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ABSTRACT 
 
 
 

 

           EFFICIENT YIELD ESTIMATION USING RARE EVENT  
 
              SIMULATION TECHNIQUES ON ANALOG DESIGN 
 
                                      AUTOMATION TOOLS 

 
 
 
 
 
 

With the improvements in fabrication processes, electronic circuit designers have 

begun to design complex circuits which consist of multibillion transistors. But, as circuit 

complexity increases, the silicon complexity also increases, leading to process variations 

having a profound effect on the circuit performance especially in sub micron technologies. 

Therefore, even if a circuit was designed to achieve a certain design specification, there 

will be a discrepancy between the simulated and the measured performances. This 

difference can lead to a decrease in the yield. Circuit designers tend to handle this problem 

by leaving a safety margin; however, this leads to overdesign and loss of precious chip 

area. Therefore, there is an undeniable need to have efficient design automation tools for 

reducing design time without compromising performance. Normally, a typical approach 

for analyzing a circuit would be running a Monte Carlo simulation with a small sample 

size and then fitting a standard analytical distribution to the data. Such an approach can be 

accurate for the main part of the distribution, however it will be heavily inaccurate in the 

tail of the distribution. Since, the distribution of design specifications with respect to 

process variation effects tends to have a long tail by nature, a classic Monte Carlo 

simulation can not be used.  In this case, a rare event sampling method can be utilized for 

increasing number of samples corresponding to tail of the original distribution. Cross 

entropy minimization based importance sampling (IS) method is chosen as rare event 

sampling method for the scope of this thesis due to its efficiency, although there are lots of 

different Monte Carlo based proposals. Also, a hybrid Quasi-Monte Carlo (QMC) method 

has been utilized in order to both select rare event threshold that is needed for cross 

entropy based IS algorithm and performance comparison with the proposed algorithm. 
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ÖZET 

 
 

 

 
         ANALOG TASARIM OTOMASYONUNDA ETKİN VERİM 

 
           HESABI İÇİN NADİR OLAY BENZETİM TEKNİKLERİ 
 
 
 
 
 

Gelişen fabrikasyon prosesleri ile birlikte elektronik devre tasarımcıları günümüzde 

milyarlarca transistör içeren karmaşık devreler tasarlayabilmektedir. Ancak devrelerin 

karmaşıklığının artmasıyla birlikte silikon karmaşıklığı da artmakta, dolayısıyla proses 

varyasyonlarının devre üzerindeki etkisi gittikçe artmaktadır. Özellikle mikron-altı 

proseslerde, proses varyasyonlarının etkisi oldukça hissedilmektedir. Bu durum tasarlanan 

devrenin simülasyon performansı ile üretimden sonra ölçülen performansının farklı 

olmasına neden olmaktadır. Bu nedenle üretilen bazı devreler istenen spesifikasyon 

aralığının dışına çıkabilmekte, verim bu sebeple düşebilmektedir. Tasarımcılar genellikle 

istenen performans kriterleri için belli oranlarda pay bırakarak bu sorunlardan kaçınmaya 

çalışmaktadır. Ancak bu da aşırı tasarım ve de günümüzde artık çok değerli olan çip 

boyutunun artmasına neden olmaktadır. Dolayısıyla performanstan ödün vermeden tasarım 

sürecini kısaltacak tasarım otomasyon araçlarına büyük bir ihtiyaç vardır. Normalde, 

tasarıma dayalı verim hesaplaması için analiz yaparken klasik Monte Carlo yöntemi 

kullanılabilir. Ancak bu analiz, olasılık dağılım grafiğinin sadece gövde kısmı için gerçeğe 

yakın olacaktır, kuyruk kısmı varsa elde edilen sonuç gerçek değerden oldukça uzak 

olacaktır. Tasarım spesifikasyonlarının proses varyasyonlarına bağlı değişimi doğal olarak 

uzun bir kuyruğa sahip olduğundan simülasyon için klasik Monte Carlo yöntemini 

kullanmamız mümkün değildir. Bu durumda yapılacak olan grafiğin kuyruk kısmındaki 

nadir örneklerin sayısını arttırmaktır. Literatürde bu amaçla nadir benzetim teknikleri 

kullanılmaktadır. Tezin kapsamında çapraz entropiye dayalı önem örneklemesi 

etkinliğinden ötürü önerilmiştir. Bunun yanısıra hem nadir örnek eşiğini tespit edebilmek 

hem de önerdiğimiz algoritma ile kıyaslanması amacıyla hibrit QMC methodu da 

uygulanmıştır. 
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1.  INTRODUCTION 
 
 
 

 

1.1. Motivation 
 

 

The invention of the transistor in 1947 can be considered as the beginnning of a new 

era which is called the information age. In this age, smart electronic devices have become 

indispensable for our every day life including communication, health, energy, security, 

entertainment, and education. And all of these inventions are made possible with the 

microelectronic revolution. In the early days of electronics before 1950s, vacuum tubes 

also called electron tubes, were the main electronic devices that were used in just a few 

areas such as radio and television. Limitations were due to the nature of vacuum tubes 

being quite big and unreliable devices. They were also problematic due to heat dissipation 

problems. Therefore, by the end of the 1950s, the transistor replaced the hot, unreliable 

electron tube in nearly every existing type of electronic system. It also made electronic 

devices smaller, cooler in terms of heat, and less expensive. Later, the invention of the 

transistor led to research in the integrated circuit field. After the invention of the first 

integrated circuit in 1958, microelectronic industry has made a huge leap impacting the 

society in every way possible. With the realization of first IC, we have crammed more and 

more electronic components into a single chip year by year. 

 
 

The need for high performance and cost effective electronic products led electronic 

engineers towards system on chip (SoC). With the improvements in the fabrication proces- 

ses which enabled decreasing feature sizes, currently multi-billion transistors can be 

combined into a single chip [1]. In early 1960s, only 30 transistors could be integrated into 

the single chip for primitive ICs. In his notable article which was published in 35th 

anniversary edition of “Electronics Magazine”, Gordon Moore correctly predicted the 

trend in components per integrated circuit [2]. He stated that the number of components 

per integrated circuit would be doubled every year.  His prediction was amazingly accura- 

te so that one of his friends, Dr. Carver Mead who was a professor at Cal Tech dubbed this 
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as Moore’s Law. So, the original Moore’s Law was doubling every year in complexity 

hence in computing power. As Moore stated at 1975 IEEE International Electronic 

Devices Meeting, advances in photolithography, wafer size, process technology, circuit 

and device cleverness allowed to his prediction to be realized. However, in 1975, he 

revisited his prediction and made a correction. He slowed the future rate of increase in 

complexity. According to his second prediction, the total number of transistors put on a 

chip will be doubled every 2 years [2]. Moore’s second prediction is still accurate today. 

However, due to some limitations especially physical limitations, Moore’s Law threatens 

to come to a halt unless a new integration technology isn’t found [3]. 

 
 

Ever since, increasing the number of transistors per IC has become the motivating 

force for electronic engineers. However, developments in the scaling process and 

cramming many circuits into a single IC has a cost. As stated in [4], problems may be 

categorized in two subgroups. The first problem is due to silicon complexity, which refers 

to the effects of process variations on the circuit performance. Normally, it is widely 

assumed that process parameters are similar for all devices on the same wafer, but it may 

vary from wafer to wafer. In deep sub-micron technologies, the amount of process 

variation becomes particularly pronounced and process tolerances worsen along with 

transistor dimensions [5]. This is even more critical in analog circuits, because process 

variation effects lead to mismatches due to local changes on the same chip. Analog circuits 

heavily depend on the close matching of a set of devices, and variations will degrade the 

performance of the circuit. Therefore, even if a circuit was designed to achieve a certain 

set of design specifications, differences between the simulated and measured performances 

most likely to occur in a population of fabricated ICs due to process variations and 

mismatches [6], as shown in the Figure 1.1. If the variance causes the measured or 

simulated performance of a particular output metric such as bandwidth, gain, phase 

margin, rise time, etc. to fall below or rise above the certain set of specifications for the 

particular circuit or device, it reduces the overall yield for that set of devices. Furthermore,  

because     circuit   specifications  are correlated  with each other, adjusting one parameter  may        
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affect overall performance which requires simultaneous optimization between all 

specifications. Hence, manual circuit sizing is an unfeasible and time exhaustive process 

for a human. In order to shorten the design time, analog design automation becomes a vital 

and significant alternative. The second problem is due to increased system complexity, 

which can be explained such that exponentially increased number of transistor counts 

leads to increased functionality and complexity. Hence, floorplan and power management 

of the ICs together with various trade-offs between circuit performances alongside the 

shorter time to market demand become critical and immense concerns. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Circuit performance change after variation. 
 
 
 

 

An efficient way for dealing with design challenges without decreasing productivity 

of designers is to benefit from computer aided design (CAD) tools [1]. CAD tools can 

provide assistance during analysis and verification of the system. Typically, from 

transistor level to system level, the designer benefits from CAD tools in order to determine 

the performance of the design. In the literature, efficient CAD tools are available for 

digital circuits. Digital systems are    more suitable for design   automation   contrary to analog  

systems; hence, digital systems can be defined using Boolean algebra unlike analog 

systems. Today’s advanced CAD tools are capable of synthesizing a transistor level design 
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that was described in a so called hardware description language (HDL) by either using 

Verilog or VHDL [1]. From the point of analog systems, developing a CAD tool is more 

challenging and dauntling task since analog circuits cannot be represented as digital 

circuits and have more complex trade-offs between circuit performances and physical 

parameters. In addition, taking into account effects resulted by device scaling, most of the 

design time of analog designers is spent by fine-tuning the system by utilizing a simulator 

through trial and error. Since trial and error is a brute force technique, it consumes a lot of 

design time. 

