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INTRODUCTION 

Progresses in any field of scientific research always 

bring simple and powerful approaches to~ the solutions-of sophis­

ticated problems.Tn recent years,the developping technology has 

greatly incre.ased tp,e interest in Systl?m Theory. Especially, the 

problems encountered in the design 0£ complicated control systenls 

have emphasized the neces~ity o£ simple and unified approaches to 

the structural analysis of linear time-:invariant multivariable 

sy~tems.ln the sequel to this w?rk,the results obtained'in two 
./ 

.new frameworks,namely the geometric approach and the frequency 

domain approach to the treatment of modern control problems,are 

considered and used. 

~his work consists .of two parts. The first part is a 

detailed litterature survey on the newly introduced geometric 

-. approach and its frequency domain ~ranslation •. Jil Chapter I , II the 

mathematical preliminairies ",some basic concepts of Linear 

"":Alg'ebra are reviewed and new geometric concepts' ( such as 

(A,B)'-invariant subspaces, -stabilizabili ty subspaces ); are given. 

A frequency domain characterization o:f each geometric property 

is also presented.Chapter -II takes into consideration some oil' 

modern control problems (such as Disturbance Decoupling,Output 

stabilization with respect to Disturbance ):.Each problem is 

defined first, then the geometric and the related frequency d'omain 

formulations of its solvability are given. Special comments,remarks 

and: alternate proofs are also made,whenever it is possible. 

In the second part a special structure of l;i.near multi­

variable systems is considered. This syste~ is a c,oupling of two 

basic multiports,the first composed of " lossless tI components and 

the second characterizing the tI algebraic" components.T Chapter III 
\ 

--;---.- --,..---------- ---~-----------.----------- -- --------------·1' ... - ---------.-

... 
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some properties of this structure are introd'uced, based on [10] . 
']hen using strict system equivalence [13] , the existence of different 

" lossless " mul tiports for Y/hich the transfer matrix of the system 
) 

is invariant when the" algebraic" multiport is kept constant,is 

investigated.The results are given as theorems and ill~strated with 

an example.In Chapter IV using the results of Chapter III,the solva­

bili ty of D D P for two differ'ont disturbance structures is formu- _ 
i 

lated.ln one of these cases a larger degree of freedom,to nullify 

. the effect of disturbances,is o'btained. This case is also illustrated· 

with an example. 

One general remark is that most of the decoupling prob-

lems con~idered are generically unsolvable;that is the solution 

space of' these problems consist of isolated po~nts in the neighbor­

hood" of which the problem is unsolvable. 

It should be emphasized here that,the problem stat~d and 

formulated in Chapter III is totally now and answer obtained is that 

this problem is g~nerically solvable. The. new properties that are 

~ntro~uced,mRY find many areas of application in System Theory, 
T 

.' especially in electrical circuit design.A letter from M L ;j Hautus 

also s:tates· that the problems are very interesting and relevant. 

Finally,I'm personally gratefull to'my thesis supervisor, 

C.Goknar,for his orientation and helps in the preparation of this 

thesis. 
M. Salim Arslanalp 
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I MATHEMATICAL PRELIMINARIES 

In order to give .the frequency domain churacterisatj.ons 

of some geometric concepts widely used in the geometric formulations 

o£ modern control problems we will first consider the (e ,ur)-represen-

.tation-newly introduced in [7~ 9J .!.. 

CD - <6 t w- )' ..;. Representation : 

We consider the linear time-invariant system ~ given 

in its state space form by 

. % = Ax + 8u - - -
!j= C~ 

(I) 

CZ) 

whene ; ti) (: X ~ !R 11) Y. /-0 6 U ~ IR. In ) J{-I} 6:!:1 ~ IRI"" 

J C:x..-...y and A:X~X ) 8: U-rx. are 

-linear maps.Now let ~(I:) be a time-domain solution of ( 1 ) subject 

to an input function y. It) and to an initial state ~. tiD) ~,X'o • Then 

i (I) = A ~(i) + 8yNJ 
and- the same equations (1), (2) in Laplace domain can be vrri tten as 

where t{S)) C:: fS) ·are the Laplace transforms of ~lt)1 y.U) respectively. 

The initial state ~'to)=,!D is obviously an element of the state spaceZ , 

hence!., tZ and §($) and tg"(5) are strictly. proper rational functions 

since !U:) and tl (f) are real functions. 

DEFINIT:tON 1.1 

Le t 50 G X j the formula 

!o :: (.sI-A) ~(5) - B~{~) 

is called a (l,tg' }-representation of' %" ,if "t{s) and '2"'6) are 
strj.ctly proper rational functionA. • 
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® '" A-invariunce 

A-invari8.nce is an important property o:f subspaces,widely 

used in linear Algebra.I-t w ill be discussed briefly,since it helps 

to understand the related but more complicated concept of (A,B)-inva-

riance. 

Consider the linear space !if ~ the linear map A .. ~-+.$' 

a subspace CtJ c,z . If ~ ~ A UJ ,then for Pl t W) if {-I)"") g 1 
and 

a ba~is for tU , the set of vectors ft.' C c& 
r(. 

such that ci=A ~ , 
- -.J 

spans the subspace 

DEFINITION 1.2 

lU is said' to be A-invariant if and only if A LV c w.. 
Wi th this defini t:Lon we will consid'er the system:Z and always talk 

abo-qt the A-invariance mE' a subspace l/ of the state space X . It's 

also possible to obtain a matrix characterisation of the above property 

as follows. Let V be a matrix whose columns ,are basis vectors for the 

subspace 1/ C;r ,that is 

for i t r I} --. J k J 
v ~ L '!.4) ~2. I -' •• 'fie] where Yl f.l/ 

are linearly independant and span ['ti}= 7J. 
V will be called' a bani a matrix for 11 . 

THEOREM 1.3 

Gi ven:E and 7J C Z with a basis matrix V , 7J is 

A-invariant if and only if a oo.luti9n P of' the matrix equation 

AY=VP exists. 

Proof: 
IJ~I' 

Let and . be a basis matrix 

for 1J .Then 
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Hence , for C f- ["._' k 1 =1? ~l' = V!c: for i. f- [f).-., Ie] for 

some • Then A V::: V L P, Pt .. p ... 1 and p :l~ [PI'" p" J 
is a solution of the matrix equation. 

• 4==:s to • 

Let AV:::VP wi thV a basis matrix for 7J and let 

:t f 1J ,then ~ can be v..rri tten as a linear combination of basis - ' 

vectors of Ir such as 

Then as 

A", ~ AVr = VPr we see that A x. is a linear combination of - - -
columns of V .Hence A~ 6 V- ,which implies AU- c. U­
~ 61J was arbitrary. - . 

since 

• 
In modern control problems,an extension of the idea of 

, 
invariance has found an area of application. The (A,B)-invariant 

subspaces of p. state space Z as intro9-uced by Wonham and Morse vdll 

be the essential mathematical tool in handling the problems to be 

stated in section II. 

(1)- ( AtB ):- invariant subsnaces 

VIe consider again the system Z with its state space.z 

its input space U and its output space:J .Let 7.f be a subspace of' Z. 
If ()} C .Zand rt~tJJ. 7J ; then'l-jc ct", -t = LU+ 1/ for some 

ur6 til and tr €: V. 

DEFINITION 1.4 f5] 

lJ is an (A,D)-invariant subspace of X if it's A-invarian' 

mod (BU) i.e. 

AlJcll+BU (5) • 
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The impo~tance of' (A, n,f ... invariantsubspaces· is that these subspaces 
" 

c'an be made (A + BF) -invariant for a. sui table choice of 'the feedback 

matrix r. This property is very' useful since it helps to, ChElll£!;e a 

feedback problem to an existence.' of. a subspace which is (A, B) -inva:t":L.~';~ 

riant. 

L EMIlI AI. 5 [11 

Let 7J!; X . There 'exists F: X-P U such that 

. Ct\:r 0F}2J C if if and only if V- is (A,B)-invariant. 

P.R 0 0 F: [5] 

Let and X c if. 
Then ( AT BF)!!: ::.!! and V- f: U- ; then 

since" F~ f: U 

Ax = tT- Bf=-x. f: l.l+BU - - -
14 ' 1 

Let l' be (A,B)-invariant ffild 

. be a basis for V.As A 7.J ~ 'l! 1- B U , ,there 

and Ui 6 U for , i € { .f J • - ))-1-] such that 

Art' := ~c: - BF-!!l ,t ~ {1,.- J~.J 
Defining Fo! 1./ ~ U by Po t't' == lji J l e [1). -,J-t-1 and 

letting F be any extension of the map Fo it> Z we obtain 

J (t: [I, --~] 

By the above lemma it's seen that there always existn a feec1oac1: F 
by which' an (A, B}-inv~rian t subspace 7J in the openloop characterisa-

-tion can be made A -invariant in closed loop characterisation;where 

.This fact will be later used in finding a 

solution of disturbance decoupling problem by state feedback. 

For frequency domain applications ,.the fre'quency domain 

characterisation of (A,B)-invarirult subspaces is needed. This charac­

terisation is given in terms of ('~ ,uY ) -representation as in [!fJ • 

. . 
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( Ho\,vever we have to mention that a polynomial characterisation of 

(A,13)-invariant subspaces making use of the Rosenbrock system matrix 

is disc~ssefr in detail in [6J). 

A subspace 7l c.x. is an (A,B)-invariant subspace 

if and. only if every Xo {;. V- has a (&)~)-representation 

satisfying G (S) t 1./ for all .s • 

, PRO OF (9) 

'" " <f=:: 
Le t 'lD t; 7! c X 

with strictly proper ur(~ t ZL 
for all S.· Since S G (S) f zr 

and, ~o = (sI - A) l (<»- B ~(5) 

and strictly proper l{5) Elf" 

A (($) -= 5 [(S)- '5-0 - /3y.J-(S) ~ 17 + 8 U. ,for a!l~. 
The {uT)cf/oT)s l (S) a~d W-CS) bei'''3 sIdell.:!. frO?~r7'f l S 1:°55

1 b/e 
-/;O!JO hac.k. -Co - -Il'm€. doma/T) .D:!. t'ntlerSe ~?Iaet!. -trQ'1s(orJ?? O'1J 

{or oe-I[C(S)] =3(i)) -:C-'[~{S)]=!!-(~)fr t~owt'..hQve 
~t-I:) C: if for- -t ~ O. T~e'7 t. (0+) == t~,:;o i-I (~ti) -ZoJ €- zr. 1·It'nee .for 
-i: = 0 t A:to = i (~f) - 8}:( (0 -1-) C if + l3 u... . --

ll==f?" Let V-E: X and A zr £: 7J:f BU ,then by T H M 1.5 there 

exist an F such that (A+BF)'lrS; z/ .For ~ot 1I choosing 

f} )-1.4 r I.I A 8 r ) J{S):::: (sI-A:"SF- ~t>and 0"(S)':: r"f(S) vie have !-o=\.S - - r-~{S; 

.:: (sI-A )t{~) - 813f(s) with t($) and !:!"(s) strictly proper because of . 

the property of (SI-A-BFJ-: " '. 

Vn1en we are interested in (A,E)-invariant subspaces 
/ 

contained in a subspace of% ,the property of maximality becomes 

verY 'important in expressing the solyability criteria of various 

problems. 
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@_ Maximal (A,B)-irivariant subspaces in ~'l. e 

DEFINITION 1.7 

Let (Js: Z ; 77 i8 an (;\.,:I3)-invariant subspace contained 

in Kere if and only if the follO'.'lii1e t'\vo 'condi tions hold: 

(t) A'll c.. V- -/-:8U 
eii) V- C Ker C • 

In gene!al one can talk about an (A,B)-invariant subspace , 

contained in any subspace of~ .However for application purposes 

C :b D P ,etc ) we are interested with the inclusion in /fer C. 
It can be shovm that itt s not necessary that KerC contains 

a unique (A,B)-invariant subspace,This leads us to talk about the 

maximal ( largest ) (A,B)-invariant subspace contained in /{ere ,in 

order to judge correctly if a problem has a solution or not.In [2.J 

a geometric construction of the maximal (A,B)-invariant subspace 

in Ker C is given as part of i theorem~ We will co~sider only the i te.ra­

tive construction formula and will not discuss the proof which is 

in [1 ,2J . 

THEOREM 1.8 

'Let 

(6) 

vlhere /-l= dtm.}fer C • Then ~ -::: 7J)U 1 is the maximal (A,B)-inva,.-

riant subspace contained in /(er C. D 

A_' 
In the recursj.ve relat:i.on (6) denotes the functional inverse of 

A matrix whenever .A is singular. The geometric construction of the 
, , 

maximal (A,B)-invariant f.Jubnpace contain8c1 in k'erCio a practical 

method v\;hen working on specific problems. To illustrate T H M 1.8 

the following flowchart will be considered together wj. th an example. 



Example 

....... , •• :. -., ' .• ~. 1"-

> ',' t=O' '" 
""to} U CO', ' 

, " V :: ner ,:' 

FLOWC.HART j..S • GEOMETRIC , 

1.8 . . 

Given 

0 i 0 0 0 0 
0 0 i 0 O· ·0 

A= 0 0 0 0 0 B= -\ 
o 0 0'0 1 0 
o 0 0 0 0 0 

(7 ) 

CON.STRUCTiON eF 1).,. 

0 
0 [, 0 0 0 ~J 0 c= 00 0 -\ , 
0 

we will construct the maximal (A,B)-invariant subspace contained 

in ker C . For this VIC begin by computing lie,.. C 

[.~.o 0 0 C> 
-::. 00010 

!ll 

] :; =[~=I~ 
~ 
~5 



Following the steps of the flov/ehart 1.8 • 

(':0 

• 
1.=1. 

17{D-?:' j(er C 

p~o-<, O· . 0 
,C,:' 0,0 0, 
, 0 F~ ~'.:.O 0 
, O·· ... O'~·~, 1 , 0 

o :" 0 , 0 1 
,":r-='."1 ,- ~,.:-. -, ' ,. 

, 0.' 0 
O ;: .rI ,', '. 1J~ , " 

, ! ~ :~:',\r: '~': .. ':' 
~ '1]{I) C "I-r(o) 
~ U 

': g.,;; b:~ ~ 
" .--iN, ,'", 
:-i t'.:O~;;', 0 ' 
0" 0 0, 
000 
o ,,1 0 

, o· 0 1" 
., '1 " 

( 8 ) 



1](2) = 11el
) n AI (B U + 1J() = sf, 

[chee.k' VOLt lJO) hu.t V(2) =#: 17(1) 

a lL Vel) 
J.) ,+ = .5 P. 

V(~) -= V(2.n) A-1 ( ~ .p.~ . . . 13 U + u ) =- sp. 

o 
o 
o = u". 
o 
1 

0: 
0' 

o 
0: 
1 ; 

() 

0 
~ 
() " 

0 0 
(j 0 
0 0 
f 0 

o 0 . '1 i 1 

o -6-

o 0 
o 0 

" 0 
( 

7 

( 9 ) 

,I 

• 
As seen from the above example~to obtain the maximal 

(A, B)-invariant subspace contained in j{erL will' be a more difficult 

'problem when systems 01' larger dimension are considered. 

