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ABSTRACT

FROM PLACE DETECTION TO LONG-TERM PLACE

MEMORY

This thesis is concerned with automated place detection and its coupling with

long-term place memory. Long-term place memory is critical if a robot is to be place-

aware as it stores the relevant knowledge for future referral. Place detection is closely

coupled to place memory as it determines the appearances belonging to each place and

thus plays a key role in regards to which knowledge gets retained in the long-term

place memory. In this perspective, the contributions of the thesis are as follows: First,

it introduces a novel approach to place detection based on coherent visual segments.

Second, a new approach to place representation referred to as ‘segments summary

graph’ is presented. Finally, it is shown that this representation can be utilized for

improving the reliability of memory association.
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ÖZET

YER SEZİMLEMESİNDEN UZUN DÖNEMLİ

HAFIZALARA GEÇİŞ

Bu tezde, otonom bir şekilde yer sezimleme yapılması ve bunun yer hafızası

ile ilişkilendirilmesi konusu ele alınmıştır. Robotun bulunduğu ortama ait farkındalık

sağlamasında, yer hafızasının ortama ait tüm bilgiyi ileri vadede kullanılmak üzere de-

polaması nedeniyle önemli bir yeri vardır. Bu noktada, yer sezimleme ise o yere ait

görüntü kümelerini yer ile ilişkilendirdiğinden ve hangi bilginin depolanması gerektiğini

tayin ettiğinden yer hafızasının oluşturulması aşamasında kritik bir noktada bulun-

maktadır. Bu noktaları göz önünde bulundurduğumuzda, tezin katkılarını şöyle sırala-

yabiliriz: İlk olarak, yer sezimleme problemine çözüm olarak görsel sahne bölütlerinin

takip edilmesi ve görsel verinin uyumluluğu tabanlı bir yaklaşım geliştirilmiştir. Böylece

her bir yere ait görüntüler kümesi yer hafızasında uygun bir şekilde konumlandırılmış ve

depolanmış olacaktır. İkinci olarak, yaklaşımımız yerlerin tanımlanmasında bölüt ta-

banlı bir gösterim şekli önermektedir. Son olarak, elde ettiğimiz özet bölüt gösteriminin

hafıza ilişkilendirilmesinin daha tutarlı bir hale getirilmesinde kullanılması üzerine bir

metod geliştirilmiştir.
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Īm Bubble space descriptor of mth detected place

k Segment merging threshold

K Index set of base points

Mki Value of ith node at kth base point in the existence matrix

n̂kl Cardinality of N̂ k

N A node of place memory

N̂ k(l) A set of node correspondances between two graphs

Nr A node to be recognized

N↑ Highest ancestor of node N

Nk
i ith node in kth region adjacency graph

N k Set of nodes in kth region adjacency graph

P Index set of learned places

s(N) Node signature of region adjacency graph node N

s1(N) The first attribute of node signature - centroid

s2(N) The second attribute of node signature - color



xii

s3(N) The third attribute of node signature - radius

Ski ith segment in the kth base point

w =
[
wa wp wc we

]
The weight parameter vector

wa Area weight

wp Position weight

wc Color weight

we Edge weight

xk kth base point

X Base space

αk Robot’s heading at kth base point

β(Dm) Place index of Dm

γ(Gk, Gl) Distance between two graphs

γB(N,N ′) Bubble space descriptor dissimilarity of two place nodes

γS(N,N ′) SSG dissimilarity of two place nodes

δ (Min.) Minimum segment size

ϕk The coherency score

πkl Permutation matrix between two graphs

ρki Coherency weight of ith node in the kth base point

σ Segment smoothing factor

σ(s1(N)) Positional stability of node N

τc (Min.) Coherency threshold

τf (Min.) Association threshold

τm (Max.) Segment matching threshold

τn (Min.) Place detection threshold

τp (Min.) SSG existence threshold

τs (Min.) Hybrid method minimum matches threshold

τw Sliding window extension

Ω A set of candidate nodes



xiii

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

BD Bubble Space Descriptor

BOW Bag of Words

BS Bubble Space

GUI Graphical User Interface

MDS Multi Dimensional Scaling Method

RAG Region Adjacency Graph

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SSG Segments Summary Graphs

SURF Speeded Up Robust Features

TSC Topological Spatial Cognition



1

1. INTRODUCTION

This thesis is concerned with automated place detection as it pertains to place

memory. A ‘place’ refers to a specific spatial unit or area such as ‘X’s office’ or ‘Y

park’ [1]. Place memory is critical if a robot is to be place-aware. This is where all

related knowledge is retained for future referral. Using the knowledge stored therein,

the robot can associate the incoming appearance data with past experiences or learn

them as necessary. Appearance plays a key role in what this knowledge is about

- particular if odometric data is not available or reliable. Each ‘place’ is defined

as a collection of appearances or locations sharing common perceptual signatures or

physical boundaries [2]. As such, place detection - namely determining the appearances

belonging to each place - becomes critical.

1.1. Contributions

The contributions of this thesis can be summarized as follows:

• Place detection: A novel approach for detecting places is proposed. In this ap-

proach, scene content is represented by the segmented regions with their spa-

tial relations encoded as a graph. Place boundaries are then detected using a

coherency score which is calculated via tracking the segmented regions. Place

detection is improved since prevailing segments tend to be more stable across

different viewpoints and dynamic scene changes in contrast to local or global de-

scriptors that have been previously used. This is attributed to the fact that even

if they may encode a smaller port of the visual data, nevertheless this part is

more prevalent in the respective appearances.

• Segments Summary Graphs (SSG): Detected places are represented by the preva-

lent segments and with their spatial relations on a graph structure called as ‘Seg-

ments Summary Graphs ’ . SSG encodes the spatial and temporal of properties of

the segments found in the borders of the place. As such, it differs from previous
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approaches in which such a representation can be obtained only after additional

processing. Furthermore, resulting SSGs can be used as additional cues while

associating with the place memory and thus make the decisions more reliable.

• Place Memory: Place memory and association are considered - using the places

thus detected. This is done within the framework of the topological spatial cog-

nition model that has been previously developed. Furthermore, the resulting

segments summary graph representation is used to guide memory association

and make it more reliable.

1.2. Outline

This thesis is organized as follows: In Chapter 2, the proposed place detection ap-

proach is presented and evaluated experimentally including a comparative study with

a previously introduced approach to place detection based on bubble space represen-

tation. The coupling of place detection with place memory is explained in Chapter 3.

This study includes an extensive experimental evaluation using benchmark data sets.

The thesis concludes with a brief summary and comments regarding future directions.

For completeness, the mathematical formulation of bubble space representation is pre-

sented in Appendix A. The user manual of the SSG software and place memory is

given in Appendix B.
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2. PLACE DETECTION

2.1. Introduction

Place detection enables the robot to decompose space into spatial units [3]. It

is known that space decomposition can even be done in outdoors without any clear

physical boundaries. The resulting spatial knowledge is thought to be more consistent

with human’s place concept [4]. As such, detecting places1 is an integral capability - if

robots are to become spatially aware. Appearance plays a key role in place detection

- as geometric or odometric data may not be always available. The key motivation

is that visual data from a single location will not encode all the place related knowl-

edge. Therefore, appearance data that is collected through a place detection is used to

describe the place knowledge.

Formally, the problem can be defined as follows: Consider a robot that has navi-

gated through a sequence of base points xk ∈ X with k ∈ K denoting the index. Each

base point xk =
[
cTk αk

]T
is defined such that ck ∈ R2 denotes its planar position

and αk ∈ S1 is its heading. The set X ⊆ R2 × S1 is the base space (all possible

locations and headings). If odometric information is not available or is unreliable, the

coordinates of the base point xk will not be known explicitly - as is assumed here.

Transition from one place to another may occur in several forms - including passing

through a door or a gate, traveling straight through a corridor or street (when the

visual content changes in sideways) and rotating around something.

2.2. Related Literature

While, place detection was done through manual annotation, more recently, au-

tomated approaches are being increasingly used. In most, the problem is commonly

1Note that with some appearance-based SLAM or some topological approaches, each appearance
and thus each location is defined as a distinct place [5, 6]. As such, place detection is not required in
these systems.
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formulated as detecting scene discontinuities - assuming the appearance data to have

temporal nature. The consistency of the appearances is tracked with discontinuities

signaling transitions among places. Approaches vary in the type of descriptors used

in comparing appearances. Global descriptors encode the image as a whole - without

extracting any local information such as intensity differences [7], histogram [8], optical

flow [9] or GIST [10]. While these descriptors are simpler to process, they tend to

be sensitive to appearance variations due to viewpoint changes or dynamic entities -

as scene contents are not considered individually [11]. Alternatively, local descriptors

such as SIFT or SURF features [12–14] describe relevant local features or landmarks.