 
 

As already mentioned, manual device sizing is an unfeasible and time exhaustive 

process for a designer. If certain optimization algorithms can be combined with circuit 

simulators, the overall time spent for the design could be substantially reduced. Also, such 

a synthesis tool would enable fine-tuning of analog circuits simultaneously reducing

the design time. Therefore, the main focus of this thesis is to develop a yield aware analog 

circuit synthesis tool with extended rare event simuation capabilities that addresses these 

problems.  

 
 

1.2. Overview of Analog IC Design Flow 

 

 

In this section, analog IC design methodologies will be briefly introduced. As 

explained in the previous section, increased complexity of analog ICs results in growing 

design productivity gap for SoCs considering the shorter time to market constraint [4]. In 

order to improve the design process, some design methodologies are proposed for the 

circuit designers. As stated in [7], design methodologies can be divided into two groups. 

The first one is the top-down design methodology, the second is the bottom-up design 

methodology. The flow diagram as shown in the Figure 1.2 is same for both 

methodologies, the only difference is the direction of the flow as their names suggest.  
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Figure 1.2. VLSI IC design flow diagram (from [7]).  
 
 

 

In the top-down design methodology, the flow starts with system design, in which 

overall system specifications are provided. This step can be seen as general overview of 

the whole system. General blocks having dedicated tasks are designed and partitioned into 

sub-blocks. Typically, mathematical simulation tools such as MATLAB/SIMULINK are 

preferred for the system level design. The next step is called architecture or functional 

design where digital and analog blocks are separated and requirements of functional 

blocks are defined. The following step is called topology selection in which topologies for 

functional blocks and sub-blocks are determined. For example, if an operational amplifier 

(OpAmp) is required, the designer has to determine to use either a basic two-stage or a 

folded cascode topology. In the cell design, specific blocks are designed at transistor level 

and   sizing   is performed   in   order  to achieve   pre-defined   performances in a   certain techno- 
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logy. Finally, layouts of cells and general blocks are drawn and post-layout simulations are 

performed to validate circuit and system specifications. This methodology is advantageous 

because systematic design is suitable for capturing and fixing problems, since it allows 

interaction of blocks during the design process. 

 
 

The other design methodology starts with the designer using previously designed 

cells [8]. However, using the library of analog cells may be inefficient considering the 

technology dependency and variety of analog circuits. However, if some form of soft 

intellectual property (IP) is used, design knowledge and optimization techniques could be 

embedded such that technology dependency is removed and a wide range of performance 

choices is provided for designers.  

 
 

1.3. Overview of Rare Event Simulation 
 

 

Rare event simulation or rare event sampling is a coin term for a group of computer 

simulation methods intended to selectively sample special regions of the dynamic space of 

systems which are very unlikely to be visited by using brute force simulation techniques 

[9].. A rare event is an event whose occurence is rare with probability less than 10−3. 

However, typical probabilities of interest are between 10−8 and 10−10. Although it seems 

like these probabilities are incredibly small, rare events occur when dealing with 

performance evaluation in many different areas such as telecommunication networks, 

dependability analysis, air control systems, particle transport, biology, insurance, finance. 

In most of the rare event problems, the mathematical model is too complicated to be 

solved by either analytical or numerical methods because the assumptions are not stringent 

enough, the mathematical dimension of the problem is large, or the state space is too large 

to get a result in a reasonable time [10].  

 
 

The main idea behind the thesis is to develop accurate yield estimation method for a 

yield aware analog circuit synthesis tool. So, the performance evaluation metric is yield in 
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our case. In order to guarantee a certain yield for the design, some variability analysis to 

estimate the yield is required. With a crude Monte Carlo method such as Quasi Monte 

Carlo method,  we are able to achieve relatively accurate yield estimates of up to 99%. 

However, this yield may not be sufficient for manufacturing, where 6-sigma is required. 

Hence, CAD tool must be extended to focus on infeasible region where rare events occur 

after variability analysis. This is achievable by utilizing rare event sampling techniques as 

variance reduction method. In the scope of the thesis, a hybrid rare event sampling 

algorithm is proposed for this context. 

 
 

1.4. Main Contributions and Outline 
 

 

This thesis presents the following key features and contributions: 
 

 

 Yield estimation techniques are developed.  

 In order to achieve higher yields up to 99.6%, different rare event sampling 

techniques are implemented and analyzed with synthetic data. 

 After a brief analysis, a commonly known hybrid rare event simulation technique 

is chosen to be used in our CAD tool. The technique is a hybrid of Importance 

Sampling and Cross Entropy Minimization techniques, and is used frequently in 

statistical analysis.  

 The algorithm used for yield estimation is proposed as a novel design technique. 

 
 

The organization of thesis as follows: Chapter 2 presents the background of the 

thesis by emphasizing key concepts. Chapter 3 gives details and implementation of yield 

aware design CAD tool by applying Quasi Monte Carlo (QMC) technique which is 

required for a yield estimation. Chapter 4 explains one of the most commonly used rare 

event simulation technique known as Importance Sampling (IS) and discusses why this 

technique is not suitable for our analog circuit synthesis tool. Also another commonly used 

technique dubbed as Cross Entropy Minimization (MCE) is borrowed from information 

theory in order to improve   efficiency of IS. Chapter 5 gives the details of the our proposed 
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algorithm called Cross Entropy Minimization Based Importance Sampling in multiple 

levels with integrated SPICE circuit simulator. Chapter 6 gives details about yield 

estimation. The final chapter states the conclusion and results. 
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2. BACKGROUND 
 
 

 

Analog circuit synthesis consists of 3 main phases in analog design processes. These 

phases are correctly biasing the whole circuit in terms of node voltages and electrical 

currents flowing in circuit branches, calculating the passive element components, and 

transistor sizing. Analog design as already mentioned is a very hard and time consuming 

process. Therefore, in recent years, analog design automation has attracted researchers’ 

attention and become a very hot search topic. Because novel methodologies and CAD 

tools are needed for shortening analog design time. In the literature, analog design 

automation algorithms can be classified into three categories. These categories are mainly 

knowledge based approaches, equation based approaches, and simulation based 

approaches. 

 
 

Knowledge based algorithms have been developed at first and depend upon the 

designer solely, because optimization depends on the designer’s knowledge, experience, 

and know-how. In knowledge based algorithms, design strategies for a given circuit 

topology are utilized during circuit synthesis. Design plans consisting of design equations 

and design strategies reduce the computation time required for obtaining solutions. Since 

knowledge based algorithms are based on predefined design plans, the result of these 

knowledge based algorithms may be inaccurate. Furthermore, preparing design plans for 

each topology requires excessive human effort and therefore is not feasible [1]. These 

knowledge based algorithms can not have place in commercial CAD tools considering the 

disadvantages of human interaction in the optimization process and creation time of design 

plans for various circuit topologies. In the literature, there are some known knowledge 

based analog synthesis computer programs: OASYS [11], IDAC [12], and BLADES [13]. 

 
 

Equation based algorithms are quite fast compared to knowledge based algorihtms 

due to using analytical equations for circuit evaluation. Therefore, if these analytical equ- 

ations get complex, equation based algorithms lose their efficiency. The optimal solution 

can be obtained by solving equations using mathematical equation solving tools with     poly- 
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nomial models of circuit properties and transistor parameters. Polynomial models have 

been already developed for CMOS OpAmps [14, 15], multi-stage amplifiers [16] and 

oscillators [17]. But large prediction errors often occur in some transistor parameters 

because of the short channel effect of CMOS technologies. In order to eliminate prediction 

errors, this approach requires several iterations. In addition to this, time required for model 

development and topology dependence limit the usefulness of this approach. Therefore, 

although equation based algorithms provide fast convergence rate and flexibility for 

carrying out various search algorithms, design equations still have to be derived by hand 

which means human interaction is still needed for optimization. Another disadvantage is 

the loss of accuracy since it is not easy to derive all design equations without making 

simplifications since the equations are most often complicated. In the literature, commonly 

known equation based CAD tools are OPASYN [18], OPTIMAN [19], and AMGIE [20]. 

 
 

 Simulation based algorithms are based on a circuit simulator which evaluates the 

circuit performances. There are lots of commercially available simulation based tools. In 

the context of the thesis, HSPICE will be used for accurate circuit simulation.  With the 

usage of simulation based algorithms, human interaction during circuit synthesis is 

eliminated. In addition, design automation tools overcome the loss of accuracy and 

become comparable with manual designs. Also, topology and technology dependency is 

no longer valid since circuit element values, types, and input parameters can be easily 

manipulated at the input of SPICE. For example, SPICE netlist includes all transistor 

dimensions, types, passive component values which is required for simulation. Therefore, 

it is easy to manipulate device dimensions; hence, technology dependency is minimized. 

The downside is that total synthesis time is increased, because optimization algorithms 

require excessive number of long simulations to find the optimal solution for the given 

circuit. In the literature, Anaconda [22] and FRIDGE [23] can be given as examples of 

simulation based computer programs. 

 

 The constant downscaling of the technology has led process tolerances to worsen 

along with transistor dimensions [5]. Process variations are natural occuring variations due 
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to gate oxide thickness, random dopant fluctuations, and device geometry. Therefore, it is 

a challenging problem to cope with process variations which cause worsened reliability 

issues in CMOS circuits during the fabrication process. The circuit designer must take into 

account these variations because they cause a difference between simulated and measured 

performance. If the measured performance of a particular output metric such as 

bandwidth, gain, phase margin, rise time, etc. goes out of the range of a certain set of 

spesifications for the particular circuit, it reduces the overall yield of that circuit. 