To give a frequency domain chara6terisation af the 

maximal (A,B)-invariant subspace contained ink'erC ,the (G,w)-repre­

sentation will play the basic role. In (9J ,this formulation is given 

by a definition and a theorem which are combined here. 
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THEOREM 1.9 [9 J 
1J~ is the lareest (A,J3)-invariantsubspace contained 

in ){ er C if and only if V~ deno t e s the space o:f all po in t s for whi ch _ 

there exists a CG'~ )-representation satisfying' G ($) E kerC 
for all S. (i.e.- C l{S) :. 9) 

Proof : 
,i======P' 

For ~<> ~ 14 ,Vie have by T' H M 1.6 

~o = (.51- A)G(<;) - Bur(s) with E{5» , w(5)) 

strictly proper and ~ (s) . f V~ V 5 . Since U c I!er"C. 
"by definition l (e,) 6 Kef C . 

"" 4== 
Let ~o t V~ and show first that ~o C ke.re .. 

./ For this expand C Cs) an~ t,ff(s) as power series in 5 -1 J 

l (S) = ~ tJc s-k 
- /<::1 

..0 

0/" (s) :. ~ l;!!" .-;,-J::. 
k.=:1 

and note t,Aat~ (s) G KerC- V.s =f? § k. 6: Ker C V 1, t ( ~.2) - -- } - . 

Then .xo havinc; a C'"t,~ )-representation with 'G{S) f: !<'ere J 

~o =,,(sI-A)t(5) - BU7lS) 
, -.c -6 

or ~b _ (sI-A)2 t' 5-
k _ B'2. ~J<.s-f. 

~, _Ie t:.1 

and equating the constant terms 

~o = ~ 6 J<erC. 
f'J 

". 

are obtained. 



( 11 ) 

To complete the proof there remains only to show that 

V* is (A,B)-invariant ( or equivalently,to shoV'; that ~(5)ElJ-It­
for al1,5 because of T II M 1.6 ).Regarding G{:') as power series 

in 5-~ it's sufficient again to prooye that ~k- t lk- Vie:. t [1,Zr-.J 
For this we take the proper parts of both sides of the equation 

Sk'Xo = ~l' (sI - A) G f5) - sk Bti'{s) (7-) 
that is 

[ sk ~D] P,.opt,. = [(sI- A) ( sk-i I + .=;k-lz + --' + ~k 1- S-§k+l+'" )] prof€E" 

. - [B (;k-'0li +~-- +~J.;: 5-~k+,-I---)Jfrol('r (8) 

which is equivalent to 

0 : - A~ + lsI-A) (S-'; + -.. ) - BWie - B (s""kkrt +_.) (9) 
0k ~ 0kH . -

~Jhen if (Y(s)L d;notes the st±ifutly proper part of the rational 

vector V{-;,) ,by equation ( 9 ) 

(s I-A) { 5 J:-/~ (S) L - B (S /<.-1 W-{~))_ 

== l: + 5-' [- A~~l1-). 
o (to; 

-I3('!'k "'5~,.,.,.-J) = Ck-
- ---defining (sJ::-'l{"J))_ 6 7(-=;} and 

equation ( 10 )'- implies -

(.:>k~/~ (.$)).- ~ rC.r;,) 

'6k = (sI - A) 'I (5) B reS) (II) - -
Now 1{S)) r{~) are strictly proper functions ; furthermore 

1(S)-f J(e-;C since for §(s) G- !<ere) f/c is also an element of 

-KerC (/ork.f[1/~ ... J) .Then l~ has a C~,~)-representatidn_ 
with ,?(S) f- ~rC,and by definition l6 V;. 
The maxj,mality of n fS immediate si;c: it d'enotes all such 

points. • 

Using T H M 1.9 the following result which is more convenient. 

to use in most cases can easily be obtained. 

qOROLLARY 1.10 0J 

if and,only if there exists strictly proper 
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rational functions 6 (s) and ~{S} such that 

[SI~A -~ 1 [~:j = l~J 
Also the follovdng corollary can be obtained by eliro.i·natin~ 

from oquations ( 12 ). 

COROLLARY 1.11 [9J 

if alid only if there exists ~ (S) strictly proper 

such· that 
C (.5I- A r\~o = - R (s) W{s) 

where R(~) ~ ~ (~I-A)-'B is the transfer function matrix of 

the system ~. described by ( 1 ):, ( 2 ). • 
In fact COROLLARY 1.11 is very explanatory about tJ* 

and tells that for this fQ" (~) the output corresponding to the 

ini tial state!-o is zero. In other words, whatever be the inj. tial 

state chosen in ~V* , the trajectories followed by the state of the 

system remain at any instant in ll* ,and thus the corresponding 

output at any instant is zero. 

® - ,Stabilizabili ty subspaces : 

In most of the design problems stability considerations 

play an important ·role.A new type of subspace, stabilizabili ty sub-. 

spaces introduced in [1',8,9 J are very', useful to treat such prob-

I lems.There is a close relation 'between the stabilizabi~ity and the 

controllability subspaces.To emphasize this point later on,it is 

useful to explain with tv/O brief definitions what is a.;~ cbntollabili ty 

s~bsp9-ce. 

Consider again the system~ described by (1),(2) and its 

state space X. ;we. have the following definitions 

.. 
. .. 

. : 
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DEFINIT:tON 1.12 

Given the systemZ the controllable subspace lio eX 
of the pair (A,B) is 

71.0 = ]; + Afo -t ... -I- An-I.» 3 < A /13) (13) 

vvhere .j Cl Itn 8 Ll BU. . . -
In otherwords ](0 is the set of states which are reachable from 

. :Ie = 0 and' is a linear sUbspac~ of X. [1) . 

Now given the pair (A,B) ,consider all pairs (A+ BF,BG ) 

which can be obtained by using a state feedback , and connecting 

. again matrix G at the system input. (fig. 1.13 ).The controllable 

subspace of the new system pair (A +BF,BG) is called a controllabi­

lity subspace of the original pair (A,B).The following definition 

w ill make the concept clearer. 

G 
5~5tem ~ 

(A,B) 

.F 

.< 

i 

F I C;u RE •• 13: S!::J ste.M ( A+ SF) Bl':r) obtained ~I"'1Z 

DEFnr:tTION 1.13 llJ 

Let A: Z ~ T and B: U'" T be as described in system Z. 
A ~ubspace 1(c: X isa controllability subspace of the pair (A,B) 

i·f there exist maps F:X-'U and G: U~ U such that 

Note 

and 

hence 

(J4) • 
that " rr' 

'R ~ 1m 13G- + (A-tBF) T W).Bct T"'+ (At?>F-) 3 mBC-r 

(A+BF)ic = (AtBF)lm £& 1- - - -: + (A-tBf )r')Sw,£)C-r 5 
(A+8F)f{ c: t by the Cayley-Hamilton theorem.By LEW]"lA 1.: 
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the family of controllability subspaces o·f a fixed pair- (A,13) is a 

sub:Eamily of the family of (A,B)-invariant subspaces. 

We now our attention to stability and stabilizability and 

we consider stability from a general point of vievl. VIe denote by ~­

any subset of (. satisfying the condition C -() !l( f:. ¢ . This condi ti~n 
is brought in/recalling the property that no stable System havi~g only 

complex conjugate poles in l:- exists.As understood a: denotes our 

It stability regibn" in the general sense and we say that )l is a 

) C C - ,v "here /:""(.) means stability man ( matrix) if G(A - IV U 

" spectrum of A ".Again we vvill say that a rational function is stable . + 
if it has no poles outrddo 0f c; ([ c([;~.s the sot ydth thn PJ_>c~::'<I·t::'8S 

! d:, -f) tL +- ¢ and t[ - u ([ -I- = C· " 
/. 

DEFINITION - 1.14· [lJ 

Given the system 2: ,we say that the pair (A,B) is stabili-

zable if there exists a map F: X ~ U such that 

o(A+5F) c ([.-

Hence" stabilizing" the pair (A,B) is equivalent to change the un­

stable map A to a stable map ~ by simply using a state feedback F . 
In [lJ ,the close relationship between the existence of F and con-, 

trollabili ty is eiven. Let the minimal polynomial of A. be 0«$) and factor 

i~~ as d.. (5) -= oC(S) o(+(S) where zeroes of 0«55 e ([ - and zeroes of 

0(+ (s) t: {T . The subspace lie r d..+( A) of.x. is called the subspace 

of " unstable modes "of /d .As shown. . in [lJ ,the pair (A, B) is 

stabilizable if ,and only if the " unstable modes "of A pre control­

lable.The proof of this conclusion will not be ~iscussed but the follo-

wing theorem will be stated for further refer'ence. 
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THEOREM 1.15 

Given the systemZ ,the pair (A,B) is stabilizable if and 

only if Zb ~ KercX+(A) c: ~ A j.23> II 

. F 6(At8F) c. ([-'Oonso quontly· thoro· 8:::ist a f'oerlbac:k . ~ such that 

if and only if the subspace of " unstable modes " of A is included 

in the contollable subspace of the .. _ pair (A,B), [11 . Recalling a pro­

perty of controllability for linear systems,we can state the follo­

wing theorem. 

THEOREM 1.16 

(A, B) is stabilizable if and only if for every complex setL-

we have 

rank [.sI-A ;. BJ = n ,where n. is the system 

dimension. • 
Vie notice that rank [sl-A ~ BJ is alwayn equal to "-n." 

except at the eigenvalue of A . Then when .... ve restrict -the controlla-

bili-ty to the unstable modes the eigenvalues are also restricted 
- . ,("'+ 

". ~o those wliich lie' inu....Another useful conclusion is that a comp-

letely controllable system pair is always stabilizable. 

We are now ready to give the definition of stabilizability 

subspace. 

DEFINITION 1 .17 [7 J 

11 ~ X is called a stabilizabili ty subspace if there 

exists F: 'X~U such that (A+BF)1J.c V-and 6({A-+BF)iv-) C([~ II 

I11=-the above definition 6(lAtBFJlv-) means the " spe'Ctrum of the 

map (A + BF) restricted to the subspace V ~ To be clearer, consider 

the ~ap 1 : X -v X . Wi th a basis r ZI, :¥2, •• • Z,,] for X ,let A hJC,.., 
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be an n-xn matrix representing if. with respect to this basis. Then let 

U C X. be an.j-invariant subspace 'OfX_,SUCh that '1-U c. V.lf 

r Vi,.·- .1T,-] is a basis for 17 ,completing this basis to a basis. 

for X Vie obtain r ~} -.. ,·'lFr) Xr+1J ..• X,»]. In th~s new basis the map;f;- is 

characterised by the matri~ 

To" follow the idea int-roduiced by DElt' 1.17, consIlder a stabi­

lizabili ty subspace 11 ~ x. ; tiz" t- V- ,using a sui table feedback F 
the response . 

C
· t(A+BF) e Xo ___ 0 

In other words we don't require that 

C e;t(A+eF) ~ 0 

for 

for f -pot) ) 

but obtain a decay to zero only for some of the state vectors that we 

are interested in. This is equivalent to say that we are interested in 

stabilizing a part. of the state space X ,if it's not possible to 

stabilize the whole state space. This property will be later used to 

stabilize the output corresponding to a set of disturbance inputs by 

using state feedback. 

By defi ni tion a stabilizabili ty subspace is (A, B) :-invariant 

according to LENiMA 1.5. If 17 is ~y (A,B)~invariant subspace with 

F:X ~ U satisfying" (A+ I.:> F)V-C Uvve can construct a syste~ Z F,Cr 

such that 

x-= (A+BF)X + B&ur 

where 
r. 1'." '11 .I".~ __ f7) I. 
l::;t! w-+ u. with U/ It\. for some t. . This is so since 

th~~'~'~~ist~G :U)-+ U such that the time domain respcmse to the. 

input y. f:- U'6U (":to)tl!ror all t'fO if and only if Z~'ttr andY­

is of the form J:!.= Fx r trw- for some to"." [0,00) -P W) r. =lJ . 
So taking any ti such that B GCU= ,Q3 u) n V- we can obtain a 
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LEMMA 1.18 

Let Vc X 'be CA,B)-invariant and let (F;&}t ~zCV) then V-
is a stabilizabili ty subspace i~ and only if (A+BF~ Bft) hr is stabilizabl 

The proof is in l7J 
The following lemma shows the existence conditions of such 

(F) Ct) pairs. 

LEIiITJfA 1.18 A .[7J 
There exists (F/ry f. ~Z" CWSUCh that u( tl"reF) £: (( -

if and only if the system ~ is stabilizable and 11 is a stabilizability 

subspace. • 
Hence the system L:F, Gt- must be stabilizable, in other vvords the 

unstable modes of' L; f)Gr must be included' in the controllable subspace of4,l 

Z F,Gr • In conclusion, we use· a linear state feedback F and a gain 

.• matrix (£ to obtain a new system ·which restricted to a subspace 1J has 

~ontrollable unstable modes. Since .( A+BF /-It"/ I", mQ.) /<:<A+BF-/r...,(B&)/='R. 
. for· 1) to be a stabilizabili ty subspace there must ,exist· a controllabi-

lity subspace 1("LOf CA,B) such that it contains the unstable r.lOdesa.((A+B~ 
where F matrix is not necessarily unique and induced by the condition_ 
(A+BF)l)C U.- . 

'., To gim· the frequency domain characterisation of a stabiliza­

bili ty 'subspace we again UGe the (&'~) -:-representation. 
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V£:. X is a stabi.lj.zabili ty subspace if and only if every Z e zj 

has a (~)~)-reprcscl~'tation such that Z'{'!»fVand' f(5)~ y;r("~/ are stable. II 

As is the C8.f:tG of (A,}3) -invariant subspaces, the maximal stabilizabili ty 

subspace contained in kerC is important to characterize the solutions 

of various control prohlems. 

DBFINITION 1.20 A [7, 9J 

Gi ven the system Z and the subset (( -of ([ 72- denote s the' 

set of points for which there exists a stable (~)~)-representation sati8-

fying ~(S) 6 kerC. II 

THEOREM 1.20 

v; is the maximal stabilizabili ty subspace contaj.ned in kerC. _ 

REJ:IIAPJ( 1.20 B 

The DEF 1.20 A and THAll. 20 

bilizability subspace contained in 

changing I{er C to J(. 

