-

: Pm+1 (n) , and enlarge:, them, at e'ach time interval: ~ Thus the 

'. ,e qua t ion", be come s 

Pm+l(n) = 
Vm+l (n) 

(7.3.1) 

;where 

.' . ~ 

. ':, .'. ~.. ',::' :, . 

Ym+l (n) =·11 Y~+l (n-l) + 1 fm(n) 12+ Ibm(n-l) 12 

'.:' . 

,; ~ ,', '"' :, -". - . \.: : .. ~. -; 

The -i~i tial condi. tions are V m+l (0) . ~' Ym+l (0)= o. The 

weighting, .factor is introduced to regulate t~e importance 

of the new term in the summation with respect to the previous 
" 

term and thus ·con trol the . adaptive speed of the fil ter. Nor-

mally, .. is in the range of, 0 1. This recursive relation: 

ship is equivalent'to the equation 

(7.3.2) 
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, . ., . ;, \" 

which; in turn is equiv:a~ent to actual Pm+l(n) with the for

ward predicti~n e!ror fm(i)" and the delayed backward predic

tion error bm(i,-l) wei.ghted by the f~~~or 1l'(n-i)'/2 '. ,This .form 
' .. 

of weighting does not affect the stationarity of the input. 
,", , ~ \- • $', i, , ...... ' 

Method 2 has the advantage over Method 1 of not assuming con-
. ,',;' .' 

stant,power.. However, Method 2 is more complex computationally. 

: -r-' ".: '. ): ... ., 

Here it should be no,ted that the',"factors wand II ,have 

no relationship to each other except that they both approach 

to zero. 

7.4. CONVERGENCE ,PROPERTIES OF METHOD 1 

, 
An important characteristic of the adaptive filter is: 

the rate at which the reflection coefficients convergence to 

their 'optimunlvaluesfor given (stationary) input signal 's,ta:

tistics.' This ,rate of convergence is controlled by the adap-

tive 'weighting parameter (w or ll). 

Th'e instantaneous estimate of the first reflection co-

efficient at time n can be defined as 

"'Pl' (n) ,-
-2 f (n) b *(n-l) 

o 0 ' (,7.4.1)· 
", 

,Combining (7.2.7,), (7.2.8) and (7.5.1) we have 
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,Pl.(n) = 
(, 

,00 p. (n -1} +. (1 
, 1, '" 

00) PI I (n) (7.4.2) 

. For a truly stationary process beginning at time n=O the'in

stantaneous estimation of (7.4.1) for n>l will in fact be 

equal, to the optimum value Qf the reflection coefficient Pl" 

Using this fact and, given the initial value of the reflection 

coefficient; PI (0) (for example", :th,e filter I s start -up values, 
: .... ~ '~ ~ I ~. .' , '. '. . • • 

or the value for a previous time series to which the fi~ter 

has adapt~d) ,the fil ter,I s convergence equation can be computed i 

by repeated ~pplic~ tioll of the, recurs ion equation (7.4.2) as 

(7 .4.3) 

From this, the frcictional error· in the reflection coefficient 

at time n can be computed as 
~ '; ,"'. ' • I r. 

".A 

= ,_P_l_-_' _p_l_(n_) = Wn - l 

,. -' '. 

(7.4.4) 

The factor PI (1) need not be known for the most prac-_ 

tical applications 0 f this filter. Indeed, for the initial 

" start-up case where Pl(o) = X(o) = 0, we have Pl'(l) = 0, re-
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suIting in the simplified 'versions 

n-l ,. 
Pl(n) = (1 - w ) PI (7.4.5) 

and· 

El(n) = n-l w . (7.4.6) 

for (7.4.3) and (7.4.4) respectively. 

For the ;transi tion case where PI (0) is known but not 
-

equal to zero, given values. of w approaching unity (which is 

the common case) and therefore PI' (1) ~ PI (0), (7.4.3) and 

(7.4.4.) can be simplified respectively as follows: 

.. • ,r-'-

pi(n) (7.4.7) 

and 

(7.4.8) 

. This measure of convergence error can also be written 

in terms of the ratio of the data le~·gth actually processed 

to the theoretical data adaptive length n' by applying (7.2.4). 

