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ABSTRACT

2D TO 3D VIDEO CONVERSION

Stereoscopic 3D visualisation is increasingly embedded into social life through

the use of commercially available 3D-TV sets. In this work, a hybrid approach for

2D to 3D conversion is presented to produce stereoscopic 3D video automatically from

2D mono video frames. Each frame is synthesized to stereo pairs. Disparity/depth

information required for 3D view is extracted from mono frame sequences based on

motion and geometrical cues. Depth estimation of the scene is considered separately

for background and foreground. Background geometry of the scene is determined

by using geometrical cues such as vanishing point and straight lines in the image.

According to this geometry, relevant information on the background depth field of a

single image is estimated to generate a canonic disparity map of the background. For

foreground depth estimation, on the other hand, two approaches are presented. First

approach is based on detection of moving foreground objects. A depth value is assigned

to each object based on its corresponding location in the background depth map. In

the second approach, background registration is applied for consecutive frames that

are captured by a moving camera. By this method, disparity in foreground regions

is distinguished from background disparity that leads to a distinctive 3D effect on

foreground regions. Consequently, depth/disparity information of foreground regions

is combined with background canonic disparity map. According to these final disparity

maps, pixels of the original frames are shifted to generate virtual frames to enable 3D

views. This work is accompanied by a subjective evaluation on the basis of user test

which compare our 3D results with commercially available 3D-TV sets.
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ÖZET

2B-3B GÖRÜNTÜ DÖNÜŞÜMÜ

Bu çalışmada, tek bir kamera ile çekilmiş 2 boyutlu (2B) videodan 3 boyutlu

(3B) stereo video elde etmek için yeni bir yöntem önerilmiştir. 3B stereo görüntü

oluşturabilmek için sahnenin derinlik bilgisi gereklidir. Önerilen yöntemde, verilen 2B

görüntü üzerindeki resimsel özelliklerden sahne derinliği kestirilmiştir. Bunun için, tek

bir görüntü üzerindeki kaçış noktası ve birbirine yakınsayan düz çizgiler gibi geometrik

özellikler çıkarılmış ve arka plan sahnesinin genel derinlik bilgisi çıkarılmıştır. Ön

plandaki nesneler üzerinde derinlik etkisi oluşturmak için ise, sahne hareketine bağlı iki

farklı yöntem önerilmiştir. İlk yöntemde, sahnedeki hareketli nesneler Gaussian karışım

modelleri (GMM) ile çıkarılmış ve bu nesnelere arka plan derinlik haritasında bulunduk-

ları konuma bağlı bir derinlik ataması yapılmıştır. İkinci yöntemde ise, yatay kamera

hareketi içeren görüntü dizilerinde, sahne üzerindeki paralaks etkisinden faydalanılarak

ön plandaki nesnelere farklı bir ayrıklık kazandırılması amaçlanmıştır. Bunun için,

farklı iki zamanda alınmış çerçeveler arasındaki arka plan geometrisinin hareketi ke-

stirilmiş ve geri çatılmıştır. Böylece, ön plandaki nesneler üzerinde marjinal bir ayrıklık

elde edilmiştir. Sonuç olarak elde edilen bu arka plan ve ön plan derinlik ve ayrıklık

bilgileri birleştirilmiş ve tüm sahne için bir ayrıklık haritası oluşturulmuştur. Verilen

2B imgenin pikselleri, bu ayrıklık haritasına bağlı olarak kaydırılarak yeni bir imge

oluşturulmuştur. Orjinal imge sağ göze, elde edilen yeni imge sol göze sunulmak üzere

3B stereo imge elde edilmiştir. Sonuçlar bir grup kullanıcı tarafından değerlendirilmiş

ve performansları var olan ticari 2B-3B çeviriciler ile karşılaştırılmıştır.
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1. INTRODUCTION

3D video have started to gain increasing popularity through the use of commer-

cially available 3D TV sets which generate the 3D effect by displaying stereo frames

sequentially and in synchrony with a pair of active glasses. 3D TV offers depth im-

pression of the observed scenes and has enhanced viewing experiences in comparison

to 2D TV, but there is a pertinent problem to the 3D image world that is how to

ensure availability of appropriate content. Although it is possible to directly produce

3D content by using stereo cameras, a more cost efficient and faster way of generating

content is to design a system converting already recorded 2D multimedia to 3D ones.

Despite the advances in stereoscopic display technologies, stereoscopic content genera-

tion is still insufficient. The 3D content is generated by a stereo camera set and a large

team of technicians/cameramen, that is achievable at the expense of increasing the

cost significantly. Furthermore, the results are not always satisfactory due to several

artifacts in stereo video capture. Conversion of 2D videos to 3D videos is an efficient

and fast solution to these problems and reduces the overall cost of the system. More

importantly, this makes it possible to reuse existing 2D media resources as 3D.

As in the most technological advancements, 3D imaging rely on mimicking human

abilities. Human stereoscopic viewing rests on two slightly different projections of the

world on left and right eyes. This slight difference which originates from the spatial

displacement between eyes is referred to as binocular disparity. Human brain can

combine these two images with horizontal disparity and produce 3D depth perception

[1]. Therefore, 2D to 3D image conversion techniques depend on horizontal disparity

estimation to build the new image from mono image.

2D-3D video conversion refers to generating the stereo twin frame of a given video

frame by applying horizontal pixel shifts according to the estimated depth of the scene,

followed by hole-filling to correct for disparity discontinuities. Shift amount (disparity)

of each pixel is directly related to its depth. Therefore, depth map estimation in this

process is the most challenging part of stereoscopic video generation from 2D frames.
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In order to extract depth information from mono frames, generally image and motion-

based cues are used. Various methods have been applied for depth estimation. The

main approaches are depth from focus/defocus, motion based depth estimation and

methods that utilize geometrical cues in the image. Consequently, given one frame and

its depth map/disparity map, stereo pair of this frame can be generated. Given frame

can be taken as left/right image and right/left image can be obtained by shifting its

pixels according to determined disparity map.

Since mono cameras cannot capture true depth information, depth maps obtained

by these methods are just approximations to true 3D geometry. It has been found that

human visual perception tolerates the particular inaccuracies of estimated depth maps

[2], so these depth approximations are expected to be sufficient for 3D visualization.

In this thesis, a hybrid approach is proposed for depth estimation from mono

frames/images, which is based on geometrical cues and motion analysis. We deal with

background and foreground depth determination issues separately and obtain final

disparity map by combining them. Relative depth map of background is generated

based on an improved vanishing point and major line detection in the Hough Trans-

form space. In the first approach, motion estimation is used to detect foreground

objects to which a depth is assigned using the background depth field. In the second

approach, background-only registration is used to determine disparity for foreground

objects without explicit depth estimation process. Final stereo frames are generated

by shifting the pixels of mono frames according to disparity maps.

The proposed approach is also evaluated with real images from versatile scenes.

Vanishing point detection method is experimented on a number of images for which

the results are compared to natural human perception recorded by manual procedure.

For every proposed algorithm, stereo image and video sets are presented to a group

of subjects on 3D screens. The evaluation results yielded quite success in terms of

creating a depth perception for 3D visualisation.
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In conclusion, we propose methods to produce stereoscopic videos from 2D videos

automatically. The aim is not to find true depth values in real world, it is to enhance

end-user experience on 3D visualization by creating illusion of depth via stereopsis.

The main approach pursued in this thesis is to understand the background geometry

of scene and, determine the foreground objects, and assign user adjustable disparities to

the background and foreground objects based on the obtained depth order information.

The method is implemented on standard hardware and evaluated empirically. A group

of users watched the generated 3D stereo videos and images in 3D TV sets and grade

their quality based on depth impression.

Chapter 2 provides a background information on stereoscopic vision and intro-

duces the related work in 2D to 3D conversion. In Chapter 3, proposed method is given

in detail. Experiments are presented in Chapter 4 and conclusion is given in Chapter

5.
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2. OVERVIEW OF 2D TO 3D VIDEO CONVERSION

Since 2D to 3D conversion techniques are based on stereoscopic viewing, various

methods depend on horizontal shifting of pixels according to their depth values. In

this chapter, firstly, some general information is given about stereo vision and the

relationship between disparity and depth. Secondly, related work on depth estimation

for 2D to 3D video conversion is presented.

