OBSERVERS

FOR

LINEAR TIME-INVARIANT SYSTEMS

by
Erhan IZMIR

Bogazici University Library

39001100315616

```
Submitted to the Faculty of Engineering
    in Partial Fulfillment for the
        Requirements of the Degree of.
            MASTER OF SCIENCE
                    in
            ELECTRICAL ENGINEERING
```


ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis supervisor Dr. Yorgo Istefanopulos not only for his guidance, encouragement and invaluable suggestions but also for his friendship and take-it-easy-you'll-make-it smile, without which I believe, this study would never end.

I would like to thank Prof. Dr. Cem GÖknar and Dr. Ahmet Kuzucu for their invaluable suggestions that have improved the presentation.

I am grateful to my girl-friend Beray Gerdan for her endiess patience to relieve me in difficult times.

Finally, I would like to thank GUlsen Karsit for her untiring typing of the material.

ABSTRACT

In optimal control theory, the design of a state feedback control law requires the availability of the entire state vector. However, in most of the control systems the measurements cannot provide the entire state vector. Then, the non-available state variables must be estimated. The estimated state variables are combined with the already available state variables to be substituted in the feedback control law.

In this thesis, the observers that are designed to estimate the non-available state variables are considered. In the deterministic case, both for the continuous-time and the discrete-time systems, special emphasis is given to the design of minimal order observers.

The stochastic optimal reducedorder observer-estimator and the suboptimal minimal order observer are suggested as alternatives to the Kalman filter. These alternative de signs are compared and the inter-relationships are discussed.

Furthermore, a computer package program has been developed for computer aided design of such observers for practical implementation. The user must only supply the necessary data to obtain the values of the parameters of the observer of interest.

OZETCE

Kapalı gevrimli bir sistemin eniyi çalısmasi icin bu sistemin durum değiskenlerinin geri beslenmesi ile yaratilan denetim yasasi kullanilır. Denetim yasasının gerçeklenebilmesi icin tüm durum degiskenlerinin izlenebilir olmasi gerekir. Birçok denetim sisteminde bazi durum degisgkenlerini izleme olanağı yoktur. Denetim yasasinın gerçeklenmesi ancak izlenemeyen bu durum degiskenlerini uygun bir kestirimi yapildiktan sonra mümkün olur.

Bu tez çallsmasinda, izlenemeyen durum degiskenlerinin kestiriminde kullanilan gözlemleyiciler ele alınmstir. Deterministik sistemlerde özellikle enaz kerteli gözlemleyicilerin tasarımarı üzerinde durulmustur.

Rassal sistemlerde ise, eniyi düsük kerteli gözlemleyiciKestricilerle, eniyiye yakin, enazkerteli gözlemleyiciler ele alınmıs ve Kalman süzgeciyle olan iliskileri incelenmistir.

Gözlemleyicilerin parametrelerini hesaplamak icin bir bilgisayar paket programi, hazırlanmistır. Kullanicinin istediği gözlemleyicinin parametrelerinin hesaplanmasi ic in sadece gerekli veriyi hazırlamasi yeterlidir.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iv
ABSTRACT v
OZETCE vi
INTRODUCTION vii
CHAPTER 1 - BASIC THEORY 1
1.1 Introduction to observers 1
1.2 Identity Observer 5
1.3 Minimal Order Observer 14
CHAPTER 2 - MINIMAL ORDER OBSERVERS FOR DETERMINISTIC CONTINUOUS TIME SYSTEMS 17
2.1 A Canonical Class of Observers 21.
2.2 Computational Aspects 31
2.2.1 Transformation into the Canonical Representation 33
2.2.2 Solution of the Lyapunov Equation 36
CHAPTER 3-MINIMAL ORDER OBSERVERS FOR DETERMINISTIC DISCRETE TIME SYSTEMS 41
3.1 Basic Equations 41
3.2 Construction of Minimal Order Observers 44
3.2.1 Stability of the Observer 46
3.2.2 Estimate Error Decay 48
3.3 A Canonical Class of Observers 50
3.4 Identity Observer 64
3. 5 Computational Aspects 67
CHAPTER 4-OPTIMAL REDUCED ORDER OBSERVER ESTIMA- TORS AND SUBOPTIMAL MINIMAL ORDER OBSERVERS IN STOCHASTIC SYSTEMS 69
4.1 Introduction 69
4.2 Optimal Reduced Order Estimator 70
4.3.A Suboptimal Minimal Order Observer 84
4.4 Computational Aspects 91
CHAPTER 5 - USER'S MANUAL 93
5.1 Introduction 93
5.2 Definition of Input Variables 94
5.3 Supply of Data and Control Cards 94
5.3.1 Continuous-Time Deterministic Observers 95
5.3.2 Discrete-Time
Deterministic observers 97
5.3.3. Optimal Observer-Estimator for Stochastic Systems 98
5.3.4 Suboptimal Minimal Order Observer for Stochastic Systems 103
5.4 Subrouttnes 104
CHAPTER 6 - CONCLUSIONS 112
APPENDIX A
APPENDIX B
REFERENCES

INTRODUCTION

Application of optimal control theory to the design of optimal closed loop control systems results in a state feedback control law of the form $u(t)=\phi(x(t), t)$. The state-feedback control law requires that the entire state vector be available from the measurements. However, in practice, it may not be possible to implement the state feedback control law due to the fact that the entire state vector is not available in most cases. Therefore, a suitable approximation to the state vector must be developed. that can be substituted into the state-feedback control law.

In the view of the above ciscussion, the design of the state feedback control law is separated into two phases: The first phase is the design of the state-feedback control law assuming that the entire state vector is available. The second phase is the design of a system that provides an estimate to the state vector.

Kalman and Bucy have treated the state estimation problem for the case where all the measurements are corrupted by white noise $|I|$. Bryson and Johansen have considered a more general problem assuming that some noise free measurements exist $|2|$. The assumption that noise free measurements are available is a realistic assumption in many control problems. They have shown that the optimal estimator is a modification of the Kalman-Bucy estimator which contains differentiators and integrators. Since differentiation is not desirable for practical reasons, an alternative
to the modified Kalman-Bucy estimator, an observer, namely the Luenberger observer has been suggested.

The observer is a dynamic system driven by the inputs and the outputs of the system whose states are estimated. The order of the observer is less than the order of the modified Kalman-Bucy estimator, hence it is easier to implement it:

Observers are important in the linear system theory since they offer, in addition to their practical utility, a converging setting of the fundamental concepts, such as controllability, observability and stability.

This thesis deals with the observer designs for linear time-invariant systems represented in state space. It considers observers both in the deterministic and in the stochastic cases, and it introduces the computer aided implementation methods in edetail.

In the first chapter, the motivating ideas concerning the structure of deterministic observers are introduced. The basic construction methods for one type of observers, i.e., identity observer, are presented. The interactions of classical concepts such as observability and stability With the dynamics of the observer are discussed $|3|$.

In the second chapter, a class of observers, i.e., the class of canonical minimal order observers for continuoustime systems is considered. The transformation into the canonical form which decouples the state variables at the output is presented and a design procedure which determines the dynamics of the minimal order observer for the system in canonical form, by employing Lyapunov stability theory, is suggested $|7|$. The last section consists of computer based algotithms which are used in the design of the
minimal order observer.

The third chapter deals with the design of minimal order observers for discrete-time systems represented in the canonical form. Lyapunov stability theory for discretetime systems is used to determine the dynamics of the observer $|8|$. Some properties of the canonical form are used to reduce the order of the Lyapunov equation considerably compared to the ones developed so far in the literature. In the last section, a computational difficulty and a suggestive solution are discussed.

In the fourth chapter, optimal observer-estimators for stochastic systems which are represented in the Gauss Markov model are considered. This chapter is mainly concerned with the case that some of the measurements are being corrupted by additive white noise while others being noise free and presents an optimal reduced order observerestimator to estimate the entire state vector of the system in the minimum mean square error sense $|13|$. The equations derived for the optimal reduced order observerestimator are also valid for the extreme cases, those being that all the measurements are corrupted with noise and all the measurements are noise-free. When all the measurements are corrupted with noise the optimal reduced order observer estimator functions like the Kalman filter and in the other extreme case that the measurement noise is not present, it reduces to the minimal order observer-estimator. Besides the optimal reduced order observer-estimator, a suboptimal minimal order observer is discussed as an alternative solution.

The fifth chapter deserves a special importance since it is the practical setting of the the ory developed in the previous chapters. The user's manual which has been prepared
providing an easy access to the user explains how the data is entered into the related programs in the package and gives the structures of the subprograms.

Finally, the conclusion chapter discusses what has been done in this study and suggests topics for further research in the area of observers.

CHAPTER 1

BASIC THEORY $|3|$

1.1. INTRODUCTION TO OBSERVERS

The purpose of this chapter is to familiarize the reader with the basic concepts of the observer theory. The continuous time systems are considered in this chapter, but the theory developed here is applicable to the discrete time systems as well.

The linear time invariant dynamical plants are characterized by the set of equations

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{align*}
$$

Where $x(t)$ is the $n-d i m e n s i o n a l$ state vector, $u(t)$ is the r-dimensional input vector and $y(t)$ is the m-dimensional output vector. A is the (nxn) state matrix, B is the (nxr) input matrix and C is the (mxn) output matrix.

Let S_{1} denote the system in Equation l.l. If the output and the input of the system S_{1} are used to drive a system S_{2}, the the following theorem announces that the state of S_{2} tracks a linear transformation of the state of S_{1}.

THEOREM 1.1: Let S_{1}, represented as

$$
\begin{aligned}
& x(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

drive S_{2} which is given by

$$
z(t)=F z(t)+G y(t)+H u(t)
$$

where $z(t)$ is ap-dimensional vector, F is a (pap) matrix, G is a (pm) matrix and H is a (pr) matrix, (p Suppose there exists a (pen) transformation matrix T, such that

$$
T A-F T=G C
$$

and

$$
T B=H
$$

If $z\left(t_{0}\right)=T x\left(t_{0}\right)$, then $z(t)=T x(t)$ for all $t \geq t_{0}$

PROOF: It is immediately written that

$$
\begin{aligned}
& \dot{z}(t)-T \dot{x}(t)=F z(t)+G y(t)+H u(t)-T A x(t)-T B u(t) \\
& \dot{z}(t)-T \dot{x}(t)=F z(t)+(G C-T A) x(t)+(H-T B) u(t)
\end{aligned}
$$

Since
$G C-T A=-E T$
and

$$
\mathrm{TB}=\mathrm{H}
$$

the above can be written as

$$
\begin{align*}
& \dot{z}(t)-T \dot{x}(t)=F z(t)-F T x(t) \\
& \dot{z}(t)-\dot{T} \dot{x}(t)=F[z(t)-T x(t)]
\end{align*}
$$

Letting

$$
\begin{aligned}
& q(t)=z(t)-T x(t) \\
& \dot{q}(t)=\dot{z}(t)-T \dot{x}(t)
\end{aligned}
$$

Equation le can be written as

$$
\dot{q}(t)=F q(t)
$$

which has the solution

$$
F\left(t-t_{0}\right) \quad q\left(t_{0}\right)
$$

But since $z\left(t_{0}\right)=T \times\left(t_{0}\right)$, it follows that

$$
q\left(t_{0}\right)=0
$$

Then Equation 1.3 gives

$$
q(t)=0, \quad t \geq t_{0},
$$

or

$$
z(t)=T x(t)
$$

This completes the proof.

One should note that the systems S_{1} and S_{2} need not have the same dimension. It can be shown that $|4|$ there exists a unique T, for the equation

$$
T A-F T=G C
$$

provided that A and F do not have common eigenvalues.

DEFINITION 1.1: Any system S_{2} which tracks a linear transformation of the states of the system S_{1} is an observer for the system S_{1} in the sense of Theorem 1.1.

In the above theorem, the initial condition $x\left(t_{0}\right)$ was assumed to be known. If the initial condition $x\left(t_{0}\right)$ is not known then $z\left(t_{0}\right)$, the initial condition of the state of the observer, may be arbitrarily assigned to be

$$
z\left(t_{0}\right)=T x_{g}
$$

for some $n-d i m e n s i o n a l$ vector ${ }_{g}$.

In this case, the following differential equation

$$
\dot{z}(t)-T \dot{x}(t)=F[z(t)-T x(t)]
$$

yields a solution of the form

$$
z(t)-T x(t)=e^{F\left(t-t_{0}\right)}\left[z\left(t_{0}\right)-T x\left(t_{0}\right)\right]
$$

It follows from Equation 1.4 that

$$
z\left(t_{0}\right) \neq T x\left(t_{0}\right)
$$

then it is evident from Equation 1.5 that $z(t)$ cannot track a linear transformation of $x(t)$ exactly but with some error which is due to the uncertainty in the initial condition. This error, designated by $e(t)$, is known as the observer error and it is defined by

$$
e(t) \triangleq z(t)-T x(t)
$$

Then, is follows from Equation 1.5 that

$$
e(t)=P\left(t-t_{0}\right) e\left(t_{0}\right)
$$

where.

$$
e\left(t_{0}\right)=z\left(t_{0}\right)-T x\left(t_{0}\right)
$$

The error caused by the uncertainty in the initial condition will propagate in time as shown in Equation 1.7 and will diminish as time increases if and only if F is a stable matrix. Since the matrix F is the state matrix of the observer, the observer must be an asymptotically stable system so that the observer error decreases with time and becomes zero at steady state.

1.2. IDENTITYOBSERVER

If it is required that the order of the observer S_{2} be the same as that of the system S_{1}, then the most convenient transformation is the identity transformation, i,e, $T=I$. Then,

$$
T A-F T=G C
$$

becomes

$$
F=A-G C
$$

where F and G are (nxn) and (nxm) matrices respectively.

Since the matrices A and C in Equation 1.9 are fixed by the system S_{1}, only the (nxm) dimensional matrix G is selected to determine the dynamics of the identity observer, which is given by the following differential equation.

$$
\dot{z}(t)=(A-G C) z(t)+G y(t)+B u(t)
$$

We now will state two theorems related to the design of the identity observer.

THEOREM 1.2: Forthe real matrices A and C, the eigen values of $(A-G C)$ can be assigned from a desired set of eigenvalues by a suitable choice of the real matrix G, if and only if (A,C) is a completely observable pair.

For a possible proof one may refer to|5|.

THEOREM 1. 3: An identity observer with arbitrary dynamics can be designed for a linear time-invariant system if, and only if the system is completely observable.

Proof is an obvious result of Theorem 1.2.

The eigenvalues of the identity observer are chosen to have more negative real parts. than those of the observed system so that the performance of the overall system is not significantly delayed.

An example is presented below to elucidate the design of the identity observer for a completely observable system.

Example 1: A second order system is given in Figure 1.1. It is desired to design an identity observer for the systtem so that the two states will be available to be used for feedback purposes.

The state space representation of the above system is:

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{rr}
-1 & 1 \\
0 & -2
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=[10
\end{aligned}
$$

The solution of the differential equation in Equation 1.10 , for the unit step input

$$
x(t)=\left[\begin{array}{l}
\frac{1}{2}-2 e^{-t}+\frac{1}{2} e^{-2 t} \\
\frac{1}{2}-\frac{1}{2} e^{-2 t}
\end{array}\right], \quad t \geq 0
$$

shows the behavior of the states as time elapses. But, only one state, i.e. $x_{1}(t)$, is available at the output.

It is shown below that an identity observer designed for the system in Equation 1.10 will provide $x_{1}(t)$ and $x_{2}(t)$. The dynamics equation of the observer is given by

$$
\dot{z}(t)=F z(t)+G y(t)+B u(t)
$$

where

$$
F=A-G C
$$

The matrix G must be selected to determine the matrix F, then letting

$$
G=\left[\begin{array}{l}
\mathrm{g}_{1} \\
\mathrm{~g}_{2}
\end{array}\right]
$$

yields

$$
\begin{aligned}
& F=\left[\begin{array}{ll}
-1 & 1 \\
0 & -2
\end{array}\right]-\left[\begin{array}{l}
g_{1} \\
g_{2}
\end{array}\right] \\
& F=\left[\begin{array}{ll}
-1-g_{1} & 1 \\
-g_{2} & -2
\end{array}\right]
\end{aligned}
$$

The characteristic equation of the matrix F is.

$$
[\lambda I-F]=\lambda^{2}+\left(3+g_{1}\right) \lambda+2+2 g_{1}+g_{2}=0
$$

The eigenvalues of F are chosen to be more negative than those of A, so that the system performance is not affected.

The eigenvalues of the original system are -1 and -2 ; as can be seen in Equation 1.11. Then, the eigenvalues of F are chosen as

$$
\lambda_{1}=-3 \quad \text { and } \quad \lambda_{2}=-4
$$

If the characteristic equation corresponding to λ_{1} and λ_{2},

$$
\lambda^{2}+7 \lambda+12=0
$$

is compared with Equation $1.12, g_{1}$ and g_{2} are found to be

$$
g_{1}=4 \quad \text { and } \quad g_{2}=2
$$

Then the differential equation governing the observer given by

$$
z(t)=\left[\begin{array}{lr}
-5 & 1 \\
-2 & -2
\end{array}\right] z(t)+\left[\begin{array}{l}
4 \\
-2
\end{array}\right] y(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right](t)
$$

yields the solution for the unit step input as follows

$$
z(t)=\left[\begin{array}{ll}
\frac{1}{2}-2 e^{-t}+\frac{1}{2} & e^{-2 t} \\
\frac{1}{2}-\frac{1}{2} e^{-2 t} & t \geq t_{0}
\end{array}\right]
$$

The result found in Equation 1.13 is identical to the one Found in Equation l.II. Figure 1.2 illustrates the overall system.

The eigenvalues of the observer have been selected so far to correspond to a given set of eigenvalues. Another approach considers that the error

$$
e(t)=z(t)-T x(t)
$$

Fig 1.2
due to some uncertainties in the initial value of the state vector $x\left(t_{0}\right)$ dies out exponentially. Since,

$$
\dot{e}(t)=F e(t)
$$

1.14
the above statement is equivalent to stating that the observer system matrix F must be determined to ensure uniform asymptotic stability $|7|$.

To this end, a Lyapunov function of the form

$$
v(e)=e^{\prime}(t) R e(t)
$$

where R is an ($n \times n$) real symmetric positive definite matrix, together with Equation 1.14 , yields

$$
\dot{V}(e)=-e^{\prime}(t)\left(F^{\prime} R+R F\right) e(t) \quad 1.15
$$

or

$$
\dot{v}=-e^{\prime}(t) Q e(t) \quad 1,16
$$

where Q is a (nxn) real symmetric positive definite matrix.

For asymptotic stability of the matrix $F,|6|$ the following conditions must hold

1. $V(0)=0$
2. $V(e)>0$ for $e \neq 0$
3. $\dot{V}(e)<0$ for $e \neq 0$

Then from Equations 1.15 and 1.16 , it follows that

$$
F^{\prime} R+R F+Q=0 \text {. }
$$

Since, it is known that for an identity observer

$$
F=A-G C
$$

then Equation 1.17 becomes

$$
(A-G C)!R+R(A-G C)+Q=0
$$

If G is selected as

$$
G=\frac{1}{2} R^{-1} c^{\prime} K
$$

where K is an (mxm) arbitrary real symmetric positive semidefinite matrix, where m is the dimension of the output vector. Selection of the arbitrary matrix \dot{K} is treated in the computational aspects of chapter 2 .

Inserting Equation 1.19 into Equation 1.18 yields

$$
\begin{gather*}
\left(A-\frac{1}{2} R^{-1} C^{\prime} K C\right)^{\prime} R+R\left(A-\frac{1}{2} R^{-1} C^{\prime} K C\right)+Q=0 \\
A^{\prime} R+R^{\prime}+Q-C^{\prime} K C=0
\end{gather*}
$$

Equation 1.20 is solved for the matrix R, then the result is substituted into Equation 1.19 to evaluate the matrix G. Once G is found, F is determined by

$$
F=A-G C \text {. }
$$

The matrix found by this method is a stable matrix, therefore ensures that the error

$$
e(t)=z(t)-T x(t)
$$

will diminish as time increases regardess of the initial uncertainties,

$$
e\left(t_{0}\right)=z\left(t_{0}\right)-T x\left(t_{0}\right)
$$

Example 2: The system is as given in Example l. It is desired to design an identity observer for the system. The initial value of the state vector is not known by the designer.

The differential equation that governs the identity observer is

$$
\dot{z}(t)=F z(t)+G y(t)+B u(t)
$$

where

$$
F=A-G C
$$

G must be determined such that F is a stable matrix. Choosing Q and K as

$$
Q=\left[\begin{array}{lr}
2 & 0 \\
0 & 2
\end{array}\right] \quad \text { and } K=4
$$

and inserting into

$$
A^{\prime} R+R A-C^{\prime} K C+Q=0
$$

yields a symmetric positive definite matrix R as,

$$
R=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]
$$

Substituting this result into

$$
G=\frac{1}{2} R^{-1} C^{\prime} K
$$

it is found that

$$
G=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

The matrix.F is found from

$$
F=A-G C
$$

as

$$
F=\left[\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

The eigenvalues of F are -1 and -3 , hence F is a stable matrix. The observer is given by

$$
z(t)=\left[\begin{array}{lr}
-2 & 1 \\
1 & -2
\end{array}\right] z(t)+\left[\begin{array}{l}
1 \\
-1
\end{array}\right] y(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

As stated earlier, the observer output $z(t)$ approaches to the true value of the state $x(t)$ at steady state regardless of the choice of the initial conditions for the observer. We now will show that an arbitrary initial condition will give satisfactory results.

Choosing,

$$
z(0)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

and noting from Example 1 that

$$
y(t)=\frac{1}{2}-2 e^{-t}+\frac{1}{2} e^{-2 t}
$$

the solution of the above differential equation is given by

$$
z(t)=e^{F t} z(0)+\int_{0}^{t}\left\{e^{F(t-\tau)} G y(\tau)+e^{F(t-\tau)} B u(\tau)\right\} d \tau
$$

yields, for unit step input

$$
z(t)=\left[\begin{array}{l}
\frac{1}{2}+\frac{1}{2} e^{-t}+\frac{1}{2} e^{-2 t}+\frac{1}{2} e^{-3 t} \\
\frac{1}{2}+\frac{5}{2} e^{-t}-\frac{1}{2} e^{-2 t}-\frac{1}{2} e^{-3 t}
\end{array}\right]
$$

Next the observer's states and the true states of the system are plotted in Figure 1.3 to show the convergence as time increases.

Although the identity observer can easily be implemented, yet it is not very attractive since it possesses redundancy. The redundancy is due to the fact that the identity observer, while estimating the non-available states, estimates the already available states as well. To elimina this redundancy, the design of an observer of lower dimension is suggested.
1.3. MINIMAL ORDER OBSERVER

The following two chapters consider the design procedure of minimal order observers for continuous time and discrete time Inear systems. In this section only the basic structure of such observers is given.

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

An observer of order $n-m$, where n is the order of the state vector and m is the order of the output vector of the above system, is constructed to estimate the nonavailable states. The output of the observer and the output of the original system are then used to estimate the entire state vector as follows

Fig 1.3

$$
\hat{x}(t)=\left[-\frac{T}{c}\right]^{-1}\left[\frac{z(t)}{y(t)}\right]
$$

where T is a mxn matrix to be determined. Determination of the matrix T is treated in the following chapter. The block diagram below illustrates the structure of the minimal order observer.