Thus (7.4.6) becomes 
'. 

~l(n) = e-(n-l)/n' for n>O and n'»O (7.4.9) 
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7.5. 
, 

CONVERGENCE PROPERTIES OF METHOD 2 

Similar'to the discussion for Method 1, instantaneous 

estimates can be made for the numerator and denominator terms 

used in the calculation of the first reflection coefficient 

by Method Z". For a truly s ta tionary ·proces s, these es timates 

and 

are equal to 
'" ,. " A. 

Vl/Yl = Pl· 

·with (7.5.1) 

arid 

(7 • 5 . 1) 

(7.5.Z) 

.. " ,the ·optimum vales VIand. Y 1 (f~r n 1) such that 

Combining denominator andnti~erator of (7.3.1) 

and (7.5.Z) give the recursion relationships 

. V len) = llV 1 (n -1) .+ VI' (n) . (7 • 5 • 3) 

( 7.5 .. 4) 

Repeated applications of these recursions results in the fol

lowi~g formulas for ·the reflection coefficient 
... -: n-Z 
it. 

[lliV i1 lln-lVl'(l), n 
Vl(n) 

L + + 11. VI (.0) 
i=O 

PI Yl(n) ·n-Z (7.5.5) 
. i 1\ 

~n-lYl' (1) llny 1 (0) L III Yll ,+ + 
i=O 
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OT for lIfl 

Pl(n). = 

. n-l 
l-ll 
1"'1I 
-. n-l 
l-ll 

. 1 -·1I 
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'n 
+ 1I Vl(o) 

(7.5.6) 

These equations ·are·difficult to simplify significantly, ex-

cept for the initialstart-up where Vl(o) = Yl(o) = X(o) = o. 

Then, bo Co) = 0 and therefore VI' (1) = 0 and Yl ' (1) = 1 fo (1) 12. 
In a stationary environme~t, the. forward and backward predic-

tion error powers are equal, 'so that Yl '(l) = Yl /2 simplifying 

(7.5.6) to 

1 - lIn-l 

=1 - 11 
(1 - lIn-l + 

1 -ll 

,. 
V " 

1 

n-l It. 

11. .) Yi 
2 

= -3. (1- 11n - l
) 

(2 lIn:-l _ 11n) 

1\ 

• P 
1 

(7.5.7) 

From this, the fractional error in the reflection coefficient 

at time n can be computed as 

D.-I n = 11 - 11 
2 - ,l1n - 1 - 11n (7.5.8) 

Anothe+ special ,case of in teres t is when 1I=1, for which 

(7.·5.5)simplies to' 

(n-l)Vl + Vl~(l)+ Vl(o) 
= A (7.5.9) 

(n-l)Yl +Yl'(l) +Yl(o) 
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F or the initial start -up case as described above, this s im-

p1iefies further to 

(7.5.10) 

The corresponding value of the fractional error in P1(n) then 
'.~, ' 

becomes 

= 1 

2n-1 
17.5.11) 

As with 'Method 1, these convergence rates can also be 

applied· to the· relevant signal component' B;t the filter stage 

output. 

. . :' ... ;. 



CHAPTER 8 

, CONCLUS IONS 
;. .-

For 'the cases of one and two sinusoids, we showed that 

substantial improvements could be obtained by choosing a 

suitable value of the delay parameter rather than the usual 

choice of ~=l. But there _is a problem which is related to the 
\ ' 

computation of the optimal value of~. Calculation of the 

optimal value of ~ requires knowledge of Wi and L. This pro

blem can be solved by considering the following discussion. 

Choosing the inital value of ~ as unity;, carry out the recu~

sions of (1.3.6) f.or a desired number of iteration's and com-
, . 2 ' 

pute \P{w) \ from the resulting coefficient estimates. From 

the computed: value of \P(w) \2, estimate the value of Wi and 

use the-formula which-is related-to the optimal value of~. 

'Compari11g the simulations figure; it is seen that the 

simulation results agree very closely with the theory. The 

ALE with near opti~~m value of ~ gives a sharper spectral 

estimate. It is clear that the sharpness indica.tes how accu-
~. 

rate the estimate is. This situation can also 'beeseen easily 

by observing a deep null,for the case of "two sinusoids. By 

taking the near the optimum value, gives more information 

" 
111 



- 112 -

than the choice of· b.=1. 