However, they provide low-level scene information and matching large number of lo-

cal features in a stable manner can be inefficient. There are also hybrid approaches

that encode local features using global schemes such as bag-of-words [15] and bubble

space [16]. While place detection performance is comparably improved, it can still

run into problems - as scene contents are considered only at the low-level. Alterna-

tively, there are also approaches in which places are detected via specifically detecting

boundaries such as passages or doors [4]. As such, the methods rely on the training

and performance of such detectors. While a number of recent studies suggest the role

of higher-level scene contents in defining places [17], none of previous work considers

them in detecting places.

In this work, we consider appearance-based place detection from this perspective

and introduce a novel approach based on the prevailing segments. As is well known,

segments encode perceptually similar pixels and thus constitute an intermediate level

of representation in which an image is decomposed into meaningful regions on the basis

of some similarity measure for ensuing higher-level scene analysis. Hence, they tend to

be more stable across different viewpoints and dynamic scene changes. As such, they

are believed to play a fundamental role in many vision related tasks - including the

generation of content-based video summaries [18–20] and object recognition [21]. This

has been a motivation for the proposed approach as well.
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2.3. General Approach

Place detection is based on partitioning of the set K. Let the partition be denoted

by {D1, ..., Dm∗} with subsets indexed by D = {1, . . . ,m∗}. Each subset Di ⊂ K

corresponds to one distinct ‘detected place’. As the robot navigates to different base

points, the index set D expands. The proposed approach consists of four stages as

shown in Figure 2.1:

Graph

Matching

Next

Location
Segment

Image

Construct

Region Adjaceny

Graph

Place

Detection

Figure 2.1. SSG based place detection.

(i) First, the incoming visual data (image) from each base point xk is segmented.

(ii) Next, a region adjacency graph (RAG) is constructed using the segmented image.

A RAG expresses the image segments and their spatial relations as nodes and

edges respectively [22].

(iii) The next stage is to match the newly formed RAG with those associated with

the preceding base points as to identify nodes (segments) that continue to exist.

(iv) In the fourth stage, places are detected via the partitioning of the set K based

on the spatio-temporal coherency of associated RAGs. Each resulting cluster is

viewed as being associated with one distinct place. The prevailing segments are

used to construct a segments summary graph (SSG) of the detected place.

2.4. Segmentation

The first stage is segmenting the incoming visual data (image) from base point

xk into nk homogeneous color regions Sk = {Ski }n
k

i=1. There are two requirements.
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(a) Original (b) σ=0.2, k=150, δ=1000

(c) σ=0.7, k=150, δ=1000 (d) σ=0.7, k=150, δ=5000

Figure 2.2. Segmentation results for different sets of parameters

First, the segments should be consistent across consecutive frames. As such, it will

be possible to track them temporally. Second, the computational complexity of the

algorithm should be minimal as possible. Thus, it will be possible to apply it on a

robot. Fortunately, segmentation is a well-studied area in the image processing and

computer vision communities with the developed algorithms being used extensively [21].

As such, any off-the-shelf segmentation method that satisfies the two requirements can

be utilized. In this work, we use the graph-based segmentation algorithm [23]. It is

known to be one of the best performing algorithms [24]. The segmentation is based

on a predicate for measuring the evidence for a boundary between two regions and

is computationally efficient ( O(n log n) time for n image pixels) and thus can be run

at video rates in practice. In this algorithm, the number and size of the segments

generated depend on three parameters: smoothing factor σ, merging threshold k and

minimum segment size δ. The parameter σ is associated with the Gaussian filter that

is used to smooth the image as to compensate for digitization artifacts. In practice,

σ ∼= 0.7−0.8 has been observed to remove such artifacts without producing any visible

change in the image. The parameter k sets a scale of observation, in that a larger
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k causes a preference for larger segments. Note, however, that k is not a minimum

segment size. Smaller segments are allowed when there is a sufficiently large intensity

difference between neighboring segments. Finally, segments having size smaller than δ

are pruned out. These parameters are carefully tuned as to have segments that are as

large and few as possible while retaining their consistency. They are set as σ = 0.7,

k = 150 and δ = 1000.

2.5. Region Adjacency Graphs

The next stage is forming the RAG of the incoming visual data (image) at each

base point xk. The segmented regions and their relationships are represented by the

nodes and the edges of a region adjacency graph Gk. Each RAG is an attributed

graph that consists of Gk = (N k,E k,Ak) where N k is the set of nodes, E k is the

edge set and Ak is the attribute set that contains attributes related to vertices Nk
i and

Ek
ij. Each segment Ski ∈ Sk is associated with a node Nk

i . As such, the cardinality

fo N k is nk - namely the number of segments as defined in the previous section. If

two segments Ski and Skj have common borders, then an edge relation Ek
ij between

the respective nodes Nk
i and Nk

j exists. Each node Nk
i is associated with a node

signature s(Nk
i ). The node signature s(Nk

i ) is a vector of varying dimension that

encodes node and edge attributes. Node attributes are the centroid (s1(Nk
i ) ∈ R), color

(s2(Nk
i ) ∈ R) and radius (s3(Nk

i ) ∈ R) of each node. They are determined based on the

respective segment. Edge attributes (s4(Nk
i , N

k
j ) ∈ R) are set as inversely proportional

to mean color difference between two segments Ski and Skj . The top three images in

Figure 2.1 illustrate RAG construction. For visualization purposes, the position, color

and radius of nodes represent the center of mass, mean color and total area of segments

respectively.

2.6. RAG Matching and Node Existence Matrix

The second stage is to match a newly formed RAG Gk with preceding RAGs

Gl, l < k that are associated with the previous base points within a window of size
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[8]

[x,y]
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[x,y]

[r,g,b]

[area]

Figure 2.3. Matching two RAGs.

τw. This enables the robot to identify nodes (segments) that have appeared previously

as well as determining newly appearing segments. Their labels can then be assigned

accordingly. The graph matching algorithm is a modified version of matching based

on node signatures [25]. As such, the distances between every pair of nodes of Gk and

Gl can be computed. Let Ckl be the corresponding distance matrix with elements Ckl
ij

defined based on weighted Manhattan distance between the node signatures as:

Ckl
ij =

∥∥s(Nk
i )− s(N l

j)
∥∥
w

(2.1)

The weight parameter vector w =
[
w1 w2 w3 w4

]T
affects how the different node

attributes weigh in. Their values are set manually and remain unchanged throughout

the robot’s operation. For instance, increasing the position weight w1 may increase the

accuracy for steady scenes however it degrades matching score in dynamic scenes. The

color weight w2 and area weight w3 are also affected by the nature of segmentation.

In coarse segmentation, segments are likely to enclose distinct objects. In addition,

illumination and shading are also quite influential as expected. Due to these reasons

color weight parameter is chosen relatively small. On the other hand, the area weight

w3 is relatively larger since prominent objects are likely to be larger in size.

The distance matrix Ckl is used as the basis for RAG matching. We use the

simple Hungarian algorithm [26]. The resulting permutation πkl defines one-to-one

optimal matching between the nodes of two RAGs. However, in practice, some of

these assignments may lead to wrong matches with high costs. In order to minimize
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such cases, only assignments πkl(i) with matching cost Ckl
iπkl(i)

less than the segment

matching threshold τm are considered to be valid matches:

N̂ k(l) =
{
i ∈ N k | Ckl

iπkl(i) < τm

}
(2.2)

Let the cardinality of N̂ k be denoted by n̂kl. The parameter τm is set manually de-

pending on predefined correct and false matches. The example in Figure 2.3 shows

the matching of two RAGs. While both consist of four nodes, the nodes differ in their

attributes. It is observed that only three of the nodes are matched.