CHAPTER 2

MINIMAL ORDER OBSERVERS FOR DETERMINISTIC CONTINUOUS TIME SYSTEMS

Consider the linear-time invariant continuous time system

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t) \\
y & =C x(t)
\end{align*}
$$

where A, B and C are $n \times n$, nxr and man matrices respectively. Furthermore, C is of full rank mand (A, C) is a completely observable pair.

From Theorem l.l, it follows that an observer for the system in Equation 2.1 can be constructed as

$$
\begin{aligned}
& z(t)=F z(t)+G y(t)+H u(t) \\
& z\left(t_{0}\right)=T x\left(t_{0}\right)
\end{aligned}
$$

where F, G and H are $p x p, p x m$ and $p x r$ matrices respectively, $(p \leq n)$, satisfying the constraint equations

$$
\begin{align*}
\mathrm{TA}-\mathrm{FT} & =G \mathrm{C} \\
\mathrm{H} & =\mathrm{TB}
\end{align*}
$$

for some pxn matrix T. This observer estimates the states $x(t)$ by

$$
\hat{x}(t)=\left[\begin{array}{c}
T \\
-- \\
C
\end{array}\right]\left[\begin{array}{c}
z(t) \\
----- \\
y(t)
\end{array}\right]
$$

where (*) denotes a special inverse which can be evaluated as follows:

1. If $p+m<n,\left[-\frac{T}{C}\right]^{*}$ does not exist.
2. If $\mathrm{p}+\mathrm{m}=\mathrm{n},\left[-\frac{\mathrm{T}}{\mathrm{C}}\right]^{*}=\left[\frac{\mathrm{T}}{\mathrm{C}}\right]^{-1}$
3. If $p+m>n$. Then form a square matrix using any n Inearly independent rows from $\left[-\frac{T}{C}-\right]$ and apply ordinary matrix inversion procedures

The upper bound for p is n and when $p=n$ an identity observer may be constructed for the system in Equation 2.1. The designer will naturally try to set p to the smallest value it may attain in order to have the simplest form for the observer. Then the question arises: Does there exist a lower bound for p? The answer is given by the following theorem.

THEOREM 2.1: The order of the observer designed for the system in Equation 2.1 can not be less than $n-m$.

PROOF: In order for the p-dimensional observer

$$
\dot{z}(t)=F z(t)+G y(t)+H u(t)
$$

to estimate the state $x(t)$ by an estimate of the form

$$
\hat{x}(t)=\left[-\frac{T}{C}\right]^{*}\left[\frac{z(t)}{y(t)}\right]
$$

the indicated inverse must exist. This inverse exists, if $p+m>n$ or $p>n-m$. The the smallest value for p is $n-m$, where P is the order of the observer. This completes the proof.

The observer whose order is $n-m$ is called the Minimal order observer. All the derivations developed in the rest of this chapter concern only the minimal order observers.

It is inevitable that the observer involves the dynamics of the observed system, or equivalently, the observed system constrains the dynamics of the observer. Therefore, the relation between the observer and the observed system is brought out in the form of a set of constraints.

To this end, define

$$
\left[\begin{array}{l}
\mathrm{T} \\
\mathrm{C}
\end{array}\right]^{-1}=[\mathrm{P}: \mathrm{V}]
$$

where P and V are $n x(n-m)$ and (nxm) matrices respectively, then

$$
P T+V C=I_{n}
$$

Premultiplying both sides of Equation 2.3 by TA

$$
T A P T+T A V C=T A
$$

is obtained. This result is then substituted in Equation 2.2

$$
\begin{align*}
& T A P T+T A V C-F T-G C=0 \\
& (T A P-F) T+(T A V-G) C=0
\end{align*}
$$

Since rows of T and C are chosen to be linearly independent in Equation 2.4 , it follows that

$$
\begin{aligned}
& F=T A P \\
& G=T A V
\end{aligned}
$$

The equations for the minimal order observer are:

$$
\begin{aligned}
& \dot{z}(t)=F z(t)+G y(t)+H u(t) \\
& \hat{x}(t)=P z(t)+V y(t)
\end{aligned}
$$

where $z(t)$ is the $(n-m)$ dimensional observer state vector, E is the $(n-m) x(n-m)$ state matrix, G and H are the $(n-m) x m$ and $(n-m) x r$ input matrices respectively.

The constraint equations are:

$$
\begin{aligned}
& P T+V C=I n \\
& F=T A P \\
& G=T A V \\
& H=T B
\end{aligned}
$$

From the above constraints it is clearly seen that the design of the minimal order observer hinges on the selection of the matrix T.

If $x\left(t_{0}\right)$ is known, it has been shown that

$$
z(t)=T x(t), \quad t \geq t_{0}
$$

and that $x(t)$ can be reconstructed exactly by

$$
\begin{aligned}
& \hat{x}(t)=P T x(t)+V C x(t) \\
& \hat{x}(t)=(P T+V C) x(t) \\
& \hat{x}(t)=x(t)
\end{aligned}
$$

If $x\left(t_{0}\right)$ is not known, then there exists an observer error defined by

$$
e(t) \triangleq z(t)-T x(t)
$$

which satisfies

$$
e(t)=F e(t), \quad e\left(t_{0}\right)=z\left(t_{0}\right)-T x\left(t_{0}\right)
$$

Our goal is then to find a stable matrix F so that the observer error decreases as time increases.

The next section presents an easy solution for the design of a minimal order observer for the system in Equation 2.1, considering, as a design criterion, the stability of the free system in Equation 2.6 .
2.1. A CANONICAL CLASS OF OBSERVERS $|7|$

Consider the system given by Equation 2.1

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)
\end{aligned}
$$

and recall that C is of full rank m.

Collecting the linearly independent columns, the matrix C may be partitioned as

$$
C=\left[\begin{array}{lll}
c_{1} & c_{2}
\end{array}\right]
$$

where C_{1} is mxm non-singular matrix. one should note that collecting the linearly independent columns of the matrix C to form C_{1} as a non-singular matrix may necessitate renumbering the state variables.

There exists a (nxn) non-singular transformation matrix M given by

$$
M=\left[\begin{array}{c:c}
C_{1} & C_{2} \\
\hdashline 0 & I_{n-m}
\end{array}\right]
$$

which can be used to define a state transformation

$$
q(t)=M x(t)
$$

and

$$
\dot{q}(t)=M \dot{x}(t) \text { with } q\left(t_{0}\right)=M x\left(t_{0}\right) \quad 2.8
$$

The non-singularity of M ensures the existence of the inverse given by

$$
M^{-I}=\left[\begin{array}{c:c}
C_{1}^{-1}: & -c_{1}^{-1} C_{2} \\
\hdashline 0 & I_{n-m}
\end{array}\right]
$$

Solving Equation 2.7 and 2.8 for $x(t)$ and $\dot{x}(t)$ as

$$
\begin{aligned}
& x(t)=M^{-1} q(t) \\
& \dot{x}(t)=M^{-1} \dot{q}(t)
\end{aligned}
$$

and substituting these equalities into Equation 2.1 the following system of equations are obtained.

$$
\begin{aligned}
& \dot{q}(t)=\widetilde{A} q(t)+\tilde{B} u(t) \\
& y(t)=\tilde{C} q(t)=\left[I_{m} ; 0\right] q(t)
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{A}=M A M^{-1} \\
& \widetilde{B}=M B \\
& \widetilde{C}=C^{-1}
\end{aligned}
$$

The similarity transformation

$$
\text { MAM }^{-1}
$$

does not alter the stability, observability and controllability of the original system.

Partitioning \widetilde{A} and \widetilde{B} as

$$
\begin{aligned}
& \tilde{A}=\left[\begin{array}{cc:c}
m & \vec{A}_{11}, \vec{A}_{12} \\
\hdashline \vec{A}_{21} & \widetilde{A}_{22}
\end{array}\right] \mathrm{n}-m \\
& \vec{B}=\left[\begin{array}{c}
\vec{B}_{1} \\
-\vec{B}_{2}
\end{array}\right] \quad n-m
\end{aligned}
$$

then substituting into Equation 2.9 yields

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{q}_{1}(t) \\
\hdashline \dot{q}_{2}(t)
\end{array}\right]=\left[\begin{array}{l:l}
\tilde{A}_{11} & \tilde{A}_{12} \\
\hdashline \tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right]\left[\begin{array}{c}
q_{1}(t) \\
\hdashline q_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\vec{B}_{1} \\
\tilde{\vec{B}}_{2}
\end{array}\right] \quad u(t)} \\
& y(t)=\frac{C}{}\left[-\frac{q_{1}(t)}{q_{2}(t)}\right]=\left[I_{m}\right]\left[\begin{array}{c}
q_{1}(t) \\
-q_{2}(t)
\end{array}\right]
\end{align*}
$$

where $q_{1}(t)$ and $q_{2}(t)$ are m and $(n-m)$-dimensional vectors respectively.

It is seen from Equation 2.13 that the states $q_{2}(t)$ are not available. The following minimal order observer is designed to estimate the non-available states, $q_{2}(t)$,

$$
\dot{z}(t)=F z(t)+G y(t)+H u(t)
$$

This minimal order observer satisfies the following constraints:

$$
\begin{aligned}
& P T+V \tilde{C}=I_{n}, \text { or }\left[-\frac{T}{C}\right]^{-1}=[P \mid V] \\
& F=T \tilde{A} P \\
& G=T \tilde{A} V \\
& H=T \tilde{B}
\end{aligned}
$$

Since the matrix

$$
[-\mathrm{T}]
$$

must be invertible, the simplest choice of the matrix T is

$$
\mathrm{T}=\left[\begin{array}{lll}
-I & I & I_{n-m}
\end{array}\right]
$$

where L is an arbitrary ($n-m$) mm matrix. This choice of the matrix T ensures the existence of the indicated inverse as shown below

$$
\left[\begin{array}{c}
T \\
-\overline{\mathrm{T}}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-1 & I_{n}-m \\
-\frac{1}{I} & -1 \\
m & 0
\end{array}\right]^{-I}
$$

since the right side of Equation 2.15 is of rank n.

The constraint equation

$$
P T+V \tilde{C}=I_{n}
$$

with the substitution of Equation 2.14 and upon being partitioned, may be written as

$$
\left[\begin{array}{c}
P_{1} \\
-P_{2}
\end{array}\right]\left[\begin{array}{ll}
-1 & I_{n-m}
\end{array}\right]+\left[\begin{array}{c}
V_{1} \\
V_{2}
\end{array}\right]\left[\begin{array}{lll}
I_{m} & 0
\end{array}\right]=\left[\begin{array}{c:c}
I_{m} & 0 \\
- & \frac{1}{0} \\
0 & I_{n-m}
\end{array}\right]
$$

Then the following set of matrix equations is obtained.

$$
-P_{1} L+V_{1}=I_{m}
$$

$$
\begin{array}{rlr}
P_{1} & =0 & 2.17 \\
-P_{2} L+V_{2} & =0 & 2.18 \\
P_{2} & =I_{n-m} & 2.19
\end{array}
$$

From Equations 2.17 and 2.19

$$
P=\left[-\frac{0}{I_{n-m}}\right]
$$

and from Equations $2.16,2.17$ and 2.18

$$
V=\left[\frac{I}{L}--\right]
$$

are found.

Straight forward substitution of the matrices T, Equation $2.14, P$, Equation 2.20 and V, Equation 2.21 into the following equations

$$
\begin{aligned}
& F=T \tilde{A P} \\
& G=T \tilde{A} V \\
& H=T \tilde{B}
\end{aligned}
$$

the matrices F, G and H are found to be

$$
\begin{aligned}
& F=\tilde{A}_{22}-L \tilde{A}_{12} \\
& G=\tilde{A}_{21}-L \tilde{A}_{11}+F L \\
& H=\widetilde{B}_{2}-L \widetilde{B}_{1}
\end{aligned}
$$

At this stage the role played by observability must be examined. "Observability" means that one can, in principle, determine the initial state of an observable system from its output measurements. The idea of 'state reconstruc-
tability' follows by noting that knowledge of $q\left(t_{0}\right)$ and Equation 2.13 is sufficient to determine $q(t)$ for all $t \geq t_{0}$ In the context of a.'canonical' class of observers the following definition is appropriate.

DEFINITION 2.1

The system in Equation 2.13 is state reconstructible if there exists an observer

$$
\begin{align*}
\dot{z}(t) & =\left(\widetilde{A}_{22}-L \widetilde{A}_{12}\right) z(t)+\left(\widetilde{A}_{21}-L \tilde{A}_{11}+F L\right) y(t) \\
& +\left(\widetilde{B}_{2}-L \widetilde{B}_{1}\right) u(t) \\
\quad \hat{q}(t) & =\left[\frac{0}{I}--I_{n-m}\right] \quad z(t)+[-m] y(t)
\end{align*}
$$

with $z\left(t_{0}\right)=\left[-L \mid I_{n}-m\right] q_{g}$ where q_{g} is arbitrary such
that

$$
\operatorname{Lim}_{t \rightarrow \infty}(\hat{q}(t)-q(t))=0
$$

THEOREM 2.3: If the observer is asymptotically stable then the system in Equation 2.13 is state reconstructable.

PROOF: Define

$$
\varepsilon(t) \triangleq \hat{q}(t)-q(t)
$$

and substitute Equation 2.22 into Equation 2.23 to obtain

$$
\varepsilon(t)=\left[\frac{0}{I_{n-m}}\right] z(t)+\left[-\frac{I_{m}}{L}\right] y(t)-q(t)
$$

or

$$
\varepsilon(t)=\left[\begin{array}{c}
0 \\
-I_{n-m}-
\end{array}\right] z(t)+\left[-\frac{I_{m}}{L}\right]\left[I_{m}, 0\right]-\left[\begin{array}{c:c}
I_{m} & 0 \\
0 & I_{n-m}--
\end{array}\right] \quad q(t)
$$

$$
\begin{aligned}
& \varepsilon(t)=\left[\begin{array}{c}
0 \\
--- \\
I_{n-m}
\end{array}\right] z(t)-\left[\begin{array}{c}
0 \\
-\frac{1}{1} I_{n-m}
\end{array}\right] \quad q(t) \\
& \varepsilon(t)=\left[----\frac{0}{\left.z(t)-\left[-\frac{1}{1} I_{n-m}\right]------1(t)\right]}\right.
\end{aligned}
$$

Recalling

$$
\begin{array}{r}
e(t)=z(t)-T x(t) \\
T=\left[-L: I_{n-m}\right]
\end{array}
$$

and

$$
\begin{aligned}
& T=\left[-L \mid I_{n-m}\right] \\
& \varepsilon(t)=\left[--\frac{0}{e(t)}\right]
\end{aligned}
$$

is found.

For the state reconstructability

$$
\operatorname{Lim}_{t \rightarrow \infty}(\hat{q}(t)-q(t))=\operatorname{Lim}_{t \rightarrow \infty} \varepsilon(t)=0
$$

must hold.
From Equation 2.24 it is seen that

$$
\operatorname{Lim}_{t \rightarrow \infty} e(t)=0
$$

implies that

$$
\operatorname{Lim}_{t \rightarrow \infty} \varepsilon(t)=0
$$

On the other hand the observer error given by

$$
\dot{e}(t)=F e(t)
$$

satisfies the requirement in Equation 2.25 if, and only if F is a stable matrix.
This completes the proof.

Next question is whether there exists a matrix L, such that

$$
F=\tilde{A}_{22}-E \tilde{A}_{12}
$$

is a stablematrix, A direct application of Theorem 1.2 ensures the existence of a stable matrix F, provided that $\left(\tilde{A}_{22}, \tilde{A}_{12}\right)$ pair is completely observable.

THEOREM 2.4 /5/ The observability of the pair ($\widetilde{A}, \stackrel{\sim}{C})$ implies that $\left(\widetilde{A}_{22}, \widehat{A}_{12}\right)$ is also an observable pair. PROOF: Since (\tilde{A}, \tilde{C}) is a completely observable pair
where
then

$$
\stackrel{\mathrm{C}}{\mathrm{C}}\left[\begin{array}{lll}
I_{\mathrm{m}} & 0
\end{array}\right]
$$

Elementary row and column operations do not alter the rank of a matrix. Then

$$
\begin{aligned}
& =n \\
& 2.26
\end{aligned}
$$

Irrespective of the left column matrix in Equation 2.26

$$
\operatorname{rank}\left[\begin{array}{c}
0 \\
\tilde{A}_{12} \\
\widetilde{A}_{12} \widetilde{A}_{22} \\
\vdots \\
\tilde{A}_{12} \tilde{A}_{22} n-1
\end{array}\right]=n-m
$$

Cayley-Hamilton theorem implies that only the terms upto $\tilde{A}_{12} \tilde{A}_{22}{ }^{n-m-1}$ are needed, then

$$
\operatorname{rank}\left[\begin{array}{c}
\vec{A}_{12} \\
\vec{A}_{12} \widetilde{A}_{22} \\
\vdots \\
\vec{A}_{12} \widetilde{A}_{22} n-m-1
\end{array}\right]=n-m
$$

Equation 2.27 shows that $\left(\tilde{A}_{22}, \tilde{A}_{12}\right)$ is a completely observable pair.

Theorem 2. 4 guarantees the existence of a matrix L, such that the matrix E given by the following equation is stable.

$$
E=\tilde{A}_{22}-L \tilde{A}_{12}
$$

If one determines the matrix L which makes F a stable matrix, then the dynamics of the observer are known since the matrices G and H are also functions of the matrix L. Then, the design of the minimal order observer reduces to the determination of the matrix L. Next is a suggestion to evaluate the matrix L.

A suitable quadratic Lyapunov function for the free system

$$
\dot{e}(t)=F e(t)
$$

is generated. Choosing

$$
\nabla_{L}=-e^{\prime}(t) Q e(t)
$$

where Q is a $(n-m) x(n-m)$ real symmetric positive definite matrix. It follows that a Lyapunov function of the form

$$
V_{L}=e^{\prime}(t) R e(t)
$$

exists, where R is $a(n-m) x(n-m)$ real symmetric positive definite matrix satisfying

$$
F^{\prime} R+R F+Q=0 \text {. }
$$

Replacing F by

$$
F=\widetilde{A}_{22}-L \widetilde{A}_{12}
$$

Equation 2.28 becomes

$$
\left(\tilde{A}_{22}-L \tilde{A}_{12}\right)!R+R\left(\tilde{A}_{22}-L \tilde{A}_{12}\right)+Q=0
$$

Select Las

$$
\mathrm{L}=\frac{1}{2} \mathrm{R}^{-1} \tilde{\mathrm{~A}}_{12} \mathrm{~K}
$$

where K is an arbitrary (mxm) real symmetric positive semi definite matrix, then substitute in Equation 2.29 to obtain

$$
\widetilde{A}_{22}^{\prime} \mathrm{R}+\mathrm{R} \tilde{A}_{22}+\mathrm{Q}-\widetilde{A}_{12} \mathrm{~K}_{\mathrm{A}}^{12}=0
$$

This algebraic matrix equation yields a unique solution for the symmetric positive definite matrix $R|7|$. This solution is then substituted into Equation 2.30 and the matrix L is evaluated. Once the matrix L is found the matrices F, G and H are calculated by

$$
F=\widetilde{A}_{22}-L \widetilde{A}_{12}
$$

$$
\begin{aligned}
& G=\widetilde{A}_{21}-L \widetilde{A}_{11}+F L \\
& H=\widetilde{B}_{2}-L \widetilde{B}_{1}
\end{aligned}
$$

Once the minimal order observer is designed for the canonical system, the estimate of the states of the original system can be obtained by the following transformation.

$$
\hat{x}(t)=M^{-1} \hat{q}(t) \text {. }
$$

Figure 2.1 illustrates the block diagram of the overall system.

Examples concerning the continuous-time deterministic minimal order observers can be found in Appendix A. The reader is suggested to read "Computational Aspects" section before he refers to the examples.
2.2. COMPUTATIONAL ASPECTS

The design procedure outlined in the previous section considers the case that the steady state estimation error approaches zero. It was also shown that in order to achieve a steady state estimation error equal to zero, the observer must be stable. Since the error in the transient response is not of interest, we design a constant eigenvalued stable observer to satisfy the requirement of the steady state error. It is deduced from this statement that the state and input matrices of the observer are computed once, in other words, off-line.

In view of computational aspects, this off-line design procedure mainly involves:

1. Transformation into the canonical representation
2. Solution of the Lyapunov equation.

2.2.1. Transformation into the Canonical Representation

This transformation hinges upon finding a non-singular matrix M such that the output matrix C of the system equation upon being post multiplied by M^{-1} takes the form shown below

$$
\left[\begin{array}{l:c}
I_{m} & 0
\end{array}\right]=\mathrm{CM}^{-1}
$$

This problem may be viewed as the reduction of a $m \times n(m<n)$ full rank matrix C given as

$$
c=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
\vdots & & & \\
c_{m 1} & \cdots & \cdots & c_{m n}
\end{array}\right]
$$

to the following mxn matrix Φ

$$
\Phi=\left[\begin{array}{lll|l}
\Phi_{11} & & \\
& \Phi_{22} & & 1 \\
& & & 0 \\
& & \Phi_{m m} &
\end{array}\right]
$$

which is a collection of mow vectors each containing only one non-zero element located at the ith column.

The indicated reduction can be obtained by elementary column operations. The ith row vector in the reduced matrix is obtained by subtracting an appropriate multiple of the ith column from the remaining columns. This operation is equivalent to post-multiplying by an (nxn) elementary matrix $P M(i)$ given by

Since the matrix C is post-multiplied successively by the above matrices, $i=1, \ldots m$, the elements of the matrix C are assigned new values after each multiplication. We have found appropriate to use $\gamma_{i j}^{(i-1)}$ to denote the values of the matrix C which are obtained when the multiplication by $P M(i-1)$ has been performed, that is

$$
\Gamma(i-1)=C P M(0) P M(1) \quad . \quad P M(i-1)
$$

where $P M(0)=I$.

Upon post-multiplying the matrix C by m elementary matrices evaluated by Equation 2.32, the following equality is obtained

$$
\Phi=C \prod_{i=1}^{m} P M(i)
$$

If the matrix Φ is further post-multiplied by the matrix $P M(m+1)$ which is given by

$$
P M(m+1)=\left[\begin{array}{ccc}
1 & 0 & --0 \\
\Phi_{11} & 1 \\
0 & \frac{1}{\Phi_{2}}--0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
--\frac{1}{\Phi_{m m}}, & 1 \\
0 & 0 & 1
\end{array}\right]
$$

we obtain

$$
\left[\begin{array}{l|l}
I_{m} & 0
\end{array}\right]=\left\{C_{i=1}^{m} P M(i)\right\} \quad P M(m+1)
$$

From Equations 2. 31 and $2.33, \mathrm{M}^{-1}$ is found to be

$$
M^{-1}=\left\{\prod_{i=1}^{m} P M(i)\right\} \quad P M(m+1)
$$

To find the matrix M, evaluating the inverse of the matrix M^{-1} is unnecessary, since the matrix M is given by

$$
M=\left[\begin{array}{c:c}
C_{1} & C_{2} \\
\hdashline 0 & I_{n-m}
\end{array}\right]
$$

as it was shown in the previous section.

