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INTRODUCTION

Progresses in any field of scientific research always
bring.simple and powerful approachesvto“the,solutions;of sophis—
ticated'problems.In recent years,the_developping technology has
.greatly increased the interest in Sﬁstem Theory.Especiaily,the

‘problems encountered'in the design of complicated.control systems
‘have emphagizéd the necessiti of simple and unified‘approaches to
the strugturai analysis of linear’timeeinvariant multivariable
'systems In the sequei to this work the results obtainedfin‘two

.new frameworks namely the geometric approach and the frequency

domain approach to the treatment of modern control problems are

: considered and uged.

‘ This work consists of two- parts The first part is a
‘ordetailed litterature survey on the newly 1ntroduced.geometric
u‘apprOach and its frequency dOmain\translation5§1Chapter I, thel

mathematical reliminairies . some basic concepts of Linear
3 [ B

.

H“fAlgebra are reviewed and new geometric concepts ( such as

(A, B)-invariant subspaces, stabilizability subspaces } are given.
A frequenoy domain characterization of each geometric property
'is aldo presented.Chapter;II-takes-into consideration gsome of ‘

.pmodern control problems ( such as bisturbance'Decoupling,Ontput
:stabilization with respect to Disturbance ).Each.problem is ‘

defined first,then the geometric and the related frequency domain

formulations of its solvability are given.Special comments,remarks
andialternate proofs arevalso made,whenever,itiis possible.

| In the second part a gpecial structure of linear multi-
variable systems is considered.This system is a\coupling of two

‘\bas1c multiports the first composed of " lossless " components and

the second characteriz1ng the " algebraic " components I Chapter IIT




(41) o

some propertles of thls structure are 1ntroduced based on [10]

- Then using strict system equlvalence [lj] ,the existence of dlfferent_;

" 1ossless " multiports for which the transfer matrix of the svstem

is invariant when the " algebraic " multlport ig kept constant;;s
investigated.The results are given ag theorems and illustrafed with
van example In Chapter IV using the results of Chapter ITY,the. solva—
| blllty of D D P for two dlfferent disturbance structnres is formu—' -
lated,In one of these cases a larger degree of freedom,to nullify
the effect of disturbances,is obtained.This case is also illustrated ||
with an example. |
One general remark is that most of the decoupling prob-

leﬁs considered are generically unsolvable;that is tne solution
fspace of these problems consisgt of isolated pointe in the neighbof-_
ohood of whlch the problem is unsolvable. | e

. It should be empha81zed here that,the problem stated . and ||
foimulated in Chepter III is totally new and answer obtained is that
.thls problem is generlcally solvable.The new properties that are
.1ntroduced may find many areas of application in Bystem Theory,
i;espe01ally in electrical circuit design., A letter from M L J Hautus
also states that the problems are very 1nterest1ng and relevant.
. B Plnally,I'm personally gratefull to my thesis ouperv1sor_i
C Goknar for hisg orlentatlon eand helps in the preparation of thls’

: the81s. v : :
S R M.Salim'Arslanalp
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T MATHEMATICAL PRELIMINARIES

In 'order to give ,‘the_ frequency domain characterisations
of gome geometric concepts widely used in the geometric formulations
of modern control problems we will first consider the (E ,W' )-represen-

-.tation-newly introduced in [T_ Yy 9] .

@- (F,wr ) - Representation :
G v _
We consider the linear time-invariant system Z . given

in :L'bs state space form by o »
| -z =Az + Bu | (1)

» =C£ | @)

where zM) X SR uMEYLRT, yW) EYERT
 and A:)(_.,x B:U~X , C:X—Y | L BT
“linear maps Now let z(é) be a tlme—domaln golution of ( 1 ) subject

'b_ovan input function uff) and to an 1n1t1,a1 state % ({) Z .’l‘hen
v 204) = Azl + Bu/é)

and ‘the same equations (1) (2) in Laplace domain can be wrltten as

55 (s) - % = AE(s_) + Bwes) - (3)

where ;{5)) wi(s) -are the Laplace transforms of z(t) wlt) respectlvely
The initial state zl4)=2, is obv1ously an element of the state spacez .
hence z.,é Z and gls) and wr(s) are strlctly proper ratlonal functions

since x(-é) and a(-é) are real functions.