In ALE Z-b.\ejwb.= e-jwb. acts like an all pass filter 

and consists only of po~es and zeros atZ=O: or at~Z=oo,. input 

and output of it both.have the same magnitude on the,unit 

circle and the,.transfer function must be ~ntirely all-pass 

with unity magnitude. 

For this reason we can ,fietermine the finite impulse 

re~ponse (FIR)fi~ ter.such that the output energy is minimized 

subject to the following constraints .. First constraint is 

aTa = 1 and the, second co~straiht includes the dynamic beha

vior of ALE whichisgiven.by (1.3.6} .. With.thisminimiza~ 

tion, the performance of ALE in noise conceJ,ling will be' bet-

ter. than the previous :~case •. 

-b. 
Also th~ccharige. C?J tp.e positiol1 ,of : Z " will .. change the 

perfojman,ce of the ALE. ,., By 'puttingZ-b. in the first processor 

channel that ,is in the prim~ry input we."can c:hange the per- , 

formance .but we can guarantee the decorrelation process in 

the noise components for two channels. 

::As the decorrelation parameter b. is incre.ased, a time 

.window is produced wi thin which the error_ process may be cor-

, related at lag b. and beyond its correlation remains zero. In 

general b. plays a role for s tab iIi ty." With sui table time 
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delays in filter design, causal approximations to delayed 

version of noncausa1 impulse responses are realizable. 

In Chapter 4 guidelines for the optimal selection of 

the ALE parameters~ namely the number of weights L' and' the 

adaptation step~size parameter 1.1 are given by considering 

two different methods. 

By using the optimal value of L we can get the more 

accurate expressions for 6.. 

The results in Chapter 4 have clearly shown that the 

longest ALE'fi1te,ris not necessarily the best and that 'signi-

ficant performance reductions can be expected i'f incorrect 
. I ." 

filter lengths are ,employed. 
~ I". _ , 

In Chap:te:r 6 different algorithms .resu1 ts yield diffe

rent spectrum.as' ·sho~ in 'the s imul-a tions. The best one ,is 

Burg algcfrithm "which' specify the" peak more clearly' than ' .. others 
" 

in the spectrum. 

\.t, · 
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where " 

Sin (WI - W ) LIZ 
Tl = a 

Sin (WI - Wa) IZ 

Sin(WZ - Wa) LIZ 
TZ = 

Sin(WZ - Wa) IZ 

T3 
' Sin (WI + Wa)L/Z 
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Sin (WI +Wa)/Z 
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Sin(WZ + Wa)L/Z. 
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where 61 = W b, ., 
1 

62 = W b, 2 
63 = b,W(L-1)/2 

64 = W1 (L""1) 

6S = W2 (L-1) 

Note that; since 

and 



.. 
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therefore 
~-

85 +8 3-8 2 = 84 -8 2 -8 3 

and we can rewrite H(Wa); 

Similarly, 

e-j(Wa~+m2~W(L-l)/2) 

(M M M3 2) 
12-

8 - 8-4 1 



where 
; > '. 

a = Wa~+m2~W(L-l)j2 

R = MlM2 M3
2 

PI = MZTl M3TZ 
p' = M

l
T

2
' M3?1 -Z 

P3 
= MZT3 · M3T4 

P = 4. MlT4 - M3T3 

128 

. -,. 

+"'P1P4 _CoS(8 l +8 3+8 2-84-) + P2 P4 CO?(82~83+83+82-84) i 
- -","- . 

. •... 

By neglecting the terms T3 and T4 we found the value 

of ~:~ as follows 

, ' 

~ = (Zk+lL (L-l) , 
~W 2 



APPENDIX A2 

For two sinusoidal.signa1s, the transj;er function of 
I,'; . < • " • 

ALE can be . given as follows 

H(w) = 

-J"W2k 
] e -jW(k+6) 

. + A4 e . 

. . 