One should note that Equation 2,32 is meaningful if

$$
\gamma_{i i} \neq 0
$$

The case $\gamma_{i i}=0$ necessitates the interchange of the columns.

Next is the summary of the reduction scheme explained above.

STEP 1. Initialize $\Gamma(0)$ and $P M(i), i=1, \ldots, m+1$ as follows

```
    \Gamma ( 0 ) = C
PM(i) =I
STEP 2, i=1
STEP 3. l = i
STEP 4. If \gamma l\ell 7 0 go to step 6; otherwise continue.
STEP 5. Interchange
    a) the columns of the matrix }\Gamma(i-1
    b) the elements of the kth now of the matrices
        PM(k), k=1,\ldots.,i
    go to step lo.
STEP 6. Form PM(i) as in Equation 2.32
STEP 7. Evaluate
                                    \Gamma ( i ) = \Gamma ( i - 1 ) \quad P M ( i )
STEP 8. l = l+1
STEP9. If \gamma\elll= = go to step 5; otherwise continue
STEP10. i=i+1
STEP 1l. If i<m go to step 3
STEP 12. PM = M
STEP 13. }\mp@subsup{M}{}{-1}=PM\cdotPM(m+1
STEP 14. STOP
```

2.2 .2 . Solution of the Lyapunov Equation
A. numerical method is presented for solving the Lyapunov
equation of the form

$$
Y^{\prime} X+X Y=-Z
$$

Where Y is ($n \times n$) stable matrix, Z is ($n \times n$) positive definite matrix and X is (nxn) positive definite solution $\operatorname{matrix}|10|$.

Consider the linear time-invariant system of differential equations

$$
\dot{x}=Y x, \quad x(0)=x_{0}
$$

and the quadratic form

$$
v=x^{\prime} x x
$$

then

$$
\dot{V}=-x^{\prime} z x
$$

where Z is defined as follows

$$
Y^{\prime} X+X Y=-Z
$$

Integrating Equation 2.36 gives

$$
v(t)=v(0)-\int_{0}^{t} x^{\prime} z x d t
$$

and as $t \rightarrow \infty, x(t) \rightarrow 0$ so that

$$
V(0)=x_{0}^{\prime} x_{0}=\int_{0}^{\infty} x z x d t
$$

The numerical integration of Equation 2.39 and 2.34 may be written as

$$
\int_{0}^{\infty} x^{\prime} z x d t=\sum_{k=0}^{\infty} q x_{k}^{\prime} z x_{k} \text { as } q \rightarrow 0 \quad 2.40
$$

and

$$
x_{k+I}=\left(I-\frac{q}{2} Y\right)^{-1}\left(I+\frac{q}{2} Y\right) x_{k} \quad k=0, I, \ldots \quad 2.41
$$

Letting

$$
W=\left(I-\frac{q}{2} Y\right)^{-1}\left(I+\frac{q}{2} Y\right)
$$

and inserting this last equality into Equation 2.40 , one obtains

$$
x_{0}^{\prime} x x_{0}=q x_{0}^{\prime}\left[z+W^{\prime} z W+W^{2} z W^{2}+\cdots\right] x_{0}
$$

or

$$
x=q\left[Z+W^{\prime} z W+W^{12} Z W^{2}+\cdots\right]
$$

Equation 2.43 may be written in the following way

$$
x=\operatorname{Lim}_{k \rightarrow \infty} X_{k}
$$

where X_{k} satisfies the recursive relation

$$
x_{k+1}=\frac{1}{2}^{2 k} x_{k} W^{2 k}+x_{k} \quad k=0,1,2, \ldots
$$

which is initialized as

$$
x_{0}=q z \text { with } q \rightarrow 0
$$

This algorithm is numerically stable, since the stability of Y implies that the eigenvalues of W are inside the unit circle regardless of the value of q and converges for all values of $q|17|$.

The above algorithm is used to solve the Lyapunov equation

$$
\left(\widetilde{A}_{22}-L \widetilde{A}_{12}\right)^{\prime} R+R\left(\widetilde{A}_{22}-L \tilde{A}_{12}\right)+Q=0
$$

for the matrices L and R. The matrix L must be so chosen that a positive definite matrix R satisfies the above Lyapunov equation. To this end, choosing the matrix Las

$$
L=\frac{1}{2} R^{-1} \widetilde{A}_{12}, K
$$

the above Lyapunov equation becomes

$$
\tilde{A}_{22} \mathrm{R}+\mathrm{R} \tilde{A}_{22}+Q-\tilde{\mathrm{A}}_{12} \mathrm{~K} \tilde{A}_{12}=0 \quad 2.44
$$

for some arbitrary positive semi-definite matrix k. There exists in theory a positive semi-definite matrix K such that a positive definite matrix R satisfies the above equation, but there has not yet been any search method devised to obtain such a matrix k. We consider three cases below for the selection of the matrix k.

CASE 1 - If \tilde{A}_{22} is a stable matrix then select K as

$$
K=0
$$

Such selection of K reduces the equation in Equation 2.44 to

$$
\tilde{A}_{22}^{\prime} R+R \tilde{A}_{22}+Q=0
$$

In this case there exists a positive definite matrix R as far as the algorithm presented above is concerned $|21|$. The matrix L is then found to be

$$
L=0 \text {. }
$$

CASE 2-If all the eigenvalues of the matrix \vec{A}_{22} are positive, then multiplying Equation 2.44 by (-1) yields

$$
-\tilde{A}_{22} R-R \tilde{A}_{22}-Q+\tilde{A}_{12}, K \widetilde{A}_{12}=0
$$

The above equation may be rewritten as

$$
\left(-\widetilde{A}_{22}\right) \cdot R+R\left(-\tilde{A}_{22}\right)+\widetilde{A}_{12} k \widetilde{A}_{12}-Q=0 \quad 2.45
$$

Then the eigenvalues of $\left(-\widetilde{A}_{22}\right)$ are negative and there exists a positive definite matrix R as a solution of the equation in Equation 2.45 if and only if

$$
\tilde{A}_{12}, \kappa \widetilde{A}_{12}-Q>0
$$

Empirical results have shown that there exists an α such that the selection of the matrix K as

$$
K=\left[\begin{array}{lll}
\alpha & 0 & 0 \\
0 & \alpha & \cdot \\
\cdot & & \cdot \\
0 & & \alpha
\end{array}\right]
$$

satifies the requirement

$$
\tilde{A}_{12}^{\prime} K \tilde{A}_{12}-Q>0 .
$$

CASE 3 - If the matrix \widetilde{A}_{22} is singular or it has both negative and positive eigenvalues then a proper positive semi-definite matrix K of the form

$$
K=\left[\begin{array}{ccc}
k_{11} & k_{12} & k_{1 m} \\
k_{12} & k_{22} & \vdots \\
\vdots & & k_{m m} \\
k_{1 m} & \cdots &
\end{array}\right.
$$

which yields a positive definite solution matrix R of the equation 2.44 , must be searched. Unfortunately, there has not been any devised search method to select such a matrix. In this study, this case is excluded and is left to further researchers. -

CHAPTER 3

MINIMAL ORDER OBSERVERS FOR DETERMINISTIC DISCRETE TIME SYSTEMS

In this chapter, two design criteria for minimal order observers for the deterministic discrete time systems are studied. One of these criteria considers the stability of the observer, and the other is interested in the state estimation error decay. The former demands solutions to various parameters simultaneously, whereas in the latter, determination of one parameter is sufficient. From this comparative statement it is deduced that the implementation of the second criterion is easier than that of the first one. Consequently, we suggest a design procedure for the second criterion.
3.1. BASIC EQUATIONS

Consider the completely observable linear time invariant discrete time system

$$
\begin{align*}
& x(k+1)=A x(k)+B u(k) \\
& y(k)=C x(k)
\end{align*}
$$

It is assumed that the output matrix C is of full rank m.

THEOREM 3.1: Let a system of order p, which is driven by the inputs and the outputs of the system in Equation 3.1 be given by

$$
z(k+1)=F z(k)+G y(k)+H u(k)
$$

If there exists a matrix T of dimensions poon which satis flies

$$
\begin{array}{rr}
\mathrm{TA}-\mathrm{FT}=\mathrm{GC} & 3.3 \\
\mathrm{~TB}=\mathrm{H} & 3.4
\end{array}
$$

then $z(k)$ in Equation 3.2 estimates, $T x(k)$, a linear transformation of the states $x(k)$ in Equation $3,1, i, e,$,

$$
z(k)=T x(k)+e(k)
$$

Where elk) denotes the observer error.

PROOF: It immediately follows from Equations 3.1 and 3.2 that

$$
\begin{aligned}
z(k+1)-T x(k+1) & =F z(k)+G y(k)+H u(k) \\
& =T A(k)+(G C-T A) x(k)+(H-T B) u(k)
\end{aligned}
$$

From Equations 3.3 and 3.4 the above equation can be written as

$$
z(k+1)-T x(k+1)=F[z(k)-T x(k)] 3.5
$$

The difference equation in Equation 3.5 yields a solution

$$
\begin{aligned}
z(k)-T x(k) & =F^{k}[z(0)-T x(0)] \\
z(k) & =T x(k)+F^{k}[z(0)-T x(0)]
\end{aligned}
$$

The observer error elk) is

$$
e(k)=F^{k}[z(0)-T x(0)]
$$

This completes the proof.

The smallest value p can attain is $n-m$, see Theorem 2.1. If the value of p is replaced by $n-m$ in the above theorem, the system in Equation 3.2 is the minimal order observer for the system in Equation 3.1 in the sense of the above theorem.

THEOREM 3.2: The minimal order observer constructed in Theorem 3.1, in conjunction with the output of the system in Equation 3.1 , reconstructs the states of the system in Equation 3.1 exactly if $z(0)=T \times(0)$ provided that $\left[-\frac{T}{C}\right]^{-I}$ exists.

PROOE: Imposing the condition

$$
z(0)=T x(0)
$$

upon

$$
z(k)=T x(k)+F^{k}[z(0)-T x(0)]
$$

which has already been obtained, results in

$$
z(k)=T x(k)
$$

Enlarging the observer state vector $z(k)$ with the output vector $y(k)$ of the system in Equation 3.1 which is given by

$$
y(k)=c x(k)
$$

the following is obtained.

$$
\left[\frac{z(k)}{y(k)}\right]=\left[-\frac{T}{C}\right] x(k)
$$

Premultiplying the above equation by

$$
\left[\begin{array}{c}
T \\
\mathrm{c}
\end{array}\right]^{-1}
$$

it is found that

$$
x(k)=\left[-\frac{T}{c}\right]^{-1}\left[\frac{z(k)}{y(k)}\right]
$$

This completes the proof.

If $x(0)$ is not known then $z(0)$ can not be chosen to be equal to $T(0)$.. In this case, the observer error $e(k)$ exists and, in turn, effects the reconstruction of the state $x(k)$. Then, Equation 3.6 is modified as

$$
x(k)=\left[-\frac{T}{C}\right]^{-1}\left[\frac{z(k)}{y(k)}\right] \quad-\varepsilon(k)
$$

Where $\varepsilon(k)$ is the estimation error defined by

$$
\varepsilon(k)=\hat{x}(k)-x(k)
$$

where $\hat{x}(k)$ is the estimate of the state $x(k)$. If $\varepsilon(k)$ in Equation 3.7 is replaced with the above equation, then Equation 3.7 becomes

$$
\hat{x}(k)=\left[\frac{T}{C}\right]^{-1}\left[\frac{z(k)}{y(k)}\right]
$$

It has been shown so far that the minimal order observer estimates the states of the observed system. How the minimal order observer is constructed is the topic of the next section.
3.2. CONSTRUCTION OF MINIMAL ORDER OBSERVERS

As it was pointed out in Chapter 2, the construction of the observer must involve the dynamics of the observed
system since it produces an estimate to the state of the observed system. In other words, the observed system constrains the behavior of the observer. Hence, the starting point with the construction of the observer is to set these constraints.

Letting the indicated inverse in Equation 3.8

$$
\left[-\frac{T}{C}\right]^{-1}=[P \quad V]
$$

where P and V are $n x n$ and nxm matrices respectively, $\hat{x}(k)$ is written as

$$
\hat{x}(k)=P z(k)+V y(k)
$$

Equation 3.9 implies that

$$
P T+V C=I_{n}
$$

Both sides of the last equation are pre-multiplied by TA to obtain

$$
T A P T+T A V C=T A
$$

which is substituted in the constraint equation, Equation 3.3 and

$$
T A P T+T A V C-F T-G C=0
$$

or

$$
(T A P-F) T+(T A V-G) C=0
$$

is obtained.
T and C are linearly independent since $\left[-\frac{T}{C}\right]$ has been as sumed to be invertible, then Equation 3.10 holds true, if

$$
F=T A P
$$

and

$$
G=T A V
$$

The summary of the equations governing the minimal order observer is given below for easy reference:

The minimal order observer given by

$$
z(k+1)=F z(k)+G y(k)+H u(k)
$$

estimates the state $x(k)$ of the observed system as

$$
\hat{x}(k)=P z(k)+V y(k)
$$

and satisfies the following constraints:

$$
\begin{aligned}
& P T+V C=I_{n} \\
& F=T A P \\
& G=T A V
\end{aligned}
$$

and

$$
H=T B .
$$

The next two sub-sections present the already mentioned two design criteria separetely. At the end of the second subsection the interrelationship of these two criteria is mentioned as well.
3.2.1. Stability of the Observer $|8|$

This design criterion deals with the observer error defined by

$$
e(k)=z(k)-T x(k)
$$

and sets the necessary conditions for

$$
\operatorname{Lim}_{k \rightarrow \infty} e(k)=0 \quad 3 \cdot 12
$$

The derivation below shows how Equations 3.11 and 3.12 are related to the stability of the observer,

From Equation 3.11 , it is immediately seen that

$$
e(k+1)=z(k+1)-T x(k+1)
$$

Substitution of Equations 3.1 and 3.2 into 3.13 yields

$$
e(k+1)=F z(k)+G y(k)+H u(k)-T A x(k)-T B u(k)
$$

Furthermore,

$$
e(k+1)=F z(k)+(G C-T A) x(k)+(H-T B) u(k)
$$

since $y(k)=C x(k)$.
Inserting Equations 3.3 and 3.4 into the above equation

$$
e(k+1)=F[z(k)-T x(k)]
$$

is obtained. Further substitution of Equation 3.11 yields

$$
e(k+1)=F e(k)
$$

In order for,

$$
\operatorname{Lim}_{k \rightarrow \infty} e(k)=0
$$

to hold true, F must be a stable matrix.
Then the matrix F must be tuned in such a way so that all its eigenvalues are inside the unit circle.

Since,

$$
F=T A P
$$

the tuning of the matrix F requires the selection of two matrices T and P which are related through the matrix V.

The difficulty of selecting three matrices T, P and V simultaneously renders this design procedure unattractive.

3.2.2. Estimate Error Decay $|8|$

As the title implies, this design criterion determines the dynamics of the observer such that the state estimation error defined by

$$
\varepsilon(k)=\hat{x}(k)-x(k) \quad \because 3.14
$$

decays as time increases, or in mathematical terms

$$
\operatorname{Lim}_{k \rightarrow \infty} \varepsilon(k)=0 .
$$

Substituting the output equation of Equation 3.I in to the following equation

$$
\hat{x}(k)=P z(k)+v y(k)
$$

yields

$$
\hat{x}(k)=P z(k)+V C x(k)
$$

The constraint equation

$$
P T+V C=I_{n}
$$

may be written as

$$
V C=I_{n}-P T
$$

and with the insertion of this result into Equation 3.15, $\hat{x}(k)$ becomes

$$
\hat{x}(k)=P z(k)+[I-P T] x(k)
$$

or

$$
\hat{x}(k)=x(k)+P[z(k)-T x(k)]
$$

Recalling that

$$
e(k)=z(k)-T x(k)
$$

the above equation reads

$$
\hat{x}(k)=x(k)+P e(k)
$$

Substitution of this result into Equation 3.14 yields

$$
\varepsilon(k)=x(k)+p e(k)-x(k)
$$

or

$$
\varepsilon(k)=P e(k)
$$

It follows from the above equation that

$$
e(k+1)=P e(k+1)
$$

or

$$
\varepsilon(k+1)=P E e(k)
$$

On the other hand,

$$
\begin{align*}
& P F=P T A P \\
& P F=[I-V C] A P \\
& P F=[A-V C A] P
\end{align*}
$$

Equations 3.18 and 3.16 are substituted into Equation.3.17 in the given order as follows, and

$$
\begin{align*}
& \varepsilon(k+1)=[A-V C A] P e(k) \\
& \varepsilon(k+1)=[A-V C A] \varepsilon(k)
\end{align*}
$$

is obtained.
In order for this free system to satisfy

$$
\operatorname{Lim}_{k \rightarrow \infty} \varepsilon(k)=0
$$

the eigenvalues of the matrix $[A-V C A] m u s t$ lie in the unitcircle. Since the matrices A and C are known, an appropriate choice of V is sufficient to determine a stable
matrix A-VCA.
Furthermore, picking V in order to have a stable free system

$$
\varepsilon(k+1)=[A-V C A] \varepsilon(k)
$$

ensures the stability of the observer as follows.

$$
\operatorname{Lim}_{k \rightarrow \infty} \varepsilon(k)=P_{k \rightarrow \infty} \operatorname{Lim}_{k \rightarrow \infty} e(k)=0
$$

Since the matrix P is of full column rank the above equation is satisfied only if

$$
\operatorname{Lim}_{k \rightarrow \infty} e(k)=0 .
$$

In the next section we suggest a design procedure for the evaluation of the matrix V, and show that the matrices F, G and H of the observer are determined by simple operations once V is evaluated.

3.3. A CANONICAL CLASS OF OBSERVERS

The system given in Equation 3.1

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)
\end{aligned}
$$

can be transformed to

$$
\begin{align*}
& q(k+1)=\widetilde{A} q(k)+\widetilde{B} u(k) \\
& y(k)=\widetilde{C} q(k)=\left[I_{m} 0\right] q(k) .
\end{align*}
$$

through a (nxn) non-singular transformation matrix M,

$$
M=\left[\begin{array}{c:c}
c_{1} & c_{2} \\
\hdashline 0 & I_{n-m}
\end{array}\right]
$$

such that $q(k)=M x(k)$ as it was explained in section 2.1. The matrices \tilde{A} and \tilde{B} are given by

$$
\begin{aligned}
& \tilde{A}=M A M^{-1} \\
& \widetilde{B}=M B
\end{aligned}
$$

As it was pointed out in Chapter 2, the similarity transformation does not alter stability, observability, controllability.

Upon partitioning the matrices \tilde{A} and \widetilde{B} appropriately, Equation 3.20 is written as:

$$
\begin{align*}
& {\left[\begin{array}{c}
q_{1}(k+1) \\
\hdashline q_{2}(k+1)
\end{array}\right]=\left[\begin{array}{c:c}
\tilde{A}_{11} & \tilde{A}_{12} \\
\hdashline \vec{A}_{21} & \widetilde{A}_{22}
\end{array}\right]\left[\begin{array}{c}
q_{1}(k) \\
-q_{2}(k)
\end{array}\right]+\left[\begin{array}{c}
\vec{B}_{1} \\
-\vec{B}_{2}
\end{array}\right] u(k)} \\
& y(k)=\left[\begin{array}{lll}
I_{m} & 1 & 0
\end{array}\right]\left[-\frac{q_{1}(k)}{q_{2}(\bar{k})}\right]
\end{align*}
$$

where $q_{1}(k)$ and $q_{2}(k)$ are m - and ($n-m$)-dimensional parts of the partitioned state vector respectively. \mathbb{A}_{11} is $(m \times m), \vec{A}_{12}$ is $m \times(n-m), \tilde{A}_{21}$ is $(n-m) \times m, \vec{A}_{22}$ is $(n-m) \times(n-m)$, \widetilde{B}_{1} is $m \times r$ and \widetilde{B}_{2} is $(n-m) \times r$. The output equation of Equation 3.21 shows that the states $q_{2}(k)$ are not available Therefore, the $(n-m)$ order observer to be designed will estimate the states $q_{2}(k)$.

To this end, Equation 3.19 for the system in Equation 3.20 is written as

$$
\varepsilon(k+1)=[\tilde{A}-v \tilde{C} \tilde{A}] \varepsilon(k)
$$

If the Lyapunov stability theory is employed for discrete time systems to evaluate a stabilizing V for the free system in Equation 3.22 , the following Lyapunov equation is obtained $|8|,|9|$.

$$
[\tilde{A}-V \widetilde{C} \tilde{A}][[R][\widetilde{A}-V \widetilde{C} \tilde{A}]-R=-Q
$$

where Q is an ($n \times n$) real symmetric positive definite matrix.

If there exists a (nxn) real symmetric positive definite solution matrix R to the above equation, Equation 3.23 , then $[\tilde{A}-V \tilde{C A}]$ is said to be stable. Equation 3.23 is solved for V and R simultaneously with the constraint that R is a symmetric positive definite matrix.

There are several algorithms developed one may use to solve Equation 3.23 for the (nxn) matrix R, but we claim that the order of Equation 3.23 can be reduced considerably. It is unfortunate however, that Equation 3.23 does not admit any further reduction in the order, therefore we modify the problem of seeking out a stable matrix $[\tilde{A}-V \tilde{C} \tilde{A}]$ for the free system

$$
\varepsilon(k+1)=[\tilde{A}-v \widetilde{\mathrm{C}} \tilde{\mathrm{~A}}] \quad \varepsilon(k)
$$

so that

$$
\operatorname{Lim}_{k+\infty} \varepsilon(k)=0
$$

as follows:
Define a new free system given by

$$
m(k+1)=[\tilde{A}-V \tilde{C} \tilde{A}]^{\prime} m(k)
$$

If the matrix $[\tilde{A}-V \tilde{C} \tilde{A}]^{\prime}$ is a stable matrix or equivalently the eigenvalues of $[\widetilde{A}-V \widetilde{C}]$, are inside the unit
circle, then

$$
\operatorname{Lim}_{k \rightarrow \infty} m(k)=0
$$

Equation 3.26 implies Equation 3.24 since transposinga square matrix does not alter eigenvalues.

Employing the Lyapunov stability theory for the free system in Equation 3.25 results in

$$
[\tilde{A}-V \stackrel{\rightharpoonup}{\mathrm{~A}}] \mathrm{R}[\tilde{A}-V \stackrel{\mathrm{C}}{\mathrm{~A}}]^{\prime}-R=-\mathrm{Q}
$$

where both Q and R are (nxn) real symmetric positive definite matrices.

In our case the most appropriate algorithm to solve Equation 3.27 is the "Successive Approximation Algorithm" since it provides V and R simultaneously. The Successive Approximation Algorithm consists of iterative solution as outlined in the following theorem.