DEFINITION 1.1 [7]
Let Zo é Z ; the formula ;
RN Zo = (.sI-A)g(s) - Bwes , ’ . @)

ig called a (z,w- )-—representatlon of Zo ,if 3(5) and wis) are
stri ctly proper rational functions. = : ] s
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@7 A-invariance :

A-invariance is an importent property of subspaces,widely
uged in linear Algebra.It w ill be discussed briefly,since it helps
to unglers’cand the related but more complicated concept of (A,B)-inva-
riance. ‘
| Congider the linear gpace Z;‘Ghe linear map A:z’f-*;%’ and
a subspace ((]Q,z,; o If @—? AW ,then for wy 66(]) ¢'é{4)..,g}
va'bas'is for W  ,the set of vectors £ € @a such that __ég:Ag);) ,

;€ [‘/Jz’__.,’g} : - spans the subspace ﬁé .

DERINTTION 1.2

a] igs said to be A-invariant if and only if_AUJECUT-
With this definition we will consider the system > and always talk
ébout the A-invariance of a subspace U of the state space Z JIt's
also posgible to obtain a matrix characterisation of the above property
as follows.Let V be a matrix whose columns are basis vectors for the
subspace ?f_c./'( ,that is \/-“-3 [!4')_‘{2,-'-. .‘.’k‘] vhere v¢ €U
for | L€ {{, --'.,/\’] | are linearly independant and spa.n [yzj: .

v will be called a bagig matrix for v .

THEOREM 1.3

Given 2 and U.C.:Z with a basis matrix V ’ U is

- A-invariant if and only if a solution P of the matrix equation

/AV:: VP | ex.ists.

Proof:

Hn=p" / , ‘ ,
Let AU €U ana \/: [\f' Va, .. !k] " be a basis matrix

for U .Then AV= [A\_/, Avy .. AYK] :A[ Y1 Yo o] € v




- 3)

Hence Y¢ € 27 S for Ce{l,,, k} = ‘y,: =V,DL for ((—{f)...,k] for

some p; € ﬂ? .Then AVs= \/[p, Pe. Pk] and P4 [p--. px)
is a solution of the matrix equation. -
qd:: ‘

Let AV='-. VP with V a basis matrix for {/ and lef,
Z év' ythen Z can be written as a linear combination of basis

vectors of Zf such as _ : S . R

IR

=Vr |, forsome r€RS . men as
Ax = AVr = VPr we see that Ax is a linear combination of
| colums of V .Hence A_z_ €U ,which implies A(S & A gince
-z 62}' was arbitrary. | , _ n
In modern COntrol‘ problems,an extension of the idea of
invariance has found an area of application.\The (A,B)~invariant
."Subspéces of ,é state space Z as_introduéed by Wonham and Morse will
‘be the essential mathematical tool in handling the problems to be

 stated in section II.

@—f ( A,B )~ invarianf subsu’aces

; "Je cons:Lder again the system 2 with its s’cate spacez
1ts 1nput space u and 1ts output spaceg Let Ube a subspaoe on

If MCZ andg W*U 3 then Vf éf, 'f Ll)’-H)' for some
w-éé(] and o eU' |

'DEFINITION 1.4 '[5]

UlS an (A,B)- invariant subspace oi‘I if it's A —-invarian

mod (Bu) l.e _ o o '
AU < U+ BU o 5 .



The importance of (A,B)-invariant subspaces is that these subspaces
can be made (AukBF)-invariant‘fOf‘a.sditable choice of ‘the feedback
‘matrix F. This property is very useful since it helps to change a

fee‘dba'ck problem to an existence. of a subspace which is (A,B)-inva=i. .4

riant.

LEMMA 1.5 [1]

Let ]]5 I .There -exists X+ U such that

'(A'*' BF) U’ < if and only if Yfis (A,B)—invariant.