2.1. Fundamentals of Stereo Vision

Binocular viewing of a scene means two slightly different images due to the loca-

tions of the eyes on the head. This slight difference between left eye image and right eye

image is referred as disparity and it provides information about image depth. Given

these two images with horizontal disparity, our brain can generate depth perception

by combining them together. Stereopsis is the design and implementation of the algo-

rithms that mimic our ability to fuse the pictures recorded by our eyes and exploit the

difference between them. This difference is referred as disparity and used to strengthen

the depth sense. 3D imaging generally relies on this concept according to which stereo

camera systems are used to create stereo images. In case of 3D stereo generation from

2D, the scene is captured by only one camera and a virtual new image is created by

horizontal shifting of the original image pixels. To discuss the relationship of depth and

disparity, stereo geometry of a stereo camera system, which consists of two identical

parallel cameras, is illustrated in Figure 2.1.

In Figure 2.1, Cl and Cr are origin of the camera coordinate systems of left and

right cameras with focal length f . Cameras are placed in parallel with a baseline

distance, tc. An object point in 3D world, P , is captured by these cameras and the

projections of this 3D point on the left image and right image are denoted by pl and

pr. The horizontal image coordinates of these projection points correspond to xl and

xr. The depth value of P is indicated by Z. The disparity, which is the horizontal
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tc
Cl Cr

P

pl pr

f

Z

xl xr

Figure 2.1. Stereo geometry for two identical parallel cameras. The difference

between image coordinates of left and right projections (pl and pr) is referred to as

disparity (d).

difference between left and right image coordinates is defined as follows:

d = |xl − xr| (2.1)

The disparity, d, can be stated in terms of the depth value, Z, depending on the

relationship between similar triangles (P, pl, pr) and (P,Cl, Cr) in Figure 2.1 as follows:

|xl − xr| =
ftc
Z

d =
ftc
Z

(2.2)

From the geometrical relationship in Figure 2.1, disparity, d, is found inversely pro-

portional to depth, Z. As seen in Equation 2.2, disparity can be found if real depth

(Z) is known where the distance between cameras and the focal length are known.

For automatic 2D to 3D conversion, it is aimed to find relative disparity values for

artificial stereo image generation without the information of camera parameters such
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as tc and f . However, since these camera parameters are constant values, the inverse

proportional relationship between depth and disparity can be used to built a coarse

disparity map from depth map of an image. Therefore, if the relevant information on

the depth of a single image is present, its pixel-wise relative disparity values can be

estimated based on Equation 2.2. As a result it can be inferred that, the main issue in

stereo video generation from mono video is to estimate relative depth values of pixels

in mono frames.

2.2. Previous Works on 2D to 3D Video Conversion

Main and the most difficult part of 2D to 3D image or video conversion is depth

map estimation. There are many methods which use different pictorial cues of the

images captured by single camera for depth estimation. In this section, three main ap-

proaches are explained in terms of their primary source of information as focus/defocus,

motion, and geometrical information of the image/frame used for relative depth map

estimation.

2.2.1. Depth From Motion

Motion estimation is the most common method that is used to determine depth or

disparity for 2D to 3D conversion. Displacement between two images which are taken

by a moving camera is more on the objects closer to the camera and less on the objects

further to the camera. Owing to that parallax effect, motion vector of each pixel gives

information about its depth. Therefore, motion estimation can be used to find out the

shifts between two consecutive frames by determining correspondence between them.

In this respect, 2D motion estimation is used for depth estimation [1]. A study reported

in [3] is an example of utilization of this principle, where parallax information obtained

from horizontal motion of sequential input images are used to create depth. They

applied modified time difference (MTD) method which selects images that would be a

stereo pair based on the estimated horizontal motion in the sequential input images.

Similar ideas can be found in [4, 5]. According to the results, MTD works good for

simple scenes with simple motion, but it is not successful in complicated cases.
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Jung et al. proposed a 2D-3D conversion method by using depth estimates based

on motion parallax in [6]. In the case of global motion, they create depth maps directly

based on the motion vectors. In the case of local motions, they use depth templates

by applying motion-guided depth refinement to those templates. In [7] Liu et al.

used structure from motion (SFM) method for 2D to 3D conversion. Their method

includes steps such as projective transformation, self-calibration and depth refinement

by color segmentation. They have good depth map results but their system is too

time-consuming to be able to work in real-time.

In [8], a H.264-based depth map estimation technique is used. Their method

utilizes the horizontal motion information between consecutive frames to approximate

the depth map of the scene. They used a H.264-based scheme that includes motion

vectors which are provided accurately in the standard. In [9], optical flow is used

to determine depth ordinal by using compressed videos. Motion vectors extracted

from the compressed video files (MPEG4) to determine the depth map. Magnitude

of motion vector is calculated by the Euclidean distance of vertical and horizontal

motion estimation components for each pixel. Disparities to shift pixels to create

virtual stereo image are determined by the motion vector magnitudes. In [10], a depth

extraction method is proposed based on motion and geometric information for 2D to 3D

conversion. They used H.264 motion estimation result and moving object detection to

generate a motion-based depth map. Finally they fused it with a geometry-based depth

map which is obtained by edge detection. In [2], an object based algorithm is proposed

for stereoscopic 3D video generation from 2D content. They used motion information

available in the scene to determine occlusion in video sequences. Therefore, they aim

to segment object regions using motion inconsistency along the borders of moving

objects. They used optical flow based occlusion reasoning to determine the depth

ordinal and produced stereo videos. Depth from motion is the most common depth

estimation method from monocular image sequences ( [11]). However, these techniques

have problems, such as nonlinear motion issue and the problem of separation of camera

motion from object motion. In addition, the motion between two consecutive frames

is very small and sensitive, and it is improbable to generate consistent and adequate

results [12].
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2.2.2. Depth From Focus

In the approach of obtaining depth from focus, the idea is to estimate the depth

information based on the amount of blur of each region in the focused image [13], [14].

Constitutively, there are two types of this approach which are called depth from focus

and depth from defocus (DFD) (also referred to as depth from blur). In the DFD

approach, depth map is generated from the degree of blurring in the images, and

it needs two or more images with different focal settings [15]. The DFF methods

determine the distance of an object by comparing the sharpness of the object over a

series of images of the scene with different focus distances and also with varying camera

positions [16].

The distance to scene points which are in depth of field can be determined by the

focal parameters of the camera. Depth of field (DOF) is the range distances through

which objects are well focused. If depth of field of the camera is very limited, then

only points with same distance from camera will be in perfect focus and will appear

sharp. Other points in the scene will be out of focus and appear blurred. Thus, with

the knowledge of the camera focal parameters such as the position of the image plane,

the aperture size and the focal length and besides the degree that the object is out of

focus, the depth of and object can be fairly inferred. On this basis, depth from focus

method proposes that depth information of the points in a scene that is acquired with

a small DOF can be calculated by modelling the effect of the camera’s focal parameters

on the image [17].

In spite of the resolution and sensitivity limitations of depth from focus methods

in comparison to triangulation based depth from motion techniques; depth from focus

avoids occlusion and correspondence ambiguity problems [18]. Generally, depth from

focus methods depends on varying the camera focus on an object to determine its

depth, that is not applicable for many cases. Depth from focus is mainly motivated by

specific applications such as robotic sensing and industrial examination which have a

specific imaging system for specific type of scenes. It also can be used in conjunction

with other depth perception techniques as a part of a general purpose system [19].
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Since depth from focus and depth from defocus methods require more than one images

which are taken with different intrinsic and extrinsic parameters of camera setup for a

scene, it is not useful for automatic conversion of existing 2D data to 3D. Automatic

2D to 3D conversion requires depth map determination without the knowledge about

camera setup and scene

There are other depth from focus methods that can estimate blur without de-

pending on camera parameters [20]. Considering focus/defocus effects, if a region is

more blurred compared to the other one, then this region is concluded to be farther

away. Valencia et al. proposed a 2D to 3D stereo conversion system based on blur

in image [21]. Their depth map estimation method depends on measuring focus cues

which includes a local spatial frequency measurement and a regularity estimation of

significant edges. In [20] Tam et al. proposed a depth map generation method from 2D

images based on blur and edge information using intensity gradients in local regions.

However, reliability of this approach is questionable since the blur can also arise from

other factors, such as convergence plane (lens aberration), atmospheric interference,

and motion. In addition, same amount of blur can occur in both cases of the object

is farther away from the focused position or closer than the focused position of the

camera.

