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Boğaziçi University

2018



iii

ACKNOWLEDGEMENTS

I would like to offer my sincere gratitude to my supervisor Prof. Dr. Yağmur
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ABSTRACT

A DELAYED FEEDBACK BASED PRACTICAL CHAOS

CONTROL METHOD: TAIL APERTURE FEEDBACK

Control of chaotic systems has been one of the central issues in the field of chaotic

dynamics since early 1990s. A particularly simple and practical method is the Delayed

Feedback Control (DFC) introduced by Kestutis Pyragas, to stabilize chaotic systems

at an Unstable Periodic Orbit (UPO). The basic idea of the DFC method is to apply

an additive control input that is proportional to the difference between the current

state and the state of the system delayed by the period of the target UPO. Since the

DFC method only requires the knowledge of the period of the UPO, it has attracted

great interest and has been applied to many systems. To render the method even more

feasible and applicable various modifications and extensions of the original DFC have

been presented in the literature.

In this thesis, a practical variant of the DFC, namely the Tail Aperture Feedback

(TAF) method has been proposed that combines the basic approach of the DFC with

some ideas borrowed from the OGY type chaos control. A practical procedure has been

introduced for selecting the relevant parameters and applying the TAF method. More-

over, an original sparsification method has been presented which reduces the stored

data. The performances of basic DFC method and the TAF method have been com-

pared and the improvement provided by the sparsification method has been demon-

strated on basis of simulation results.
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ÖZET

GECİKMELİ GERİ BESLEMEYE DAYALI PRATİK BİR

KAOS KONTROLÜ YÖNTEMİ: KUYRUK AÇIKLIĞI

GERİ BESLEMESİ

1990’ların başından bu yana, kaotik sistemlerin kontrolü kaotik dinamik alanının

önemli konularından olmuştur. Kestutis Pyragas tarafından ileri sürülen gecikmeli

geri besleme yöntemi (DFC) kaotik sistemleri bir kararsız periyodik yörünge üzerinde

kararlı kılmak için kullanılan basit ve pratik bir yöntemdir. DFC yönteminin temel fikri

sistemin mevcut durumu ile hedeflenen kararsız periyodik yörüngenin periyodu kadar

önceki durumunun farkı ile orantılı bir kontrol girişi kullanılmasıdır. DFC yöntemi

sadece kararsız periyodik yörüngenin periyodu bilgisini gerektirdiği için, büyük ilgi

görmüş ve birçok sisteme uygulanmıştır. Yöntemi daha da elverişli ve uygulanabilir

hale getirmek için orjinal DFC yönteminin çeşitli uyarlama ve uzantıları literatüre

sunulmuştur.

Bu tezde, DFC yönteminin pratik bir varyantı olup DFC temel yaklaşımını OGY

türü kaos kontrolden gelen bazı fikirlerle birleştiren kuyruk açıklığı geri besleme (TAF)

yöntemi önerilmiştir. olarak adlandırılan başta olmak üzere çeşitli kaos kontrolü yöntemleri

incelenmiştir. İlgili parametrelerin seçimi ve TAF yönteminin uygulanması için pratik

bir prosedür önerilmiştir. Buna ek olarak, depolanan veriyi azaltmak için özgün bir

seyreltme yöntemi sunulmuştur. Temel DFC ve TAF yöntemlerinin performansları

karşılaştırılmış ve seyreltme metodu ile sağlanan gelişme simülasyon sonuçları üzerinden

gösterilmiştir.
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1. INTRODUCTION

Over many years, chaos has been an interesting phenomenon in nature and has

been shown to exist in many natural systems from meteorology to biology. With his

research on the three-body problem, Henri Poincaré became the first person who laid

the groundwork for modern chaos theory at the end of the 19th century. He pointed

out that for some deterministic systems, small differences in the initial conditions may

lead to enormous differences in the final phenomena. This is the first known published

statement of the property now known as “sensitivity to initial conditions”, which is

one of the defining properties of a deterministic chaotic dynamical system. Later,

in the second half of the 20th century, Edward Lorenz, an American meteorologist,

while simulating partial differential equations that describe the turbulent motion of

the atmosphere, discovered that under certain conditions deterministic systems can

behave in an unpredictable manner. Deterministic chaos has become a widely inves-

tigated topic since Edward Lorenz published his paper “Deterministic Nonperiodic

Flow” in the Journal of the Atmospheric Sciences in 1963 [1]. After the first usage

of the word ‘chaos’ in the scientific literature by Li and Yorke in 1975 [2], increasing

number of articles has been published on this subject, and chaos has become a signif-

icant topic in mathematics. In 1883, German mathematician Georg Cantor published

a paper in which describes what would come to be known as the “Cantor set” [3] later

called fractals by Mandelbrot. As computers became a powerful tool at the end of

the 1970’s, Mandelbrot discovered a structure with self-similarity at all scales while

visualizing a noisy data and introduced fractal geometry [4]. Fractals gained signif-

icance because chaotic systems have attractors that mostly exhibit fractal properties

and helped characterizing the complicated structures of strange attractors (also known

as chaotic attractors). Typically, there exist infinitely many Unstable Periodic Orbits

(UPOs) embedded in the strange attractor and generally one of them is chosen to be

stabilized in chaos control methods.

Chaos theory was not developed by a single person or a single team of scientists,

but rather it was the product of different scientists working on different problems.
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According to Strogatz [5], deterministic chaos can be defined as the aperiodic long-term

behavior in a deterministic system that shows sensitive dependence on I.C.s. While

there exists a variety of rather simple differential and difference equations exhibiting

chaotic behavior in the literature, such as the Logistic equation, the Henon map, the

Rössler system and Chua’s circuit, chaos is also observable in real systems; e.g. in

population dynamics, psychology, biology, medicine, chemical reactions, mechanical

movements etc..

At the beginning of 1990s some researchers came up with the idea od control-

ling chaotic systems. Usually, closed-loop control of a dynamic system means that

the system is made to converge to and stay on an arbitrary, externally specified tar-

get behavior by applying feedback-based inputs. However, in almost all versions of

chaos control the target behavior is chosen as one of the infinitely many unstable pe-

riodic orbits embedded in strange attractor, such that the control task reduces to the

feedback-based stabilization of an inherent (yet unstable) behavior of the system.

Following the first chaos control method proposed by Ott, Grebogi and Yorke

(OGY) [6] many alternative methods have been suggested by various researchers. How-

ever, all of them share the common feature that the target behavior is an unstable

periodic orbit (or in some cases an equilibrium point, which can be considered as a

periodic orbit with period zero) embedded in the strange attractor. The OGY method

is based on the following idea: A chaotic system’s behavior on its strange attractor -

by its very nature -, guarantees that a close neighborhood of any point on it will be

visited within finite time. When the system trajectory enters a close neighborhood of

the target UPO, the control parameters of the system are varied appropriately with a

limited range to stabilize the target. Over the years, to improve the performance of

the method, some modified OGY methods have been proposed [7–10].

In 1992, Pyragas proposed a method [11] that addresses a slightly different control

task: Here, the aim is to stabilize the chaotic system at one of its UPOs with a specified

period. The method requires the knowledge that at least one UPO with that period

exists but nothing about its whereabouts. The method uses delayed feedback to make



3

the system converge to and stay on a UPO with the specified period, however, there

may be more than one such UPOs. In this case, it will depend on the initial conditions

to which one the system will converge. The delayed feedback control (DFC) algorithm

uses a control input, which is proportional to the difference between the current output

of the system and the output of the system delayed by period of the target orbit.

As the only information required about the target orbit is its period, this new

method has attracted great interest among experimentalists, giving rise to applications

in different fields such as chemistry, biology, medicine, economy and engineering. As the

method was employed extensively, some limitations were identified from the analysis

of the initially proposed DFC and many modifications were proposed to improve its

performance (see the surveys [12–15]).