THEOREM $3.5:|10|$ Let $N_{k}, k=0,1,2, \ldots$, be the solutions of the equation

$$
N_{k}=S_{k} N_{k} S_{k}^{\prime}+Q
$$

where

$$
S_{k}=\tilde{A}-V_{k} \tilde{C} \tilde{A} \quad k=0,1,2, \ldots
$$

with

$$
V_{k}=\tilde{A}_{N} \tilde{A}^{\prime} \widetilde{C}^{\prime}\left(\widetilde{C}_{\hat{A}}^{N_{k-1}} \widetilde{A}^{\prime} \widetilde{C}^{\prime}\right)^{-1} \quad k=1,2,3, \ldots 3.29
$$

and V_{0} is chosen such that S_{0} is a stable matrix. Then the matrix E_{k} defined as

$$
E_{k}=N_{k}-N_{k+1}, \quad k=0,1, \ldots
$$

is positive-semidefinite, that is

$$
\operatorname{Lim}_{k \rightarrow \infty} E_{k} \geq 0 \quad R_{k} \quad \text { and } \quad \operatorname{Lim}_{k \rightarrow \infty} V_{k}=V
$$

PROOF: Since S_{0} is a stable matrix, the unique positive definite solution N_{0} of Equation 3.28 may be written as

$$
N_{0}=\sum_{N=0}^{\infty}\left(S_{0}\right)^{N} Q\left(S_{0}^{1}\right)^{N}
$$

It follows from Equation 3.29 that

$$
S_{0}=\widetilde{A}-V_{0} \widetilde{C} \widetilde{A} \quad \text { for } k=0
$$

and

$$
S_{1}=\widetilde{A}_{A} V_{1} \widetilde{C} \widetilde{A}^{\text {for } k=1}
$$

The last equation may be rewritten as

$$
\widetilde{A}=S_{1}+V_{1} \widetilde{C} \widetilde{A}
$$

and this result is substituted in S_{o}, then S_{o} becomes

$$
S_{0}=S_{1}+\left(V_{1}-V_{0}\right) \widetilde{C} \widetilde{A}
$$

Then,

$$
\begin{align*}
& S_{0} N_{0} S_{0}^{\prime}=\left(S_{1}+\left(V_{1}-V_{0}\right) \tilde{C A}\right)_{0}\left(S_{1}+\left(V_{1}-V_{0}\right) \tilde{C A}\right)^{\prime} \\
& S_{0} N_{0} S_{0}^{\prime}=S_{1} N_{0} S_{1}^{\prime}+\left(V_{1}-V_{0}\right) \tilde{C A} \tilde{A}_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right) \\
& +S_{1} N_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime} \\
& +\left(V_{1}-V_{0}\right) \widetilde{C} \widetilde{A}_{0} N_{0}{ }^{\prime}
\end{align*}
$$

is obtained. From Equation 3.29

$$
S_{1} N_{0} \widetilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime}=\left(\widetilde{A}-V_{1} \widetilde{C A}\right) N_{0} \tilde{A}^{\prime} \widetilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime}
$$

$$
\begin{aligned}
& S_{1} N_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime}=\tilde{A N}_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime} \\
& \\
& S_{1} N_{0} \tilde{A}^{\prime} \tilde{C}_{1} \tilde{C}^{\prime}\left(\tilde{A}_{1} N_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime}=V_{0}\right)^{\prime} \\
& \tilde{A N}_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime} \\
& \\
& -\tilde{A N}_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime} \\
& S_{1}^{N} \tilde{O}^{\prime} \tilde{C}^{\prime}\left(V_{1}-V_{0}\right)^{\prime}=
\end{aligned}
$$

is found. This result implies

$$
\left(V_{1}-V_{0}\right) \tilde{C A}_{A} N_{0} S_{1}^{\prime}=0
$$

since this term is the transpose of the above term. Then, the identity in Equation 3.30 becomes

$$
S_{0} N_{0} S_{0}^{\prime}=S_{1} N_{0} S_{1}^{\prime}+\left(V_{1}-V_{0}\right)\left(\tilde{C A N}_{0} \widetilde{A}^{\prime} \tilde{C}^{\prime}\right)\left(V_{1}-V_{0}\right)^{\prime} 3.31
$$

Insertion of Equation 3.31 into Equation 3.28 shows that No also satisfies the following equation

$$
N_{0}=S_{1} N_{0} S_{1}+K
$$

Where

$$
K=\left(V_{1}-V_{0}\right)\left(\tilde{C A N}_{0} \tilde{A}^{\prime} \tilde{C}^{\prime}\right)\left(V_{1}-V_{0}\right)^{\prime}+Q \geq 0
$$

Since this implies that S is a stable matrix, the unique positive definite solution N_{1} of Equation 3.28 exists and is given by

$$
N_{1}=\sum_{N=0}^{\infty}\left(S_{1}\right)^{N} Q\left(S_{1}^{1}\right)^{N}
$$

The solution to the equation in Equation 3.32 is

$$
N_{0}=\sum_{N=0}^{\infty}\left(S_{1}\right)^{N} K\left(S_{1}\right)^{N} \quad 3.34
$$

Subtracting Equation 3.33 from Equation 3.34 , one obtains

$$
\begin{aligned}
& N_{0}-N_{1}=\sum_{N=0}^{\infty}\left(S_{1}\right) N_{1}(K-Q)\left(S_{1}^{\prime}\right)^{N} \\
& N_{0}-N_{1}=\sum_{N=0}^{\infty}\left(S_{1}\right)^{N}\left(V_{1}-V_{0}\right)\left(\tilde{C A} N_{0} A_{1} \tilde{C}^{\prime}\right)\left(V_{1}-V_{0}\right)^{1}\left(S_{1}^{1}\right)^{N} \geq 0
\end{aligned}
$$

If an identity similar to that in Equation 3.31 is employed,

$$
N_{k}-N_{k+1}=\sum_{N=0}^{\infty}\left(S_{k+1}\right)^{N_{1}}\left(V_{k+1}-V_{k}\right)\left(\operatorname{CAN}_{k} \tilde{A}^{\prime} \tilde{C}^{\prime}\right)\left(V_{k+1}-V_{k}\right){ }^{\prime}\left(S_{k+1}^{1}\right)^{N} \geq 0
$$

is found. Now, let

$$
V *=\tilde{A} \tilde{R A}^{\prime} \tilde{C}^{\prime}\left(\tilde{C} \tilde{A} R \tilde{A}^{\prime} \tilde{C}^{\prime}\right)^{-1}
$$

and again employ an identity similar to Equation 3.31 to obtain

$$
N_{k+1}-R=\sum_{N=0}^{\infty}(R)^{N}\left(V *-V V_{k+1}\right)\left(\tilde{C A N}_{k+1} \tilde{A}^{\prime} \tilde{C}^{\prime}\right)\left(V_{k+1}-V *\right)^{\prime}\left(R^{\prime}\right)^{N} \geq 0
$$

This completes the proof.

The next theorem proves that the rate of convergence of this algorithm is quadratic.

THEOREM $3.6|10|$ If the algorithm in Theorem 3.5 is employed, then the rate of convergence to the steady state R is

$$
\left[R-N_{k+1}\right] \leq C\left[R-N_{k}\right]^{2}
$$

where. C is a constant independent of the iteration index. k.

PROOF: Let

$$
V^{*}=\tilde{A} R \tilde{A}^{\prime} \tilde{C}^{\prime}\left(\tilde{C} \widetilde{A} R \tilde{A}^{\prime} \tilde{C}^{\prime}\right)^{-1}
$$

and

$$
\widetilde{A}=S_{*}+V * \widetilde{C} \tilde{A}
$$

Since the steady state R is assumed to exist, S_{*} is a stable matrix. The matrix difference $R-N_{k+1}$ can be expressed as in the proof of Theorem 3.5, in terms of a convergent series.

$$
R-N_{k+1}=\sum_{n=0}^{\infty} S_{*}^{n}\left(V^{*}-v_{k+1}\right)\left(\tilde{C}^{2} A R \tilde{A}^{\prime} \tilde{C}^{\prime}\right)\left(V *-V_{k+1}\right)^{\prime}\left(s_{*}^{n}\right)^{\prime}
$$

where V_{k} is obtained from Equation 3.29 .
The expression

$$
\begin{aligned}
V:-V_{k+1}= & \left(\tilde{C} \tilde{A} R \tilde{A} \cdot \tilde{C}^{\prime}\right)^{-1} \tilde{C}_{\tilde{A}}\left(R-N_{k}\right) \tilde{A} \\
& \left(\tilde{C} \tilde{A}^{\prime} \tilde{A}^{\prime} \tilde{C}\right)^{-1}\left(\tilde{C}_{A} \tilde{A}_{k} \tilde{C}^{\prime} \widetilde{C}^{\prime}-\tilde{C} \tilde{A} \tilde{A}^{\prime} \tilde{C}^{\prime}\right) V_{k+1}
\end{aligned}
$$

can be verified by matrix manipulation. Substituting this expression in the above series, it is seen that

$$
\left[R-N_{k+1}\right] \leq c\left[R-N_{k}\right]^{2}
$$

where C is a constant. This completes the proof.

In order to be able to evaluate V_{k} in Equation 3.29 the indicated inverse must exist.

THEOREM 3.7: If A and N_{k-1} are n xn non-singular matrices and \widehat{C} is an man matrix with full rank m, then

$$
\left(\tilde{C} \widetilde{A}_{k-1} \tilde{A}^{\prime} \tilde{C}^{\prime}\right) \text { is invertible. }
$$

PROOF: The matrix \tilde{C} is of full rank m,

$$
\operatorname{rank} \tilde{C}=m \text {. }
$$

When a rectangular matrix is multiplied on the left or on the right by a non-singular matrix, the rank of the origina matrix remains unchanged $|11|$. Then,

$$
\operatorname{rank}[\tilde{C}]=\operatorname{rank}[\tilde{C} \widetilde{A}]=\operatorname{rank}\left[\tilde{C} \tilde{A}_{\mathrm{A}} \mathrm{~N}_{\mathrm{k}-1}\right]=\mathrm{m}
$$

If rank $|\widetilde{C} \widetilde{A}|=m$, then

$$
\text { rank }\left|\tilde{A}^{\prime} \tilde{C}^{\prime}\right|=\mathrm{m} \text {. }
$$

Then the (mam) matrix $\left[\widetilde{C} \tilde{A} \cdot N_{k-1}, \widehat{A}^{\prime} \tilde{C}\right]$ is of rank m, hence invertible.

This completes the proof.

The non-singularity of the matrix \widehat{A} is a sufficient condiction for the indicated inverse to exist. The converse of the above theorem, that is, if

$$
\left(\widetilde{\mathrm{C}} \widetilde{A}_{\mathrm{K}} \mathrm{~N}_{1} \widetilde{A}^{\prime} \tilde{\mathrm{C}}^{\prime}\right)
$$

is invertible then \overparen{A} is a non-singular matrix, does not hold true. It can be shown that for some singular matrix A the indicated inverse exists. Considering the case that the indicated inverse may not exist for some singular matrix \tilde{A}, we conclude that the minimal order observer can not be constructed by this design procedure. In this case, we suggest constructing an identity observer. For the sake of completeness, we mention how an identity observer is constructed in a separate section later in this chapter.

As we have stated the algorithm derived in Theorem 3.5 to
solve Equation 3.27 may be reduced in order if some properties of the canonical system in Equation 3.21 are used. To this end the matrices N_{k} and V_{k} are partitioned as follows:

$$
\begin{aligned}
& N_{k}=\left[\begin{array}{c:c}
N_{k 11} & N_{k 12} \\
\hdashline N_{k 21} & 1 \\
N_{k 22}
\end{array}\right] \\
& v_{k}=\left[\begin{array}{l}
\mathrm{v}_{k 1} \\
-L_{k}
\end{array}\right]
\end{aligned}
$$

where $N_{k 11}$ is $m \times m, N_{k 12}$ is $m x(n-m), N_{k 21}$ is $(n-m) \times m$, $N_{k 22}$ is $(n-m) x(n-m), V_{k 1}$ is mxm and L_{k} is $(n-m) \times m$. Inserting these partitioned matrices into Equation 3.29, yields

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{V}_{k 1} \\
\hdashline \mathrm{~L}_{\mathrm{k}}
\end{array}\right]=\left[\begin{array}{l:l:l}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{\tilde{A}}_{21} & \tilde{A}_{22}
\end{array}\right]\left[\begin{array}{c:c:c}
N_{k-1,11} & N_{k-1,12} \\
\hdashline N_{k-1,21} & N_{k-1,22}
\end{array}\right]\left[\begin{array}{c:c}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{\tilde{A}}_{21} & \tilde{A}_{22}
\end{array}\right]\left[\begin{array}{c}
I_{m} \\
- \\
0
\end{array}\right]} \\
& \left\{\left[\begin{array}{l:l:l:l}
I_{m} & 0
\end{array}\right]\left[\begin{array}{l:l:l}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{\widetilde{A}}_{21} & \tilde{A}_{22}
\end{array}\right]\left[\begin{array}{l:l}
N_{k-1,11} & N_{k-1,12} \\
\hdashline N_{k-1,211} & \tilde{N}_{k-1,22}
\end{array}\right]\left[\begin{array}{c:c}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right]^{\prime}\left[\begin{array}{c}
I_{m} \\
\hdashline 0
\end{array}\right]\right\}^{-1} \\
& {\left[\begin{array}{c}
V_{k 1} \\
-L_{k}
\end{array}\right]=\left[\begin{array}{l}
{\left[\tilde{A}_{11} N_{k-1,11}+\widetilde{A}_{12} N_{k-1,21}\right] \widetilde{A}_{11}+\left[\widetilde{A}_{11} N_{k-1,12}+\tilde{A}_{12} N_{k-1,22}\right.} \\
{\left[\widetilde{A}_{12}^{1}\right.} \\
\left.\tilde{A}_{21} N_{k-1,11}+\widetilde{A}_{22} N_{k-1,21}\right]
\end{array}\right]} \\
& \left\{\left[\tilde{A}_{11} N_{k-1,11}+\tilde{A}_{12} N_{k-1,21}\right] \tilde{A}_{11}^{\prime}+\left[\tilde{A}_{11} N_{k-1,12}+\tilde{A}_{12} N_{k-1,22}\right]_{12} \tilde{A}_{1}^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{r}
\mathrm{v}_{k} \\
L_{k}
\end{array}\right]=\left[\left[\tilde{A}_{21}{ }_{k-1,11}+\cdots \tilde{A}_{22} N_{k-1,21}\right] \tilde{A}_{11}^{1}+\left[\tilde{A}_{21}^{N_{k-1,12}+\tilde{A}_{22}^{N}}{ }_{k-1,22}\right] \tilde{A}_{12}^{1}\right]} \\
& \cdot\left[\left[\tilde{A}_{11} N_{k-1,11}+\tilde{A}_{12} N_{k-1,21}\right] \tilde{A}_{11}^{\ell}\right. \\
& \left.+\left[\tilde{A}_{11} N_{k-1,12}+\tilde{A}_{12}{ }_{k-1,22}\right] \tilde{A}_{12}^{1}\right]-1 \quad 3.35
\end{aligned}
$$

Equation 3.35 shows that

$$
v_{k}=\left[-\frac{I}{L_{k}}\right]
$$

If the above equation is substituted in Equation. 3.29, we find S_{k} as

$$
\begin{aligned}
& S_{k}=\left[\begin{array}{c:c}
\tilde{A}_{11} & \tilde{A}_{12} \\
\hdashline \tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right]-\left[\begin{array}{c}
I \\
\hdashline L_{k}
\end{array}\right]\left[\begin{array}{ll:l}
I_{m} & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{A}_{11} \\
\hdashline \tilde{A}_{12} \\
\hat{A}_{21} \\
\tilde{A}_{22}
\end{array}\right] \\
& S_{k}=\left[\begin{array}{c:c}
0 \\
\hdashline \tilde{A}_{21}-L_{k} A_{11} & \tilde{A}_{22}-L_{k} \tilde{A}_{12}
\end{array}\right]
\end{aligned}
$$

or

$$
s_{k}=\left[\begin{array}{c:c}
0 & 0 \\
\hdashline X_{k} & Y_{k}
\end{array}\right]
$$

where X_{k} and Y_{k} are $(n-m) x m$ and $(n-m) \times(n-m)$ matrices respectively and given by

$$
x_{k}=\tilde{A}_{21}-L_{k} \tilde{A}_{11}
$$

and

$$
Y_{k}=\tilde{A}_{22}-L_{k} \tilde{A}_{12}
$$

Choosing

$$
Q=I
$$

and substituting Equation 3.36 into Equation 3.28 , we obtain

$$
\left[\begin{array}{c:c}
N_{k 11} N_{k 12} \\
\hdashline N_{k 21} & N_{k 22}
\end{array}\right]=\left[\begin{array}{c}
I_{m} \\
\hdashline 0 I_{n-m}^{+}\left[X_{k} N_{k 11}+Y_{k} N_{k 21}\right] x_{k}+\left[X_{k} N_{k 12}+Y_{k} N_{k 22}\right]
\end{array}\right]
$$

From this expression we obtain the following identities:

$$
\begin{align*}
& N_{k 11}=I_{m} \\
& N_{k 12}=0 \\
& N_{k 21}=0
\end{align*}
$$

If these identities are substituted into

$$
N_{k 22}=I+\left[X_{k} N_{k 11}+Y_{k} N_{k 21}\right] X_{k}^{\prime}+\left[x_{k} N_{k 12}+Y_{k} N_{k 22}\right] Y_{k}^{Q}
$$

$\mathrm{N}_{\mathrm{k} 22}$ becomes,

$$
N_{k 22}=I_{n-m}+X_{k} X_{k},+Y_{k} N_{k 22} Y_{k}^{\prime}
$$

We then substitute the above result together with the identities Equation 3.37 into Equation 3.35 and we. find that

$$
L_{k}=\left[\tilde{A}_{21} \widetilde{A}_{11}^{\prime}+\tilde{A}_{22} N_{k 22} \tilde{A}_{12}^{1}\right]\left[\tilde{A}_{11} \tilde{A}_{11}^{\prime}+\tilde{A}_{12} N_{k 22} \widetilde{A}_{12}^{1}\right]^{-1}
$$

Furthermore,

$$
S_{0}=\left[\begin{array}{c:c}
0 & 0 \\
\hdashline X_{0} & Y_{0}
\end{array}\right]
$$

or replacing X_{0} and Y_{o} by

$$
\begin{align*}
& X_{0}=\tilde{A}_{21}-L_{0} \tilde{A}_{11} \\
& Y_{0}=\tilde{A}_{22}-L_{0} \tilde{A}_{12} \\
& S_{0}=\left[\begin{array}{l}
A_{21} \\
\left.L_{0} \mathbb{A}_{11}-\frac{1}{1} A_{22}-\tilde{L}_{0} A_{12}\right]
\end{array}\right.
\end{align*}
$$

is found.
Then the algorithm given in Theorem 3.5 by Equations 3.28 and 3.29 may be replaced by

$$
N_{k 22}=Y_{k} N_{k 22} Y_{k}+X_{k} X_{k}+I_{n-m} \quad k=0,1,2, \ldots
$$

where

$$
\begin{gathered}
X_{k}=\widetilde{A}_{21}-L_{k} \widetilde{A}_{11} \\
Y_{k}=\widetilde{A}_{22}-L_{k} \widetilde{A}_{12} \\
L_{k}=\widetilde{A}_{21} \widetilde{A}_{11}+\widetilde{A}_{22} N_{k 22} \widetilde{A}_{12} \widetilde{A}_{111} \widetilde{A}_{11}+\widetilde{A}_{12} N_{k 22} \widetilde{A}_{12} \widetilde{A}_{12}-1, \ldots, \ldots
\end{gathered}
$$

In order for S in Equation 3.40 to be a stable matrix, Lo must be so chosen that the eigenvalues of $\tilde{A}_{22}-I_{0} \tilde{A}_{12}$ are inside the unit circle. Then the algorithm converges and $N_{k 22}$ is the solution of the following algebraic Matrix Riccati Equation

$$
\left(\widetilde{A}_{22}-I, \widetilde{A}_{12}\right) R_{22}\left(\widetilde{A}_{22}-I \tilde{A}_{12}\right)^{\prime}+\left(\widetilde{A}_{21}-L \tilde{A}_{11}\right)\left(\widetilde{A}_{21}-L \tilde{A}_{11}\right){ }^{\prime}+I=R_{22}
$$

The table below indicates the dimensions of the matrices to emphasize the considerable reduction.

Replaced by

$N_{k} n \times n$	$N_{k 22}(n-m) \times(n-m)$
$V_{k} n \times m$	$I_{k}(n-m) \times m$
$S_{k} n \times n$	$X_{k}(n-m) \times m$
$R_{k n \times n}$	$Y_{k}(n-m) \times(n-m)$

TABLE 3.1

Next we determine the matrices F, G and H : Recalling

$$
V=\left[\begin{array}{l}
I_{m} \\
\bar{L}^{-}
\end{array}\right]
$$

the constraint equation

$$
\mathrm{PT}+\mathrm{V} \widetilde{C}=I_{n}
$$

may be written as

$$
\left[\begin{array}{l}
P_{1} \\
-1 \\
P_{2}
\end{array}\right]\left[\begin{array}{l|l}
T_{1} & T_{2}
\end{array}\right]+\left[\begin{array}{l}
I_{m} \\
-L^{2}
\end{array}\right]\left[\begin{array}{l:l}
I_{m} & 0
\end{array}\right]=\left[\begin{array}{c:c}
I_{m} & 0 \\
\hdashline 0 & I_{n-m}
\end{array}\right]
$$

where P_{1} is $m x(n-m), P_{2}$ is $(n-m) \times(n-m), T_{1}$ is $(n-m) \times m$ and T_{2} is $(n-m) \times(n-m)$.
Then we obtain the following set of matrix equations:

$$
\begin{aligned}
& P_{1} T_{1}=0 \\
& P_{1} T_{2}=0 \\
& P_{2} T_{1}=-L \\
& P_{2} T_{2}=I_{n-m} .
\end{aligned}
$$

One set of solutions to this set of matrix equations is

$$
\begin{align*}
P_{1} & =0 \\
P_{2} & =I_{n-m} \\
T_{1} & =-L \\
T_{2} & =I_{n-m}
\end{align*}
$$

We also have shown that

$$
\text { and } \quad \begin{aligned}
F & =T \tilde{A} P \\
G & =T \tilde{A} V \\
H & =T \tilde{B}
\end{aligned}
$$

If the matrices \tilde{A} and \tilde{B} are partitioned properly and the
matrices in Equation 3.41 are inserted in the above matrices F, G and H we obtain
and

$$
\begin{aligned}
& F=\widetilde{A}_{22}-L \widetilde{A}_{12} \\
& G=\widetilde{A}_{21}-L \widetilde{A}_{I 1}+F L \\
& H=\widetilde{B}_{2}-L \widetilde{B}_{1}
\end{aligned}
$$

The minimal order observer designed by this procedure estimates the state $q(k)$ as

$$
\hat{q}(k)=p z(k)+v y(k)
$$

and one may easily obtain the original system state estimate $\hat{x}(k)$ by

$$
\hat{x}(k)=M^{-1} \hat{q}(k)
$$

where M^{-1} is the inverse of the transformation matrix M.
3.4. IDENTITY OBSERVER

Although constructing the identity observer is unattractive due to the redundancy which was pointed out in Chapter 1 , one may have to construct it if the matrix A is singular. Considering, this possibility, we suggest a design procedure as outlined below.

