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ABSTRACT

DEVELOPMENT OF A FLEXIBLE ANALOG IP LIBRARY

In this thesis, an analog circuit synthesis and design assistant tool is proposed.

The developed tool employs an SPEA2 algorithm as a multi-objective optimization

engine to generate Pareto-optimal Fronts (PoF) for a given design problem. An analog

library serving as analog IP, was also constructed, which includes pre-optimized PoFs

and extracted PoF models for different loading and power limitation conditions. Thus,

the user can either generate a new PoF for her/his problem or use the pre-existing

PoFs as well as the extracted models without running any optimization step. The

developed tool can also be utilized for feasibility checking of a circuit, performance

prediction, and topology selection. The tool gives the opportunity of visualization of

the design solutions, by allowing the user to verify the Pareto-optimal points in the test

benches, to observe the design specifications of a specific design solution. A graphical

user interface (GUI) is developed to combine all these utilities. To demonstrate the

developed tool, two different OTA topologies and a comparator are examined and all

parts of the tool were discussed in detail. Finally, the POFs of the OTA and comparator

circuits are composed to obtain the PoF of a higher-level block.



v

ÖZET

ESNEK ANALOG IP KİTAPLIĞI GELİŞTİRİLMESİ

Bu tezde bir analog devre sentezi ve tasarım asistanı aracı sunulmuştur. Bu araç,

belirli bir tasarım problemi için Pareto optimal eğriler (PoF) üretmek için çok amaçlı bir

optimizasyon motoru olarak bir SPEA2 algoritmasını kullanmaktadır. Aynı zamanda,

önceden optimize edilmiş PoF’leri ve farklı yük ve maksimum güç tüketimi koşulları için

çıkarılan PoF modellerini içeren, analog IP olarak görev yapan bir analog kütüphane de

inşa edilmiştir. Böylece, kullanıcı ya kendi problemi için yeni bir PoF oluşturabilir ya

da herhangi bir optimizasyon adımı çalıştırmadan önceden var olan PoF’leri ve çıkarılan

modelleri kullanabilir. Geliştirilen araç ayrıca bir devrenin fizibilite kontrolü ve perfor-

mans tahminini için, ve topoloji seçimi yapmak amaçlı kullanılabilir. Bu araç, tasarım

çözümlerinin görselleştirilmesi ve kullanıcının belirli bir tasarım çözümünün tasarım

özelliklerini gözlemlemek için test bench’lerde Pareto-optimal noktaları doğrulamasına

imkan verir. Tüm bu yardımcı programları birleştirmek için bir grafik kullanıcı arayüzü

(GUI) geliştirilmiştir. Geliştirilen aracı göstermek için iki farklı OTA topolojisi ve bir

comparator incelenmiş ve aracın tüm kısımları ayrıntılı olarak tartışılmıştır. Son olarak,

OTA ve comparator devrelerinin POF’leri kullanılarak, daha yüksek seviyeli bir bloğun

PoF’si elde edilmiştir.
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1. INTRODUCTION

In digital design, automation in both front-end and layout, including verification

is in common use [1]. Although there is a lot of room for improvement in the automation

of digital design, the analog world lacks much more of automation [2]. One major reason

is that in analog design, there are many kinds of parameters to be handled and verified

in the test benches, while in digital design there are fewer parameters such as frequency,

power and area. Although the circuit complexity and the number of components are

generally not very large in analog circuits, many trade-offs among circuit specifications

are very hard to be managed. Therefore, beside electronic automation tools, design

and reuse has become popular in recent years [3].

An Intellectual Property (IP) is a reusable unit of logic, cell or chip layout design.

The reuse of IPs is an important issue since it allows the designers design chips faster.

Among the digital IPs, standard cell libraries, CPU cores, and memory block generators

are in common use [4]. However, there are very few studies for analog IP integration

and reuse in the literature [5], [6]. Since there are many interacting performance

specifications in an analog design, engineers generally design analog circuits by hand,

one device at a time. This issue gave rise to research on analog design automation.

In the past couple of decades, most approaches to analog sizing have been built

around optimization-based approaches, that is, some iterative optimization algorithm

with a performance evaluator in the loop. The sizing problem has usually been formu-

lated as:

min f(x) subject to g(x) ≥ 0, XL < x < XH (1.1)

where f(x) is the set of objective functions to be minimized. Vector x represents the

design variables with XL and XH being their lower and upper bounds, respectively. The

vector g(x) represents the design constraints. Recently, a wave of innovation has arisen
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with the development and application of multi-objective optimization algorithms to

this kind of problems. Several algorithms have been reported and successfully applied

to design automation problems [7]. The outcome of the application of those algorithms

to problems with several mutually conflicting design objectives is a Pareto-optimal

performance front, which shows the best trade-offs among the objective functions.

Figure 1.1 shows a conventional analog circuit design flow. The first step is to

select an appropriate topology that meets the design specifications. Once the topology

is selected, the second task is to determine the device sizes, bias voltages, and currents.

After circuit sizing is completed, it is verified in the test benches. Then, the layout

is constructed and verified in the test benches again. Depending on the post-layout

simulations, the sizing of the circuit may be re-adjusted. It may also be concluded that

it is not possible to meet the given design specifications using the selected topology.

In this case, the design flow starts over by selecting another topology.

Figure 1.1. Analog design flow.

1.1. Contributions

In this work, an analog circuit synthesis and design assistant tool is proposed.

The developed tool employs an SPEA-2 algorithm as a multi-objective optimization

engine, to generate Pareto-optimal fronts (PoF) for a given design problem. An analog

library serving as analog IP is also constructed, which includes the pre-optimized PoFs

and the extracted PoF models for different loading and power limitation conditions,

which can be used many times by choosing the design solution that is proper for the
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performance requirements in each case. As the PoFs reveal the topology limits, they

can also be used to make an appropriate topology selection at the beginning of the

design. The Pareto-optimal points (PoP) on the PoFs can be further verified in the

test benches using the developed tool. The simulations are done in HSPICE and the

waveforms can be viewed using CosmosScope.

It is a well-known fact that despite the availability of improved design automation

tools, it is still hard to re-synthesize a circuit every time the design requirements change.

Therefore, the developed tool aims to save the designers a lot of time. More analog

blocks such as oscillators and phase locked loops (PLL) can be optimized and added

to the analog library in the future. The developed tool can be improved by adding a

layout synthesis feature to complete the design flow.

This thesis is organized as follows: In Chapter 2, Evolutionary Multi-objective

Optimization is defined and several Multi-objective Optimization Algorithms are de-

scribed. In Chapter 3, the developed tool is represented and in Chapter 4, the analysis

of different circuit topologies is performed. Finally, this work concludes in Chapter 5.