One of the problems of the DFC algorithm is that it fails to control orbits with

long periods. To overcome this problem, the most popular modification of the original

DFC scheme is the so-called Extended Delayed Feedback Control (EDFC) has been

introduced [16]. The EDFC scheme uses information from many previous states of the

system to stabilize orbits with larger periods, which are not stabilizable by the original

DFC [17].

As delayed feedback leads to delayed differential equations, it is quite difficult

to analyze the stability and to propose an analytical stabilization criterion for the

control gain. In 2012, Pyragas noted that “Even linear analysis of such systems is

complicated due to the infinite number of Floquet exponents characterizing the stability

of controlled orbits.” [14]. Nevertheless, some general analytical results and properties

have been obtained about the algorithm throughout the years [18–21].

In 1997, Nakajima [19] proved the existence of the so-called Odd Number Lim-

itation (ONL); that is, unstable periodic orbits with an odd number of real Floquet

multipliers (FMs) larger than unity cannot be stabilized by time-delayed feedback con-

trol (DFC). Nonetheless, in 2007, Fiedler et al. [22] showed by a simple example that

this limitation does not hold in general for autonomous systems (note that for non-
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autonomous systems it remains valid in general). Recently, a modified proof (“corrected

ONL”) of the limitation for autonomous systems has been presented by Hooton and

Amann [23]. To bypass this limitation in autonomous systems, some control matrix

design algorithms have been proposed for DFC by using Hooton and Amann’s crite-

rion [24].

In this thesis, delayed feedback type control of continuous-time chaotic systems

has been investigated and a practical method, the Tail Aperture Feedback (TAF), has

been developed, which combines the basic approach of DFC with some ideas borrowed

from OGY type chaos control with the basic concern of keeping the a priori knowledge

about the system dynamics at a minimum level.

The thesis is organized as follows: In Section II, basic theoretical definitions of

chaotic dynamics and chaos control are provided. In Section III, DFC method used in

control of chaotic systems is explained in detail where the theory behind the method

as well as the extensions and limitations of the method are provided. Proposition and

investigation of the TAF method that is used to control chaotic systems are given in

Section IV. Theoretical basis and the procedure of the TAF method are explained for

continuous-time systems. Moreover, a practical sparsification algorithm is provided to

reduce the stored data and its performance is shown on the TAF method. Finally,

in Section V, discussion and concluding remarks on the TAF method, sparsification

algorithm and future works are provided.
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2. THEORETICAL FOUNDATION

2.1. Chaotic Dynamics

Dynamical systems can be represented in terms of mathematical models which

describe the laws that govern how the system changes. Depending on the nature of the

system at hand, as well as the availability of information about it, one may have to

employ stochastic models, which express the rules that govern probabilities of changes

in the system, or deterministic models, which describe how the change in the system

states are related to the present and past states, and possibly to external inputs. We

can subdivide the systems, the behaviors of which can be expressed as deterministic

laws in terms of a finite number of system states, into two main categories: systems

that change continuously in time and those that can change only at discrete time

instances. The former are typically described via differential equations, and the latter

via difference equations. Continuous time systems can be represented in the following

general form:

ẋ(t) = f(x(t),u(t), t) (2.1)

Similarly, discrete time systems can be represented as follows,

x(k + 1) = f(x(k),u(k), k) (2.2)

where x(t),x(k) ∈ Rn represent state vectors and u(t),u(k) ∈ Rm represent the in-

put vectors, respectively and f is an n-dimensional vector function called the system

function.

Among such deterministic dynamic systems particularly the dissipative ones, i.e.

those that settle down to an “attracting” steady state behavior, are of practical im-

portance. Such “attracting behaviors” can be subdivided into: (i) point attractors

(attracting equilibrium points), (ii) periodic attractors (attracting periodic orbits) and
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(iii) strange (chaotic) attractors.

The deterministic systems considered in this thesis are those that have strange

attractors and are characterized by long term aperiodic behavior and sensitive depen-

dence on initial conditions. The sensitivity to initial conditions means that nearby sys-

tem trajectories diverge from each other exponentially fast (on average). Continuous-

time systems that combine this kind of exponential divergence of nearby trajectories

and dissipativeness can exist only from 3-D onward.

Lyapunov exponents constitute a measure for the convergence or divergence of

nearby trajectories. An n-dimensional system has n Lyapunov exponents, which ex-

press the exponential rate of convergence or divergence of nearby trajectories in the

associated n eigen-directions of the flow. Positive Lyapunov exponents indicate diver-

gence, while, negative ones indicate convergence. For dissipative systems the sum of

the Lyapunov exponents has to be negative [25], implying that under the governing

dynamics phase space (hyper-)volumes shrink down to an attractor of measure zero.

On the other hand, sensitivity to initial conditions, which is a characteristic feature

of dissipative chaos, entails at least one positive Lyapunov exponent. As a result, the

strange attractor of any dissipative chaotic system is a fractal structure that has zero

phase (hyper-)volume, and occupies a finite region of the phase space. (Figure 2.1

shows strange attractor of the Lorenz system.)

Typically, there exist infinitely many Unstable Periodic Orbits (UPOs) embedded

in the strange attractor of a dissipative chaotic system. These UPOs have saddle type

of instability, meaning that the periodic orbit exhibits an attracting behavior in some

directions, while exhibiting repelling behavior in some other directions. Most of the

studies on chaotic systems are related to the steady state behavior on the strange

attractor, while the transient behavior until the system reaches the attractor is usually

discarded.
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Figure 2.1. One of the most investigated strange attractors: Lorenz Attractor.

2.2. Chaos Control

In spite of their seemingly irregular character, deterministic chaotic systems can

be controlled by applying some appropriate feedback. However, chaos control as known

in the literature has a slightly different goal statement than the control of dynamic

systems in general, which refers to the act of forcing the system to behave in an

externally specified manner, i.e. to follow an externally given reference trajectory. In

almost all versions of chaos control the reference is one of the infinitely many UPOs

embedded in the strange attractor (from here onward it will be mentioned as the target

UPO). Hence, controlling chaos is a very specific type of closed-loop control, where

the reference trajectory is chosen from the inherent repertoire (the set of UPOs) of the

chaotic system.

Following the first chaos control method proposed in 1990 by Ott, Grebogi and

Yorke (OGY) [6], many alternatives have been suggested by various researchers. The

OGY control method is based on the following idea: the very nature of a chaotic

system’s behavior on its strange attractor guarantees that starting from an arbitrary



8

initial condition, any finite region of the strange attractor will be reached within finite

time. Hence, OGY control remains inactive until the system enters by itself a close

enough neighborhood of the target UPO, and is only activated when the system is

within that neighborhood, the OGY region (ΩOGY ). The control task, which can be

defined as the stabilization of the target UPO, is achieved by slightly varying some of

the parameters (the control parameters, p) of the system. In the OGY control method,

the continuous time control problem is converted into a discrete one by introducing

a Poincaré surface Sp (an (n-1)-dimensional hypersurface in the n-dimensional state

space) and considering the time instances, when the system trajectory traverses the

surface in a specified direction (Figure 2.2). Denoting the kth piercing point by ξξξ(k),

the so-called Poincaré map P can be found, which associates successive piercing points

as in (2.3). Here, p denotes the vector of control parameters.