Replacing the matrix T with I in Equation 3.3, we obtain

$$
F=A-G C
$$

On the other hand, we have shown that the observer error e(k) satisfies

$$
e(k+1)=E e(k)
$$

and in order for,

$$
\operatorname{Lim}_{k \rightarrow \infty} e(k)=0
$$

F must be a stable matrix. Since A and C are known matrices in Equation 3.42 , the matrix G must be so chosen that F is a stable matrix, i.e., the eigenvalues of the matrix F are inside the unit circle. Then we employ the Lyapunov stability theory and we obtain the following Lyapunov equation $|8|,|9|$.

$$
(A-G C) \cdot R(A-G C)-R=-Q
$$

Where Q is (nxn) real symetric positive definite matrix and R is (nxn) real symmetric positive definite solution matrix.

Equation 3.43 can be solved by the successive Approximation Method as follows:

Let $N_{k}, k=0,1,2, \ldots$ be the solutions of the equation

$$
N_{k}=S_{k}^{\prime} N_{k} S_{k}+Q
$$

where

$$
\begin{array}{cl}
S_{k}=A-G_{k} C & k=0,1,2, \ldots \\
G_{k}=A N_{k-1} C^{1}\left(C^{l} N_{k-1} C^{\eta}\right. & k=1,2,3, \ldots
\end{array}
$$

and G_{0} is chosen such that S_{0} is a stable matrix. Then

$$
N_{k}-N_{k+1} \geq 0 \quad k=0,1,2, \ldots
$$

and

$$
\operatorname{Lim}_{k \rightarrow \infty} N_{k}=R
$$

Once G which stabilizes. F is found then the observer is constructed according to the following difference equation.

$$
z(k+1)=(A-G C) z(k)+B u(k)
$$

to be initialized with

$$
z(0)=x_{g}
$$

where x_{g} is an arbitary matrix.

3.5. COMPUTATIONAL ASPECTS

We have derived the equations for constructing the observer having constant valued matrices. Hence, all the computations are carried out off-line.

The transofrmation into the canonical representation is exactly the same with the continuous-time case presented in Section 2.2 .

A numerical solution method for the Lyapunov equation was explained in detail in the previous section. Here we just mention a computational difficulty which was encountered while preparing a computer-software program for the numerical solution of the Lyapunov equation. That is, the matrix s_{0} given in Equation 3.40 as

$$
S_{0}=\left[\begin{array}{c:c}
0 & 0 \\
\tilde{\widetilde{A}}_{21}-L_{0} \widetilde{\tilde{A}}_{11} & \widetilde{A}_{22}-L_{0} \bar{A}_{12}
\end{array}\right]
$$

must be a stable matrix so that the algorithm converges. If the eigenvalues of $\left[\widetilde{A}_{22}-L_{0} \widetilde{A}_{12}\right]$ are inside the unit circle
then so are those of S_{0}, since the remaining eigenvalues are already zero. Although, in principle, there exists a matrix L_{0} so that the eigenvalues of $A_{22}-L_{0} A_{12}$ are chosen to correspond to a given set of eigenvalues, yet there has not been any computer based algorithm developed to realize it. On the other hand, hand-calculation, which may be quite cumbersome for high order systems, is always possible. Therefore, the designer must initialize the algorithm for the numerical solution of the Lyapunov equation with the calculated matrix L_{0}.

CHAPTER 4

OPTIMAL REDUCED ORDER OBSERVER-ESTIMATORS

AND SUBOPTIMAL MINIMAL ORDER OBSERVERS

IN STOCHASTIC SYSTEMS

4.1. INTRODUCTION

Most of the control systems are subject to disturbances and in addition, the measurements are corrupted by noise. If all the measurements are corrupted by additive Gaussian white noise then one can use a Kalman filter to estimate the states of the system, such that mean square estimation error, $E\left[\left||x(k)-x(k)|^{2}\right]\right.$ is minimized. On the other hand, there are many cases in which some measurements are noise-free while others are noisy. In such problems, the measurement noise covariance matrix is singular, therefore one may be confronted with the inversion of a singular matrix in the Kalman filter algorithm. Considering the case that it may not be possible to use the Kalman filter algorithm when the measurement noise covariance matrix is singular, the optimal reduced order observerestimator has been suggested $|12,13|$. The optimal reduced order observer estimator casts the state estimation problem to a constrained optimization problem. The optimal reduced order observer-estimator algorithm derived in the sequel is a general one in the sense that both Kalman filter and minimal order observer-estimator algorithms can be obtained for the special cases that all the measurements are noise corrupted or all the measurements are noise free.

Minimal order observer as an alternative to the Kalman filter is also discussed in this chapter. Minimal onder observer is less optimal compared to the Kalman filter but considerable reduction in computation time makes the minimal order observer to be attractive in real-time implementations.
4.2. OPTIMAL REDUCED ORDER-ESTIMATOR

The standard Gauss-Markov model is considered:

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k)+D w(k) \\
y(k) & =C x(k)+v(k)
\end{aligned}
$$

where w is a p-dimensional disturbance vector and v is a m-dimensional measurement noise vector and D is ($n \times p$) disturbance matrix. The matrices A, B and C and the vectors $x(k), u(k)$ and $y(k)$ are as defined in chapter 2. $x(0), w(k)$ and $v(k)$ are independent Gaussian random vectors with the following statistics:

$$
\begin{array}{ll}
E[x(0)]=x_{0} & \operatorname{cov}[x(0)]=\Sigma x_{0} \\
E[w(k)]=0 & E\left[w(k) w(j)^{\prime}\right]=\Sigma w \delta(k-j) \\
E[v(k)]=0 & E\left[v(k) v(j)^{\prime}\right]=\Sigma v \delta(k-j)
\end{array}
$$

where $\Sigma \mathrm{w}$ and $\Sigma \mathrm{v}$ are pxp and mxm matrices respectively and it is assumed that Σv is a non-negative definite matrix:

Suppose that $m_{1}\left(m_{1}<m\right)$ measurements are noise free or $\mathrm{v}(\mathrm{k})$ is of the form

$$
v(k)=\left[\begin{array}{c}
0 \\
-v_{2}(k)
\end{array}\right]
$$

where $v_{2}(k) \in R^{m-m_{1}}$.
Then, Σv becomes

$$
\Sigma_{v}=\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & \Sigma_{v_{2}}
\end{array}\right]
$$

where $\sum v_{2}$ is $a\left(m-m_{1}\right) x\left(m-m_{1}\right)$ dimensional positive definite matrix.

The output equation of the system in Equation 4.1 may be partitioned as

$$
\left[\begin{array}{l}
y_{1}(k) \\
-y_{2}(k)
\end{array}\right]=\left[\begin{array}{c:c}
c_{11} & c_{12} \\
\hdashline c_{21} & c_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
\frac{x_{2}(k)}{}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\hdashline v_{2}(k)
\end{array}\right]
$$

where $y_{1}(k)$ is m_{1}-dimensional, y_{2} is ($m-m_{1}$) dimensional, $x_{1}(k)$ is m_{1}-dimensional and $x_{2}(k)$ is $\left(n-m_{1}\right)$ dimensional. The blocks C_{11}, C_{12}, C_{21} and C_{22} are of appropriate dimentions. To reduce the complexity of calculations to minimum the system represented in Equation 4.1 is transformed to a canonical form as follows.

There exists a n xn non-singular matrix M given by

$$
M=\left[\begin{array}{c:c}
C_{1} 1 & C_{12} \\
0 & I
\end{array}\right], \quad C_{11}>0
$$

such that the transformation.

$$
q(k)=M x(k)
$$

yields the following equations

$$
q(k+1)=\tilde{A} q(k)+\tilde{B} u(k)+\tilde{D} w(k)
$$

and

$$
y(k)=\left[\begin{array}{l:l}
I_{m} & 0 \\
\bar{c}_{21} & \tilde{c}_{22}
\end{array}\right] q(k)+\left[\begin{array}{c}
0 \\
\hdashline v_{2}(k)
\end{array}\right]
$$

where

$$
\begin{aligned}
& \tilde{A}=M A M^{-1} \\
& \tilde{B}=M B \\
& \tilde{D}=M D \\
& \tilde{C}_{2 I}=C_{21} C_{11}-1 \\
& \tilde{C}_{22}=-C_{21} C_{11}{ }^{-I} C_{12}+C_{22}
\end{aligned}
$$

With proper partitioning Equation 4.2 becomes
$\left[\begin{array}{l}q_{1}(k+1) \\ \hdashline q_{2}(k+1)\end{array}\right]=\left[\begin{array}{lll}\tilde{A}_{11} & \widetilde{A}_{12} \\ \tilde{A}_{21} & 1 & \widetilde{A}_{22}\end{array}\right]\left[\begin{array}{c}q_{1}(k) \\ \hdashline q_{2}(k)\end{array}\right]+\left[\begin{array}{l}\tilde{B}_{1} \\ \tilde{B}_{2}\end{array}\right] u(k)+\left[\begin{array}{c}\tilde{D}_{1} \\ \overline{\widetilde{D}}_{2}\end{array}\right] w(k)$
and

$$
\left[\begin{array}{c}
y_{1}(k+1) \\
\hdashline y_{2}(k+1)
\end{array}\right]=\left[\begin{array}{l:c}
\mathrm{I}_{1} & 0 \\
\overline{\mathrm{c}}_{21} & 1 \\
\overline{\mathrm{c}}_{22}
\end{array}\right]\left[\begin{array}{c}
\mathrm{q}_{1}(k) \\
\hdashline \mathrm{q}_{2}(k)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\hdashline \mathrm{v}_{2}(k)
\end{array}\right]
$$

where $q_{1}(k)$ is m_{1}-dimensional, $q_{2}(k)$ is $\left(n-m_{1}\right)$-dimensional. The statitics are then changed as follows

$$
\begin{array}{ll}
E[q(0)]=M x_{0}=q_{0} & \operatorname{cov}[q(0)]=M \Sigma x_{0} M^{T}=\Sigma q_{0} \\
E[w(k)]=0 & E\left[w(k) w(j)^{I}\right]=\Sigma w \delta(k-j) \\
E[v(k)]=0 & E\left[v(k) v(j)^{\prime}\right]=\Sigma v \delta(k-j)
\end{array}
$$

Equation 4.3 may be rewritten as

$$
\begin{align*}
& q_{1}(k+1)=\tilde{A}_{11} q_{1}(k)+\tilde{A}_{12} q_{2}(k)+\widetilde{B}_{1} u(k)+\tilde{D}_{1} w(k) \quad 4.4 \\
& q_{2}(k+1)=\tilde{A}_{21} q_{1}(k)+\tilde{A}_{22} q_{2}(k)+\widetilde{B}_{2} u(k)+\widetilde{D}_{2 w}(k) \\
& y_{1}(k)=q_{1}(k) \\
& y_{2}(k)=\widetilde{C}_{21} q_{1}(k)+\tilde{C}_{22} q_{2}(k)+v_{2}(k)
\end{align*}
$$

It is readily seen from Equation 4.6 that the states $q_{1}(k)$ are available as an output, then the state estimation problem for $q_{2}(k)$ is that of finding $\hat{q}_{2}(k+1 \mid k+1)$ subject to Equation 4.5 and the constraint in Equation 4.4. The unmeasurable quantities in Equation 4.5 are $q_{2}(k)$ and $w(k)$. These quantities are constrained in Equation 4.4. $q_{1}(k)$ can be handled as a deterministic input.

To solve this problem, defining the $\left(n-m_{1}\right)$ dimensional vector $z(k)$ as

$$
z(k)=q_{2}(k)-L(k) q_{1}(k) \quad 4.8
$$

where $L(k)$ is $\left(n-m_{1}\right) \times m_{1}$ dimensional, one may easily see that

$$
z(k+1)=q_{2}(k+1)-L(k+1) q_{1}(k+1)
$$

Substitution of Equations 4.4 and 4.5 into the above expression yields,

$$
\begin{aligned}
z(k+1)= & {\left[\tilde{A}_{21}-L(k+1) \tilde{A}_{11}\right] q_{1}(k)+\left[\tilde{A}_{22}-L(k+1) \tilde{A}_{12}\right] q_{2}(k) } \\
+ & {\left[\tilde{B}_{2}-L(k+1) \tilde{B}_{1}\right] u(k)+\left[\tilde{D}_{2}-L(k+1) \tilde{D}_{1}\right] w(k) }
\end{aligned}
$$

Adding,

$$
\left[\tilde{A}_{22}-L(k+1) \tilde{A}_{12}\right] L(k) q_{1}(k)-\left[\tilde{A}_{22}-L(k+1) \tilde{A}_{12}\right] L(k) q_{1}(k)=0
$$

to the above expression and using Equation 4.8

$$
\begin{aligned}
& z(k+1)=\left[\tilde{A}_{22}-L(k+1) \tilde{A}_{12}\right] z(k)+\left[\tilde{A}_{21}-L(k+1) \tilde{A}_{11}\right. \\
& \left.+\tilde{A}_{22} L(k)-L(k+1) \tilde{A}_{12} L(k)\right] q_{1}(k \\
& +\left[\widetilde{B}_{2}-L(k+1) \widetilde{B}_{1}\right] u(k)+\left[\tilde{D}_{2}-L(k+1) \tilde{D}_{1}\right] w(k)
\end{aligned}
$$

is obtained. Defining:

$$
\begin{aligned}
& F(k)=\widetilde{A}_{22}-L(k+1) \tilde{A}_{12} \\
& G(k)=\widetilde{A}_{21}-L(k+1) \tilde{A}_{11}+F(k) L(k) \\
& H(k)=\widetilde{B}_{2}-L(k+1) \tilde{B}_{1} \\
& Y(k)=\tilde{D}_{2}-L(k+1) \tilde{D}_{1}
\end{aligned}
$$

the above equation becomes

$$
\begin{aligned}
z(k+1)= & F(k) z(k) \\
& +G(k) q_{1}(k)+H(k) u(k) \\
& +Y(k) w(k)
\end{aligned}
$$

On the other hand, adding

$$
{\tilde{c_{22}}} L(k) q_{1}(k)-\tilde{c}_{22} L(k) q_{1}(k)=0
$$

to Equation 4.7 and using Equation 4.8 , one obtains:

$$
y_{2}(k)=\tilde{c}_{22} z(k)+\left[\tilde{c}_{21}+\tilde{c}_{22} L(k)\right] q_{1}(k)+v_{2}(k)
$$

or

$$
y_{2}(k)=\tilde{c}_{22} z(k)+\Gamma(k) q_{1}(k)+v_{2}(k)
$$

$$
4.10
$$

where $\Gamma(k)=\widetilde{c}_{21}+\widetilde{c}_{22} L(k)$.

Then the problem of estimating the state $q_{2}(k)$ with the constraint in Equation 4.4 is cast as estimating $z(k)$ given the measurements $\mathrm{y}_{2}(k)$ as formulated in Equations 4.9 and 4.10 .

The unbiased estimate of $z(k)$ is given by $|14|$.

$$
\begin{aligned}
\hat{z}(k+1 \mid k+1)= & {\left[I-P(k+1) \hat{C}_{22}\right] F(k) \hat{z}(k \mid k) } \\
& +\left[I-P(k+1) \tilde{C}_{22}\right] H(k) u(k) \\
& +\left[I-P(k+1){\underset{C}{2}}_{22}\right] G(k) q_{1}(k)+P(k+1)\left[y_{2}(k+1)\right. \\
& \left.-\Gamma(k+1) q_{1}(k+1)\right]
\end{aligned}
$$

where $P(k+1)$ is $\left(n-m_{1}\right) x\left(m-m_{1}\right)$ gain matrix.

The estimation error vector $\tilde{z}(k+1 \mid k+1)$ is defined as

$$
\tilde{z}(k+1 \mid k+1)=\hat{z}(k+1 \mid k+1)-z(k+1)
$$

Substitution of Equation $4.11,4.10$ and 4.9 in that order into the above error vector equation yields:

$$
\begin{aligned}
\widetilde{z}(k+1 \mid k+1)= & {\left[I-P(k+1) \widetilde{c}_{22}\right] F(k) \tilde{z}(k \mid k)-\left[I-P(k+1) \widetilde{C}_{22}\right] Y(k) w(k) } \\
& +P(k+1) v_{2}(k+1)
\end{aligned}
$$

Then the error covariance matrix satisfies the following: matrix difference equation

$$
\begin{aligned}
\Sigma \tilde{z}(k+1 \mid k+1)= & {\left[I-P(k+1) \tilde{C}_{22}\right] F(k) \Sigma \tilde{z}(k \mid k) F^{\prime}(k)\left[I-P(k+1) \tilde{C}_{22}\right]^{\prime} } \\
& +\left[I-P(k+1) \tilde{C}_{22}\right] Y(k) \Sigma W Y^{\prime}(k)\left[I-P(k+1) \tilde{C}_{22}\right]^{\prime} \\
& +P(k+1) \Sigma v_{2} P^{\prime}(k+1)
\end{aligned}
$$

Defining the one-step prediction error covariance matrix $\Sigma z(k+l \mid k)$ as

$$
\Sigma \tilde{Z}(k+1 \mid k)=F(k) \Sigma \tilde{Z}(k \mid k) F^{\prime}(k)+Y(k) \Sigma w Y(k)^{\prime}
$$

and inserting this equation into Equation 4.13 yields

$$
\begin{align*}
\Sigma \tilde{z}(k+1 \mid k+1)= & {\left[I-P(k+1) \tilde{c}_{22}\right] \sum \tilde{z}(k+1 \mid k)\left[I-P(k+1) \tilde{c}_{22}\right]^{\prime} } \\
& +P(k+1) \Sigma v_{2} P^{\prime}(k+1)
\end{align*}
$$

The optimal estimator estimates the non-available states in the minimum mean square error sense, that is

$$
E\left\{\left|\left|\hat{q}_{2}-q_{2}\right|\right|^{2}\right\}=E\left\{| | \hat{z}+L q_{1}-z_{1}-L q_{1}| |^{2}\right\}=E\left\{| | \hat{z}-z| |^{2}\right\}
$$

is minimized.

$$
E\left\{||\hat{z}-z||^{2}\right\}=E\left\{(\hat{z}-z)^{\prime}(\hat{z}-z)\right\}=E\left\{\sum_{k=1}^{n-m_{I}}\left(\hat{z}_{k}-z_{k}\right)^{2}\right\} \quad 4 \cdot 15
$$

On the other hand,

$$
\Sigma \tilde{z}=E\left\{(\hat{z}-z)(\hat{z}-z)^{\prime}\right\}
$$

or

$$
\begin{aligned}
& \text { trace } \Sigma \tilde{z}=E\left\{\sum_{k=1}^{n-m_{1}}\left(\hat{z}_{k}-z_{k}\right)^{2}\right\} \\
& 4 \cdot 16
\end{aligned}
$$

From Equation 4.15 and 4.16 it is deduced that minimizing. $E\left\{|\hat{z}-z|^{2}\right\}$ is equivalent to minimizing the trace of the error covariance matrix, $\Sigma \tilde{z}$.

The matrices P and L must then be evaluated in such a way so that trace $\Sigma \tilde{z}$ is minimized. Hence, setting the gradient of trace of $\sum \tilde{z}$ with respect to the matrices P and L, the following equation's are obtained,

$$
P *(k+1)=\Sigma \tilde{z}(k+1 \mid k) \tilde{\mathrm{C}}_{22}{ }^{i}\left[\widetilde{\mathrm{C}}_{22} \Sigma \tilde{z}(k+1 \mid k) \tilde{\mathrm{C}}_{22}{ }^{\prime}+\Sigma \mathrm{v}_{2}\right]^{-1}
$$

and the optimal $L(k+1)$ denoted as $L *(k+1)$ is given by

$$
L:(k+1) \Lambda_{1}(k)=\Lambda_{2}(k)
$$

where

$$
\begin{aligned}
& \Lambda_{1}(k)=\tilde{A}_{12} \sum \tilde{z}(k \mid k) \tilde{A}_{12} \prime+\tilde{D}_{1} \sum w \tilde{D}_{1}, \\
& \Lambda_{2}(k)=\widetilde{A}_{22} \sum \tilde{z}(k \mid k) \tilde{A}_{12},+\tilde{D}_{2} \sum W D_{2}^{\prime}
\end{aligned}
$$

According to the values of $\Lambda_{1}(k)$ the following special cases are of interest.

CASE $1-\Lambda_{1}(k)=0$. In this case $\Lambda_{2}(k)=0$ and thus $L^{*}(k+1)=R^{\left(n-m_{1}\right) x m_{1}}$. This case is possible if Equation 4.4 does not contain any information pertaining to the estimation of $q_{2}(k)$. For example, $\widetilde{A}_{12}=0, \vec{B}_{1}=0$ and $\widetilde{D}_{1}=0$, etc.

CASE $2-\Lambda_{1}(k)$ is a singular non-zero matrix. In this case, only some components of $q_{1}(k)$ contain information on ($q_{2}(k)$, and $w(k)$). Then, the transformation matrix M can be defined so as to isolate only those elements in $q_{1}(k)$ which constitute a constraint on ($q_{2}(k)$ and $\left.w(k)\right)$ and, thus $L(k)$ is in $R^{(n-r) x r}$ where r is the number of such constaints $\left(r<m_{I}\right)$.