4

2. EVOLUTIONARY MULTI-OBJECTIVE

OPTIMIZATION

Evolutionary multi-objective optimization (EMO) has become a popular area of

research over the last 30 years. Optimization means finding the best possible solution to

a problem. If the problem has a single objective to be optimized, then it is aimed to find

the best possible solution, which is called the global optimum. However, optimization

problems generally have more than one objective to be optimized, which are most

likely to be in conflict with each other (otherwise only a single solution exists for that

problem). In other words, the optimal solution for one objective is different than the

optimal solution for the other objective. For instance, when designing an OTA, the

designer may want to maximize the GBW while minimizing the power consumption,

which has a trade-off in between. These optimization problems with two or more

objectives to be optimized are called multi-objective optimization problems.

In order to take an optimal decision when there is a trade-off between the design

objectives, an old notion of optimality is adopted. This notion of optimality was

first presented by Francis Ysidro Edgeworth in 1881 [8]. Then it was generalized by

economist Vilfredo Pareto in 1896 [9].

2.1. Pareto Principle

For a multi-objective optimization problem, there does not exist a single solution

that optimizes all of the objective functions at the same time, but there exists a number

of Pareto-optimal solutions, which constitute the so called Pareto curve. A solution

is regarded as Pareto-optimal if there does not exist another solution that performs

better in terms of at least one objective, without performing worse in terms of any other

objectives. In other words, a solution can be Pareto-improved if there exists another

solution that has at least one objective value better off and none of the objective values

worse off. All the Pareto-optimal solutions in a Pareto curve are considered equally
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good. The selection among these Pareto-optimal solutions is done by the designer

according to her/his additional subjective preference information.

Figure 2.1 illustrates the Pareto-dominance and the Pareto-optimal front concepts

for a two-dimensional performance space. In this example, there are two objective

functions to be maximized. The two solutions x1 and x2 are non-dominated. They do

not dominate each other; because even though one solution performs better than the

other solution in terms of one of the objective functions, it performs worse in terms of

the other objective function. However, the solution x3 is dominated because it performs

worse than the other solutions, in terms of both objective functions.

Figure 2.1. An illustration of the Pareto-dominance and the Pareto-optimal front

concepts.

In order to generate Pareto fronts, multi-objective evolutionary algorithms are

used. Multi-objective evolutionary algorithms use a population based approach in

which a set of candidate solutions (so called individuals) evolves along a number of

iterations (so called generations). Therefore, the optimization algorithm requires the

performance evaluator to execute a number of times (typically in the order of thou-

sands) to achieve the optimal set of solutions. Reducing the required number of it-

erations to achieve the Pareto-optimal front and decreasing the evaluation time are

important objectives in the implementation of evolutionary algorithms. The genera-

tion of Pareto-optimal fronts may be an expensive process in terms of the computation

time but once they are generated, they can be used many times by choosing the design

solution that is proper for the performance requirements in each case.
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2.2. Multi-objective Evolutionary Algorithms

The direct integration of Pareto optimality concept into an evolutionary algo-

rithm was first done by David E. Goldberg [10]. In his book, he suggested the use

of non-dominated ranking in order to direct a population of solutions to the Pareto-

optimal front in a multi-objective optimization problem. The aim is basically to find

the solutions in a population that Pareto-dominate the other solutions in the popula-

tion. These Pareto-non dominated solutions are assigned the highest rank. Then, from

the remaining population, another set of Pareto-non dominated solutions are selected

and are assigned the next highest rank, until all the population members are assigned

a rank. He also suggested the use of a niching technique such as fitness sharing, to

prevent the algorithm from converging to a single point on the Pareto-front. Although

Goldberg did not exhibit an implementation of his procedure, all the multi-objective

evolutionary algorithms developed after Goldberg’s publication were influenced by his

ideas.

Since evolutionary optimization (EO) algorithms have become a popular method

in solving multi-objective optimization problems, several successful multi-objective evo-

lutionary algorithms (MOEA) has been proposed such as NSGA2, SPEA2 and PAES.

For this thesis, the SPEA2 is utilized, since it yields promising results in comparison

with the other methods, in terms of converging near the ideal Pareto-optimal front [11].

In evolutionary algorithms, many solutions which constitute a population, un-

dergo iterations and in each iteration, a new population is generated. Evolutionary

algorithms have become popular because they are relatively simple to implement, they

do not require any derivative information, and they can be used in many areas. When

there is a single-objective optimization problem, using a population of solutions to find

a single optimal solution may be unnecessary. But when there is a multi-objective op-

timization problem, using evolutionary optimization algorithms is a good choice [12].

The most representative multi-objective evolutionary algorithms are the following.
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2.2.1. Non-dominated Sorting Genetic Algorithm - 2 (NSGA2)

NSGA2 was proposed [13] as an improved version of the NSGA [14]. In NSGA2,

a fast non dominated sorting approach is utilized. In this context, first, two entities

are calculated for each individual i in the population P :

• The number of individuals that dominate i, ni

• The set of individuals that are dominated by i, Si

If ni = 0 , i.e. no individuals dominate i, then i belongs to the first non-dominated

front F1 whose rank is 1. For each solution i with ni = 0, each individual j in its set

Si is visited and its domination count nj is reduced by 1. If the domination count of

any individual j becomes 0, then it is taken into a separate list Q which constitute

the second non-dominated front F2 whose rank is 2. This procedure continues for

each individual in Q and as a result, a third non-dominated front F3 with rank 3 is

obtained. This process continues until all fronts are identified. After assigning the

ranks, the crowding distance in each front is calculated. Crowding distance is an

estimate of density of solutions around a particular solution in the population, which

is computed by averaging the distance of two points on either side of this point along

each of the objectives. Afterwards, the environmental selection is done such that if

the size of F1 is smaller than the population size N , all the individuals in F1 is chosen

for the new population Pt+1 and the remaining members of Pt+1 are chosen from the

subsequent fronts in the order of their ranking. In the selection of members of the last

front Fi (which can be F1 as well), the crowding distances of the members are taken

into account, such that the less crowded individuals are chosen for Pt+1. In other words,

the non-dominated solutions are preferred to the dominated solutions, but the decision

between two individuals of the same non-domination rank is done according to their

crowding distances such that the less crowded individual is preferred. The population

Pt+1 is then used to create a new population, after undergoing selection, crossover and

mutation operations. Individuals in the first non-dominated front are more likely to

reproduce.
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NSGA2 does not make use of an external memory as in some other multi-objective

evolutionary algorithms such as SPEA which was the first multi-objective evolution-

ary algorithm to incorporate external populations. Alternatively, it adopts an elitist

mechanism where the best parents and the best off-springs are combined. NSGA2 is

much more efficient than its predecessor and its performance has proved to be good,

which is the reason that it has become popular in the last decade.