COROLLARY 1.21 

can be stated for the maximal sta­

a space Xc X, in general, by simply 

The system Z; is stabilizaple if an.d only if U-(X) =X :v/here 

~- (X) deno'tes the maximal stabilizabili ty subspace contained i11;(. II 

We believe that this simple introduction to stabilizability sub­

spaces will .be sufficient to follow the analysis of ~he decoupling prob­

lems v'Thich takes stability criteria in consideration, and this completes 

the first chapter on mathematical preliminairies.In the next cllapter we 

will discuss in detail control problems in which the concept8 stated here 
~ill playa basic role~ 

'.,: 
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II DISrrUHBANCE DECOUPLING C, STABILIZATION 

The aim of this chapter is to give a detailed presentation 

of varia.us formulations concerning the disturba.nce decoupling and -

stabilization problems.We have to point out that the problems we are 

going to analyze have recently been ... introduced with the help ~f a 

new approach,the geometric approach to the structural synthesis of 

linear time-invariant mul tivarj.able systems.For each problem being 

analyzed the goal is to formulate the solvability criteria.In each 

case,the formulation will be basicly geometric,then its frequency 

domain translation will be given using the (6)~ )-representation 

and the work done in [6,7,8,9J .Most of the time we VI ill also try 
-

. to give a matrix polyJ.l0mial formulation for some comparaison pur-

" 

poses. 

CD Disturbance Decounling Problem ( DDP ): 

In system simulation and mathematical modelling,the unvJan-

ted effects imposed on the system are knovm as disturbance parnme-

. " ters. In very simple terms, disturbance ·decoupling 'is t.o decouple the 

effect of disturbances acting at the syst.e.m' f? input parts I' from the 

system output,using state feedback.Examination.of this problem 

involves essentially the fundamental eeometric concept of (A,D)-inva-

riant subspaces. 

Consider the system ~ 
i (~) ::: A Z C:i) + B u {-t) + E 4 (I) - - -
J {-O = C ':!: (-l) . 

(j?) 
((6) 

for t~o ;.where again ~(/)is the state vector, g(-I) is the input 

vector , fl (f) represents the disturbance vector and !:/It-) the output 

. vector. 
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PR013Lr~M ( DDP ) : 

Pina. a state feedback F: X -4U such that ~ (0) has no __ _ 

influence Oll! the output ~ (0) .Note that we denote again the state 

space by:r t the input space by Z{ ,the output space by;; anrl the 

where 9{o)takes its v,alues by Q'. 
space 

A definition that takes place in (lJ states that II the 

. system Z is said to be d~sturbance decoupled if and only if the 

forced response jt (t . rIA 
. :J (-/;) =- C e - E 9{r) aT (11-) 

o 

due to the disturbance is zero fo~~ all lJ (a) t Q and for all t~o} - ~ 

where Q is a function class. Geometricly t the system L: is distur-....., 

bance decoupled if and only if 
;" . <A 1 {; > c: kerC ) where. C. ~ T mE ,[1 J Z]. 

Now t consider the case vihere the system£ is not orlgi-

nally disturbance decoupled and v"here the linear state feedback law 

'F:X-"'U is being used to change the mapA: ;L-#'X to A#A;.BF: 
'Z rr:r:r 'X. The SO obtained system is disturbance decoupled if and 

only if < A-+BFJ ~ > c: ker C" 

THEOREM 2.1 

Given system % described by (15») (16) t DDP is sol vahle 

if ,and only if £,c V* ;where 7.J; is the maximal (A,B)-invariant 

subspace c~ntained in kerC. 

PROOF " ,"" ., 
==:::t7 

Given the system 'Z ,DDP is sol vable l implie s that 

V~<AtBF-/cICJ!uC.Sirice t C 7J' 
11 C: Tj~ hence -t C V; 0 

, ?J is (A,B)-invariant and·1Jc ~rC ; 

, . 
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Given -c: C v;. ,si~ce V¥- is (A,B)-invariant, by LELIMA 1.5 

there e~ists a state fe~dbaclc F such that 14 is (A+BF) -invariant, 

i,o. (A+BF)lJ* c 14 .Then sinco ~ c 1l;., 
< A + /3 F / t.) C <' At-BF 11f~ / g. 1k. G Ke,- C J 

hence <A+BF I Eo '/ £ Ke.rL. • 

So far the analysis of DDP has been abstract. Hovvever using 

the algorithm of THM 1.8 we can always compute 74. al1.d check if DDP 

is solvable or not,remembering that IE is a given matrix.The fol-

lowing block diagram gives a clear picture of the disturbance decoup-

ling. 

.:';"'''''. " .. j ----~--1 ;",<' ........ . 

liF}!1 "~,,,~~X' ~ -

FI6-URE 2.i! DDP 

Once it is knOl'',In hm'! to characterize 14-. in frequency domain 

it's easy to obtain the frequency dOlnain formulation of DpP.As assu-

med previously,the class of function Q ,where ,is large 

enough not to give them a special configuration,and the only restric­

. tion is assumed to be on the structure of i matrix. Thus it's wanted 

. in geneJ;al the disturbance to output transfe:t function matrix be L: .. _­

nullified' by using state feedbac:::. The geometric condition being 

-&. ~f tt. {j Im~ ~ 14 we use LE:MMA 1.10 to obtain to frequency 

domain formulation of DDP. 

THEORRM 2.2 [9J 

DDP is solvable if and only if there exists str,ictly proper 

matrices X (~) and U (S) such that 

. , eI 
c A - ~]f:~:J = [!] (18) 
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( 2U') 

PROOli' 

The proof is straight forward.By applying LELmTA 1.10 to each 

cplumn of 

proof. 

E ,we obtain that (18) implies each colur.m of E C!Jo for 

be an element of ~,and we use Till'iI 2.1 to complete the 

• 
At this point it is useful to consider another problem kno\,ffi 

, as the exact model matching problem DJ .Our purpose is to show 

that the existence of a solution for DDP is equivalent to the 
., 

existence of~sQlution for the' corresponding EMI'/IP. 

Exact model matching problem is motivated in eeneral by the 

notion of tI model following control It, To be more explici te V18 may 

think of a model system as a system having all desirable qualitins. 

The large scale realisation of it may introduce unwanted side-effect; 

The compensation scheme is then used to modify the realised system 

such that it behaves just like its model • 

. PROBLEM (Er'1I1.1P).:, 

Given a system vrith the (pxrn) strictly proper,rational 

tra.nsfer matrix. G-.(5) a.nd a model S~r[item with the Cp)(9) strictly 

proper, rational transfer matrix G.2 (?) ,does there exist a compensa­

tion,scheme which employs linear state variable feedback in combi-

nation with input dynamics such that the transfer matrix of the gi­

ven systeli1 is equal to ,G~J~) ancl when ? 

THEOREM 2.3 

Ej\'IT!1P is solvable if and only if there exists a stric~tTy 

proper' rational . (rn~ 9) matrix Q (s) such that 

r;.,(s) Q(5) = Gt.z(S) . 
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NOV" to show first the one to one correspondance between m,'il,lP and 

DDP we make the following definitions. Given the observable system 

( AI [~, EJ, c.) . : 

(:20) . 

8 In fact (19) characterize the transfer function of the "given system" 

and (20) the transfer function of the model sy~tem,and we want to 

exactly match the input/output transfer matrix Gll~)to the disturbance! 

output transfer matrix G2 lJ).Conversely when data for EIVIMP is given as 

G,(s) and G.2.(S) , the corresponding data for DDP is constructed as obser­

vable realisations ( A, J), <!) and (A, E', ~ 'J combined as [A }LB. E) J C ) ~ 
By these definitions we have to 

r--------,-----,-. .,-.. -.... ---:,.,-, ---0--..... -.---. '. ",-".-,-,-,-~------,---,-_ 

{FO~DL(~[B~E~~) J ... ~ •••.. ~' f ~oR 

THEOREM 2.4 [ 6J 

EMMP is solvable if and only if the corresponding DDP is solvablE 

.. 
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PROOF 
-I 

For syst<jlnl' Z defined by (15), (16) let Gr\(~) g C C~I -AJ B 
, 1 

and Gt2 (S) g C (sI-Af E • Then DDP issol vable if and only if THM.2.2 

holds.By eliminating xeS) in the equations of (18) vIe have 

C. (sI-A)-1 E = _, C (SI-Ar'SUCS) 

Which implies . Gt:l(S) =- Gt 1C.s)L1 C~).,where lI(S) is srticly proper 

by THMi2.2. • 
The relation between DDP and EMMP is attractive because it gives 

a se.cond framework to treat the EI!ilVIP. In order to solve EItJIMP we have 

ahvays the possibility to construct the data (A)[B.E],C.) for the 

corresponding DDP. Then by solving DDP vIe will have the realisation of 

the compensation transfer matrix Q (5)). 

® Modified Disturbru1ce Decounling Problem (MDDP) 

, 
--- ----We-·-c-6nsider again the system '2: , but this ti~e we ·assume that the 

disturbance ,U)is also directly available for measurement such that a 

feedbaclcfrom the disturbance input is possible. 

PROBLEM (MDDP): 

Given the system 'Z determine constant matricesp and D such 

that when the linear state feedback law y..(i)::. F~(i) + D3U-J 

is used the output doesnot depend on qtfJ J (.e. C (sI-A-I3I=-)-'(BDtE)=O. 

The solvability of MDDP is formulated in a similar way to the 

one of DDP. 

THEOREM 2.5 

MDDP is solvable if and OnlY. i~ e. S Ui + P (.21 ) 

wh~re' 1.4 ~s the maximal (A,B)-invariant subspace contained in /(e£ .. 

',.: 
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Given eE~+13 since G~Imf" and. :j~.rYY\.B ,for any 

basis matrix V "/ ~ there exists maps Df and G such that 

E =. V&+ BOlo 
which implies that 

E .... B Do1 = \j Gr ,her"\~,e I VY\ r E - BDi] C ll* C Ker-C -

Then by LEM1\iA 1.5 there 'exists F! Z -tr U such th8;t 

(A + B 1=-) .Lm f E=- B D~} c: lJ*. H~l'\ce s'~f.f.t·c.(~",~ hclds b..j 

C..(.sl-A- BFt'CE- BD.)=O and h~+aki':J D=-D..1. 
'J/ 1/ 

===J:::> 
Let MDDP be solvable, then there exist F and D such that 

by Y. = F~+D~ 
definition of 

the system is disturbance decoupled.Then by the 

. " 

disturbance decoupling 

<A+BF lIm (r;+BD» c. K'erC 

and' Irn (E +BD) G {)* . 

Now since IYY\ CE +B D) ~ (b+ BD) Q 

and since BDQ~Ime:, 

(22Y implies that E 4? + BDlQ 

completing the proof~ 

(22) 

=E~ + BDQ 

Similar to the DDP case, we can talk about the relation betvfeen 

MDDP and the modified exact model matching problem (rdEIvThiP). The TlIEr,,'u\'fP 

is defined as follows: 

;,t. -
" .. ' 

. F\&URE- 2.5: MDOP 
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PHOBLrI:1 ( MEI:IT'"P ) : 

Given the strictly proper transfer matrices G((.s)and~2(5) find 

a coopensation scheme that employs a transfer matrix Q(S) proper 

r8. t:i.ollal. 
i 

REMARI<: : 

III fact in [3J VJolovich defines the EJlIMP, in the most general case 

by putting the condition of the existence of a proper rational Q(~). 

However in [61 E.EI:lre and I',~Lj • Hautus have spli tted this general 

formulation into titre parts: i) a strictly proper Q(s) (Ei'.IMP) and 

ii} a proper Q(~) (MET/IMP) • 

THEOREI'I1 2.6 (61 

MDDP is sol vCJ.ble if and only if the corresponding MEMMP has a 

solution. 
. • 

The one to one corresponding and the proof is completely analoGous to -

the one of THLT 2.4 and avaible in [61 • 

The problems of disturbance decoupling and modified disturbance 

decoupling intend only to reduce the effect of disturbance at the 

output,but they don't consider how the system dynamics are changed by 

the used feedback. Stability is the most 'important property which 

should be considered. \'.1hen investigating the effect of feedback on the 

system dynamics .Next topics vIi11 take this into considerations. 

Q)- Stable Distur1?_~l.~_~_p.f'-:..c.oupling Problem 

As i~plied by tho title of the section the probl~n thnt we are 

going to analyze is the sta1)le version of DDP. For this, we again consi­

der the system ~ described by the equations (15), (16). 



Find (if possible) astatc" feodback Imvu.=F.x.such that the - - , 

effect of the disturbance at the output is anihilated and the closed 

loop system vr ith (A+BF) is stable, i.e find F:'X.-U such that 

<A+BF\ ~> Co t(erC Qf)d 6(A+BF) C ([-~ 

In [lJ we sen the definition of a family of (A,B)-invariant 

subspaces as follows: 

lJ ~ [1T: 3 F : X ---i>" U .3 ( A + B F) lJ £= LI} 17 G ~r C a"J 
- 6' (A+BF)jll) C ([,-} (2.3) 

One can immediatly noticc that l.lf V is a " stabilizabili ty subspace " 

contained in f(e.rC ; so the maximal element of 1! is v: ,which v·ms defined 

in DEF 1.17 combined with DE:I], 1.20 A ,as the maximal stabiliznbility 

\ subspace cont~5ned in k'e(" C. 

The fOl~ulation of the solvability o£ SDDP is given by the 

following theorem. 

THEORBM 2.7 

Given ~ ,suppose (A,S) is controllable.Then SDDP is solvable 

if~ and only if C; c: 1.)'*-. • 
Nov1,notice that the formulation of the Tm.i~2. 7 brings the 

hypothesis of (A,S) to be controllable,which implies that (A,S) is 

alwayg;;stabilizable according to TID'.'I 1.16.However,as pointed out in 

the sequel of the samework in [lJ ,this hypothesis is too strong, 

since by Lm.iMA 1.18A it is only necessary that, (A, B) is stabilizable. 

Then the following formulation bring less restriction. 

THEOREM 2.8 [1J 

Given ~ ,SDDP is solvable if and only if (A,B) is stabilizable 

and .& ~ ~-. • 



~ 

( 27 ) 

The difference betv/een the formulations of THIT 2.7 and TnT",r 2.8 

is that in the fJrst one it is w~ted that Z be completely contr~l= 

lable ;but in the second, only the unstable modes of '2 are required to 

be cont~ollable.(Since (A,S) is stabilizable i.f+ Xb(A)C <AjJ,» J. 

Vle-.:vdll turn our attention now, to the frequency domain charac-

terisation of SDDP.Again this will be a direct translation froD! the 

. geometric formulation. First consider the following LEI'TI~1A characterizing 

the stabilizability of the pair (A,S) in frequency domain. 

LEMMA __ 2 .. ~9 .. ~· .. (7J 

Given ~ ,(A,E) is stabilizable if and only if there exists 
<"V .... 

strictly proper stable matrices X (s)} u (s) 
'" 'V 

(sI,-A) XeS) - B U [S) = 1 

Proof 

such that 

(24. ) 

By COROLLARY 1.21 (A,S) is stabilizable if and only if ~-=~. 

Then 'applying THM 1.19 to X ,with a basis f ~').'. J~"'] for X where §-i 

l t fi, ... ,n] are columns of I h . matrix we obtain (24) with X(~) and U (S) 

strictly pr6per stable matrices. • 

=Tl=IE=O=R=LE=M~-,-=2;:..:;.-=1..;;..O l7, 9J 
Given ~ ,SDDP is solvable if and only if 1i) there exists 

, -v . ' \ 

~(5)and U(S)strictly proper stabIle such that 

0r-A) X(s)- B UC~) = T 

, and ,(ii) there exists X{s) and U(S) strictly proper stable such that 

rsI-A -B][X(S)] -= fE] 
Leo U(s) Lo. .. 