2.2.3. Depth From Geometric Perspective

Perspective distortion can be used for estimating depth information from single

monocular images. In the environments with geometric elements, there are parallel lines

that converge to a point called vanishing point (VP) in the image plane. Vanishing

point is the eventually reached point by lines that appear to converge with distance and

can be claimed to be the deepest region of the scene. Cantoni et al., proposed methods

to detect vanishing point in [22]. The main idea is to detect straight lines in the image

and estimate their intersection point that is considered to be the vanishing point [23].

After finding vanishing point which is an important geometrical cue of the scene, the

depth layers can be determined as relative distances from the detected VP based on

the geometrical structure of the scene. Generally, manmade world (e.g. buildings)



10

possesses strong geometric cues where this method has reliable results. However, one

major drawback of this method is that there may be no vanishing points in a given

image such as landscape images. Hence the success of this method heavily depends

on the scene geometry. Battiato et al. used vanishing point and vanishing lines to

establish depth gradient lines in [24].

In [25], color-based segmentation is applied for image classification such as out-

door, indoor, vs. For each specific class, geometrical structure is determined to extract

relevant depth information. Depth map generation is based on several steps which

are gradient planes generation, depth gradient assignment, consistency verification on

detected region. Finally, color-based segmentation results are combined with geomet-

rical results and depth-map is reconstructed. In [26], they utilized motion parallax and

geometrical perspective to generate depth map for 2D to 3D conversion. In [27] 2D

to 3D conversion method is proposed to reduce depth map flickering in videos. Their

method segments objects based on color and motion history to ease depth error.

2.2.4. Other Approaches

The authors in [28] and [29] suggest machine learning approach for visual scene

understanding and building rough depth map from monocular image features. They

apply supervised learning to predict depth value as a function of the image using

multiscale local and global image features such as texture variants, texture gradients

and color. They train a set of images and their corresponding ground truth depth maps

to determine the plane parameters. In [30], they improved their learning model using

image segmentation and object detection methods. They also proposed a method to

create 3D models using a set of images. However, the algorithm based on that approach

was found less efficient for operating in real time.

Zhang et al. proposed a depth calculation method by integrating occlusion and

visual attention analysis in [31]. They initialized depth by applying scene classification

and they computed saliency map to weight it. By occlusion analysis they found a

coarse depth map of the scene. Zhang et al. also proposed a 2D to 3D conversion
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method based on saliency map that is generated based on color histogram in [32]. In

their proposed method, more salient areas are assigned with closer depth values. Their

depth values are based on color histogram, so depth orders are mostly not correct,

although they obtained sharper and stable depth maps.

Besides fully-automatic 2D to 3D conversion techniques, manual and semi-automatic

approaches are also proposed in literature. A semi-automatic approach based on depth

propagation is given in [33]. The main principal of depth propagation is to create high

quality depth maps at key frames manually or semi-manually and propagate these

depth maps to other non-key frames. Jung et al. [33] applied a superpixel matching

method for motion estimation between key image and current image. Then, they gen-

erated depth map of the current frame by conducting depth compensation based on

the motion vectors. Phan et al., also proposed a semi-automatic method by using key

frames for user application and propagating the strokes automatically. For the segmen-

tation algorithms, they used Graph Cuts and Random Walks [34]. Another interactive

method is proposed by Criminisi et al. in [35] to compute 3D geometry of a single

perspective view of a structured scene by assuming that vanishing points and lines are

known. They take some specific information from user such as reference height of an

object, object segmentation, and 3D coordinates of some points. Depending on that

given real measurement values and perspective geometry of the scene they reconstruct

the 3D geometry of the objects in the scene. In [36] and [37], depth map generation

methods which are depend on user inputs are proposed. [37], depth is assigned and

propagated among over-segmented image regions.

In conclusion, the problem of 3D scene reconstruction from the images captured

by a single camera has not a complete solution. All depth extraction methods have

their own advantages and disadvantages. Depth from motion approach is the most

preferable in terms of the applicability to more general cases [12].
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3. METHOD

For the 3D stereoscopic video generation from 2D videos, we propose a hybrid

model which utilizes both geometrical perspective and motion cues in single frames.

Firstly, a relative background depth map is estimated on the basis of the geometrical

structure of the scene. Then, foreground objects’ depth estimation was done by two

different methods. In the first method, moving foreground objects are detected based

on motion, and depth values are assigned according to their position in the scene.

For that method, foreground objects were assumed to be moving while camera was

stationary. The second method is developed for scenes which are taken by a moving

camera. Benefiting from the parallax effect between sequential frames, disparity for

foreground object is obtained by applying background registration. After the depth

and disparity estimation, the stereo pair is rendered by shifting the pixels of the original

image based on its final disparity map. In Figure 3.1, the proposed hybrid method is

demonstrated as a flowchart of the process for conversion of a single image to a stereo

pair.

3.1. Background Depth Map Estimation

Initially, a background depth map is created using only strong geometric cues of

the scene. Depth can be estimated in many real images based on perspective distortion.

A group of parallel lines in the real world converges to a single point referred to as

vanishing point (VP) due to perspective distortion when they are projected within

2D image. Vanishing point and associated lines of the scene, gives information about

depth in the image to determine 3D structure of the scene. For instance, if we consider

creating the depth map of a corridor, the two strongest lines leading to VP can be

selected as borders between the walls, floor and ceiling as shown in Figure 3.2. After

the main geometry determination, scene depth layers are created based on the main

lines by taking VP as reference point for the maximum depth region. As a result,

background depth map is formed as seen in Figure 3.3. Detection of the vanishing point

and the main lines, and depth map formation is explained in the following subsections.
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Figure 3.1. General flowchart of the proposed hybrid method of stereo image

generation from a single image.
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Figure 3.2. Determined geometrical cues of a background structure: vanishing point

is marked by a red point and main lines are showed as blue lines

Figure 3.3. Background depth map of Figure 3.2 that is produced by proposed

method
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3.1.1. Vanishing Point Detection

In 2D images, parallel lines in space look like converging to an infinity point

because of perspective distortion. This point, called as vanishing point (VP), can be

claimed to be the deepest region in the scene. In order to determine VP, at least

two converging straight lines is needed. For finer estimation, we need to determine

the most characteristic straight lines of scene geometry and optimize VP location that

best fits to intersection point of all such lines. We assume that the lines which are

prominent in terms of length and density are strong lines and give cues about scene.

Hough Transformation is used for the detection of the strongest straight lines of the

scene geometry and estimation of VP as intersection point of these lines. Flow diagram

of VP detection method proposed in this work is shown in Figure 3.4.

Preprocessing Edge Detection

Hough TransformVP Estimation
Vanishing 

Point

Original 
Image

Figure 3.4. Flow diagram of vanishing point detection method

Firstly, color image is converted to gray image using the MATLAB function

rgb2gray [38]. Then, median filtering is applied which provides very good noise reduc-

tion capabilities, with less blurring than linear smoothing filters. Median filter replaces

the value of a pixel with the median of the intensity levels in the neighborhood of that
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pixel. It can be expressed as follows:

f(x, y) = median
(i,j)∈Sij

{g(i, j)} (3.1)

where g(i, j) represents a rectangular subimage window of size m×n, centered at point

(i, j), and Sij represents the set of pixel coordinates in the neighborhood g(i, j). Using

median filtering, the salt and pepper noise which can give rise to the detection of wrong

lines in the image is avoided.

Edge detection is performed by Canny edge detector [39] which is one of the most

powerful edge detection methods in the literature. Canny edge detection algorithm

steps are explained briefly as follows.

• Image is smoothed to reduce noise. A Gaussian filter with a standard deviation,

σ, is applied.

• Gradient magnitude and angle (edge direction) is computed for each point.

• By preserving only local maxima points, non-maximum suppression is applied

to the gradient image. Thus, broad edges of gradient image is thinned to sharp

edges. The points with locally maximum gradient along the edge direction are

defined as edge points.

• Double thresholding and connectivity analysis is applied for edge detection and

edge linking. The pixels remained after non-maximum suppression are thresh-

olded with two threshold values. The pixels that have higher strength than higher

threshold is labeled as strong edges. The ones with lower strength than lower

threshold are deleted, and the pixels which are between two thresholds are la-

beled as weak edge points. The weak pixels which are 8-connected to the strong

pixels and all strong pixels are defined as edge pixels.