Therefore, in order to prevent this discrepancy, some additional steps should be included 

in the design procedure. The aim here is to achieve a certain performance after fabrication 

which corresponds to the yield in our case. Thus, in order to guarantee a certain yield for 

the design, some variability analyses to estimate the yield are needed. In the previous 

research, hybrid Quasi Monte Carlo technique is proposed as yield estimation technique 

for the CAD tool [24]. In the scope of the thesis, hybrid Quasi Monte Carlo sampling will 

be also used for the CAD tool.  

 

In the previous research [24], QMC is utilized for the accurate yield estimation. 

Yield estimates of up to 99% is achieved by using QMC. As mentioned before, this yield 

may not be sufficient for manufacturing, where 6-sigma is required. Therefore, obtained 

yield is seen to be unfit for the manufacturing purposes. In order to enhance the yield 

estimation technique, rare event sampling methods are researched in the scope of the 

thesis. The most common rare event sampling techniques are importance sampling (IS) 

and cross entropy minimization based techniques. Though importance sampling can be 

used alongside QMC for enhancing yield estimation, it has some disadvantages. In order 

to find the optimal solution, IS could be strengthened with cross entropy minimization. In 

fact, this hybrid technique is applied to other areas such as estimating probability of failure 

rate of SRAM cells [25]. In the context of thesis, cross entropy minimization based IS is 

applied for a more enhanced and accurate yield estimation. 



12 
 

 

     3.    YIELD-AWARE CIRCUIT SYNTHESIS WITH A HYBRID  
 

              HYBRID QMC TECHNIQUE 
 
 
 
 
 

The continous downscaling of device geometries resulted in downgrading of process 

tolerances along with the device sizes. Especially in smaller process nodes, process 

variations significantly affect the performance of the manufactured devices as the variation 

becomes a larger percentage of the full length or width of the device. Therefore, it is a 

challenging problem to deal with process variations during fabrication process, which 

reduces the overall yield and hence reliability of CMOS circuits. For example, it becomes 

a headache to handle variations in the fabrication steps, such as line-edge roughness that is 

induced by gate etching and the lithography process [26], oxide thickness fluctuations that 

cause the fluctuation of the voltage drop across the oxide layer, affecting Vth , and random 

dopant fluctuations that significantly alter Vth [27]. Thus, circuit design without 

considering variation, leads to discrepancy between the simulated and the measured 

performance as shown in Figure 3.1. To prevent this discrepancy, some additional steps 

should be included in the conventional design procedure and analog design automation 

algorithms to achieve a certain performance after fabrication process [28]. As a result, in 

order to guarantee a certain yield for the design, some variability analysis to estimate the 

yield is required. 

 

P1  

 After 

 Variation 

Infeasible 

P2 Region 
 
 
 

 

Figure 3.1. Optimum point moves towards to infeasible region after variation. 
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3.1. Background 
 

 

In the literature, there are different methods for variability analysis including 

sensitivity analysis, corner analysis, regression based models, and Monte Carlo (MC) 

based analysis [28]. Among them, Monte Carlo analysis is the most popular method to 

estimate the yield of a design, because it is simply based on simulating randomly selected 

points in the uncertain parameter space and observing the variation effects on the output. 

MC based approaches generally utilize variance reduction techniques because variance 

reduction techniques increase the precision of the estimates that can be obtained for a 

given number of iterations. Therefore, effects of variations to the yield can be found most 

accurately by using MC based approaches. However, the disadvantage of using classical 

MC approach is that it requires a very large number of simulations to provide a certain 

accuracy. Hence, the total simulation time and computational effort is significantly high 

for conventional MC approaches. Therefore,  conventional MC method is not suitable for 

a yield-aware circuit synthesis CAD tool due to inefficiency.  

 

In order to reduce the computational effort and simulation time, several speed-up 

techniques have been proposed in the literature. The main idea behind these techniques is 

minimizing the number of samples by using either variance reduction techniques such as 

Importance Sampling (IS) or utilizing some mechanics for the use case. For example, 

Quasi Monte Carlo (QMC) technique that utilizes Low Discrepancy Sequences (LDS) can 

be used instead of classical MC technique which is based on sequences of pseudo-random 

numbers. Among these techniques, QMC has been the most efficient approach in terms of 

computational effort or CPU memory. The main advantage of QMC is scattering the 

samples on the space homogeneously rather than randomly. Other important advantage of 

QMC is that it exhibits itself for applications that require iterative sampling, such as yield-

aware optimization. Since QMC is a deterministic approach, the sample size can be 

increased iteratively by pre-determined sample steps. This feature is highly crucial during 

the optimization process to enhance the efficiency. Using the QMC approach for yield 

estimation,    which    promises   adaptive   sample   size   determination   and   automated     stopping 
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criterion mechanism, results in keeping the sample size to a minimum to avoid the 

redundant simulations. 

 

 

3.2. Efficient Yield Estimation Techniques 
 

 

There is a trade-off between the yield estimation accuracy and computational cost. 

Computational cost includes both total simulation time and required resources such as 

CPU memory. For a more accurate yield estimation, computational effort increases 

drastically. However, MC based techniques are reliable and independent from the problem 

dimensionality, which makes them popular for yield estimation. The efficiency problem 

can also be handled by introducing some speed enhancement techniques. Classical MC 

approach is based on random sampling of the uncertain parameter space [29]. However, 

random sampling can cause sample clusters and empty spaces in the MC distribution over 

the sampling region and therefore requires a large number of samples for spreading out in 

the space. In the optimization process, there are many candidate individuals, for which 

yield analysis will be carried out, hence the total synthesis time would increase drastically. 

If, somehow, samples were spread out in the space more uniformly, then the number of 

samples required for simulation would decrease dramatically. To reduce the synthesis 

time, one solution can be Infeasible Solution Elimination method (ISE), which is based on 

performing yield analysis only for the candidates that satisfy the user defined 

specifications [8]. On the yield estimation side, the efficiency of MC based techniques can 

be enhanced by changing sequences of pseudo-random numbers to LDS. The main idea 

behind such approaches is to spread out the samples as homogeneously as possible to 

cover the whole design space with a minimum number of samples.  

 

Classical MC approach has an estimation error rate of O(n-0.5) [29]. This error can be 

seperated into the factor related to the function itself and the factor related to generated set 

of random points according to the Koksma-Hlawka theorem [30], where the error is given 

as in the following equation. 
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|ŷ  y| ≤ Dn
*(x1, x2, x3,…, xn)VHK (f) (3.1) 

 

 

In Equation 3.1, ŷ and y are the estimated and real values of the yield, respectively, 

and D* is Star Discrepancy which is used for measuring the uniformity of the generated 

points,  where uniform distributions provide a smaller D*. VHK (f) is the total variance of 

the underlying integrand in the yield formula. As can be seen from the formula, the esti- 

mation error can be decreased via two methods: increasing the uniformity of samples and 

decreasing the variance of the function f.  

 

Although there are different types of variance reduction techniques, Quasi-MC 

technique is the most suitable one for our yield-aware CAD tool. For example, in one of 

the previous research [24], another common variance reduction method called Latin 

Hypercube Sampling (LHS) was applied to the yield-aware CAD tool. LHS method based 

on stratification [19], in which the term VHK (f) is reduced. The variance for one 

dimensional projections is highly reduced via LHS sampling, as in [19]. However, for 

higher order projections, the behaviour is similar to conventional MC. QMC is based on 

lowering D* via uniformly generated samples as showed in Figure 3.2., which provides 

enhanced efficiency, therefore it is a better fit for the CAD tool. According to the Koksma-

Hlawka theorem, homogeneous sample sets correspond to having lower discrepancy, 

which reduce MC estimation errors. The discrepancy of the conventional MC for n 

samples is given in [30] as  

Dn
*
|MC = O(n

-0.5
log(log(n))-0.5)  (3.2) 

 

 

where the estimation error of the conventional MC is O(n-0.5). On the other hand, 

considering QMC, the discrepancy is given as 

Dn
*
|QMC = O(n

-0.5
(log

8
(n))  (3.3) 

 

 

Low Discrepancy sequences provide an asymptotic integration error rate, which is 

much faster than the error rate of conventional MC method. 
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Several LDS strategies for generating sequences have been proposed such as Halton, 

Sobol, and Faure sequences [31]. All of these LDS based strategies are deterministic, cont- 

rary to the random sampling performed in the conventional MC and LHS approaches. This 

deterministic behaviour becomes a superiority when an iterative variability analysis is 

required. Variability analysis is carried out many times during the optimization process 

and this results in longer synthesis times. Using constant sample sizes during yield 

estimation can still be problematic: keeping the size too small may lead to non-accurate 

estimations, whereas oversampling may cause inefficiency in terms of total simulation 

time. 

            

 

Figure 3.2. Uniform scatter of N=500 process variation samples (W1 & L1) with QMC 

technique.  

 

 

 

3.3. Hybrid QMC Technique 

 
 

As seen in the previous section, QMC benefits to reduce computational effort for 

yieldestimation by  utilizing  uniformly generated       samples. However,  the major    disadvan- 
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tage of the QMC approach is that there is no practical way to know the error in the 

estimated yield, since it is impossible to calculate the total variation VHK (f) in the 

Koksma-Hlawka in-equality. As a result, a confidence interval for the estimation can not 

be obtained. To overcome this issue, LDSs are randomly permuted by scrambling [32], 

which simply reorders the sequence of values independently. Therefore, a few differently 

scrambled QMC runs provide a standard deviation that can be used as a probabilistic 

measure of the estimation error [33]. However, the requirement of multiple runs result in 

increased synthesis time. The proposed approach described in [28] promises a solution to 

estimate the error bounds for the estimated yield while preserving the time efficiency of 

the optimizer, in which QMC and scrambled QMC are combined together. 

