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ABSTRACT

WORM INFECTION DYNAMICS ON A LOCAL AREA

NETWORK

The aim of this thesis is to investigate the spreading behaviour of worms on a

Local Area Network that is supervised by a central administrator who is authorized to

enforce the updates on individual computers, but leaves their activation to the users.

For this purpose, the processes involved in a specific worm attack have been

modelled with a Markovian approach, and simulated in the Matlab programming en-

vironment. Most parameters in the model are set to realistic estimates of the average

values of the corresponding variables, while some other parameters are varied in rea-

sonable ranges to investigate their impact on performance of the computers on the

LAN. The performance and its deterioration are evaluated in terms of the number of

computers that are infected and have to be repaired, as well as in terms of the average

percentage of active computers on the LAN.

The proposed model can be used to develop security policies to reduce the average

number of infected computers on a LAN. Here, the effects of some parameters related to

infection and security on the percentage of infected computers have been investigated.
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ÖZET

BİR YEREL AĞDA SOLUCAN ENFEKSİYONUNUN

YAYILMA DİNAMİĞİ

Bu tezin amacı, bireysel bilgisayarları güncellemeleri yüklemeye zorlama yetkisine

sahip, fakat aktivasyonu kullanıcıya bırakan merkezi bir yöneticinin idaresindeki bir

yerel ağda solucanların yayılma davranışını araştırmaktır.

Bu amaçla, spesifik bir solucan saldırısındaki süreçler Markov yaklaşımı ile model-

lenmiş ve Matlab programlama ortamında simüle edilmiştir. Modeldeki birçok parame-

tre gerçekçi tahminlerle seçilmiş, diğer bazı parametreler ise makul aralıklar içerisinde

değiştirilerek yerel ağa bağlı bilgisayarların performansı üzerindeki etkileri incelenmi-

stir. Modelin performansı ve bozunumu, solucanla enfekte olup tamire gönderilen bil-

gisayar sayısı ve yerel ağ içerisinde aktif bilgisayarların ortalama yüzdesi cinsinden

değerlendirilmiştir.

Önerilen model, solucan bulaşmış ortalama bilgisayar yüzdesini düşürecek güvenlik

politikaları geliştirmek için kullanılabilir. Burada, enfeksiyon ve güvenlik ile ilgili bazı

parametrelerin enfekte bilgisayar yüzdesi üzerindeki etkileri incelenmiştir.
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1. INTRODUCTION

With the developments in Information Technology, communication between com-

puters has become so inevitable that most organizations cannot do their tasks without

it. It cannot even be imagined if all of these computers were to collapse suddenly. On

the other hand, there is a huge threat by malwares such as worms, viruses, Trojans etc.

which cause loss of data, or time, steal confidential information, or infect other hosts

in computer networks. Among the various types of malwares, worms differ from the

others in terms of their spreading behavior [1]. Worm is a computer program which can

easily propagate itself by exploiting the vulnerabilities of the operating systems (OS)

without the interference of any other program or human help [1]. Therefore, this thesis

focuses on worm infection dynamics because of their distinguishing propagation char-

acteristics and because they are one of the most common types of malware. Especially

today, worms can be very destructive for network security and can cause financially

disastrous losses. The latest incident of WannaCry which was the most detrimental

malware attack in 2017 [2], constitutes an illustrative example. Security experts es-

timate that 230.000 systems all over the world have been infected by the WannaCry

ransomware attack. Another worm attack known as Code Red infected 360.000 com-

puter in minutes all over the world [1]. The severity of these issues has motivated this

thesis that aims to model the infection dynamics on a Local Area Network.

Before proposing a simulation model for the spread of infections, we need to

explain the meaning of the word ‘epidemic’. Originally, the notion of epidemic is used

to represent a rapid spread of contagious diseases in populations of living beings. The

same notion can also be used for the spread of malware in the community of computers

that are in contact via a network.

The aim of this thesis is to investigate the spreading behavior of computer worms

and to develop a simulation based model for their propagation on a Local Area Network.

This also requires the modelling of the operating behavior of the computers, i.e., how

they are turned on or off, or enter hibernation. In this thesis, all events involved in
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the dynamics of computers and worms have been modelled with a stochastic approach

based on Markovian assumptions. The model is designed to investigate the spread of

a single worm, starting from the moment when the patch that disables this worm has

been received by the LAN administrator. To account for the possibility of infection

until then, different scenarios are considered, that assume different number of infected

computers at the beginning of simulations.

1.1. Literature Survey

Epidemic modelling of diseases in populations and epidemic modelling of an at-

tack of worm attack in computer networks are closely related. For this reason, a brief

literature survey for each of them is given below.

1.1.1. Biological Infections and Mathematical Epidemiology

Throughout the human history, there have been numerous epidemic diseases caus-

ing millions of deaths and recurring periodically in time. To be more specific, “The

Black Deaths” in 1346 have spread from Asia to Europe and recurred periodically over

the course of 300 years [3]. Instigated by the immense damages caused by various epi-

demics, some public health physicians set up the foundation of compartmental models

and started to develop a mathematical approach to epidemiology. Their main goals

were to investigate the causes of a disease, to model its spreading process and based on

these models to control the spreading behavior of the disease. First recordings of data

about an epidemic date back to John Graunt (1620-1674) who published the number

of deaths caused by an infectious disease in London [4]. Based on these continuous

records, he estimated the cause of deaths and came to statistical conclusions. The first

mathematical epidemiological model was developed by Danielle Bernoulli who worked

on modelling an infectious disease (smallpox) in 1760 [5] and he was the first to re-

late the number of susceptibles in an infected population to life expectancy and the

severity of the disease. Bernoulli’s goal was to estimate the life expectancy of indi-

viduals in the absence of smallpox as a cause of death [5]. In 1850s, cholera outbreak

in London was believed to be miasma in the air [6]. However, John Snow asserted



3

that cholera is caused by contaminated water and showed the number of deaths as ev-

idence in Table-1 [7]. In this respect, John Snow who changed the commonly believed

Figure 1.1: Deaths caused by cholera in London from 1848 to 1849.

cause of infectious diseases until then, is accepted as one of the founders of modern

epidemiology [6]. Similarly, in 1873, William Budd studied on the spread of typhoid [6].