Until now we have analyzed three problems DDP,LIDDP and SDDP. 

We have to mention that this three prablems are generically unsolvable 

since the localisation of the disturbances in to the wanted subspace 14 

, . 
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ofJ[ is very difficult.It is also rather difficult to have a suffi­

ciently large (A, D) -invarie.ut subspace in k'e.rC. We also have to notice 

that the constraints brought in the stable version of DDP are stron­

ger.The modified problem brings the difficulty of measuring the dis­

turbance which is normally not possible ~n most of the physical sys­

tems.However we think again that all of these three problems are 

~. __ ._very useful when acl'ever modelling Js of consideration, and they 

lead to more efficient design techniques such as partial decoupling 

of disturba.nces. 

In the next section we 'ltdll consider more 'realistic problems which 

are generically solvable. 

QD- Output Stabilisation with Respect to Disturbance (OSDP) 

Our purpose noY,.. is to obtain a stable response depending on 

the clisturbance.More clearly the problem is: 

PROBLEriT (OSDP) : 

Given L: determine the linear state feedback law M..= Fz 

such that the disturbance/output transfer matrix 

C (sI-A- BFr'E is stable. 

We face two problems together,the problem of finding afeedbacl 

( .in other words a suitable (A,l1)-invariant subspace) and the problem 

of making the output to disturbances stable using this feedback • 
. ~ X Recalling that in the geometric app~oach we think of as the set'of 
"" 

all possible initial states;the response corresponding to initial 

state Xo is stable if ~o has a (~,'!! )-represontation wi th C~(~)stable. 

lience ~() gives a stable response when ~(S) is stable or when the < •. 

unstable poles ofGLe;) are in J(e,..( and decoupled at the 'output. 
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DEIPTHITIOl'r 2.11 

Given Z ,.e::fa.enotes the subspace of points ~ t X for which 

thoro m::ints 0. (~') tg ) -representa.tion with C1(s)Stable; • 

The above explications make it clear that in extreme cases 

such points in X. may be chosen from a stabilizabili ty subspace ofZ 

or from V'i . In een8ral ~(> f: ~- can al'ways be written as a sum 

flo' = Xo, ..,.. ZOZ, - - -
'where ~I E VJJ- and ~o2 e ~-(;t); V; (X) being the max~r'lal stabilizabi­

Ii ty subspace contained in.x and. 7J~ beine; the maximal (A, B) -invariant 

subspace contained in }(ere as stated previously. The follovJing theorem 

characte~izes J- in terms of 7J; (X) and 7k.. 

~Tl=rE~~O~R=EI~~ __ ~~~.~1~2 '~l 
~-: Vl;I 1- V; (X) . II 

The complete proof is in 7 • In the sequel vie alsa need::·-

THJ~OREM" 2.13 

There exi'sts a feedback f: X -p U such that (A+BF)l& c 14 
and C (.sI-A-BF)-ko is stable for all 'Zo f: ~~ • 

Combining the re sul t s of THl':l 2.12 , THI'II 2.13 and the DE]? 2.11 

we ",":.,:; state the solvability of OSDP as follows: 

THEOREM 2.14. [8,9J 

Given Z ,OSDP is solvable if and only if~-2. G. • 
The above theorem gives tho geometric formulation.Vlheri tho DEF 2.11 is 

. . 
applied to each colur,ill of e VTe obtain the frequency \ior:1.ain forr:mla­

tioh. 
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T}lBOHEL1 2.15 

Given L OSDP is solvaple if and only if there exists strictI;:, 

proper ma.trices X(~)and U (5) such that 

(51-A) X (:,) - B U(~) = t 
and C 'f.. (s) is stable. II 

Compared with the' decoupling problems previously an.alyzed , 

OSDP differs by'being gonerically solvable.This is since controllabi­

lity is a generic property.Then according to COROLLARY 1.21, J~X 
'is generically satisfied, v.Thich inunediately satisfies the condition 

&. C ~- trivially. 

(5);. Output Stabilization Problem (OSp): 

Given the system:Z ,we pose the problem as follows: 

Stabilize the output ~ by 1ileanS of a state feedback F ; 

more precisely find the conditions for the existence of a state 

feedback matrix f which can be calcUlated in terms of the. system 
. A 0. ~. C et(A+BF) " 

parameters ( ,0, \,i) and such that the response tends 

to 'zero, as t -+ dJ 

An alternate interpretatton of the problem statement is to 

find such a feed.back matrix .F, that the characteristic exponents 

appearing in the response are in the stable subset ([ - of ([ • The 

response flUlction, "V{liich is written for arbitrary int tial state, make 

us un'derstand that· OSP is a generalisatj.on of OSDP, in which initial 
, 

states are bounded by the subspace the geometric 

formulation is given as follows: 
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__ Given 2 ,031' is solvable if and only if 
XI, (A) C (A Ii» + 1J~ ) wher~ Xb (A) 6 J(ero{+(A). 

Hence it's "vanted that the Ut"1stable moc1es- of A be either control­

lable or Ul1Qbserv8.ble. The proof given in [lJ is long and te'diousas 

the formulation is based again on the controllability subspaces. 

However,using the stabilizability subspace the formulation becomes 

e~sier. In [9] the follovIing procedure is used: 

The largest stabilizabili ty subspace X can be \'vri tten as 

V*- (X)='<A}j/+ X(J (A) ,where 2:3 (A) ~ j(e.rol.- (A). 

SO 11; (X.) is the space of all initial conditions for which the 

response can be made stable by means of a sui table fe:3dback matrix F 
OT is already stable. The if the condition of THM 2.16- is satisfied , 
we have by 

7J*-(X)::: <A)E) + ~J (A) a~d Xb (A) ~ <A/j3>+7h. 
~--lf~ +lJ¥-(x) = <A/}3>+lf~+XJ(A)=Xh(A)+~(~) 

and since 1!J (A) -fXy(A);;;: X J Vie have 

xf; X appearing as the condition. We obtained the 

formulation by direct translation,however using the information 

brought by aSDP we notice that if the initial states are not bounded 

by £ c X ,but assumed:' totally arbitrary, we obtain the coneli tion 

'for the· sol vabili ty of asp as ~; X ; since aSDp is transformed to asp. 

THEOREM 2.17 

OSP is solvable if and only if' II 

Now, since the colunms of 1., matrix span the stat~" :s~ace X ,the 

follovIi·ng gives the- frequency domainformulatio·n. 
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THEOREM 2.18 

OSP is solvable if and only if there exists stricly proper 

matrices PCs) and QCs) such that 

(.sI- A) P(.s) - 5Q(5) =-1 

and C pes) is stable. • 

The stabilization of output as posed by OSf guarantees only 

the output ~ (0) '.is well,. behaved, but it brings no restriction on the 

. beh~viour of system map on the unobservable subspace, of X ; and it's a 

possibility this map be unstable. 

~ Output Null Control 

Ever it .sounds as a completely new problem,the output null 

controllabili ty has been derived from applic'ations widely used in control 

theory,especially on discrete-time systems. 

, PROBLEM ('ONC'): 

Gi ven !to E.2 find a condi tinn for the existence of a control 

fUnction ll(·) such that for soluti\m of 2: wi th ~o as the initial ,... 

state there exists T/O such that ~ U)=CJ (Vf /,T). 

- We first notice that the conditions is weaker than the one 

equired by output controllability,in which any arbitrary state is 

eachable from !to = a .However in ONC we have more freedom on choosing 

such that it only brings the response of a ei ven state.xo to 

ero at the end of some T)O. 

. '. ~ 
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THEORET:! 2.19 

is output null controllable if and only if 

foo e tp ~ < A J ~> + ~ . ., 
We think that the follovling exlanation will be sufficient. Since 

vIe understnnd by ONe to bring the initial state response to zero after 

~olne -t /T where T»O, we have two choices: ei ther we choose the ini tial 

state in the controllable subspa.ce of the system 2: or in the largest 

(A,B)-invor:i.e..nt subspace containe·d in KerC ,to clecouple of completely 

at the output even if :XO is not controllable. 

LmTHA_E.20 [9] 

ljJ is an A-invariant subspace of X. 

PROOF 

Since by defin:i.tion yJLJ~ +<AJj,/ ) vIe see that <Alfl) 
is A-invariant and. <A/;B > :J j implies. 

A'P -= AU~ +A<AJj3) c 7h.+fo+<A/fi> =yJ 
as A 11* c. u~ + ~ . 

The following lemma is used in the characterisation of tho frequency 

domain formulation. 

=LE;;;;..;;.i l'.;;;.;.;..~/[~A_~2 •. 21 ( 91 

vectors 

PROOF: i 
"4==' 

Zb (;- < Ali» 
and 0! (S) 

if and only if there exists pol;Y"110mial 

such that 

Let '?(~) U)'{}) be polynomial vectors such that 
u /-

ZO =0I-A)6(~) - [3~(.s)) 
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vvhich can be Vlri tten explici tely as 

~o ::~I -A) [ "t.., .sf)t " , +Go J - B[l2"m jlTJ.,. ;: •• +. wo ] , 
- -

NoV! lo being a constant vector, obviously m= 01,4 and V/O helve by. 

equatine the coefficionts 

~,.., ::. B~I)-H 
§n-, -/-\~..., =- B ~ 1\ 

• \t , 
• I 

10- A"li = BP1 
- A ~ = Bw-t>+X-o 

Sol vine; for ~o ;z.,b;:r -succe ssi ve subti tutions 

~ = - B~o - A~o :: - B~o- A\ _ A e~ = _ .. 
finally we obtain -

. 2. p-r 
'X~ -= -E>~o - AB~, - A e,~ - ... _ A B (W~_I -t.,. t- Wt)'H) 

- where 'F':: d,'1'V} (A) • Since 

. <. Pc-J j ~ A ~ + A j, + - . , TAp-I fi 
~o f:-

II 11-

=P Let 

< A I~>·M B~D ~ fi) A B~'6A:B) 
~f <A/i» ,then we can vlri te 

~o:::' B:'f'" A 8~2 1- , •• .,. Ap-I B~p (,.25) 

pefine - W'o A f.. and "01 !jfl'ler C4./ - W':t.'-' ~ ~~. (vr i. f [ "J . ~ ., ?-i] 
then also defining 

~ p-.2 ~ £> ~p_. 
Il. . 

~ p-~ = A!p_2'" B~ P-2. 
f 

-
(25) can be Vlritten as 

!to = (~I-A) Lto t-- _. EP-2 sp-ZJ - P:> [La., -r--' T~P_i sp-'J, 
completing the proof. 

Combining this result with T1H/i 2.19 vre obtain: 

.:::,TI::;:;IE:::.;;' O:::.:.R:.:::;E~M __ ~2::...:.:..::::2..::.2 [9] 

%0 f yJ if and only if there exists rational vectors 'l (S) 

• 

C l{S) is a polynomial. • 

.. 
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PROOF : 
" ==t::P 

Let 'loG If A <AI ~>+1J* 
) 

then :t.ocan be 

writeh as ;to = Zo, +Z0 2 - -
,v/here ~o, t~ ) ~.o2 C (A/i3» 

which implies that 

, ~.o/ = (sI-A)G/S) - BurdS) 

and C ~4 (5)':=0 -

wi th ~ W~ strictly proper 
~") -

Hence 

thEm 

~02::: C~I-A) §/~) - 1:> ~~ (S). wi th ~2.} ~2. 
~o::: (S.T-,A)[G4(S) +lzC.sJ'] - BL~I(S)7-Wz.CS)J 
G(S)~'-g, (~)+ l. -(s) - is rational and 
- - z. D 

polynomial. 

,C~l'))= ~ + Ctz. CS) - C'tl. LS) is polynomial 

and 0?CS) = lO'f(') +to:z..lS) 

Xl.> :::: (ST-A)"G (S) -B':!!(s? 

r~tional and C t ($) polynomial. 

''<f=. I" 

is rational,and 

wi th l (OS) / w-{S) 

Let ~o -.::: LsI-A) &,t:S) - By!(s) with 6{~)(~{s)rational 

and e.G O»pol~omial.Defining 

~/S) ~ (~l.S))_ we have G L~) = l. (~) -t l1.(S) , 

where ~2. (~) polynomial. And since C to) is pdlynomfal and- C is a 

constant matrix, obviously C ~4 (S) .;: 0 .Also defining iU;lSJ ~ (tgc»)_ 

"ve~:have W(S)= W"lS) + l:!!"2{S) vfith [,02.lS) polynomial. 

Then Xo = ~I-A)l~ (S) - B W; LS) + 6?1-A-) l2 (s) - B ~2 CS) = ;{o'! +Zo'2.. 

where XOI ~ (51-A) It is) "': B£g.( l,» E:. ~; -

!o2 g l:>I-A)l2.(~) - 6£,0'2.(s) c < AI j> . It 

,----00 .;..ConcludJiLngRemarJ;:s 

We want to end this chapter with the following table sUl1nnarising 

the conditions corresponding to the solvability of the problems that 

have be0n considered. 



Given ~: '1:= AE + B~ +Eq 
~=. C; --.:t--------~----------r__----------------_, 

Problem 4=~ Geometric cond5tio .L -'" Frequency domain condi tiol1 

II 0 P Is ,5OLVASLE .:3 xes), U (5) .5TRICTL~ PRoPE.~ 
.such iho..t. .. el t ~J[~~~}[;J 

::J Q(~) PRoPER. 

such ihQ i: 
R.(s) Q(:;) = R2. lS) 

where.{~)~ C (!>I-Ar'B 
~~ 6)~ C (sI -At' E ,-.J---------t----------~---l:~f"V~~1'V ------------------------

-&. ~ E& c V; 0.)-3 X6),U[s) STR1C.Tt.'.::J PRoPER ,DDP I~ .soLVABLE 

, 
>. pDP (5 SOL" ABLE 

--

j 

5TA~LE :>uc.h {ha.t 
- '" '" 

('SI-A)X{,,:» - BULS)==I 

U:i:)3 ><'(S))U(s) STRICTL~ PI2OPEi2-

~TABLE ~uc.~ t"'aL 

LSI~ A -OB ] [~?2J = [~J 
:;lxCs), ULe;.) S"RICTl~ P~OPEt< 
Suchtha..t 
~l-A) XC» - BL1(s)=-E 

and C XC» l ~ STABLE-

~ X[s), UL<» ~TRIC.TL:l Pi<oPEI< 

such tha..t 
~r-A) X(S) - BU(s)=.T 
and eXeS) IS STAJ3LE 

-:+----------t--------------------------- -----------------------------1 

?Nc -f S SoLVABLE ~ l{S) Qnd Lt.)-(S) ra,ft'llhal 

sucr.., - thaJ _ 
~ =~I-:A} l (S) - B~(,» 

llnd C ~ lS.)_~~-=- pOljnOMI'a ,-
~----~ __ ~ ____ J-__ ----------------~-~.--. 