ξξξ(k + 1) = P(ξξξ(k),p) (2.3)

If there exists a UPO traversing the Sp, then it has to do so piercing the surface at ξξξ∗,

which is a period-1 point (i.e. an equilibrium point as seen in Figure 2.2) or a higher

periodic point of the Poincaré map P. Here, for the sake of simplicity, the method

will be presented only for a UPO that traverses the Poincaré surface at an equilibrium

point ξξξ∗. As a preparation for the OGY control, data are gathered from the system

while varying the control parameters randomly within a narrow range (UOGY ) about

their nominal values (pnom), and a local linear estimate for (2.4) is obtained as follows:

ξξξ(k + 1) = P(ξξξ(k),p) ≈ Aξξξ(k) + B(p(k)− pnom) = Aξξξ(k) + Bu(k) ∀ ξξξ(k) ∈ ΩOGY

(2.4)

where A = ∂P(ξξξ,p)
∂ξξξ
|ξξξ=ξξξ∗,p=pnom and B = ∂P(ξξξ,p)

∂p
|ξξξ=ξξξ∗,p=pnom .

The equilibrium point ξξξ∗ of the Poincaré map for p = pnom is given by

ξξξ∗ = P(ξξξ∗,pnom) (2.5)
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Figure 2.2. An illustration of the Poincaré surface of section in 3-D space and

piercing points of the chaotic flow

The control law can be formulated as

uOGY (k) = p(k)− pnom =

K(ξξξ(k)− ξξξ∗), if ξξξ(k) ∈ ΩOGY .

0, otherwise.

(2.6)

where K can be designed (relying on the local linear model (2.4) by any linear control

method (e.g. pole placement) to make ξξξ∗ stable. The stability of the Poincaré map

exhibits the same stability properties as the associated UPO of the original system.

In 1992, Pyragas proposed two new methods for the stabilization of the periodic

orbits: the Delayed Feedback Control (DFC) and the Proportional Feedback Control

(PFC) [11]. While the DFC method uses one of the output signals delayed by the period

of the target UPO as reference (3.3), the PFC method uses the complete description of

the target UPO as a reference. The closed-loop dynamics obtained by the PFC method

can be expressed as follows,

ẋ(t) = f(x(t)) + G(x∗ − x(t)) (2.7)
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where G is the control gain matrix, which is found from the monodromy matrix Ψ(t)

(the state transition matrix over a period [t,t+T], Φ(t + T, t))). Monodromy matrix

can be calculated by integrating the variational equations (2.8) of the closed-loop sys-

tem around the target UPO for one period (T) as follows

dΦ(t, 0)

dt
= [∇xf(t,x,u)−∇uf(t,x,u)G]|x=x∗(t)Φ(t, 0), t ∈ [0,T], Φ(0, 0) = In

(2.8)

According to the Floquet theory (Appendix C), G is chosen such that the largest

Floquet Multiplier of the monodromy matrix is minimized. The need for a priori

knowledge about the entire UPO is the principal disadvantage of the PFC method.

Another chaos control method proposed for the stabilization of a target UPO

is the Prediction-Based Feedback Control (PBC). In 1999, Ushio and Yamamoto in-

troduced a state feedback control method, which uses the predicted values of the

states [26]. In contrast to control that is based on the past states as in the DFC

case, the control in PBC method uses the predicted states one period ahead, computed

along the trajectories of the free system response. The closed-loop dynamics obtained

by the PBC method can be expressed as

ẋ(t) = f(x(t)) + M(φ(t + T, t, x(t), 0)− x(t)) (2.9)

where φ(t + T, t, x(t), 0) is the value at time (t + T) of the state starting from x(t)

at time t of the uncontrolled system and M is the control gain matrix. The main

disadvantage of the PBC method is the need for a priori knowledge of the system

equations, which may not always be satisfied.
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3. CHAOS CONTROL VIA DFC

In 1992, Pyragas proposed a simple and convenient method of controlling chaos,

the so-called Delayed Feedback Control (DFC) [11]. As mentioned earlier, DFC is based

on a control proportional to the difference between the measurable current output

signal and a delayed output signal. The delay time is taken as the period of the

target UPO such that the control input vanishes when the system is on the UPO. The

most important advantage of the DFC method is that it does not require any a priori

information about the UPO except for its period. As the DFC method does not require

any real-time processing or any a priori knowledge about the target UPO (except for

its period T) this new method has attracted great interest among experimentalists

from various fields such as chemistry, biology, medicine, economy and engineering,

leading to applications on real systems such as an atomic force microscope [27], a high-

speed semiconductor laser system [28] or a magnetoelastic system [29]. As the method

was employed extensively, some limitations of the initially proposed DFC have been

discovered and many modifications have been proposed to improve its performance (see

the surveys [12–15]). Let us consider an uncontrolled dynamic system

ẋ(t) = f(x(t), 0) (3.1)

with the system states x(t) ∈ Rn, the control input u(t) = 0 and f : Rn → Rn. Suppose

that the system has a T-periodic UPO denoted as x∗(t) = x∗(t− T). The original DFC

method uses a scalar control input which corresponds to the measurable output state

of the system. The following form is used for the DFC method:

ẋ(t) = f(x(t), u(t)) (3.2)

u(t) = K[y(t− T)− y(t)] (3.3)

where y(t) = g(x(t)) is the scalar output variable. Delayed output signal y(t− T) is

used as reference signal as seen in the block diagram of the DFC method in Figure 3.1
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Figure 3.1. The block diagram of the DFC method for the stabilization of a

T-periodic UPO, where y(t) is the measurable output signal and

u(t) = K[y(t− T)− y(t)] is the control input.

As the DFC method involves nonlinear Delay Differential Equations (DDE), it

is quite difficult to analyze its stability and give some analytical stabilization criteria.

Even local linear analysis of such systems is highly complex due to the fact that an

infinite number of Floquet exponents result from the delay term. Nevertheless, some

general analytical results about the DFC have been presented in the literature [18–21].

3.1. Design of the Control Gain Matrix

In the paper published in 1992 [10], Pyragas proposed a constant scalar control

gain K for the DFC method. However, since the closed-loop system includes Delayed

Differential Equations (DDEs), it is quite difficult to analyze its stability and give

analytical stabilization criteria for the control gain. Therefore, the control gain that

stabilizes the target UPO found empirically. Application of the DFC with constant

gain in practical experiments and theoretical models can be found in [14].
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In general, a scalar gain K is chosen by using the information of the largest

Lyapunov exponent, which, on periodic orbits, corresponds to the real part of the

Floquet exponent (or also called characteristic exponents). In [11], the control gain

K is chosen such that the largest Lyapunov exponent of the periodic orbit becomes

negative. As explained in [30, 31], the largest Lyapunov exponent can be estimated

from the output time series of a dynamical system or calculated (numerically) using

its mathematical model. However, such estimation and calculations require not only

much computational effort but also the complete description of the target UPO, which

is typically not available.

Another empirical approach for selecting the control gain K is to calculate the

average distance between the current state and the delayed state for different K values

and to select a K value which provides the lowest average distance, as explained in [11].

Since this approach does not require the complete description of the target UPO, it is

more practical than using the largest Lyapunov exponent to choose a suitable control

gain.

Later in 1995, Pyragas developed another approach to decide a stabilizing control

matrix for the DFC [17]. According to that, the main stability properties of the system

controlled by the DFC can be derived from a leading Floquet exponent defining the

system behavior under the Proportional Feedback Control (PFC).

3.2. Extended Delayed Feedback Control

In 1994, Socolar, Sukow and Gauthier have introduced the best known extended

version of the DFC, Extended Delayed Feedback Control (EDFC). EDFC uses not only

one delayed state y(t− T) as in (3.3), but the sum of the, ideally infinite, terms

y(t−mT),m = 1, 2, ...,+∞ as shown in the following control rule [16].

u(t, y(t)) = K[(1− R)
∞∑

m=1

Rm−1y(t−mT)− y(t)] (3.4)
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where 0 ≤ R < 1 and K are experimentally adjustable constants and y(t) is the scalar

output variable. Constant R value can be considered as a memory parameter which

weights information of the past states. For R = 0, (3.4) turns into the control law in

the original DFC algorithm [15]. Although EDFC introduces an improvement in DFC

concerning the stabilization of UPOs with larger periods that are not stabilizable by

the original DFC, the form of EDFC is not very suitable for real applicaitons because

it requires storing information of all states in the past.