 
 

3.3.1. Yield Estimation Method 
 

 

In the previous section, QMC approach is proposed for the yield estimation part of 

the yield aware analog design automation tool, and it is seen that typically a few hundred 

LDS points are sufficient to make quite accurate estimation. On the other hand, the 

drawback of the QMC approach is that the statistical error in the estimation cannot be 

calculated because deterministic samples from LDS which have no natural variance are 

used in the QMC technique. Also, in higher dimensions, it is hard to calculate the exact 

values of the error (Y – YN), because the variance of integrand VHK(f) becomes 

intractable. Even if VHK (f) is calculated and an upper bound is obtained, the estimated and 

exact value of integration would be very different. To overcome this bottleneck, and 

obtain a confidence interval of the estimated yield, scrambled-QMC technique [32], which 

is based on permuting the order of the sample set within a random manner, is exploited to 

obtain artificial statistical variance, as described in [28]. A scrambled-QMC sample set, 

{xi
(j)}N

i ; j = 1,2,…,M, is selected and the yield is estimated for each sample set as 

 

                                                                           N 

                                        y(j)  = (1/N) * ∑ f(xi
(j)) , j=1,2,….,M                                         (3.4) 

                                                                           i=1 
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Then, the mean of the yield is calculated as 
 
 

 

                                                                                    M 

                                                 ŷ  = (1/M) * ∑  y(j)                                                           (3.5) 
                                                                                    j=1 
 

 

The error of numerical integration is estimated using the variance of the evaluated yield 

values, which is calculated as 

 

 
                                                                          M 

                             σ ̂2  = (1/M(M-1)) * ∑  (y(i) – ŷ)2                                                         (3.6) 
                                                                          j=1 

 

 

Finally, the magnitude of the QMC error is calculated as 

 

 
 

                                        |EQMC|  = σ ̂.ɸ-1((1+p)/2)                                                            (3.7)               

 

 

 

with user defined probability p, where ɸ is the standard normal cumulative function. As a 

result, thanks to the randomness property of scrambled QMC, the minimum and the 

maximum bounds of yield with probability p can be obtained. In Figure 3.3 from the 

previous work [24], it can be seen that both conventional QMC and scrambled QMC are 

combined for a relatively accurate yield estimation.  

 

It is observed that yield estimates up to 99% can be achieved by using QMC method. 

As already mentioned, this yield may not be sufficient for manufacturing purposes where 

6-sigma is required. Therefore, we propose a new method for yield estimation part of the 

optimizer in order to further enhance the yield. Hence, only yield estimation part of the 

optimizer of the yield-aware analog CAD tool will be changed. Instead of using QMC, 

cross entropy minimization based importance sampling method will be utilized in the yield 

estimation part of the tool. Other parts of the optimizer will be unchanged.  
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Figure 3.3. Flow diagram of the optimizer 

 
 

3.3.2. Algorithm Implementation 
 

 

As seen from Figure 3.3., conventional QMC is run for the first phase of the yield 

estimation. In QMC implementation, Sobol sequence is preferred among other LDS sets 

such as Halton, Faure etc., because it is empirically shown that it provides better results in 

higher dimensions as stated in [34]. Also, the first N points can be skipped in order to 

achieve more homogeneity, and thus, better sampling performance [33].  

 

In the second phase, scrambled QMC simulations are run in order to obtain standard 

deviation. At the end of this phase, upper-lower bounds and standard deviation of the esti- 
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mation are obtained.  

 
 

3.3.3. Simulation Results 
 

 

In order to simulate and test QMC implementation, the basic two stage (BTS) 

OpAmp as shown in Figure 3.4 and folded cascode (FC) amplifier as shown in Figure 3.5 

were chosen as test circuits. Deviations at threshold voltage, oxide thickness, and device 

geometries referring W and L, were considered as variation parameters during the yield 

estimation. The number of sample sizes for QMC can be determined as small as few 

hundred samples. 

 

QMC simulation is run for exemplary BTS OpAmp circuit solution by using 

integrated circuit simulator SPICE. Sample size for QMC is selected as 500. Bandwidth, 

gain and phase margin are defined as circuit specifications for the BTS OpAmp. After 

running QMC simulation for given circuit solution, distribution histograms for bandwidth, 

gain and phase margin are obtained as shown in Figure 3.6, Figure 3.7, and Figure 3.8. 

respectively. We can obtain mean values and select rare event threshold points from these 

distribution histograms. For example, we can easily see that central frequency for the 

respective BTS OpAmp solution is 8.9 kHz. Similarly, mean of gain is found as 74.6 

whereas mean of phase margin is found as 62.8 degrees.  

 

QMC method will be essential for cross entropy minimization based importance 

sampling method, because IS needs a rare event threshold for an efficient estimation. 

Therefore, QMC will be run before the algorithm in order to select a good rare event 

threshold point for the desired set of specifications of the chosen circuit. 



           21 
 

 

 
 

 

Figure 3.4. Schematic of BTS OpAmp 

 

 

Figure 3.5. Schematic of FC Amplifier 
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               Figure 3.6. Bandwidth distribution for BTS OpAmp (QMC with 500 samples) 
 

 
               Figure 3.7. Gain distribution for BTS OpAmp (QMC with 500 samples) 
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               Figure 3.8. Phase margin distribution for BTS OpAmp (QMC with 500 samples)
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       4.  EFFICIENT YIELD ESTIMATION AND ENHANCEMENT  

     

  USING RARE EVENT SAMPLING METHODS 
     
 
 
 
 
 

In the previous chapter, a hybrid QMC method is proposed for yield aware synthesis 

CAD tool. Since QMC method is deterministic and has no natural variance, there is no 

convenient way to obtain error bounds for the estimation. To determine the confidence 

interval of the estimated yield, scrambled QMC method and conventional QMC method 

were combined for an accurate yield estimation. However, with this hybrid QMC method, 

accurate yield estimations up to 99% can be achieved. This yield value is under the desired 

yield for manufacturing purposes. One solution for an enhanced yield estimation can be 

oversampling a special region where QMC fails to deliver an accurate estimation. This 

special region can be called as rare event or infeasible region. By using rare event 

sampling techniques, it is possible to get reliable estimation results from infeasible region. 

Therefore, rare event sampling methods will be utilized along with hybrid QMC method 

as variance reduction technique.  

 

In the context of this chapter, rare event sampling methods will be analyzed and a 

hybrid method will be proposed in the next chapter to be introduced in CAD tool instead 

of QMC technique. Although there are many proposed rare event sampling methods in the 

literature, Importance Sampling (IS) and Cross Entropy Minimization based methods are 

the most common ones. These methods will be combined to create an efficient proposal 

for the scope of the thesis. 

 

 

          4.1. Background 
 

 

Considering the effects of the process variations, the expected output specification 

distributions for the given circuit such as bandwidth, phase margin, gain, are expected to 

be skewed to the  either left or right with a   long right or left tail. Normally, a typical   appro- 
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ach for simulating this circuit, would be running a Monte Carlo simulation with a small 

sample size (e.g. 1000) and fit a standard analytical distribution to data. Generally, either 

normal or lognormal distribution is chosen to be fit into simulation data in such a scenario. 

Such an approach can be accurate for the body part of the distribution, however it will be 

grossly inaccurate in the tail of the distribution. The skewness of the actual distribution or 

the heaviness of the tail will be difficult to overcome. As a result, any predictions of the 

statistics of rare events, lying far in the tail, will be very inaccurate. Therefore, it is 

unfeasible to use classic Monte Carlo approach with a small sample size in our yield aware 

CAD tool due to output distributions possessing a long tail. 

 

The solution of this problem is somehow generating a large number of the samples 

in the tail. Generating a large number of samples in the tail is also theoretically possible by 

using Monte Carlo simulation with an extremely large sample size. But this approach is 

not practical considering heavy computational complexity and long simulation time. For 

our yield estimation, a straightforward Monte Carlo implementation would require 

hundreds of millions of samples in order to produce a handful of failures for obtaining the 

accurate data. Furthermore, the estimate of yield still can not be trusted because of the lack 

of statistical confidence because the estimate is computed using only one failing example. 

Such a large number of simulations is unfeasible and intractable. Thus, the best option is 

using rare event sampling methods for estimating the extreme statistics of rare events lying 

in the tail of the distribution. 

 

In the literature, there are lots of different rare event simulation techniques that are 

proposed for estimating extreme rare event statistics most notable one being SRAM failure 

rate or SRAM yield.  A handful of approaches based on statistical analysis have been pro- 

posed and investigated especially for verification of SRAM circuits and their rare failure 

event statistics. The most common approaches are based on Monte Carlo simulations 

([36]-[39]). Most notable Monte Carlo based approaches in the literature can be given as 

statistical blockade [36], spherical sampling [37], mixture importance sampling [38], and 

scaled sigma sampling [39].  
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The other approaches are solely based on designing analytical performance measure- 

ment models in order to estimate parametric yield or probability of rare event circuit 

failure  [40, 41]. However, these approaches suffer from approximations that are necessary 

to to make the problem tractable. There are also some proposals to combine both 

approaches [42].  

