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ABSTRACT

AIRFLOW ESTIMATION FROM RESPIRATORY SOUNDS

The aim of this study is estimate the respiratory airflow and phases from the
respiratory sounds recorded at the chest wall. In order to estimate the absolute airflow
curve, time varying autoregressive (TVAR) model coefficients are used. TVAR coeffi-
cients are calculated with three approaches: windowing based autoregressive modeling,
TVAR modeling with basis functions, TVAR modeling with Kalman filter. Then evolu-
tion in magnitudes of spectral band is used as an estimation of airflow curve. A Wiener
filter approach is presented for fusion of different features to estimate the airflow curve.
Average of correlation coefficients up to 0.75 for absolute airflow and 0.72 for airflow
are achieved. In the second part of this thesis, respiratory phases are estimated using
a neural network and the estimated absolute airflow curve. TVAR coefficients, Shan-
non entropy estimate, percentile frequencies, variance, spectral magnitude and kurtosis
are used as inputs. Distributions of these features for different phases and Kullback
Leibler divergence of these distributions are presented. For phase estimation from es-
timated airflow, heuristic methods are used for local minima extraction and selection
of the transition points. 97 and 83 milliseconds (3% and 2.6% of average full cycle)
of average deviation from true transition point are achieved with neural networks for
inspiration to expiration and expiration to inspiration transitions respectively. 120 and
131 milliseconds (3.8% and 4.1% of average full cycle) of average deviation from true
transition point are achieved with heuristic methods for inspiration to expiration and

expiration to inspiration transitions, respectively.



OZET

SOLUNUM SESLERINDEN SOLUK AKISI KESTIRIMI

Bu ¢alismanin amaci soluk akig hizini ve yoniini sirttan alinan solunum seslerini
kullanarak tahmin etmektir. Soluk akig hizinin mutlak degerini tahmin etmek igin
zamanla degigsen 6zbaglanimh (ZDOB) model katsayilar1 kullanilmistir. ZDOB model
katsayilar1 ti¢ farkli yontem ile hesaplanmistir: kayan pencereler, doguray vektorler
ile modelleme, Kalman siizgeci ile modelleme. Siklik bantlarindaki genligin zamanda
degisimi de soluk akig hizinin kestirimi olarak kullanilmigtir. Wiener stizgeci yaklagimi
farkli kestirimlerin kaynasimi i¢in kullanilmigtir. Mutlak akig hizi icin 0.75, akig hiz
igin 0.72 ilinti katsayilarina ulagilmigtir. Bu ¢aligmanin ikinci kisminda soluk evreleri
yapay sinir aglar ve akig hiz1 kestirimi kullanilarak kestirilmigtir. ZDOB model kat-
sayilari, Shannon entropi kestirimi, yiizdelik frekanslar, degisinti, spektral genlik ve
kurtosis yapay sinir aginin girdisi olarak kullanilmigtir. Bu ozelliklerin farkli evreler
icin dagilimlar1 arasindaki Kullback-Leibler iraksakliklar: sunulmugtur. Akig hiz1 ke-
stiriminden evre kestirilmesi icin yerel en kiicgiikleri ve gegis noktalari bulmak igin
bulugsal yontemler sunulmustur. Yapay sinir aglar: ile kestirimde gegis noktalarindan
sapma soluk verme evresinden alma evresine ve alma evresinden verme evresine gegiste
sirastyla 97 ve 83 milisaniye (tam bir soluk alig verig dongiistiniin %3 ve %2.6’s1) olarak
hesaplanmistir. Bu degerler, bulugsal yontemler ile akig hizi kestirimi kullanilmasi

durumunda 120 (%3.8) ve 131 (%4.1) milisaniye olarak hesaplanmigtir.
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1. INTRODUCTION

Auscultation of respiratory sounds with an aim to gain information about respi-
ratory diseases is a diagnosis method which has been applied for at least 2400 years.
Since then, different auscultation techniques have been used. The most widely used
tool developed for this purpose is called ”stethoscope” and it is invented in 1816 by
Rene Laénnec [2]. Medical doctors still use this device to diagnose several diseases such

as asthma, bronchitis etc.

In recent decades, engineers started to work on respiratory sounds and they pro-
duced electronic stethoscopes. These electronic stethoscopes have some advantages
over the traditional ones. First of all, the frequency band is not limited [3] by the me-
chanic structure of stethoscope and the sounds can be recorded for subsequent referral.
Another advantage is that the respiratory sound recordings have made analyzing the

sound with the help of computers possible.

In recent years, together with developing classification techniques, there has been
a great effort in automatic classification of respiratory sounds as healthy or patholog-
ical [1,4]. Some of these methods are dependent not only on sounds but also on the
airflow information [5]. Airflow is usually recorded by an instrument, called pneumo-
tachograph. This instrument is difficult to use with subjects with disabilities or very

small children.

Main motivation of this thesis is to estimate the airflow and respiratory phases
from the respiratory sounds recorded at the chest wall without using pneumotachograph
so as to enable easier airflow measurements to be and to contribute to the development
of a single handheld electronic stethoscope whose sound recording will be enough for

automatic diagnosis.



Before the preview of the work of this thesis, brief review of the literature on the

relation between flow, phase and respiratory sounds is presented.

Lessard and Wong [6] reported that the relation between the spectral parameters
which are mean frequency, frequency of maximum power and the highest frequency at
which the power in the spectrum is at least 10 percent of maximum power, and flow

rate is not linear and spectral parameters saturate as the flow rate goes beyond 0.75

l/s.

Yadollahi and Moussavi [7] suggested using entropy of bandpass filtered tracheal
sounds of overlapping windows whose durations are 100 milliseconds. They achieved
average error of 7.3 % and 7.4 % for inspiratory and expiratory phases after calibrating

the model which uses the entropy information.