3.3. Odd Number Limitation

A short time after the proposal of DFC, it has been noticed that certain UPOs

cannot be stabilized by the original DFC method. The underlying reason has been

found to be related to a phenomenon called the odd number limitation (ONL), which

refers to the fact that any UPO with an odd number of real Floquet multipliers (FMs)

greater than unity can never be stabilized by the DFC method. This limitation was first

proven by Ushio for discrete-time systems [18]. Just et al. showed that the DFC can

stabilize only a certain class of periodic orbits characterized by a “finite torsion” [20].

More precisely, a periodic orbit with “finite torsion” means that the imaginary part

of the Floquet exponent (FE) of the periodic orbit is non-zero. Physically, the real

and imaginary parts of the Floquet exponent determines the departure from and the

revolution around the desired periodic orbit, respectively as can be seen from Figure

3.2 below.

Figure 3.2. Trajectory near a periodic orbit with (a) finite torsion (Ω 6= 0) and (b) no

torsion (Ω = 0)
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Stabilization of the periodic orbit is achieved if the positive real part of the

Floquet exponent (λ) becomes negative or the corresponding Floquet Multiplier (µ)

becomes less than one in modulus. As stated in [20], control can be achieved by

DFC only if there is a finite torsion (Ω 6= 0) when λ = 0. This necessity can also be

understood from the observation of a trajectory near the desired periodic orbit in Figure

3.2. Difference between the points on such a trajectory become infinitesimally close

after one period in the absence of torsion as in Figure 3.2(b). Since the control force is

just proportional to the distance between these points, it vanishes before the desired

orbit is reached and stabilization cannot be achieved. Thus, Just et al. explained the

ONL as the necessity of finite torsion for stabilization via DFC, which yields constraints

on the Floquet multipliers of the uncontrolled system.

In 1997, Nakajima proved the same limitation for the non-autonomous continuous-

time systems and claimed in a footnote that the same proof can be extended to au-

tonomous systems [19]. However, this extension to autonomous systems was later

shown to be incorrect by B. Fiedler et al., who provided a simple autonomous case

example of stabilization of the UPO with one real positive unstable FM by DFC [22].

This paper has demonstrated that the ONL does not hold in general for autonomous

systems (note that it remains valid for non-autonomous systems). To overcome the

ONL several modified versions of the original DFC have been intensively discussed in

the literature. One of best known methods used half-period delays for special symmet-

ric orbits [32]. The other well-known method used the introduction of an additional,

unstable degree of freedom [33] which are simply explained in Section 3.3.1 and Section

3.3.2, respectively. Recently, in 2012, a modified version of the limitation (corrected

ONL) for continuous autonomous systems has been proven by Hooton and Amann [23].

It has also been shown that, by using the Hooton and Amann’s criteria, the scenario

presented by Fiedler can be achieved for new examples of autonomous systems [24].

For the sake of clarity, the ONL phenomenon can also be explained in terms of

corresponding FMs (µ) on the Root Locus Diagram in discrete time. Since, a real

FM cannot become complex without collision with another real FM, there can be only

pairs of complex conjugate FMs. Thus, in case of an odd number of real FMs that are
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greater than unity, at least one of them will be purely real, implying zero torsion.

Figure 3.3 and Figure 3.4 show a unit circle with FMs in the complex plane for

an autonomous system. If all FMs are within the unit circle (except for the trivial

FM, which equals to 1 and is shown in blue color), then the periodic orbit is stable.

Figure 3.3 shows three conditions of the UPO in the absence of control (equivalent to

DFC with K = 0) and Figure 3.4 shows the same conditions under DFC with K > 0.

The uncontrolled periodic orbit has an infinite number of FMs at the origin (green

color) additional to the regular FMs. As the control gain increases, all FMs (except

the trivial one at 1) start to move continuously as can be seen in Figure 3.41 .

Figure 3.3. Three qualitatively different configurations of the Floquet multipliers of a

UPO without control

Figure 3.4. Three qualitatively different configurations of the Floquet multipliers of a

UPO with control

For the condition in Figure 3.4(a1), the real negative unstable FM can enter the

unit circle through the left side, since in principle all FMs can enter the unit circle

through the left side regardless of how many there are. The situation for real positive

1Figure 3.3 and Figure 3.4 are taken from the personal conversation with Viktor Novicenko.
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unstable FM/FMs is slightly different due to the trivial FM, which always stands at the

right side of the unit circle in autonomous systems. If there are two (or an even number

of) real positive unstable FMs as in Figure 3.4(c1), the possible stabilization scenario

occurs when real FMs collide, become complex conjugate, and enter the unit circle

from the right (above and below). As illustrated in Figure 3.4(b1), such a scenario is

not possible for odd positive unstable FMs.

In [22] B. Fiedler et al. demonstrated an example of stabilization of the periodic

orbit with a single real positive unstable FM by the DFC method. The stabilization

scenario was exactly as in (b1), where the only real unstable FM enters the unit circle

through the trivial FM. After that, in 2012, E. W. Hooton and A. Amann published

a paper where the odd number limitation theorem was corrected and proven for au-

tonomous systems (the so-called Hooton-Amann criterion) [23]. The corrected version

of the ONL states that if there are an odd number of positive unstable FMs, the only

possible stabilization scenario is when one FM goes through the trivial FM. So, to

summarize, one can say that for autonomous systems the periodic orbit with an odd

number of positive unstable Floquet multipliers can be stabilized via DFC provided

that it satisfies the Hooton and Amann criterion.

3.3.1. Half-Period Delayed Feedback Control

In 1998, Nakajima and Ueda proposed a method called Half-Period Delayed Feed-

back Control to overcome the ONL [32]. However, this method is restricted to a special

case of symmetric UPOs: the self-symmetric UPOs. Let us consider a nonautonomous

system described by (3.5).

ẋ(t) = f(x(t), t) (3.5)

The system equation with the proposed Half-period DFC is defined as:

ẋ(t) = f(x(t), t)−K[x(t− T/2) + x(t)] (3.6)
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where K is the control gain matrix and T/2 is the half of the period of the target UPO.

Thus, the additive control input does not necessarily vanish when a T-periodic UPO

is stabilized, but it vanishes only when a self-symmetric orbit is stabilized. Hence, this

method is capable of stabilizing self-symmetric UPOs.

3.3.2. Unstable Extended Delayed Feedback Control Method

Another method that aims to overcome the ONL is the Unstable Delayed Feedback

Control (UDFC), which has been proposed by Pyragas in 2001 [33]. Here, the main

idea is to increase the number of real Floquet multipliers greater than unity to an even

number by introducing an unstable degree of freedom in the feedback loop. Later, in

2003, Pyragas extended the DFC method by combining this idea with the EDFC and

developed the Unstable Extended Delayed Feedback Control Method (UEDFC). Hence,

UEDFC method uses data from many previous states and eliminates the ONL by

introducing an unstable degree of freedom into the feedback loop.