2.2.2. Pareto Archived Evolution Strategy (PAES)

The PAES algorithm [15] adopts an evolution strategy where one single parent

produces one single off-spring. In this algorithm, the non-dominated solutions of the

previous generation are stored in an external memory, which constitutes a reference

set by which each mutated individual is compared. The PAES algorithm utilizes a

crowding technique where the objective space is divided iteratively, in order to maintain

diversity. Each individual is positioned in a certain grid location according to its

objective values, which constitutes that individual’s coordinates. This way, a map of

such grid is obtained, indicating the number of solutions in each grid. No additional

parameters except the number of divisions of the objective space is required by this

adaptive grid procedure. This procedure has been utilized by several modern multi-

objective evolutionary algorithms.

2.2.3. Strength Pareto Evolutionary Algorithm - 2 (SPEA2)

SPEA2 is an improved version of SPEA which was published by Zitzler and

become a landmark in the area, introducing the elitism concept in a multi-objective

evolutionary algorithm. After the introduction of SPEA, it has become very popular

to use external populations in multi-objective evolutionary algorithms. As a matter

of fact, the use of elitism is a theoretical requirement to ensure convergence of the

algorithm.
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Elitism usually refers to the usage of an external population, which is called

the archive, to maintain the non-dominated individuals found along the evolutionary

process. The idea behind using an archive is that a non-dominated solution in a pop-

ulation may not be non-dominated by the individuals in other populations. However,

an individual is desired to be non-dominated with respect to all the individuals that

the algorithm has generated. Thus, the non-dominated individuals are stored in an

archive and an individual has to dominate all the archive members to be able to en-

ter the archive. Similarly, if an archive member is dominated by an individual, it is

removed from the archive.

SPEA2 comprises a fine-grained fitness assignment technique that for each in-

dividual takes into account the number of individuals it dominates and the number

of individuals it is dominated by. The fitness assignment is done by considering both

closeness to the ideal Pareto-front and even distribution of solutions at the same time.

It uses a nearest neighbor density estimation technique to ensure that the solutions

are properly distributed along the Pareto-front. SPEA2 also has an improved archive

truncation method that guarantees the preservation of the boundary solutions.

2.2.4. Comparison of MOEAs

Table 2.1 summarizes the comparison of the well known MOEAs described in

Section 2.2.1 - 2.2.3 [16]. SPEA-2 is a very good example for the use of external popu-

lations. The use of an external population provides the storage of the non-dominated

solutions found so far in the search. One other advantage of SPEA-2 is the use of a

truncation method which makes sure that the extreme points are preserved. These fea-

tures allow the algorithm have an advantage in terms of converging near the ideal PoF.

However, SPEA-2 is a computationally expensive algorithm in comparison with the

other MOEAs, such as NSGA-2. NSGA-2 adopts an elitism approach without using a

secondary external population. Differently from SPEA-2, NSGA-2 utilizes a crowding

distance approach to obtain a uniform spread of solutions. The main advantage of the

crowding approach is that a measure of the population density around an individual
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is calculated without the need of a user defined parameter such as σshare and the kth

nearest neighbor. A disadvantage of the crowding distance technique is that it works

in objective space only. These advantages and disadvantages of the algorithms should

be taken into account while determining the proper algorithm for an application.

Table 2.1. Comparison of MOEAs.

Algorithm
Fitness

assignment

Diversity

mechanism
Elitism

External

population
Advantages Disadvantages

PAES

Pareto dominance

is used to replace

a parent if offspring

dominates

Cell-based density

as tie breaker

between offspring

and parent

Yes Yes

Random mutation

hillclimbing strategy

Easy to implement

Computationally efficient

Not a population

based approach

Performance depends

on cell sizes

NSGA

Ranking based on

non-domination

sorting

Fitness sharing

by niching
No No Fast convergence

Problems related to

niche size parameter

NSGA-2

Ranking based on

non-domination

sorting

Crowding distance Yes No

Single parameter (N)

Well tested

Efficient

Crowding distance

works in objective

space only

SPEA

Ranking based on

the external

archive of

non-dominated

solutions

Clustering to

truncate external

population

Yes Yes

Well tested

No parameter

for clustering

Complex clustering

algorithm

SPEA-2
Strength of

dominators

Density based

on the k-th

nearest neighbor

Yes Yes

Improved SPEA

Make sure extreme

points are preserved

Computationally expensive

fitness and density

calculation
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3. THE PROPOSED TOOL

In this chapter, the features of the developed tool are proposed. The flowchart

of the developed tool, named DATA-IP, can be seen in Figure 3.1, and the graphical

user interface (GUI) of DATA-IP can be seen in Figure 3.2.

Figure 3.1. Flowchart of DATA-IP.

Figure 3.2. GUI of DATA-IP.

3.1. Multi Objective Optimization Algorithm: SPEA2

In this section, the developed multi objective optimization algorithm which uti-

lizes the SPEA2 approach is discussed in detail. The algorithm starts with an initial

population and an empty archive.



12

• Population initialization : An initial population P0 is generated using the quasi-

monte carlo method, which utilizes a low-discrepancy sequence called the sobol

sequence. N individuals are initially created using this method, at the beginning

of the optimization. The empty archive P̄0 is also created.

• Simulation : All the individuals are then simulated in HSPICE. The individuals

who does not meet the design constraints are punished with a high fitness value.

If any one of the transistors are not in saturation region, that individual is also

punished.

• Fitness Calculation : Fitness, F (i), calculation is done following the below steps:

(i) Each individual i in the population and the archive is assigned a strength

value S(i), which is equal to the number of population and archive members

that are dominated by i in terms of the objective values

S(i) = |{j|j ∈ Pt + P̄t ∧ i � j}| (3.1)

where ” � ” represents the Pareto-dominance.

(ii) Then the raw fitness R(i) is calculated by summing up the strengths of the

individual i’s dominators in both the population and the archive. It must

be noted that the lower the raw fitness value, the better, i.e. if an individual

has a raw fitness value of zero (R(i) = 0), that means the individual i is

non-dominated. If R(i) is a high value on the other hand, that means the

individual i is dominated by many other individuals.

R(i) =
∑

j∈Pt+P̄t,j>i

S(j) (3.2)

(iii) The final component of the fitness value is the density, D(i). Density infor-

mation provides additional selection criterion when many of the individuals

do not dominate each other, i.e. have the same raw fitness value. To esti-

mate the density in an individual’s neighborhood, the kth nearest neighbor

technique is utilized [17]. In this technique, the distances between the in-
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dividuals in the population and the archive are calculated and sorted in an

increasing order. The kth element of this list gives the distance σk
i , where k

is the square root of the sum of the number of individuals in the population

and the archive (k =
√

2N). Then the density is calculated as

D(i) =
1

σk
i + 2

(3.3)

It must be noted that 2 is added to the denominator to prevent the denomi-

nator from being equal to zero and also to make D(i) < 1. Finally, the sum

of density and raw fitness gives the fitness value.

F (i) = D(i) +R(i) (3.4)

• Environmental selection : Environmental selection is basically the determination

of which individuals to keep during the evaluation process. After the fitness

values of all the members in the population and the archive are calculated, an

environmental selection is done to update the archive. Firstly, the non-dominated

individuals (i.e. individuals with fitness values smaller than 1) in both the pop-

ulation and the archive are stored in a temporary list, L.