Huq and Moussavi [8] proposed using log of variance (LV) to detect onsets from
tracheal sounds. For phase identification, they used 4 parameters calculated over the
LV curve and the duration of the phase. They developed and tested the method
for tracheal sounds and it is reported that 95.6% accuracy was achieved for phase

identification after onsets are verified by visual inspection.

Moussavi et al. [9] suggested using tracheal sounds for onset detection and the
power difference in 150-450 Hz at the ”best recording position”, where the difference in
power for inspiration and expiration is greatest, for phase identification. It is reported

that the success rate in phase identification is 100% after the onsets are found.

Golabbakhsh et al. [10] suggested using the average power calculated over the
frequency band between 150-450 Hz (P,,.) of tracheal sounds to estimate the respira-
tory flow. They have two approaches, first one is expressing the flow (F ) as a linear

function of log of P,,. as in 1.1 and the other one is training an adaptive filter with



three taps (w;, wy and ws), whose input is P, as in 1.2.

~

F =cy+ c1log(Poye) (1.1)
M

F=> wP (1.2)
i=1

Cift¢i and Kahya [11] modeled the sounds recorded at both trachea and chest wall
as time varying autoregressive (TVAR) processes by using Fourier basis functions and
used the first autoregressive (AR) coefficient vector as the estimate of absolute airflow
curve. Reported correlations for sounds recorded at trachea and chest wall were 0.9

and about 0.6 (extracted from figure in paper) respectively.

Organization of thesis is as follows:

In chapter 2, the experimental setup and data is explained.

In chapter 3, AR and TVAR processes and the methods to find TVAR coefficients
of a signal are described where windowing based AR modeling and TVAR modeling
with basis functions and Kalman filter are used. Short Time Fourier Transform (STFT)
and Wiener filter which is used to unify different estimations are also presented. Finally

experiments and results are presented.

In chapter 4, the method for period estimation is given first. Then neural networks
approach and features is explained. After neural networks, the method which estimates
the transition points and then identifies the phases between estimated transition points
will be described. Lastly, experiments and results are documented.

In the last chapter, conclusion on this work are drawn.

Main contributions of this thesis are as follows:



The relation between autoregressive model coefficients or respiratory sounds recorded
at the posterior chest and the airflow curve is analyzed.

The relation between power in different frequency bands and airflow curve is
analyzed.

Different estimations of airflow curve are combined using a Wiener filter approach.
Distribution of different features for inspiration and expiration phases are ana-
lyzed.

A robust period estimation method based on autocorrelation function is pre-
sented.

A neural network is used with different features to estimate respiratory phase
from recorded sounds.

To the best of our knowledge, a naive method to select transition points from a

set of candidate points is presented.



2. EXPERIMENTAL SETUP AND DATA

The data used throughout this thesis is taken from the database belonging to
Bogazigi University Lung Acoustics Laboratory. All sound and airflow samples were
recorded with the device developed in this laboratory [12]. The recording device has
14 channels. Each channel has the same analog interface, which includes a Sony ECM-
44 BPT electret microphone followed by an analog amplifier with gain of 100 which
has a instrumentation amplifier based design. The amplification unit is followed by
a 6™ order Butterworth low pass filter which has 4000 Hz cut-off and a 8" order
Bessel high pass filter whose cutoff is 80 Hz. The airflow recordings were done with a
Validyne CD379 pneumatachograph. The digitization unit is the National Instrument’s
DAQCard-6024E which operates at 9600 Hz and has 12 bit resolution. Each recording

has a duration of 15 seconds [12].

The subject set of this study consists of 23 healthy adult subjects. The sounds
were recorded at 14 different locations on the chest wall. Locations of channels are
shown in 2.1. In this study, respiratory sounds recorded from the channels between 1

and 12 are used.
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Figure 2.1. Microphone Locations on the Chest Wall [1]
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3. AIRFLOW CURVE ESTIMATION

3.1. Autoregressive Models

Autoregressive modeling is a widely used method in spectral signal analysis. It is
also used in respiratory signal analysis and since the respiratory sounds have spectral
characteristics changing over time, either the sound is divided into small frames and it
is assumed that the small frames are stationary or the respiratory sounds are modeled
as time varying autoregressive processes. It is reported that when a respiratory sound
signal is modeled as TVAR process, the first AR coefficient is highly correlated with the
airflow for the sounds recorded at trachea and have smaller correlation for the sounds
recorded at the chest wall [11]. The sounds recorded at the chest wall are tested to
find best settings for highest correlation in this subsection. The AR coefficients are

extracted using three methods:

e Windowing Based Autoregressive Modeling: Divide the signal into overlapping
windows with the assumption that each window is independent of others.

e Time Varying Autoregressive Modeling with Basis Functions: Assume the AR
parameters are combination of sinusoidal signals.

e Time Varying Autoregressive Modeling with Kalman Filter: Assume the AR

parameters are changing slowly.

3.1.1. Univariate Autoregressive Model

Univariate AR model is a difference equation where the current measurement of
the signal is a linear combination of past measured values and a white Gaussian noise.
The model is equivalent to a filter with infinite impulse response where the input is
white Gaussian noise. The equation of an AR model is given in (3.1). In this equation

a; is the ™™ order AR coefficient, N is the order of model and e is the noise term where



e = 0 and o2 is constant [13].

z(n) = Z a;x(n —1i) + e(n) (3.1)

Before looking at mean, variance, autocorrelation and spectral content of a gen-
eral AR model, we must set some conditions on a;’s to make the model stationary.
The stationarity requires that the mean, variance and autocorrelation function are
constant. If the mean is constant then (3.2) must hold. We know that u,. is 0, then
either Zf\il a; =1 or p, = 0 is true.