The system equation with the delayed feedback term is defined as:

ẋ(t) = f(x(t), u(t)) (3.7)

where the control input u(t) = KFu(t) and K is a scalar control gain. Let y(t) denote

a measurable scalar variable y(t) = g(x(t)). The control input u(t) is determined by

the following control law:

Fu(t) = F(t) + w(t), (3.8)

ẇ(t) = λ0cw(t) + (λ0c − λ∞c )F(t), (3.9)

F(t) = y(t)− (1− R)
∞∑
k=1

Rk−1y(t− kT), (3.10)

where F(t) is the form used in EDFC with 0 ≤ R < 1 and w(t) is the unstable degree

of freedom introduced into the feedback loop with λ0c > 0 and λ∞c < 0. Whenever

the stabilization of the target UPO is achieved, F(t) and w(t) and consequently the
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feedback force Fu(t) vanish.



20

4. CHAOS CONTROL VIA TAF

In the previous chapters, the basic continuous-time chaos control methods known

in the literature have been presented. In this thesis, an alternative practical method,

dubbed the Tail Aperture Feedback (TAF) control, has been developed, which combines

the basic approach of the DFC with some ideas borrowed from OGY-type chaos control,

bearing in mind the basic concern of keeping a priori knowledge about the system

dynamics at a minimum level. As will be explained below, the TAF approach basically

requires only the prior knowledge of the period (T) of the target UPO and the ability

to store the state trajectory during the last T units of time.

4.1. TAF Method for Continuous-Time System

4.1.1. Theoretical Basis

Let us consider a continuous-time dynamic system representable as in 4.1, where

x(t) and u(t) correspond to the n-dimensional state vector and the n-dimensional

additive control input vector, respectively.

ẋ(t) = f(x(t)) + u(t) (4.1)

The TAF method uses a control law, which prescribes a control input that is propor-

tional to ∆T(t) = [x(t)− x(t− T)], which from here onward will be referred to as the

“tail aperture vector” (Figure 4.1).
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Figure 4.1. Illustration of the tail aperture vector at time t for a hypothetical 3-D

continuous-time system: ∆T(t) = [x(t)− x(t− T)], where the red line shows the

system trajectory during the last T units of time and the black line represents the

earlier part of the trajectory.

If the system is exactly on a T-periodic orbit, the tail aperture vector becomes

zero while ‖∆T(t)‖ 6= 0 is an indicator of a deviation from a T-periodic behavior. This

proportional control is applied as long as the tail aperture is reasonably small.

uTAF(t) =

−K∆T(t), for ‖∆T(t)‖ < ε∗.

0, otherwise.

(4.2)

where T is the period of the target UPO, K is the scalar control gain, ∆T(t) = [x(t)−

x(t− T)] is the tail aperture vector, and ε is the tail aperture tolerance. It should be

noted that uTAF(t) can step in only T units of time after the start of the system because

until then there is no data available to check the periodicity of the system trajectory.

As can be seen, the TAF method can be considered as a special and modified version
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of the DFC law,

uDFC(t) = K[y(t− T)− y(t)] (4.3)

where y(t) is a scalar output variable of the system and uDFC(t) is the scalar control

input. Hence, the difference between DFC and TAF is twofold:

(i) DFC uses delayed feedback based on a scalar output variable alone, while TAF

uses full state feedback.

(ii) While DFC is applied everywhere in the state space, TAF is applied only when

the system exhibits a nearly T-periodic behavior, and leaves the system uncontrolled

otherwise in order to avoid too much alteration of the chaotic system characteristics.

In that respect, the TAF control resembles the basic OGY control, where control is

applied in close vicinity of the target UPO, while relying on the fact that the trajectories

-due to the uncontrolled dynamics of the chaotic system on its strange attractor- will

eventually visit a narrow enough neighborhood of the target UPO within a finite time.

4.1.2. Procedure

To apply the TAF method, two parameters need to be appropriately chosen: the

scalar control gain K and the tail aperture tolerance ε. Below a practical three-stage

procedure is proposed for the empirical estimation of plausible K and ε values, and

finding a clue about a potential ONL without undertaking extensive calculations:

4.1.2.1. Stage A: Finding a neighboring point to the target UPO. Since the only avail-

able information about the target UPO is its period, first a state space location close

enough to a period-T UPO needs to be found, to be used at the next stages. At

this stage, first the system (either real or simulation experiment) is run long enough

(Trun) in an uncontrolled manner while recording ‖∆T(t)‖. Based on the fact that
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‖∆T(t)‖ will be relatively small when the system is close enough to a period-T UPO,

the recorded data are scanned to find t∗ that minimizes ‖∆T(t)‖. (See Figure 4.2,

which shows ‖∆T(t)‖ as a function of time for T = 5.89 of the uncontrolled Rössler

system.)

‖∆T(t)‖min = ‖∆T(t∗)‖ = ‖x(t∗)− x(t∗ − T)‖ (4.4)

Here, x(t∗ − T) is a state that is the closest to a period-T UPO and keeps approaching

the UPO under the uncontrolled system dynamics. x∗ = x(t∗ − T) will be used as the

initial point at the next stage of the TAF procedure.

4.1.2.2. Stage B: Estimation of the control gain. At the next stage, the aim is to find

a suitable control gain. For that purpose, starting from x∗, the system is run for

a given duration Trun >> T, applying TAF control in an unrestricted manner (i.e.

without imposing the ‖∆T(t)‖ < ε criterion) with different control gains K ∈ RK (a

reasonable range of control gains). At each run with a given K, the rms value of the

tail aperture vector ‖∆T(t)‖rms is calculated as follows (as used by Pyragas in [10])

‖∆T(t)‖rms =

√
1

Trun

∫ Trun

τ=0

‖∆T(τ)‖2 dτ (4.5)

The control gain value, which makes ‖∆T(t)‖rms minimum, is chosen as a candidate

gain K∗cand (see Figure 4.3, which shows ‖∆T(t)‖rms as a function of different control

gain values for T = 5.89 in a chaotic Rössler system).

In order to check whether a TAF controller with K∗cand indeeed stabilizes the

target UPO, the system is run under unrestricted TAF control with K∗cand for a duration

Trun >> T starting from x∗. If the controller fulfills its purpose, the system that has

started at x∗ close enough to the target UPO will stay close enough for the rest of the

time. In this thesis, the average flow magnitude along the target UPO (passing close

to x∗ and having period T) is proposed as a characteristic of the system’s behavior
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on the target UPO2 . This scalar characteristic value < ‖ẋ‖ >uncont can be estimated

from the results of Stage A, where the uncontrolled system has been found to travel

temporarily close enough to the target UPO between (t∗ − T) and t∗:

< ‖ẋ‖ >uncont=
1

T

∫ t∗

τ=t∗−T
‖ẋ(τ)‖ dτ (4.6)

The performance of the control with K∗cand can be assessed by comparing a long-term

average of the flow magnitudes < ‖ẋ‖ >test,

< ‖ẋ‖ >test=
1

mT

∫ Trun

τ=Trun−mT
‖ẋ(τ)‖ dτ (4.7)

where Trun >> mT, m is a small integer and ‖ẋ(τ)‖ is the flow magnitude under the

application of the unrestricted TAF control with K∗cand. It should be noted that the

absence of the restriction on the magnitude of the control input does not make any

difference because if the controller is successful, the system that starts from x∗ will

always remain close to the target UPO such that the magnitude of the control input

will anyway be below the threshold. If < ‖ẋ‖ >test turns out to be close enough to

< ‖ẋ‖ >uncont , it is concluded that K∗cand indeed stabilizes a period-T UPO and thus

K∗cand can be taken as K∗ (see Figure 4.4). If this condition is not satisfied, this can

be considered as an indicator of the possibility of an Odd Number Limitation (ONL).

Although, not exactly a proof of ONL, this relatively simple test provides a practical

way for suspecting ONL without extensive calculations or exact prior knowledge about

the system.