Canny edge detection method is executed using MATLAB’s edge function [38]. Figure

3.5 shows resulted edge maps of two real images.
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(a) Original image (b) Edge map of 3.5(a)

(c) Original image (d) Edge map of 3.5(c)

Figure 3.5. Two original images and their edge maps

After the edge detection, Hough Transform (HT) is used to determine strong

lines in the scene which will converge at the deepest region according to the scene

perspective.

In Hough Transform [40], lines and points in image plane are respectively mapped

into points and curves in Hough space that is also called polar space. In Figure 3.6 the

relationship between image plane and Hough plane is demonstrated.
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Figure 3.6. A line passing through three points on image plane is mapped a point

which is the intersection of three sin curves in the Hough plane. Every point in the

image plane is also mapped to a sin curve by HT.

Hough Transform maps a straight line in image plane to a point. A straight line,

y = mx+ n, in the image plane is represented in the polar space as follows:

ρ = x cos θ + y sin θ (3.2)

(m,n) parameters of the straight line in image plane is transformed to (ρ, θ) parameters

in the polar plane. Geometrical meanings of polar parameters are shown in Figure 3.7

where ρ represents the perpendicular distance between the line and the origin, and θ

represents the angle of the vector from the origin to the closest point of the line. θ

takes values in the range of [0, π), while ρ ∈ R is limited to the size of the image.

Hough Transform also maps a point in image plane to a curve in the Hough space.

If we take a point (x0, y0) on the image plane with some straight lines intersecting on it,

its corresponding sin curve on the polar plane is presented by the following equation:

ρ(θ) = x0 cos θ + y0 sin θ (3.3)
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Figure 3.7. Description of ρ and θ parameters of a straight line on the image space.

Line is presented by ρ = x cos(θ) + y sin(θ) so it is defined by the polar parameters ρ

and θ which indicate a point in the Hough space.

Each (ρ, θ) point which satisfies Equation 3.3 in the polar plane represents a

straight line passing over the (x0, y0) in the image plane.

Vanishing point is assumed to be the most significant curve in the Hough space.

Since the VP is assumed to be the intersection of the most significant lines in the image

plane, it corresponds to the strongest sin curve in the polar plane.

Matessi et al. proposed an algorithm in [23] to detect the vanishing point directly

on the polar plane. They use least square estimation (LSE) method, to estimate

corresponding sin curve which identifies the vanishing point. LSE method is applied

directly in the Hough space as given in Equation 3.4 where (x0, y0) stands for vanishing

point coordinates in the image.

min
x0,y0

n∑
i=1

Wi(ρi − x0 cos θi − y0 sin θi) (3.4)

In Equation 3.4, (ρi, θi) points are weighted by Wi which comes from the number of

times that the pair (ρi, θi) is observed when mapping point of a line on the image,



20

and n is the total number of samples. For finer estimation, they apply this statisti-

cal method iteratively. First, they measure the distances of all points in the Hough

transform matrix to the first estimated curve to find a distance variance. By using

this distance variance, they eliminate points farther away than this variance and make

second estimation with the points left on the image. Iteratively, until the difference

between last two found vanishing points is less than a threshold, they continue this

point elimination and they reach the coordinates of the VP at the end of iteration.

This approach has two problems: (i) Even if it is aimed to eliminate the effect

of very small noisy lines by using weights, they affect the determination of the scene

geometry negatively, and create noise. (ii) Vertical and horizontal lines do not converge

to the vanishing point, and also distort the output because they are strong in most of

scenes.

The proposed modification to Matessi’s algorithm to overcome the above men-

tioned weaknesses involves: (i) Noisy lines are eliminated by detecting some number

of peak points on the Hough transform plane. The results are much more improved

when fitting the curve to these points. Using the strongest lines in the image gives

clearer solutions since very small lines do not contribute to the geometry of the scene,

but create noise. (ii) Vertical and horizontal are removed from the Hough transform

plane.

According to these specifications, the selection of some straight lines and the

calculation of VP as the estimation of the intersection point of these lines is intended.

Therefore, firstly vertical and horizontal lines are removed by deleting the points around

the θ values of 0◦ and 90◦ in the HT plane. After that, a number of peak values is

picked which is applied as ten peak values of the remaining HT matrix. To find the

coordinates of VP, (x0, y0), its curve, ρ(θ) = x0 cos θ + y0 sin θ, is fitted to these peak

points by using least square minimization method which is given in Equation 3.4.

In Figure 3.8(a), ten strongest lines -except vertical and horizontal ones- and

estimated vanishing point is illustrated on an image. Hough Transform matrix of
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this image is also given in Figure 3.8(b) with corresponding points of these lines and

corresponding sin curve of VP.

(a) (b)

Figure 3.8. (a) Image with ten strongest straight lines and vanishing point estimated

as intersection point of these lines. VP is marked by a red dot and lines are showed

with blue lines. (b) Hough Transform of (a). Corresponding sine curve of VP is

marked by a red curve and ten peak points correspond to ten strongest lines is

marked by blue points.

The vanishing point is obtained by minimizing Equation 3.4. Let cos θi = ai

and sin θi = bi. Then we differentiate with respect to x0 and y0, and equate to zero.

Following linear system is obtained:

∑
Wiai(ρi − aix0 − biy0) = 0∑
Wibi(ρi − aix0 − biy0) = 0

(3.5)

If we sum the left hand side of these two equations and make the substitutions of

A =
∑
Wiai

2, B =
∑
Wibi

2, C =
∑
Wiaibi, D =

∑
Wiaiρi, E =

∑
Wibiρi, we obtain
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the following linear system:

Ax0 + Cy0 = D

Cx0 +By0 = E
(3.6)

Thus, the coordinates of VP, (x0, y0), is estimated by solving this simple linear system:

A C

C B

x0

y0

 =

D
E


x0

y0

 =

D
E

A C

C B

−1

(3.7)

3.1.2. Main Lines Detection

By taking vanishing point as the reference point for the deepest region in the

scene, we determine relevant information on depth according to main lines of the scene.

We select one negative slope line and one positive slope line to form depth layers of

the background in the shape of nested tetragons as seen in Figure 3.3. In this obtained

depth map darker regions refers to deepest regions while lighter regions represents

closest regions of the scene.

Two main lines which presents general scene structure are selected as a left and a

right straight lines which are closest to VP among strongest straight lines in the image.

We separated the straight lines into two groups in terms of right lines and left lines.

Lines with 0 < θ < 90 defined as right lines and lines with −90 < θ < 0 defined as left

lines. In order to determine scene structure we need one left line and one right line as

main lines.

Initially, if ten peak points in Hough space includes both left and right sided lines,

one left line point and one right line point which are closest to vanishing point curve
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Figure 3.9. Hough transform band to search the missing line in it. VP curve is

marked by red line. Missing right main line is computed as the strongest point within

the determined band on Hough plane that is demonstrated in the figure.

among them is selected to be main lines based on ρ. One left and one right point which

have minimum distance to the VP curve are selected from left side point group and

right side point group in Hough space separately. The distance of each peak point to

the VP curve, is calculated in ρ axis in HT space and the closest points are determined

as follows:

k∗ = arg min
k
|ρk − ρvp(θk)| (3.8)

= arg min
k
|ρk − (x0 cos θk + y0 sin θk)|

where (ρk, θk) are polar parameters of kth peak point and (x0, y0) is the image plane

coordinates of VP. ρvp is the sin curve function of vanishing point as given in Equation

3.3. As a result (ρk∗ , θk∗) parameters gives the selected main lines.
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On the other hand, if these ten peaks do not include both left and right sided

lines, in other words, if all ten strongest lines are lied on one side, right or left, one of

the main lines will be missing. In order to find a line instead of absent line, we create

a band around VP curve in HT matrix and search for the appropriate point within it

as shown in Figure 3.9. The width of this band is determined as the median of the

distances of ten peaks to the VP curve. Then we take the most voted (strongest) point

within that band instead of the missing line. In this way, this band constraint search

area on the HT matrix prevents us from choosing a line far away from the vanishing

point even if it has a high vote.