 

In order to predict rare event failure probabilities in Monte Carlo simulation, 

Importance Sampling method can be applied [35]. Thus, sampling efficiency of Monte 

Carlo technique can be greatly improved with the aid of Importance Sampling. In 

Importance Sampling, the original distribution is shifted towards the rare event region also 

known as infeasible region. New shifted distribution can be called as practical Importance 

Sampling distribution. By using practical IS distribution, the infeasible region is now 

directly sampled. This approach is very trivial because essentially shifting the original 

distribution is all that is done. The nontrivial part is finding the optimum shift amount for 

fast and efficient estimation. For finding the optimum shift of the distribution, cross 

entropy can be used as a measure of distance between practical IS distribution and original 

distribution. In this context, minimizing cross entropy will lead to finding the optimum 

distribution shift [25]. 

 

 

4.2. Importance Sampling 
 

 

In many applications we want to compute µ = E(f(X)) where f(x) is nearly zero out- 

side a region A for which P(X ∈ A) is small. In this context, the outside region can be 

named as rare event region or infeasible region. The set covering outside of A may have 

small volume, or it may be in the tail of the X distribution. A conventional Monte Carlo 

sampling from the distribution of X could fail to have even one point outside the region A, 

depending on the probability distribution. Some problems result in extreme rare event 

probabilities by their nature. Problems of this type arise in high energy physics, Bayesian 

inference, finance, insurance, and rendering in computer graphics among other areas. It is 

clear intuitively that we must somehow get some samples from the important region. One 

way to do this is sampling from a distribution that overweights the important region. Thus, 

this type of solution is   named as importance sampling. Having    oversampled the   important  



           27 

 

region, we have to correct our estimate somehow to account for having sampled from this 

other distribution.  

 

Importance sampling can bring enormous gains, making an otherwise infeasible 

problem feasible compared to classical Monte Carlo. It can also backfire, yielding an 

estimate with infinite variance when simple Monte Carlo would have had a finite variance. 

It is the hardest variance reduction method to use as well [43]. Therefore, it is clear that 

importance sampling method should be applied carefully, otherwise it may backfire. 

Importance sampling is also more than just a variance reduction method. It can be used to 

study one distribution while sampling from another. Some probability density functions 

are hard to integrate or sample. In that case, alternatively, we can use another probability 

density function which can be easily sampled. Then, calculating error and correcting the 

solution, we can get the estimate effectively. As a result we can use importance sampling 

as an alternative to acceptance-rejection sampling, as a method for sensitivity analysis and 

as the foundation for some methods of computing normalizing constants of probability 

densities.  

 
 

4.2.1. Mathematical Approach 
 

 

Our problem is to find  
 
 

                                       μ = E(f(X) = ∫ f(x)p(x)dx                                                    (4.1)
D

 

 

 

where p is a probability density function on D ⊆ Rd and f  is the integrand. We take p(x)=0 

for all x ∉ D. If q is a positive probability density function on Rd, then 

 

                   μ = ∫ f(x)p(x)dx = ∫
f(x)p(x)

q(x)D

 q(x)dx = Eq(
f(x)p(x)

q(x)
) dx                      (4.2)

D

 

 

 

where Eq(·) denotes expected value for X ∼ q. Our original goal then is to find Ep(f(X)). 

By doing some multiplicative adjustment to f, we compensate for sampling from q instead 
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of p. The adjustment factor p(x)/q(x) is called the likelihood ratio. The distribution q is 

known as importance distribution and p is known as nominal distribution.  

 

The importance distribution q does not have to be positive everywhere. It is enough 

to have q(x) > 0 whenever f(x)p(x) ≠ 0. That is, for Q = {x | q(x) > 0} we have x ∈ Q 

whenever f(x)p(x) ≠ 0. Therefore, if x ∈ D ∩ Qc we know that f(x) = 0, while similarly if   

x ∈ Q ∩ Dc we have p(x) = 0.  

 

                 Eq(
f(x)p(x)

q(x)
) = ∫ f(x)p(x)dx + ∫ f(x)p(x)dx - ∫ f(x)p(x)dx

D∩Q
c

        (4.3)
Q∩DcD

 

 

 

                                                 Eq(
f(x)p(x)

q(x)
) = ∫ f(x)p(x)dx                                      (4.4)

D

 

 

 

But one can ask that what happens for x with q(x) = 0 in the denominator. The 

answer is that there are no such points x ∈ Q and we will never see one when sampling X 

∼ q. The importance distribution q(x) can be close to 0 which leads extreme difficulties, 

but q(x) = 0 is not a problem if f(x)p(x) = 0 too.  

 

When we want q to work for many different functions fj, then we need q(x) > 0 at 

every x where any fj(x)p(x) ≠ 0. Then, a density q with q(x) > 0 whenever p(x) > 0 will 

suffice, and will allow us to add new functions fj to our list after we’ve drawn the sample.  

 

The importance sampling estimate of µ = Ep (f(X)) is 

 

                                                        μ̂ = 
1

n
 ∑

f(Xi)p(Xi)

q(Xi)

n

i=1

 , Xi ~ q                                        (4.5) 

             
              

To use equation in (4.5) we must be able to compute f p/q. Assuming that we can 

compute f, this estimate requires that we can compute p(x) / q(x) at any x we might sample. 
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When p or q has an unknown normalization constant, then we will resort to a ratio 

estimate. 

 

The very basic idea of importance sampling is to draw a distribution q(x) from a 

similar distribution p(x) and then modify the resulting equation to correct the error 

introduced by sampling from wrong distribution. In equation (4.6), we can see that error 

correction or importance weight w, can be precisely determined for a given x, since we 

assumed that we could evaluate p(x) at a given point. 

 

                         

                                          Eq (
f(x)p(x)

q(x)
) = μ̂= 

1

n
 ∑ w f(Xi)

n

i=1

 ,  w = 
p(Xi)

q(Xi)
                      (4.6) 

 
 
 

4.2.2. Algorithm Implementation 
 

 

As previously stated, importance sampling method can backfire for particular 

situations. Especially, as the number of samples is increased the variance of the estimation 

will lower. This means selection of q(x) will have huge impact on the success of  

importance sampling method by affecting accuracy of the estimation [44]. Thus, poor 

selection of importance sampling distribution q(x) will lead to wrong answer without any 

implication. In fact, this is one of the biggest problems of the importance sampling 

method. Importance sampling distribution q(x) should be chosen as close as possible to 

nominal distribution p(x). In the literature, there are various divergence definitions in order 

to define the distance between p(x) and q(x), and minimize this distance for an effective 

estimation. For example, alpha divergence [45] and Kullback-Leibler divergence [46] can 

be used as kind of distance measurement of two functions. In fact, Kullback-Leibler 

divergence is a special case of alpha divergence. When alpha is zero, alpha divergence 

becomes KL divergence. And for a special scenario KL divergence and cross entropy 

collides with each other.  

 

For IS implementation, we will choose q(x) such that it covers p(x). We will be avo- 

iding variance and estimation blow up by choosing q(x) accordingly. Importance sampling 
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implementation is actually very trivial without applying cross entropy which helps to find 

optimum, best suited q(x) distribution. In the next chapter, cross entropy minimization 

based importance sampling will be proposed.  

 

4.2.3. Simulation Results 
 

 

In order to verify the implementation, we will use synthetic data with already 

defined distribution functions. f1 (x) = x2 + log(x) and f2 (x) = x2 – e-x + log(x) functions 

are chosen as example simulation functions. These functions are chosen such that they 

reflect the nonlinear relation of the circuit specifications with respect to process variation 

parameters. All three bandwith, gain, phase margin functions are nonlinear combinations 

of the process variation parameters such as transistor width, transistor length, oxide 

thickness, and threshold voltage. Thus, by choosing similar examplary functions, we are 

able to simulate importance sampling method without integrating SPICE circuit simulation 

and synthesis. 

 

Input distributions in the simulation actually refers to process variations in real 

circuit synthesis.  Therefore, x input distribution is actually mapped to transistor width, 

transistor length, oxide thickness, and threshold voltage in real life. Generally, all static 

process variation parameter distributions are Gaussian distributions. Therefore, input 

synthetic data is chosen as normal distribution similar to static process variation 

parameters. For simulation purposes, input distributions are chosen as Gaussian 

distributions with the mean of 5.  

 

Simulation results for exemplary functions are presented in the figures below. In 

Figure 4.1., a random normal input distribution with the mean of five is chosen. Input 

Gaussian distribution is generated for 10,000 samples. Then, input distribution is applied 

to f1 and the resulting output distribution is presented in Figure 4.2. As can be seen from 

Figure 4.2., output distribution possesses a long tail due to having a nonlinear relationship 

with the input distribution. Then, IS is applied and the shifted input distribution is deter- 

mined. As can be seen from Figure 4.3., shifted distribution is determined as a normal dis- 

tribution  with   the   mean of eight. Thus, the   original input   distribution is shifted to   right by 
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three. This shift amount is heuristically determined. In fact, this is the drawback of the IS 

method because shift amount should be optimally selected for an efficient estimation. In 

Figure 4.4, the shifted output distribution of f1 with respect to shifted input distribution is 

presented. If we compare Figure 4.2. and Figure 4.4., we can see that the tail of the 

original output distribution is oversampled by the new shifted output distribution. Thus, 

number of samples from the tail of the original distribution is dramatically increased with 

the IS method.  

 

Similarly, same steps can be applied to f2. In Figure 4.5., normal distribution with 

the mean of five is chosen as input distribution. Again, input Gaussian distribution is 

generated for 10,000 samples. Then, input distribution is applied to f2 and the resulting 

output distribution is presented in Figure 4.6. Then, IS method is applied and the shifted 

input distribution is determined. As shown in Figure 4.7., shifted distribution is deter- 

mined as a normal distribution with the mean of eight. Hence, the original input 

distribution is shifted to right by three. The shifted output distribution of f2 with respect to 

shifted input distribution is obtained which is shown in Figure 4.8. If we compare Figure 

4.6. and Figure 4.8., again we see that the tail of the original output distribution is 

oversampled by the new shifted output distribution.  