In 1927, Kermack and McKendrick [8] developed a compartmental mathematical

model of epidemics where the population is divided into different compartments of

individuals by making some assumptions. The assumptions are that the population size

is fixed (i.e. the number of deaths by natural cause and the number of births are equal.)

and that the population is homogeneous with regards to age. This model subdivides to

population into three subgroups: (i) Susceptibles (S) who are healthy but not immune

to the disease, and thus open to infection, (ii) Infected (I) who are infected and have the

potential of infecting others, and (iii) Recovered (R), who have been infected and have

recovered from the disease such that they are immune against infection and cannot

infect others, either. This model which is called the Kermack-McKendrick model or

SIR model consists of three ordinary differential equations governing the dynamics of

the sizes of the three compartments.

In 1957, MacDonald defined a threshold value which is called “Basic Reproduc-

tion Number (R0)” as the expected number of a disease by an infectious person in a

susceptible population [9]. This threshold plays a decisive role in whether a disease
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will spread further or disappear over time.

In 1979, Roy M. Anderson and Robert M. May [10] developed mathematical

models to propose protection strategies against common infections for controlling public

health by assuming the population size is not fixed, but it can change through time.

In 2004, Wendi Wang and Xiao-Qiang Zhao developed an epidemic model which

describes the dynamics of disease propagation if some individuals in a population mi-

grate to another country [11]. Besides, they have used one of the common mathematical

model of KM.

In 2011, Zhisheng Shuai, P. van den Driessche developed a compartmental model

which explains the transmission ways of Cholera and the states of pathogen [12]. Their

model is improved by using Lyapunov functions and basic reproduction number (R0)

to estimate whether Cholera will die out or not.

1.1.2. Computer Infections and the Distinguishing Features of Worms

Malwares are the malicious software programs, such as Trojans, viruses, or worms

which infect computers via emails, attached files, or malicious websites [1]. The users

usually realize the infection on their PCs if the operating systems of their PC perform its

tasks very slowly. Another symptom of such an infection may be the existence of some

non-erasable files on their PCs. Among all malware types, viruses and worms are the

most common types that threaten the network security severely [1]. Viruses can only

spread if a user open or run a malicious software program or file [1]. On the other hand,

worms can spread easily without any human help since they are self replicating codes [1].

This ability to spread by themselves makes very similar to biological infections. Besides,

worms affect all operations of the host; for instance, they can disable its communication,

can damage most of the files or other programs. While viruses can only affect specific

files [1]. Therefore, the focus of this thesis has been chosen as worm infection dynamics

in a Local Area Network (LAN).
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The history of worm attacks goes back to early 1970’s. Some important worms,

their features and the damage caused by them are summarized in [1, 11, 13–16] as

follows: The first worm attack is known as Morris by Robert Tappan Morris (1988).

It affected computers connected to the Internet and its damage was over 10 million

USD. After that, one of the first computer worms known as Creeper by Bob Thomas

was released. Interestingly, its goal was not to damage the computers, but it was

designed as an experimental program to see the power of coding. When it is copied to

a new machine, it wrote a message on to the screen as: “I’m the creeper, catch me if

you can!”. Another important worm known as ExploreZip by an unknown author was

released in 1999, and spread through Microsoft Outlook. It was transmitted as zipped

files by mailing itself to the people who are in the contact list of Outlook. In 2000,

Irene and Onel de Guzman Reomel Lamores have released the worm called ILOVEYOU

which spread through Outlook mails and copied itself to the contact list. Its particular

characteristic was to steal the password of credit cards. Its damage is estimated as 5

to 10 billion USD. Then, in 2001, Code Red and Code Red II have been released by

an unknown author, damaging IIS servers and falsifing some websites by using buffer

overflow. Their damage is estimated as 1.2 billion USD and 2 billion USD respectively.

After that again in 2001, an unknown author author has released the worm known

as Nimda, which propagated via different media, such as LAN, websites, executables

and emails. It caused DoS (Denial of Service) all over the World causing an estimated

damage of 8.75 billion USD. Last but not least, the worm known as WannaCry was

released in 2017, harming more than 200.000 people over 150 countries. This type of

worm freezes all data on the PC and asks the user to make some payment before the

PC can become functional again. It propagated via emails or websites.

The historical examples of computer worms show that the intention behind re-

leasing worms is generally to steal personal information, to have DoS on the host, and

therefore, to cause loss of working time and data. The unique feature of worm is to be

self-replicating on the host, and to scan other vulnerable hosts to propagate further.

Besides, the authors of worms can delete or damage the files on the victim computer

remotely by creating back doors [1].
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1.1.3. Concepts related to Computer Worms and Local Area Network (LAN)

This section presents commonly used definitions, terminologies, and concepts

related to computer networks, LAN, and worms. Here also, the environment, in which

computer worms spread and infect hosts are explained.

• Host: Each computer is a host and hosts are connected to each other in a network.