3.1.3. Construction of Background Depth Map

By using the two lines and vanishing point, we create a depth map for the back-

ground of the scene. The intersection region of left and right lines, the region of VP, is

taken as reference for furthest region in image. Depth layers are built based on main

lines geometry as shown in Figure 3.3. By taking VP region as beginning point and

assigning its depth to 0, we assign a depth value in the range of [0, 1] to each region

with an increasing manner along main lines. In our experiments, we divide the image

into 100 depth regions. We assign 0 to the deepest region and we add 0.01 for every

neighbor depth region. Finally we get nearest region as 1 valued. As a result we gen-

erate a depth map as a gray image and the depth information is coded as luminance

intensity level, lighter values for closer distances and darker values for further distances.

However, vanishing point is not always be inside the image. We need to determine

the location of VP since depth map have to designed according to the VP location.

There are nine possible areas where VP could be located as shown in Figure 3.10.

First, we determine the area of VP for our depth map generation algorithm; and then

we form the depth map according to this area. In the case of vanishing point being

outside, the closest part of the image is considered as the deepest region. In Figure

3.12 and 3.11 examples of the cases that VP point is outside can be seen.
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• Forming Depth Map 

By using the two lines and vanishing point, we divide depth map linearly into depth regions 

shaped as tetragons (Figure 10). We determine relative depth map values to the depth 

regions as ranging between 0 and 1 linearly. Since the VP is the deepest point in an image, 

we take the region includes vanishing point as the deepest region in the image. In the case of 

vanishing point is outside, the closest part of the image to the vanishing point is considered 

as the deepest region. In our experiments, we divide the image into 100 depth regions. We 

assign 0 to the deepest region and we add 0.01 for every neighbor depth region. Finally we 

get nearest region as 1 valued. As a result we generate a depth map as a gray image and the 

depth information is coded as luminance intensity level, lighter values for closer distances 

and darker values for farther distances.  

However when forming depth map as explained above, we need to separate images 

according to location of VP that could be on the image or outside image. There are 9 

possible areas which the VP could be located as shown in Figure 12. First, we determine the 

area of VP for our depth map generation algorithm; and then we form the depth map 

according to this area. 

 

Figure 12. Possibilities for vanishing point location 

2.3. Stereo Image / Frame Estimation 

To create 3D effect from 2D images, we decode the depth map into the right and left eye 

images. We take the original image as the right eye image; and create the left eye image by 

shifting pixels to the right side according to their relative depth value given in the depth 

map. We find the extent of horizontal shift of i
th

 pixel, Δi, with the Equation 7. 

Δi = Di *(1/(max_shift – min_shift) )   (7) 

where Di is the relative depth value given in the depth map, max_shift is maximum number 

of shifting, and min_shift is minimum number of shifting in the whole image. Minimum shift 

value is the shifting value of the deepest region in the image, and maximum shift value is the 

shifting value of the closest region in the image. Both of them are determined by user. At the 

end, we obtain two images; one of which is the original image as right eye image, and the 

Figure 3.10. Possibilities for vanishing point location. Region 5 shows the border of

image plane and other regions show the outside of the image that VP can be located.

Figure 3.11. Main lines and depth map: VP is in Region 6
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Figure 3.12. Main lines and depth map: VP is in Region 4

After background depth map estimation, we propose two methods for foreground

depth/disparity estimation: (i) moving objects segmentation and depth estimation, (ii)

disparity estimation of foreground objects by exploiting parallax in the moving camera

videos.

3.2. Foreground Disparity Assignment Based On Background Model

The depth of foreground objects differs from the background and is critical for

a realistic 3D experience. In the proposed method that is based on motion cues, the

segmentation of moving regions is applied to provide object-wise depth ordering. First,

moving foreground is extracted by modeling background with mixture of Gaussians.

Second, a depth value is assigned to foreground object according to its location in the

background scene where depth map was estimated.

3.2.1. Foreground Extraction with Gaussian Mixture Models

Adaptive Gaussian Mixture Model (GMM), proposed by Stauffer and Grimson,

is a common method to model complex and dynamic backgrounds [41]. The values of
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a particular pixel are modeled as a mixture of Gaussian distributions. Determination

of which Gaussians may correspond to background is done according to the persis-

tence and the variance. Pixels that fit the background distributions are considered

background, while pixel values which are not included by none of these background

Gaussians are considered as foreground.

The values of a particular pixel, e.g. scalars for grayvalues or vectors for color

images, over time are defined as pixel process. At time t, the history of a particular

pixel, {x0, y0}, consist of time series of its values:

{X1, ..., Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t} (3.9)

where I is the image sequence and Xt = (xrt , x
g
t , x

b
t) for color images. This algorithm

models the history of each pixel independently as a mixture of weighted K Gaussian

distributions in the color space. The probability of observing the current pixel value,

Xt, is

P (Xt) =
K∑
i=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (3.10)

where K is the number of distributions which is used between 3-5 currently. For the

ith Gaussian in the mixture at time t; ωi,t is the weight, µi,t is the mean value, Σi,t

is the covariance matrix, and η is the Gaussian probability density function which are

given in Equation 3.11.

µi,t = (µri,t, µ
g
i,t, µ

b
i,t)

Σi,t =


σ2
r 0 0

0 σ2
g 0

0 0 σ2
b


η(Xt, µ,Σ) =

1

(2n)
n
2 |Σ| 12

e−
1
2

(Xt−µt)T Σ−1(Xt−µt) (3.11)
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The model is updated with the new pixel value each time instant. The current K

distributions are checked for every new pixel value until a match is found. If a pixel

value within 2.5 standard deviations of a Gaussian distribution, it is defined as a

match [41].

If the pixel can not match any of the existing distributions, then a new distribution

will be created instead of the least probable distribution. This new distribution is

created with a mean value that is defined as the current pixel value and with a high

prior variance and initially low weight.

The weights of the K distributions at time t is determined as follows:

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (3.12)

where α is the learning rate and M is 1 for matched distribution and 0 for others.

After this update process, the weights are renormalized to 1.

In case of the new pixel value is matched, the model parameters are updated as

follows:

µt = (1− ρ)µt−1 + ρXt (3.13)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt) (3.14)

where ρ = αη(Xt|µk, σk).

All model parameters remain the same in case of unmatch.

Background Gaussians are assigned by the determination of the distributions

with larger variances and higher weights. In order to find distributions which belongs

to background, firstly, distributions ordered according to ω/σ values.
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Then first B distributions, from the sorting, are chosen as the background model

according to following criterion:

B = argminb

(
b∑

k=1

ωk > T

)
(3.15)

where T is a threshold (0.5 ≤ T ≤ 1) indicates the minimum data which should be

formed by the background.

Eventually, if the pixel Xt is matched one of those background distributions, it

is marked as belonging to the background, otherwise it is marked as foreground pixel.

After GMM method, resulted foreground region is enhanced and noise is removed

by morphological filtering.

3.2.2. Disparity Assignment

In order to specify depth values of segmented foreground, we utilize the back-

ground relative depth information. We assign the relative depth value of the fore-

ground object according to its location in the background depth map. Background

depth value on the coordination of the bottom point of the foreground is assigned to

whole foreground region. Consequently, final depth map of the frame is generated by

merging background depth map and foreground depth. An example of result is shown

in Figure 3.13.

3.3. Foreground Disparity Assignment with Background Registration

In videos which are taken with moving cameras, displacement between two con-

secutive frames is more on the objects closer to camera and less on the objects further

away from camera. Owing to that parallax effect, motion vector of each pixel gives in-

formation about its depth. In the proposed method, we registered consecutive frames

based on the displacements on background pixels that is caused by camera motion,
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Figure 3.13. Original image and its synthesized depth map that includes both

foreground and background. Foreground is extracted by using gaussian mixture

model.

while keeping foreground region unregistered. By doing this, we obtain marginal dis-

parity on foreground regions. After that, we provide an artificial disparity to back-

ground pixels according to the background depth map. Finally, we create stereo pair

using this combined disparity information. General flowchart of the method is given

in Figure 3.14.