/ 
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I 
We h~.ve montioned before that disturbance decoupling 

proplems are generically unsolvable.In many system descriptions a 

large enough U does not exists • Hovlever if our purpose - is to obtain 

a partial (lecoupling we can achieve thisvery easily. Let us define. by 

the subspace 

Now choosing a suitable feedback~ it's possible to decouple the 

noise components ~ such that· f:!. f: &p . Also we notice that if 
.-C C '1-
(y ~ is satisfied (generally it is ) Vie have always the 

possibili ty to choose the feedback Ff> such that tfr i:s 

decoupled and the renlaining noise components is stabilized at the 

output. 

. . 
'.; 



III - PROPTIRTIBS OF A LDmAR m-PORT SYSTBE C01.1POSBD 

OJ~ SEPAHATED "JjOSSJJ1~SS" iU'JD "ALGEBRAIC" PAR~_'S 

In many applicatiol1s,a linear m-port system determined by a 

state space description consists of a "108sless component ND " and a 

"algebraic component nA ",a,'3 in FiG.3.l.As an example consider an 

-electrical network,the 108sles8 compori6nt8 are inductors,capacitors 

and the algebraic c()mponemts:;are resistors,dependent sources,etc. 

In [1 OJ a detailed worle on obtaining the stat-e space description of 

such an m-port and on the observability and controllability conditions 

has been done.Here our aim is to investigate further properties of this 

m-port syster:J.;the interconnection of no and NA brings a larger 

degree of freedom in the solution of the problems considered in chapter 

II.We will concentrate our investigation on the improvements obtained 

for the solution of DDP in such an m-port.We begin by givine the system 

description. 

_ Q);- First IJevol System Decomposi tlOl1 

We consider an m-port obtained by interconnecting an algeb­

raic.. C nli"n )-port NA and a lossless n-port No,as shovm in i"ig.3.l. 

ND 
• - '". +-~ te;:-F,z_F:z.~ X-:w --0 ,... "-J - ~ -

;Z :H!:t 
~I~ ,.... 1£!12 !:J: Ci -'"Go u --0 

r" #OJ 
'oJ .,.J ..., 



The defining equations of NO and NA are 

,W"=-F;i-~~ 
~ = C Z -t G-~ 
rv 

z = H-x. 
"" "'" • 
X = W' 
..... 'V 

(39) 

(2.(;) 

(z-t ) 

(z~J 

(29) 

,The input vector ( Z J u. ) and the output vector (txT J ~ ) of NA ,' are 
'V '" . """ """" 

usually hybrid pairs (i.e the i.f.h element of (I'Z', u..) is a current, then 
'/'V"" 

the i,th. element of «()J 1 ~ ) is a voltage variable). Same observation 
'" "V 

can be made for the input vector !e" and output vector ~ of ND; when 

eq'!lations (26),(27),(28),(29) are combined the state space description 

of this system is given by . ' 

rx.. = F, Hx + F.zu.. 
,..,. 'V "" 

~ = C H~ + C:t~ 
f"../ r-- ..... 

where xt 1. 
, ..., is the state vector,!! e U is the input vector and ~E j 

--
is the output vector. These equations give the state equations as a 

function of charges and flux linkages.A more convenient description 

can be obtained in terms of capacitor voltages and, inductor currents, 

as 

___ ~.An,_j..roP9:rta,:rlt remark is that II must be invertible. If this condition 

is not satisfied the above equatiolln are no longer the state equations 

'O'L;the sy.s,~~em of Fig.3.1.For simplicity we will neglect the direct 

coupling of ~ to the output ~ and also denote by D the inverse of 
A -l "" 

the matrix H ,hence D::: H • \Ye will call the system 2 the follo-

vling system de~cribed by the state equations 

Di=Rz+G.~ 
~ ~ C~ 

where X, is the state vector, ~ is the ihput vector, ~ 

(34) 

(35) 

, 
is the. output 

r.···· 

~" 

vector. When analyzing the disturbance decoupling problem' we v"ill intro­

duce the noise component Eq to the equation (34) to give a description 
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of the disturbance.We also immediately notice that the matrix D is 

totally a function of the internal properties of ND ~So we can Say 

that in an electrical netv'lork the entries of D are determinecT by 

the vulues. of inductors and. capacitors. 

In the sequel we '"will also need the conditions for which. the 

systern Z is controllable, observable. The following tables ,[lOJ} gives 

us the necessary and sufficient conditions. 

rank ~ rank U=, ; £11 Z is 

:/:0 =n ~ -3 D sueh!~+ Z' i.5 cont. 

=n '=-n ¢:::V 'J D I ~ i.s Co nt. 

:0 Mbitrevj 
~ 

11 D 3ltc.h t.hat z ,s 
I'f'--¥ c.OrfL 

*,0 ~n 

TABLe 3.2" LO~TROLl.Ae,It..'T~ CotolD. of: Z 

rank C rank ~~~] L: i5 

4:0 =n <t:=:P -3 D S\.Iehthcrl Z is O~,.V. 

::n -=/1 <FP \j 0 ~ is observ. 
) 

:.0 o.rbifrarj ~D such tbt z is 
<t=P o bServ. 

=1=-0 ~n 

iAf,lE 3.2.b: OBSE:RVAeILIT~ CoHD. o~ 2 

As can be seen from tables 3.2.a,3.2.b the .controllability and 

observability conditions are derived independently. However in general 

VJe expect a system to be controllable and observa1)le at the sarae tine. 

Tho necessary and sufficient conditions for this case j_s given by the 

following theorem. 
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THEOREJ.·T 3.1 

Given Pi ,JPz and C thc:rc exist matrix D (not nec8.ssarily 

unique)' such the sy£Jtem :z is observa:blc and controllable if and only if 

both of the following conditions are satisfied: 

( i) ~ * Q ran k [ F1 : G J : n 

(i i) C 1- Q , lank [-~.] = n . • 
In the sape vlOrk, the proof of this theorGm also gives 8..11 algori thrn 

that shovvs hnvv such D matri~escan be selected when ]'1' Fz., C arc given. 

In. the sequel we viill assume that, vre knovr ho'lr to· choose D matrices arid 

concentrate an other properties of z: . 

® - ,Polynomial System Matrices [13J 

Consider the state 

i :Ax+13u 
space equations of a linear system,as 

- - -
~ = C~ + &.~ 

it's obvious that these equations are linear time -invariant differential 

equations.In control theoi'y,the advantage of using the frequency domain 

approach leads us to consider the Laplace transform of the state vari-
, 

abIes for many application purposes. Then assuming zero initial state 

the equations (36), (37) turns out 

5X :::. A '£ + Bu:. 
g =(-i tG-Li 

where i = 00 (; ttJ) 

to be . 

Rearranging (38) and (39) we .obtain 

(sI-A)x - Bu.= 0 
~ eX - D(5) U. = -9 

~~) 
"-

(4i) Or e~-t :C?J~~J =[~ElJ <4~J 
~ 

pes) 
In [13J ,the coefficient matrix PC s) of the vector [X U]T is called a 

\ 

polynomial system matrix.Although the results seem to be trivial,the 

represetation of a linear time invariant system as a single polynomial 

matrix has many advantages.First,in the case of general linear constant 
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differnnttal oystems it is moot of the time difficult to obtain a sui-

tahle sto,te space description.Secol1cUy,usinc; the system matrix pes) 
, . . ~ .... - .. .- - .. .. , 

all transformations of the system equations can be expressed as operatio! 

on r(s).( Third they appear naturally,by simply taking the Laplace trans 

fonn of the describing differential equation~.) Therefore the properties 

of the operations on p( s)' can be more systematically studied. In general 

, a linear constant' differential equati"ons."system gives the following 

system matrix 

pes) - [T(~) U~)l -yes) W(s1 

i 
Problem Statement 

In a first level system decomposition one can notice that 

given the triple ( F1 ,F2, ,C ) a D matrix gi~ngrise to a controllable 

and observable system ~ is not necessarily unique.Hence,by changing 

D matrix in such a vvay that Z reroaii1:s controllabl_e and observable we 

obtain different state descriptions leading probably to different transT 

fer ,function matrices. Then the follo\"ling questions can be asked for 

realisation purposes: 

a) Given ( FI ,F2.'C ) fixed,are the matrices 'D giving rise 

to controllable and observable systems having same transfeF. ftID_qtion 

matrices unique ? 

b) Assuming that such matrices D are not unique,is ~t 

possible to decollple a noise component f1 using a special D matrix 

from the· above equivalence class VI hich leaves the transfer fUllction 

matr'ix'invariant. 

The answer to the first que/stion obviously prepares the 



investigation of the second one.In fact,the idea is to investigate if 

a first level system decomposition brings any extra degree of freedom 

to treat several contrblproblems,and more specifically-the disturbance 

decoupline; problem. This degree of freodom can also be useful for reali­

sations of a given.transfer function, if many D matrices are avai-.... 

lable to describe the "10ssle8s" n-port lifo one can choose-a proper 

one for a more suitable physical realisation. 

@- Equivalence Transforl~ations of System Matrices 

We shall be particularly interested in a trrmsformation which 

leaves unch&'1ged the transfer function matrix and the syotem order: 

Strict System Equivalence (SSE) [13l 

Let an (r+m))«r+E) polynomial system matrix pCs) be given. 

LEJt M( s) ,NC s) be (('x r- ) l.mimodular matrices; that is their deteroi-. -

nffilts ane nonzero and independant of s .Also let xes), yes) be poly­

nomial matrices respectively C rn)( r- ) and (r x r ). If tvvo system 

matrices 

[

TCe;.) U(!>~ 
PCs) = 

-,/(5) WCs) 

are related by the transformation 

, IM(~) 
~(s) 

p.{S) :::. 
[

TCe.,) Uls)J 
_'1(5) wCs). 

then P (s) and Pi (s) are said to be strictly system equivalent. • 

A very important property of SSE transformation is given 

as follows. 

THEOREM 3.2 [13] 

Two sY8tem matrices which are strictly system equivalent give 

rise to the same transfer function matrix and have same order. • 

. ; 
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Hence,because ef the preperty stated by THM 3.2 ,it's very 

prebable that fer the systemZ' described by the equ~tiens (34), (35), . ' , 

PZ(s) matrices giving rise to' the same transfer functien matrix ( i.e. D 

matrices,'since they are the enly changing parameter of Pres»~ are rela~ 
ted by ~SE transfermatiens.Mere precisely the questien 1"s: 

QUESTION 3.3: 

Given the system ~~ described by the state equatiens 

F.X-+~l.l - -
Cz -

(44) 

(45) : 

and :the cerrespending 'P:Z
ct 

(s) ,are all system matrices giving rise to' 
I, 

-, the same transfer functien matrix 'related by SSE transfermations ? 

To give the answer ef this question we need the fellewing 

results which are instrumental. 

,(~)- Deceupling Zerees and Relatively Prime Pelynemials 

l\(s) • 

Let's censider first the Smith Ferm ef a pelynemial matrix 

. ' . ", .... !. ':, 

efelementaryrow c?lumrt eperatiens, 

) pelynemial matrix'A(s) can be r(3duced,te its Smith ferm 

, S(s) = M(s) A(s) N(s) 

where M,'N are unimo.dular and represent the element~ry rew and celumn 

eperations,and 

, , 

Here Q(s) is a diagenal matrix having as ent~ies en its principal dia-

',' . ----.---- -~.~-~' -.~_._~_._-:-__ -r----r,-~---T""-... ---~-~~~ ... -- ~---..--...-~-----:--'------:-----------;--.-----.. ----

't':·, ":.: 
.'""f1 "'. 

'.:~ '. .-
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gonal the JnvarJantpolynomials B, (~) .Each non-zero invariant polynomial 

has the coefficient of its higest power of S equal to 1. In Smith form 

if the rank of A( 13) is r, there. are r non-zero invariant polynomials occu-

pying the leading positions and the remaining invariant polynomials 

are zero. 

THE 3.4 Gives a cletcJ.lcc1 dcfinj.tion of the Smith Form. HO\'l 

let's consider a systen matrix pes) in which the matrix [T(s) u(s)] 

has a Smith form S(s) :- [Q(s) OJ.Then the determinant IQb>jBD,..(:» is 

called the greatestr:"1.·0:1~0 cornmon divisor of minors of order r in 

[T(s) u(s)] .The roots 1~,:1,i"cf1,._,hJo~ tho equation Dr(~)=O will be 

called.zeroes of S(s).The complete set of these roots is called input­

decouuling zer·oes [13J .The removal of these roota from [T(s) U(sU by 

dividing one by one by factors of (.5 - rt. ) ,the SDith form turns out to 

be 5b)=[~ ~J ,p<r .In [13,14J we equivalently find the cloi'init:i.on for' 
- [T "f ] output-decoupling zeroes 'where the T6) -'.j(S) submatrix o.f PC s) is 

taken into consideration. Similarly by removing the output-decouplinC 

zeroes from [T1s) -=ViCS)] the Smith form becomes 5:(~) = [~q ~1 ) q<r · 
Hence by these definitions the follovling le~11ma is immediate. 

LEI',lUli. 3 • 5 

A sYAtem described by the polynomial systenl matrix P( s) has no 

decoupling zeroes if and only if the follovving conditions hold: 

(i) the Smith form of [T( s) u(s)] is SC s) = [Ir- OJ 
(ii) the Smith form of [1'Cs) -'/(S)J is 5 ($) = [Ii , o"fJ J 

" II " 
T{ s)J.. where r= t dImension o"f the spuare matrix • . 

The follm'v'ing theorem is basic to find an answer to the '"\ .. l.;ue 13":1 __ 

tion 3.3. 
I' 

') 



THEOHT)U 3.6 

Let 1'( s) and Pi (s) - be ty.;o (r+rn) x (r+ E) pol~momial syctO:!1 mat~ 

rices havine; no decouplinrs zeroesoThen PCs) and P1 (s) are strictly sys­

tom equivalent if and only LC' they give rise to the same transfer func-

tion matrix. 

We also need the following definition of relatively prine pbly-

nomial. 

DKE'INITIOH 3.6 [13] 

Polynor21ial matrices T(a) and yes) are called relatively left 

'(right) prime if and only if their greatest common left clivisor GL(~) 

- ( S,C. r. d. 'C"R (~) ) is tmir.lOdular 0 b 

'Il property of the relati voly prime polynOJ:lials is given by tho 

following theorem. 

·.;:;.;TH;;;;;E;;..;:;' o.;:..;;R=m~'iI '_ ...... 3::;...:0-,-7' [14J ' 

The polynomial matrices T(s),V(s) l"espectively (r.xr ) and (rxf) 

are relatively left l)rime if and only if the Smith form of [T(s) V(s)] 

is [Ir OJoA similar result can be stated for right primeness. _ 

Thus if ~{G), v( s) are tho submatrices of a gi venpol:y-nomial system mat­

rix P(s);they are relatively left prime if and only if this system has 

no input decoupling zeroes. 