• Network: Computers connected to each other in order to share data and com-

municate constitute a network. There are two main types of networks which are

Local Area Network (LAN) and Wide Area Network (WLAN) [17].

• Local Area Network (LAN): LAN is a type of network for a small area. For

instance; a network in a school building or in an office building can be called as

a LAN. In other words, this type of network is confined in a specific area [18].

• Servers: A computer connected to a network can act as a server. A computer is

called as a server, if its job is to provide services and resources for the other com-

puters in the network [18]. Besides, data storage, messaging, providing security

for the network are also among the duties of a server [18].

• Malware: It is a malicious software which penetrates and damages the working

system of a computer [18]. A malware abuses the resources of computers or net-

works, thus slowing down its communication speed and reducing its performance.

• Computer Worm: A harmful, self-replicating and malicious software is called a

computer worm which can propagate on a network without any human inter-

ference [19]. As explained in [19], a worm can penetrate into the system of a

computer via the network connection, as a downloaded file or as an email. Once

it penetrates the contact list of an email account, it can rapidly reproduce itself

and spread across all the contact list. Hence, if a computer worm cannot be

detected on time, it can quickly destruct whole networks. A computer worm can

delete some files on the victim machine, can steal personal information, built a

backdoor listener or can result in denial of service [20].

• Patches: Patches are software programs intended for fixing the bugs, usually

security bugs, of an operating system (OS) such as Microsoft, Mac or Linux [18].
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In order to repair security vulnerabilities, it is important that the patches and

updates are downloaded and installed, as soon as the operating system releases

them for its users. If downloading and installation is not performed right after

the patch and/or update release, the attackers can quickly and easily abuse the

vulnerability of the operating system because through the release of the patch,

the existence of open points of the security system becomes openly admitted.

For instance; Microsoft offers a service called Microsoft Updates, which offers

four options for the downloading and installation of the patches and updates to

its users as explained in [21]. These options are summarized as below [21]:

(i) Install patches/updates automatically (recommended): This option is the

recommended one for protection against worm attacks. If the user selects

this option, updates will be automatically downloaded and installed. Hence,

there will be no missing updates and the computer will be kept up-to-date.

(ii) Download patches/updates but let the user choose whether to install them:

This option downloads updates automatically, but asks the user for the tim-

ing of installations. Choosing this option avoids the automatic interruption

of the user’s job. After downloading, the user can select to install updates

after 10 minutes, 2 hours or 4 hours.

(iii) Check for patches/updates but let the user choose whether to download and

install them: This option warns the user but also asks for permission both

for downloading and installation. Compared to the first and second options,

it is riskier in terms of security of the operating system.

(iv) Never check for patches/updates (not recommended): This option is the

most dangerous one because it is possible that the user can miss most of the

updates. Without any check or warning about new updates, users who do

not follow the updates are put to great risk.
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2. COMMON EPIDEMIC MODELS IN THE

LITERATURE

As mentioned before, the history of compartmental epidemic models goes back

to a study by Kermack and McKendrick (KM) in 1927 [22]. Their aim was to analyze

the rapid changes in the number of infected individuals as observed in the notorious

epidemics like cholera (1865) and plague (1665) in London [20].

Epidemic models can be largely divided into two categories: (i) Kermack and

McKendrick (KM) models, which are deterministic models represented in terms a cou-

pled set of differential equations that govern the dynamics of the various compartments

defined on the population, (ii) Stochastic epidemic models which depend on probabilis-

tic representations of occurances related to the epidemics. KM models are also used for

modeling worm dynamics on computer networks. To be compatible with the content

of this thesis, compartmental epidemic models will be explained by using computer

related terminology rather than a biological one. In this section, brief explanations

of commonly used compartmental models and the corresponding ordinary differential

equations (ODEs) will be presented.

2.1. Compartmental Models

Kermack-McKendrick (KM) model [22] constitutes a compartmental KM model

because it subdivides the population (of computers in a network) into the following

subgroups:

• Susceptible Hosts: The class of hosts which are not infected, but are susceptible

to worm attacks. The size of this class is denoted by S.

• Infected Hosts: The class of hosts which are infected by a worm. The size of this

class is represented by I.

• Resistant (Immune) Hosts: The class of hosts that are recovered from a worm
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infection, and thus has gained immunity. The size of this class is denoted by R.

Table 2.1: List of parameters and notations for KM models.

Parameter Definition

β Infection rate

α Recovery rate

µ Per capita birth and death rate

γ Loss of immunity

N Total number of hosts

S(t) Total number of susceptible hosts

I(t) Total number of infected hosts

R(t) Total number of recovered hosts

E(t) Total number of exposed hosts

R0 Basic Reproduction Number

2.1.1. SIR Model

The transition diagram of a typical SIR (Susceptible, Infected, Resistant) model

is shown in figure 2.1. In terms of computer terminology, births in a population can

be considered as an increase in the number of hosts in a network and deaths in a

population can be considered as a host becomes useless after a worm attack.

Figure 2.1: Transition diagram of SIR epidemic model.

In this model, β and α are the transition rates, from Susceptible to Infected

and Infected to Recovered respectively. A susceptible host can be infected with a
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probability of β. As a result of this transition, susceptible population will decrease

and the population of infectious class will increase at the same amount. Likewise, an

infectious host can be a recovered host with a certain probability . Therefore, changes

in the number of hosts for each state can be represented by a set of nonlinear ordinary

differential equations (ODE) which are deterministic.

While setting up those differential equations, there is an assumption that the

total number of hosts remains constant (N) over time, such that S(t)+I(t)+R(t)=N.