In Figure 3.14, the algorithm flowchart of generating the stereo frame by back-

ground registration method is given. It−n and It are the images of the same scene which

are taken by a horizontally moving camera at times t− n and t respectively. Here, It

will be taken as left image and right image will be calculated using It−n. Using the

geometrical structures of backgrounds which are obtained by the method in Section

3.1, background motion is extracted by block matching. Depending on background

motion, the background of It−n is registered to align with the background of It. Re-

sulted image is denoted by Ĩt−n which has the same background pixels with It but with

different disparity on foreground regions. After obtaining disparity on foreground, to

create stereo image with the frame It, and enhance the 3D effect also on background

pixels, disparity is added for background pixels on Ĩt−n. Therefore, finally obtained

image Ît−n and original image It has disparities on both foreground and background

pixels, so they are used as stereo images to create 3D effect [42].
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Figure 3.14. Background registration method for stereo frame generation from

monocular image frames.

Below, background registration and disparity adding steps are explained in detail.

3.3.1. Background Registration

In order to estimate horizontal motion of background between frames, we used

specified interest points which characterize the background geometry of the scene.

Background geometry is obtained by the method of Section 3.1, and by exploiting it,

interest points are selected on the main lines which construct background geometry.

Since foreground objects mostly stand closer to the center of the image and outer

regions tends to be background, four points are selected to be close to the borders of

the image and on the main lines as shown in Figure 3.15(a).
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(a) Selected points on It−n

(b) The matched points of 3.15(a) are shown on It

Figure 3.15. Block matching results. (a) Interest points are determined to apply

block matching method. (b) Resulted corresponding points of (a). Background

motion between two frames is estimated based on these five background points.
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For the motion estimation between two frames block matching method is applied

to these interest points. By taking It−n as reference frame and It as current frame,

blocks defined around each point on the reference frame and their corresponding blocks

are searched on the current frame. For It−n(i, j) point in the reference image, the block

is defined as It−n(i− b/2 : i+ b/2, j − b/2 : j + b/2). After that, this block is searched

in the the current image for the points of It(i, j − k : j + k). b states the size of the

block and k defines the search area in It. Since it is horizontal motion, block searching

is performed on horizontal axis. For finding best match of the interest point, a cost

function is calculated at each possible location in the search area. The cost function is

defined as the sum of absolute differences of two block pixels. For the blocks with ∆l

displacement, cost is calculated as follows:

C(∆l) =

b/2∑
n=−b/2

b/2∑
m=−b/2

|It−n(i+ n, j + n)− It(i+ n, j + n+ ∆l)| (3.16)

The block which gives the minimum cost in the current frame defined as the best match

of reference block. Thus, ∆l value of best match taken as the displacement value of the

point It−n(i, j). This process is applied to the four interest points and displacement

amounts are estimated for each of them. The points showed in Figure 3.15(a) are

matched with the points that are showed in Figure 3.15(b).

As fifth interest point, vanishing point is estimated by the method of Section 3.1.1

for each frame and displacement of VP is calculated separately. After all, these displace-

ment values of five background points used for the estimation of the displacement map

of whole background. Since the disparity between stereo frames is also a displacement

which is occurred by a horizontal camera motion; we can correlate the displacement

and disparity (background disparity map is known by the method in Section 3.1) lin-

early. For each pixel i with the total pixel amount N , we can define displacement (or

horizontal motion) (∆li, i ∈ {1, ..., N}) based on disparity (di ∈ [0, 1], i ∈ {1, ..., N}) as

follows:

∆li = αdi + β (3.17)
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where α and β parameters are constants. In this study, geometrical structure of a

scene background is explained by its relative disparity/depth map. If the background

geometry and at least two pixels’ displacement values are known, then we can determine

(α, β) parameters using 3.17 and estimate whole displacement map of the background.

In order to make the displacement estimation strong against to errors/noise in the

proposed method, we use five different pixels’ displacement values. The background

disparity map of the frame It is estimated in Section 3.1. Therefore, the displacement

between It and It−n is extended from five points displacement to the whole image’s

background displacement map via least square estimation (LSE) as follows:


∆l1

...

∆l5


︸ ︷︷ ︸

b

=


d1 1
...

...

d5 1


︸ ︷︷ ︸

A

α
β


︸︷︷︸
w

wLS = (ATA)−1ATb (3.18)

Using estimated (α, β) parameters, we spatially transform It−n to align with the

background of It. For that registration process, the method of pixel shifting which is

explained in Section 3.4 is used. As a result of background registration, we obtained a

new image, Ĩt−n, whose background coordinates are same with It but whose foreground

pixels have a marginal disparity.

3.3.2. Adding Disparity to the Background

After background registration, we have the frames It and Ĩt−n which have dis-

parity just on the foreground regions. If these frames were used as stereo pair, the

whole background would seem like a plain curtain behind the foreground region. In

order to remove this ”curtain effect” on the background region, we add user controlled

disparity to Ĩt−n, based on the background geometry. Using the method defined in

Section 3.4, we shift pixels of Ĩt−n based on It’s background relative depth map and
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create the background disparity. Consequently, we obtain Ît+k next to It as the final

stereo pair which creates a 3D effect on both background and foreground.

3.4. Stereo Image Generation

In order to create 3D effect from 2D images, the depth map is converted to right

and left eye images. The original image is taken as the right eye image; and the left

eye image is created based on its depth map. In our proposed method, we create depth

layers within the nearest and farthest region of a scene, i.e., within [Znear and Zfar].

The extent of horizontal shift (disparity) of the pixels belonging to ith depth layer is

defined as:

d(i) = i
(dmax − dmin

N

)
1 ≤ i ≤ N (3.19)

Where d is the disparity value and i ranges from layer 1, which corresponds to Znear

to layer N which corresponds to Zfar. Maximum disparity, dmax, is the shifting value

of the closest region in the image; and minimum disparity, dmin, is the shifting value

of the deepest region in the image. Both of them can be decided by user in order to

adjust the depth effect of 3D viewing.

After calculating the disparity values for each pixel on the single 2D image, we

shifted its pixels according to that disparity map. As a result of that shifting process,

there will be holes in the shifted version of original image. These holes are filled by

interpolation methods.

In Figure 3.16, results of process is shown. The original image in Figure 3.16(a)

is shifted to its left stereo pair based on the depth map shown in Figure 3.16(b). Direct

result of that pixel shifting has holes as seen in Figure 3.16(c). Thus, we filled the holes

and obtain left image as shown in Figure 3.16(d). Finally, we obtain two images; one

of which is the original image as right eye image, and the other is the shifted version

of it as the left eye image. Any artifact in the newly created image would be subject

to be masked by the higher picture quality of the original image which is presented
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(a) Original image (Right image) (b) Depth layers

(c) Shifted image with holes (d) Shifted image with filled holes (Left

image)

Figure 3.16. Stereo image generation. Original image in (a) is shifted according to

gradient depth layer map of (b). Emanated holes in (c) are filled as shown in (d).

to the right eye [43]. Consequently, stereoscopic depth is created for human brain to

interpret these two shifted images view as one 3D image.
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4. EXPERIMENTS AND RESULTS

The proposed methods are implemented in MATLAB environment on an Intel

Core 2 Duo PC with 2GB memory by using a data comprised of real images and videos.

We collected some of these images from internet, and we captured some other images

and videos by a conventional camera.

4.1. Vanishing Point Estimation Experiments and Results

We tested vanishing point detection method which is given in Section 3.1.1 on real

images with different scenes. We categorized the image data into five classes in terms of

indoor with geometrical cues, outdoor with geometrical cues, indoor with geometrical

cues including people, outdoor with geometrical cues including people, and nature. In

Figure 4.1, we show some examples from each class and we pointed estimated vanishing

point with a red dot on the images. In addition, we draw ten lines which are used to

estimate vanishing point on the images as blue lines.

The location of VP is estimated by the method in Section 3.1.1. Besides, true

vanishing point is marked on the image manually as the furthest point in the image.

A circle around true VP with a radius of 5% of the longer dimension of image is

defined as the convenient VP region. If the estimated coordinates of VP is in the VP

region determined as above, the detection is accepted successful. Number of images

in each category and their success rate is given in Table 4.1. According to the results

given in the table, it can be seen that VP detection is more successful in the scenes

with geometric elements. In the scenes that includes people, two situations are to be

considered. If the scene is crowded and people are close to camera, VP is very difficult

to be estimated correctly, because people occludes the main lines converging to VP. If

there is a few people or people are away from camera enough, then the results are not

negatively affected so VP detection is achieved successfully. For outdoor images with

geometric elements, in spite of complexity of the scenes and even though some of them

had more then one VP, results are satisfactory in general view. Finally, VP detection
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Outdoor images with geometric elements

Outdoor images with geometric elements including people

Indoor images

Indoor images including people

Nature images

Figure 4.1. Sample images from test data which is used for vanishing point

estimation method
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Table 4.1. Vanishing Point Estimation Results. Success rate of VP detection is given

as estimated VP points fall inside the manually labeled true VP region.