THImREM 3.8 [3J 

Given a syotem 

·fTC
?) Pcs) = -V('3J) 

described by the 

UL?)] It l..5 
W(S) 

polynomial ,matrix 

(a) cor:m1ete ly controllable if and only if any g. c .1. d 

Ctl!l)of {T(S), vC s) J is uninoc1ular 
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• (b) completely observable if and only if any g.c.r.d 

GR(S)of l-V( s), ' T( s) 1 is unimodular 

(c) completely controllable and completely observable if and 

only if both (a) and (b) holds. • 
The properties of least orc1er systems that vIe have mentioned 

one by one lead to a very important resillt that given an answer to ques-

tion 3.3.The next part of the investigation is mainly base~on the follo-.--
-~----.. --~--·--~-7---··-·-·--

'wine; resul t . 

THEOR~M 3.9 

Consider tvro completely controllable and completely observable, 

systems described by the polynomial matrices 'Pi (s) and P,. (s) • Then Pi (s) 

and Pz (s) gi ve J.~i se to the same transfer func tion matrix if and only if, 

,they are strictly system equivalent. • 
PROOF : 

_ After TlDV[ 3.6 ,all we need to show is,that a system is completelJ' 

controllaple and completely observable if and only if it has no decoup-

ling zeroes.For this: pes) is'completelycontrollableg completely 

'Obscl~vaolc TI-IM3.8 1 d' f (T( ) V( )]. . d d ~ g.c •• 0, L s, S J.S unJ.mo ular an g.c.r.d 
-( '1 DE1= 3.'-

of l- V(s) ,Tes ») is unimodular 4===P T(s) ,V(s) are relatively left 
THM 3.=1-

prime and -VCs) ,T(s) are relatively right prime <j:=:::p Smith form of 

[ T'( s) VC's)] ~ [Ie" OJ and Smith form of [TTC~) _yTcsJ -== [.r; 0 TJ 
LEM~A 3.5' ' 
~ pes) has no d~coupling zeroes. III 

Now consider the systems ~ described by the equations (44) ,(45). 

, . 



COROLLARY 3.10 

Let system Lo( be described by 

Do{ ~ =- F;~ + r-;. 'Z 
~ = C~ 

'where D and Fi aro (0)(1'), J!~ is (n,cq) -and C is (q,xt"\ ) .Lot the 

corresponding system matrices be 

= [
0,,(5- F, 

P~(5) ~ 
-c 

Consider all syste1;'J.s"L~ which are controllable and observable; then these 

systems have the same transfer function matrix if and only 'if they are 

- strictly system equivalent. 

® - Equivalence Class of Do( Matrices Vil1ich Leaves The Transfer 

Function Invariant 

The 8.11SW'er to the question 3.3 is given by COR.3.10.Assuming 

that we have a controllable and observable first level decomposition 

with an initial D~o ,we can obtain all other Do( giving the same 

• 

transfer function b;}T using SSE transformations. For this, we will use the 

following proced~re. 

[
0-<0 5 - F, 

Let ~ ('j) =. 
o -c 

and observable decomposition.A 

be the initial controllable 

~t(~) which is strictly system equivalent 

to ~o(~)Will also be completely controllable and observable and related 

by equation (43),such that 

[M(~) 0 ] !~;- F. F2, ] fNCS) 

y..(~) 19 -c 0 0 ~] (4b) 

where 1.1:( s), N( s) are unimodular and X( s) ,Y( s) are polynomial. 



(49) 

THEOREM 

T\vo system l~atrices Pi (s)' and P2(s) which are in state 

space form are strictly system eqliivnlent if and only if they are 

system similar. •• 
Then using TlI1,:; 3.10. a and the nonsingulari ty o'f D~o and ~. \7e can 

(. 

restrict M(s) ,N(s) to be constant nonsingular matrices and XCskYCs)=O. 

THEOREM 3~10.b 

Given ~o(S) Cind ~i.{S), they are strictly s:'lstem equivalent 

if and only if there exists nonsingular constant matrices TIl and N 

such that 

(M 0 ](D~o5-Ff fi ][N 0] = [D~i.S-F.; fi] 
O.I9 -C 0 0 ~9 -C 0 (4"1) 

Proof 

since 00<01 Cki are nonsingular matrices .Now letting 

[

MC?) OJ rSI- o.;:F,·. uc:r;,JIN(~) '~'{(S)l -: I~I-D~;f' Q;{:~l 
'j..C?) lq L -c. _ 0 0' I9J -C 0 J 

In the matrix eqliation (48),the SSE transformation is preserved; 

further mO:t;e the polynomial system matrices are in stute space form. 

Then by TInT 3.10.a they are SSE if and only if they are system sini­

.lar. Therefore there exist a con,gtant nonsingular matrix H such that 

[
1-1-

t OJ [51- D~~ Fi ~!F~[H 
o l~ -"C. 0 J 0 

or equivalently 

[Do('l-l-t~~ 0] [OoloS-Ft 

CJ lq . - c. 

. (49) 

(50) 

., 



(50) 

and call N~H 
II 

Thus withou.t loss of generality we can restrict the unimodular 

matrices M(s) and N(s) to beine; constant and nonsineular,also choose 
X (5)= O. "and 'I (~) = 0 . 

3.10.c 

Given ~o(S) and ~I (s), they are~strictly system equivalent and 

give rise to the same transfer function matrix if and only if there 

exist Id and N constant and nonsingular such that the follovv'ing equa-

tions are satisfied: 

(i) M D«o N= Dco<, (51) 
(ii) M Pi N = J? (52) 

(iii) 1:1 F~ = :Jf.z. (53) 
(iv)' C·N= C (54) 

Obviously, since (R, f) Ie 1 Do<o) are, given vie can COl:lpute III and N 

matrices fron equation (52),(53),(54) then using equation (51) wc can 

compute Dc:\{.. The degree of freedom obtained 'on CM,IiJ") couple will also 

determine the degree of freedom in. choosing the matrices Dc{,:, • .An important 

remark is that (52), (53), (54) alvJays have a trivial sUlution,that is the 

(M, N) couple vJ'here M= I and N' = I • In this case all four equa.tions hold 

but giving Dolo= Doli .The following t11.eorem gives the necessary and suf­

ficie,nt conditions for which a nontrivial solution of equations (52), (53) 
(54) e::cists. 

THEOREM 3.11 

Gi ven the matrices Pi' F,2. ,C reapecti vely (h'J( I) ), (,h X q ), ( 9 xn ) 

and such that rank [Ft f F:J = 11 and rank [FIT 1 c T]=r) ,:there exist nontr5.vial 

solutions of the matrix equc1.tions 

[M 0J[~ J}][N 0] -:. fF. F2] o l~ c (J 0 l~ L c. 0 (55) 



wi th nonsingular U,H matrices if and: only if rank ~ < n and 

rank C < n . 

Due to TH1I 3.11 the existence of nontrivial solutions of 

(52),(53),(54) is a generic property since the theorem excludes only 

. the special cases vThere rank F.2= n and! or rank C = t1 . 

The follo\'ling lemma is needed in the proof of TIH.I 3.11. 

LE~11A 3.12 

Gi ven the matrix X (~lC")1 q~n; thore exists a nonsingular and 

nontrivial (i.e. =1= 1) solution of the matrix. equation 

X=XY (5{,) 

'vvhere Y is (hxn ), if and only if k'er X =t- r oJ. 

,PROOF:" 1/ 
<F 

Gi ven l<er X :f. [01 ;xank ex] < 11 since X has less than n 

linearly independent columns.By elementary row 

repre~ented by ~ (~lX4) and 1l (hlCF'I) , we bring' X to 

ffild colunm operations 

its Smith form 

;, X ~ =: [1' r 0.] 
1 '2. 0 0 J 

r=. ro.nk eX] <11 . 

Hence (56) becomes 

. - 0J T-t y ~ T- t [Ir aJ~-i . o 2 ~ 00 2 

where Jor Y = 1;-' Y T2, [~ gJ Y = [{) g] 
Then partitionning we obtain 

" '141 to be identity l:latrix 
1\ A' 

[Ir 0J ['it'. Yn ] ~ [I~ 0J' 
00 '11.1922 0-0 
,,~ " 1\ 

gives ~1=Ir' Y.2::0 vdth 'hI Y22 totalJy arbitrary;th~rfore taldng 
1\, I Y can be made nonsingular by carefully 

which 

chOOSing Y1 i and Y22. 

. . 



Finally i8 obtained as Y = T2, Y1;-f. 
n I, 

f7 
Let 't be a nontrivial solution of (56), then X (Y-1) = O. 

Since '1=/= T we have 'i-I * 0 then k'e r X =f=. f 0] . a 

PROOF OF THEOREr\1 3.11 
______II~' .. 

We will consider all possible cases one by one. 

,then k'e r ; T = f 0] ( i) Le t ranlc F2 = n and rank C -= n 

and- eM-I) t3.= 0 ~ M=I 

C(N-I)=O =l> N:::T.-
.Also KerC:::; r oS a.nd 

(i'i) Let rank F2..(n and rank C==n ,then as in (i) 

hence the matrix equations (52),(53) give 

M F) ::: F1 1 =t;> M [Fd ~ ] = [Fi f s 1 
M ~=G J 

, 
[ - I r-:- J for (M-I) [F.t- .: F.2 ' = 0 --t--- M:::.l. ran.( h' r:z .=n. J .::....J/ 

I 

(iii) Let 1"an]c F2. = r) and rard:.C: < r). Similarly, as in (i) 

M = I and (52),("54) give 

_ F1 N = 1=, ]=-i? [-~~J (N-l) = 0 
C.N::C 

Then since rank ~.J =tl ) we have (N-I)= 0 or N=.l . 
II I, 

4== 
Let rank ~ <h andrankC«n. Proceed as follovvs: 

* Put F2..' C to Sai th forin keeping the structure of the matrix 

equations 

and 

(58) 



,J':" ) 

* Parti tion as 

rJ "'" a ftc ~~ : I(l. 0 \ . . . .... ... .. .. .. .. .. - .. !. - - ... , 
rJ 'V , , 

n-a... F;"b · G4 0 0 , , (5~) , '. . .. .. .. ....... , , 
b II, , 0 0 , 0 , 

· , 
. .. .. .. : .... ... ," ...... , ......... 

q-b 0 · 0 , 0 I 0 , , 
" 

b n.-b tt q-tt. 
rJ 

* Put 114 to Smith form. 

(60) 

~: : ~2 : I a. • 0 T!L F. ; F.2. : I~ 0 

AS.~:~:>~.·. = r~! ?j ~i~J~~~~?~!~~: .. . . . ' 
Ib : 0 : 0 : 0 0 : ICJ I b : 0 : 0 : 0 

... __ t __ .............. , .. ~ .. .. .. ...... , .... ~ 11._ ....... - .... .. 

0:0.0;0 0io;O'o 

--
Save T2,' P2, matrices. 



(54) 

,.., A' " 

0. F;. 1;21 : G:!.1: 10.: 0 ........ : ....... " .............. , .. ........ " ...... .. 
,.. .. I , 

/T1 Ff~l: 1m: 0 : 0 : 0 
I , 

• ........ ," - ..... : - - #> .. : ........ : ..... - .. 

,... I " • : 

n-m-Cl F~~7.! 0 ; 0 : 0 : o~ , . . (64) 
.......................... _ ..... ' ........ 

b Ib ~ 0 i 0 ~ 0 i 0 
It. • 

q-b '~-···~··;·O··:·~·~·O· 
, , . . 

b m n-b-m a. ~-a.. 

" " Reduce F;~, and F;~i by elementary row or colunm operations. 

,.. '/" " , 
~I : F':l.l I F"22. ,I~ I 0 

..... _, ... _ ... _1 __ ••• 1 ....... , .... --. 

/' , I 

Ft?>, : I trI: 0 ! 0 : 0 
.......... , -. -- .... - -.. .. - ... .. .. - .... 

t ' I ' 

,., '0 ' 0 ' Fl!>~: 0 I , : 0 

. , . 
};~ :.1.: ~.: 
o:r ... 'o; 0 - ..... 1--
o ! 0 i I~_tt_"" .... -,- -' ... , .... -...... 

I 

.... , f ...... I .. _ ... _ ............... .. 

'. t • t 

Ib ' 0 . 0 ' 0 ; 0 
f . I t 

"-'j--- ,----,._-

o ICJ 

0'0 o ,0 o 

Save T,3 , P3 matrices. 

t _. , 

R1' 0 : Fi22,: I~' 0 
• .. .. ... • ....... t' ..................... f ......... .. , . 
o : 1m: 0 : 0 : 0 

... ........ _- ..... _ .......... , ..... . 
_, • • 1 

F~~7.: 0 I 0 : 0 : 0 , 
• •• e ............... , ••• , 

I , • , 

Ib I 0 : 0 • 0 \ 0 
_ ....... - - .. - _ .. _-.,..'---

• , • f 

0'0'0:0:0 
• 

p~ 
~ 

, I • 

r '0'0' -"', __ 1 ___ ' 

J?;~;~,: 0 
0:0 !I"~m-b 

• ;. • - -- .. - t .... - ........ J 



( 55) 

.. Finally vie obtain equation (55) as 

t t • 1 

0.. . ~i ~ 0 : Ftz1.i 1 a.: 0 .. -....... -..... - --- ~ -, .... ... .. .. .. , . 

[
Pt' i 0 "' .. ??~.~ -_?. ~--~:.? -[N ; 0 1 

• -- ••. : --.- 0-1'4· F. '0' 0 • 0 : 0 .. -- :---- -: . '\~7. , ' ., , o ~ I9 ....... ,.0 •• ~''' .......... : •• ~... 0: Iq 
b Ib' 0 : 0 : 0 , 0 

... · ...... t __ •• ~ ...... t .......... , .. -" ....... 

, . . - -:,. 
~t : 0 : ~2.1..: To.' 0 

. .. ....... , .. ~ ....... - .. ~, --- .. : --_ ... 
i I • .. 

o : J:m : 0 : 0 :.0 
eo ___ .. : ___ ..... : __ ........ : ___ .. , .......... 

- . " 
F.~2.' 0 : 0 : 0 . 0 

t .. • 1 ....... ........... , ...... , .... ".~, , . . 
· . t . 

Ib : 0 . 0 • 0 : 0 · . .. _ ....................... t -- .. _- , --_ ... ! .. - ....... ~ 

(63) 

I:. 0:0:0:0:0 q- • 
• 

· . . ~ 
0'0 '0'0:0 : ~ t : " . 

v,here 
. 1\. _\ _, _I 

M = T~ T~ ~. M T\ T:z, T~ 
1\ n N R-1 0-1 o-t N:: P3 '2. R . , r Z r,3 • 

~ Block multiplications in (63) give first: 

.il. [-~~ j :1:1 {t. [- ~~-l--<?l = [-!.". [ ?l 
h-~ M21 J M2Z 11-a 0 i 0 0 : 0 

, . 
GL t}-CI 0.. q-o... 