N
[y = Zaiux + fle (3.2)
i=1
We require E[X(0)] = 0 for initial conditions for AR processes and it ensures

iz = 0. Then for variance we can write the equations in (3.3), (3.4) and (3.5).

0% = B[X(n)X(n)] — ik (3.3)
0% = Z B[ X0 X + E[Xnen) — (3.4)
0% =Y a;Rxx(i)+0? (3.5)

=1

We know that autocorrelation coefficients are very important in the analysis of

an AR model. The AR coefficients can be directly calculated in the presence of the



autocorrelation coefficients.

Taz(1) = Ryx(i)/ Rax(0) (3.6)

rea(i) = Elz(n)z(n — )]/ Rew (0) (3.7)
XL Elagz(n = j)z(n — i)

T2z (1) = R 0) (3.8)

Ta:x(z) = Zajrxa:(i - j) (39)

The equation in (3.9) is very useful since we can rewrite it as in (3.10), this
equation is called Yule-Walker equation. So, given a signal generated with an AR
model, we can find the coefficients of that model by solving the equation in (3.10). Let’s

call this equation as r = Ra, the the coefficients can easily be found with a = R=!r.

rxx(1) 1 rxx(1) o Txx(N=2) rxx(N—1) ai
TX)((Q) Txx(l) 1 TXX(N—Q) a9
Txx(N - 1) T'X)((N - 2) 1 T’X)((l) anN—1
rxx (V) rxx(N—1) rxx(N—-2) .. rxx(1) 1 an
(3.10)

Although solving the equation (3.10) seems to be very straightforward, it requires
exact knowledge on correlation coefficients. However, when we are given a signal with
finite length we can just estimate the correlation coefficients, and the error in calcu-
lated AR coefficients will depend on the condition number of R matrix. To solve this
equation, there are several methods in literature, throughout this thesis we will use

Burg’s Method to find the AR coefficients, since it is more stable than the others [14].



1: procedure WINDOWEDA R(signal, order, winLen, overlap)
2: windowStart < 1; L « Length(signal);

3: while windowStart < L — winLen do

4: temp < signal(windowStart : (windowStart + window Length));
5: AR(:,i) < EstimateAR(temp, N);
6: windowStart <— windowStart + window Length;

7: end while

8: return AR;

9: end procedure

Figure 3.1. AR Coefficients Estimation With Overlapping Windows

3.1.2. Time Varying Autoregressive Model

While univariate autoregressive model is very useful for many signals, the method
does not use the continuity of the signal and treats each segment independently. As-
suming that the coefficients at different time instants are correlated with each other
and building some structured models is another method which is widely applied for
nonstationary signals. TVAR modeling was applied to respiratory signals and satis-
factory results have been obtained in many papers. The equation describing a TVAR

process is given in (3.11).

z(n) = Z a;(n)z(n — i) + e(n) (3.11)

=1

We will use two methods for solving this equation for a;’s. One of them is model-
ing a;’s as combination of sinusoids, the other one is modeling a;’s as slowly changing

parameters.

3.1.2.1. TVAR Coefficients Estimation With Fourier Basis Functions. In this method,

the AR coefficients are assumed to be combination of sinusoidal functions,as given in
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equations in (3.12) and (3.13).

M

z(n) = Zx(n — 1) Z ciui(n —1i) +e(n) (3.12)

i=1 j=1

a;(n) = Z cijui(n — 1) (3.13)

Equation (3.12) can be rewritten in vector form as in (3.14) where X; is the
diagonal matrix where the diagonal elements are adjacent elements of x starting from
1, U is the matrix whose columns are basis vectors, and the ¢;’s are the unknown

parameters in this equation.

N
r=>Y XiUci+e (3.14)

=1

Let Y; = X,U, the equation can be written in matrix form as in

C1

C

r=mm.vw) | ] e (3.15)

The equation in (3.15) describes an overdetermined set of equations, and least
squares approach is used to solve this. After finding c vector, which has Nz M elements,

calculating a;(n), TVAR coefficients, is straightforward.

c=YTY)" 'Yz (3.16)
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Experiments are carried out to find the optimum values for the AR order, the

number of basis vectors, and the range of frequencies spanned by basis vectors to get

the best correlation.

1:

2:

3:

4:

o

10:

11:

12:

13:

procedure TVARFOURIERBASIS(signal, order, freqRange, numBasis)
dr = freqRange/numBasis;
for i=1:numBasis do
U(,2%i—1) = sin(i % dy);
U(:,2% i) = cos(i xdy);
end for
Generate Y: Project signal onto U,
c=(YTY)lyTy
for i=1:N do
AR(:,i) = Ucy;
end for

return AR;

end procedure

Figure 3.2. TVAR Coefficients Estimation With Fourier Basis Functions

3.1.2.2. TVAR Coefficients Estimation With Kalman Filter. Kalman filter is a very

old but still popular algorithm in the field of information processing. It is the minimum

mean square estimator for the state of linear dynamical systems [15]. It is used in a

wide range of areas from tracking applications to computer games.

Before explaining how Kalman filter works, the required equations to describe

the model where it is applied are given. Kalman filter is invented to work on dynamic

systems where we can record the noisy observations of transformations of the process

in interest. So two equations may be given, for both measurement (3.17) and process
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(3.18) model [16].

Tp = Fhx,_1 + Bpuy, + w, (3.18)

In (3.17) the H is the transform matrix and v is the measurement noise. In (3.18)
x is the state vector, u is control input to the system, B is the control matrix, F'is the
state transition matrix and w is process noise. When a model desribed in (3.17) and
(3.18) and measurements of y are present, Kalman filter can be used to estimate x.
When the process and measurement noises are Gaussian then Kalman is the optimal

estimator.