Next, we define the distance between two RAGs Gk and Gl as follows:

γ(Gk, Gl) =
1

n̂kl

∑
i∈N̂ k

Ckl
iπkl(i) + c

∣∣nk − nl∣∣ (2.3)

The first term is simply the average of the cost of matching while the second term

penalizes if the number of nodes differs as weighted by the parameter c ∈ R>0. The

parameter is defined to be cost value per node - namely c = 1
nk

∑
i∈N̂ k

Ckl
iπkl(i)

. The result

Base points

5 10 15 20

N
o
d
e
 #

10

20

30

40

Figure 2.4. Node existence matrix. (10th and 20th nodes are shown in red)

of the matching for each RAG across the base points K is maintained as a dynamic

matrix M with integer valued segment index entries - referred to as node existence
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matrix. The matrix entry Mki will be equal to j if the node Nk
j is matched to the

segment Nk−1
i that has appeared in the previous RAG. In case of no match with the

previous entry, the search can be extended further to look for possible matches in the

last τw base points. Otherwise, the node is added as a new y-axis entry. As such,

nodes and thus segments can be tracked even after a short disappearance. The node

existence matrix evolves as the robot navigates. Hence, it enables the tracking of the

nodes throughout previous RAGs up to current. In the example of Figure 2.4, non-zero

entries are shown in black and correspond to the matched segments. It is observed that

node#10 has appeared throughout whole sequence. This is in contrast to node#20 that

first appeared in the 3rd base point, disappeared in the 10th and then appeared again.

2.7. Place Detection

The partitioning is an iterative process as summarized in Figure 2.5. It is guided

by two assumptions: The first is that contents of consecutive base points taken from

a particular place will be coherent which implies that the associated RAGs will be

similar. The second is that different places will be divided by transition regions which

are characterized by high incoherency. As such, each detected place is defined by a

maximal set of base points that have a coherent RAG structure.

The coherency ϕk of each RAG Gk measures the number of emerging and disap-

pearing nodes within a sliding window of extension τw in the node existence matrix. It

considers the segments appearing in the last τw RAGs:

ϕk =
k∑

l=k−τw

|nl|∑
i=1

ρli(a
l
i + bli) (2.4)
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where

ali =

1 if Mli > 0, Ml−1,i = 0

0 otherwise

(2.5)

bli =

1 if Mli = 0,Ml−1,i > 0

0 otherwise

(2.6)

ρli ∝ σ(s1(N l
i ))
−1 + s3(N i

i ) +
k∑

l=k−τw

ali (2.7)

Each node is weighted by ρli depending on its positional stability σ(s1(Ni)), area

s3(Ni) and continuance across consecutive base points as measured by the last term

in Equation 2.7. The weights are updated accordingly at each base point. The values

of sliding window extension τw and place detection threshold τn and are set manually

depending on the frame rate, video resolution and segmentation parameters. If the

frame rate is high, these parameters are tend to be high in order to encode enough

spatial information from the environment. For example, if a data set that is acquired

indoors with 50cm between consecutive base points, the parameter τw is set in the

range 20-30 and τn is set in the range 5-10 respectively. For the real robot experiments

with frame rate of 15 frames per meter, τw and τn are set as 50 and 10 respectively. In

future, we plan to develop an approach that will consider their automatic adaptation

based on the incoming visual data.

Next

Location

Is

Coherent?

Transition

Filter

>τn

Place

Filter

>τn

Place

Detected

Transition

Detected

Temporal

Window

τw
Y

Y

N

N

N

Y
Construct

SSG

Figure 2.5. Place detection methodology.
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The coherency score ϕk is used in deciding whether to start a new place detection,

to continue with it or to end the current detection. A new place detection is initiated

if coherency score is greater than coherency threshold τc consecutively τn times while

the current place detection ends if it is below the threshold τn times. Otherwise the

current detection continues. Base points in which there is no detection under progress

are referred to as transition regions. Because the coherency score varies ϕk between

[0,1] the parameter τc is set as 0.5.

2.8. Place Representation and Segments Summary Graphs

While a place is being detected, the incoming appearances are encoded by a set

of descriptors. We use two types of descriptors: Segments Summary Graphs (SSG)

and Bubble Descriptors (BD). Place descriptors evolve in time and are calculated

incrementally as the robot navigates to new base points.

A SSG is an intermediate level descriptor that encodes the coherent nodes and

edges observed in the place. The content of the SSG descriptor is constructed based

on the spatio-temporal properties of the nodes and the edges as inferred from the asso-

ciated node existence matrix. As explained in the previous section, the node existence

matrix stores all the nodes with their spatial properties such as a position, area and

edge relations as well as with their temporal properties such as when they are appeared

and disappeared. In order to determine which nodes and edges are to be included, each

coherent region in the node existence matrix is considered and the nodes and edges

which appear longer than τp percent of the associated based points of that place are

selected as the candidate summarizing segments. Furthermore, segments with the area

smaller than τa are filtered out. The τa value is determined based on acceptable seg-

ment size and is usually set as 5% of the total image size. Finally, the selected nodes

and edges associated with the detected place Dm ∈ D is represented on graph referred

to as Segments Summary Graphs. The similarity of two detected places m and n is
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based on their SSG similarity:

γS(m,n) = γ(Gm,Gn) (2.8)

Bubble Space Descriptors2 (BD) are hybrid descriptors. Previous work has shown

its comparative advantages to other representations such as preserving the relative S2

geometry of visual features, being rotationally invariant and incorporating any number

of observations. However, the proposed model is in no way dependent of this particular

choice and thus can be used with any other kinds of descriptors. Similar to SSG

descriptors, each detected place Dm is represented by the corresponding set of BD

descriptors I(xj), j ∈ Dm. The mean descriptor Īm is defined as:

Īm =
1

|Dm|
∑
j∈Dm

I(xj) (2.9)

The similarity of two places based on their similarity is measured by γ(N,N ′):

γB(m,n) = |Īm − Īn| (2.10)

2.9. Experimental Results

In this section we report our experimental results. First, the proposed approach

is evaluated in the context of video summarization problems - including a comparative

study on the Open Video Project dataset [27]. Next, we consider place detection using

benchmark datasets. Finally, we consider real-time application with a mobile robot.

2For the interested reader, they are explained briefly in Appendix ‘Bubble space’.
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2.9.1. Video Summarization Results

In this section, we compare the place detection performance of proposed ap-

proach SSG with previous approaches that have been primarily proposed for video

summarization. In particular, we consider OVP [27], STIMO [28], VSUMM [29] and

OnMSR [19]. The comparison is done using the Open Video Project dataset [27] using

results as presented in [19]. The following points need to be noted: First, the evalua-

tion is based on manual annotation of places by a human user (US). Second, differing

from the proposed approach, each detected place is not encoded by a SSG. Rather, it

is shown by a selected key frame. In order to be comparable, we select the visual data

associated with the most coherent RAG in each detected place. For example, for the

fifth video in this dataset, the obtained keyframes are as shown in Figure 2.6. It is

observed the number of places detected by the first two methods are rather short in

comparison to user detected places. As such, different places are merged and seen as

one distinct place. On the other hand, the places detected in our approach together

with VSUMM and OnMSR approaches are closest to those manually obtained. We

then evaluate place detection performance based on three metrics including precision,

recall and F-score as defined in [19]:

Precision =
nmAS
nAS

Recall =
nmAS
nUS

(2.11)

F-score =
2× Precision× Recall

Precision + Recall
(2.12)

Here, nmAS is the number of keyframes associated with each detected place that

are visually similar with those of manual detection, nAS is the total number of places

detected and nUS is the total number of manually detected places. Two images are

visually similar iff the visual content is similar as determined by manual inspection

and their image index difference is at most 60 frames. Precision measures how well the
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detected places are in agreement with those that are manually annotated. On the other

hand, recall measures how much of manually detected places are covered. F-score is an

effective metric that balances the precision and the recall scores. Places are detected

reliably if all distinct places (as specified by the user) are all detected as compactly as

possible. The results are presented in Table 2.1. As expected, the first two methods

perform the worst. The other methods vary in the performance. For example, while

OnMSR has the best precision performance, VSUMM is better in regards to recall.

Finally, our proposed approach SSG has both highest precision and near-highest recall

rates. As such, its F-score is the highest.

Table 2.1. Comparative place detection performances.