4.1.2.3. Stage C: Estimation of an appropriate tail aperture tolerance. Since TAF con-

trol proposed in this thesis, is based on the principle of keeping the control input

bounded (both in order to save energy and to avoid alteration of the chaotic system

characteristics far from the target UPO), a practical way of estimating a plausible

threshold value ε∗ is needed. As a matter of fact, the control input is kept bounded by

2The average flow magnitude along the target UPO can be considered as a signature of the target
UPO. Hypothetically, it is possible that there exist other trajectories that have a similar signature,
but this is highly improbable.
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applying control only when ‖∆T(t)‖ is small enough. The average of the local minima

of ‖∆T(t)‖ obtained from the uncontrolled system run in stage A can be used as a rea-

sonable heuristic estimate for ε∗ (see Figure 4.2, where ‖∆T(t)‖ is given as a function

of time and the red line corresponds to the tail aperture tolerance ε∗ for period-5.89

UPO of the Rössler system.).

4.1.3. Simulation Examples

The simulation results obtained by applying the proposed procedure of parameter

estimation and the TAF control are presented for the Rössler and Lorenz systems below:

4.1.3.1. Rössler System. Consider a Rössler system described by the system equations:

ẋ1 = −x2 − x3

ẋ2 = x1 + 0.2x2

ẋ3 = 0.2 + x3(x1 − 5.7) (4.8)

Control Task: Stabilization of a UPO of the Rössler system with period T = 5.89

Stage A: Find t∗ such that ‖∆T(t)‖min = ‖∆T(t∗)‖ and obtain x∗ such that

x∗ = x(t∗ − T) (Figure 4.2).
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Figure 4.2. ‖∆5.89(t)‖ as a function of time for an uncontrolled Rössler system, here,

the red line expresses the average of the local minima ε∗ = 3.643, t∗ = 85.74,

‖∆T(t∗)‖ = 0.1146, and x∗ = x(t∗ − T)

Stage B: Obtain K∗cand, which minimizes log10 ‖∆T(t)‖rms (Figure 4.3).
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Figure 4.3. log10 ‖∆T(t)‖rms as a function of K in Rössler system for T = 5.89, where

K∗cand = 0.28.

Test the performance of the unrestricted TAF control with K∗cand (Figure 4.4).

Figure 4.4. < ‖ẋ‖ >test as a function of K, here the blue line illustrates

< ‖ẋ‖ >uncont= 0.0927.
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It is observed from Figure 4.4 that < ‖ẋ‖ >test obtained with K∗cand = 0.28 is close

enough to < ‖ẋ‖ >uncont= 0.0927 (4.6), thus K∗cand can be used as the TAF control

gain K∗.

Stage C:

The average of local minima of ‖∆T(t)‖ in Figure 4.2 for the period-5.89 UPO

of Rössler system has been obtained as 3.643, thus the tail aperture tolerance can be

chosen as ε∗ = 3.643. According to the proposed three stage procedure above, the

estimated parameters have been found as K∗cand = 0.28 and ε∗ = 3.643. The TAF

method with these parameters has successfully stabilized the target UPO. Figure 4.5,

Figure 4.6 and Figure 4.7 show the results of stabilization of the UPO with period 5.89

of the Rössler system.

Figure 4.5. Stabilized period-5.89 UPO of the Rössler system .
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Figure 4.6. ‖∆5.89(t)‖ as a function of time under the control of the TAF method

with K∗cand = 0.28 and ε∗ = 3.643.

Figure 4.7. The first component of the input vector as a function of time under the

control of the TAF method with K∗cand = 0.28 and ε∗ = 3.643.
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4.1.3.2. Lorenz System. Consider a Lorenz system described by the system equations:

ẋ1 = 10(x2 − x1)

ẋ2 = x1(28− x3)− x2

ẋ3 = x1x2 −
8

3
x3 (4.9)

Control Task: Stabilization of a UPO of the Lorenz system with period T = 1.56. In

the literature, this UPO is known to have Odd Number Limitation (ONL) because of

the single unstable Floquet multiplier µ ≈ 4.713 [21].

Stage A: Find t∗ such that ‖∆T(t)‖min = ‖∆T(t∗)‖ and obtain x∗ such that

x∗ = x(t∗ − T) (Figure 4.8).

Figure 4.8. ‖∆1.56(t)‖ as a function of time for an uncontrolled Lorenz system, here,

the red line expresses the average of the local minima ε∗ = 8.735, t∗ = 80.44,

‖∆T(t∗)‖ = 0.3484, and x∗ = x(t∗ − T)

Stage B: Obtain K∗cand, which minimizes log10 ‖∆T(t)‖rms (Figure 4.9).
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Figure 4.9. log10 ‖∆T(t)‖rms as a function of K in Lorenz system for T = 1.56 where

K∗cand = 0.6.

Test the performance of the unrestricted TAF control with K∗cand (Figure 4.10).

Figure 4.10. < ‖ẋ‖ >test as a function of K, here the blue line illustrates

< ‖ẋ‖ >uncont= 1.077.
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In Figure 4.9, the minimum around K∗cand = 0.6 seems to accomplish the stabi-

lization of the target UPO with T = 1.56. However, as seen from Figure 4.10, this is

misleading, because actually what is stabilized is another equilibrium behavior which

satisfies x(t) = x(t− T) (a UPO with period T/k, which can also be an equilibrium

point when k→∞).

In the Lorenz system considered here, K∗cand = 0.6 cannot be used as a control

gain of TAF method for the stabilization of the period-1.56 UPO. Thus, there is no

need to proceed to Stage C. This example of the Lorenz system indicates that the TAF

method cannot stabilize the 1.56-periodic target UPO, which is known to have Odd

Number Limitation (ONL).

4.2. TAF with Sparsification

As can be concluded from the procedure described in the previous section, and

can be observed from 4.1, the TAF control method has the advantage of computational

simplicity and of having a minimal requirement on prior knowledge (only the period

of the target UPO), while sharing with all other delayed feedback-based methods the

burden of keeping track of the system trajectory during the last T units of time.

The TAF control is active only when the tail aperture magnitude (‖∆T(t)‖) is

below a certain tolerance ε∗, which means that the system is momentarily behaving

in an almost T-periodic manner. Hence, the task of the controller can be considered

as maintaining the T-periodic behavior, whenever the system is close to it. Given

this inherent tolerance of the TAF control method, it may be meaningful to reduce

the number of data points to be stored, i.e. reduce the sampling rate, provided that

the distance between the data points does not exceed a reasonable fraction of ε∗. Let

us call this fraction kth, the sparsification factor, and propose a nonuniform sampling

algorithm that amounts to the sparsification of the trajectory data such that data

points that are closer to each other than ε∗

kth
are not stored (Figure 4.11).
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Figure 4.11. Filling the time and state registers in the sparsification algorithm

The sparsed trajectory data consists of two linked sequences: a sequence of reg-

istered time instants {τ1, . . . , τM} and a sequence of registered states {x1, . . . ,xM},

which can be generated and updated in an online manner according to the following

procedure as time flows starting from t = 0. The procedure can be considered in two

stages:

4.2.1. Stage 1: Filling the registers

Initiate the registers with τ1 = 0 and x(τ1) = 0. Add new entries to the registers

according to the following iterative rule where treg1, treg2 and tregM are the first, second

and the last element of the time register, respectively:

For t > τi : if ||x− xi|| > ε∗

kth
=⇒ τi+1 = t; xi+1 = x(τi+1)

if (tregM − treg1) > T and (tregM − treg2) > T =⇒ go to Stage 2

time reg. τ1 τ2 τ3 τ4 ...

state reg. x1 = x(τ1) x2 = x(τ2) x3 = x(τ3) x4 = x(τ4) ...
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4.2.2. Stage 2: Updating the registers

Discard the first entries of the sequences, shift the registers towards left. After

updating the registers as shown below, continue to Stage 1.