In our problem, there is not any control input to system and equations convert
to (3.19) and (3.20). In these equations y is the recorded sound amplitude, x is the
AR coefficients, H is equal to raw vector containing previous N values of y where N

is the AR order.

Ty = Fpop_1 + wy, (3.20)

Kalman filter includes two stages, prediction and measurement update. The
prediction equations are given in (3.21) and (3.22). The measurement update equations
are given in (3.23), (3.24) and (3.25). In these equations Zpjm = E[T,|y1m] and Py, =

E[(n — Znjm) (@0 — Znjm) T [Y1:m).
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Prediction:

i'n\nfl = Fﬁjn71|n71 (321)
Pupn1=FP, 1y 1 F" + 02, (3.22)
Measurement Update:
K, = Py 1 H(H! Py H, + 02) 7! (3.23)
Pon=(I—K,H )Pyt (3.25)

In the equations above, the filter uses only past values to estimate current value
of z. In order to add the information from complete signal, the estimations can be
smoothed with Rauch-Tung-Striebel backward recursions given in (3.26), (3.27) and
(3.28).

Jn = P FTP L (3.26)
fn|N = ﬁn\n + Jn($n+1\N - $n+1|n) (3.27)
Pn|N = Pn|n + Jn(Pn—l—l\N - Pn+1|n)t]3: (328)

In these equations process noise, state transition matrix and measurement noise
are not being updated, and they need to be tuned. The tuning process and results are

given in the Experiments & Results section.
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3.2. Time Frequency Analysis

Short Time Fourier Trasnform is a technique which is widely used and very useful
for the analysis of signals with a time varying spectral characteristics. STFT is used

for the analysis of respiratory signals since they have a nonstationary nature.

Xon(f) = Z z(n)w(n — mR)e 72 Im (3.29)

STFT is defined in (3.29). It can be seen as a sliding Fourier Transform (FT) [17].
In this equation, R is hop size and w is the window function which is zero outside of
a predefined range and is used to pick the part of signal which is the input of F'T and
to smooth the signal to make it stationary. The window is an important parameter
for STFT, it is the effective parameter to adjust time-frequency resolution. First of
all, the window length must be so small that it must ensure that the selected portion
is stationary. There is also a trade-off between resolution in time and resolution in
frequency, this trade-off is also controlled with window length. As the window length
increases the frequency resolution increases and the time resolution decreases. So, for
wideband signals one can use smaller window lengths whereas for narrowband signals

greater window lengths may be used.

The output of STFT operation is a two dimensional complex matrix, which de-
scribes the magnitude and phase of frequency band component. For most of the ap-
plications, including respiratory sounds, the magnitude information is needed and the
complex matrix is converted to a real matrix which gives information about energy

directly. The resulting matrix is usually visualized by a heatmap as in 3.3.

In Figure 3.3, a sample of respiratory sound, magnitude plot of its STFT and
corresponding airflow are depicted and it is observed that a relationship exists between

the airflow and some horizontal lines. These horizontal lines correspond to the energy
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Respiratory Sound And Airflow
T

- 3
é
ES

Short Time Fourier Transform of Sound

Figure 3.3. A respiratory sound, corresponding airflow and STFT magnitude plot

at a frequency band over the time. Experiments are run to test the correlation between
the evolution of energy at each frequency band with the airflow. The STFT is tuned
by tweaking the window type, window length and number of FFT bins as given in the

Experiment & Results section.
3.3. Unifying Estimations

When we have an estimation problem with desired output, d and observations
in x vector, if each observation in z and d are jointly wide sense stationary (wss), the
optimum estimator for mean square error (MSE) is the Wiener filter [18]. We can write
down the equations and derive the optimum filter. The estimation equation is given

in (3.30) where d is the estimation in this equation. Estimation error is given in (3.31)
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and the error measure we are interested in is given in (3.33)

N
d= Zwixi =wrx (3.30)

i=1
e=d—d=d—wTx (3.31)
E[e’] = E[|d — d]] (3.32)
Ele?] = E[d* — 2dxTw + wTxxTw] (3.33)

In order to minimize the error we can differentiate with respect to w and find the
value where the derivative is zero. For error to be at its minimum the expectation in
(3.34) must be zero, which requires x and e to be uncorrelated.

OE|e?] _ 2E[688_z]]

= —QE[exi] (334)

If we rewrite error as the difference between d,, and wj, x, then we can state the

equations in (3.35) and (3.36).

E[(dy — waox)x] =0 (3.35)

ExxTWopt = E[xd,] (3.36)

The first expectation in (3.36) is the autocovariance matrix of x and the second
expectation is the crosscovariance between z and d. The filter w,y is called as the

Wiener filter.

In previous sections, vectors which are estimations of airflow are obtained. A
weighted sum of these estimations are used as observations and weights are decided by

using this Wiener filter approach. A block diagram explaining this method is given in
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Coefficients ;
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Shaort Time Fourier } of Columns

Transform

Figure 3.4. Block diagram explaining the Wiener approach to unify the estimations

Figure 3.4.

3.4. Experiments & Results

In this section, the experiments to obtain the best tuning parameters and the

results using the methods explained in this chapter are presented.

3.4.1. Univariate Autoregressive Model

There are four parameters to be optimized in the univariate autoregressive mod-
eling method. These parameters are the coefficient degree, AR order, window length

and overlap amount.

First the problem of finding the best AR order and coefficient order is addressed.
For this purpose, experiments are done for AR orders from 1 to 15 with window length

of 500, and 50% overlap.