The ODEs, that make up the SIR model show how the number of individuals in

each class changes [17].

dS

dt
= −βSI

N
(2.1)

dI

dt
=
βSI

N
− γI (2.2)

dR

dt
= γI (2.3)

If the change in the total number of computers is taken into account, the differential

equations need to be modified as follows [17].

dS

dt
= µN − βSI

N
− νS (2.4)

dI

dt
=
βSI

N
− γI − νI (2.5)
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dR

dt
= γI − νR (2.6)

This model is known as SIR epidemic model with the above ODEs. An impor-

tant parameter by using these rates is the basic reproduction number R0 which is

represented by the ratio of infection rate (β) and recovery rate. (α).

By using the basic reproduction number, endemic and epidemic infections can be

analyzed as R0 has a threshold value, 1 and accordingly [22];

For R0 > 1:If the rate of infection is greater than recovery rate, then infection is

called as an endemic infection which means that it will remain in the local area network

for any case.

For R0 < 1:If the rate of infection is less than the rate of recovery, then infection

is called as an epidemic infection which means it will not remain permanently and it

will be eradicated after a while on LAN.

2.1.2. SIRS Model

Another KM model known as SIRS model [17] explains that the recovered indi-

viduals (in our case computers) can move to the class of susceptibles by losing their

immunity. Accordingly, a new parameter is defined to represent the rate of transition

from Recovered to Susceptible.

Figure 2.2: Transition diagram for SIRS epidemic model.

The transition is taken as proportional to the size of the recovered class [17].
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Hence, the equations in SIRS epidemic model with a constant population can be written

as follows:

dS

dt
= −βSI

N
+ ξR (2.7)

dI

dt
=
βSI

N
+ γI (2.8)

dR

dt
= γI − ξR (2.9)

Taking also the change of the size of the total population into account, the equations

of the model are obtained as in equations 2.10-2.12. Here, µ, the rate of new hosts

connected to the network and , the rate of computers leaving the network are assumed

to be equal to keep the population constant.

dS

dt
= µN − βSI

N
− νS (2.10)

dI

dt
=
βSI

N
− γI − νI (2.11)

dR

dt
= γI − νR (2.12)

2.1.3. SEIR Model

SEIR model has four states namely: susceptible, exposed, infected and resistant

[17]. Unlike the previous models, there is a new state, exposed (E) which denotes the

class of hosts that had a contact with the infected ones, and they carry the disease.

This feature leads to a “latency period”. Thus, exposed state should be between the
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susceptible and infected state as a transition state. To be more specific, SEIR model

can be shown as below diagram:

Figure 2.3: Transition diagram for SEIR epidemic model.

Hence; S+E+I+R=N. ODEs for SEIR epidemic model are defined accordingly

as below [17].

dS

dt
= −βSI

N
(2.13)

dE

dt
=
βSI

N
− σE (2.14)

dI

dt
= σE − γI − νI (2.15)

dR

dt
= γI (2.16)

As in the previous models, if the change in the total number of computers is taken into

account, the differential equations need to be modified as follows [17].

dS

dt
= µN − βSI

N
− νS (2.17)

dE

dt
=
βSI

N
− σI − νE (2.18)



14

dI

dt
= σE − γI − νI (2.19)

dR

dt
= γI − νR (2.20)

2.1.4. SEIRS Model

As in the case of SIR and SIRS epidemic models, loss of immunity brings about a

new type of epidemic model called as SEIRS (Susceptible-Exposed-Infected-Susceptible)

and a new parameter for loss of immunity [17].

Figure 2.4: Transition diagram for SEIRS epidemic model.

dS

dt
=
βSI

N
+ ξR (2.21)

dE

dt
=
βSI

N
− σE (2.22)

dI

dt
= σE − γI (2.23)

dR

dt
= γI − ξR (2.24)
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With the same reasoning, if the change in the total number of computers is taken into

account, the differential equations need to be modified as follows [17].

dS

dt
= µN − βSI

N
+ ξR− νS (2.25)

dE

dt
=
βSI

N
− σE − νE (2.26)

dI

dt
= σE − γI − νI (2.27)

dR

dt
= γI − ξR− νR (2.28)

2.1.5. SIS Model

If there is no permanent immunity against an worms, infected hosts can be suscep-

tible again. This type of epidemic model is called as Susceptible, Infected, Susceptible.

The set of ordinary differential equations are described as below.

dS

dt
= −βSI

N
+ γI (2.29)

dI

dt
=
βSI

N
− γI (2.30)

2.2. Stochastic Approaches to Epidemic Modelling

In addition to the deterministic epidemic models, which analytically represent the

dynamics of average (infected, recovered, etc.) population sizes, there are also agent
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based stochastic epidemic models in the literature, which allow a closer look to the

behaviour of individuals and their interactions.

As reviewed in [23], some examples of stochastic epidemic models in the literature

are as follows: The first stochastic epidemic model has been proposed by McKendrick

who developed the stochastic version of his previous deterministic models. Then, Reed-

Frost model which is a SIR epidemic model, that is to say that the population is

divided into three categories as defined in the previous section. This model represents

state changes by using a Markovian approach. Accordingly, each state depends on the

previous state and all state transitions are represented as dependent Poisson processes.

In 1949, Bartlett defined the general stochastic epidemic model by defining the state

transitions as a probabilistic event. There were also another class of stochastic epidemic

models called ”Coupling methods”. In this approach, the coupling of two different

stochastic processes is accounted for as explained by Lindvall (1992).