A " Thus MU = 14 and M~u::: 0 ,and by parti tionine 

, t 

1\ 

M = 

I" ,,,, . J a· lQ I M\211 M\u I ; M .-~-,--- 1----
Q : 12. I " '-" --. -: --. == rn 0 I Mzu: Mzz 

O : M" - --- ~ - _. : ---
: 2.2. '''',I' 

h-lYl-4 0 I MZ1~: MZ24 

(J.. ton I"\-M-Ct 

.. 



" The second equation in l'r is obtained as 

b [?:~.\.~.] b!-~4l 
q-b O. 0 rrb Nzl : N2.2. 

• I . . 
b n-b b n-b 

,.. " 
Thus Nu:1b) N f2 = 0 

1\ 

N-= 

" "-

and by partitionine 

(61- ) 

Replacing rJ and N obtained in (65) and (67) in the third 
/\-" -

equation M F, N,:: F\ ,'1m obtain 

,-.;- . /\ ; 

I · . /\ Dr': M\21' Mm -.... ,- .. --'- - .. 
• A '" o ; M'lZI' M221 , , . --- .. ---"- --
." I 1\ o , M2.231 M2.24 , , . . 

• • I .... ,-
F., I 0 I F''l2 
- _. ~-- ---' --~" , , 
o l.Irn , 0 

, - _ ~ - __ J _ ~~ 
-, I 
F.~21 0 l 0 

I , , 
Ib' 0 ,0 , . ' 

--_ .... __ •• L, •••• 

,.. '", I/' 

N211 ' N'l21' N222 -. , _ ... "" ..... _-----,. 
'" ''''' l''' Nz1t : NZZ3 j

N224 , 

~ Block multiplications in equation (68) givG: 
- A - ,,'" -,. 

ft, ~ M\22 ~';2. + Ml'll N2ii + ~22 N212 -:::F.i 
'A'" _,... 

MI21 N'2.'2.1 -t F'2.2 N22.?> :: 0 
Pi 121 N1.'2.'2. + Fi22 N2'2.4 = F"22 
~ - ,.. ,.. 

Mt.22 Ft~'2. -+ M.22., N211 ':: 0 
A ,. 

M221 N2'2.1 :. 1m 
/\ A 

M 22.1 N 22Z = 0 
A - /\ .... -

M 22.4 Fr~'2. -t M22.; N 211 ::. F'32 
/\ ,. 
M 223 N2.'21 = 0 ,.. "-

,M223 N2'2.'2.= 0 

(68) 

(b9) 

l.'1- 0) 

(71) 

(i-2) 

(13) 

( -1-4) 

(15) 

(w:,) 

C1:;') 



(57) 

Then tho folloydng 3 cases covers all posnible structures 

that F, matrix can talce. 

·CASE A m=n-a-::n-b 

- - /\ A 

Vie have immediately F,22.=o; ~:'2=Oin F, .Then ril ,N to be 

nonsingular a choice, 
/' A _ t 

Mz'2::: Nzz '* T 
"" 

with Mf 2..=O and 

alVla~fs exists. :1'hen computing M and :H matrices by inverse 

transformations (T', P, etc.) we end up '!lith a nontrivial ( I\I,l'T) 
I 

A " 
couples, since ( 1'.,1 , !IT ) couple is nontrivial. 

CASE B : a -=J: b 

In this we have the following implications: 
/\ ..... _( 

E9 .(=1-.3) =t? NZ 2.I::: M 221 
A 

eq. ('1-4) -=f/ MZ23 = 0 
A 

C9.(=tG) =t;:> N221 =0 

1\ /\ /\ A 

Then M, N' are nonsingular if and only if 1v\27.A and NZ'24 

are nonsingular.Now 
A 

(73), (74), (76) determine N:n.1 

and (77) holds immediately since (74),(76). 

A "-

Choosing N~24=.I , M2'24 =1 we see that (71),(75) are 

trivialJ::y satisfied. 

/\. A /\ 

Choosing M'22';:O· MI2.1 =0 , N1.12 =0 (69 ) is trivially 

satisfied. 
/\. /\ 

Choosing 1'1 2 7.1.= 0 , N2.11 -::: 0 (72) is satisfied trj.vially 

/\ 

Choosing N12~=O (70) is satisfied trivially. 

, ,.,~ 



(r;s) 

However even aftar these choices we have 

I' /\ 

v.rhich shows that ( N , If ) is nontrivial.Hence for a-;pb and m=;= 
/\ /\ there al\'JaYs exists a nontrivial solutions for ( M , If ) couple. 

CASE C m:: e 

If m= 0 , then F,lj -= 0 . Then the resulting equation is 

f;+~~:l h: [;:-!~~l [~~,1-z:1 = [lj-~1 
b h-b 

and block l:lUltiplication given 
n.I A", ....,.J\, ~ 

FII+M1'lR:?-+ ~2.N.21 = Fit 
..... 1\ • ov 

F.2 N12 = F'2 
/'. ...., 
M,2. fj~ '::. J:13 

/\ "-
The block triangular form of Jo!I and N 

1\ 

N2'l to be nonsingular.Novl 

(79) 
~ , 

(80) 

C~ I) 

'" inposes Ji.1 2 2. and 

() 

"'_ 
and ~r ~31 =t- ~ 0 1 ,then by LEI:1T,L~ 3.12 the solu-

tion of the 'equation (80) and (81) are nontrivial and nonsinpllar. 
/'I /'\ 

Choosing Mt2.:: 0 and N2 \=O (79) is trivially satisfied. Then since 
". " 

M22. and N2'2. are nontrivial there exists always a nontrivi3l solution 
/'> r-

of (M, N ) couple. 

tV 

and rank F.2> = n- 0.. 

" " 

"'T r 7 
and k:u- F,~ = ~ 0 j 

• Jy LEl.IT.lA 3.12 

,then we have ranl: ~ 2= n-b 
A , 

and Mn = r . Hence 

the solution of (I.~,H) couple is nontrivial if and only if (79) is 

nontrivially satisfied,that is 



,.. /\ 

for MI'l:f 0 and N.2.\ '* 0 • For this by nOl1sine;ular transformations '!Ie 
..... 

bring F.~ and F,.2. to their Smith forms 

M'2 T'l [In_. i 0] TS = - ~ [~;:bJ P5 N21 

or 

[
In-l:>l 0 N'" ~-I 
-oj '5 2, '5 (93) 

Therefore 

'~L~ [In-a.: 0 ] 
IV _I "-

where M P M T. 12 -;: 4 2. ~ 

Equation (84) implies 

[ MI~! 0 ] = - [~,] 
By partitioning {85) gives 

r"\- ,I::> I·~~'!;.?·] = -I·~~'; ~~J' n-b 
~+b-n M122 : 0 0 : 0 a-+b-" . . . 

t"\-C\ 0.46-n n-GI t\-I-b-., 
cv cv ~ 

The' equation (86) implies that M\ll= - N.'l'l and M.n = 0 .Since 
...., /\ 

Cl(n 1 b<.n ; M12.' and 1J2.I-\ 
A /\ 

mations nonzero Mi21 N2\ 

are never zero. So 3Y inverse transfor­

can be calculated. 

'" 7 
Therfore when k'er Fi,. =- ~ 0 ) and nontr:Lvial solutions alvva~rs 

exist.To complete,when m=O a nontrivial solution for ( U , lJ) couple 

can always be foUnd. 

Finally we have considered all possible cases in which a 

nontrivial solution ot: thE1 matrix equation (55) always exists if and 

only if rank'G'::: n and rank C<:n • This completes the proof. 

We will close this chapter by the following result "vhich is 

immediate after the prcvj.ous theore11lf.J. 

THEORE1\1 3.13 . 

Dc( gi ving rise to controllable and observable systems Lc( 
having same trans:f'erfunctioYllllatl"ix are not unique if and only i:l' 

rank ~ <' n and rank C <n. • 



(60) 

Consider tho system Ldo 

[ ~ -t' ~] i = [: ~ ~] ~.. ! ~ ~l ~ 
o 0 I - 000 It 1J 

~ = [~ ~ { J rt. o -

and note that rank F.2::2z~ and rankC=Z<:, .The system is completely 

controllable and. completely observable. The transfer function matrix 

can be calculated easily and is equal to 

How VIe vlant to find all matrices DoI.i.such that tho new systems are 

controllable,observable and have the same transfer function matrix 

T(s).First we have to determine the ( M,rr):-couples satif;lfying equations 

of COHOLLARY 3.10.c ,that is 

M F. N = F. 

M F2 -=.. F2 
eN:: C (or C N-~ C) 

Then the matrices Dol·will be obtained from 
/,.. 

Do(L=' M Dt{o N. 

(2=0 
(88) 

(&9) 

(9 0 ) 



// "' 

Similarly equation (88) gives 

[m. m'~jr 0] r+m, ~] [0 0] "'"''l m5 ml, \ o ':: tnS-t me; M, -= , 0 . 
Y'Yl1- me t)1j t I /'Y'\31- I'Ylj frl] t t 

Therefore 

t' 0 ~l M = n'l4 

m=l- 0 

Substitutine M and H in (87) 

[=: 0 ~] [: ~ ~ 1 = [! ~ ~ 1 [~I 
, m~ 0 I 0 0 0 0 0 0 0 

then we have 
",' 

m1:' rl, 
1\ 

1'\14 = n,-. 
1\ 1\ 

rt,3 = n,- f 

'" n2 =: 0 

M'1-=O 

V/hi eh give s 

[~6 M -:: ~;.S 
,0-

0 

Therefore 

for 

0 

n i 

0 

:: 1-0 f 
[

Y& 0 

0-
o 0 

/\ 

4/8 -( 81- 0 ) n,= 

-, ro 0 {~8l 'N :. 010 

cot-

\ '-,,~ .... I 

, , 



((-)2) 

1 -'/0 

D", (f» i-6 ~S-i I-S toLth 6=1=0 --r 
0 0, 1 

':to notico that Oc((t)-::: Dolo and the ull:Dcr trJanculal' ford of the matrix 

Dt1." is not preserved for 8t1 .Let us checlc if for 0.,< (d) in general, 

the tranGfor ,fW1C tion nlv.trix e qualG the given T( s) • Vor thin Vie first 

form 

and 

s-~ 

(0", (cf) s - Ff) ::: (1-815-1 

o 

finally 

-'loS 5-1 

.28-'5_1 
G 

" (1-8)5 

0 5 

·0 0 s"=-.3s+f 
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IV SOLVABILITY OF DDP Dr Ai! m-POHT' SYSTEU WITH 

Before considering the DDP for two different disturbmlce struc-

tures we need to characterize the largest (D;'~ J 0';' F~ ),invari811t 

subspace contained in k'erC. 

LE1\i1\TA 4.1 

Gi ven the system Lot 
Do< ~= F.~ of- Ii ~ 

~ = C= 

~o E: 1J~ (Doe) , if and only if there exj,st l' (s) 

proper rational such that 
;' 

[

Do{S- F; 

-c 

and u) (5) strictly 

-.,,-

where U~ (Do{) denotes the largest ( D~J F,) 0;' F:z.. ) -invariant subspace 

contained in k'erf. 

The proof can be achieved by inVG1"ting Do< and applying LEJ'.:'llIA 1.10. 

Nov~ let Loto be a controllable ano observable system as described 

before B.nd let' rank ~ < n and rank C <n • Then by "COROLLARY 3.10 and 

TUM 3 .13 it is knovm that Do(i. inatrj.ces leaving the transfer matrix 

:. invariant under SSE transformatj.ons are not unique. 

NOVI let a decomposition (00(0' F, I ~ ,e) be given and sat'isfy the above 

condi tion~. Then appl;)ring SSE 

[
Mol 0 1 [Dc<o~-FI F2] [No< 0] 
0] COO.I 



( tf"", , N~ )-couploo nn(1 by Mo(lPO<oNdi=Do(l:all Do<~ matrice:J can oe COT:l­

puted giving the following leTlll:1a. 

V ( ) -I -I 

Let * 00{0 be the largest ( Dxo F'~J DdD F2. ) -invariant subspace 

contained in /<er C of 201.0 ,then 

N~~ V~ (Oc<o) = 11* (11l) 
where Nd. l is such that Do{i == Mr;(C: l1<0 No{l . 

.Le t Xo t: 1.f1' (Ode: ) ,by LElJl\TA 4.1 we have -

\lvhere1,(<:», tg(7) are strictly proper. Using SSE tro.nsformatiol1 'Ne 

obtain 

or 

[M~' ~ ] [~_F' ~][:.. : 1 ~:::] ~ [ M~iD;~'~] 

[D'~-FI :j rd~!:::l= [ ~oN;t~o 1 
Since Nc;l.i, t (-:,) is s+rid1j proper (At(: hew!? 6.:J LEMMA 4·1 

No(l3o f: 1t (Dolo) ==t?" ~o f: NeiL'1J" (fllo) 

equivalently 

1Jv- ( DrAt.) C N~\ V-* ( Dolo) 

-I' N Similarly let ~o t Nd.l.1J~ (Dolo) ,vTe have by nonsingularj. ty of c{t, 

·Nc;{(~o E: V¥ (Do(o) .Using the above procedure '-Ive ohtain 

~o t 1Y.y ( Dc\l) =r.> Neic:' ~ (Dc:<o) ~ 11-* (l1<l) (95') 



\ ''/ I 

Honce (94) anc1 (95) inIlly: 

V* ( Do<~) -= N;: lllJ ( 00(0)' 
i 

}:JOYI 'we will consider two different disturbance component 

structures for v/hich Vie v/ill formulate the solvabili t;:r of DDP. 

CASE I 

Consider the system 

Ddoi ~ F1~ + ~~+E~oq 
~-=- eX 

\7here Eo(o q is the disturbance component. Vie assume that the application 
'-

of SSE transformations also changes the matrix Eolo .Hence while the 

input/output transfer function r.emains the same,disturbance/output 

transfer .function may change. 

More precisely 

v/here E. . M E 
. DB. = d.~ 0(0 

DoIl~ :: fi~ + ~ ~ -t EolC: ~ 
~ :; C ~ 

• The system:. Lo< is shm1ffi in Figure 4.1. 

NOVlin general ,by TIml 2.1 we have the following lernma for the sol vabi­

Ii ty of DDP in CASJ~ I. 

• 
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LBLlHA 4 •. '3 

DDP j.G solval)le if und only if 

D~; &C(i C. V¥ (DO<t) . 

This trivial l'ODult CEil be comp18tod. by 

LETfOVIA 4 • 4 

D~: 6"'0 c 1J~ (D~J if and only if D;(' boiL 5; V.,\' ( Dcx'£) . 

Proof 

by LEHYIIA 4.2 . 

Since . E olL = Mol.; EcXo 

D~~ ~l . c. N;~ lJ~ (D,,{o) <f=l/ D~L Mxl '&.clo C N~: 1J¥ (De/o ') . 

Since DcXL Me{; Or{! hOnSiflQu\Qr-. ) v 
-I -r: N -1 N-' -I -! r: -I 

Do(L Mo(, 00/,0 C bli 1)* (~o) 4=f>. Ol\ Do(o Molt l'1xl Volo C NcJi lJ~ (Oxo) 
-I 

<t=P D.,(o Solo c ()* ( 0:<0) . • 
Hence by LEI.TI'.TA 4.4 Vie show,aasuming the structure of C.:~SE I, 

that vIe bring no improvement in the sol vabili ty range of DDIJ. In t~lis 

case DDP is ei thor sol vahle in all systems Lo( obtained by SSE or not 

solvable at all. 