PROO P: [5‘]

" ||
g

Let (A+BF)U= U and z €U
Then (A'i'BF)% = U and v é' U- ; then AZ =VU- B‘:x E-U-J-Bu
gince " F& €U . _
_"4-': ) Let U be (A,B)-invariant and [V,) ,7’44? o
. be a basis for U s AU € Uy B U ' - ,there exist g_f‘ ey
'and u: €U for (€{4,.. u} such that |
| AV = we - BFa , (€ {4, 0]

‘;.De'fin’ihg' Rl —uU by Feve=uc ,c€ {1, )/q} and

let’c:mg F' be any extengion of the map F '{:o 2: ~ we obtain
AW‘IA)’L -—'BFV,_ ) Lé[/ ./u] ’ﬂ

By 'bhe above lemma 1t's seen that there always ex1st., a Teedbac F

by which an (A B)—lnvariant subspace2)'in the Openloop characterisa-
tlon can be made A -invariant in closed ‘loop characterisationjwhere
A2 A+BF  .This fact will be later used in finding &
solution of disturbancé decoupling problem by state feedback.

For frequency domain applications;ﬁhefffeduency domain
characterisation of (A,B)-invariant subspaceé is needed.This charac-

terisation is given in terms of (g ,w )-representation as in [4]) .
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( However we have to mention that a polynomial character'ieatien' of
(A B) invarlant subspaces making use of the Rosenbrock sy tem matrlx

is dlscussed in detail in [6])

_ PHEOREM 1.6 [7,91

A subspace UCZ _is en (4,B)-invariant subspsce
if and only if every xo £ U' ‘has a ((z;,t:d )-representation

~satisfying g(s) € U for all s .

"PROOF : [9)

Let 2, éVZf 9,2: . and Ze = (sT- A)Z(s)-B Ws)

w:Lth strictly proper wis) e U a.nd strictly proper E[S) €U

for all s v.' Since SZ(S)‘ € ?j-

Az(s)—szz{s) xo_ Bwesy € U+ PU foralls.

'T'/'le ’[unC‘/l'onS ZCS) anc{ M)’(;) éelf)j 57‘(4(_'1‘{7 Prof)(r,tfls Po_&SIb/e
oback to~ fime a’omam fiy fnverse —&tf: ace ‘éfaq,{';érn—) 0,,4/

| 7[0,— 05 {E(s)} = Z(‘f) 5 f”{w(u]: w ) /or' > 0 e have
xé—é)él/’ for t30. TRen 2 (07) = ém, £ () ~2,) €U Hence 743,-

=07 Azo= 2:(0") Bu(O") 6U'+.Z5ZL :

L or=p Let Vg and AU € U+ BU ,then by T H M 1 5 there

e exist an " F such that (A‘*'BF.)U-"U For Zoév choosing

-E(s)—- (SI-A-BF) zoand wies E FZ(SJ we have Zo"(é-f-A BF)E(S'

i (sf-A)Zfs)— Bw'(s) with (5) a.nd ws) strictly proper bccauso of

the property of (51 T'A BF) | ‘ , T "!
When we are interested in (A,B)-invariant subspaces

eronrtained in a subspace éfz the iaroperty of maximality becomes

_'very' 1mportant in expressing the solvablllty crlterla of various

: problems.
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— Jaximal (A,B)-inveriant subspaces in Hen C

DEFINITION 1.7

Let UE x H Uis an (ii,B)—-invariant gubspace contained -

in /(er'C if and only if the following two -conditions hold:
@ AU ¢ U+BU |
oy U € Her C . B
In general one can j;all‘: about an (A,B)-invariant subspace
coﬁtained in any subspace ofx ;Howev‘er for application purposes 7
( DD P ,etc ) we are interestoc:l with the inclusion in Her C. |
.It can be shown that it's not necessary that /l/erCcontains |
a unique (A,B)-invariant subspace,This leads us to talk about the -
ﬁaximal ( largest ) (4,B)-invariant subspace contained in HerC yin
ordic—:r to judge éorrectly if a problem has a solution or not.In [2]
a geom;etric cénstruction of the maximal (’A,B)_—invarianf subspace
in KerC is given as part of‘;‘theorem‘.‘v‘-’e will consider only the itera-

tive construction f;orm'ula and will nof discuss the proof which is

in [1,2].