17

3. PROPOSED MODEL FOR WORM INFECTION

DYNAMICS ON A LOCAL AREA NETWORK

The main concern of this thesis is the modelling of the worm infection dynamics in

a LAN that is supervised by a central administrator who has limited authorization. For

that purpose, a stochastic model has been developed that uses Markovian assumptions

and an agent based approach. In early studies, most of the researchers use deterministic

epidemic models by deriving ordinary differential equations (ODEs). However, using

ODEs can bring about general solutions and insufficient results. To illustrate this point,

although reproduction number can be greater than one and the number of hosts are

large but the infection is initiated by a few infectives, it is possible that the epidemic

may never be disappeared in the LAN. Like this scenario, there can be many more cases

by chance, so to be more realistic, our motivation for this thesis is to address and solve

such cases by developing a stochastic epidemic model rather than using general ODEs.

In the previous parts, these general ODEs for a population of biological creatures are

presented by using computer related terminology to give a framework on epidemic

modelling.

There were also a few stochastic epidemic models as explained in Section 2 and

our model makes use of Markovian approach and presents more realistic scenarios and

simulation results to model the spreading behavior of worms in a network environment.

The assumptions of this model are listed below:

(i) A simple worm attack is considered which from now onward will be referred to

as the Worm.

(ii) A uniform LAN without any subgroups.

(iii) The LAN under consideration is maintained by a central administrator who has

the authorization to push patch updates on each computer but leaves their ac-

tivation to the individual users. (recommended update such that of Windows,



18

refer to [21])

(iv) The model accounts for the worm spread dynamics starting from the instance

when the patch or vaccine related to the Worm has been received by the admin-

istrator. (This initial time has been preferred in order to avoid the complications

of modelling the worm dynamics on the global network.)

Figure 3.1: Time sequence of the events ”worm release”, ”patch release” and ”patch

arrival to the network center”.

(v) In order to account for the possibility that some computers on the LAN may

already be infected by the time when the patch/vaccine is received by the admin-

istrator, the simulation is started with a small number of infected and not yet

detected computers.

(vi) All processes including the turning on/off and hibernation of computers, indi-

vidual’s activation behavior as well as the infection dynamics are modelled as

Markovian processes represented in terms of their rate (=1/expected transition

time).

(vii) These stochastic processes are run many times and averages of the variables of

interest are presented.

(viii) The variables of interest are: (i)NF%: the percentage of the computers on the

LAN that are infected and become subject to loss of working time and data during

the recovery, and (ii) W%: the percentage of the average number of computers

active on the LAN.
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3.1. States and Parameters Defined in the Proposed Model

3.1.1. States

In the proposed model, there are three state categories concerning each computer:

Operational state, infection state and patch state.

At any time instance, any computer can be in one of the following operational

states:

• off (OFF),

• hibernating (H),

• on and downloading the Worm patch (ON-DL),

• under recovery (R) (not working, being cleaned from the Worm)

At any time instance, any computer can be in one of the following infection states:

• Infected (I),

• Not infected (not I)

At any time instance, any computer can be in one of the following patch states:

• no downloaded patch (no P),

• downloaded, but not activated patch (inact. P),

• active patch (P).

The computers can switch between these states according to continuous transition

Markovian dynamics characterized by transition rates.
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3.1.2. Parameters

The state transition rates in the model are set to realistic estimates of the corre-

sponding variables by empirical observations while some other parameters are investi-

gated in a reasonable range to evaluate their impacts on the model. Operational state

transition rates (λ0, µ0, χ) are tuned to obtain an acceptably high network occupancy.

Table 3.1: List of parameters and their nominal values.

Symbol Parameter Nominal values

λ0 rate of transition from OFF to ON 0.007 min−1

µ0 rate of transition from ON to OFF 0.0001 min−1

χ rate of transition from ON to H 0.0001 min−1

βext arrival rate of external infection to each host 0.002 min−1

µrb 1/(expected delay until rebooting) 0.033 min−1

γ rate of discovery of infected computers 0.004 min−1

δdl 1/(expected download duration ) 0.5 min−1

ν 1/(expected repair duration) 0.0007 min−1

βint rate of an infected host infecting another 0.7 min−1

mini number of infected computers until patch arrival 0; 1; 2; 3; 4

N number of computers on the LAN 8; 64

R number of simulation runs 100

∆t sampling time 1 min

3.2. State Transitions

The proposed approach to model infection dynamics of worms in a Local Area

Network is mainly based on a probabilistic simulation in Matlab environment via Ran-

dom Number Generator which generates uniformly distributed random numbers and

used for modelling any probabilistic event.
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• All state transitions of any computer are determined by using Markovian transi-

tion probabilities.

• To decide on any event in the state transition diagram, a random number is

generated by using Random Number Generator.

• This random number is compared with the corresponding Markovian transition

probability. In this way, the simulation performs its tasks by following the decided

path.

In this simulation, the variables of interest are NF% and W%. The nominal

parameter values shown in Table 3.1. have been adjusted to achieve reasonably high

network operation W% and reasonably low percentage of repaired computers NF%.

For this purpose, the algorithm of the state transition diagram is determined by

checking the operational states, patch states and infection states of each agent.

λ0: Rate for a closed computer until it is opened. It is calculated as an inverse of

duration that a closed computer is opened. If a computer is on, it can be closed with

a Poisson rate of λ0.

µ0: Rate for an opened computer until it is closed. It is calculated as an inverse

of average duration that an opened computer is closed. If a computer is off or in a

hibernation mode, it can be opened with a Poisson rate of µ0.

χ0: Rate for an on computer until its state changes to hibernate. It is calculated

as an inverse of average duration that an on computer is turned out a computer being

hibernate.