Algorithms Precision (%) Recall (%) F-score (%)

OVP 43 64 51.4

DT 47 50 48.5

STIMO 39 65 48.8

VSUMM 42 77 54.4

OnMSR 50 66 56.9

SSG 56 75.9 64.4

2.9.2. Place Detection Results

Experiments are done using benchmark data from the indoor Freiburg (Fr), Saar-

brucken (Sa) and Ljubljana(Lj) sites under cloudy illumination and outdoor New Col-

lege (NC) site. In RAG matching, the weights vector is set as w =
[

0.8 0.5 0.3 0.1
]

and τm = 0.05. As such, the position and area similarity of segments are relatively

weighted more in comparison to color and edge attributes. Finally, for the experiments

on data sets, the parameter τw is set in the range 20-30 and τn is set in the range 5-10

respectively. For the real robot experiments, frame rate is 15 frames per meter and

respective values of τw and τn are selected as 50 and 10.

The Fr site is associated with perspective camera data from 1911 base points

acquired from a path of 40m. The robot detects 7 places as as seen in Figure 2.7(a). It
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is observed that the robot is able to detect physically separated places (i.e. by door)

as distinct places. Sample appearances from each detected place and the comparison

of these places with those obtained via manual annotation are also shown as seen in

Figure 2.7(b). Interestingly, some of the transition regions are wrongly found to be a

part of detected place. Closer inspection reveals that this occurs because the separating

walls or doors are transparent so that the robot sees the other place. Furthermore, we

also observe that an indoor spatial unit may be detected as multiple places - depending

on robot’s trajectory and motion. For example, two distinct places are detected as the

robot enters a room and turns in the room to exit it. A similar case occurs if the

robot’s camera moves abruptly in a room so that coherency of the visual contents is

lost. The SSG of each detected place is as shown in the same figure. It is observed

that the number of prevailing segments in each detected place is at most 10. These

segments correspond to the continously observed regions such as floor, ceiling and walls

as well as corresponds to contexual objects such as windows, chairs and doors which

can only be observed in particular places.

In the NC site, the robot travels along a path of 550m and collects visual data from

a perspective camera from 1800 base points. Let it be noted that places in outdoors

settings may not obvious even to the human users - as scene content may change

gradually. In other words, places are not always separated physically by transition

regions. The robot is able to detect 13 places as shown in Figure 2.8(a). Sample

appearances from each place and the comparison of these places with those obtained

via manual annotation are also shown as seen in Figure 2.8(b). It is observed that

passage areas such as gates are detected correctly. For example, a gate separates 1st

and 2nd places. A similar situation holds for 3rd and 4th places. Furthermore, street

corners are detected as transition region due to the rotation of the robot’s camera.

For example, this is the case for places 8 and 9. Similarly, the robot detects places

11 and 12 distinctly - even if the appearance change is slow. The resulting SSGs are

also shown in the same figure. Close inspection reveals that the encoded content does

indeed capture the appearances from that place. For example, SSGs associated with

6th and 7th places are observed to have as one big dark and a small white segment.
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This is quite expected as the respective appearances are nearly dark with sky showing.

On the hand, SSGs of 11th and 13th places contain a couple of segments that encode

the scene entities such as the sky, vegetation or road.

(a) SSG based detected places in Fr site as numbered on the map

21 3 5 64 7 8 9 10
11

12 13

14

15 16 17

18

(b) SSG based detected places

(c) BD based detected places

Figure 2.9. Comparative evolutions of coherency in Fr site. Detection is based on

coherency score in SSG method. In BD based approach, red triangles indicates

uninformative and black circles shows frames with dissimilarity score greater than the

threshold.

Next, we compare the places as detected by our approach (SSG) with a previously

introduced place detection approach (BD) [3]. In this approach, place detection is done

in a similar manner using a dissimilarity score. Nevertheless, there are some differences:

appearances are compared using the bubble descriptors [30] and sensory data reliability

is ensured via checking for informativeness.

First, we present detailed comparative for a longer path in the Fr site in Fig-

ure 2.9. It is observed that there are more places detected in the SSG approach. This

is attributed to using segments - rather than a hybrid descriptor. As such, sudden

changes in coherency score signal transition regions more reliably. It is observed that
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(a) Fr Site - SSG (b) Fr Site - BD

Figure 2.10. Comparative place detection results for Fr site

(a) Lj Site - SSG (b) Lj Site - BD

Figure 2.11. Comparative place detection results for Lj site
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(a) Sa Site - SSG

(b) Sa Site - BD

Figure 2.12. Comparative place detection results for Sa site
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coherency drops sharply and remains low during the transitions. This is in contrast

to BD approach where the dissimilarity score is relatively more unstable(i.e. there are

short term peaks only during transitions) and the exact value of the threshold is hard

to be determined. Moreover, some transition regions couldn’t be detected, such as in

frames 1000 and 1500, because the the dissimilarity is low and cannot be observed

through enough number of frames. Next, we consider extended routes in the Fr, Lj

and Sa sites.

We consider extended routes in the Fr, Lj and Sa sites - again under cloudy illu-

mination. It should be noted that the odometric data that is used only for presentation

purposes is not reliable along some parts of these paths. The deviation is most evident

in the Lj site. The results are presented in Figure 2.10, 2.11 and 2.12. As seen in

Figure 2.10(a) and 2.10(b), there are 23 detected places with SSG while this number

is 17 for BD. When the robot enters room R1, it does not detect the transition in

both cases. However, the transition is detected with SSG as the robot exits the room.

The transisition is detected with both of the approaches at the entrance of room R2.

However using BD room R2 and a part of the corridor C1 are merged as one place

(place 1). In contrast, with SSG the room R2 (place 3), and corridor C1 (place 4) are

detected as distinct places. SSG detects room R3 as two places (place 5 and 7) whereas

BD detects as one place (place 2). However the content changes relatively fast due to

rotation of the robot in this room and it is expected to be detected as two distinct

places. Room R4 and R5 are detected as distinct places, (place 8 and 9), respectively

in SSG approach. BD approach also detects two places but the transition between R4

and R5 is not detected at the correct location. Similarly, the entrance of room R6 is

detected by SSG but not detected by BD. Furthermore, corridor is merged to room

R6. Corridor C2 is detected in both of the approaches; however it is separated into

two in SSG because of the door appeared on the way. As the appearances coming

from stairs S1 and bathroom B1 areas are rather complicated, they are detected as

transition regions most of the time.
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Detected places in Lj site are illustrated in Figure 2.11(a) and 2.11(b), respec-

tively. In this case, there are 25 detected places with SSG while this number is 14 for

BD. We notice that the number of places detected in corridors C2, C3 and C4 differ.

This is due to doors that appear due to the zig-zag type of motion. In hallways H1

and H2, we obtain similar detection results. In room R2, transition is detected by both

of the approaches but the room is split into three places in SSG whereas BD detects

most of the region as transition. We also obtained similar detection in regions C4 and

R3. Similarly, SSG approach detects more places in Sa site as shown in Figure 2.12(a)

and 2.12(b), respectively. Transitions between corridor C1 and H1 are detected by

SSG but BD merges two regions. Corridors are detected reliably in two approaches.

In room R3, there are two sub regions and they are detected as distinct places (place

12-15) in SSG however BD detects whole room as one place (place 8). In summary,

it is observed places are detected more reliably as places can be differentiated even if

their transition is gradual. As such, SSG approach is also likely to generate longer

transition regions - if the coherencies of the respective RAGs are low. In addition, the

robot is able to simultaneously generate the SSG which describes the detected places

based on the prevailing segments and their spatial relations.

2.9.3. Experiments with Jaguar Robot

The last set of experiments are done with our Jaguar robot shown in Figure 2.13.

As visual sensing (both the hardware and the acquisition geometry) is different from the

first set of experiments, the parameters are adjusted accordingly as follows: τw = 50,

τn = 10 and τm = 0.01. In the first tour, the robot is teleoperated to follow a path of

approximately 450 meters as shown in Figure 2.14(a) and collects data at 7484 base

points. Using the proposed approach, it detects 28 places in total as shown in the map.

Detected places are depicted in a linearized format for comparison purposes as shown in

Figure 2.14(b). The tour starts from indoor corridor area as depicted in a green dot and

the whole area is detected as one place. Then, the robot visits vegetation area (place

3-10) passing through a car parking area. It is observed that, most of the transitions

(as illustrated in blue) in the vegetation area occured during passing through corners
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and the remaining areas are detected as one place (places 3, 7 and 10). Next, the

robot travels through a car parking area and the whole region is detected correctly

as one place (place 11). Then, the robot follows a path that contains vegetation and

buildings and detects two places in total (place 12 and 13). At the end of the path, the

robot takes a tour around the hall entrance and detects two places (place 14 and 15) as

expected. In the return path, the robot detects two places in the same path. However,

in the car parking area, the robot detects three places (places 20-23) in contary to the

first time visit where it was detected as one place. This is probably due to zig-zag type

motion of the robot in the return part. Then, the robot enters to the building again.