It can be inferred from Figures 3.5 and 3.6 that the correlation is decreasing
with increasing coefficient order and the correlation with absolute value of flow is
significantly greater than the correlation with real value of flow. It is decided to continue
the analysis with absolute value of airflow for AR estimators. In order to find the best
model order experiments are run with window length 500 and an overlap of %50 with

model orders from 1 to 15. The results are shown in Figure 3.7. As can be seen from
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Average Correlation of Evolution of Coefficient with Absolute Airflow, WindowLength = 500 Overlap = %50
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Figure 3.5. Boxplot for correlation coefficient of AR coefficient evolution with

absolute value of airflow for different coefficient orders
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Figure 3.6. Boxplot for correlation coefficient of AR coefficient evolution with airflow

for different coefficient orders
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Correlation of Evolution of First AR Coefficient with Absolute Airflow, WindowLength = 500 Overlap = %50
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Figure 3.7. Boxplot for correlation coefficient of AR coefficient evolution with airflow

for different AR model orders
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Figure 3.8. Boxplot for correlation coefficient of first AR coefficient evolution with

absolute airflow for different window lengths and overlap ratios
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the Figure, there is not any significant difference after sixth order AR model, so model
order 6 is chosen. After selecting model order, the window length and overlap ratio
are left to be decided on. In order to select them experiments are run with window
lengths from 100 to 2000 with a step size of 100 and overlap ratios from 10% to 90%
with a step size of 10%. The results for different window lengths and overlap ratios
are summarized in Figure 3.8. According to the results, best window length is 800 and
changing the overlap ratio does not generate any difference in the correlation. In the

final experiments, 90% overlap is used to increase the resolution.

The resulting decision for univariate autoregressive solution with overlapping win-

dows is 6, 800 and 90% for model order, window length and overlap ratio, respectively.

3.4.2. Time Varying Autoregressive Model with Basis Functions

The parameters for this method are model order, number of basis functions and

the frequency difference in adjacent basis functions.

First, experiments to determine the best model order are run with model orders
from 1 to 15 where the number of basis functions are 201 (100 sines, 100 cosines and
a constant) and the separation in frequency is 0.04 Hz. Experiment results are given

in Figure 3.9. Highest correlation is achieved with the model order of 6 again.

After deciding on the model order, it is needed to decide on the number of basis
functions and the frequency separation of basis functions. Before doing this, exper-
iments are run to determine the frequency coverage for highest correlation and run
experiments with frequency step size of 0.025 Hz and different number of basis vectors
from 50 to 300 with a step size of 50. The results are given in Figure 3.10. According

to test results, 5 Hz is enough to cover for best results.

Finally simulations are run to decide both the number of basis frequencies and
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Correlation For Different TVAR Model Orders
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Figure 3.9. Boxplot for correlation coefficient of first AR coefficient evolution with

absolute airflow for different TVAR model orders

Correlation For Different Coverages

T T T T T T
0.75 + + ¥ + + ¥ -
0.7 | + i
+
T - = |
| |
T |
S 065 - | | ' : | ]
k= | | | |
= | I
) | | | |
—
3 ' |
O 06 | | -
| 1 I |
055 L I | | I
o 398 1
[
|
05
| | | | | |
1.25 25 3.75 5 6.25 7.5

Frequency Coverage

Figure 3.10. Boxplot for correlation coefficient of first AR coefficient evolution with

absolute airflow for different frequency coverage
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Correlation For Different Basis Functions and Same Frequency Coverage
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Figure 3.11. Boxplot for correlation coefficient of first AR coefficient evolution with

absolute airflow for number of basis functions

frequency separation where the frequency range from 0 to 5 Hz is covered. The results
are given in Figure 3.11. It can be seen that there is no significant change for the number

of basis functions from 200 to 400. 250 is chosen for minimum standard deviation.

To summarize, 6, 250, 0.02 are chosen for model order, number of basis frequencies

and frequency separation, respectively.

3.4.3. Time Varying Autoregressive Model with Kalman Filter

For this method, the estimated noise variance by windowing based AR modeling
as the measurement noise variance. The best noise variance for process noise is found
by experiments. Simulations where the process noise variance goes from 0.0002 to 0.004
with a step size of 0.0002 are run. The results are given in Figure 3.12. 0.004 is chosen

as the process variance.



23

Correlation For Different Process Noises

< | j0e000080000000c

o
o

[P R R Y

' : RS RS RN RN EERRY SRS EASNY

l FE) l § RRRSN R KRR D REetl B |

L+ |

B

+

o
o
T

Correlation
o
()]
[$)]
T

04

0.35 | | | | | | | | | | | | | | | | | | L

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Noise Variance x 10000

|
| 1
0.45 »Q -
|
|
L
Il
2

Figure 3.12. Boxplot for correlation coefficient of first AR coefficient evolution with

absolute airflow for different process noise variances

3.4.4. Short Time Fourier Transform
Experiments were run with 64, 128 and 256 FFT bins and window lengths of 128,

256, 512, 1024 and 2048. The results are shown in Figures 3.13, 3.14 and 3.15. The

conclusion is the greatest correlation is achieved between 150 and 450 Hz.

3.4.5. Unifying Estimations

Simulations were run with different number of vectors to be unified, where the

vectors are outputs of univariate AR and STFT methods.
3.4.6. Results

The resulting correlation coefficients are given in Figure 3.17. Average correlation

coefficients with absolute airflow curve are 0.63, 0.63 and 0.65 for windowing based AR
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Correlation Of Different Bands For 64 Point STFT With Different Window Lengths and Overlap Ratios

0.45 T T T T T T
—x—128, %25
0.4 —%—128, %50 | -
—x—128, %75
035 | —o—256, %25 | |
—o— 256, %50
o —6e—256, %75
g 03 — 8512, %25 |
= =512, %50
g 905 L g —=—512, %75 | |
© N —x— 1024, %25
—~—1024, %50
02 | —%— 1024, %75|
—&— 2048, %25
0.15 - —%— 2048, %50 -
—&— 2048, %75
01 N | | | | | |
0 5 10 15 20 25 30 35

Frequency Band Number

Figure 3.13. Mean of correlations for each band for STFT method with 64 fft bins,

window lengths and overlap ratios
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Figure 3.14. Mean of correlations for each band for STFT method with 128 fft bins,

window lengths and overlap ratios
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Correlation Of Different Bands For 256 Point STFT With Different Window Lengths and Overlap Ratios
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Figure 3.15. Mean of correlations for each band for STFT method with 256 fft bins,

window lengths and overlap ratios
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Correlation With Different Methods
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Figure 3.17. Mean of correlations for each channel with diffent methods

modeling, TVAR modeling with basis functions and TVAR modeling with Kalman
filter respectively. There is not a significant difference among these three approaches.