L = {i|i ∈ Pt + P̄t ∧ F (i) < 1} (3.5)

If the number of individuals in L is equal to the archive size N (|L| = N),

then the individuals in L are copied to P̄t+1 and the environmental selection

is completed without any future effort. If the number of individuals in L is

smaller than the archive size N (|L| < N), then the individuals in Pt and P̄t

with lower fitness values are chosen to fill the archive, P̄t+1 . This is done by

sorting the individuals in Pt and P̄t according to their fitness values and copying

the first N − |L| individuals with fitness value greater than 1 to P̄t+1 . Else if

the number of individuals in the list is larger than the archive size N (|L| > N),

then truncation is done, where the individuals in L with the smallest distance to
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its nearest neighbor are eliminated [18], until the size of the list reduces to the

size of the archive, N , and those remaining individuals are then copied to P̄t+1 .

• Mating selection : Mating selection is basically the determination of which indi-

viduals to produce off-springs. In order to determine the new population, first, a

mating pool consisting of (1.5) × (N/2) individuals is created by using a binary

tournament method. In this method, two individuals from the archive are ran-

domly selected and the one with the lower fitness value is copied to the mating

pool. This process continues until the mating pool is filled.

• Recombination : New individuals are created by randomly choosing two individ-

uals from the mating pool and multiplying their design variable values (sparent1

and sparent2) with a recombination coefficient, r, such that

schild = r × sparent1 + (1− r)× sparent2 (3.6)

where, r = 0.6+(0.2)×rand(). The recombination coefficient is determined such

that it gives off-springs closer to either of the parents. It was observed that a

recombination coefficient of r = 0.6 - 0.8 is a better choice, which is also supported

by other studies [19].

• Mutation : In favor of diversity, some individuals of the new population undergo

a mutation operation. Mutation is done by randomly selecting one of the de-

sign variables of that individual and replacing it with a random value between

the lower and upper limits defined for that variable. The determination of the

individuals to be mutated is a random selection process, which is controlled to

some extent, with a pre-defined mutation step size operator. A random number

between 0 and 1, rand(), and a mutationStepSize operator are generated for

each individual and if rand() < mutationStepSize = 0.2 + (0.1)× rand() , then

that individual undergoes mutation.

• Termination : The maximum number of generations, T , must be chosen such that

the iterations continue until the Pareto front takes its final shape and no longer

improves with more iterations. When T is reached, the algorithm stops and the

Pareto-optimal front is obtained.
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A summary of the developed algorithm flow is given in Figure 3.3 and it is illus-

trated in Figure 3.4.

The algorithm flow :

input: N (size of the population and the archive)

T (number of generations)

p (number of design variables)

output: A (non dominated set)

Step-1: Population initialization: Generate the initial population P0 and the empty

archive P̄0 = Ø. Set t=0.

Step-2: Fitness Assignment: Calculate the fitness values of the individuals in both

the population Pt and the archive P̄t.

Step-3: Environmental Selection: Copy all non-dominated individuals in Pt and P̄t

to P̄t+1. If the size of P̄t+1 exceeds N , reduce P̄t+1 by doing truncation. If the size of

P̄t+1 is less than N , then fill P̄t+1 with the individuals in Pt and P̄t, who has lower

fitness values.

Step-4: Mating selection: Perform binary tournament among the individuals in P̄t+1,

in order to determine the mating pool.

Step-5: Recombination and mutation: Apply recombination and mutation operations

to the mating pool, to create the new population Pt+1. Increase the generation count

by 1, t = t+ 1, and go to Step-2. Continue iterations until t reaches T .

Step-6: Termination: When t = T is reached, set A to P̄t+1 and stop.

Figure 3.3. The algorithm flow.
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Figure 3.4. The flow chart of the developed algorithm.

3.2. Modeling of the Pareto Optimal Fronts

The generation of the PoFs is a computationally expensive process. However,

once they are generated, they can be re-used many times by selecting the design solu-

tion with the appropriate performance trade-off in each case. At this point, a problem

arises due to the fact that some circuit performances do not depend only on the cir-

cuit itself but also on the other circuitry to which it is connected. The conclusions

drawn from the performance front obtained for some given conditions cannot be thus

directly extrapolated to some other conditions. In the optimization process of analog

circuits, some of the performances (e.g. bandwidth and phase margin) depend on the

load conditions. However, it is not possible to know the load conditions until any other
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circuitry around the designed circuit is known. A solution to this problem is to create

a model of the circuit, which defines its performance depending on the load conditions,

so that when the load conditions are known, the performance of the circuit can eas-

ily be determined using this model. In this study, a model that predicts the circuit

performance depending on the load capacitance, CL, is created by using the following

method. A number of PoFs are generated for different CL values. Using the curve

fitting property of MATLAB, an nth order polynomial is obtained for each PoF such

that

f(x) = p1 × xn + p2 × xn−1 + · · ·+ pn+1 × x0 (3.7)

where x is the normalized GBW (i.e. GBW/108) and f(x) is gain.

Then using the curve fitting property, each coefficient p is written in terms of the

Cload value such that

pi(x) = a1 × xn + a2 × xn−1 + · · ·+ an+1 × x0 (3.8)

where x is the Cload value. Finally, the pi values in Equation 3.8 are substituted in

Equation 3.7 so that PoF (gain,GBW ) = f(Cload) is obtained. The user can select a

CL value of interest and draw the PoF for that CL value. It must be noted that the

PoF model can only be used for the CL values between the minimum and maximum

CL values that the circuit has been evaluated.

Using the same method, a model that shows the circuit performance depending on

the power limitation is also created. A number of PoFs are generated for different power

limitations. Using the curve fitting property of MATLAB, an nth order polynomial is

obtained for each PoF such that

f(x) = p1 × xn + p2 × xn−1 + · · ·+ pn+1 × x0 (3.9)
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where x is the normalized GBW (i.e. GBW/108) and f(x) is gain.

Then using the curve fitting property, each coefficient p is written in terms of the

PowerLimit value such that

pi(x) = a1 × xn + a2 × xn−1 + · · ·+ an+1 × x0 (3.10)

where x is the PowerLimit. Finally, the pi values in Equation 3.10 are substituted

in Equation 3.9 so that PoF (gain,GBW ) = f(PowerLimit) is obtained. This allows

the user to see the maximum achievable performance of a selected circuit topology in

terms of the objective functions, for a given amount of power consumption limitation.

Again, it must be noted that the PoF model can only be used for the PowerLimit

values between the minimum and maximum PowerLimit values that the circuit has

been evaluated.

3.3. Verification of the Pareto Optimal Points

On a PoF, each point represents a sized circuit showing the best trade-off between

the two design objectives. The user is allowed to choose a specific PoP by clicking on

it and simulate that individual in the test benches to see its design specifications

and the transistors that are not operating in the saturation region, if there are any.