TAF control cannot be activated in Stage 1 because past data for a duration of one

period has not yet been accumulated. In Stage 2, when the TAF control is activated,

at any time instant t, the system state at (t− T) will be needed for the calculation of

∆T(t). However, the registers will most of the time not contain any data that exactly

corresponds to (t− T). In such cases, x(t− T) can be estimated by linear interpolation

between data points corresponding to τi and τi+1, where τi < (t− T) < τi+1, as follows:

xest(t− T) = xi +
xi+1 − xi
τi+1 − τi

(t− T− τi) (4.10)

For the sake of clarity, an explanatory example for the proposed data reduction

algorithm is given below.
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e.g. Let’s assume T=2.

Since (tregM− tregM) = 3.2–0 = 3.2 > T and (tregM− treg2) = 3.2–1 = 2.2 > T, the

sequences will be shifted towards left as seen below.

time reg. 1 1.2 2.5 3.2

state reg. x(1) x(1.2) x(2.5) x(3.2)

The proposed sparsification approach allows the controller to work in a lower

resolution mode which reduces memory usage by decreasing the total data stored as

investigated in Table 4.4.
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4.3. Performance Evaluation of TAF

As can be seen from the simulation examples in Section 4.1, by using the chosen

parameters (K∗ and ε∗), the TAF method can successfully stabilize UPOs of chaotic

systems that have no ONL (see: Figure 4.5 and Figure 4.6). Furthermore, in case

of ONL, (at least in the tested examples) our method turned out to be successful in

finding an indication about ONL in early stages of the procedure without extensive

calculations or prior knowledge (see: Figure 4.10).

Table 4.1. Main aspects of the best known chaos control methods applicable to

continuous time systems
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A summary of the main aspects of various chaos control methods used for the

stabilization of a target UPO of a continuous time chaotic system is shown in Table

4.1. Since the operating conditions of most of these methods are different than those

of TAF control, in this thesis, only a comparison of the TAF method and the DFC

method has been investigated, taking the output y(t) = x(t) in the DFC method, for

the sake of fair comparison.

4.3.1. Comparison of the original DFC and the TAF method

Here, the TAF and DFC methods are compared according to two performance

criteria: stabilization time and control power expenditure. For the sake of fair com-

parison the full-state version (y(t) = x(t)) of the DFC method is used (as opposed

to [11]). These are shown in Table 4.2 and 4.3 for UPOs of the Rössler system with

T=17.5 and T=35.01, respectively.

The stabilization time t̂st is the time it takes for the controller to stabilize the

target UPO, starting from an arbitrary initial condition. It can be calculated as the

average of tst’s obtained for many different initial conditions, where tst is defined as

min tst: ‖∆T(t)‖ < ε∗ ∀t ≥ tst.

The control power expenditure P̂rms can be similarly calculated as the rms value

of the control input, averaged over many different initial conditions. Below, P̂rms and

t̂st obtained by averaging results for 20 different initial conditions.

Table 4.2. Comparison of the TAF and DFC methods applied to a chaotic Rössler

system with T = 17.5 and K = 0.2 (t̂st calculated according to the same ε∗ for both

methods)

Rössler System Tail aperture

tolerance, ε∗

Control power

expenditure, P̂rms

Stabilization

time, t̂st

DFC, [10] not in use 0.0466 43.9

TAF, [this thesis] 1.6576 0.0422 31.2
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Table 4.3. Comparison of the TAF and DFC methods applied to a chaotic Rössler

system with T = 35.01 and K = 0.9 (t̂st calculated according to the same ε∗ for both

methods)

Rössler System Tail aperture

tolerance, ε∗

Control power

expenditure, P̂rms

Stabilization

time, t̂st

DFC, [10] not in use 0.0685 151.7

TAF, [this thesis] 2.09 0.0208 85.65

As can be seen from Table 4.2 and 4.3, the TAF method expends less than the

DFC method, which is expected, because the confinement of the control activity to

‖∆T(t)‖ < ε∗ puts a radical bound on it. The superiority of TAF in terms of the

stabilization time comes as a surprise, and can be interpreted as an indicator of the

fact that control efforts far from the target UPO interfere with the natural behavior of

the chaotic system and prolong the approach to the close neighborhood of the target

UPO.

4.3.2. Comparison of the TAF method with and without Sparsification

In Table 4.4, the effects of sparsification factor kth on the performance of the

TAF controller is given, where the performance criteria are the average data stored

and the quality of stabilization for the 5.89-periodic UPO of the Rössler system with

K∗ = 0.28 and ε∗ = 3.643 (as found in Section 4.1.3). It should be noted that the

quality of stabilization is expressed in terms of the time average of ‖∆T (t)‖.
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Table 4.4. The dependence of the average size of stored data and of the quality of

stabilization on the sparsification factor kth

As expected, smaller kth results in less data storage, while it degrades the qual-

ity of stabilization due to the approximation errors resulting from the interpolation

between registered data points.
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5. DISCUSSION AND CONCLUSION

In this thesis delayed feedback-based approaches to chaos control in continuous-

time systems have been investigated, and a new delayed feedback-based chaos control

method has been developed together with a practical procedure for the empirical esti-

mation of adequate parameter values to be used in the controller. This new method,

which has been dubbed the Tail Aperture Feedback (TAF) method combines the basic

DFC approach with some ideas borrowed from the OGY type chaos control. As such,

TAF control can be considered as an improved version of the original DFC method

applicable under the assumption that the full-state vector is observable. Therefore,

it shares DFC’s advantage of requiring minimal a priori knowledge about the system

(only the period of the target UPO), while offering the additional advantages of (i)

computational simplicity, (ii) shorter stabilization time, (iii) lower control power ex-

penditure, and (iv) the ability to sense the presence of Odd Number Limitation (ONL)

without undertaking extensive calculations. This last ability is provided by a criterion

proposed in this thesis as a measure of the quality of stabilization of the target UPO.

The restrictions of this method are the assumptions about the observability of

the full-state and the possibility of applying additive control on all states. The TAF

method also requires that the controller is able to store the system trajectory for the

last T units of time (period of the target UPO). To alleviate this memory requirement,

a practical sparsification method has been proposed, which can be implemented in an

online manner.

The efficacies of the TAF control, the ONL estimation method, and the sparsifi-

cation method have been demonstrated via simulations of Lorenz and Rössler systems.

Future investigations may relax the fundamental assumption of the TAF control

about the observability of the full system state if it can be combined with an appropriate

observer design.
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APPENDIX A: DYNAMICAL SYSTEMS

FUNDAMENTALS

In mathematics, dynamical systems are represented in terms of mathematical

models which describe the change of the system states. More specifically, continuous

time systems are represented by differential equations, while discrete-time systems are

represented by difference equations. Continuous time systems can be represented in

the general form as

ẋ(t) = f(x(t),u(t)) (A.1)

where x(t) = [x1(t), x2(t), ..., xn(t)]> ∈ Rn and u(t) = [u1(t), u2(t), ..., um(t)]> ∈ Rm

are the state and the input vectors, respectively, and f is an n-dimensional vector func-

tion called the system function.

Linear systems is a special case of the general nonlinear systems of the form

Equation A.1, where the system function f is linear in the state and input variables.

Thus, continuous-time linear dynamical systems can be represented as

ẋ(t) = Ax(t) + Bu(t) (A.2)

where A is an n× n matrix and B is an n×m matrix, x(t) ∈ Rn represent the state

vector and u(t) ∈ Rm represent the input vector, respectively.

An equilibrium behavior of a dynamical system is a behavior, which is sustained

continuously in the absence of perturbations. Equilibrium behaviors can be subdivided

into two such as static and dynamic ones. Static equilibrium behavior corresponds

to the resting behavior at an equilibrium point, while dynamic equilibrium behavior

include periodic motion on a closed orbit and the motion on a chaotic attractor. An
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equilibrium point, x∗ has to satisfy Equation A.3.