Average correlation coefficient of combined estimation with airflow is 0.63.
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4. AIRFLOW PHASE ESTIMATION

In this chapter, more than one method are presented to estimate the respiratory
phases. In one approach, the estimated airflow and in the other approach neural

networks are used. In both methods the estimated breathing period is used.

4.1. Period Estimation

It is assumed that the period of breathing does not change abruptly and stays
almost constant for each recording. In order to estimate the period, the autocorrelation
function (ACF) of the absoulte airflow estimation is used. For a periodic wave, the
ACF is also periodic with the same period and there are peaks at the integer products
of the period. So, the period can be estimated by calculating the distances between the
peaks. However, since the signal is noisy there are many local maxima, so instead of
estimating the distance between peaks, we look at the ACF of ACF of the signal that
is being analyzed, and use the location of the maximum of local peaks in the part that
is determined by minimum and maximum period. The equation for estimated period

is given in (4.1). A visual description of estimating the period is given in Figure 4.1.

T'" = period, + arg max(Rg, [period i : periodmqas)) (4.1)

4.2. Phase Estimation With Neural Networks

A neural network is used to decide the phase of a given signal segment. The
following features are used: AR coefficients, Shannon entropy estimate, percentile fre-
quencies (fas, fs0, fr5 and fog) and the ratio between each of them, variance, spectral

magnitude and kurtosis. Range of these features change for each recording, bu the
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Figure 4.1. Visual Description Of Period Estimation
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difference between inspiration and expiration does not change, so z-score is used before
giving these features to neural network. The ratio of blue function to the red line at

the end is taken into consideration.

4.2.1. Description of Neural Networks

A neural network is a function with many inputs and a single output. Formulation
and development of neural networks are inspired from biological nervous system. Input
values of a neural network is processed by dozens of interconnected functions, and
these functions are called "neuron”s. A neuron can be thought as a function with
multiple inputs and a single output. A neuron’s output is determined by the activation

function [19].

4.2.1.1. Neuron. Mathematical expression of a neuron’s activation function is given in

(4.2). Here 5 is the activation function. Activation function may be in several different
forms. It is selected based on the application where the neural network is used and the
distribution of input values. Activation functions are generally selected or constructed
in a way that they are easily differentiable. Some of popular activation functions are

given in Figure 4.3.

y = ﬁ(Z(wm (4.2)

Figure 4.2. Diagram of A Neuron
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Figure 4.3. Some Activation Functions

4.2.1.2. Layers In Neural Networks. There are three different layers in neural net-

works, input layer, output layer and hidden layers. Input and output layers are where
the input values are received and output values are given out respectively. Hidden lay-
ers are where the information from input layer or previous hidden layer is processed.
Hidden layers may have arbitrary number of neurons and there may be any number of

hidden layers in a neural network.

Input Hidden Output

layer layer layer

To —
r3 —

Ty —

Figure 4.4. A Neural Network With One Hidden Layer
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4.2.1.3. Learning Process In Neural Networks. Learning is the primary property of

neural networks, it enables a neural network improve self performance.

The learning processes can be divided into three categories with respect to the
learning paradigms. These categories are supervised, reinforcement and unsupervised
learning. In supervised learning, the desired output so the error is known in the
learning process. In reinforcement learning there is a performance measure which is
being tried to be maximized. In unsupervised learning however, there is no desired
output or performance measure available. We will use supervised learning since the

correct phases are known to us.

Learning methods can be divided into four types, error-correction learning, mem-
ory based learning, Hebbian learning, competitive learning and Boltzmann learning.
Error-correction learning is used in this study with an aim to minimize the total error

measure by adjusting the synaptic weights.
4.2.2. Features

In this section, the features which are used in the neural network approach are
presented. Each feature is calculated for all the sound samples. However while looking
at features, one can see that the patterns do not change however the range of values
changes. To overcome this issue each feature series from each sound gets normalized
by using z-score. Z-score is the measure which indicates the distance a random sample
has to its source mean. The formula for z-score is given in (4.3). For each sound sample

and feature, the fi1x and ox are calculated over all frames.

Ty — KX

OXx

(4.3)

Zi =
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The Kullback-Leibler (KL) divergence is also used to quantify how much the
distributions for inspiration and expiration differ from each other for each feature.
KL-divergence is a definition from information theory and it gives a distance between

probability distributions. The formula for KL-divergence is given in (4.4) [20].

Do (p(@)lla@)) = 3 pler) log 12 (4.4)

x
zeX

4.2.2.1. AR Coefficients. When the respiratory sounds are modeled as AR processes

and the AR coefficients are obtained, it is seen that estimated AR coefficients behave
differently for inspiration and expiration. As an example, for the case of the first
AR coefficient it seems as the coefficients are attenuated for expiration phases. So
it was decided to use AR coefficients as a feature to the neural network. A detailed
explanation about AR models and methods to estimate AR coefficients is given in

Section 3.