(A2 ~ 1) 

By neg1ecti~g the contribution of negative frequency 

componen ts we "can approximate. (A2:.1) as : I 

'H(w) 
I 

-jW(k+6) e (A2 .'2) 

The error which is ca"used by ALE consis'ts 6f three 

components. The "flrst component is due to white noise sprea

ding, the second and third components are the attenuation of 
'" 

the first and second sinusoidal signals. Thi~ situation can 

be forID:ulated by (A2.3J· . 
. ~. 

(A2 . 3) 

129 
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where 6
0

Z is the power of the white noi~e. 6l
Z and 6l

Z are 
/ 

the pow~r of the first ancf second sinusoidal signals respec-

tively. 

Our aim is tomminimize V with respect to /).. At this 

point we make an approximation again. Assume that 6
0

Z«6 l
Z 

and 6oZ<~6ZZ. Therefore b; neglecting the first term of 

(AZ ;3) we find 

dv 
= 0 Re [1 - H(W l }] ~/).. Re [1 -H(Wl )"1 dK = 

+.Im[l - H(Wl )] ~/). 1m [1 - H (W 1) ] 

+ Re [1 . ~ H (W 2). 1 ~/). Re [1 - H(WZ)] 

+ Im[l - H(Wz)1 d 
'(fE" 1m [1 - H(WZ)) (AZ. 4) 

The real and imaginary parts of the transfer function 
-

can be given by (AZ .·5) 

Re [H(Wl ) 1 .= cl + Cz Cos r /). wI ( L - 1) / Z + /).] J 
Im[H(Wl )] = - C Z Sin ilW ( [L-l] /Z + /).) 

.... 
Re IHCWz) I C3 + C4 Cos /).W[(L-l)/Z + /).1 = 

1m [HCWZ)'} = C4 Sin ilW [(L-l) /Z + ill (AZ. 5) 
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L(L + 25 2/&"2) _ (Sin 6W L/2) 2 
o 2 Sin 6Wj2 

,C I = --------~--~-------------------------

[L + 25 2/5 .21 [L·+ 25 2/5 2J _ [Si~6WL/2]2 

'C 3 

.' 

o 2 - 0 1 Sl.n6Wj2 

Sin6WL/2 (L + 26 2/ 5 2) _ Sin6WL/2 
Sin6W!Z .k 0 .. 1.. ..' Sin6Wj2 

( L + 25 2/ 5 2) (L +" 25 2/ 5 2) _ rSi~6wL/21 2 
o 2 0 1 l Sl.n6W!2] 

L(L +25 2/ 5 2) _. [s~n6wL/21 2 
= 0 1 _. Sl.n6W/2 

(L + 25
0

2/5
1

2)(L + 25 2/ 5 2) _ [Sin6WL/2] 2 
o 2 Sin6W!2 

[
sin6wL/21 2 
Sin6W!2 j 

From (A2.4)' we have 

Therefore, the optimum va1u·eof 6 can be given 

6 + (L-I) /2 "IT = (2k+I) 6W 

(A2.7 is identical with (AI.I7). 

(A2 .6) 

(A2.7: 
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APPENDIX A3 

\ '. r f • 

, ~ : . . 

The optimal value of b for the case of multiple sinu-

soidalaverage error variance for N sinusoidal signals ·.can 

be written as 

v = 

. 2 

.0
0 

27f 
J 11 

27f '0 

, ' 

H(w) Ildw + (A3.l) 
',' , 

In a similar manne.r as in Appendix A2, we try to mini -

mlze V with respect to V by neglecting the first term in 

(A3 .1). The transfer function of ALE for, N sinusoidal "signals 

case is as follows 

where 

".~. 

H(w) 

i' 

2N 
L 

n=l 
A n e 

'W k J n 

f; (A3.2) 

~From the formula which is related to the An and y , rn 
',' 

we can find H (w). But 'in here we want to make an approxima-

tion by ass.uming,L is very large. 

r, the An uncouple and are giv,en 

132 

, ' . . 