Inside the building, three places are detected where the first two correspond to the

entrance and corridor and the last corresponds to the laboratory area. In most of the

cases, it is observed that the transition regions are detected accurately. Although most

of the detected transitions are the ones which originates from the rotational motion of

the robot, gradual transitions are also detected in most of the cases.

In the second tour, the robot is again teleoperated to follow a similar path at

another time. The robot collected data at 8077 basepoints and detected 30 places in

total as shown in Figure 2.14(c). It is observed that most of the detected places overlap

with the first tour and the total number of detected places are very close. However, the

robot detected relatively larger number of places in some regions, especially between

places 17-24 due to dynamical factors such as walking people and moving cars observed

along the path.

The computational performance of the robot is also analyzed. The per frame

processing times vary depending on the spatial cognition activities of the robot and

the size of the place memory. In the place discovery mode, the processing time is found

to be in the range of 250-400 ms as shown in Figure 2.15. If the extent is infinite, then

processing time would increase as seen in this figure. It should be noted that our

proposed approach is designed to be scalable for long life operation and per frame

processing times is expected to be constant and upper bounded. The slight increase in

the processing time is mainly due to two reasons: First, although only the last τw base
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points are processed at each time, we store all past node information in the memory for

debugging purposes and that causes memory read and copy operations to take longer

time. Second, graphical user interface is used for debugging purposes only and it is not

optimized.

Figure 2.13. Jaguar robot

2.10. Conclusion

In this chapter, we introduce a novel approach to appearance based place detec-

tion based on the prevailing segments. Our motivation is that segments encode the

scene contents at an intermediate level of representation while being relatively sta-

ble under a wider range of viewpoints and dynamical changes - differing from global,

local or hybrid descriptors. Each incoming appearance is first segmented and larger

segments along their spatial relations are represented by a regions adjacency graph.

Places are detected via tracking the coherency of region adjacency graphs across the

incoming appearance data. As such, place detection can be done more reliably while

simultaneously generating a segments summary graph for each place that can be used

in ensuing the semantic analysis of the place. It is observed places are detected as

places can be differentiated even if their transition is gradual. The possible extension
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(a) SSG based detected places in North Campus site as numbered on the map

0 1000 60003000 500040002000 7000

1 13121182 4 2019161514 24 2822

(b) Detected places in the first tour

1 16151072 3 2524232217 2930271412

0 1000 60003000 500040002000 7000 8000

(c) Detected places in the second tour

Figure 2.14. Places detected by the Jaguar robot in North Campus site.
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Figure 2.15. Performance analysis: Processing time per frame.

to current approach would be to use SSG representation for looking at the scene in

detail and recognizing the objects contained therein.



29

3. INTEGRATION WITH PLACE MEMORY

3.1. Introduction

Once a place is detected as Dm with m ∈ D, the robot attempts to associate it to

past experience it via relating to its long-term place memory. Place memory retains the

knowledge of places. The purpose of the memory association is to decide if the detected

place is one of the previously visited places. If the association is narrowed down to a

single place, then it is referred to as maximal association. Such an association implies

that the robot has maximal familiarity with its surroundings.

3.2. Place Memory

Place memory is built using previously proposed model [31]. Suppose that the

robot has learned p∗ places – namely P = {1, ..., p∗}. Initially, the set of learned places

P = ∅ with p∗ = 0. Each place p ∈ P is defined by appearance data collected from a

multitude of base points xj(p) as determined in place detection.

The respective appearance data are then encoded by a set of descriptors which

are then retained in the place memory. We use two types of descriptors as explained

in Section 2.8: Segments Summary Graphs (SSG) and Bubble Descriptors (BD). Place

descriptors evolve in time and are calculated incrementally as the robot navigates to

new base points.

The memory is organized in a tree hierarchy - based on previous work [32]. There

are two aspects of the hierarchy. First, its structure is defined by a nested sequence of

partitions of P in the appearance space. Each node N is associated with a subset of

bubble descriptors C(N) and SSGs G(N) that are associated with a cluster of places

P(N) ⊂ P . If N is a root note, then let C ≡ C(N). If N is a terminal node, then the

set C(N) consists of only the descriptors associated and P(N) = {p}. Edges between
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two different nodes N and N ′ are constructed based on the proximity of their centroids

as measured by the distance function γ.

γ(N,N ′) =
∣∣Ī(N)− I(N ′)

∣∣ (3.1)

where I(N) is the mean of the bubble descriptors of places associated with node N as:

I(N) =
1

|P (N)|
∑

p∈P (N)

Īp (3.2)

Second, the structure evolves based on the hierarchical single link clustering method

SLINK [33], In this method, a place is inserted into hierarchy based on the pairwise

similarity score in the appearance space as measured by its distance to the places

associated with its nodes.

P1 P2 P3 P4 P5 P6 P* P7

h(N)

0

1

N1

N2

N3
N5

N4

N6

N7

τf

γ
 (
N

, 
N
')

Figure 3.1. Place memory and association

The hierarchical organization enables the robot to efficiently relate to its existing

knowledge. As such, it tries to assign each detected place a place β(Dm) ∈ P from

its place memory. This is because the robot can associate an incoming place with its

memory via traversing down the hierarchy [16]. Here, we propose novel approach in



31

which the respective SSGs are used in the decision process as well. The main steps of

the reasoning are shown in Figure 3.2. First, the detected place Dm is first inserted

into the place memory as a new place P ∗ temporarily. Let the corresponding node be

indicated by N(P ∗). Next, the largest subtree of the memory hierarchy that has at

most τf height while containing P ∗ as its terminal node is determined. Let Ωm denote

the terminal nodes of this subtree. For example, referring to Figure 3.1, if we assume

that P ∗ is the node that is temporarily inserted, the subtree with distance less than τf

will be that with N3 as its root node as shown. For example, in Figure 3.2, consider a

newly detected place (indicated by light green). If it is inserted as shown, the candidate

places Ωm that are familiar with it would be the places as indicated by the dark green.

The last step is to determine β(Dm) from the set Ω. This is based on a hybrid decision

criteria as given in Equation 3.3. It considers the matching of both hybrid descriptors

as well as their SSG representations as:

β(Dm) =

 ∈ argminN ′∈Ωm γ(N(P ∗), N ′) if N̂m(N ′) > τs

0 otherwise
(3.3)

where N̂m(N ′) denotes the number of matching nodes (segments) between the SSG

of the detected place Dm and those of terminal node N ′. If β(Dm) > 0, then the

detected place is recognized as the place associated with respective terminal node and

the associated place descriptor is inserted into C(Nr) while the remaining place memory

remains unchanged. Otherwise, the place is not recognized either because of having an

empty candidate set or not satisfying the hybrid decision criteria. The place label of

the detected but unrecognized place is set as β(Dm) = p∗+1. In this case, the location

of the temporarily inserted place node is made permanent and hence the place memory

is updated.

3.3. Experimental Results

In this section, we present experimental results as follows: First, we study how

the place memory is formed. Second, memory association performance is investigated.
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Figure 3.2. Place memory association.

3.3.1. Place Memory

In this section, we evaluate place memories constructed based on the detected

places in the COLD dataset under cloudy illumination. These are manually given two

labels based on their functionality (office, corridor, hall and bathroom) and site (Fr, Lj

and Sa). The place memories differ in the type of descriptors used: SSG and BD. The

effectiveness of the resulting memories is evaluated by a human considering knowledge

organization and memory association.

First, evaluate the resulting organization with respect to their labels. We expect

places having similar labels to be close together in the place memory. For this, SSG and

BD descriptors are projected onto 2D plane using a multi dimensional scaling (MDS)

method. The results are shown in Figure 3.3 with detected places labelled according to

their function labels. For example, bathroom category is well separated from the other

categories with the BD while that is not the case with SSG. While the descriptors of

places having either room or corridor labels are close with both of the types, BD’s are

further whereas that is not the case for SSG. A similar situation holds for descriptors of

places having hall label. In Lj site, SSG based descriptors of three categories as shown

in Figure 3.3(f) are scattered homogeneously without showing any apparent clustering

pattern. This is in contrast to BD case in Figure 3.3(e) where the hall category is
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separable from the room category up to a certain degree. These observations lead

us to think that a global such as a bubble descriptor is more suitable for learning.