Distributions of AR coefficients during inspiration and expiration for the third

channel are given in Figure 4.5

4.2.2.2. Shannon Entropy Estimate. Entropy is a measure which gives information

about the complexity of the samples collected. As the randomness of the samples
increases entropy also increases. The formula to calculate entropy is given in (4.5) [20].
In general we have a wider range for signal values in inspiration, so we expect entropy

to be greater for the segments belonging to inspiration.

Distributions of Shannon’s entropy estimates during inspiration and expiration

for the third channel is given in Figure 4.6

== plx)log(z (4.5)

zeX
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Figure 4.6. Distribution of Shannon Entropy Estimate For Inspiration and Expiration

4.2.2.3. Percentile Frequencies. A percentile frequency is the frequency at which the
cumulative sum of power spectral density is equal to the defined percent of total power.
In order to calculate these frequencies, first the power spectral density, Pxx(f), is esti-
mated according to the formula in (4.8), where z(t) is the signal in time domain, X (f)
is the Fourier transform of z(¢). Percentile frequencies and their relations are measures
which are widely used in respiratory signal analysis [21,22]. Since the expiration and
inspiration phases have different time-frequency content, percentile frequencies may be
used as input to classifier neural network. Definition of a percentile frequency, f,, is

given in (4.8).

Distributions of percentile frequencies and their ratios between each other during
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inspiration and expiration for third channel is given in Figure 4.7.

X(f) = /_ (et (4.6)
Pxx(f) = X(f)? (4.7)

o Pxx(df _ gy

fy = argmin

S P (F)df T 100

4.2.2.4. Variance. Variance corresponds to power and observations show that power

for different respiratory phases differs. So we decided to use variance as a supportive

feature. Sample variance is calculated as in (4.10).

Distributions of variance of windows during inspiration and expiration for the

third channel are given in Figure 4.7.

ZxEX o

y = —— 4.9
x ]>f| ( )

~9 erX(I - ﬂX)2
— 4.10
7x |X|—1 (4.10)

4.2.2.5. Spectral Magnitude. The magnitudes of several frequency bands are calcu-

lated for each segment using FFT. The spectral band’s magnitude are calculated by
taking FFT of windows after multiplying them with a Hamming window for smooth-
ing. 128 points FFT is used and each band represents a band of 75 Hz. We used
the following bands’ magnitudes: {75 Hz-150 Hz, 150 Hz-225 Hz, 225 Hz-300 Hz, 300
Hz-375 Hz, 375 Hz-450 Hz}.

Distributions of spectral magnitudes of windows during inspiration and expiration
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Figure 4.8. Distribution of Variance For Inspiration and Expiration

for the third channel are given in Figure 4.9.

4.2.2.6. Kurtosis. Kurtosis is the ratio of the fourth moment to square of second

moment. It is a statistical feature which has been used in respiratory signal analysis.

Formula for kurtosis is given in (4.11)

Distributions of kurtosis of windows during inspiration and expiration for the

third channel are given in Figure 4.10.

erX<x - ﬂX)4

K= e

(4.11)

The average KL-divergence for features is given in Figure 4.11. The feature

indices are consistent with the order features as explained above.
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4.2.3. Denoisining The Output of Neural Network

The output of neural network is not very good in terms of estimating the phase
correctly and it alternates too much even in short durations. In order to overcome this
problem, a filtering is needed. Linear filters do not perform well since they display many
discontiunities, so it is decided to use a filter that takes the contiunity into account and
since the period was estimated earlier, it was used for filtering purposes. A periodic
square wave is created with the period equal to the the estimated period and with 50%
duty cycle. The cross correlation between this square wave and the output of neural
network is calculated. This indicates the required amount of shift that is needed for
the square wave to fit on to the phase of airflow. It must be noted that the airflow is

assumed to be periodic and that its duty cycle is 50%.

4.3. Phase Estimation With Estimated Airflow Curve

The airflow phase curve is estimated using the estimated airflow curves. In order
to do that, the estimation which has the most correlation with the absolute airflow curve
is used, so the first AR coefficient of consecutive and overlapping windows is used. It is
reported that the onsets can be found by looking at local minima of estimated absolute
airflow curve. In this case, local minima analysis only didn’t solve the problem so some

heuristic algorithms based on observations were developed.

4.3.1. Prefiltering

In trying to locate the local minima, because of the noisy nature of estimated
airflow, there are many false minima. To overcome this problem a median and moving
average filter are applied. A median filter is chosen to filter out the spikes and a moving
average filter to smooth the signal. Describing formulae for median and moving average

filters with 2K + 1 taps are given in (4.12) and (4.13). In this study 25 taps for median
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filter and 35 taps for moving average filter are used.

Yi = med(Tmax(0,i—K)» Tmax(0,i—K+1)s --Tis -+ Tmin(Lyi+K —1)» Tmin(L,i+K)) (4.12)
S @ik T
vi = J xR (4.13)

min(L,7 + K) —max(0,7i — K) + 1

A figure showing unfiltered and filtered signal is depicted in Figure 4.12
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1 - - - 1 - -
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Figure 4.12. Filtering The Flow Estimate
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Figure 4.13. Type-1 and Type-2 Minima

4.3.2. Local Minima Extraction

The number of local minima is decreased by filtering, however, there are still
too many minima to process. So, a heuristic algorithm is added for the selection of
local minima. Two types of local minimum are used: one type, type-1, is mostly seen
in transitions from expiration to inspiration and the other, type-2, is mostly seen in
transitions from inspiration to expiration. The examples of type-1 and type-2 minima

are shown in figure 4.13.

e Type-1 Minimum: A minimum smaller than all minima in its right neighborhood.

e Type-2 Minimum: A minimum smaller than all minima in its left neighborhood.