THEOREM 1.8  [2]

) | |
Tet U £ Ker C ang gerine _ |
Vv e n A"(B'Zl_l_z](“')) (=4,2,... 4 (6)

where = dim MerC ~  .Then 2]_,}: Uﬁu) is the maximal (A,B)~inva~-

' riant subspace contained in Aer (. ' | o

In the recursive relation.(6) A-ldenotes the fﬁnctional inverse of
A ma;tprix”v"rhenev/er' A is singular.The geometric éonstruct:@on of the
maximal (A,B)-invariant subspace contained in HerCig a practical
method when working on gpecific problems,To illustrate T H M 1.8

the following flowchart will be 'considered together with an example.
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i -O 72fﬁL
UM Her C

d=4+4

Um va.-unA;(Bu Va-n)

Cpnriee]|

P
-

FLOWCHART 1.8 ! GeomeTRIc (oNSTRUCTION OF Us

| ~ Ixample 1,8 :

Given
04 0 00 "'.‘oo '
oo_agg ¢ 0 o [1'0000_
.10 0 o A1 0| C= o0 10
A=1992. 091 Baft o Co |
00 O o0 0O , o O ‘

we will construct the maximal (A,B)-invariant: subspace contained

in /‘{er‘c .For this we begin by computing /'(erC

S | Fﬁ' o To] Jo] [&]
’ 1000 O 2 Tz To 1} {of lo
= looo 41 o0 L= 51" o :—‘_‘—-!?KerGSP 1ol 4] 0
‘ L ' X4 - {{e] (o] 0
25 ‘ ol o] 14
~'J vLJ’L-)-J



Following the steps of the flowchart 1.8 ,

o UOL KerC

i=1

L]

Bu + U@‘__ sp-A

i—-‘b O 0 0 O'

A—-I (B u +-_U‘°>= sp- u

Uu): leO)ﬂ A—l (Bu -'4-"0("): o

heel] "~:U“)CU(°> b_b_l_t-v(‘)#vfo)
(=2 | | | (

B u "' U(g’- Sp A

OO0 ~-00,
«_':j:..; o6 o 0:,_

-
J

- A(BU ;" )= spd

(8)




(9)

UV NABU s
lcheck v(z)c U(\) M” .-U(z)__#v-u)’v o

e
i

.
n
o

Bu v = sp

O =~0 G o

RBU)=sp

LO‘*-O~Q

~ | .}U(’)) A (B u Um) = Sp.

| '(‘;‘Hé‘c‘lc

9 (3) .y (2)
U :U :.ﬁSP.

~ooo o,
"
=

- .J} :

) As seen from the above example,to obtain the maximal
(A,B)-invariant subspace contained in Ke(C will be a more difficult

' 1,"px_fob1‘em when systems of larger dimension are congidered.

5 To g‘iVe .a'frequency domain characterisation of the
maximal (A,B) 1nvar1an'l7 subsPace con’calned in /(erC , the (5,w)~repre-

sentatlon will play the basnc role In [9] ,'bhls formulation is given

by a definition and a theorem which are combined here.
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THEOREM 1.9  L9]

"U* is the largest (A,B)-invariant :‘subspace contained 7
in KerCif and only if U-x ‘denotes the 's'pa.cé of all poin’bs for which .
there exists a (g,w’)—reprcseatatlon satisfying - g (s> € KerC
for all &§. (Le CZL’S)—O) A

Proof :
ey |
For Zo € U '. . ,we have by TH M 1.6
2o = (sI- A)gcs)— Bw(s) with g, wes
strlctly proper and Z(s) ya U-.x VS .Since U < KerC -

.‘by definition Z(s) & HerC.

" £/

f— '
Let o € Ux and show first that Zo € KeC.

- For this expand ECs) and W) as power series in S ~ Py

Z(’)) Z z 5'k |
w(s) = 2 Wy, S |

ana/notc ﬁ/raf Z(S) é /(erC VS = gké /ferC V,éé[/.z

Then Xo having a (le )-representation with g(;) € Ker C
(sI—-A)g(s) - BuJ(s)
or (SI AZ 7, sk_ BZ w, s~
b=y 2K k=r ~

and equating the constant terms
2o = Z & KerC.