Actually, this is expected since a global descriptor encodes the whole appearance and

thus is able to distinguish it from appearances from other places much better. As such,

the place memory is built using bubble descriptors.

Next, we proceed to verify this claim. For this, we compare place memories whose

knowledge includes appearances from the detected places that are encoded internally as

either SSG or BD - as given in Figure 3.4. The manually given two labels of the terminal

nodes are indicated by colored triangle for the function (Red=Office, Orange=Corridor,

Blue=Hall, Turquoise=Bathroom) and colored circle for the site (Blue=Fr, Black=Sa,

Orange=Lj). The number of the natural clusters, homogeneity among clusters and the

accordance with the ground-truth categories are the criteria used in the evaluation.

For example, the place memories that store the knowledge of Fr site are shown in

Figure 3.4(b) and 3.4(a) respectively. It is observed that the BD based place memory

contains three natural clusters which is in accordance with the number of categories

in the Fr site. The first cluster is formed at the highest level and contains places from

bathroom category only. The second and the third clusters are formed at the second

level. The second cluster mostly contains places corresponding to the room category

while the third cluster contains places from the corridor only. Place 13(bathroom)

and 16(corridor) are wrongly inserted into the second cluster however the familiarity

degree of them within cluster is relatively less. Similarly, SSG based place memory

contains three natural clusters. However, the first cluster corresponding to the bath-

room category has only one member. The second and the third clusters are relatively

less homogeneous. Two places related to the bathroom category are inserted into the

second cluster however familiarity degree is low within the group which indicates that

they are distinct from the rest of the cluster. Furthermore, the second cluster contains

places from the room and corridor categories but they are grouped within their cate-

gory. The third cluster mostly contain places from the corridor. Place 6 and 13 are

outliers and wrongly inserted into this cluster. Place memories of Sa site are given in
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(b) Descriptor: SSG, Site: Fr
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(c) Descriptor: BD, Site: Sa
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(d) Descriptor: SSG, Site: Sa
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(e) Descriptor: BD, Site: Lj
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(f) Descriptor: SSG, Site: Lj

Figure 3.3. Planar projections of place descriptors using MDS method. Place

categories are indicated by colors: Room (red) , Corridor (orange), hall (blue),

bathroom (turquoise).
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Figure 3.4(d) and 3.4(c). In BD based memory, there are two four natural clusters.

The first cluster is formed at the highest level and contains two places from the room

and corridor categories, respectively. A closer inspection reveals that these places are

both visually and physically close to each other. The second cluster is formed next

and it contains places mostly from the room category. Third cluster contains places

from the corridor category only. The last cluster contains places from the hall category.

The place 8 is wrongly inserted into this cluster and it should be placed into the sec-

ond cluster. Similarly, there are four natural clusters in SSG based memory however

cluster contents do not share any similarity with the BD based memory. Furthermore,

resulting hierarchy is not in accordance with the content of the clusters. Lastly, places

memories corresponding to Lj site are given in Figure 3.4(f) and 3.4(e). It is observed

that place 8 is highly dissimilar to the rest of the memory and placed as a single clus-

ter. The rest of the memory is separated into three natural clusters. The first cluster

mostly contains places from the hall category. The second cluster contains places de-

tected from the corridor only. The cluster three is divided into two: the first cluster

contains places from the corridor whereas second cluster mostly contains places from

the hall. Contents of the places 27 and 14 are not related to the cluster and the famil-

iarities within the group are low as expected. SSG based memory of Lj site does not

reveal any apparent natural clustering pattern however some places from the corridor

and hall categories are grouped in respective clusters on the right half of the cue tree.

As validated by the results of the second set of experiments, using BD descriptors in

comparing the similarity of places offers a better clustering performance and hence the

place memory reveals the ground-truth hierarchy more accurately.

3.3.2. Place Association

In the place association experiments, the robot revisits some of the visited sites

once again and we evaluate the association performance. While robot travels through

visited places, the exact path as well as the illumination differ. Furthermore, at some

sites, the robot visits some places for the first time. Therefore, the total number of

detected places as well as the extent of the places will not be exactly the same with
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(f) Descriptor: BD, Site: Lj

Figure 3.4. Place memories. Numbers in circles indicate detected place indices.
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their counterparts in the first tour. The place memory is constructed using BD. The

experiments are repeated using three alternative memory association methods: BD,

SSG and Hybrid methods with varying association cost threshold τf ∈ {0, 1}. We

evaluate performance through three means. First, we consider how the place memory

evolves. If the detected place is maximally associated, it will be placed just below to the

respective node instead of inserting it as a new place node. In this case, its correctness

is verified manually based on its visual as well as locational similarity. Second, we

compute maximal association recall-precision rates. Finally, we use a ‘familiarity’ score

to retrieve a set of candidate places among which will be the current place. This is

because due to dynamic changes in the scene appearance, while maximal association

may not be attained, familiarity may be possible. In this case, we find a set of candidate

places based on a familiarity score instead of outputting just one exact match.

1

4

5

6

7

9

8

3

2

2

Fr - First Tour Fr - Second TourFr - Rerefence Route

Figure 3.5. Place detection in Fr site.

Table 3.1. Correspondence of detected places in the second tour with those of first

tour in Fr site.

Tour # Detected place index

2 0 1 3 4 7 8 9 10 14 15 16 17 18 19 21

1 0 1 2 3 5 6 7 8 9,10,11 13 14 15 16 17 18
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In the first part of the experiments, the robot revisits only one of the previously

visited sites. After revisiting the Fr site, the robot detects 23 places as shown in

Figure 3.5. It is observed that 15 of these places coincide with those previously revisited

as given in Table 3.1 and should be associated as such. The place memory evolves as

shown in Figure 3.6(a). It is observed that only few places are maximally associated.

For example, detected places 0, 3 and 4 from the second tour (light blue nodes) are

maximally associated with the detected places 0, 2 and 3 (dark blue nodes) of first

tour. Interestingly, it is observed that spatially and visually similar places are grouped

closer in the memory. In the Fr site, detected places in the first and second visit are

colored in dark and light blue, respectively and they are clustered together in several

locations in the memory. For example, places 7 and 13 from the first visit are inserted

next to their counterpart places 9 and 15 from the second visit, respectively. In some

other cases, places are inserted into the memory in such a way that they have the same

parent at the second level. Places 1, 5, 8 and 14 from the first visit and places 1, 7,

10 and 16 from the second visit are examples of such a case. These results show that

even if maximal association does not occur, the detected place will be inserted into

very close neighborhood of its counterpart in the memory. The recall precision curves

are given in Figure 3.10(a). It is observed that maximal association rates are much

better when BD or hybrid method is used. The maximal association performances of

BD and hybrid method are comparable. While the hybrid method can achieve higher

precision at medium recall rates (i.e. 70%) BD method can have higher recall rates.

When the robot operates at full precision, we can obtain recall rate of 20%, at most.

That means only 3 of 15 places are maximally associated while the remaining 12 places

are not hence they are inserted as a new place into the place memory. Table 3.4 shows

the association rates when a familiarity metric is used. In Fr site, the candidates are

observed to contain the place to be recognized in 82% of the cases and the number of

candidates is at max 4 in any case. These results show that familiarity metric can be

utilized as an auxiliary method in memory association. For example, it can provide a

prior in terms of a set of candidates to limit the search space for the final decision.
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Figure 3.7. Place detection in Sa site.

Table 3.2. Correspondence of detected places in the second tour with those of first

tour in Sa site.

Tour # Detected place index

2 0 1,2 3 4 5 6 7 8 10 11

1 0 1 2 3,4 5 6 7 8 9 10

When the robot revisits Sa site, it detects 17 places as seen in Figure 3.7. It is

noted that 11 of these places have been previously visited as given in Table 3.2. The

place memory evolves as shown in Figure 3.6(b). Detected places in the Sa site are

observed to be spreaded out in clusters across the memory. This is mainly due to two

main reasons: First, place contents are not very characteristic so that already formed

memory can handle insertion of detected places without deforming the shape of the

memory. Second, detected places from the Sa and Lj site share a lot of common visual

content therefore they are grouped together in most of the cases. It is noted that only

one detected place is maximally associated. However, many places such as places 1,

3 and 8 from the first visit and places 2, 4 and 8 from the second visit are inserted

into the immediate neighborhood of their counterpart places. Association rate for the
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Sa site is calculated as 80% which means that places to be recognized are among the

selected candidates in 80% of all test cases. With 100% precision we can obtain recall

rate up to 30% using a hybrid method as shown in Figure 3.10(b). When the precision

becomes around 65%, recall incrases up to 60%. Using BD method, we obtain lower

precision at the same recall rates however maximum recall can go up as much as 90%

at 20% precision. SSG method performs poor in terms of precision at any recall rate.