The simulations are performed using HSPICE and the waveforms are viewed using

CosmosScope. The user can also see the design variable values for that individual,

which are generally the W and L values of the transistors, bias voltages, and bias

currents.

3.4. Topology Selection

Topology selection is an important application of the PoFs. PoFs can be used to

predict the performance of different circuit topologies for a user given design specifica-

tion and the best topology that gives the optimal performance can be chosen.
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In this study, two different OTA topologies which are Folded Cascode OTA and

two-stage Miller OTA are analyzed. The design objectives are chosen as gain and GBW,

while the design constraints are chosen as power consumption and phase margin. The

user is allowed to compare the circuit performances in terms of the design objectives,

for different design constraints of interest. As it will be discussed in detail in Chapter

4, an OTA topology may reveal more optimum results in terms of the design objectives,

for a given range of design constraints; while it may perform worse for another range

of design constraints. Therefore, once the design specifications are determined, the

developed tool allows the user to select the best topology at the beginning of the

design.

3.5. Axes Variable Selection

In this study, the OTAs are optimized for the deign objectives gain and GBW,

and the design constraints phase margin and power consumption. However, the user

is also allowed to see the power vs area plots which are obtained by the projection of

power-area values of the individuals on a PoF that has been optimized for the design

objectives gain and GBW.
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4. CASE STUDY

In this chapter, a case study is performed for two different OTA topologies which

are Folded Cascode OTA and Two-stage Miller OTA, and a comparator circuit. The

OTAs are optimized for the design objectives gain and GBW, using the developed

optimization algorithm. Then, PoF models are extracted for different loading and

power limitation conditions. In addition to the OTAs, a comparator circuit is also

optimized for the design objectives propagation delay (tp) and power consumption.

Finally, the PoFs of the Folded Cascode OTA and the comparator circuit are composed

to obtain the PoF of a higher level block, that is, a comparator with a pre-amplifier

which is the Folded Cascode OTA. The generated PoFs and the extracted PoF models

are gathered to serve as an analog IP library.

4.1. Folded Cascode OTA

In this section, the Folded Cascode OTA shown in Figure 4.1 is analyzed.

Figure 4.1. The Schematic of the Folded Cascode OTA.
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Table 4.1. Lower and Upper limits of the design variables of the Folded Cascode OTA.

L1−8[µm] W1−8[µm] Rbias[kΩ] Vcm1[V ] Vcm2[V ]

Lower limit 0.13 0.65 1 0.2 0.4

Upper Limit 1.30 97.50 100 0.8 1.0

The circuit consists of 16 transistors and a bias resistor. The W and L values

of the mirror transistors (M1-M2, M3-M4, M5-M6, M7-M8, M9-M10, M11-M12, M13-

M14, and M15-M16) are chosen the same. Therefore, the circuit has 19 design variables

which are 8 × W, 8 × L ,Rbias , Vcm1 and Vcm2. The algorithm requires the lower and

upper limit of the design variables as an input. A rational determination of these

limits to the design variable values help the algorithm to find the Pareto-optimal front

faster. The lower and upper limits of the design variables of the Folded Cascode OTA

are shown in Table 4.1. The user is then asked the design objectives and the design

constraints if there are any. Finally, the user provides the size of the population and

the archive, N , and the maximum number of generations, T , and runs the algorithm.

4.1.1. Gain-GBW optimization of the Folded Cascode OTA

The Folded Cascode OTA is optimized for the design objectives gain and GBW.

The design constraints are chosen as phase margin and power consumption such that:

45◦ < phase margin < 90◦

power consumption < power limit = 500µW
(4.1)

The population size and the maximum number of generations are set to 100 and 400,

respectively. The load capacitance is taken as Cload = 500fF. The resulting PoF can

be seen in Figure 4.2. Each point represents a sized circuit showing a best trade-off

between the two design objectives. To illustrate the evolution of the PoF, Figure 4.3

shows the fronts after 25, 50, 100, 200, and 400 generations.
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Figure 4.2. PoF of the Folded Cascode OTA where Gain and GBW have been

maximized.

Figure 4.3. Evolution of the PoF of the Folded Cascode OTA.

4.1.2. Modeling of the Folded Cascode OTA for different power limitations

The goal of modeling the Folded Cascode OTA for different power limitations is to

see the performance of the OTA for the maximum power consumption desired, without

running any electrical simulations. The modeling technique makes use of the known

performances under other power limitations where the circuit has been evaluated. The

PoFs of the Folded Cascode OTA are obtained for PowerLimit = 100µW, 200µW,

300µW, 400µW, and 500µW, as shown in Figure 4.4.
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Figure 4.4. The PoFs obtained for different power constraints.

Table 4.2. Coefficients values of Equation 3.9 for each power limitation.

p1 p2 p3 p4

100µW -135.4 177.5 -84.47 98.04

200µW -27.48 67.69 -60.65 98.12

300µW -1.146 3.936 -11.34 85.45

400µW -1.752 4.907 -8.456 81.68

500µW -3.161 12.28 -18.52 83.9

Table 4.3. Coefficients values of Equation 3.10 for each pi.

a1 a2 a3 a4

p1 6.731e+12 -7.812e+09 2.931e+06 -356.7

p2 -3.302e+12 5.107e+09 -2.454e+06 376.2

p3 -3.203e+12 2.067e+09 -8.233e+04 -95.21

p4 1.562e+12 -1.312e+09 2.674e+05 83.21

Taking n=3, the coefficients of the 3rd order polynomial in Equation 3.9 for each

power limitation are found as shown in Table 4.2. Then, taking n=3, the coefficients

of the 3rd order polynomial in Equation 3.10 for each pi are found as shown in Table

4.3. Finally, the pi values in Equation 3.10 are substituted in Equation 3.9 so that

PoF (gain,GBW ) = f(PowerLimit) is obtained.
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The extracted PoF model is verified for power limitations of 350µW and 450µW.

Figures 4.5 and 4.6 show the comparison of the extracted PoF models and the PoFs

obtained by running the optimization algorithm, for these power limitation conditions.

Figure 4.5. PoF for PowerLimit=350µW.

Figure 4.6. PoF for PowerLimit=450µW.

4.1.3. Modeling of the Folded Cascode OTA for different loading conditions

The performance of the Folded Cascode OTA changes depending on the loading

conditions. However, it may be the case that the loading conditions are unknown by

the time the OTA is being designed. To solve this problem, the Folded Cascode OTA is

modeled for different loading conditions so that once the surrounding circuitry is known,
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the performance of the OTA in terms of the design objectives can be predicted, without

running any electrical simulations. The modeling technique makes use of the known

performances under other loading conditions where the circuit has been evaluated. The

PoFs of the Folded Cascode OTA are obtained for Cload = 100fF, 200fF, 300fF, 400fF

and 500fF, as shown in Figure 4.7.

Figure 4.7. PoFs obtained for different loading conditions.