~ are obtained.
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To complete the prooi‘ there remains only to show that
2}* is (4,B)-invariant ( or equivalently, to show that Z(s) & U;r
for a'l.l S because of TIIM 1.6 ).Regarding g(:«) as power geries
in & 1'b's gufficient agaln to proove that gk,é U;c Vkéffz ]

| : I’or this we talke the proper parts of both sides of the equatlon

% = s (5I—A)g(5)- 5 Bwes €3,

that is

[s gzo]Pm#, [(SZ—A)(S Z, + 5k 5 +one +Zk+5 ;;kH )]Pm,ser

- [B (sk%, 4o rup 57 wk,,+-— )]/:m/,er (s

which is equivalent %o

0=~ Az, 4 (FA) (5%, +...) - Bric- B(ka,_,+ ) (9
Yhen if (V(S)) denotes the strlctly proper part of the ratlonal
vector V[‘i) by equation ( 9 ) |

(51~A)(5 Z(s)) - B(Sk'/w(s)) 0 @
| Zk+5[AZ}<§lA)m”’)]ZL

defining = (gk-r 769 7 7¢»  emd (5K (57) ?OC"Q
equafion ( 10 ) :melles - o
¥ (51—- A) 7 () — 3 7(5) . | (r1)

Now 72(5) ;ﬂ‘)) are strlctly proper functions ; furthermore
(s) é/(erC gince for» Z(S)‘é‘ /(Ef. Z/: is also an element of
| ~/(e',C ({or ké {1 }) B . Then Zk/‘ has a (Z W )-representatldn
w1th 7(5) € HKerC,and by definition Z, £ Vy .
'The maxnmal:ty of U is immediate since it denotes all such
 points. | S : | o m
Using THM 1.9 the following result which is more convenient

to use in most cases can easily be obtained.

 COROLLARY 1.10  [9]

2o € 2]1F if and only if there exists strictly proper
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rational functions 5(5) and w(s) such that

 [sa -51 Mﬁ SR w
¢ ol |¥y |° R -

Also fhe follow;{ng corollary can be obtained by\elimina-ting Z(s)

from equations ( 12 ).

COROLLARY _1.11 [9]

. xoe‘U} if and only if there exists W (5) strictly proper
such' that L '
5 C (s1-A)'20 = - R w()
where Res) = C (sI-A) B is the trensfer function matrix of
the system’:2~ described by c1)y, C2). o n

Tn fact COROLLARY 1.11 is very explanatory about l)*
and tells that for this uj<5) the output corfesponding to the

initial state %o is zero.In other words,whatever be the initial

stét’e chosen in EU* ,the trajectories followed by the state of the

éystem remain at any instant in U«x— ,and thus the corresponding

output at any instant is zero.

'<:)—-Stébili2ability subspaces @

In most of the design problems sfability considerations
play an important role.A new type of subspace,stabilizability sub-
spaces introduced in [7;8,9]Vare very“susefulbto treat such prob-

'/ lems.There is a cldse relatioﬁ'between the stabilizabilify and the
' COntrollability subspaces.T§ emphasiievthié point later on,it is
useful $0 explain with two brief definitiéns what is & cbntollability
subspace., ” |
'  Consgider again the system‘zy described by {1),(2) and its

state spacex swe have the following deflnltlons
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DEFINITION _1.12 (1]

| Given thé systefn 2 thelco.ntrollable subspace ';?g CI
of the pair (A,B) is | ' | ' '
Rowo+ ABr— »AB 2 <AIB> (Y
where j;-ImB.—: Bu “ I
- In otherwords Ho is the s‘et of states which are reachable from
_2_'0: and is a linear subspace ofI [1] |
Now given the pa:Lr (A,B), cons:Lder all pairs (A+ BF,BG )
which can be obtained by using a state feedback F and connecting

- again matrix G at the system input. ( fig. 1.13 ). The controllable

o vsub"space of the neW‘system pair (A +BF,BG)7 is called a controllabi-

1ity subspace of the origlnal pair (A,B).The follow:mg definition

: w i1l make the concept clearer.