Then Yrn ~ 0 for all n, and 

to a good approximation by 7 
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L+ 20 "2/6 2 
o n 

. '. . 

n=1,2, ... ,2N , (A3. 3) 

Equation' (A3.'3) is identical to the expres~ionfor the amp1i-
, , ' " " ," , \. : 

tude 'of the mean 'steady state ALE imp1use '. response for' one 

sinusoid at W~ in white nOl.se. Therefore 'the frequency re

sponse of the steady state ALE which will be denoted by H*(l{! 

can be simplY' expressed in the term of' the' ~: ' 

L-1 
m~ (w)' =' t 

k=O 
- j W (k+ll) a k e 

j (W -W) L 2N 
L A .e,-jWll 

n~l n 
= 

1 - 'e .. n .. ' , 
,J (Wn'=W) , 

1 - e 

(A3.4) 

As L becomes large, so that (A3.3) is valid H*(w) is given to 

a good approximation by 

H* (w) = 

... 
,+ 

.. , 

N 
L 

n=l 

N 
L 

n=l 

-j(Wn+W)1l -jeW +W)L 
e ' ~ e . n 

-----, ,-, ---'j""'.C""'W'-n-+W~) -
L + 2002/0 2 ,1 -e' . n 

j(Wn-W)1l 
1 

ej(Wn-W)L 
e ' -

3 (Wn -W) 
L + 20 2/ 0 2 1 - e o n 

(A3 . 5) 

Equation (A3.S) corresponds to a sum of bandpass fi1 ters 

(centered at·+ Wn ) each having: a peak value giv~n by 

(L/2) SNRn /((L/2)SNRn + 1) . (A3. 6) 
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As ~L' ~< 00 all', of t~e: peak', values in (17) 

approach 1, and the ALE become? ,a, linear superposit,io"nof per

fectly resolved bandpass filters, each with unity gain at its 

,Jrequency. Caution< mus t'; be' !e.~erc~sedJ.n: choos ing.1-, ' however, 

because as L is increased, the weight vector nois'e. is: also 

increased. Therefore, in practice, a value of for L which 

provides a trade-off between weight vector noise and enhance

men t abiiiti"~s should be chos'enas' in Capte'r' 4;. 

, . ~ 

Again 'by returning to (A3. 5) we' have 

N . -j (~n +W) [ll+1-l/z1 Sin.'(Wil +W),/Z 
H* (w) = L e 

n=l L + Z 6 Z;-o '2 SineW +W)/Z n 
. 0 n 

! ~ , 
, ; 

N j (Wn-W) [ll+L-l/Z] Sin (Wn - W.) L/Z 
L e (A3.7) + 

n=l ,L . +:' Z o· Z /0 2 Sin(Wn-W)/Z 
o n 

From (A3.7)<,we can finq.' the rea1' and imaginary part of H(w) 

respectively, as follows,: 

R~{H(w)} = 
N 
L 

n=l 

". 
N 

+. L 
n=;l 

! : ; ,: ;, L-l 
Sin (Wn +W) L/Z' CO.s (Wn+W) III + -z-1 

Sin(Wn+W)/Z L+ Zo 2/0 2 on. 

, Sin,(Wn - W) L/Z 

Sin(Wn-W)/Z 

L-l 
Cos (Wn -W.) (ll+. -Z-

L +'-"Zo "t/ o 2 
o ,n 

(A3 .8) 
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r'{H(w)}r= 
..... m. 

N 
L 

n=l 

N 
+ L 
. n=l 
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"Sin(Wn+W) [~.+ .¥J 
L + 20

0

Z /'A2 

Sin (Wn·-W) ~+. L;l] 

L + 20 2/ 0 2 o . n 

Sin (Wn +W) L/2 

Sin(Wn::-W}/Z-

> '. r 

.. Sin (Wn -W) L/2 

SinCWn-W)/2 
! . " • 

. (A3.9) 

Now our problem is a simply traditional minimization of: 

(A3.l) with respect to~ and it is given in general (i·.e., 

not neglecting the first term in (A3.l)) by (A3.l0) 

dv 
d~ = 0 = 

o 2 
o 

2 
H(w)} h [1 - H(w)]dw 

and··by neglecting the firs t term (A.3.ll) 

'N dv _ 
'Q7i"" - 0 = L 

.n=l 

and from (A3.ll) we. find the stationary: point of it . 
..... ;. 

(A3.l0) 

(A3.ll) 
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