 

Our main goal for using IS method is increasing the number of samples in the rare 

event region as already mentioned. This is achieved by shifting the output distribution to 

rare event region so that these region is oversampled. And hence as its name suggest, we 

give importance to this rare event region, and try to get as many sample as possible. After 

simulation, we can clearly see that input distributions (process variations) should be 

shifted left or right in order to also shift the output distribution. Hence, the question arise, 

how can we choose optimum shift amount?  This can be achieved with cross entropy 

minimization. 
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Figure 4.1. Input normal distribution (mean=5, sigma=1) for N=10000 samples 

 

 
Figure 4.2. Output distribution f1 (x) = x2 + log(x) for given input distribution 
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Figure 4.3. Shifted input normal distribution (mean=8, sigma=1) for N=10000 samples 

 

 
Figure 4.4. Shifted output distribution f1 (x) = x2 + log(x) for shifted input distribution 
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Figure 4.5. Input normal distribution (mean=5, sigma=1) for N=10000 samples 

 

 
Figure 4.6. Output distribution f2 (x) = x2 – e-x + log(x) for given input distribution 
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Figure 4.7. Shifted input normal distribution (mean=8, sigma=1) for N=10000 samples 

 

 
Figure 4.8. Shifted output distribution f2 (x) = x2 – e-x + log(x) for shifted input distribution 
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4.3. Cross Entropy Minimization 
 
 

 

4.3.1. Background 
 

 

Cross entropy minimization is a well known method in information theory. It is 

generally used for approximating the optimal solution of NP hard combinatorial 

optimization problems and estimation of probability of rare event [47]. Our main goal here 

is minimizing cross entropy. If the original distribution is fixed, then cross entropy 

between two distributions becomes identical to Kullback-Leibler divergence between two 

distributions. Kullback-Leibler divergence of two distributions such as g and h can be 

given as [47] 

 

                         

                           D(g, h) = Eg log
g(X)

h(X)
 = ∫ g(x)logg(x)dx - ∫ g(x) log h(x) dx               (4.7) 

                    

                  

where f(x, u) represents the original probability distribution function, g(x) represents the 

optimal importance sampling density, and h(x) = f(x, p). Then, optimal importance 

sampling density can be found as  

 

                                                            g*(x)= 
I{S(x)≥γ} f(x,u)

l
                                                   (4.8) 

                

 

Minimizing KL divergence between g* and f(x, p) is the same as choosing p such that 

expression (4.9) is minimized. Therefore, it is not hard to see that expression (4.9) is 

equivalent to expression (4.10). 

 

                                                             - ∫ g*(x) log f(x, p) dx                                                  (4.9) 
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                                                          maxp  ∫ g*(x)logf(x, p)dx 

                                            (4.10)                     

 

If we substitute g* which is given in expression (4.8) into expression (4.10), we 

obtain following maximization problem  

 

 

                                                    maxp ∫
I{S(x)≥γ} f(x,u)

l
logf(x, p)dx                                  (4.11) 

 
 

which is equivalent to following optimization problem. 

 

 

                                                  maxp D(p)= maxpEu I{S(x)≥γ}logf(X,p)                           (4.12) 

 

 

 

4.3.2. Algorithm Details 
 

 

In cross entropy minimization method, our main goal is to solve the optimization 

problem presented in (4.12). The main objective is finding a sequence of tuples { γt, pt } 

which converges to a small neighborhood of the optimal tuple (γ*, p*). The parameters γt 

and pt are adaptively updated in each step in order to converge to the optimal tuple. The 

measure of this convergence is defined by a rarity parameter which is denoted as ρ. During 

initialization stage, p0 = u is set as initial starting point, the rarity parameter ρ is chosen 

such that it is not very small. Then, we iteratively update γt and pt parameters.  

 

Let γt be the (1-ρ) quantile of S(X) under pt-1. A simple estimator of γt can be 

obtained by drawing a random sample X1,…,XN from f(x, pt-1). Then, the associated 



function values S(X1),…,S(XN) and their order statistics S(1),…,S(N) can be calculated. 

Assigning γt to be order order statistics’ (1-ρ) quantile gives us following update formula. 
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                                                      γ
t
 = S(⌊(1-ρ) N⌋+1)                                                        (4.13) 

 

 

Now, we have the adaptive update formula of γt.We can derive pt for fixed γt and pt-1 

from the solution of the following problem.  

 

 
    

                              maxpt
 D(p

t
) = maxpt

 Ep
t-1

I{S(x)≥γ
t
} log f(bx, p

t
)                               (4.14) 

 

 

 If we solve the problem (4.14) for a discrete n-dimensional probability distribution 

function with independent components, we can obtain following analytical expression for 

updating pt,ij where i=1,…,n and j=1,…,m 

 

 

                                                p
t,ij

= 
Ept-1

I{xi=j} I{S(x)≥γ
t
}

Ept-1
I{S(x)≥γ

t
} 

                                                     (4.15) 

 

 

 But we need stochastic counterparts of equations (4.14) and (4.15), in order to 

simplify the calculation [47] resulting following equations (4.16) and (4.17). Keep in mind 

that equation (4.16) is the stochastic counterpart of the equation (4.14) whereas the 

equation (4.17) is the stochastic counterpart of the equation (4.15). 

 

                                maxp̃t
D(p

t
) = maxp̃t

1

N
 ∑ I{S(Xi)≥γ

t
} log f(Xi p̃t

) 

N

i=1

                           (4.16) 

    



                                             p̃
t,ij

= 
∑ I{xki=j} I{S(xk)≥γ

t
}N

i=1

∑ I{S(xk)≥γ
t
}N

i=1

                                                    (4.17) 
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Instead of using p̃
t
 obtained from (4.17), the algorithm uses smoothed version p̅

t
 

presented in (4.18). The reason for using the smoothed vector is to reduce the probability 

of some of components of p̃
t
 being zero or unities at the first few iterations. If the 

smoothing is not applied, the algorithm may converge fast to a local optimum which will 

result in wrong solution. Therefore, p̃
t
 vector is smoothed with a smoothing parameter 

which is denoted as α. The smoothing parameter should take a value between zero and 

one. For α=1, it is obvious that smoothed vector p̅
t
 will be same with the original vector p̃

t
. 

 

 

                                                                        p̅
t
=αp̃

t
+(1-α)p̃

t-1
                                                      (4.18)                                                              

 

 

By using adaptive update equations, we have obtained a sequence of tuples { γt, pt } 

which converges to a small neighborhood of the optimal tuple (γ*, p*). Overall cross 

entropy minimization algorithm is presented in Figure 4.9.  
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       Choose some initial p0 

       Set iteration counter t = 1 

       while solution not converged 

            Generate a sample X1,…,XN from density f(x, pt-1) 

            Compute γt from Eq. 4.13; 

            Use the sample X1,…,XN and find p̃t from Eq. 4.17; 

            Smooth out the vector p̃t to obtain p̅t using Eq. 4.18; 

            if γt = γt-1 = γt-2 = … = γt-d for some d ≤ t then 

                 Solution found, stop iteration, break while loop 

            else 

                 Increment iteration counter, t = t + 1 

                 Continue iteration 

            end if 

       end while 

 

Figure 4.9. Main Cross Entropy Minimization Algorithm 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



41 
 

 

   5.  MULTI LEVEL CROSS ENTROPY MINIMIZATION BASED  
         

                          IMPORTANCE SAMPLING METHOD 
 
 
 
 
 

In the previous chapter, IS is shown to be a trivial method without determining 

optimum shift which will result in the optimal practical distribution for IS. Optimal 

practical distribution for IS can be found with various numerical optimization techniques. 

For example, norm minimization can be used for one dimensional problems [48]. For high 

dimensional problems, a variant of norm minimization called spherical sampling can be 

utilized [37]. However, it is shown that these methods may have suboptimal performance 

due to either suboptimal shift or performance degradation for high dimensional problems 

[41, 49]. Minimum cross entropy method [47] finds the optimal practical distribution for 

IS which is closest in distance to ideal distribution for IS. This distance can be defined 

with cross entropy which is used excessively in information theory.  

 

Let’s define p to be original probability distribution and q to be ideal probability 

distribution. Then, we can define cross entropy between these two probability distributions 

as following:  

 

                                     H(p, q) = Ep[- logq] = H(p) + DKL(p || q)                                    (5.1) 

 

 

where H(p, q) is the cross entropy between p and q probability distributions, H(p) is the 

entropy of p, DKL(p||q) is the Kullback-Leibler divergence of q from p or also called 

relative entropy of p with respect to q [46], and E[.] as expected value.  

 

If p probability distribution is fixed, then cross entropy between p and q is identical 

to Kullback-Leibler divergence with an additive constant. In this case, minimizing cross 

entropy will be the same as minimizing KL divergence. In the literature, the principle of 

minimizing KL divergence is known as Principle of Minimum Cross Entropy (MCE) or 

Minxent [47]. And if p and q probability distribution overlay each other meaning p = q, 

then both cross entropy and KL divergence will be zero. But this is not practically possible 

for our case. 
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                   5.1.  Background 
 

 

Let yield be characterized by a random variable X. This random variable X is a 

nonlinear function F of circuit variables which are affected by process variations such as 

transistor width, length, threshold voltage, oxide thickness. Under process variations 

especially in submicron technologies, these circuit variables deviate from their nominal 

values significantly. We can define 

 

                   

                                                                   X = F(Y1, Y2, …, YM)                                                   (5.2) 

 

 

where X represents random variable, F represents nonlinear function of circuit variables, 

and Yi represents the circuit variables. The changes in circuit variables can not be 

estimated. Therefore, it is difficult to find the distribution of the random variable X. But as 

mentioned in the previous chapter, these process variations make distribution of random 

variable X to have a heavy tail by nature. Therefore, using one of the rare event simulation 

technique such as IS with combining MCE will be an efficient way to calculate yield.  