# of samples the percentage of success

indoor 22 96

indoor with people 6 67

geometric outdoor 63 86

geometric outdoor with people 23 82

nature 13 39

total 127 81

performance for nature images is low as expected, since they do not have geometric

structures and a certain VP.

In Figure 4.2, results of proposed depth map estimation method which depends

on scene perspective cues such as vanishing point and main lines are shown.

4.2. Background Registration Experiments and Results

To show the results of the background registration method which is proposed in

section 3.2.2, we recorded a video with horizontal camera motion of a scene including

foreground objects. Video frames are size of 640x360 and are recorded by the frame rate

of 25 frames per second. Our proposed method, background registration, is applied to

two frames which are shown in Figure 4.3, in order to evaluate the results in a sample

of two frames with seven frame interval.

We first extracted the background geometry based on geometrical cues as pre-

sented in Section 3.1. After that we found the displacement between two frames based

on their background geometry and shifted pixels of second frame to register the back-

ground with first frame (Section 3.3.1). As a result we obtained a disparity just on
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Figure 4.2. Depth maps of different images that is obtained by the proposed depth

estimation method based on VP detection. Left column shows original images and

right column shows their depth maps.
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Figure 4.3. Two consecutive frames taken by a horizontally moving camera.

foreground object. After all, we added a disparity to the frame according to depth

geometry of background (Section 3.3.2). In this experiment we chose the convergence

layer (zero disparity layer) in the middle of depth lines and we gave disparities between

-10 to 10.

For the evaluation of obtained stereo frame, we extracted disparity map from

stereo pair using the method given in [44]. Taking the original image as right image,

and the resulted image of background registration method as left image; we calculated

the disparity map between left and right image. Figure 4.4(a) shows this disparity

values on edges of scene. As seen in the figure, we have determined disparities on

background region. In this way, the disparity of the chair at foreground region is

different from background disparity which makes it distinguished from background by

means of 3D effect.

In order to see the difference of disparity values on foreground region with back-

ground registration method and without background registration method, we applied

disparity to the same initial frame based on only background geometry - ignoring fore-

ground region. In the Figure 4.4(b), the disparity between this result and original

frame is also shown. As it can be seen from the figure, there is no difference between

the disparities of chair at the foreground and background of the scene. If one watch

this stereo frame as 3D view, he/she will feel the chair belongs to background without

any 3D effect.
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(a) Background registration method is applied. Foreground disparity differs from background. Dispar-

ity results of generated stereo image is demonstrated on edges of the scene by red lines which show the

disparity amount to the right and blue lines which show disparity amount to the left. In the figure, it

is shown that chair on the foreground has 5 pixels disparity while its horizontal neighbor pixels are at

zero disparity plane of the background.

(b) Background registration is not applied. Foreground disparity is the same with background disparity.

It is shown that chair on the foreground has 0 pixel disparity that is the same with its horizontal

neighbor pixels which are at zero disparity plane of the background.

Figure 4.4. Disparity results. (a) with background registration, (b) without

background registration
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4.3. 3D Effect Verification of Generated Stereo Frames

Based on the final depth and disparity maps of the single image, we implemented

an image warping process to render virtual view for stereo generation. In this context,

we shifted pixels of original image according to depth order information and filled the

holes (Section 3.4). Firstly, we tested background depth-order maps, so we created

stereo images according to just background depth order information which is explained

in Section 3.1. Secondly, we created stereo images based on depth maps including

foreground depth-order which is obtained by method in Section 3.2.

In order to create disparity between stereo frames, we shifted the pixels of original

image with an amount that determined based on depth order map of pixels. Conver-

gence layer (zero disparity region) was determined by user and different disparity ranges

were applied to original images. A group of experts from industry watched the gener-

ated 3D stereo videos in commercially available 3D TV sets and marked the problematic

regions manually. Generally, it was experimented for background scenes which include

geometric perspective. It is found out that, the stereo images whose convergence layer

is at closest region are best in terms of depth impression and watching comfort. Ac-

cording to these experiments, we determined the maximum disparity of 20 pixels give

better results for viewer. Therefore, we prepared a stereo data for user test to evaluate

the success of the proposed method specially for background depth perception. We

adjusted the convergence layer as closest region of the background-depth-order map,

and shifted whole depth regions linearly in the range of 0 and 20 pixels.

Two test setups are configured for the user test. In the first user test setup,

proposed method is compared with other commercial 2D-3D converters. In the second

test setup, the results of the proposed method are graded with respect to original stereo

videos taken by stereo cameras.
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4.3.1. Comparison with Commercial 2D-3D Converters

For the user test, a group of users are invited to watch and grade the quality of

the generated stereo images. We showed two version of 3D images which is obtained

from the same 2D image data - one is our results and the other is obtained from

two different commercial 3DTV’s own 2D-3D converters. By such a comparison, we

could make a better understanding of what is achieved by our method. Beside our

results, one group of users watched the results of Commercial 3D-TV Set-1 while others

watched the results of Commercial 3D-TV Set-2 for the same 2D data. This 2D data

comprised of eight real 2D single images with different scene contexts for evaluation

of background depth effect and two 2D videos that include moving objects for the

evaluation of foreground depth effect. Images include indoor with geometric elements,

outdoor with geometric elements, and nature without geometric elements and they are

required to test background depth estimation method. These original images used as

right image and resulted image is used as left image for stereo viewing. Generated

stereo image results which are viewed by test subjects are shown in Figure 4.5 and

Figure 4.6. In order to test foreground object’s 3D performance which is generated by

the method of Section 3.2.1, the subjects are required to watch two videos with moving

objects. A sample stereoscopic frame from each video is given in Figure 4.7.

We asked to users to give a satisfaction score of the depth feeling for each 3D

image and video. The score is in the range of 0 to 10 where 0 stands for no depth

feeling and 10 for the perfect depth impression. Forty people in total participated in

our tests; twenty six of them viewed test data on Commercial 3D-TV Set-2, and four-

teen of them viewed them on Commercial 3D-TV Set-1. For each 2D test data, the

subjects were shown 3D images generated by our proposed methods, and 3D images

converted by other commercial TVs. The subjects were not informed about source of

3D images. Finally, average score for each test data is obtained and used as measure of

the performance of the generated stereoscopic images. Results are shown in the Figure

4.8 separately.
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(a) img1

(b) img2

(c) img3

(d) img4

Figure 4.5. Generated stereo images for the user test for evaluation of background 3D

effect
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(a) img5

(b) img6

(c) img7

(d) img8

Figure 4.6. Generated stereo images for the user test for evaluation of background 3D

effect
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(a) video1

(b) video2

Figure 4.7. Generated stereo images for the user test for evaluation of both

foreground and background 3D effect

According to this test results, our proposed methodology produces better perfor-

mance on 3D effect than other two converters of commercial 3D-TV sets. Background

depth effect of proposed method is effective especially on the scenes with strong geo-

metric structures, as it obtained circa eight points in average for the first three images

and above the averages of the other TV converters. The reason why first three images

have such higher success over other images is that they have strong geometrical cues

and larger real scene depth value. Therefore, scene is converging to vanishing point

more apparently in line with the proposed methodology. Thus, 3D effect on this type

scenes is more enhanced by our background depth estimation method.

For the nature images of img7 and img8, our proposed method has not satisfactory

success. Since they do not have any geometrical cues and a certain vanishing point;

estimated background geometry for this type of images do not meet the real depth

structure.
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(a) Proposed method vs 2D-3D converter of Commercial 3D-TV Set 1. Average user

test scores over maximum of ten points for eight images and two videos for comparing 3D

experience of our proposed method with that commercial 2D-3D converter. Proposed

method is graded higher scores than the other converter in all cases.

(b) Proposed method vs 2D-3D converter of Commercial 3D-TV Set 2. Average user

test scores over maximum of ten points for eight images and two videos for comparing 3D

experience of our proposed method with that commercial 2D-3D converter. Proposed

method is graded higher scores than the other converter in most cases.