1

2

3

2

4

5

6

Lj - Second TourLj - Rerefence Route Lj - First Tour

Figure 3.8. Place detection in Lj site.

Table 3.3. Correspondence of detected places in the second tour with those of first

tour in Lj site.

Tour # Detected place index

2 0 1 2 3 4 5 7,8 9,10 12 13 15 17 19,20 21 22 23 24

1 0 1 2 3 4,5 7 8 9 10,11,12,13,14 16 17 19,20,21 23 24 25 27 28

Finally, the robot revisits Lj site and detects 25 places as seen in Figure 3.8. 20

of these coincide with those from the previously visited places as given in Table 3.3.

Detected places from similar locations are grouped together and inserted into very close

neighborhood. For example, places 3 and 17 from the first visit are inserted next to

their counterpart places 3 and 15 from the second visit. Similar to the previous case,

detected places from Sa site and Lj site are located closely to each other as expected.

Association rate is calculated as 74% which is slightly lower compared to other sites.

However, the number of detected places is almost three times of the Sa site and 1.5
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times of Fr site which makes accurate association in Lj site harder to achieve. Neither

of BD or hybrid method can achieve 100% precision rate in this site. The maximum

achievable precision is about 85% with 40% recall using BD based method. SSG method

correctly recognizes one place with 5% recall however precision rate sharply decreases

when the recall rate increased. Interestingly, BD based method can achieve higher

precision compared to the hybrid method in this case. However, detected places in the

revisit tour of Lj site do not overlap mostly with the places from the first visit and

therefore evaluation may not reflect the actual performances for this particular site.

In the second part, the robot revisit all the places and forms a complete memory

of all visited places as shown in Figure 3.9. Two main criteria can be proposed for

checking the success rate of the association of detected places in the memory: First,

relative locations of detected places should not be changed much as the memory ex-

pands. Second, association rates should not decrease much as the number of places

gets larger. In order to check the first criteria, complete memory is compared against

previously formed memories where only one site is revisited in each. Relative locations

and hierarchical relations of the places associated with each site are observed to be

preserved in the complete map, as well. However, hierarchical distances between the

memory clusters are increased due to the expansion of memory. The recall precision

curve is given in Figure 3.10(d). We see that the increase in the total number of places

does not affect its memory association performance much. We can still obtain around

90% precision with 20% recall and 70% precision with 40% recall. These results con-

clude that proposed memory organisation framework is a good candidate for storing

places as well as their hierarchy. Moreover, it is proved that our method is scalable as

the association rates are preserved as the size of the memory increases.

3.3.3. On-Robot Experiments

In these experiments, the Jaguar robot travels though North Campus site as

discussed in Section 2.9.3. It detects 28 and 30 places in the two separate tours as

shown in Figure 2.14(a). The correspondence of detected places from the second tour
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Figure 3.10. Precision-Recall curves after revisiting sites

Table 3.4. Association rates and maximum number of candidates: The place estimate

will be among the candidates with given association rate.

Site Association Rate Max # of candidates

Fr 82% 4

Sa 80% 3

Lj 74% 3
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Table 3.5. Correspondence of detected places in the first and second tours in North

Campus site with Jaguar robot.

Tour # Detected place index

1 0 1 2 3

4

5

7 8

9

10 11 12

13

14 15

16

17

18

19

20 21

22

23

24 26

27

28

2 0 1 2 3

4

5

6 7 9 11

12

13

14

15

16

17

18

21

22

23 24 25 26 27 29 30

with those of the first tour are given in Table 3.5. The place memory after these two

tours is as shown in Figure 3.11. Places that are added after first and the second tours

are indicated in black and red respectively. It is observed that the place memory is first

divided into two main groups which correspond to the indoor and outdoor regions. For

example, black colored places 26-28 and red colored places 2 and 29 are observed to be

indoor places. The second group is further divided into two groups. The first group

contains mostly places from vegatation areas. For example, vegetation area in the first

tour are encoded in the places 4-10 and all of these places are located in the this group

in the memory. On the other hand, places in the second group mostly correspond to

the car parking or buildings area. These results show that places are inserted into

the place memory hierarchically according to their visual contents. Next, maximal

association performances are evaluated. Although maximal association couldn’t be

observed in many cases, it can be easily observed from Figure 3.11 that revisited places

are inserted into very close neighborhood (5 nodes away) of their counterpart places

from the first tour in nearly two-thirds of the cases. Furthermore, several places are

recognized to places from the same tour. This is expected as these places are either

adjacent places or having similar contents.
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Figure 3.11. Place memory after revisiting the North Campus site. Learned places

from first tour are indiated in black while those from the second tour are indicated in

red.

3.4. Conclusion

In this chapter, we consider the coupling of place detection with place memory.

This manifests itself through two mechanisms. First, the knowledge stored in place

memory in regards to each place is determined by the the appearance data belonging

to the respective detected place. In particular, they are stored after being internally

represented using bubble descriptor representation. This is a hybrid representation

that has characteristics of both global and local descriptors. The effects of using

SSG and BD based descriptors are evaluated through a set of experiments. Second,

association with the memory is done considering the currently detected place as it

relates to the place memory with the respective segments summary graph used in the

decision making. A hybrid decision criteria which utilizes both the local content and

global scene information through SSG and BD descriptors, respectively. As such, the

reliability of memory association can be improved.
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4. CONCLUSION

This thesis focuses on appearance-based place detection and its coupling with

place memory. A novel approach to place detection based on coherent segments is

introduced. This is motivated by the fact segments encode scene contents at an in-

termediate level of representation while being relatively stable under a wider range of

viewpoints and dynamical changes - differing from global, local or hybrid descriptors.

Places are detected via tracking the coherency of region adjacency graphs across the

incoming appearance data. As such, place detection can be done more reliably while

simultaneously generating a segments summary graph for each place that can be used

in ensuing the semantic analysis of the place. Following, the coupling of place detection

with place memory is considered. This manifests itself through two mechanisms. First,

the knowledge stored in place memory in regards to each place is determined by the

the appearance data belonging to the respective detected place. In particular, they are

stored after being internally represented using bubble descriptor representation. This

is a hybrid representation that has characteristics of both global and local descriptors.

Second, association with the memory is done considering the currently detected place

as it relates to the place memory with the respective segments summary graph used in

the decision making. As such, the reliability of memory association can be improved.

We are considering two extensions of this work. First, the place detection module

thus developed will be integrated within the topological spatial cognition model that

has been previously developed. As place memory expands, the converted hierarchies

can be utilized in an unsupervised manner to find the natural categories of places.

Second, the resulting segments summary graphs will be used for a higher level semantic

understanding - in particular the recognition of objects within the place.
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31. Erkent, Ö. and I. Bozma, “Place representation in topological maps based on

bubble space”, IEEE International Conference on Robotics and Automation, pp.

3497–3502, IEEE, 2012.
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APPENDIX A: BUBBLE SPACE

(a) Visual data from sample bases in the Fr, Lj , Sa and NC sites.

(b) Corresponding bubble surfaces for each of (color, Cartesian, non-Cartesian and intensity)

features.

Figure A.1. Representation of visual data from sample bases in Fr, Sa, [34] and NC

sites [35].