Sssfém 2 :

IR

FIGURE 1.13: System (A+BF,B&) obtained fomZ

| ;»km;_v':DEFINITION L3 ]

Let A Z“"Z and B: Zé-'z be as deucrlbed in uys‘bem Z

A subspace ?C Z is a controllablllty subspace of the pair ('L B)
if there exist maps F: SZ-—*?,[ and G‘ u—’u such that '

R = <A+5F/Im5é> e

- Note that

' ' o _ ~ 1
Q = Im BG + (AtBF)ImBG +-- -4 (A+£BF)YTImBCT
ama (A+BE)P = (AMBEIImBG +---: + (A+BF) " Imblr

hence ,(A-\-BF)R < ﬁ/ by the Cayley-Hamilton theorem.By LEMMA 1.°
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the-family of controllabi(li_ty subspaces of a fixed pair (A,B) is a
su.bn’iarﬁily of the family of (A,B)-invariant subépaces.

We now our attention to stabiiity and stabilizability and
we consider stability flom a gencral point of view.We denote by @—.
any subs e‘c of Q: sa’clsfynng the condition ‘ f /)[/??‘- ¢ This condltlon
:is' brought in, recalllng the property that no stable system having only |
complex conjugate poles in 6—- exists.As understood C— denotes our
" s*bablllty I‘egloq" in the general sense and we gay that _A, is a.

stability map ( matrix ) if G(A) = C ,where G () meens

" spectrum of A ".Again we will say that a rational function is stable
if it has no poles outaide of 6. C C@JQ “bht? get with the proyorties

CNC=Pma CTUCT=C.

DEFINITTON - 1.14 - [1] ,

Given the system Z ,we say that the pair (A,B) is stabili-
zableA‘if there exists a map F: ?C—'u such that

6 (A+BF) < € | 4

Hc«:ncke " stabilizihg " the pair (A,B) is equivalent to change the un-
stable map A .tor a stable map A_@\. by‘ gimply using a stat‘e feedback F .
" In [l] »the close relationship between the exigtence of F ana con-
troilability is given.Let the minimal polynomial of A ‘bed(s) and factor
it as A(9)= A™() A7(S) wnere zeroes of ‘0(255 €L~  ana zerocs of
&+ (%) €' ct. The subspace Her d*(A) or X is called the subspace

of " uns.‘tablev modes " of A .As shown . in [1] ,the pair (A,B) is
stabilizable if and only if the " unstable modeg " of A are confrol—
lable.The proof of this conclusion Wiil nok be discussed but the follo-

wing theorem will be stated for further reference.
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THEOREM __ 1.15 (1]

Given the systemz the pair (4, B) is stdblllzaole 1f and
~only 13" zb—/’(ero("'(A)C (AI)B> ' | S -
'Con equently- there n*:lst a medbark F  guch that | G-’(A*'BF)C‘ (E'
.ylf and only if the subspace of " unstable modes " aof A is 1ncluded
in the contollable subspace of the@'pall‘ (A_,B),_ [1] .Recalling a pro-
' perty of controllability for 1inéar systems,we can state"tlle_ folld_-—

wing theorem.

mmoew 116 (7, 9]

—

1(A,B) is stabilizable if and only if for every complex s€EC
we have - |
rank [_SI"A B =n - ,where n is the system

dimension. - "

 We notice that rank [SI-A Bj is always equal to "m "
e}tcept at the eigenvalue of A .Then when we restrict the controlla-
bility to the unstable modes fhe eigenx‘ravlues are also restricted
to those which iiev.i»nmf.llnother-usef_ul conclusion is that a comp-
: i_etély contrdllable syvstem pair is alﬁvays sfabilizable.
We‘_ aré now réady to givé v‘bhe definition of stabilizability

subgpace.