βext: Infection rate from the Internet for a computer connected to a LAN. It is

calculated as an inverse of average duration that a computer connected to a LAN can

be infected. If a computer is on and has no active patch or has an inactive patch, it

can be infected with a Poisson rate of βext. Besides, while downloading a patch, it can

get an external infection with a probability of βext
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Figure 3.2: State Transition Diagram of the Proposed Model
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βint: Internal infection rate. It is the probability of an infected computer infecting

another. If some computers have infected files, they can infect others with a Poisson

rate of βint.

δdl: Transition rate from On and downloading state to On state. 1/ expected

duration for downloading patch. The nominal value of the patch download duration

has been taken as approximately 2 minutes.

γ: Rate of discovery of infected computers. 1/expected duration for an infection

discovery.

ν: 1/expected duration for cleaning a computer from an infection. Its nominal

value has been taken as approximately 1 day.

µrb: Rate of rebooting a computer with inactive patch. 1/(expected delay until

rebooting after patch download).

3.2.1. Tuning the Nominal Values of Operational State Parameters

In order to obtain an acceptable network occupancy, the operational state tran-

sition parameters have been adjusted heuristically. The acceptable network occupancy

has been set to approximately 70 − 75%. In table 3.1 and table 3.2 some of the trials

are shown.

For this purpose, firstly, operational state parameters of the model which rep-

resent the rates of turning on/off and hibernation, are adjusted by trial and error

to achieve a network workload in such a way that percentage of active computers is

approximately 70 − 75% approximately.



24

Table 3.2: Effects of operational state parameters to have an acceptable network

occupancy (mini = 0).

Parameter Values Values Values

λ0 0.002 min−1 0.002 min−1 0.002 min−1

µ0 0.001 min−1 0.0005 min−1 0.0005 min−1

χ 0.00028 min−1 0.00028 min−1 0.00014 min−1

βext 0.003 min−1 0.002 min−1 0.002 min−1

µrb 0.033 min−1 0.033 min−1 0.033 min−1

γ 0.004 min−1 0.002min−1 0.004 min−1

δdl 0.5 min−1 0.5 min−1 0.5 min−1

ν 0.0007 min−1 0.0007 min−1 0.0007 min−1

βint 0.7 0.7 0.7

mini 0 0 0

W% 32.6 37 50.65

The last coloumn shows the best selection of the operational state parameters by

achieving the network occupancy as approximately 70 − 75% in Table 3.4.

After having a reasonable performance by adjusting operational state parameters,

parameters related to infection state transitions (γ, βint, βext) are varied in some

realistic range to investigate their effect on the percentage of the infected computers

on the LAN (NF%).
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Table 3.3: List of parameters and simulation results to find the values of operational

state transition parameters (mini = 0).

Parameter Values Values Values

λ0 0.004 min−1 0.004 min−1 0.007 min−1

µ0 0.0005 min−1 0.0002 min−1 0.0001 min−1

χ 0.00014 min−1 0.0001 min−1 0.0001 min−1

βext 0.003 min−1 0.002 min−1 0.002 min−1

µrb 0.033 min−1 0.033 min−1 0.033 min−1

γ 0.004 min−1 0.002min−1 0.004 min−1

δdl 0.5 min−1 0.5 min−1 0.5 min−1

ν 0.0007 min−1 0.0007 min−1 0.0007 min−1

βint 0.7 0.7 0.7

mini 0 0 0

W% 63.8 71.9 74.3

Table 3.4 shows the effects of different infection discovery rates on the network

occupancy. As the value of γ increases, the network occupancy increases and when the

value of γ is 0.004, we have reached the desired W% value.

Besides, βext is also one of the parameters related to infection state transitions,

but its value is fixed at a rate that allows the testing of different security settings. ν

which is the rate for recovery duration is also another parameter related to infection

state transitions and its value is taken as a realistic estimate.
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Table 3.4: List of parameters and simulation results to reach the desired network

occupancy for different γ values (mini = 0).

Parameter Values Values Values

λ0 0.007 min−1 0.004 min−1 0.007 min−1

µ0 0.0001 min−1 0.0002 min−1 0.0001 min−1

χ 0.0001 min−1 0.0001 min−1 0.0001 min−1

βext 0.002 min−1 0.002 min−1 0.002 min−1

µrb 0.033 min−1 0.033 min−1 0.033 min−1

γ 0.001 min−1 0.002min−1 0.004 min−1

δdl 0.5 min−1 0.5 min−1 0.5 min−1

ν 0.0007 min−1 0.0007 min−1 0.0007 min−1

βint 0.7 0.7 0.7

mini 0 0 0

W% 71.5 73.9 74.3

Lastly, other parameters related to patch state transitions are δdl which is the

rate of download duration and µrb which is the rebooting probability. Their values are

taken as realistic estimates. The estimate value of duration to download a patch (δdl)

is considered as an average value. Likewise, rebooting duration is taken as an estimate

value.
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4. SIMULATION RESULTS AND THEIR EVALUATION

The model presented in Section 3 represents worm infection dynamics on a LAN

accomplished with a Markovian approach.

In this section, the change in the system behavior is analyzed while varying

the parameters related to infection state transitions within a realistic range. Besides,

to exemplify the Worm infection dynamics on a local area network, a small LAN

consisting of 8 computers is presented in section 4.1, giving a demonstration of how

the states of the individual computers change and interact, such that the propagation

of a Worm infection can be easily followed. Performance analysis of the proposed model

is presented in section 4.2 in a more detailed way.