Table 4.4. Coefficients values of Equation 3.7 for each Cload value.

p1 p2 p3 p4

100fF -0.1923 2.0004 -9.7737 78.3849

200fF -0.6194 4.6598 -14.6000 83.2967

300fF -0.5657 3.6156 -10.9587 80.9385

400fF -1.6350 6.1986 -12.5046 83.1950

500fF -0.4577 1.3739 -6.5245 81.2435

Table 4.5. Coefficients values of Equation 3.8 for each pi.

a1 a2 a3 a4 a5

p1 2.072e+51 -2.34e+39 9.097e+26 -1.445e+14 7.293

p2 -7.652e+51 8.874e+39 -3.597e+27 5.992e+14 -30.06

p3 1.099e+52 -1.326e+40 5.634e+27 -9.75e+14 43.54

p4 -8.628e+51 1.061e+40 -4.572e+27 8.075e+14 33.61
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Taking n=3, the coefficients of the 3rd order polynomial in Equation 3.7 for each

Cload value are found as shown in Table 4.4. Then, taking n=4, the coefficients of

the 4th order polynomial in Equation 3.8 for each pi are found as shown in Table

4.5. Finally, the pi values in Equation 3.8 are substituted in Equation 3.7 so that

PoF (gain,GBW ) = f(Cload) is obtained.

Figure 4.8 shows the comparison of the extracted PoF model and the PoF ob-

tained by running the optimization algorithm, for a load capacitance of 300fF.

Figure 4.8. PoF for Cload=300fF.

4.1.4. Axes Variable Selection

In this study, the Folded Cascode OTA is optimized for the design objectives

gain and GBW, and for the design constraints phase margin and power consumption.

Therefore, the axes variables of the PoFs are gain and GBW. However, the user may

want to compare the design solutions in terms of other design objectives such as area

and power consumption. For this purpose, the user is allowed to see the area vs power

plots which are obtained by the projection of area-power values of the individuals in a

PoF that was optimized for the objectives gain and GBW. Figure 4.9 shows the area

vs power curve that is extracted from the PoF in Figure 4.2. After eliminating the

dominated solutions, the area vs power curve in Figure 4.10 is obtained.



27

Figure 4.9. Area - Power front of the Folded Cascode OTA.

Figure 4.10. Area - Power front of the Folded Cascode OTA, after dominated

solutions are eliminated.

4.2. Two-stage Miller OTA

In this section, the analysis of the Two-stage Miller OTA shown in Figure 4.11

is represented. The circuit consists of 8 transistors, a compensation capacitor and a

compensation resistor. The W and L values of the mirror transistors (M1-M2 and

M3-M4) are chosen the same. Therefore, the circuit has 15 design variables which are

6 ×W, 6 × L, Rcom, Ccom and Ibias. The lower and upper limits of the design variables

of the Two-stage Miller OTA are shown in Table 4.6.
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Figure 4.11. The Schematic of the Two-stage Miller OTA.

Table 4.6. Lower and Upper limits of the design variables of the Miller OTA.

L1−6[µm] W1−6[µm] Ibias[mA] Rcom[kΩ] Ccom[pF ]

Lower limit 0.13 0.65 0.01 0.05 0.1

Upper Limit 1.30 97.50 1 5 1

4.2.1. Gain-GBW optimization of the Two-stage Miller OTA

The Two-stage Miller OTA is optimized for the design objectives gain and GBW.

The design constraints are chosen as phase margin and power consumption such that:

45◦ < phase margin < 90◦

power consumption < power limit = 500µW
(4.2)

The population size and the maximum number of generations are set to 100 and 400,

respectively. The load capacitance is taken as Cload = 500fF. The resulting PoF can

be seen in Figure 4.12. Each point represents a sized circuit showing a best trade-off

between the two design objectives. To illustrate the evolution of the PoF, Figure 4.13
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shows the fronts after 25, 50, 100, 200, and 400 generations.

Figure 4.12. PoF of the Two-stage Miller OTA where Gain and GBW have been

maximized.

Figure 4.13. Evolution of the PoF of the Two-stage Miller OTA.

4.2.2. Modeling of the Two-stage Miller OTA for different power limitations

The goal of modeling the Two-stage Miller OTA for different power limitations

is to see the performance of the OTA for the maximum power consumption desired,

without running any electrical simulations. The modeling technique makes use of

the known performances under other power limitations where the circuit has been

evaluated. The PoFs of the Two-stage Miller OTA are obtained for PowerLimit =

250µW, 350µW, 450µW, and 550µW, as shown in Figure 4.14.
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Figure 4.14. The Pareto-fronts obtained for different power constraints.

Table 4.7. Coefficients values of Equation 3.9 for each power limitation.

p1 p2 p3 p4 p5

250µW -0.1232 0.9472 -2.5759 0.1654 81.0456

350µW -0.1111 1.0666 -3.3181 1.1811 80.5196

450µW -0.0763 0.9084 -3.4541 2.5141 79.4432

550µW -0.0159 0.2120 -0.7923 -1.1809 80.4833

Table 4.8. Coefficients values of Equation 3.10 for each pi.

a1 a2 a3 a4

p1 4.94e+08 6.151e+05 -382.5 -0.07373

p2 -4.345e+10 3.174e+07 -6012 1.145

p3 3.653e+11 -3.532e+08 1.05e+05 -12.45

p4 -8.909e+11 9.513e+08 -3.179e+05 34.09

p5 4.445e+11 -4.942e+08 1.701e+05 62.45

Taking n=4, the coefficients of the 4th order polynomial in Equation 3.9 for each

power limitation are found as shown in Table 4.7. Then, taking n=3, the coefficients

of the 3rd order polynomial in Equation 3.10 for each pi are found as shown in Table

4.8. Finally, the pi values in Equation 3.10 are substituted in Equation 3.9 so that

PoF (gain,GBW ) = f(PowerLimit) is obtained.
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The extracted PoF model is verified for power limitations of 300µW and 400µW.

Figure 4.15 and 4.16 show the comparison of the extracted PoF models and the PoFs

obtained by running the optimization algorithm.

Figure 4.15. PoF for PowerLimit=300µW.

Figure 4.16. PoF for PowerLimit=400µW.

4.2.3. Axes Variable Selection

In this study, the Two-stage Miller OTA is optimized for the design objectives

gain and GBW. However, the user is also allowed to see the area vs power plots which

are obtained by the projection of area-power values of the individuals in a PoF that

was optimized for the objectives gain and GBW. Figure 4.17 shows the area vs power
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plot that is extracted from the PoF in Figure 4.12. It must be noted that the area of

the compensation capacitor determines the area of the OTA, since it is much bigger

than the area of the transistors. Therefore, it can be seen that the power consumption

increases as the compensation capacitance increases. The area of the compensation

capacitor is calculated according to the Equation 4.3.

A =
C.d

k.ε0
(4.3)

where C is capacitance, d is separation, ε0 is permittivity, and k is relative permittivity.