 DEFINITION 1.17 [7])

= : U-—C;I is called a gtabilizability subspace if there
exists F! L+ U such that (A'f'BF)Ué' Uand ‘6((A+BF)1U-)§(f. B
_Iﬁ‘““”‘uhe above definition 5((A+E>F)lv-) means the " spectrum of the

map (A+BF) restricted to the subspace v .To be clearer,consider

, thefnap 7{1 I""’Z With a basis {fq,fz,.. .2'4} ror L ,let A,_,,m ‘



N vy

be an Nxn matrix representing 4 with respeot to thls bagis. Taon let

'U-C- x be an/%' ~invariant subspace ofI such that %U-C U‘ If

{Vlr" ,. is a basis for U— ,completlng thls basis to a bas:Lu.
for Z we obtain {'U}, ., Ur S Xy, 2.’,.] In ’ch:Ls new ba31o the map % is

characterised by the matrix

/—&- 'A'r”‘A; o J
= [ O .- Az(n_.—)x(n-.-.
and 6'(76 /U) O—(A ) , [1] .

To: follow the idea introduiced by DEF 1.17,consider a stabi-
rl:iza_bility subs;;ace UQ e H 17/_2_‘0 GU—' ,uging a suitable feed‘eack F
the respense i

- Ce ¢ (A+BF)

Xo —» O for Et—+e0.

-—

In other words we don"b require that

C e‘,(:(A-I-BF)‘ - O for -t —od p

but obtain a decay to zero oniy for gome of the state vectors that we
are interested in.This is equivalent to say that we are interested in
VStebilizing a part of the state space ;K ,if it's not possible to
stabilize the whole state space.This property will be later'used to
gtabilize the output corresponding to a set;of disturbance inputs by
u31ng state feedback. |
By definltlon a stablllzablllty subspace is (A, B)—lnvarlant

accordlng to LEMMA 1.5. If U is any (A, B)-invariant subspace w1th

F: Z —-'u satisfying (A+BF)U§mve can construct a system Zf:,cf
“such that ' '

1= (A+BF)x + BGw ‘ (14)
o W= RE
where Gl CJ—* : wﬂ:h = //2 for some f Thls 1s go since

there ex1sts G (U'—v u such that the tlme domaln re5ponse to the
1np1,_11: | uw € u,g ({’Io)éﬁfor all f70 1f and only if 2’062}’ and
is of the form Uus= F)Lf-é”w' - for some w [0 00) "’L(] [4]

So taking any 6‘ such that BG&J (B lé)/) U we can obtain a
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itestric_it_ed system ZF, w1th an input value space é(] ‘and a state
space 7]' .Obviously Z‘F:(;r is not necessarlly unique;then let @ (U)
Qenote 'Ehe set of such pairs ( E,ér_) glven rise to systems Zr_’)&_ with
a sta’ce gpace U .

Lpoa 1,18 [7) -
Let U...x be (A, B) ~invariant and let (F (x)éé CJ) then
is a stabilizability subspace if and only if (A+BF) BG)/U, is stabilizabl

~ The proof is in |7] " o
' The follow1ng 1emr‘1a shows the existence conditions of such

(F Gr) pairs.

{mow  1.18 4 [7)
| " There ex:tsts(F G’)é @2' (v)such that G’(/—H‘BF) (B
if and only if the system Z is stablllzable and 'U is a stabilizability

| subspace. _ 2 | L - u

’ VHencié the sys’cenx Z'F)(,f mus‘t be stabilizable,in other words the
uns'table modes of Z{:,(,. must be included\’in the controllable subspac_e ‘Qf2;'(
: ZF ¢ -In conclusion,we use-a linear state feedback F and a gain
matrix @' to obtain a new system which restricted to a subsPaceUhas
controllable unstable modes. Since'(A-t-BF-/v/ Im(BG)> <A+BF}IM(BG')7 ﬁ
i;' for U— to be a stablllzablllty subsgpace there must ex1st a con’crollabl-
11ity subspace ;g;'i-OI (A,B) such that it contains the unstable modesQ[(Aw“BF
jwnere F matrix is not necessarlly unique and induced by ‘the condltlon
|(AsePU eV

o Ty glve the frequency domaln characterlsatlon of a gtabiliza-

"blllty subspace we again use the (Z,w) —representwtlon.
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THEOREM ___ 1.19  [9]

U-@I is a stabilizability subspace if and only if everygézj

has a (Z,w)—reprcsoz{tation such that Z(s)é?]and’z(s)) ws> are stable. @

Ag is the cage of (A,B)-invarient subspaces,the maximal stabilizability
subspace contained in /‘(érC is important to characterize the solutions

of various control prohlems.