4.1. Representation of State Changes on a LAN

At the very beginning of the model, a LAN is set up with 8 computers to see the

flow of propagation of any worm attack. Using 8 computers enables us to debug the

program, and easily track the sources of infection.

The simulation for representation of state changes on a small LAN with 8 com-

puters is observed in figure 4.1 and figure 4.2 which show the propagation of the Worm

and infection source for each computer. At the beginning of the simulation, each com-

puter can be in one of the following operational states: (i) off (OFF), (ii) on (ON), (iii)

hibernation (H). These initial operational states are randomly determined by Random

Number Generator in Matlab programming environment.
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Figure 4.1: Simulation result of worm infection dynamics on a LAN consisting of 8

computers.

The values of the graph are shown with different colors to point out the changes

in operational states easily. The vertical axis shows the operational states, while some

patch and infection states are shown in color code. The horizontal axis represents the

time axis in terms of minutes. In this experiment, firstly, computer 4 and computer 6

are infected externally, and computer 2 and computer 8 is infected by the computer
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6, each of them was in ”no patch” state when they encountered the Worm. The first

four computers, on the other hand, have not infected because they have downloaded

and activated the corresponding patch early enough.
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Figure 4.2: Simulation result of worm infection dynamics on a LAN consisting of 8

computers.
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4.2. Performance Analysis of the Proposed Model

Since the goal of proposed model is to seek strategies to reduce the effects of

worm attacks on a LAN, its performance will be analyzed in terms of the number

of computers that are infected at a specific worm attack (NF%), while the average

percentage of active computers (W%) is kept at a reasonable level. For this purpose,

firstly, the values of the parameters which are µ0, χ, and λ0 are determined to have an

average percentage of working computers as 70-75 % approximately. After satisfying

this reasonable percentage value, the effects of infection state parameters on the average

percentage of infected computers that have to be repaired are investigated via some

experiments.

4.2.1. Importance of Early Discovery of Infection

One of the parameters related to infection state transitions is the rate of infection

discovery (γ), which directly affects the average percentage of infected computers. If

the Worm infects any computer on the LAN, it scans the others to propagate more. As

long as the infected computers are not diagnosed and sent to repair, the infection will

have an opportunity to spread. The simulation results obtained by varying the rate of

infection discovery (γ) are presented in figure 4.3.

Results for various initial number of infected computers are represented in differ-

ent colors in figure 4.3. The simulation results are obtained for a LAN consisting of

64 computers by taking the average of 100 runs. Figure 4.3 presents the effects of the

number of initially infected computers on the LAN with respect to the varying values

of the rate of infection discovery.
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Figure 4.3: The average percentage of infected computers at a worm attack as a

fraction the rate of infection discovery.

Different number of initially infected computers (mini) are taken into consider-

ation to be more realistic because when the simulation starts there can be already

infected computers on the LAN. As can be seen from the general trend on the graph,

the percentage of infected computers decreases with increasing rate of infection discov-

ery.

Fixed parameters and their values are presented in table 4.1. Actually, these

values are the nominal values that are found at the beginning of the simulations.

Results obtained in this simulation experiment are summarized in figure 4.4 which

clearly shows the values of NF% versus different γ values and different number of

initially infected computers (mini). As mini increases, NF% values increase as expected.
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Table 4.1: List of fixed parameters to investigate the effects of γ on NF% (mini = 0).

Parameters Fixed Values

λ0 0.007 min−1

µ0 0.0001 min−1

χ 0.0001 min−1

βext 0.002 min−1

µrb 0.033 min−1

δdl 0.5 min−1

ν 0.0007 min−1

βint 0.7

Figure 4.4: Simulation results for NF% versus various infection discovery rates (γ).

4.3. Importance of Security Precautions within the LAN

The spread of infection across a LAN critically depends on the probability of indi-

vidual computers infecting each other. To investigate this dependence, the parameter

called as βint, the rate of an infected computer infecting another on the LAN, has been

varied in a reasonable range to investigate its effects on NF%, while keeping the other

parameters’ values constant as shown in figure 4.5. In this simulation experiment, in

order to easily observe the dependence on βint, it is assumed that just one computer is
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initially infected (mini = 1) and there is no more external infection arrival (βext = 0).

Figure 4.5: The list of fixed parameters to observe the effects of βint on average

percentage of repaired computers (NF%)

In this simulation, again, a LAN with 64 computers is considered and the results

are obtained as the average of 100 runs. Figure 4.6 presents how the average percent-

age of infected computers depends on the internal infection rate βint. This empirical

dependence can be used by the LAN administrator to develop strategies for reducing

NF%. To reduce this percentage, the infection status of the computers needs to be

checked more frequently by the administrator. After detecting any infected computer

on the LAN, data sharing of this computer has to be prevented by the administrator.
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Figure 4.6: The average percentage of repaired computers (NF%) versus the rate of

internal infection (βint).

Another way is that if there is a control mechanism to check the infection status

of the files that are shared on the LAN, this percentage can be reduced more. This

experiment is performed to point out the importance of security precautions within

the LAN.

Figure 4.7: The average percentage of repaired computers (NF%) versus the rate of

internal infection (βint).

Detailed simulation results taken from figure 4.6 can be found in figure 4.7. There-

fore, the observation of this result is that if there is a regulation on the LAN while the

internal computers are communicating with each other, propagation of the Worm will

be harder. In this way, the values of NF% will decrease a lot.
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4.4. Negligence of a few

In our model, the LAN administrator automatically pushes all hosts that are in

ON-state to download a new patch, as soon as it arrives at the LAN. However, the

activation of the patch is at the disposal of the host. If the user, preoccupied with

other tasks, neglects to reboot the computer and activate the patch, he will not only

run the risk of being infected, but also endanger the others.