CASE $3-\Lambda_{1}(k)$ is a non-singular matrix. In this case $\mathrm{L}=(k+1)$ is uniquely given by

$$
L^{*}(k+1)=\Lambda_{2}(k) \Lambda_{1}^{-1}(k)
$$

The optimal reduced order observer equations are given by

$$
\begin{aligned}
\hat{z}(k+I \mid k+1)= & {\left[I-P *(k+1) \hat{C}_{22}\right] F *(k) \hat{z}(k l k) } \\
& +\left[I-P *(k+1) \hat{C}_{22}\right] H *(k) u(k) \\
& +\left[I-P *(k+1) \hat{C}_{22}\right] G *(k) q_{1}(k) \\
+ & P *(k+1)\left[y{ }_{2}(k+1)-\Gamma *(k+1) q_{1}(k+1)\right]
\end{aligned}
$$

$$
L *(k+1) \Lambda_{1}(k)=\Lambda_{2}(k)
$$

where

$$
\Lambda_{1}(k)=\tilde{A}_{12} \Sigma * \tilde{z}(k \mid k) \tilde{A}_{12}^{\prime}+\tilde{D}_{1} \Sigma \omega \tilde{D}_{1}^{\prime}
$$

$$
\Lambda_{2}(k)=\widetilde{A}_{22} \Sigma \approx \tilde{Z}(k \mid k) \widetilde{A}_{12}^{\prime}+\widetilde{D}_{2} \Sigma w \tilde{D}_{2}^{\prime}
$$

$$
\Sigma * \vec{z}(k+1 \mid k)=F *(k) \Sigma * \tilde{z}(k \mid k) F *!(k)+Y *(k) \Sigma W Y * '(k)
$$

Equation 4.14, after some matrix manipulations $|14|$, becomes

$$
\Sigma * \widetilde{z}(k+1 \mid k+1)=\left[I-P *(k+1) \tilde{C}_{22}\right] \Sigma \tilde{z}(k+1 \mid k)
$$

These equations are initialized by the following values

$$
\begin{aligned}
\hat{z}(0 \mid 0) & =E\left[q_{2}(0)\right] \\
\Sigma \tilde{z}(0 \mid 0) & =\Sigma q_{20} \\
L(0) & =0
\end{aligned}
$$

The above equations are used to calculate $\hat{x}(k+1 \mid k+1)$ and $\sum \widetilde{x}(k+1 \mid k+1)$ as follows:

$$
\begin{aligned}
& \hat{q}_{2}(k+1 \mid k+1)=\hat{z}(k+1 \mid k+1)+L(k+1) q_{1}(k+1) \\
& q_{1}(k+1) \\
& \Sigma \tilde{q}_{1}(k+1 \mid k+1)=\left[\begin{array}{c|c}
0 & y_{1}(k+1) \\
\hdashline 0 & 0 \\
\sum \tilde{z}(k+1 \mid k+1)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \hat{x}(k+1 \mid k+1)=M^{-1}\left[\begin{array}{l}
q_{1}(k+1) \\
\left.\hat{q}_{2}(k+1 \mid k+1)\right] \\
\sum \tilde{x}(k+1 \mid k+1)=M^{-1} \sum \tilde{q}(k+1 \mid k+1)\left(M^{-1}\right)^{\prime}
\end{array}, .\right.
\end{aligned}
$$

SPECIAL CASE 1-All the Measurements are Noise Corrupted $\left(m_{1}=0\right)$.

In this case the optimal reduced order observer-estimator equations coincide with those of the Kalman filter. The system is again as given in Equation 4.1 except that the measurement noise covariance matrix $\sum v$ is positive definite. To show the relationship between the optimal reduced order observer-estimator and the Kalman filter we have formed the following replacement table.

Optimal Reduced Order Observer-Estimator


```
Ey the use of Table 4.3 the Kalmam filter equationc are
obtained durectly es,
    \hat{x}(k+1/k+1)=[I-P(k+1)C]A}\hat{x}(k|k)+[I-P(k+i)C]Bu(k
    +P(k+1) y(k+1)
    \Sigma\tilde{x}(k+1/k)=A\Sigma\tilde{x}(k|k)\mp@subsup{A}{}{\prime}+D\sumW\mp@subsup{D}{}{\prime}
    P(k+1)=\Sigma\tilde{x}(k+1|k)\mp@subsup{C}{}{\prime}[C\Sigma\tilde{x}(k+1/k)\mp@subsup{C}{}{\prime}+\Sigmav\mp@subsup{]}{}{-1}
    \Sigma\tilde{x}(k+1/k+1)=[I-P(k+1)c]\Sigma\tilde{x}(k+1|k)
with the initial values
\[
\begin{aligned}
& \hat{x}(0 \mid 0)=x_{0} \\
& \Sigma \tilde{x}(0 \mid 0)=\Sigma x_{0} .
\end{aligned}
\]
```


Fig 4.2

SPECIALCASE 2 - All the Measurements are Noise Free $\left(m_{1}-m\right)$

In this case, it is assumed that there exists an aditive Gaussian white disturbance to the system but the measure ments are obtained accurately. We then use minimal order observer-estimator of order $n-m$ to estimate the states $x(k)$ of the system given in Equation 4.1. Again we use a replacement table similar to the one given in the previous section to obtain the equations of minimal order observer-estimator from those of reduced order observerestimator.

Optimal Reduced Order Observer-Estimator
Variable Name Dimension
$M=\left[\begin{array}{c:c}C_{1} & C_{12} \\ \hdashline 0 & I\end{array}\right]$
$\mathrm{n} \times \mathrm{n}$
C_{11}
c_{12}
$q_{1}(k)$
$\mathrm{q}_{2}(\mathrm{k})$
$z(k)$
$\mathrm{y}_{2}(\mathrm{k})$
\widetilde{c}_{22}
$L(k)$
$F(k)$
G(k)
$H(k)$
Y(k)
$\Gamma(k+1)$
$P(k+1)$
$\sum \vec{z}(k \mid k)$
$\sum \mathrm{v}_{2}$
$m_{1} \times m_{1}$
$m_{1}\left(n-m_{1}\right)$
$m_{1} \times 1$
$\left(n-m_{1}\right) \times 1$
$\left(n-m_{1}\right) \times 1$
$\left(m-m_{1}\right) \times 1$
$\left(m-m_{1}\right) \times\left(n-m_{1}\right)$
$\left(n-m_{1}\right) \times m_{1} \quad L(k)$
$\left(n-m_{1}\right) \times\left(n-m_{1}\right)$
$F(k)$
$G(k)$
$H(k)$
$\mathrm{Y}(\mathrm{k})$
$\left(m-m_{1}\right) \times m_{1}$
$\left(n-m_{1}\right) \times\left(m-m_{1}\right)$
$\left(n-m_{1}\right) x\left(n-m_{1}\right) \quad \sum \tilde{Z}(k \mid k)$
$\left(m-m_{1}\right) \times\left(m-m_{1}\right)$

$$
\left(n-m_{1}\right) \times m_{1}
$$

$\left(n-m_{1}\right) \times r$
$\left(n-m_{1}\right) \times p$
(1) $\times(n-1)$

Optimal Minimal Order Observer-Estimator

Variable Name Dimension
$M=\left[\begin{array}{c:c}C_{1} & C_{2} \\ \hdashline 0 & I\end{array}\right] \quad n \times n$
$C_{1} \quad \mathrm{mxm}$
C_{2}
$q_{1}(k)$
$q_{2}(k)$
$z(k)$
$(n-m) \times 1$
$(n-m) \times 1$
$m \times(n-m)$
mxl
$(n-m) \times(n-m)$

TABLE 4.2

Then, we may write the optimal minimal order observerestimator equations as

$$
\begin{aligned}
& \hat{z}(k+1 \mid k+1)=F(k) \hat{z}(k \mid k)+G(k) q_{1}(k)+H(k) u(k) \\
& \Sigma \tilde{z}(k+1 \mid k)=F(k) \Sigma \tilde{z}(k \mid k) F^{\prime}(k)+Y(k) \sum w Y^{\prime}(k) \\
& \sum \widetilde{z}(k+1 \mid k+1)=\Sigma \tilde{z}(k+1 \mid k) \\
& L(k+1) \Lambda_{1}(k)=\Lambda_{2}(k) \\
& \Lambda_{1}(k)=\tilde{A}_{12} \Sigma \tilde{Z}(k \mid k) \tilde{A}_{12}{ }^{\prime}+\widetilde{D}_{1} \Sigma w \tilde{D}_{1}{ }^{\prime} \\
& \Lambda_{2}(k)=\widetilde{A}_{22} \Sigma \tilde{z}(k \mid k) \tilde{A}_{12}^{\prime}+\tilde{D}_{2}^{\prime} \Sigma W \tilde{D}_{2}^{\prime} \\
& \hat{q}_{2}(k+1 \mid k+1)=\hat{z}(k+1 \mid k+1)+L(k+1) q_{1}(k+1) \\
& q_{1}(k+i)=y(k+1)
\end{aligned}
$$

with the following initial conditions

$$
\begin{gathered}
\hat{z}(0 \mid 0)=E\left[q_{2}(0)\right] \\
\Sigma \tilde{z}(0 \mid 0)=\Sigma q_{20} \\
L(0)=0 .
\end{gathered}
$$

The estimate of the original state $x(k)$ and the error covariance matrix are calculated by the following equations

$$
\begin{aligned}
& \hat{x}(k+1 \mid k+1)=M^{-1}\left[\begin{array}{l}
y(k+1) \\
\hat{q}_{2}(k+1 \mid k+1)
\end{array}\right] \\
& \Sigma \widetilde{x}(k+1 \mid k+1)=M^{-1} \Sigma \widetilde{q}(k+1 \mid k+1)\left(M^{-1}\right)^{\prime}
\end{aligned}
$$

4.3. A SUBOPTIMAL MINIMAL ORDER OBSERVER

The minimal order observer which has been developed as an alternative to the Kalman filter, estimates the entire state vector of a stochastic system in the minimum mean square error sense. Its order is restricted to "n-m" where n is the order of the state vector and mis the order of the output vector. The minimal order observer assumes that the estimation error of m components of the state vector which are available at the output, is due to the measurement noise only regardless of the effect of the propagation of the estimation error in time through the dynamics of the system. Under this assumption, the minimal order observer can on ly serve as a suboptimal solution to the state estimation problem, unlike the Kalman filter.

Construction of the Minimal Order Observer:

Consider the caronical Gauss-Markov model given as

$$
\begin{align*}
& x(k+I)=A x(k)+B u(k)+D w(k) \\
& y(k)=\left[I_{m} \mid 0\right] x(k)+v(k)
\end{align*}
$$

where $x(k) \in R^{n}, w(k) \in R^{p}, v(k) \varepsilon R^{m}$ are independent Gassian random vectors with the following statistics

$$
\begin{array}{ll}
E[x(0)]=x_{0} & \operatorname{cov}[x(0)]=\Sigma x_{0} \\
E[w(k)]=0 & E\left[w(k) w(j)^{\prime}\right]=\sum w \delta(k-j) \\
E[v(k)]=0 & E\left[v(k) v(j)^{\prime}\right]=\Sigma v \delta(k-j)
\end{array}
$$

The ($n-m$) dimensional vector $z(k)$ which is the output of the minimal order observer given by

$$
z(k+1)=F(k) z(k)+G(k) y(k)+H(k) u(k)
$$

estimates a linear transformation of the state vector $x(k)$ for some $(n-m) \times n$ matrix $T(k)$ as

$$
z(k)=T(k) x(k)+\varepsilon(k)
$$

where $\varepsilon(k)$ is the error in the estimate of $T(k) x(k)$, if the following matrix relations are satisfied

$$
\begin{array}{lr}
T(k+1) A=F(k) T(k)+G(k)\left[I_{m}\right. & 0] \\
T(k+1) B=H(k) & 4.20 \\
& 4.21
\end{array}
$$

and

$$
\left[\begin{array}{cc}
\mathrm{T}(k) \\
\hdashline \mathrm{I}_{\mathrm{m}} & 0
\end{array}\right]^{-1}
$$

exists.
Then the error $\varepsilon(k)$ satisfies the following:

$$
\varepsilon(k+1)=F(k) \varepsilon(k)+G(k) v(k)-T(k+1) D w(k) \quad 4.22
$$

Rewriting Equation 4.20 in the form

$$
T(k+1) A=\left[\begin{array}{l:l}
F(k) & G(k)
\end{array}\right]\left[\begin{array}{c}
T(k) \\
\hdashline I_{m}
\end{array}\right]
$$

and postulating the existence of the indicated matrix inverse in the form of:

$$
\left[\begin{array}{c}
T(k) \\
---r-1 \\
I_{m}
\end{array}\right]^{-1}=[P(k) \quad V(k)]
$$

where $P(k)$ is an $n x(n-m)$ matrix and $V(k)$ is an $n x m$ matrix, one obtains by multiplying Equation 4.23 from the right by the above inverse, the solutions

$$
\begin{align*}
& F(k)=T(k+1) A P(k) \\
& G(k)=T(k+1) A V(k)
\end{align*}
$$

From Equations $4.18,4.21,4.24$ and 4.25 it is seen that the design of the minimal order observer reduces to the selection of the matrix $\mathrm{T}(\mathrm{k}+1)$.

The observer error covariance matrix can be found From the difference equation in Equation 4.22 as follows:

$$
\begin{align*}
\Sigma_{\varepsilon}(k+1) & =E\left\{\left[F(k) \varepsilon(k)+G(k) v(k)-T(k+1) D W^{\prime}(k)\right]\right. \\
& \left.\bullet\left[\varepsilon^{\prime}(k) F^{\prime}(k)+v^{\prime}(k) G^{\prime}(k)-W^{\prime}(k) D^{\prime} T^{\prime}(k+1)\right]\right\} \\
\Sigma_{\varepsilon}(k+1) & =F(k) \Sigma_{E}(k) F^{\prime}(k)+G(k) \Sigma_{v^{\prime}} G^{\prime}(k) \\
& +T(k+1) D \Sigma W D^{\prime} T^{\prime}(k+1)
\end{align*}
$$

It may be shown that the cross-terms disappear since the observer error is independent of $v(k)$ and $w(k)|14|$ If $E(k)$ and $G(k)$ are replaced with their equivalents in Equation $4.25, \Sigma_{E}(k+1)$ becomes

$$
\begin{align*}
\Sigma_{\varepsilon}(k+1)= & T(k+1)\left[A P(k) \Sigma_{E}(k) P^{\prime}(k) A^{\prime}\right. \\
& \left.+A V(k) \Sigma_{V^{\prime}} V^{\prime}(k) A^{\prime}+D \Sigma W D^{\prime}\right] T^{\prime}(k+1)
\end{align*}
$$

Defining the matrix $\Omega(k)$ as follows

$$
\Omega(k)=A P(k) \Sigma_{E}(k) P^{\prime}(k) A^{\prime}+A V(k) \Sigma_{V} V^{\prime}(k) A^{\prime}+D \sum W D^{\prime}
$$

and partitioning $\Omega(k), \Sigma_{\varepsilon}(k+I)$ may be written as

$$
\Sigma_{E}(k+1)=T(k+1)\left[\begin{array}{lll}
\Omega_{11}(k) \Omega_{12}(k) \\
-1-1-1 & 1 \\
\Omega_{21}(k) & \Omega_{22}(k)
\end{array}\right] T^{\prime}(k+1) \quad 4.28
$$

Where $\Omega_{11}(k)$ is mxm, $\Omega_{22}(k)$ is $(n-m) x(n-m)$ and $\Omega_{12}(k)=$ $\Omega_{21}{ }^{\prime}(k)$ is $m x(n-m)$.
Combining the observer output $z(k+I)$ with the output $y(k+1)$ gives the following

$$
\left[\begin{array}{c}
z(k+1) \\
--(k+1)
\end{array}\right]=\left[\begin{array}{c}
T(k+1) \\
-1,10 \\
m \text { I }
\end{array}\right] \times\left[\begin{array}{c}
\varepsilon(k+1) \\
----1) \\
v(k+1)
\end{array}\right] \quad 4.29
$$

Defining

$$
\hat{x}(k+1)=\left[\begin{array}{c}
T(k+1) \\
-\frac{1}{-1} 0 \\
I_{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
z(k+1) \\
-y(k+1)
\end{array}\right]
$$

or equivalently

$$
\hat{x}(k+1)=[P(k+1): V(k+1)]\left[\begin{array}{l:l}
z(k+1) \\
-1 & y(k+1)
\end{array}\right]
$$

and using Equation 4.29 the following relation is obtained

$$
\hat{x}(k+1)=x(k+1)+[P(k+1) \quad v(k+1)]\left[\begin{array}{c}
\varepsilon(k+1) \\
----1 \\
v(k+1)
\end{array}\right]: 4.30
$$

The resulting estimation error e $(k+1)$ defined by

$$
e(k+1)=\hat{x}(k+1)-x(k+1)
$$

is found to be

$$
e(k+1)=[P(k+1) 1 v(k+1)]\left[\begin{array}{c}
\varepsilon(k+1) \\
-v(k+1)
\end{array}\right]
$$

Finally, the estimation error covariance matrix $\sum_{e}(k+1)$ is obtained as follows

$$
\begin{aligned}
& \left.\left.\Sigma_{e}(k+1)=[P(k+1)] v(k+1)\right]\left[\begin{array}{l}
\Sigma_{\varepsilon}(k+1) \\
\hdashline\left[v(k+1) \varepsilon^{\prime}(k)\right]
\end{array}\right]\left[\varepsilon(k+1) v^{\prime}(k+1)\right]\right] \\
& \text { - }[P(k+1) \mid V(k+1)]^{\prime}
\end{aligned}
$$

But,

$$
E\left[\varepsilon(k+1) v^{\prime}(k+1)\right]=0
$$

as it was stated before, the above equation becomes
$\Sigma_{e}(k+1)=[P(k+1): v(k+1)]\left[\begin{array}{c:c}\Sigma_{\varepsilon}(k+1) & 0 \\ \hdashline 0 & \Sigma_{v}\end{array}\right][P(k+1) \mid v(k+1)]^{1} 4.32$

This last equation may be simplified further with the following choice of the matrix $T(k)$ as

$$
T(k)=\left[\begin{array}{llll}
-L(k) & I_{n-m}
\end{array}\right]
$$

where $L(k)$ is an arbitrary ($n-m$) mm gain matrix which will be chosen to minimize the norm of the estimation error.

With this choice of the matrix $T(k)$, the matrices $P(k)$ and $V(k)$ are found to be

$$
P(k)=\left[\begin{array}{c}
0 \\
--- \\
I_{n-m}
\end{array}\right], V(k)=\left[\begin{array}{c}
I_{m} \\
-\frac{L(k)}{}
\end{array}\right]
$$

Substituting Equation 4.34 into Equation 4.32 yields

$$
\Sigma_{e}(k+1)=\left[\begin{array}{c}
\Sigma_{v} \\
-\frac{1}{2}(k+1) \Sigma_{v} L^{\prime} \sum_{\varepsilon}^{\prime}(k+1)
\end{array}\right]
$$

Furthermore, substitution of Equation 4.33 into Equation 4.28 gives

$$
\begin{align*}
\sum_{\varepsilon}(k+1)= & L(k+1) \Omega_{11}(k) L^{\prime}(k+1)-\Omega_{21}(k) L^{\prime}(k+1) \\
& -L(k+1) \Omega_{12}(k)+\Omega_{22}(k)
\end{align*}
$$

In order to be able to obtain an estimate in the minimum mean square error sense, trace $\sum_{e}(k+1)$ must be minimized with respect to $L(k+1)$ since $L(k+1)$ is the only matrix to be determined. Then, from Equations 4.34 and 4.35 one obtains

$$
\begin{aligned}
\operatorname{trace} \Sigma_{e}(k+1) & =\operatorname{trace} \Sigma_{v}+\operatorname{trace}\left\{L(k+1)\left(\Omega_{11}(k)+\Sigma_{v}\right) L^{\prime}(k+1)\right. \\
& \left.-\Omega_{21}(k) L^{\prime}(k+1)-L(k+1) \Omega_{12}(k)+\Omega_{22}(k)\right\}
\end{aligned}
$$

Setting the gradient of the above equation with respect to the gain matrix $L(k+1)$ equal to zero and using the formulas given in $|16|$, the minimizing $L(k+1)$ is found to be

$$
L(k+1)=\Omega_{21}(k)\left(\Omega_{11}(k)+\Sigma_{v}\right)^{-1}
$$

if the indicated inverse exists.

The observer matrices F, G and H may be obtained in terms of the matrices A, B and $L(k)$ by straightforward substitution of Equations 4.33 and 4.34 into Equations 4.21 and 4.25 as follows

$$
\begin{aligned}
& F(k)=A_{22}-L(k+1) A_{12} \\
& G(k)=A_{21}-A_{22} L(k)+L(k+1)\left(A_{11}-A_{12} L(k)\right) \\
& H(k)=B_{2}-L(k+1) B_{1}
\end{aligned}
$$

Initialization of the observer is done as follows. Let $z(1)=T(1) x_{1}$ be the observer initial condition, where X_{I} is the expected value of the state vector $x(1)$. Since $\varepsilon(1)=z(1)-T(1) x_{1}$, then

$$
\Sigma_{\varepsilon}(1)=T(1) E\left[\left(v(1)-x_{1}\right)\left(x(1)-x_{1}\right)\right] T^{\prime}(1)
$$

But $x(1)-x_{1}=A\left(x(0)-x_{0}\right)+w(0)$ hence the above equabecomes

$$
\Sigma_{E}(1)=T(1)\left(A \Sigma x_{0} A^{\prime}+D \Sigma W D^{\prime}\right) T^{\prime}(1)
$$

To initialize the observer, define the covariance matrix $\Omega(0)$ to be

$$
\Omega(0)=A \sum x_{0} A^{\prime}+D \sum W D^{\prime}
$$

and take the gain matrix $L(1)$ to be

$$
L(1)=\Omega_{21}(0)\left(\Omega_{11}(0)+\Sigma_{v}\right)^{-1}
$$

4.4. COMPUTATIONAL ASPECTS

In this section we have prepared a table showing the memory space and number of multiplications used in each algorithm so that the user may compare the algorithms according to the given dimensions of the system.

It should be noted that if all the measurements are noise corrupted then the user does not have access to Optimal Reduced-order Observer-Estimator algorithm with the prepared package program.

	Kalman Filter	Optimal Reduced-Order Observer-Estimator	Suboptimal Minimal Order Observer
Memory Space	$6 n^{2}+(2 m+p+r) n+m^{2}+p^{2}$	$\begin{aligned} & 7 r^{2}+\left(m-7 m_{1}+2 r+p\right) n \\ & +4 m_{1}^{2}-(m+r) m_{1}+m^{2}+p^{2} \end{aligned}$	$\begin{aligned} & 7 n^{2}+(2 r-p-m) n \\ & -m^{2}-m r \end{aligned}$
Number of Multiplication	$\left\lvert\, \begin{aligned} & 3 n^{4}+(p+m) n^{3}+2 m^{2} n^{2} \\ & +m^{3} n+m^{3} \end{aligned}\right.$	$\begin{aligned} & 2 n^{4}+\left(r+m-7 m_{1} n^{3}+\left(12 m_{1}^{2}\right.\right. \\ & \left.-6 m_{1} m-r m+r m_{1}+2 m^{2}+p^{2}\right) n^{2} \\ & +\left(-10 m_{1}^{3}+9 m_{1}^{2}-\left(4 m^{2}+2 p^{2}\right) m_{1}+\beta\right) h \\ & +\left(2 m^{2}+3 m+2 p^{2}-p\right) m_{1}^{2}+m^{3} \end{aligned}$	$\left\{\begin{array}{l} 3 n^{4}+(p-4 m+r) n^{3} \\ +\left(2 m^{2}-r m\right) n^{2}+3 m^{4}+m^{3} \end{array}\right.$

CHAPTER 5

USER'S MANUAL

5.1. INTRODUCTION

The package program consists of one main program and ten subroutines. The function of the main program is the selection of the appropriate subroutine as regards the type of the observer.

The observers are classified as follows:

1. Continuous-time deterministic observers
2. Discrete-time deterministic observers
3. Optimal observer-estimators for stochastic systems.
a) Kalman filter, if all the measurements are noise corrupted.
b) Optimal reduced order observer-estimator, if the measurements are partially noise corrupted.
c) Optimal minimal order observer-estimator, if all the measurements are noise free.