Figure 4.17. Area - Power front of the Two-stage Miller OTA.

4.3. OTA Topology Selection

In this section, an example use case of the topology selection is given. Figure

4.18 shows the PoFs of the Folded Cascode and two-stage Miller OTA for a maximum

power consumption of 500µW, and for Cload = 500fF . It is seen that the two-stage

Miller OTA can achieve higher gain-GBW values compared to the Folded Cascode

OTA, for 500µW power consumption limitation. Figure 4.19 shows the PoFs of the

Folded Cascode and the two-stage Miller OTA for a maximum power consumption

of 100µW, and for Cload = 500fF . It is seen that for a lower power consumption

limitation, the Folded Cascode OTA performs better than the two-stage Miller OTA.

As in this example, the user can use the pre-optimized PoFs or the extracted PoF

models to select the best OTA topology, once the design specifications are determined.
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Figure 4.18. Comparison of the PoFs for power limit = 500µW.

Figure 4.19. Comparison of the PoFs for power limit = 100µW.

4.4. Comparator

In this section, the optimization of the comparator circuit shown in Figure 4.20

is described. The circuit consists of 13 transistors. The W and L values of the differ-

ential pairs (M1-M2, M4-M5, M7-M8-M9-M10, and M11-M12) are chosen the same.

Therefore, the circuit has 15 design variables which are 7 × W, 7 × L, and the bias

voltage Vbias. The lower and upper limits of the design variables of the comparator are

shown in Table 4.9.
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Figure 4.20. The Schematic of the Comparator Circuit.

Table 4.9. Lower and Upper limits of the design variables of the comparator.

L1−7[µm] W1−7[µm] Vbias[V ]

Lower limit 0.13 0.65 0.2

Upper Limit 1.30 97.50 0.6

4.4.1. Propagation delay (tp) - Power optimization of the Comparator

The design objectives of the comparator are chosen as the propagation delay

and power consumption. Propagation delay of a comparator is defined as the time

difference between the moment the input signal crosses the reference voltage and the

moment the output state changes (usually when the output signal crosses the mid-value

between VOH and VOL, if nothing is specified). It is an important parameter for many

applications because it limits the maximal input frequency that can be processed. The

propagation delay time of the comparators varies as a function of the amplitude of the

input signal. A larger input results in a smaller propagation delay time. However,

there is an upper limit at which a further increase in the input voltage will no longer

effect the delay, which is called slewing.
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The following method is used to find the propagation delay of the comparator.

First, the input offset voltage of the comparator is found by sweeping the DC level

of Vin accross the reference voltage, Vref = 0.6V, and recording the Vin voltage where

the output state changes. Figure 4.21 shows the simulation result of a comparator,

whose input offset voltage is found as 0.5998756V - 0.6V = -124.4µV. To eliminate the

input offset voltage, the negative of the input offset voltage is applied at the negative

input of the comparator (e.g. Vref = 0.6V + 124.4µV = 0.6001244V). Then a pulse

of amplitude 1mVpp is applied to Vin, and the time difference between the moment

the input signal crosses 0.6V and the moment the output signal crosses 0.6V gives the

propagation delay. Figure 4.22 shows the simulation result of the comparator, whose

propagation delay is found as

tp =
tph + tpl

2
=

1.409363× 10−8 + 1.197017× 10−8

2
= 1.303190× 10−8 (4.4)

The generated PoF of the comparator is shown in Figure 4.23.

Figure 4.21. Input offset voltage simulation result of the comparator.

Figure 4.22. Propagation delay simulation result of the comparator.



36

Figure 4.23. Propagation delay - power consumption front of the comparator.

4.5. Composition of the Pareto-optimal Fronts

Figure 4.24. Composition of the PoFs.

In Section 4.1-4.4, generation of PoFs for the Folded Cascode OTA, Two-stage

Miller OTA and the comparator has been described. As the next step, these PoFs are

used to generate the PoFs of a higher-level block which is shown in Figure 4.24. The

tp - Power front of the comparator and the gain - GBW front of the Folded Cascode

OTA are used to generate the tp - Power front of the overall system, following the

methodology described below. It is observed that the sensitivity of the comparators in

Figure 4.23 is in the order of 0.1mV. Therefore, for input voltages below 0.1mV, the

Folded Cascode OTA should be used to amplify the input voltage. However, for input

voltages above 0.1mV, using the comparator without the pre-amplifier is more efficient;



37

because even if the propagation delay of the comparator decreases with larger input

voltages, the overall propagation delay increases because of the high delay contribution

of the amplifier.

The tp - Power front of the OTA-comparator circuit is obtained for input voltages

Vin = 1µV and Vin = 0.1mV. In Section 4.5.1, the OTA-comparator circuit is analyzed

for Vin = 1µV, and in Section 4.5.2, the OTA-coparator circuit is analyzed for Vin =

0.1mV.

4.5.1. Analysis for Vin = 1µV

4.5.1.1. Generation of the new PoF using the interpolation method.

• The input capacitance of each comparator circuit in Figure 4.23 are calculated

according to the Equation (4.5). The obtained Cin values constitute the load

capacitance values of the Folded Cascode OTA circuits.

Cin = CoxWL (4.5)

where Cox = 14.8× 10−3 F
m2 for 130nm NMOS technology.

• During the composition process, the PoF of the Folded Cascode OTA that has

been obtained for the objectives gain-GBW, and a load capacitance Cload=500fF

(shown in Figure 4.2) is used. Since the GBW of an OTA is dependent on its

load capacitance, the new GBW values of each OTA are obtained for the load

capacitance values calculated in Equation (4.5). This is done by simulating each

OTA for three different load capacitance values (i.e. three different comparators)

and then doing interpolation to obtain the GBW values of each OTA for all

comparators. The GBW − Cload plot of an OTA obtained by interpolating the

three simulation results is shown in Figure 4.25. The interpolation is done by

fitting a second order polynomial (i.e. f(x) = p1x
2 + p2x + p3) to the three

GBW − Cload points that are obtained by simulation.
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Figure 4.25. GBW − Cload plot of an OTA. Interpolation technique is used to obtain

the GBW of the OTA for all Cload values.

Figure 4.26. tpOTA
- GBWOTA plot of an OTA. Interpolation technique is used to

obtain the tpOTA
of the OTA for all GBWOTA values.

• As the GBW of an OTA changes with the load capacitance, its propagation delay

also changes. While simulating the OTAs for three different load capacitance val-

ues, the propagation delay of the OTAs are also simulated and then interpolation

is done to obtain the tpOTA
- GBWOTA plots of each OTA, using the GBW values

found at the previous step. Figure 4.26 shows the tpOTA
- GBWOTA plot obtained

for the OTA in Figure 4.25. The interpolation is done by fitting a first order

exponential curve (i.e. f(x) = a.ebx) to the three tpOTA
- GBWOTA points that
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are obtained by simulation. This interpolation technique is applied to all OTAs

and the tpOTA
- GBWOTA plot of all OTAs for all load capacitance values (i.e. for

all comparators) is obtained as shown in Figure 4.27.