This section presents a brief summary of bubble space representation for com-

pleteness. The interested reader is referred to [30] for further details. The bubble space

B = X × F is an abstract representation of the robot’s base along with its viewing

directions (pan and tilt) F ⊂ S2 with b ∈ B defined as b = [x f ]T where x ∈ X and

f ∈ F . Bubble surfaces Bi(x, t) : Im(h(x)) × R≥0 → R≥0 are hypothetical spherical
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surfaces surrounding the robot defined as:

Bi(x, t) =


 f

ρi(b, t)

 | ∀f ∈ F and b = [x f ]T

 (A.1)

where the image of a section h – namely Im(h(x)) – is the set of viewing directions

from a given base x with the section h : X → B defined as a continuous map such

that ∀x ∈ X , π(h(x)) = x and π : B → X defined as the projection of b onto X as

π(b) = x. Finally, the function ρi : B × R≥0 → R≥0 is a Riemannian metric that

encodes the observed values of v thi sensory feature. For simplification of notation, the

second argument is omitted whenever time dependency is clear. Each bubble surface

is initialized to be a S2 sphere with radius ρ0 ∈ R≥0 – namely ρi(b, 0) = ρ0. As the

robot looks around, for each viewing direction f ∈ F , it computes each feature value

qi(b, t) ≥ 0. Next, each bubble surface Bi(x, t) is deformed at the viewing direction f

by an amount that depends on the associated sensory feature value qi(b, t) as:

ρi(b, t
+) = qi(b, t) (A.2)

where the superscript t+ denotes time just after t. As this is done for each feature vi ∈ V

where |V| = Nv, a set of Nv bubble surfaces is generated. In the experiments, the robot

computes seven bubble surfaces corresponding to seven visual features (hue, Cartesian,

non-Cartesian and intensity). For the sample scenes as shown in Figure A.1(a), the

bubble surfaces are as shown Figure A.1(b). The intensity bubble surface is used for

checking reliability of sensory data in place detection.

Bubble descriptors are holistic (vector) representations of bubble surfaces. They

are constructed using the double Fourier series representation of bubble surfaces as:
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ρi(b, t) =

H1∑
h1=0

H2∑
h2=0

λh1h2z
T
xi,h1h2

(t)eh1h2(f) (A.3)

If f ∈ F is defined as f = [f1 f2]T , for each (h1, h2), the vector eh1h2(f) ∈ R4

consists of an orthonormal set of trigonometric basis functions as:

eh1h2(f) =


cos(h1f1)cos(h2f2)

sin(h1f1)cos(h2f2)

cos(h1f1)sin(h2f2)

sin(h1f1)sin(h2f2)

 (A.4)

The corresponding vector zxi,h1h2(t) ∈ R4 is defined as:

zxi,h1h2(t) =
1

π2



∫ 2π

0

∫ π
0
ρi(b, t)cos(h1f1)cos(h2f2)df1df2∫ 2π

0

∫ π
0
ρi(b, t)sin(h1f1)cos(h2f2))df1df2∫ 2π

0

∫ π
0
ρi(b, t)cos(h1f1)sin(h2f2))df1df2∫ 2π

0

∫ π
0
ρi(b, t)sin(h1f1)sin(h2f2)df1df2


(A.5)

The parameters λh1h2 are defined as:
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λh1h2 =


1
4

if h1 = 0, h2 = 0

1
2

if h1 > 0, h2 = 0 or h1 = 0, h2 > 0

1 if h1 > 0, h2 > 0

(A.6)

A bubble descriptor I(x, t) ∈ RNI is a NI−dimensional vector with

NI = Nv(H1 + 1)(H2 + 1) defined as:

I(x, t) = [I1,00(x, t), . . . , INv ,H1H2(x, t)]
T (A.7)

where

Ii,h1h2(x, t) = zTxi,h1h2(t)zxi,h1h2(t) (A.8)

Bubble descriptors have been shown to be rotationally invariant with respect to head-

ing changes while being computable in an incremental manner- as new observations are

made. Furthermore, they are flexible integrating visual features since their dimension-

ality are independent of the number of observations. Furthermore, no data association

is required for finding correspondences among observations taken at different times.
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APPENDIX B: SSG SOFTWARE MANUAL

The proposed approach is implemented in C++ along with a GUI. In order to

compile the source codes, C++ compiler, QT, OpenCV and ROS libraries are required.

Up-to-date source codes can be reached via the GitHub account of the ISL. In this

appendix, the developed SSG software is explained in detail. The software includes the

proposed approach as well as some extensions that is helpful in debugging the approach.

In addition, a brief explanation about the classes and functions in the source code is

also provided.

The software is composed of three main screens: Main screen, memory association

screen and parameter tuning screen. Main screen is used to run the algorithm online

and see the immediate results of the place detection. Furthermore, some intermediate

steps that are used in the calculation of the coherency score is shown in the main screen

for debugging purposes. In the memory association screen, the hierarchical structure

that is constructed based on the detected places is depicted. This module enables

you to change the parameters online and see the immediate results on the resulting

hierarchy. Lastly, parameter tuning screen enables you to tune the parameters and to

tweak some additional settings related to GUI. Now, the detailed explanation of each

screen will be given.

The main screen is presented in Figure B.1. There are seven frames. The main

control buttons enable user to start/stop or run step by step the place detection process.

In the first frame (1.a), the current appearance is shown. Next to it, the results of the

graph matching of the last two appearances are given. In the next frame (1.c), SSG of

the last detected place is shown. Below to it, detected places up to current base point

are depicted. Here, black lines indicate the coherency score where the red line is for the

coherency threshold. In the following frame, red regions (1.d) stand for detected places

whereas blue regions (1.e) stand for transition regions. Below to it, node existence

map that enables to track segments temporally across base points. White lines signify
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for segments here. The coherency score is calculated based on the appear/disappear

behavior of these segments. On the right of the main screen, detected places are

projected on the respective map.

1.a Current frame 1.b Graph matching 1.c Prev. SSG

1.c Coherency score 1.d Place 1.e Transition

1.f Node existence map

1.g Map1.e Controls

1.h Place

1.i Transition

Figure B.1. Main screen of Segments Summary Graphs software

The memory hierarchy module screen is given in Figure B.2. There are two

main parts in the screen: the top part is for the control and settings and the bottom

parts is for displaying the resulting hierarchy. This module enables user to set the

recognition method through a drop-down box (2.b) as well as tune the association

parameters through sliders (2.c). The detected places can either be loaded from the

database using a button shown in 2.a or via online detection method. In the bottom,

the resulting hierarchy is displayed where the colors of detected places are hard-coded

in the source code.

The last screen is for tuning the parameters. The parameters and extra setting

can be saved into a text file using the button on the top. At startup default parameters

are loaded from this file. Graph matching parameters (3.a), segmentation parameters

(3.b), place detection parameters (3.c) and coherency parameters (3.d) can be changed

at any time including the run-time however it is advised to keep the parameters same



58

2.c Parameters

2.b Recognition method

2.d Hierarchical tree

2.a Initialize from DB

Figure B.2. Memory association module screen

through the experiment because parameter change would not affect already detected

places. Parameters given in the extra settings (3.e) box for changing the display of the

hierarchical tree.

3.a Graph matching weights

3.b Segmentation parameters

3.c Place detection parameters

3.d Coherency Parameters

3.e Tree draw settings

Figure B.3. Settings and parameters screen

All outputs and settings files are stored in the ‘Output’ folder which is located

in the root. The folder contains settings files, datasets information file, databases, de-

tection and maximal association results etc. Datasets.txt file contains the information

about as available datasets and selection of the active dataset is done via the same

file. It is possible to run multiple datasets consecutively. Parameters for each dataset
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is stored in a separate settings file as located in the output folder. Databases are also

stored in this folder. User can chose either load from already created database, create

its own database based on the new place detection results or not create database at

all. Last but not least, keep in mind that there are also various settings that can

be changed through source code. ‘defs.h’ file contains some definitions that are used

through the code mostly for graphical purposes.

The source code of the software is composed of a number of classes and functions.

Functions such as Hungarian matching, clustering and graph-based segmentation are

used as of-the-shelf algorithms and placed in separate files. The most important classes

and their descriptions are given in Table B.1. For more detailed explanation about the

algorithms please refer to the source code which is written as much self documented as

possible.
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Table B.1. List of important classes and their explanation.

Class Explanation

GraphMatch Node-to-node distance calculation, Hungarian assign-

ment based graph matching and graph match drawing

algorithms are implemented

Association Various place recognition approaches and memory tree

drawing functions are implemented

Segmentation A helper function for graph-based segmentation algo-

rithm is implemented. Node signatures are also created

here.

SegmentTrack Segment tracking and the construction of node existence

matrix is performed in this class.

SSGProc SSG and BD based place descriptors are constructed in

this class

TSCHybrid The main algorithm (processImagesHierarchical())

is implemented in this function. Plotting functions,

place detection method and database read/write opera-

tions are also implemented in this class.

Utils/UtilTypes Various utility functions and variable type definitions

MainWindow An interface class between GUI and algorithms. Most

of the algorithms are called from this class.