Each type of observer above is examined in a separate subsection as far as supply of data cards, the output variables, error messages and used subroutines are concerned. The user can find all the features that are provided by the prepared package program, when he refers to the section concerning the type of the observer that he chooses.
5.2. DEFINITION OF INPUT VARIABLES

ST System type, real
N System dimension, ≤ 10, integer
$M \quad$ Output dimension, $<N$, integer
NR Control input dimesion, ≤ 10, integer
M1 Noise-free measurement dimension, $\leq M$, integer
NP Disturbance input dimension, ≤ 10, integer
NSTEP Number of k (measurement time-points) in stochastic observers, integer

A State transition matrix, ($N \times N$), real
B Control input matrix, (NXR), real
C Output matrix, (MxN), real
ZL The matrix L_{0} in the discrete-time deterministic observers, $(N-M \times M)$, real
D. Disturbance input matrix, $(N \times N P)$, real

EXPX E $[\mathrm{x}(0)]$ vector, (N), real
$\operatorname{covX} \operatorname{cov}[x(0)]$ matrix, $(N x N)$, real
COVW, Disturbance covariance matrix, (NPxNP), real
CovV2. Measurement noise covariance matrix, (M-MIxM-MI), real
5.3. SUPPLY OF CONTROL AND DATA CARDS

The following control cards must be supplied in the given order:
aRUN, ${ }^{\downarrow}$ Priority ID Name Charge ${ }^{\downarrow}$ Number Project Name
A ASG, A BOGAZICI * BUMPI.
$\partial A S G, A$ EETHESIS * OVSERVER.
∂ XQT OBSERVER.MAIN
DATA
OFIN

The READ statements in the package program are in free FORMAT, (see Example 1).

The matrices are read row-wise.
5.3.1. Continuous-Time Deterministic Observers

Data Cards	Remarks
1.	System type indicator (Continuous)
A,N,NR,M, 0,0	Original s.t. matrix
B	Original input matrix
C	oringinal output matrix

EAMPLE 1. The following system equation is given.
$\dot{x}(t)=\left[\begin{array}{cccccc}-1 & 0 & 0.5 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 3 & 5 \\ 0 & 1 & -0.5 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 4 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 & 1 & 0\end{array}\right] \quad x(t)+\left[\begin{array}{ll}2 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right] \quad u(t)$
$y(t)=\left[\begin{array}{llllll}2 & 4 & 0 & 0 & 1 & 0 \\ 1 & 2 & 3 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right] \quad x(t)$

The user must supply the data cards as follows:
1.

$$
3,6,2,3,0,0
$$

A $\left\{\begin{array}{l}-1 ., 0,0.5,1.2,1,0,0 ., 2 ., 1 ., 3,5 ., 0.1 .,-0.5,0,0 ., 0,0.0 .1 ., 2.1 \\ 0 ., 0.0,0.1 .1 ., 1,1 ., 2,1 ., 0,1,0 .\end{array}\right.$
$B \quad 2,1,0,1,0,0,0,0,0,1,1,1$.
C $2.4,0,0,1,0,1,2,3,2,1,1,0,0,1,0,0.0,0$,

Important Note

If the input matrix B is not present, then punch
a) 1 in the column of NR
b) N-dimensional zero matrix in the data card concerning the matrix B.

output

Re-numbered state variables	QX
Re-oriented system matrices	A, B
Transformation matrix	M
Transformation matrix inverse	M^{-1}
Canonical system matrices	$\mathrm{A}, \mathrm{B}, \mathrm{C}$
Observer's state matrix	F
Observer's input matrices	H, G

Subroutines

MAIN, TRNSFO, CLTIS, CARP, CARP1, PRTITI, PRTIT2, OBSERV, LIAPUN and MTAMDF, MTVLM, MTMPRT from BOGAZICI*BUMPI Library.
5.3.2. Discrete-Time Deterministic Observers

The system matrices of observers can be obtained in two steps. The output of the first step is supplied as input data for the second step.

STEP 1

Data Cards

Remarks
(Discrete)
$M, N, N R, M, O, O$
A Original sit. matrix
B Original input matrix
C Original output matrix

output
Re-numbered state variables $Q X$
Re-oriented system matrices $\quad A, B$
Transformation matrix
M
Inverse of transformation matrix $\quad M^{-1}$
Canonical system matrices A,B,C

STEP 2
Canonical state transition matrix \tilde{A} is partitioned as follows:

$$
m-\left[\begin{array}{cc}
\tilde{A}_{11} & \tilde{A}_{12}-m \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right]
$$

and the matrix Lo is calculated so that the eigenvalues $^{\text {a }}$ of

$$
\tilde{\mathrm{A}}_{22}-\mathrm{L}_{0} \tilde{\mathrm{~A}}_{12}
$$

are inside the unit circle. Then the following data
cards are supplied.

See Example 1 and Important Note in Section 5.3.1.

Output
Observer's state transition matrix $\quad F \quad$ H,
Observer's input matrices

Error Messages
M exceeds or equal to N
C is not of full-rank
A is singular

Subroutines
MAIN, TRNSFO, DLTIS, CARP, CARPI, PRTITI, PRTIT2, OBSERV and MTAMDF, MTYLM, MTMPRT from BOGAZICI:BUMPI Library.
5.3.3. Optimal Observer-Estimators for Stochastic Systems

Case 1. All the Measurements are Noise Corrupted

This case considers that the following system equations are given:

$$
\begin{aligned}
& x(k+1)=A x(k)+B u(k)+D w(k) \\
& y(k)=C x(k)+v(k)
\end{aligned}
$$

where covariance matrix of the measurement noise is a (mxm) positive-definite matrix.

ta Cards	Remarks
3	Optimal-estimator
M,N,NR,O,NP,NSTEP	Ml=0 indicates that all the
	measurements are noise corrupted.
A	Original state transition matrix
B	Original input matrix
C	Original output matrix
D	Original disturbance matrix
EXPX	Original $E[x(0)]$
Covx	Original cov $[x(0)]$
covw	Covariance matrix of original
	disturbance matrix
covv2	Measurement noise covariance
	matrix (mxm)

See Example 1 and. Important Note in Section 5.3.1. Important Note also applies for the matrices D and COVW.

Output

```
Kalman gain matrix P(k)
Error covariance matrix }\quad\sum\tilde{x}(k|k
```


Error Messages

Ml eceeds M.
PSI is singular $\left(\left[\left(C \sum \widetilde{x}(k+l \mid k) C^{\prime}+\Sigma v\right]^{-1}\right.\right.$ does not exist)

Subroutines
MAIN, STOKAS, CARPI and MTAMDF, MTMPRT from BOGAZICI: BUMPI Library.

Case 2. Measurements are Partially Noise Corrupted

This case considers that the following system equations are given:

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k)+D w(k) \\
y(k) & =C x(k)+\left[v_{2}^{0}(k)\right.
\end{aligned}
$$

where $v_{2}(k) \varepsilon R^{m-m_{1}}$. The measurement noise covariance matrix Σv is of the form
$\left[\begin{array}{c:c}0 & 0 \\ \hdashline 0 & \Sigma v_{2}\end{array}\right]$
where $\sum v_{2} \in R\left(m-m_{1}\right) x\left(m-m_{1}\right)$ is positive-definite.
3.

M,N,NR,MI,NP,NSTEP

Optimal-estimator
Ml<M. Partically noise corrupted measurements. Original state transition matrix
Original control input matrix Oniginal output matrix Original distrubance matrix Original E[x(o)] Original $\operatorname{cov}[x(0)]$.

Data Cards

COVW

COVV2

Remarks

Covariance matrix of original disturbance matrix

Measurement noise covariance matrix $\left(m-m_{1}\right) \times\left(m-m_{1}\right)$

See Example land Important Note in Section 5.3.1. Important Note also applies for the matrices D and COVW.

Output

Re-numbered state variables $\quad Q \quad Q$
Re-oriented system matrices
$A, B, D, E X P X, C O V X$
Transformation matrix
Inverse of transformation matrix
Canonical system matrices
Gain matrix
M
M^{-1}
$A, B, C, D, E X P X, C O V X$

Observer gain matrix
$P(k)$
$L(k)$
Error covariance matrix of the
re-oriented system $\quad \sum \widetilde{x}(k \mid k)$
Observer's state transition matrix
Observer's input matrices
$F(k)$
$H(k), G(k)$

Error Messages

Ml exceeds M.
C is not of full-rank
C is not of full-rank
PSI is singular $\left[C_{22} \Sigma \bar{z}(k+1 \| k) C_{22^{\prime}}+\sum_{v_{2}}\right]^{-1}$ does not exist $]$ LAMDA1 is singular $\left[\Lambda_{1}(k)\right.$ is singular $]$

Subroutines
MAIN, STOKAS, TRNSFO, CARP, CARPI, PRTITI, PRTIT2, OBSERV and MTAMDF, MTMPRT from BOGAZICI*BUMPI Library.

Case 3. All the Measurements are Noise Free

This case considers that the following system equations are given:

$$
\begin{aligned}
& x(k+1)=A x(k)+B u(k)+D w(k) \\
& y(k)=C x(k)
\end{aligned}
$$

Data Cards
Remarks
3.
$M, N, N R, M, N P, N S T E P$

$$
\begin{aligned}
& \text { Optimal-estimator } \\
& \text { Ml }=\text { indicates that the } \\
& \text { measurements are noise } \\
& \text { Original state transition } \\
& \text { matrix } \\
& \text { Original control input matrix } \\
& \text { Original output matrix } \\
& \text { Original disturbance matrix } \\
& \text { Original E[x(o)] } \\
& \text { Original cov[x(k)] } \\
& \text { Covariance matrix of original } \\
& \text { disturbance matrix }
\end{aligned}
$$

See Example 1 and Important Note in Section 5.3.1. Important note also applies for the matrices D and COVW.

Output

Re-numbered state variables
QX

Re-oriented system matrices
Transformation matrix
Transformation matrix inverse Canonical system matrices Observer gain matrix

Error covariance matrix of the	
re-oriented system	$E(k \mid k)$
Observer's state transition matrix	$E(k)$
Observer's input matrices	$H(k), G(k)$

Error Messages

Ml exceeds M.
C is not of full-rank
LAMDAI is singular

Subroutines

MAIN, STOKAS, TRNSFO, CARP, CARP1, PRTIT1, PRTIT2, OBSERV and MTAMD, MTMDRT from BOGAZICI*BUMPI Library.
5.3.4. Suboptimal Minimal Order Observer for Stochastic Systems

Data Cards	Remarks
4.	Sub-optimal estimator
M, N,NR, O,NP, NSTEP	Original state transition matrix
A	Original control input matrix
B	Original output matrix
C	Original disturbance matrix
D	Original E $[x(0)]$
EXPX	Original cov $[x(0)]$
COVX	Covariance matrix of original
COVV2	Measurement noise covarinace

See Example 1 and Important Note in Section 5.3.1. Important note also applies for the matrices D and COVW.
output
Re-numbered state variables $\quad \mathrm{QX}$
Re-oriented system matrices $\quad A, B, D, E X P X, C O V X$
Transformation matrix $\quad M$
Transformation matrix inverse
Canonical system matrices
M^{-1}

Observer gain matrix
$A, B, C, D, E X P X, C O V X$

Error covariance matrix of the re-oriented system
$\Sigma \tilde{x}(k \mid k)$
Observer's state transition matrix
$F(k)$
Observer's input matrices.
$H(k), G(k)$

Error Messages
Ml exceeds M. C is not of full-rank.

The gain matrix $L(k)$ cannot be calculated. $\left(\left(\Omega_{11}(k)+\Sigma v\right)^{-1}\right.$ does not exist)

Subroutines
MAIN, STOKAS, TRNSFO, CARP, CARPI, PRTITI, PRTIT2 and MTAMDF, MTMPRT from BOGAZICI*BUMPI Library.
5.4. SUBROUTINES

1. MAIN Program

This main program selects the proper subroutine according to the type of the observer. Input parameters are read from the supplied data cards.

Input parameters
ST,N,M,NR,M1,NP,NSTEP,A,B,C. (See Section 5.2 for the definition of input parameters.)

output parameters

None.

Error Messages
M exceeds or equal to N.
M1 exceeds M:
A is singular. Discrete-time minimal order observer cannot be realized.

Subroutines Selected
TRNSFO, CITIS, DLTIS, STOKAS
2. Subroutine TRNSFO (A,B,C,D,EXPX,VOCX,M,MAUX,NR,NP,N,ST)

The subroutine TRNSFO re-numbers the state variables. to obtain a non-singular matrix C_{1} (See Section 2.1) and evaluates the transformation matrix M that transforms the original system equation into the canonical form.

Input parameters
$A, B, C, D, E X P X, C O V X, M, M A U X, N R, N P, S, S T$
MAUX - Output dimension
$M \quad$ - Noise-free measurement dimension
Restis as given in section 5.2.

Output parameters
$A, B, C, D, E X P X, C O V X$
All these matrices obtain canonical values.

Error Message
C is not of full-rank.

Subroutines Used
CARP, CARPI
3. Subroutine CETIS (A, B, M,N,NR)

The subroutine CLTIS evaluates and prints the matrix L of the continuous-time deterministic observer by solving the Lyapunov equation. The matrix L is then used in SUBROUTINE OBSERV to evaluate the matrices F, G and H of the Observer.
The subroutine cETIS is called from the main program after the transformation into the canonical form has been performed.

Input parameters
$A, B, M, N, N R$

Output parameters
ZL - The matrix L.

Error Message
No solution to Lyapunov Equation - see Section 2.2.2.

Subroutines Used
CARP1, LIAPUN, OBSERV, PRTIT1,PRTIT2
4.. Subroutine DLTIS (A,B,M,N,NR)

Performs the same operations in SUBROUTINE CLTIS for the discrete-time deterministic observer.

Input parameters
A, B, M, N,NR

Output parameter
ZL - The matrix L.

Error Message

None.

Subroutines Used
CARPI, OBSERV, PRTIT1, PRTIT2
5. Subroutine LIAPUN (ASQ, $Q S Q, N, R, Y$)

The subroutine LIAPUN solves the Lyapunov Equation of the form

$$
(A S Q)^{\prime} R+R(A S Q)+Q S Q=0 \text {. }
$$

Input parameters
ASQ,QSQ,N
ASQ - $-\tilde{A}_{22}$
$Q S Q-\tilde{A}_{12}{ }^{1} \tilde{A}_{12}-Q(K$ and Q are determined in the subroutine CLTIS)

Output parameters
R,Y
R - Solution matrix of the above Lyapunov Equation.
$Y-R^{-1}$

Error Message
None.
(It has a message as, "Inverse does not exist", but solution is found in this case as well.)

Subroutines Used
CARPI
6. Subroutine STOKAS (A, B, C, MI, M,NR,NF,N,NSTEP,ST)

This subroutine evaluates the parameters of optimal-observer-estimators and sub-optimal minimal-order observers for stochastic systems.

Input parameters

$A, B, C, M I, M, N R, N P, N, N S T E P, S T$

Output parameters
See Sections 5.3.3 and 5.3.4.

Error Messages.
See Section 5.3 .3 and 5.3 .4 .

Subroutines Used
TRNSEO, CARPI, OBSERV, PRTIT1,PRTIT2
7. Subroutine $O B S E R V$ ($Z 1, A 11, A 12, A 21, A 22, B 1, B 2, D 1, D 2, M$, $N R, N P, N . S T, F, G, H, P N)$

The subroutine OBSERV evaluates and prints the observer matrices F, G and H in the deterministic case. This subroutine is also used in optimal reduced-order and in optimal minimal order observer-estimator designs.

Input parameters
ZL, A11, A12, A21, A22, B1, B2, D1, D2, M, NR,NP,N,ST
$Z I-L$ in deterministic case, $L(k)$ in stochastic case A11, A12, A21,A22-Blocks of the partitioned matrix A
$B 1, B 2-B l o c k s$ of the partitioned matrix B
D1, D2 - Blocks of the partitioned matrix D

Output parameters
F, G, H, PN
$P N-Y(k)$

Error Message
None.

Subroutine Used
CARP1
8. Subroutine CARP (CC,PP,MM,NN,KK,D)

The subroutine CARP performs the following multiplication:

$$
D=C C * P P(i)
$$

This subroutine is used in the reduction to canonical form.

Input parameters
CC, PP, MM, NN, KK
$C C$ - The matrix C
PP - The matrix PM(i) (See Section 2.2.1)
$M M-M$ (output dimension)
$N N-N($ system dimension $)$
$K K-i$

Output parameter
D

Error Message
None

Subroutine Used
None
9. Subroutine CARPI (CCI,PPI, MM,NN,NNI,D1)

This subroutine is used in matrix multiplication.

Input parameters
CCl-Premultiplying matrix
PPI - Multiplied matrix
MM - Row dimension of the pre-multiplying matrix
NN - Column aimension of the pre-multiplying matrix or the row dimension of the multiplied matrix.

NNI - Column dimension of the multiplied matrix

Output parameter
Dl - Resultant matrix

Error Message

None

Subroutine Used
None
10. Subroutine PRTIT1 (A, M, N,A11, A12, A21, A22)

This subroutine partitions a square matrix A as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \mathrm{m}-\mathrm{m}
$$

Input parameters
A, M, N

Output parameters
A11, A12, A21, A2 2

Error Message
None

Subroutine Used
None
11. Subroutine PRTIT2 (AA, M, N, BR, B1, B2)

This subroutine partitions a rectangular matrix $A A$ as follows:

$$
A A=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]^{m} \mathrm{~m}
$$

Input parameters
$A A, M, N, N R$.
NR-r

Output parameters
B1, B2

Error Message
None

Subroutine Used
None

CHAPTER 6

CONCLUSIONS

In this study, deterministic and stochastic observers for linear time invariant systems have been discussed. Since, not all the approaches to the design of observers can be utilized by digital computers the theoretical development has been mainly devoted to the design procedures that can be treated by digital computers. The computational problems of other approaches are stated below for the sake of future researchers in this area.

In the deterministic case, the minimal order observers with zero steady state estimate error are considered. The steady state estimate error has been related to the stability of the observer and the dynamics of the observer have been determined by the use of the Lyapunov sta-. bility theory $|7|$. The dynamics of the observer can also be determined by choosing the eigenvalues of the state transition matrix of the observer in such a way that they correspond to a given set of eigenvalues $|3|$. This method requires that the parametric characteristic equation of the observer be equal to the characteristic equation obtained from the set of eigenvalues.. An algorithm has not yet been developed that can be applied on digital computers to evaluate this parametric equation, One may use the method which transforms the system equations into the observable comparion form and evaluate the parameters of the observer $|18|$. But, this method becomes quite cumberson for multioutput systems as far as computational aspects are concerned, therefore the digital computer based solution is not attractive. One other
approach is to use the extension of Ackermann's procedure to multivariable systems. This. method is not yet utilizable by digital computers and it is under investigation |19|. The methods presented so far result in time-invariant observers, thus the computations are held off-line. One may consider the transient estimate error and employ an on-line procedure which minimizes the norm of the error in the transient period. This suggestion opens a new research areasince some systems may not admit large errors in the transient period.

The construction of minimal order observers for continuous time systems has been reduced to the solution of the Lyapunov equation of the form

$$
\widetilde{A}_{22} 1 R+R \widetilde{A}_{22}+Q-\widetilde{A}_{12} \cdot K \widetilde{A}_{12}=0
$$

The solution of this equation hinges on the selection of the matrix K. It was shown that the matrix K can easily be selected if the matrix \widetilde{A}_{22} is either positive-definite or negative-definite. If \widetilde{A}_{22} is an indefinite or a semidefinite matrix then the matrix K can be found by an exhaustive search among positive-semidefinite matrices such that the above equation yields a positive-definite solution matrix R. This thesis work misses any suggestion concerning this exhaustive search method.

The reduction of the order of the Lyapunov equation in the discrete-time case is an important step in the development of the deterministic-time observer theory. This reduction in order reduces the computation time considerably compared to the computation time of the solutions found in the literature. For the discrete-time observers it remains finally to say that the hand-calculation of the matrix L_{0} in order to have astable matrix S_{0} must not be
considered as a drawback in the developed study, since men-computer interactions are quite common in recent years.

The stochastic case involves the optimal reduced order observer-estimator and suboptimal minimal order observer. For systems in which optimality is not of utmost importance one may use the suboptimal minimal order observer which provides fast response since the computation time which is a function of the order of the observer reduces considerably. The trade-off between optimality and the computational time may be best decided upon by comparing the results and the computation time of both the optimal reduced-order observer-estimator and the suboptimal minimal order observer for the system of interest.

The user's manual prepared explains how the data must be supplied by the user to evaluate the parameters of the observer of interest. It also provides the structures of the subprograms in the package program. The package program is preserved at Bogazici University Computer Center. The programs in the package are listed in the Appendix B. In all programs, single precision is used, if high accuracy is required, by changing matrix and array definitions and supplying necessary cards to declare double precision variables, double precision arithmetic may be used. We finally say that, the disadvantage of this package is that it is only compatible to UNIVAC systems. The problem may be avoided by rewriting some of the subroutines so that they can be used in any computer system.

APPENDIX A

EXAMPLE 1. The following plant is given:

$$
\begin{aligned}
& x(t)=\left[\begin{array}{cccc}
-3 & 0 & -2 & -1 \\
-2 & -2 & -3 & -3 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{llll}
2 & 1 & 4 & 1 \\
1 & 0 & 2 & 1
\end{array}\right] x(t)
\end{aligned}
$$

Find an optimal state feedback control $u(t)$ of the form

$$
u(t)=-k x(t)
$$

such that the following performance index is minimized.

$$
P I=\int_{0}^{\infty}\left(x^{\prime} x+u^{\prime} u\right) d t
$$

Solution

All the states are not available at the output. We will show that an observer can be designed to estimate the non-available states so that the above optimal control problem is solved. The solution, after all the states becomes available, of the above problem can be found in any optimal control book.

The transformation matrix M and its inverse M^{-1}

$$
\begin{aligned}
& M=\left[\begin{array}{llll}
2 & 1 & 4 & 1 \\
1 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& M^{-1}=\left[\begin{array}{llll}
0 & 1 & -2 & -1 \\
1 & -2 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

transfor; the above system into the canonical form as follows:

$$
\begin{aligned}
& q(t)=\left[\begin{array}{cccc}
-2 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \quad q(t)+\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right] \quad u(t) \\
& y(t)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad q(t)
\end{aligned}
$$

where

$$
q(t)=M x(t)
$$

It is seen from the above output equation that the state variables $q_{3}(t)$ and $q_{4}(t)$ are not available. To obtain the estimates $q_{3}(t)$ and $q_{4}(t)$ the minimal order observer is designed as follows:

The Lyapunov equation

$$
\tilde{A}_{22} 1 R+R \tilde{A}_{22}+Q-\tilde{A}_{12} 1 K \tilde{A}_{12}=0
$$

is solved.

$$
\widetilde{A}_{22}=\left[\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right]
$$

is a negative-definite matrix, then if the matrix K is chosen as

$$
K=0
$$

the above Lyapunov equation yields a positive definite solution matrix R, for every $Q>0$. Since $K=0$, the matrix L becomes

$$
L=\frac{1}{2} R^{-1 \tilde{A}_{12}}{ }^{\prime} K=0
$$

The the observer matrices are:

$$
\begin{aligned}
& F=\tilde{A}_{22}=\left[\begin{array}{rr}
-2 & 0 \\
0 & -1
\end{array}\right] \\
& G=\widetilde{A}_{21}=\left[\begin{array}{lr}
0 & 1 \\
0 & 0
\end{array}\right] \\
& H=\widetilde{B}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The observer error

$$
\begin{aligned}
& e(t)=\left[\begin{array}{l}
z_{1}(t)-q_{3}(t) \\
z_{2}(t)-q_{4}(t)
\end{array}\right] \\
& e(t)=\left[\begin{array}{rr}
-2 & 0 \\
0 & -1
\end{array}\right] \quad e(t)
\end{aligned}
$$

The solution of the above differential equation is

$$
e(t)=\left[\begin{array}{ll}
e^{-2 t} & 0 \\
0 & e^{-t}
\end{array}\right] e(0)
$$

The following graphs show that the error decreases wth time regardess of the error in the initial condition. Choose e(o) $=\left[\begin{array}{l}+4 \\ +2\end{array}\right]$

The matrices P and V are found to be:

$$
P=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

EXAMPLE 2. A canonical system is described as:

$$
\begin{aligned}
& q(k+1)=\left[\begin{array}{ccc}
0.25 & 0.625 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0.5
\end{array}\right]-q(k)+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \mathrm{u}(k) \\
& y(k)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad q(k)
\end{aligned}
$$

The poles of this open-loop system are at: $k, 0.5$ and 0.25. It is desired to find a state feedback control of the form $u(k)=K q(k)$ so that the closed -loop poles are at $0,0.25$ and 0.5 .