ẋ(t) = f(x(t)) = f(x∗) = 0 (A.3)

A periodic orbit is a system behavior, where the system state repeats itself with a

period T. A period-T periodic orbit, x∗(t), of a continuous time system has to satisfy

Equation A.4.

x(t) = x(t + T) = x∗(t) (A.4)

Generally, the stability of an equilibrium behavior means that the system states that are

close to the equilibrium behavior will remain close in the absence of perturbations. The

asymptotic stability requires that system trajectories starting close to an equilibrium

behavior asymptotically converge to the equilibrium behavior. Detailed definitions of

stability can be found in Appendix B.

If the stability conditions are valid within the whole state space, the stability is

said to be global, otherwise it is local. If a system has an attractor, the set of initial

conditions which the system starts and converges to the attractor, is called the basin

of attraction of that attractor.

Sensitivity to initial conditions implies that nearby trajectories diverge from each

other which lead to a long term unpredictability.

Since continuous-time systems in a 2-D phase space cannot exhibit such dissi-

pativeness and divergence of trajectories from each other without the states going to

infinity, chaotic behavior can be observed in continuous-time systems only from 3-D

onward. However, discrete-time systems can exhibit chaotic behavior even in 1-D.

The convergence/divergence behavior of nearby trajectories can be expressed in

terms of Lyapunov exponents. An n dimensional system has n Lyapunov exponents

corresponding to the exponential rate of divergence or convergence of nearby trajecto-
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ries in the associated directions. Chaotic systems have at least one positive Lyapunov

exponent indicating divergence in the associated direction and implying sensitivity to

initial conditions. Detailed definitions for estimating Lyapunov exponent are given

in [30,31].
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APPENDIX B: STABILITY DEFINITIONS

The following definitions related to continuous-time systems are taken from [5,34].

Let us consider a dynamic system ẋ(t) = f(x(t)).

Definition B.1. An equilibrium point x∗ is said to be stable if, for any R > 0, there

exists r > 0, such that if ||x(0)|| < r, then ||x(t)|| < R for all t > 0 . Otherwise, the

equilibrium point is unstable.

Definition B.2. An equilibrium point x∗ of is asymptotically stable if it is stable, and

in addition if there exists some r > 0 such that ||x(0)|| < r implies that for x(t) → 0

as t→∞.

Definition B.3. An equilibrium point x∗ is exponentially stable if there exist two

strictly positive numbers υ and λ such that

∀t > 0, ||x(t)|| < υ||x(0)||eλt

in some ball Br around x∗.

Definition B.4. If asymptotic (or exponential) stability holds for any initial states,

the equilibrium point is said to be globally asymptotically (or exponentially) stable.

B.1. Linearization and Local Stability

Lyapunov’s linearization method is concerned with the local stability of a nonlin-

ear system. It is a formalization of the intuition that a nonlinear system should behave

similarly to its linearized approximation for small range motions.

Theorem B.5. Consider the linearization of the original nonlinear system in the equi-

librium point x∗ as

ẋ = Ax (B.1)
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where A denote the Jacobian matrix of f with respect to x at x∗

A =

(
∂f

∂x

)

Then,

• if all eigenvalues of A has negative real parts, then x∗ is asymptotically stable for

the actual nonlinear system.

• If at least one of the eigenvalues of A has positive real part, then x∗ is unstable

• If all of the eigenvalues of A has negative real parts except at least one with zero

real part, then no conclusion can be made for from the linear approximation.

B.2. Lyapunov Stability Related Definitions and Theorems

The basic philosophy of Lyapunov’s direct method is the mathematical extension

of a fundamental physical observation: if the total energy of a mechanical (or electrical)

system is continuously dissipated, then the system must eventually settle down to an

equilibrium point. Thus, we may conclude the stability of a system by examining the

variation of a single scalar function.

Definition B.6. A scalar continuous function V (x) is said to be locally positive definite

if V (0) = 0 and, in a ball BR

x 6= 0 => V (x) > 0

If V (0) = 0 and the above property holds over the whole state space, then V (x) is said

to be globally positive definite.

Definition B.7. If, in a ball BR , the function V (x) is positive definite and has

continuous partial derivatives, and if its time derivative along any state trajectory of
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system ẋ = f(x) is negative semi-definite, i.e.,

V̇ (x) ≤ 0

then V (x) is said to be a Lyapunov function for the system ẋ = f(x).

Theorem B.8. If, in a ball BR , there exists a scalar function V (x) with continuous

first partial derivatives such that

• V (x) is positive definite (locally in BR)

• V̇ (x) is negative semi-definite (locally in BR )

then the equilibrium point x∗ is stable. If, actually, the derivative V̇ (x) is locally

negative definite in BR , then the stability is asymptotic.

Theorem B.9. Assume that there exists a scalar function V (x), with continuous first

order derivatives such that

• V (x) is positive definite

• V̇ (x) is negative definite

• V (x)→∞ as ||x|| → ∞

then the equilibrium is globally asymptotically stable.
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APPENDIX C: FLOQUET STABILITY THEORY

Here we first present the concepts on the stability of periodic orbits of linear

continuous-time dynamical systems based on the Floquet theory and then show how

these results are applied to the local stability of periodic orbits of nonlinear continuous-

time dynamical systems.

Let us consider a linear continuous-time dynamical system described by the dif-

ferential equation

ẋ(t) = A(t)x(t) (C.1)

Assume that A(t) is a periodic state matrix of period T that satisfies

A(t) = A(t + T), T ∈ R, ∀t. (C.2)

According to the Floquet theory, the stability of linear periodic systems depends on

the eigenvalues of the monodromy matrix, called the Floquet characteristic multipliers

µi.

Proposition C.1. (adapted from Theorems 4.1 and 4.2 in [35]) (i) The system (C.1) is

asymptotically stable if and only if the characteristic multipliers of A(t) have absolute

value smaller than 1. (ii) The system (C.1) is stable if and only if the characteristic

multipliers of A(t) have absolute value smaller than or equal to 1 and those character-

istic multipliers with unit-modulus are simple roots of the minimal polynomial of the

monodromy matrix Ψ(t).

See Appendix B for stability definitions.

The state transition matrix Φ(t, t0), t, t0 ∈ R of (C.1) is calculated according to the
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fundamental matrix definition as follows

Φ̇(t, t0) = A(t)Φ(t, t0)

Φ(t, t0) = In

(C.3)

The monodromy matrix Ψ(t) is the transition matrix over a period [t, t + T]:

Ψ(t) = Φ(t + T, t) (C.4)

and thus any solution of (C.1) also satisfies:

x(t + T) = Φ(t)x(t) (C.5)

Note that Φ(t) is a periodic matrix with period T, but the characteristic multipliers are

constant for all t. The Floquet theory can be used to analyse the stability of periodic

orbits of nonlinear systems by studying the convergence of a perturbation, governed

by a linearization in the vicinity of the periodic orbit.

Once the equation that governs the perturbation is obtained it is possible to

define a continuous-time monodromy matrix Ψ(t) ∈ Rnxn related to the periodic orbit

x∗(t):

δx(t + T) = Ψ(t)δx(t) (C.6)

According to (C.3) and (C.4), the eigenvalues of the monodromy matrix Ψ(t) are

calculated to analyse the stability of the linearized system.

Basically, the linearized system in the closed vicinity of the periodic orbit is

described by a linear time-periodic system, then the stabilization of periodic orbits

of non-linear system is reduced to stabilization of this type of linear system. Thus,

Floquet theory was shown that these linear systems can be stabilized via eigenvalues

assignment using state feedback control methods.