CASE II 

NOVI let the system be descrj.bed by 
~ 

rl~ F,.~+E9 I D"".x (92) =- + 
l -

.:} =- Crt.. (99) 

We assume that we want to deco.uple a noise component Eq without chan­

ging ihput/output transfer matrix and vlithout violating the observabi­

Ii ty and the controllabili ty, by properly selectine Do(l. • In other '.'lords 

the general description for the SSE systems is shovffi in Fig. 4·. 2. 



The following lemmas clearify the range of the solutions for DDP 

n the CASE II. , 

£lTMA 4.5 

Gi ven the systems 20t of CAS}!; II, DDP is solvnblo for both 

Le{o and .:[~L if and only if ~ £: VI'>'\,t.:,1:Jh81"e 1lM,it' is the Mdrinvarj.­

~t subspace of Do(o V'* ( 00(0). 

Toof . . 
,I " :::::J;> 

DDP is solvable for Dd.:if a..Dd only if D;~ &.. c ~ CD~t') 
'r t c Do{l1f~(Ux~) .ByL:8m.1A 4.2 

11 ~ (Do(~) -= N;/1h ( Do/f») 

nd 

:ince DDP is solvable for 00(0 

-&. C D",o 1)* ( ~o) . 
·ence DDP is ' solvable simul tanoously for D",o and Dx,' implies 

-& C ~lD.tO 15 ¥ (/lto ) n U!" lf~ ( Dolo) 6. 'VNol
l
' , . 

here 1Jt-kl i~' necessarily the Moll-invariant subspace of' Dolo 1)* (~o). 
n<F:' I, 

( t ~ M~~ llto 'lJ~ lD~o) -=4> 

l "6. c D<o 15'", C 11<.) --=1> 

. . 

~ C. Uxl~ (1)>,.) 

b. C D.,/o'U;CDxo). • 
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Thus b;)i TJEr.TI'JA. 4.5 we 1.1l1del~stal1d. that,gjven ( DJo ~ F-2 E C ) for . . . ) , ) , 
\vhich DDP is solvable, DDP \vill also be solvable for all ( Dol~, F, I F="2) 

E ) ( ) obtrdnec1 using ( Mol~ J NJ:) couples for which [; is ~" -inva-

riant. 

LE!'.l]\TA 4 • 6 

Given Lola ,lot DDJl be 11l1so1 va1)le for Lol" • Thon DDP is not 
-~----~.- .. -_.,-",-

sol vahle for 4£; obtained using (Mcl.;, Nc<: )-couples for 'which the sUhspc.ce 

is ~l-invariant. 

The proof of IJEJ-'IJ\TA 4.6 is straight forward since 

b. 4- D.,(o u~ ( D~o ') -=: M 0(; Dp(.o lf~ (Do{o) =: 11<; 1f~ ( f1<,'). 

" 

Hence by LEI'lm'Ll ... 4.6 VIC see that we may have an inprovOl:lOnt 

for the sdlvabili ty of DDP.If for the initial c1econpolJi tion ( .a,.,o, !="t) 

F;t, C, C ) DDP is not solvable,we will find out all ( Mcl. ,', Ndt,") couples 

for which'. D~o If\l-(Do/.o ) is Mol,' -invariant and exclude then. The conc1:i.t:i.on 

for the solvability of DDP can be sat.isfied in systems ~" ootnineu 

using the renaini.ng ( Mot,', NIX:) -couples. 

In fact it will be wisc; to determine first ( Mol,', Nt{,' )-couples 

parau18trically and check if t'le condition fy c:::::Mrli. O..{o 1J4'(fL<J Ls 8atisfied 

for any choice of free parameters. 'He will close .this chapter by the 

following example illustratinG the above results. 

m:::Al\'TPIJ<: 4- • I : 

Consic1.er the controllable and observable system :z~o dcscrioec1 

by the equations: .. 
i -I 1 -1 t 0 o A 00 el 

0 1 -t 0 i 0 0 1 0 e1. 
• 

0 1 -I X, = 0 0 00 ~ + o t .u.+ €3 q 
0 

0 0 0 1 0 0 1 0 00 e,,\ 



L~ 0 0 0 ] 
~= 000 i ~ 

(69 ). 

where ~ is the state vector,~ is the input vector, q is the c1istuJ.'-
" -

baDce vGctor Q.nd ~ is the output vector. VIe will first try to find" 

out-the constraints ~l the structura of E matrix for DDP to be sol­

vable in 2~o . Accol"c1iag to LEI.ll\iA 4.1 DDP is solvable if anel only if 

there exists strictly proper ..0(5) and ~ 6) such that 

~;-t 
. 

-5 5 -:Z.s-1: 0 0 )(, (-;.) e, 

0 5-1 -s 0$: i 0 )(.z(s) e2, 

0 0 S -5 ; 0 

" 
)(3(5) e3 . -0 0 -I S :0 0 . )(4(S) e.l\ .. . .. .. .. .. . -.............. .. "." .......... 

i 0 0 0'0 0 Lt, C"» 0 . 
0 0 0 t ;0 0 Ul (5) 0 

. explici tly vIe obtain tha following equations 

(5-1) )(1(5) - SXl(~) + S)(.3(S) - (2s+{).x4(S):; e, 

(§-I) X2 ($) - S)(,3 ($) + S "4 (s) t-LlI (c;,)::. e2. 

S)<3(S) - 5 X4 C.s) +Lh (~) = e3 

-)(3 is) +5)(4 c..,):: ~ 

,x,(-;)=o 

)<4 (,;»=0 

Then (lQ4),(lO~) implies that 
ECJ.Qoo) <l=P ~5)(.2(S)Ts)C~(~)=el 

E9. Uo1) # lS-\}X2(S) - S~3('":» +u,C'»= ez 

E<f.((02) 4=P S)(3(s) 1- U2.(<;') = e.3 

E 9.(lo,)4=\? -1<3 (s) ::: ei 

Qoo) 

(10') 

(102) 

(1 0 3) 

(104) 

(105) 

U Db) .' 

(Jot) 

(f 08) 

( 10'1) 
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How :ror DDT' to ho qolvn.bla 

since X.3t:.s) if:: required to be 

strictly proper) 

since (hiS) must be str.ictl~r proper 

and then 

which is strjctl~ir proper, 

finally 

E 'Jo-r..)-..... U1'S)-- sez.+.se,-e\ 9. L r::;' L v/lllich is strictly proper onJ.;',r forel=-€I_ ,. 
5 

-tt 
Hence DDP is solvable if and. only if E= 0 ,elf fRo 

o 

In fact·one can immediately check that 

I"",E = spGln[i -I 0 oJ~D,,(o1J*(Do{o) .To be more explic.it. r.'G can 

construc t the sulJspace V~(Cko) by usin8 the Flov!Cha~ct 1.8.\'[0 define 

first 

I 1 0 

AD-I F 0 I 0 0 A -\ E A ::: 0<0 ,::. B= Q() 1.= 1 ~ 

0 0 0 
0 

0 0 () 
0 0 

Then we obta:i.n 

0 0 

Ke.rC~5Fn 1 0 

o i 

0 0 
Settinp <-' 

1Jo~ ke,.C 

from Vi ~ V i - I n A;'l (1J.i.' + $) 
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. . 

. iteration 

v,Jhere 

and tt + $=spq,.. 0 ~ 0 

o 0 

o 0 0 

.nee A-I denotes the "functional inverse of map A ", by forming 

~ \ ~I x. + X2, + !l~+X4 

A'!:. 
0 i 0 0 '1:2, X2 --- 0 0 i 0 ~.3 X3 

0 '0 i 0 ~~ x; 

A; E 1)0+$ i.f onc1.. m ~ if ~.3=O 

~11 

f 0 0 0 

)0+ t)= SFon 
0 1 0 VO I 0 $ 1 =1)" Qt'ld n A- ('0 t ): spo.n 
0 0 0 0 

.0 0 i 0 

iteration 

mee and according to the 

ilK 2.1 ,DDP. is solvable for ~~o if and only J.'f ~ c Du 'l"..v. (q,) :e v- <>\0 U..". UI:\O , ..... 

. - .~ 
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Now VTe "'vill tl'Y to out. if we have' any important improverlent to 

enlarge the subspace Dolo 11'1- (Uto) ,using the procedure defined in 

CASE II. 

Let 

m, 0\'1. tn~ m4 

Mc{L 
/.::.. omS" tyl" YYl1- mS No« -

\i}.9 mID tIlu mil. 

ml~ I'n,,, /lhS" mlb 

Then. according to COROLLARY 3.10.c,we 

of Mdt and Nol~ using the equations 

M~~ F2, -;: F~ 

C N-~i = C 
. -, 
Mctt Ft = ft ~L 

where 

tn, 0 0 m4 

i 0 m$' 

n\ n2-

I!. n, n~ -
09 Oto 

nl~ n,,4. 

determine the 

4 0 0 

-\ 
1\ A " 

03 n4-

nl- rl8 

rlll nl2 

015 n,(, 

free 

(111) 

(tI.1) 

0 

/It. 

paraneters 

q(HD)~ Mo(l =-
tf\5' 

and E,\(III)~.N~,.= nS 06 n'1- ng 

/\ A A /I. Mg 0 t t'YiC2 n,g h 10 1')44 n,l 

h'I,; 0 0 tl)"" 0 0 0 i 
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Substituting them in (112). ,-ye obtain 

-t 0 0 0 1 0 0 0 
nfn,'l. -nsnl( t 0 _Of 

OH 
nit 

OS' 1 nl ns 
---'--<-.- __ "_'_r __ '" -,.------ ••• 

1 MG\L : 0 0 0 No{L = 
nli 0 nl \ n,2. 

YlI'1. 0 0 
~ 

ntf nil 0 0 0 1 

vlhere:.; n5) n1-) nf1 E- rR and ntt 6 fR-foJ 
And in genoral v1i th 

Dc{~ '::. Mq~ D.,(o NotL ,l;:eeping R, ~,C fixod we obtain the same 

transfer function matrix. To judge vlhether there is an improvement to 

solve DDP we check 

0 0 0 -\ -~ 

nt·nl'l-nS·nu o .. flt ~ n1n'2.-~1 

n,. 11\1 +1 
n" 

:=. Spa" 
0 0 0 0 = stan 

0 

_ n,2. 0 0 nil 0 /1'2 

11ft "H 

110'l{ 
if and only if 

1:3.nd .other wise we obtain 

o 

.. 



(7 I). ) 

wi th ( eX If) f fit - r 0 ] • ·'~:qui valently 

& c SrQ~ Hil] 
. and tho structure of E matrix for DDP to be solvable is .""". 

-'1 e, 

f: ol9 = 
e2 ~it·~ e, ) (72, e4 fit) Q/6,+ra r.j . 

0 0 

09 €1 

Hence choosing sui table (M~ll No(,' )-couples we can solve DDP 

for E = [e i e2. 0 e.-\] T by si!TIl11y changing Do(~ matrices and keepin{!, the 

the transfer f'unction matrix unchaneod. 

Thus the subspace that &. must be included is determined by the 

produu-t . of Do(o 1J'¥ (O~o}and the degree of freedom obtained in Md~ ia 

general. II 
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v. CONCIr1JSION 

In this l'Vork,it is presented a report which consists 

of two -seperated parts: a survey and an investigation. Vlhile comple­

ting, it will be usefull to e;i ve .some extra notes to emphasize the 

importance OT various concepts encountered. 

The basic reference for the "Geometric Approach" is OJ. 
• I 

However it' is' full of sophisticated mathematics and concepts wInch 

make'the study for a beginner,difficult.So,th~ aim of ,the survey 

is to give· the essential idea introduced by this new approach.For 

thio,basicconcepts (such as A-il;lvariance,(A,B)-invariance,Stabi-
/ 

lizabi;U.ty) and basic pro'blems (such as DDP,SDDP,OSDP,ONC'j. are stu'"" 
I 

died as-simply as possible.Thinking of the fact that most of the 

readers are familiar. with the freque:1cy domain approach,frequency 

domain treatment of these basic concepts and, 'problems is also stu­

died as introduced in [6,7,8,~ .So,a survey of the modern control 

problems chosen is obtained, complete with their solutj.ons the geo­

metric framework and in the frequency domain. 

The "geometric approach" will tend to be .the "exponent" 

of the "Modern Control Theory", in the future. Tn "this nevI framework, 

we believe that it will be possible to easily investigate the pro­

perties o~ the solvability criteria of new control problems and the 

other relations existing in the diverging methods:bf the Control 

Theory_ 

The' second part which is an investigation is believed 

to be ne,V{ _ The problem is essentially based on the. Vlork introduced 

in [~oJ_ The' considered linear . Ttl-part has a special corifigurati'ol1 
, 
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which is obtained using a first level decomposition,and the ob­

tained state equations are not in state-space form. Hence the 

essential. idea is to investigate if the "extra parameter:matrix 

]I) " brings any degree of freedom. It has to be mentioned here 

that; in this study it is only considered complete;Ly contollable 

and observable systems of' the above structure,in which state­

space form of the· state equations can be obtained by simply inver-

ting. D matrix.In Chapter III,the mathematical tools used are 

p:r:esented in full detail, and an important property of such sys­

tems is presented· by THIVT 3.11.This result is totally new.Based 

on this property'of "the existence of D matrices leaving trans­

fer' functiqn invariant while Fe ,F1 ,C kept unchanged" another 

-~·~···-'.-·---:quEfs1;ioiiis asked and ansv:rered in Chapter IV : To use D matrices 

for decoupling the disturbance at the output. The result obtained 

is that in the disturbance structure of CASE II the dimension of 

1J* ,the maximal (A,B) -invariant subs·Pllee in Ker C, does no:1>: 

increased,hoVlever a larger degree of freedom may be obtained 

for some l!J • As seen in the example 4.1 a V'* which is ini tially 

equal to span l(-' 1 00J"] can be mapped to span [[10( 0 (->11"} VIi th 

o{,~ E: fi?- (o]arbi trary for a sui table choice of D ; furthermore 

we also Imow that this choice lD does not change the transfer 

function matrix of the system. 

As we stated in the context,it can be expected that 

it finds ffil efficient area of application in the electrical an 

electronic circui tl7j designes. The analysis related to the sol va­

bility of lDDP may be extended,to more generic c1ecoupling prob­

lems.For further investigations the dete~nination of the bounda­

ries of the equivalence ylass ofC M,N ). matJ .... ix couples using 

the information brouc;ht by the stucture of J.i~ ,Fz., C matrices, can 

be· . suggested. 
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In genoral,the study includes an introductive surveY,concer­

ning both the geometric and frequency domain treatment of some 

new concepts;and the second part may be considered as a partial 

applicatj.on of the methods that make part of the survE?Y. 
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