Solution

The state variable $q_{3}(k)$ is not available at the output hence we will design a first order observer to estimate the state variable $q_{3}(k)$ so that the state feedback controd $u(k)$ can be obtained.

For this system $n=3$ and $m=2$ then we partition the matrix A as follows:

$$
\left[\begin{array}{cc:c}
A_{11} & A_{12} \\
\hdashline A_{21} & A_{22}
\end{array}\right] \quad\left[\begin{array}{cc:c}
0.25 & 0.625 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0.5
\end{array}\right]
$$

We calculate the elements of the matrix L such that the eigenvalues of $A_{22}-L A_{12}$ are inside the unit circle.

$$
0.5-\left[\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=0.5-\ell_{1}-3 \ell_{2}
$$

Choosing $\ell_{2}=0$ and $l_{1}=0.5$, the eigenvalues of $A_{22}-L A_{12}$ is found to be zero.
With the initial value of the matrix L as

$$
L=\left[\begin{array}{ll}
0.5 & 0
\end{array}\right]
$$

the following results have been obtained.

$$
\begin{aligned}
& F=0.827 \\
& G=[18.036 \\
& H=-31.22
\end{aligned}
$$

The observer error e(k) evolves in time as

$$
e(k)=(0.827)^{k} e(0)
$$

EXAMPLE 3. Consider the following stochastic system:

$$
\begin{aligned}
& x(k+1)=\left[\begin{array}{cccccc}
0.5 & 1 & 0 & 0 & 0 & 1 \\
0 & 0.5 & 0 & 1 & 0 & 1 \\
1 & 0 & 0.25 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.75 & 1 & 1 \\
0 & 0 & 0 & 0 & 0.8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.6
\end{array}\right] x(k)+\left[\begin{array}{ll}
0 & 1 \\
1 & 2 \\
0 & 0 \\
0 & 2 \\
1 & 1 \\
0 & 1
\end{array}\right] u(k) \\
& +\left[\begin{array}{ll}
0 & 1 \\
2 & 1 \\
3 & 0 \\
0 & 0 \\
0.5 & 0 \\
0 & 0
\end{array}\right] \quad w(k) \\
& E(x(0))=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \operatorname{cov}(x(0))=\operatorname{diag}(10,20,30,40,50,60) \\
& Q=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

Case 1. All the measurements are noise corrupted.

$$
y(k+1)=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] x(k+1)+v(k+1)
$$

and

$$
R=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

The following graph shows the results obtained from the Kalman filter algorithm and Minimal Order-Observer.

Case 2.. Some measurements are noise free.

$$
\begin{aligned}
& y(k+1)=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \quad x(k+1)+\left[\begin{array}{l}
0 \\
-1(k+1)
\end{array}\right] \\
& \quad R=\left[\begin{array}{llll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

APPENDIX B

SUBROUTINES

RTAN 5,5 S S^{T}
READ 5,1 M, M, UR, N1, PR,NTTFO
IF (M, ATA, 10 TO 0

?n
$60 \quad 1095$
$1 F$
LEF. 1 , $G \cap-0$?
WPTTF $\left(6,2 \frac{L F}{3}\right)$
90 TO 95

IF (ST, N
3 ART ${ }^{3}-J=1: N(I, J)$
$V(1)=1$. $A D \square$
CAIL GJP (ARP, $10 \cdot 10 . N \cdot N / S 1 \cap 01 J C, V)$
7 CALL MTANDF (A,10.1N.,SM, PH,GGN:)

CALL MTNPRT(C, (RE1S:Q):OO:ORIGTNAL NUTRHT NATRTX,C:,)

CAI 1 TRNSFO(A, R, R, ח, EXPX,CO, X,MI, N,ND,NP,N,ST)
IF (ET FQ•R•) GO TO 15
DITTS? 1 , R,MOMR
4 CÁLL CITTS (A,n,N,N.NR)
CALL STOKAS (A, R,C,M1,M,NP, NT,N,NSTEP,ST)
ज口TTF 35
WPTTA $(6: 17)$
FORM1T: 19
EORNAT ()
1 EORMATRSX.A IS SINGILAP - ПTSCRETF TIME VINTMAL ORTRR ORS
1CANANT RFPFAI. TPEERDE (OR FOUAL) N,)


```
me
7n
min
mof,
Ogh
O-0,
906
-06
06
OK
~
8)6
096
35
# %G)
006
406
0%
795
O6
~06
-06
O
00
#
0.j6
- }3
0
0.06
06
06
-96
0
0
0%5
~0
806
806
0.06
06
06
* % 
05
:06
096
0.36
0
0.05
```

7 0 0

```
7 0 0
SIAPMTHE RITIG(A.BNDNDNO)
```



```
WRIT (6.10n)
\(N M=1-N\)
```



```
CAIL NTANDF (FV1, \(10,1,0\) S:ORIM, N-M., חTA:)
```



```
CALL NTAMDF ( \(7,1 \cap, 1 n, S, H-\cdots, N, O E N:\)
```



```
CALL PRTTT2 (BONPMPRPA1:ED)
\({ }^{K} \bar{D}{ }^{1} 770 \mathrm{I}=1\), Nom
```

```
\[
\begin{aligned}
& \text { DO } 700 \text { J=1 MM. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { CONTYNIIE }
\end{aligned}
\]
```



```
\[
\text { ADR } 1(I, J)=\wedge R R(K)
\]
```



```
\(0025, I=1\), NMM
25
```



```
CALL MTMORT (VAL. (QE15.8)., D., CHFCト...)
```



```
27
TF VAL (T) GF. 0
COMT NUE
601 WRIT \((6.171)\)
```



```
30
31
DO 3:T=1:NN"
ก0 31 ( \(\left.\overline{1}+: V^{N}\right)=A_{1} 1(I \cdot J)\)
DO 3 ? \(I=1 ; N M M=1, N R\)
```



```
CALL MTMPRT(レ,.(8E15:8), 00..TNPUT MATPIX.....)
```

```
    \(2 n\) RnTurtros.rmo?
```



```
    33 CONTTMIF
403 㫙TT \((6,172)\)
```



```
    CALL NYSC1(n12T, MNM,M,1O•N1FA)
```



```
    CALL MTVLN( \(\left.7 \mathrm{M}, \mathrm{F}^{\prime} \mathrm{VL}\right)\)
```



```
        Gの \(T \cap r 5 ?\)
001 ALFA=1ก
    35 CONTENOE
        WRITF (6.103)
        RETUP
552 Dก \(34 \quad T=1\), MMP
    \(A C Q(T, J)-A \rho^{2}(T, J)\)
```



```
    GO Tn \(20 \cap\)
604 R(1.1) \(=-7 M(1,1) /(2, * \operatorname{ACO}(1,1))\)
```



```
    CALE MXSCA(TL.NOMO. 0 O. 5 )
```



```
    RFTURN
550 یロTTF \((6,194)\)
    RETUNM,
```



```
    1 AST ONE TERD ROH(COLIMN).)
```



```
    RETU?N
    Elin
```



```
    DIMEISTON T(10.1n)
    IFM1_ST_FFO. 4.) GO TO ?25
```



```
    RFA\cap(5,2) (FXPX(T),I=1,N)
    REAR(5,2) ( (SOVY(I,J),J=1,N),I=1,N)
    RF\Deltaח(5,2) ((COVW(T, (),J=1,NR),T=1,N\cap)
    IF (M& EO M, GO YO'1
```



```
    CALL MTANEF (O,10.10,.S.,N1,MM1,.GEN,)
    1. CALL MTAMOFICYFROR,1OIIO,.S,NN1,NA1,.GFN,'
```



```
136
    CAL MTANAF(G,1n,10,.S,.NNN1,N1,,GENO)
    CAL! MTANNF(F,10,10,:S:NMM NM1,OGEN;)
        CAL MTANOF(H:10.10,1SONNM,NR,OGGN:
```



```
    CALL MTAMEF(COVL,1N:10:,C,MNDNP,GFN,)
```



```
211 CALL MTMORTIO,B(QE:F.QIODO,ORIGINAL OISTIRRANCE NATAIV,O.
```



```
zon
    NRITF(6,144)
    W0iTn(6,100)
17 IF (M1 FO.N) बO TO 2'
    MRITF(5,12)
    21 vRTTE}(\overline{\sigma},つ2
18 00 30 T=10Nm9
32 PIF'IG=1NF, 0,60 T0 3
IF 4%1=NN
CVEROR(I,J)=COVX(,.J)
```

```
    \(4-E(T, J)=\cap(1, J)\)
    DO \(5 I=1, N \mathrm{~N}=1, \mathrm{ra}\)
```



```
    D0 6 I \(=1: N, 1=10: 1\)
    (1) C2つ(T, J) =C(I,J)
    \(\square \cap\) ? \(1=1\) ? 2
\(2 月\)
```



```
    DO 30 IE1, NM1
    \(30 \operatorname{CVFROR}(\mathrm{I} \cdot \mathrm{j})=\mathrm{Cn} 1 \times(9+N, 04+1)\)
```



```
                                \(C P(I, J)=C T+M, 1)\)
```



```
    \(1 \begin{array}{r}1 \\ 8\end{array}\)
```



```
    CALL MXTRN ( \(\Gamma, 1,1 T, \ldots, N^{n}, 1 n+10\) )
7
```



```
On 1000 i=1 inon \(J=1\).
```



```
CAL \({ }^{1}{ }^{1} \cdot 1 R\)
CAL: CARP1, A2?-AREMMY NMAM1.LANEA?)
```



```
ALL NXTRN (F,FT,NM1,NO1,10,10)
```



```
E^LL MXADN : PSI, COVV?, RET,MNI,MMI,10,
\(V(1)=1\).
CALLGJP (RSI:10;17,MNM,MN1, \(544, J C, V)\)
CNLL CARP1 (ARRORST, NM1,MN1, NM1, D)
```



```
        \(G 0 T^{n} 11\)
    16
    no
```



```
                \(1=1\)
0
0
```



```
    G?
    13
    CALL, TRNSFO(COVX,R,C,D.EXPY,ARB,N1, NR,NR,N.G.)
```



```
    11 COMTTNUE
    RTTI?N
544 RRTUN \({ }^{2} \operatorname{RF}^{F}(5,25)\)
545 WRTTF (5,O6)
    RFTURN
125 NPRE \(=1+1\)
```



```
    CALL
    \(C A L\)
\(C A 1-\)
```



```
    CAL MTNPT ©
```



```
    CAI NTMPRT COVV2, MFE15•8):.O.,MEASIMPFNFMT NOTSF OOV. VATRT
    WDTTF(6,192)
```


0n 176 T $=1,10+1)=1$.
00 $177 \quad \mathrm{I}=1$.
CAIL CARPI: AOF:N, NANM.FAFN)
CAL WXTON(FNFW, FT:N•N"N,1n.1

On I?

$v^{\prime}(1)=1$.

130 I二1, Ma
IE, (K.FO, T G GO, TO

CALL rARR1 (ZL. COVVP, NNPM, M, ADO)
CALL GXTRU (Z ARR2; NAWM, 1n.10)

CALL NXTRN (ARR.ARR?,NHM,M,10.10)
$0132 \mathrm{DO}=13 \mathrm{~N} \quad \mathrm{~J}=1 \mathrm{M}$
ก0 133 T=1, NMMVFROR(I, I) =COVV (T, J)
nO $133=1, M$

CVFROR(IR. $1+M)=$ ARロの(I! (U)


```
                CALL CADNA(A,7,NNMN, CINFM)
```



```
12?
    CONT NL.JF
    RFTU!N
546 NRITV (6,07)
```



```
14.FOPMnT(1U1:2nY明1=n, 
15 FOPMnT (%X,OXFG(K+1/K+1)='I-r(K+1)*r)*A*XFG(K/K) + T-n(K+1)*r
```



```
122)*!(K)*!J(K)+(I-P(K+1)*Cつつ)*G(K)*\cap1(K)+\Gamma(K+1)*(v2(K+1)=
2FORMAK+1), N1-N, NTASIDEMFNTS ARF NOTSF TRFF - NTMTNAI
```



```
100 FORMAT (25x,,K=n,)
```



```
103 F\capRMAT(5X,.7(K+1)=F(K)*7(K)&f(K)*Y(K)+H(K)*!(K),)
RETUNA
ENO
CONTTNTF
RFTIISH
？FORMAT（
```



``` 1 ORSFRVER－ESTTMATOD AF ODDFD N－N IC I！SFR． \(1 / 1\)
```



```
100 FORMAT \((25 x, 1, K=n\),
```



```
103 FORMAT ENT
```

SURROUTINF ONSERV $\left(\rightarrow L, A 11, A 12, A D 1, A 22, R_{1}, P_{2}, D 1, \cap_{2}, N, N R, N P, N\right.$
$16 . N^{2}$

CALL CARP $1\left(\geq 1, \cap_{1}, N-M, M, I-N, F\right)$
CALL MXSUM（AP？；F，F，N－M，N－M，1O）

RETiJN
EN？


```
    SMESTOH: PN1T(1n,1n)
    1ITFFEn \(n \times(1 n)\)
```



```
    \(\operatorname{MP1}=*+\)
    م〇 \(O\) (1) \(\frac{I}{=}\)
    DO \(3 I=1\), MP1
    DO \(3 \quad I=1: N\)
    on (itat)-1
    \(0011 \quad 1=\)
14
15
11
    5
    55 CAPKT \(=555\) I, L,T)
    PK(T:L,T) =חK (TKKG. T)
    IF ( \({ }^{+}\)En.1) rol T? 6
    CHPK1=NK (1, 1, 1)
```



```
    PK \(1, K, 1)=C H P \vee\)
    6
```



```
    \(C(T I K)=C H C\)
```



```
    PN1 (-I.KK) =CHON:
```



```
    CHCO"X \(=\) Cnjx (rT:1)
```



```
    2 CHA \(=\) ^(TI.L)
    \(A(I I \cdot L)=A(I I, K)\)
    7 A (TI:K) C CHA
```



```
    CHCO \({ }^{\prime} x=\operatorname{Cos} x(L 1 J)\)
    Covx (L, J) \(=\) COиX (K,
Coux
10
13
```



```
    \(B(1,1, J)=7(k, \ldots))\)
    \(16 A\left(K, H_{j}\right)=r \ldots B\)
    \(C H O=\times(1\).
    \(Q \times(L)=0 x(K)\)
    \(O x(K)=C H \cap\)
    CHEXDX=EXDXi, ! 1rOTO 4
```



```
    CHD \(=\) (L,jJ)
```



```
    DO 10 - 10 N
```



```
    10 COMT NUE
    \(K K=I\)
    CALL,CARP (CORV,N, N, K, C)
```



```
    4
200
```



```
    - 1 •
```



```
    00201 KK=2.ND1
    CALL CARP(PN, DK, HRH., K, DN)
201 CONTVNIJE
    WRTTF \((6,95)\)
```



```
    99
    WRITF (G:Of)
    CALL MTHRT(A, (OF,, , \(), 0, \ldots \ldots\) )
```



```
    CALE MTVDRT (FYPX, \((8-15,2), \cap \cap D E(X)), \ldots)\)
    CALL MTMPRT(COVX., (9F15.n),.n., COV (x(0)....)
    KK \(K=\bar{M}+1\)
```



```
    CALL CARDI (PM1, An,NMH,N,N)
    CALLACARR1 (RNI:R,N,N,NR,A \(A\) )
    \(002061=1\).N
```



```
\(? 06\)
```



```
    CALL CARPI (MM?:D,N,N,NP,AA)
    DO \(207 \mathrm{I}=1\) N
\(2070(1, J)=A A(1: J)\)
```



```
    WRITF (6,1,7N)
```



```
    CNLEMXTRN ( NalRMNT,N,MNOLO,
    CALL CARD1 ( PA1,COVV,N,N,N!,ANA)
    CALL_CNRPI ( AA,OM,T,NON|I!COVX)
        PETUTN
    555
    WRTTF (6,97)
    G0 T^ 556
1000 CALL MYTRN (PM, RMIT,N,NAIO,10)
    CNLLL CARP1 (PARP1)(AA,PMPT,NNNPN,A)
```



```
    9G FOPNAT(2OY,ORFORTFNTKO S'STFRK,)
    90 FORMAT(25x,:QI,:T2,:)=Y(,.T2,,),)
556 RFTIJRN
    EÑT
```

SUPRUUTINF LTARUN (ASOBQSQ, $1, R, Y)$
 DINEISION ARR (10,1n), JC (10). ZEN(10.1n)
$V(1)=1$

CALL G.jR(1J,10,10,N.M. 550 .JC.V)
GOUTTNIEF
no $305 \mathrm{I}=1 \cdot N$
305
304
105
$09374-1 . N$

302 (T, $\left.{ }^{3}\right)^{2}=$ Ans (IN.1)
CALL CARPI (Il, CO, N,N,N, An A)
CALL YYTRN(1I,ITT,NON,IO,1?)
CNLL MXSCA(Y,N•N•10in.2)

CALL CARPL ($7, ?, N, N, N, A R B)$
$\begin{array}{ll}10 & 1 n_{2} \\ D 0 & 1=1, N \\ 2 & J=1, N\end{array}$

CALL MXTRN(Z,ZT,N,N,10.1?)
CALLL CARPI (ARROZT,N,NON, $E N$,
CALL MXADD (Y, ZEN,Y,N,N:1?)
203 CONTTNIE
$8 Q 294 \quad I=1 . N$
$R(924-5=10 N$
$204 R(T: J)=Y(1: N)$
$y(1)=1$

50 WRTTF $(6,140)$
GOTIT TNINF?
140 FOPMAT(20Y. TMVFRSE OFS. NOT EXIST , ///)
RFTI
END


```
DO \(10 \mathrm{O}=\mathrm{O}=\mathrm{O}\)
\(00100 \quad \therefore=11 M N\)
                                    กn \(\ln 2\) K=1. NN
102
    n(T,j) SUN
100
RETID \(N\)
ENO
```


OD 40 D J $=L, N N$.
SIm=n

400

```
    D1 (I:J) \(=5 \mathrm{~J}^{M}\)
CONTYNDE
RFTU?N
ENO
```

- SIJRRUUTINF PRTTTI (A.N.N.A11.A1?, AD1, A22)

MP1="+
DO $301 \mathrm{I}=1 \mathrm{M}$
301 ค11(T1.j)三呈 (I, 」)
DO 21 I=1.M
21 A12 $(T, J=N)=A^{N}(T \cdot J)$
DO2? Iニッローツ

DO 23 I INP1;N
23 APO $\left.\operatorname{RET}^{\top} \mathrm{N}^{\top}-J-M\right)=A(I \cdot J)$
END
STMR UUTAE PRTTT2 (AA,M,NMNRA1, R2)
DIMENSON AA(1n.10)PR1(9n,1n)PRO(1n,10)
M $1={ }^{-n}+1$
DO $2^{24} I \equiv 1: M R$

DO $25 \mathrm{~J}=1$, MR

RETI

REFERENCES

1. R.E. KALMAN and R.S. BUCY, "New results in linear filtering and prediction theory", Trans. ASME, J. Basic Eng., Ser. D, pp. 95-108, March 1961.
2. A.E. BRYSON, Jr. and D.E. JOHANSEN, "Linear filtering for time-varying systems using measurements containing colored noise", IEEE Trans. Automat. Contr., Vol. AC-10, pp. 4-10, January 1965.
3. D. G. LUENBERGER, "An introduction to observers", IEEE Trans. Automat. Contr., Vol. AC-16, pp. 596602, December 1971.
4. D.G. LUENBERGER, "Observing the state of a linear system", IEEE Trans. Mil. Electron., Vol. MIL-8, pp. 74-80, April 1964.
5. B. GOPINATH, "On the control of linear multiple inputoutput systems", Bell Syst. Tech. J., March 1971.
6. D.G. SCHULTZ and.J.L. MELSA, State Functions and Linear Control Systems, McGraw-Hill, 1967.
7. J. O'REILLY and M.M. NEWMANN, "Minimal-order observerestimators for continuous-time linear systems", Int. J. Control, Vol. 22, pp. 573-590.
8. Edison TSE, "Observer-estimators for discrete-time systems", IEEE Trans. Automat. Contr., Vol. AC-18, Pp. 10-16, February 1973.
9. K. OGATA, Modern Control Engineering, Prentice-Hall Electrical Engineering Series, 1970.
10. G.A. HEWER,"An iterative technique for the computation of the steady-state gains for the discrete optimal regulator", IEEE Trans. Auto. Con. Vol.AC-16, Pp. 382, August 1971.
11. F.R. GANTMACHER, The Theory of Matrices, Chelsea Publishing Company, New York, N.Y., 1959.
12. F.W. FAIRMAN, "Reduced order state estimation for discrete-time stochastic systems", IEEE Trans. Automat. Contr., Vol. AC-22, pp. 673-675, August, 1977.
13. E. FOGEL and Y.F. HUANG, "Reduced-order optimal state estimator for linear systems with partially noise corrupted measurement", IEEE Trans. Automat. Contr., Vol. AC-25, pp. 994-996, October, 1980.
14. J.S. MEDITCH, Stochastic Optimal Linear Estimation and Control, McGraw-Hill.
15. C.T. LEONDES and L.M. NOVAK, "Optimal minimal-order observers for discrete-time systems - a unified theory", Automatica, Vol. 8, pp. 379-387, 1972.
16. M. ATHANS, "The matrix minimum principle", Infarm. Control, Vol. ll, pp. 592, 1968.
17. L.O. CHUA and P.M. IIN, "Computer aided analysis of electronic circuits: algorithms and computational techniques", Prentice-Hall Series in Electrical and Computer Engineering, 1975.
18. W.A. WOLOVICH, "Linear multivariable systems", Applied Mathematical Sciences, Volume 11, 1974.
19. M. ZEYTINOḠU, "Pole assignment in linear multivariable systems", Master of Science Thesis, Boğazici University, Istanbul, 1981.