 

Deviations in the circuit variables can be modeled as independent Gaussian random 

variables with mean ui and variance σi
2 and their distribution can be represented as f(yi, ui). 

This type of modelling is fair because process variations are random and their effects on 

the circuit variables is independent [25]. In IS technique, the original distribution is just 

shifted towards the rare region, therefore the original distribution mean ui becomes shifted 

to a new mean vi. Cross entropy minimization only improves efficiency of the IS 

algorithm by making the shift amount optimal. However, the variance σi
2 does not change. 

This can be seen as the disadvantage of proposed algorithm, because it is expected to have 

a new distribution with optimal mean and variance in the infeasible region for better 

solutions. However, variance is discarded in our approximation. So, new distribution can 

be represented as f(yi, vi). This new shifted distribution is called optimal practical 

distribution for IS. In the IS algorithm weight function is used, and it can be calculated as 

follows  
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                                              w(y, u, v)= 
∏ f(y

i
, ui) 

M
i=1

∏ f(y
i
, vi)

M
i=1

                                                        (5.3) 

           

 

where yi represents circuit variables, ui represents original distribution means, vi represents 

shifted distribution means, and M the number of circuit variables. For example, BTS 

OpAmp consists of 12 transistors as can be seen from Figure 3.4. Since we try to analyze 

the effects of deviations in transistor length, width, oxide thickness and threshold voltage 

to the yield, we have 4 variables for each transistor. Therefore, M is 48 for BTS OpAmp.  

 

Since we model deviations in the circuit variables as independent random Gaussian 

variables, weight function w(y, u, v) can be rewritten as follows [25]:  

 

                                  w(y, u, v)= exp (- ∑
2y

i
(vi-ui)- (vi

2- ui
2 )

2σi
2

M

i=1

 )                                   (5.4) 

                                        

 

Now, we have weight function in our hands. The other and the most significant issue 

is finding the optimal shifted mean vector denoted as v*. As mentioned before, this optimal 

shifted mean can be found by minimizing KL divergence between the ideal distribution 

and optimal practical distribution for IS. Here, ideal distribution for IS will be denoted as 

fideal(y), whereas optimal practical distribution for IS will be denoted as f(y, v*). Therefore, 

the main optimization algorithm is finding f(y, v*) which is closest in distance to fideal(y). 

Hence our original distribution is fixed; KL divergence will be equal to cross entropy. The 

cross entropy distance between ideal distribution and optimal practical distribution for IS 

can be defined as: 

 

                                          D = Efideal
[log

fideal(y)

f(y, v*)
]                                                               (5.5) 

                                              

                 

Minimizing KL divergence by using IS formula for finding ideal distribution, it is 

not hard to find the following equation [25]: 
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                                v*=argmax
v  

Ev[I(y∈A) log(f(y, v))]                                                (5.6)  

 

 

Equation (5.6) gives us the optimum shifted mean vector v* of the distribution f(y, 

v*). But finding v* is computationally expensive and we may not get enough samples from 

rare event infeasible region. Furthermore, we have to use I(y∈A) indicator function which 

indicates rare event possibility such that it takes value 1 if the chosen sample is indeed in 

the rare event region. Otherwise, the indicator function takes the value 0. One solution to 

cope with the possibility of not getting enough samples from the rare event region is using 

multiple levels of cross entropy method. For this purpose, the original distribution f(y, u) is 

shifted to some initial approximate distribution f(y, l) by IS technique. Therefore, weight 

function of applied IS technique will be w(y, u, l). The initial shifted mean vector is 

denoted as l. And it should be chosen such that current event becomes less rare. 

Obviously, selection of initial vector l is important. To select proper l, norm minimization 

approach is utilized. In the next subchapter, initial vector selection will be briefly 

discussed. With the usage of multiple levels of cross entropy, equation in (5.6) can be 

modified as 

 

                           
                              v*=argmax

v  
Ev[I(y∈A)w(y, u, l) log(f(y, v))]                                   (5.7) 

 

 

In order to solve above maximum optimization problem, we can rephrase equation 

(5.7) in terms of KL divergence with respect to v*. Therefore, the problem becomes 

minimizing KL divergence with respect to v* which is denoted as D(v*). 

 

 

                                 D(v
*
)=Ev[I(y∈A)w(y, u, l) log(f(y, v))]                                            (5.8) 

 

 

 

In order to solve this optimization problem, we have to find a v* such that D’(v*) = 0. 

If we solve equation (5.8) for D’(v*) = 0, we get a simple analytical expression [25]: 
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                                       v*= 
∑ I(y(i)∈A)w(y(i), u, l)y(i)N

i=1

∑ I(y(i)∈A)w(y(i), u, l)N
i=1

                                                 (5.9) 

 

 

                   5.2.  Algorithm Implementation 
 

 

In the first step, we have to find a proper inital vector l for the original distribution 

f(y, u). As mentioned in the previous section, the original distribution f(y, u) is shifted to 

some initial approximate distribution f(y, l) by IS technique, so that event becomes less 

rare. For selection of the initial vector, state of the art norm minimization approach is 

utilized. The idea behind norm minimization is getting an approximate initial direction for 

making the event less rare. The aim is not solving the problem completely, it is rather 

making an approximation to find an initial starting point.  

 

In the first step of norm initialization algorithm, a few random shifts of the original 

means ui are generated to get the new shifted means li. This step is done for each circuit 

variable. Now, we have shifted means li. In second step, we get shifted distributions f(y,li) 

using shifted means li. We generate samples from f(y, li) and run simulations on generated 

samples. After simulation, shifted means li which resulted in the infeasible region are 

filtered out. Then L2 norm is calculated by using these filtered out shifted means. L2 norm 

can be calculated from formula below: 

 

                                                   L2 Norm of l = ∑
(l

i
- ui)

2

2σi
2

M

i=1

                                              (5.10) 

                 

               

After calculating the L2 norm, we can choose the inital vector by taking the shifted 

mean vector li which resulted in a minimum L2 norm value. 

 

 

                                             Initial vector l= argmin ∑
(l

i
- ui)

2

2σi
2

M

i=1

                                        (5.11) 
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       Generate a few uniform random shifts of the original means ui 

       Then using random shifts get new shifted means li 

       Use shifted means to obtain f(y, li) 

       Generate samples from f(y, li) and run simulations 

       Filter out shifted means which result in rare event region 

       Use filtered out shifted means to calculate L2-norm using Eq. 5.10; 

       for i = 1 to M do 

             Choose ith index which makes L2-norm minimum, Eq. 5.11; 

       end for 

       Choose li as initial shifted mean vector 

 

 

Figure 5.1. Norm Minimization for Inital Vector Selection Algorithm  

 

As the algorithm in Figure 5.1. suggests, samples which correspond to rare events 

should be screened out for a proper inital vector selection. Initial vector selection is 

significant, because it directly affects the efficiency of the algorithm. Therefore, a rare 

event threshold should be chosen wisely for the algorithm which will be used for 

screening out the samples that will reside in the infeasible region. The samples that results 

beyond this chosen rare event threshold will be screened out.  In order to choose a proper 

rare event threshold, we need to have a quick glimpse on the original distribution before 

running cross entropy minimization based IS algorithm. As stated in chapter 3, Quasi 

Monte Carlo can be run for general analysis that will give accurate results for the body 

part of the distribution. We could also use classical Monte Carlo simulation. However, 

QMC gives similar approximate results compared to classical Monte Carlo with much 

smaller sample size. Hence, QMC is chosen over classical Monte Carlo for a quick 

estimation. With QMC, we can get an idea about rare event point that will mark the rare 

event region threshold. Therefore, QMC algorithm will be run one time before cross
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entropy minimization based IS algorithm in order to choose a rare event threshold. 

 

After choosing initial vector l,  shifted distribution f(y, l) is also obtained. Then, N1 

samples are generated from this shifted distribution f(y, l). From equation (5.9), the 

optimum shifted mean vector v* can be calculated now. Keep in mind that equation (5.9) 

needs a weight function to be calculated. So,  before calculating v*, weight function should 

be calculated from equation (5.4.). After finding the optimum shifted mean vector, we 

generate a Gaussian distribution f(y, v*) for the respective shifted mean as if it is a process 

variation distribution. This distribution is the optimum practical distribution for cross 

entropy minimization based IS.  Since we have 48 process variables for BTS OpAmp, v* is 

a vector with length of 48. Hence, after the algorithm is run, we get 48 Gaussian 

distributions for each shifted mean. As mentioned before, variance does not change 

because of the algorithm. This is actually the downside of the cross entropy minimization 

based IS algorithm. After all these generated optimum practical distributions are obtained, 

SPICE simulation is run. Circuit specification distributions such as bandwidth, phase 

margin, gain are obtained. Then, the obtained distributions are compared with the ones 

that resulted after QMC. Normally, it is expected that the distributions that are obtained 

after cross entropy minimization based IS algorithm should be shifted versions of the ones 

in QMC.  