Figure 4.8. Charts of the 3D user test results
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(a) Original stereo image: Street

(b) Resulted stereo image of the proposed method (c) Background depth map

obtained by the proposed

method

Figure 4.9. Stereo test image and stereo result by background depth estimation

The best 3D effect performance of our proposed method is obtained from the

videos including foreground disparity in addition to background disparity. We deter-

mine this foreground regions by the method explained in the Section 3.2 and combine

foreground depth with background depth. Since adding a foreground depth effect next

to the background depth effect makes a 3D perception more impressive, video1 and

video2 get higher scores.

4.3.2. Comparison with Original Stereo Videos

For the 3D effect verification, some 3D film frames which are captured by stereo

camera sets are downloaded from internet and some stereo videos are taken by a stereo

camera to compare with proposed results. Each right eye frames of original stereo
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(a) Original stereo image: Cliff

(b) Resulted stereo image of the proposed method (c) Background depth map

obtained by the proposed

method

Figure 4.10. Stereo test image and stereo result by background depth estimation

images are taken as a single image to be processed by the proposed method. Resulted

stereo images and original stereo images of the same single frames are presented to

subjects by using a 3D-TV display with a polarized 3D system. Eleven subjects par-

ticipated in that user test. For each frame, subjects first watched original stereo frame

and they are asked to accept its grade as 10 points. After that, they watched the

resulted stereo image produced by the proposed method of the same scene. They are

asked to grade proposed result by taking the original stereo image as reference of 10

points.

In Figure 4.9(a) and Figure 4.10(a), two original stereoscopic images taken from

different 3D movies are shown. In Figures 4.9(b) and 4.10(b), results of proposed

method are shown. Right eye images of the original stereo images are taken as single
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Table 4.2. User test results for the single frames of 3D movies. The original stereo

frames are taken as references for 10 points. Only background geometry is used for

depth map estimation.

Scores Applied method

street 7.9 / 10 Section 3.1

cliff 5.2 / 10 Section 3.1

images and they are used as input for the proposed 2D to 3D conversion system.

Estimated background depth maps that are used to create stereo images are also shown

in the figures.

The user test results for these two images are given in Table 4.2. These two

input images are taken as single images and motion analysis are not used for depth

determination. Since just background depth map is used for stereo image generation,

street image which is not include a close foreground object got good scores. In 3D

movies, foreground objects which are very close to camera are generally more enhanced

by means of depth illusion. In cliff image, there is a zebra which stands very close to

camera. In original stereo image, this zebra has a very impressive 3D depth effect. In

the proposed method we just used background depth map, in other words we gave a

depth illusion for the cliff only, and could not determine the depth of zebra. Therefore,

subjects could not see a depth on zebra while they were impressed by depth illusion

of original stereo image. However they were satisfied by the depth impression of cliff

on the 3D image created by proposed method. Although there is no straight lines or

geometric elements to converge to vanishing point in the scene, the proposed method

is prone to find VP near to the center of the image in such cases. Since, cliff has a

deep depth near to the center of the image also, subjects found the background depth

effect very good.

For the evaluation of the proposed motion analysis for depth effect creation we

captured stereo videos by using a stereo vision camera with 648x488 resolution, 2.5

mm focal length and color chroma. Two different videos are taken which include: (i)
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(a) A frame from the stereo video of moving object

with stationary camera

(b) Resulted stereo frame by the proposed method (c) Hybrid depth map obtained by the pro-

posed method

Figure 4.11. Stereo test image and stereo result by background and foreground

disparity assignment.

moving object with stable camera (Figure 4.11(a)), and (ii) stable object with moving

camera (Figure 4.12(a)).

Using these original stereo frames’ right eye images, we also create stereo videos

by our proposed method. In the video of stable camera and moving object, Gaus-

sian mixture models are used to determine moving background object as explained

in Section 3.2. Figure 4.11(b) shows the final result which is obtained by using both

background and foreground depth estimation methods. After that, we presented our

results and original stereo frames to the subjects for evaluation. While scoring, first

original stereo frames are showed to users and they are asked for taking it as a reference
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(a) A frame from the stereo video of stable object

with moving camera

(b) Resulted stereo frame by the proposed method

Figure 4.12. Stereo test image and stereo result by background and foreground

disparity assignment.

for maximum points that is 10 points.

In the same way, the stereo video of stable object with moving camera is processed

using our proposed method and results are showed to subjects. For this video frames,

background registration method (Section 3.3) is applied for disparity assignment beside

background depth estimation. Obtained comparison scores of user test is given in Table

4.3.

According to the subjective evaluation results which is given in Table 4.3, we can

say that the case of stationary camera and moving foreground objects are successful.

Its overall scene depth impression score is 8.3/10 where original stereo frame is taken

as maximum points. In addition, when it is evaluated separately for background depth
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Table 4.3. User test results for stereo videos taken by a stereo camera. The original

stereo frames are taken as references for 10 points. Background geometry is used for

background depth and motion analysis are used for foreground depth estimation.

Background

scores

Foreground

scores

Overall

scene

scores

Applied

method

Video with moving

object and station-

ary camera

8.4 8.0 8.3 Section 3.1

Section 3.2

Video with stable

object and moving

camera

8.4 2.5 5.4 Section 3.1

Section 3.3

and foreground depth, it has good scores for both of them.

For the second video of stable foreground with moving camera is not such suc-

cessful for overall depth impression. Both of two videos can be said that have same

background geometries, so their background depth impression has same scores which

can be accepted as successful. However, subjects stated that the foreground region in

the second video has not enough depth impression for a satisfactory depth experience.

From the numerical disparity analysis that is given in Section 4.2, we can see that the

marginal disparity amounts on foreground objects are not much enough. We can create

a different disparity on foreground region by background registration method, however

this disparity is inadequate for an impressive depth illusion, especially when compared

by original stereo version of frames. Therefore, for further studies, enhancement of

that obtained foreground disparity can be give better results.



55

5. CONCLUSION

In this thesis, we proposed a method for stereoscopic image generation from

monocular image or monocular image sequences. In order to convert 2D images for

3D stereoscopic visualization, main and most difficult part is depth map estimation to

create the stereo images from single frames. As shown in the literature review, there

are different methods that use pictorial cues of the given image such as perspective

geometry, motion parallax, and focus/defocus for depth estimation. In this work, we

presented a hybrid method for depth estimation based on geometrical cues and motion

analysis over a 2D image.

In the proposed method, geometrical cues are utilized to determine depth gradient

layers of scene background. Within a given image, a rough background depth map is

built benefiting from perspective distortion in real images. Vanishing point resulting

from perspective distortion of parallel lines in the real world serves as anchor point.

The vanishing point is estimated through the use of Hough Transformation. After

determining vanishing point, its location in the 2D image is assigned as farthest location

of scene in terms of the distance from camera. In addition we found main lines which

constitute general background geometry to determine depth order layers. This enabled

us to create entire background geometry of the image.

In order to reinforce depth effect, we also included two different approaches to

assign depth and disparity to foreground regions based on motion analysis. In the

first approach, we extract moving foreground regions from the 2D frame sequences by

using Gaussian mixture models. After finding foreground object, background depth

information generated from geometrical cues are combined with this region based on

its location. In the second approach, background registration is applied for consecutive

frames that are captured by a moving camera. By this method, disparity in foreground

regions is distinguished from background disparity that leads to a distinctive 3D effect

on foreground regions.
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In the proposed hybrid methodology, all these background and foreground depth

and disparity information were fused to create final disparity map to obtain stereo

image. By taking single input image as right eye image, we created left eye image by

warping input image based on the eventual disparity map.

Depth maps which are extracted from single images are only approximations of

true world for adequate 3D visualisation. It is shown that proposed methodology has

successful results for stereoscopic viewing. As user evaluation test indicates, our results

have satisfactory 3d impression and better than some commercially available 2D to 3D

converters. However, since our method depends on geometrical features of scenes, its

performance was highly satisfactory in scenes mostly composed of manmade structures

while it showed limited performance in natural scenes.

Our purpose was to present a real-time implementation of 2D to 3D video conver-

sion for 3D-TVs. Therefore, we avoided to use the methods with more computational

complexity. In this perspective, more extensive implementation based on our method

may yield better results on more complex computational environment. Improvements

can be made for both effectiveness and robustness. Our estimated depth map can be

used as a first estimation for accurate iterative depth map estimation methods.
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