4.3.3. Selection of Transition Points

The period estimation and local minima are together used to decide on the loca-

tion of transition points. While all the local minima are candidate transition points, it
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is assumed that the distribution of the distances between consecutive transitions from
inspiration to expiration and expiration to inspiration have a distribution with a small
variance and a mean which is equal to the period estimation. So, first, the number of
transitions in each direction is decided on. Then all the subsets of local minima whose
cardinality is equal to the number of transitions are listed and the differences between
adjacent elements are calculated. Finally the likelihoods of each subset are calculated
according to (4.14) and the one which has highest likelihood is selected. After select-
ing the first transition points set, in order to decide on the set belonging to the other
transition type, we also look at the distance to the set of first transition type. In this
no assumption is made on the value of the duty cycle. A block diagram explaining the
procedure is given in Figure 4.14. An example of change point estimation is given in
Figure 4.15.
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Figure 4.14. Block Diagram Explaining the Transition Point Estimation
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Figure 4.15. Transition Point Estimation

4.3.4. Estimating The Phases Given Transition Points

The phases of segments are estimated after deciding on transition points by using
the first AR coefficient of segments divided by the transitions points. Two groups are
created and each group includes nonconsecutive segments. Then the AR coefficients
for each segment are calculated, and the group with a greater average AR coefficient

is labeled as inspiration. This method works with a success rate of 96%.

4.4. Experiments & Results

4.4.1. Neural Networks

Matlab’s neural network toolbox is used in the training process. The performance
function is selected to be cross-entropy since it is a standard performance function
used for classification purposes and training function is selected to be scaled conjugate

gradient. Neural networks with different number of hidden neurons are used and it is
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observed that the correlation between neural network’s output and phase type does not
change significantly with the number of hidden neurons. This experiment is carried out
on the third channel of 10 subjects. The boxplot showing results for different number

of hidden neurons is given in Figure 4.16. It is decided to use 20 neurons.
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Figure 4.16. Performance of Neural Network vs Number of Hidden Neurons

The performance of neural networks is measured by using correlation measure.
The boxplot of correlations between neural network’s output and the phase is given
in Figure 4.17. Then the output of neural networks is corrected by using the period

information, and the result is shown in Figure 4.18.

In addition to correlation measure the deviation of detected transition points
from real transition points is also measured. A deadband which is equal to 5% of
peak-to-peak voltage around zero is introduced before calculating the true transition

points.
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Table 4.1. Deviation From True Transitions in Milliseconds and Error in Percentage

Channel 1 2 3 4 ) 6 7 8 9 10 11 12 Avg

Ins to Exp 74 183 76 87 T7r 74 8 71 146 115 86 82 97
Error/Exp % 4.3 10.6 44 50 45 43 46 41 85 6.7 50 48 56
Error/Tot % 24 58 24 28 24 24 25 23 46 36 27 26 3.0

Exp to Ins 64 150 66 77 63 67 62 65 126 123 68 65 83
Error/Ins % 4.4 104 4.6 54 44 47 43 45 88 86 4.7 45 58
Error/Tot % 2.0 48 20 24 20 21 20 20 40 39 21 21 26

4.4.2. Transition Points Detection Based On Local Minima

The first AR coefficient and period information are used to estimate the transition
points and calculated the first AR coefficient of the segments between transition points
are calculated to decide on phase. The correlation between estimated and true flow
phase is given in Figure 4.19 and the deviation from true transitions is given in Table
4.2.

Table 4.2. Deviation From True Transitions in Milliseconds and Error in Percentage

Ch 1 2 3 4 ) 6 7 8 9 10 11 12 Avg

ItoE 112 121 130 110 96 117 159 102 88 176 110 118 120
Err/Exp 65 70 76 64 56 68 93 59 51 102 64 69 7.0
Err/Tot 35 38 41 35 30 37 50 32 28 56 35 37 38

Etol 106 18 94 198 113 117 157 149 104 143 131 131 131
Err/Ins 7.4 129 6.5 138 79 81 109 104 72 100 91 9.1 9.1
Err/Tot 34 59 30 63 36 37 50 47 33 45 42 42 41
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5. CONCLUSION

In this thesis, methods, including some from literature, are suggested and tested
to estimate the curve and phase of the airflow at the mouth by using the sounds recorded
on the chest wall. The respiratory airflow and phase information has diagnostic value,
so their accurate estimation may increase pulmonary disease diagnosis performance

using auscultation in case there is no airflow measurement.

In chapter 3, the TVAR modeling of respiratory sounds approach after a descrip-
tion of AR and TVAR processes is tested. The method in [11] which uses the basis
functions to estimate the TVAR coefficients, the windowing based AR modeling and
Kalman filter for TVAR modeling approaches are also implemented in this thesis and
the performance is measured by looking at the correlation coefficient between esti-
mation and absolute value of airflow. From the results, it can be said that, all three
approaches have similar performances. Later, the correlation of magnitudes of different
frequency bands with the airflow itself is tested. Finally, the Wiener filter approach is

introduced to unify different estimations of airflow.

In chapter 4, first, a method to estimate the period of breathing from the esti-
mation of airflow, which is based on the first AR coefficient is given. Then, a neural
network for classification of inspiration and expiration is used. The histograms of fea-
tures (AR, Time-Frequency, Percentile Frequencies, Variance, Entropy and Kurtosis)
from inspiration and expiration parts are presented consequently. A method to denoise
the output of neural networks by using the period information and assuming a 50%
duty cycle is presented. It is also tried to estimate the transition points by using the

absolute airflow estimation and the period information.

In conclusion, the relation between respiratory sounds, their features and the

airflow are investigated throughout this thesis. It can be concluded that, the phase
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information can be extracted from respiratory sounds with a good performance by
using the techniques in chapter 4 and the airflow curve can be estimated with the
techniques in chapter 3 and that phase estimation performs better than airflow curve

estimation.
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