 

 

      Choose inital vector l using original distribution f(y, u) 

      Generate N1 samples from the shifted distribution f(y, l) 

      Calculate optimum shifted mean vector v* using Eq. 5.9 and Eq. 5.4; 

      Obtain optimum practical distribution f(y, v*) 

      Generate N2 samples from optimum practical distribution f(y, v*) 

      Run circuit simulations 

      Estimate yield 

  

Figure 5.2. Multi Level Cross Entropy Minimization Based IS Algorithm
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                   5.3.  Simulation Results 
 

 

Cross entropy minimization based IS algorithm is run for bandwidth, phase margin, 

gain and all three of them simultaneously. As synthesis result, here we present the 

bandwidth results. Firstly, QMC is run with 500 samples for the sample circuit BTS 

OpAmp. From QMC analysis, we can obtain the rare event threshold. We may choose 9.1 

kHz as our rare event threshold for bandwidth which can be seen from Figure 5.3. In this 

case, the portion of corresponding rare samples to whole samples can be calculated as 

0.004 which corresponds to rare event probability. 

 

 
Figure 5.3. Bandwidth distribution after QMC with 500 samples  

  

After applying cross entropy minimization based IS algorithm, corresponding Figure 

5.4. is obtained for bandwidth. From Figure 5.4., it can be easily seen that majority of 

samples are clustered beyond the rare event threshold which is chosen as 9.1 kHz from the 

previous QMC   simulation. In this case, ratio of samples which are   beyond the threshold to  
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the total number of samples can be calculated as 0.9933. The main objective of using rare 

event sampling techniques was increasing the number of samples in the tail of the original 

distribution. From the given example, we can say that this goal was achieved, because 

probability value of 0.004, which is a rare event probability, is increased to 0.993 with the 

proposed algorithm. Therefore, one can say that entropy minimization based IS algorithm 

is an efficient way to analyze the distributions that possess long tails.   

 

 
 

Figure 5.4. Bandwidth distribution after cross entropy based IS with 1500 samples 
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                                   6.  YIELD CALCULATION  
         
 
         

 

                   6.1. Rare Event Modelling 

 

 

Inspired from rare event modelling algorithms, here we propose yield estimation 

algorithm for both calculating yield and evaluating the efficiency of the cross entropy 

minimization based IS algorithm. Initially, a conventional MC simulation is run with a 

large number of samples such as 100,000. The distribution obtained from conventional 

MC has a long tail where MC is not capable of giving accurate estimation. However, we 

are certain about the accuracy of the estimation based on samples that reside in the main 

part of the distribution. Therefore, we determine 3 arbitrary points from MC distribution in 

which we are certain about their accuracy. Hence, it is best to choose these 3 points from 

the body part of the distribution and not from the tail, which corresponds to the rare event 

region. These points are denoted as R1, R2, and R3 respectively. As mentioned before, we 

need to have a rare event threshold before running cross entropy minimization based IS 

algorithm. For this purpose, QMC with a small sample size such as 1000 is run. From 

QMC analysis, rare event threshold is determined. For the sake of reliability, 3 different 

rare event thresholds are chosen from QMC analysis. These rare event threshold points 

can be denoted as T1, T2, and T3. For each rare event threshold T, the cross entropy 

minimization based IS algorithm is run. For different R values, the estimate of yield is 

calculated by the expression in (6.1). 

 

 

                                                                      PT = PR * (PT
’ / PR

’)                                                     (6.1) 

                                            
                 

where PT represents rare event probability for selected rare event threshold T, PR 

represents reliable probability for a given arbitrary R obtained from QMC simulation,  PT
’ 

and PR
’ represent probabilities for respective T and R values obtained from cross entropy 

minimization based IS algorithm. After calculating PT, we can cross validate the result 

with conventional MC in order to determine the efficiency of our algorithm. Overall yield 

estimation algorithm is presented in Figure 6.1. 
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       Run conventional MC with large sample size (100k) 
         
       Run QMC (1k) to determine rare event threshold T  
 
       For defined T determine 3 arbitrary points R1, R2, R3 
 
       Run cross minimization based IS with defined T and R values 
 
       Calculate the estimate yield 
 
       Cross validate the result with MC result found in first step  

 

 
Figure 6.1. Yield Estimation Algorithm 

 
 

 

                   6.2.  Yield Estimation Results 
 

 

In the first step, conventional MC analysis with sample size of 100,000 is run. 

Distribution obtained from MC will be used for cross validation of results obtained from 

cross entropy minimization based IS algorithm. In Figure 6.2., conventional MC analysis 

for bandwidth is presented. In order to determine rare event threshold values T1, T2, and 

T3, QMC simulation is run with the sample size of 1000. Rare event thresholds are chosen 

as 8150, 8200, and 8300 Hz. We chose rare event thresholds from left tail of the original 

distribution because yield estimate is determined by the low limit of the bandwidth 

specification. R values are chosen arbitrarily. The important aspect of choosing R values is 

choosing points whose probabilities from conventional MC distribution presented in 

Figure 6.2 are certain. QMC analysis of bandwidth specification for 1000 samples is  

shown in Figure 6.3. Cross entropy minimization based IS distributions of bandwidth 

specification for 8.15,  8.2, and 8.3 kHZ respectively are presented in Figure 6.4, Figure 

6.5., and Figure 6.6.  

 

After running cross entropy minimization based IS, we have obtained accurate 

estimate yields. For cross validation, the results are compared with the results obtained 

from conventional MC. With this validation, we are able to see how approximate our 

estimation based on cross entropy minimization based IS is.  
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Simulation results for 3 independent runs for bandwidth specification for BTS 

OpAmp circuitry is presented on Table 6.1, Table 6.2 and Table 6.3. 

 

 

Table 6.1. Simulation results for T=8150 Hz for BTS Opamp. 

 

 R(Hz) IS - Yield(%) MC – Yield(%) Relative Error(%) 

1 8850 99.52 99.67 0.15 

2 8900 99.51 99.67 0.16 

3 8950 99.52 99.67 0.15 

 

 

 

Table 6.2. Simulation results for T=8200 Hz for BTS Opamp. 

 

 R(Hz) IS - Yield(%) MC – Yield(%) Relative Error(%) 

1 8850 99.35 99.46 0.11 

2 8900 99.35 99.46 0.11 

3 8950 99.35 99.46 0.11 

 

 

Table 6.3. Simulation results for T=8300 Hz for BTS Opamp. 

 

 R(Hz) IS - Yield(%) MC – Yield(%) Relative Error(%) 

1 8850 98.45 98.54 0.09 

2 8900 98.48 98.54 0.06 

3 8950 98.45 98.54 0.09 
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                Figure 6.2. Conventional MC with 100k samples for bandwidth in BTS OpAmp 

 

 

Figure 6.3. QMC with 1k samples for bandwidth in BTS OpAmp 
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                  Figure 6.4. MCE based IS with 2k samples for bandwidth in BTS OpAmp 

(Rare event threshold is chosen as 8.15 kHz) 

 
                 Figure 6.5. MCE based IS with 2k samples for bandwidth in BTS OpAmp (Rare 

event threshold is chosen as 8.2 kHz)  

8000 8500 9000 9500 10000 10500
0

50

100

150

200

250

300

8000 8500 9000 9500 10000 10500
0

100

200

300

400

500

600

700

800



55 
 

 

 

                  Figure 6.6. MCE based IS with 2k samples for bandwidth in BTS OpAmp 

(Rare event threshold is chosen as 8.3 kHz) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8000 8500 9000 9500 10000 10500
0

100

200

300

400

500

600

700

800



                                                                                                                                                                  56 
                                        
 

7.  CONCLUSION 
 
 
 
 

With the scaling of feature size and technology, process variation effects have 

worsened. Especially in submicron technologies, worsening process variation effects result 

in difference between simulated and measured performances of manufactured ICs. This 

problem leads to low yields for manufactured ICs for CMOS technology. Furthermore, 

increased circuit and silicon complexity complicates the analysis of analog circuits. 

Generally, electronic designers tend to overcome this kind of problems by leaving a 

margin. However, this results overdesign and causes loss of precious chip area. Therefore, 

yield-aware optimization has become a must for electronic designers with the worsening 

process variation effects. Yield aware optimization is a daunting task due to the trade-off 

between the accuracy and the efficiency of the yield estimation.  

 

For an approximate yield estimation with smaller sample size compared to classical 

Monte Carlo simulation, QMC based variability analysis is adopted. However, error bound 

can not be estimated for yield estimation because QMC lacks of natural variance. To 

tackle this problem, hybrid QMC method which combines both scrambled and 

conventional QMC methods has been utilized. 

 

Although QMC is a reliable and an efficient method for a quick approximation for 

yield estimation, it can’t be used for certain yield estimations. Because the distribution of 

design specifications with respect to process variation effects tends to have heavy tail by 

nature.  MC based QMC or conventional MC methods are inefficient for distributions that 

have heavy tail. Therefore, a rare event sampling method is proposed for increasing 

number of samples corresponding to tail of the original distribution. For this purpose, 

cross entropy minimization based IS method is chosen as rare event sampling method for 

the scope of this thesis due to its efficiency. In this context, cross entropy minimization 

concept is applied in order to increase the efficiency of IS algorithm. Normally, the major 

problem of IS is finding optimal shift hence optimal probability distribution. Otherwise, IS 

becomes a trivial method where one needs to just shift the original distribution. With the 

usage of  cross   entropy as a distance of   measure between   optimal practical distribution and  
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original distribution. After deploying proposed cross entropy minimization based IS 

algorithm, the tail of the original distribution becomes oversampled. Accurate yield 

estimation can be done after rare event region of the original distribution is oversampled. 

 

In chapter 6, rare event statistics and modelling based proposal is presented for yield 

calculation. Yield estimate that found after algorithm is compared to conventional MC 

analysis in order to see the efficiency of proposed algorithm.  

 

Our future work will focus on extending the range of the tail estimates to extremely 

rare events with good confidence. 
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