In order to investigate how the negligence of a few affects the security of the

overall LAN, a simulation experiment has been conducted where k negligent users

reboot their computers at a low rate (µrb = 0.01min−1), while the rest operate at the

nominal value (µrb = 0.033min−1). For the sake of simplicity, a LAN of 8 computers

is used in this experiment. Figure 4.8 presents the results of this simulation.
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Figure 4.8: k computers with low µrb(0.01min−1) (number of incautious hosts). N-k

computers with nominal µrb(0.033min−1) (number of cautious hosts).
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Table 4.2: List of fixed parameters to investigate the effects of µrb on NF% (mini = 0).

Parameters Fixed Values

λ0 0.007 min−1

µ0 0.0001 min−1

χ 0.0001 min−1

βext 0.002 min−1

γ 0.004 min−1

δdl 0.5 min−1

ν 0.0007 min−1

βint 0.7

Figure 4.9: k computers with low µrb(0.01min−1) (number of incautious hosts). N-k

computers with nominal µrb(0.033min−1) (number of cautious hosts).

In this simulation, k shows the number of negligent users who activate the patch

at a low rate (µrb = 0.01min−1) while the rest reboots at the nominal rate (µrb =

0.033min−1). Detailed simulation results depicted in figure 4.9 show that the higher

the number of computers that are rebooted relatively late, the higher is the percentage
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of infected computers. But it is worth noting that as long as these negligent users are

few, the resulting percentage of infected computers remains relatively close to the levels

obtained when all users are cautious. This is similar to the way the vaccination of the

majority in a population is enough to constrain the spread of a disease even though

there is an unvaccinated minority.
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5. CONCLUSION

The main purpose of this thesis was to investigate the propagation of the Worm

in a Local Area Network which is maintained by a central administrator who has the

authorization to enforce the corresponding patch updates on each computer, but leaves

their activation to the individual users.

For this purpose, a novel model is designed to account for the Worm spread

dynamics starting from the instance when the patch related to the Worm has been

received by the administrator. The model accounts for all state transitions in case of

any worm attack. All processes of such a model are based on Markovian approach. By

designing the model, our goal is to minimize the percentage of infected computers that

have to be recovered and to maximize the average percentage of network workload. The

presented Markovian model is useful for investigating the effects of different parameters

and evaluating the feasibility of different security policies.

Simulation results show that if the administrator checks the infection status of

each computer more frequently, the infection can be detected in a short time. As a

result, the average percentage of repaired computers can be decreased and the whole

LAN can be kept in a safer mode. To implement such a policy, the administrator

can check and warn the corresponding users according to the type of symptoms of

the corresponding computers. Another factor that affects the average percentage of

repaired computers is the internal infection probability (βint). Simulation results point

out the necessity of regulations for the communication of computers while sharing files,

data, etc on the same LAN. Moreover, rebooting of the computers on time can keep

the LAN in a safer mode as shown in figure 4.3. Hence, the users should give priority

to the activation of patches when not occupied.

The average dynamics resulting from the presented Markovian model can also

be captured by a compartmental model, but it would require at least 12 different

compartments and involve rather long differential equations.
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As a future work of this thesis, within the LAN, which kind of security measures

can be taken to reduce the possibility of getting infection needs to be investigated.

Besides, the values of the internal infection rate (βint) are heuristically determined. In

the future, their values can be determined more realistically by the type of the security

measures within the LAN. In addition to that, the working profile of the individual

computers can be represented more explicitly by the turning on/off and hibernation

rates. After having more realistic parameter values, security measures can be applied

to a real LAN to observe more implicit effects of the parameters.
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APPENDIX A: MARKOV CHAINS

Markov processes are a special kind of stochastic processes, where the system can

make transitions between different states according to certain probabilities. Markov

processes are classified as memoryless because their next state depends only on their

current state [24].

Markov processes are divided into two: (i) discrete-transition and (ii) continuous

transition Markov processes.

(i) Discrete-transition Markov processes occur at discrete time steps with constant

state transition probabilities such that Si(n+1), denoting the probability of being

in state Si, right after, the (n+1)st time step can be written as:

Si(n+ 1) =
N∑

j=1

pijSj(n) (A.1)

where N is the number of all states. Given Si, the waiting time for transition to

Sj is a geometrically distributed random variable with expected value 1/pij.

A Markov model can be represented by a state diagram as below. The states are

S1, S2, S3, S4, S5. The arrows represent the transitions between the states. The

labels on the arrows show the probability of transition between the corresponding

states. At each step of the model, the system generates an output, depending

on its current states according to these transition probabilities. For example, in

figure A.1, a state transition from S1 to S2 occurs with a probability of p12 and

from S1 to S5 with a probability of p15.
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Figure A.1: State Diagram for a Discrete-transition Markov model.

(ii) Continuous transition Markov processes can occur any time and the probability

of transition from Si to Sj at any infinitesimal time interval dt is λijdt, where λij

is the transition rate. Thus, the probability of being found in Si at time (t+dt)

can be written as:

Si(t+ dt) =
N∑

j=1

(λjidt)Sj(t) + Si(t)[1 −
N∑

j=1

λjidt] (A.2)

Figure A.2: State Diagram for a Continuous-transition Markov model.
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Given Si, the waiting time for a transition to Sj is an exponentially distributed

random variable with expected value 1/λji.

As in figure A.1, the same states are used in figure A.2, but the state transition

probabilities are represented by multiplying the state transition rates with the time

interval for a continuous transition Markov process.