Figure 4.27. tpOTA
- GBWOTA plot of all OTAs, obtained by interpolation.

Figure 4.28. tpOTA
- POTA plot of all OTAs for different comparators (for different

Cload values).

• Now that the propagation delay of all OTAs for all comparators are known,

the tpOTA
- POTA plot of all OTAs for all load capacitance values (i.e. for all

comparators) is plotted as shown in Figure 4.28. It can be seen that the OTAs

with a smaller propagation delay have a larger GBW, and therefore have a higher

power consumption.
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• The comparator propagation delay is not only dependent on the comparator itself,

but also the amplitude of the input voltage. Therefore, the propagation delay

of a comparator changes depending on the OTA it is connected to. Using the

interpolation method, the propagation delay of the comparators are found for

the gains of each OTA, as shown in Figure 4.29. Interpolation is done by fitting

a second order polynomial curve (i.e f(x) = p1x
2 + p2x + p3) to the three tpc -

GainOTA points that are found by simulation. Then the tpc - Pc plots of each

comparator are obtained for all OTAs, as shown in Figure 4.30. It must be noted

that the input voltage of the OTA is taken as 1µV, which results in a comparator

input voltage of 1µV×GainOTA.

Figure 4.29. tpc - GainOTA plot of a comparator. Interpolation technique is used to

obtain the tpc value of the comparator for each OTA.

• Finally, the tp - Power front of the overall system is obtained by summing the

obtained tp and power consumption values of the OTA and comparator, as shown

in Equation (4.6). Figure 4.31 shows the PoF of the overall system, obtained after

eliminating the dominated solutions in the tptotal - Ptotal plot.

tptotal = tpc + tpOTA

Ptotal = Pc + POTA

(4.6)
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Figure 4.30. tpc - Pc plot of all comparators (Vin = 1µV ).

Figure 4.31. PoF of the overall system, obtained by interpolation (Vin = 1µV ).

4.5.1.2. Verification of the new PoF by simulation. In this section, the PoF of the

OTA-comparator circuit that is obtained by using the interpolation method is com-

pared with the PoF that is obtained by simulation.

• The tpOTA
- POTA plot that is obtained by interpolation method (shown in Figure

4.28) is re-generated by simulating all OTAs for all Cin values of the comparators.

Figure 4.32 shows the tpOTA
- POTA plot that is obtained by simulation.

• The tpc - Pc plot that is obtained by interpolation method (shown in Figure 4.30)

is re-generated by simulating all comparator circuits for all GainOTA values of

the OTAs. Figure 4.33 shows the tpc - Pc plot that is obtained by simulation.
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Figure 4.32. tpOTA
- POTA plot of all OTAs for different comparators (for different

Cload values), obtained by simulation.

Figure 4.33. tpc - Pc plot of all comparators, obtained by simulation (Vin = 1µV ).

• Finally, the tp and power values of the OTAs and comparators that are found

by simulation are summed up and the dominated individuals are eliminated to

obtain the PoF of the overall system, as shown in Figure 4.34.

• Figure 4.35 shows the PoFs that are obtained by interpolation and simulation on

one figure. It can be seen in Figure 4.36 that the maximum error introduced by

the interpolation method is 4.5%. The error is defined as shown in Equation 4.7.

error[%] = 100× simulation− interpolation
simulation

(4.7)
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Figure 4.34. PoF of the overall system, obtained by simulation (Vin = 1µV ).

Figure 4.35. Comparison of the PoFs (Vin = 1µV ).

4.5.2. Analysis for Vin = 0.1mV

In this section, the PoF of the OTA-comparator circuit is obtained for the mini-

mum input voltage that the comparators are sensitive to, which is Vin = 0.1mV. The

resulting PoF is compared with the PoF that is obtained by simulating the compara-

tors in Figure 4.23 for Vin = 0.1mV. It is seen that using the comparator without the

pre-amplifier results in a more efficient performance in terms of the design objectives;

since the delay contribution of the OTA is much higher than the decrease in the delay

of the comparator as a result of the amplified input voltage.
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Figure 4.36. Error introduced by the interpolation method (Vin = 1µV ).

4.5.2.1. PoF comparison of the comparator with and without using the OTA.

• Using the interpolation method described previously, the tpc - Pc plot is obtained

for Vin = 0.1mV, as shown in Figure 4.37.

Figure 4.37. tpc - Pc plot of all comparators (Vin = 0.1mV ).

• Then, the tp - Power front of the overall system is obtained by summing the

obtained tp and power consumption values of the OTA and comparator, and

eliminating the dominated solutions, as shown in Figure 4.38.

• Finally, the comparators in Figure 4.23 are simulated for Vin = 0.1mV and the PoF

shown in Figure 4.39 is obtained. It can be seen that the PoF of the comparator
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is much more optimal than the PoF of the OTA-comparator circuit.

Figure 4.38. tptotal - Ptotal plot (Vin = 0.1mV ).

Figure 4.39. tpc - Pc plot of the comparators (Vin = 0.1mV ).
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5. CONCLUSION

Analog design optimization has been an active research area for many years. In

the past couple of decades, most approaches to analog design automation have been

built around optimization algorithms. Several multi-objective optimization algorithms

have been reported and successfully applied to design automation problems. SPEA2 is

one of the reported multi-objective optimization algorithms which has been proved to

be successful in terms of converging near the ideal PoF and preserving the boundary

solutions. In this thesis, a multi-objective optimization algorithm which adopts the

SPEA2 approach is implemented and applied to three different circuit topologies, which

are Folded Cascode OTA, Two-stage Miller OTA, and comparator. The OTAs are

optimized for the design objectives gain and GBW, and the comparator is optimized

for the design objectives propagation delay and power consumption. The PoF models

of the OTAs are extracted for different loading and power limitation conditions. The

models are verified by comparing the PoF models with the PoFs that are generated by

running the optimization algorithm under the conditions the PoF models have been

created. An analog library serving as analog IP is constructed, which includes the

pre-optimized PoFs and the extracted PoF models for different loading and power

limitation conditions. Finally, the PoFs that has been obtained for the Folded Cascode

OTA and the comparator are composed to obtain the PoF of a higher level block, that

is, the Folded Cascode OTA driving the comparator. The PoF of this higher level

block is obtained by doing interpolation, and then it is verified by simulations. It is

confirmed that the individuals on the resulting PoF make use of different OTAs and

comparators.

A graphical user interface (GUI) is implemented, that allows running all the

applications of the developed tool. The developed tool also allows the user to verify

the Pareto-optimal points in the test benches, and provides visualization of the design

variables, using the GUI.
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It is a well-known fact that despite the availability of improved design automation

tools, it is still hard to re-synthesis a circuit every time the design requirements change.

Therefore, the developed tool aims to save the designers a lot of time.
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