DEFINiTioN 1.20 & [7, 9]

Given the sys stem 2 and the subset C o.[a: R ?); denotes the’

gset of po:Lnts for which there exists a ptable (Z)w)—rcpresentatlon satig-

fying ZC‘;) € /((’—"C | A o H

THEOREM _ 1.20  [9]

U;is the maximal gstabilizability subspace contained in Ker{. -

REMARK 1,20 B

The DEF 1.20 A and THM 1.20 can be stated for the maximal sta—

bilizability subspace contained in a space j{CI in general by simply

chariging | )L{er C to \/7(?

1

COROLLARY 1.21

Thc system Z iz stabilizable 1f and only if U,-, &) =Z ,where
7]_;: (Z) denotes the maximal stabilizability subspace contained in‘,?:.v o

We believe that tlis simple introduction to stabilizability gub -
spaces will Dbe suffiéient to foilow the analysis.of the dedounlingkprob~
lems which takes stablllty criteria in congideration,and this completes
the first cnantcr on mathematical prel:mjna1r1es In the ncxt chapter we

will dlscuss in detail control probloms in ‘J'thh the concepts stated here
will play a basic role. :
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II DISTURBANCE DECOUPLING é; STABILIZATION

.The aim of this chapter is to give a detailed presentation
~of verious formulations concerning the;dieturbance‘decoupling and -
Aetabilizatjon problems. We have to point out that the problom"'we are
g01ng to analyze have recentlv becn introduced with the help of a |
new approach the geometric approach to the structural synthe81s of
linear time-invariant multivariable systems,For each problem being

- analyzed the goal is to forﬁulate the solvability criteria.In each
case,the formu}ation will be basicly geometric,then its frequency
domain translation will be given using'thekalggf)~representation
and the work gone in[§,7,8,9] JMost of the £&me we w ill also tryr
'fe give a matrii polynomial formulation for.some comparaison pur-

- poses.

l,”(:) Disturbance Decoupling Problem ( DDP ):

In system simulation and mathematieal modelling,the unwan-
' ted effects imposed on the system are known as distﬁrbance‘paraﬁe—
‘-fters.In.very simple‘terms,dieturbance~deeoupling‘is"to decouple the
'{’effect of disturbances acting at the systgm's input parts_" from the
”system output uQ1ng state feedback Examination of this problom »
: 1nvolves egsentially the fundamental geometrlc concept of (A,D)-inva-

~riant subspaces.

Congider the eyetem P L
Z@) = Az)+ Bult) +Eqt) (15)
yw=Cz@) o

for 'le jwhere again Z(i‘)ls the state vector utt) is the input
‘ vectqr';§Z(f) represents the disturbance vector andé//é)the output

. vector,
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PROBLIEM (_ DDP )

ll‘ind_a state feedbaCk F:I;’u such that ?() has no ..
influence om the output'y()‘ Note that we denote again the state
space by.z the input space by 2[ the output apace bytb/ and the

" space where q(')takes its values by Q

A definition that takes place in [1] states that " the

' ystemz is said to be disturbance decoupled if and only if the

"forced re8p0n§e(£)~ C/e(z‘ T')AE- ?(T)o/?' (/-7)

due to the disturbance is zero for all C)(-)é @ and for all t 7o,
: -~ ~;
where Q ig a fu_nctioh class.,Geometricly, the system Z’ is distur-

bance decoupled if and only if

e . - A
; <KAlE> < ker , where & £ ImE 01,27,
| Now ,consider the case where the systemg is not origi—
nally disturbance decoupled and where the linear state feedback law

F’X""u is being uged %o change the map AZ—"Z tobA—é’A»’*’BF!

x msf% ,  Theso obtained system is disturbance decoupled if and

??ly it <,A+5F/‘E> = KerC. o

 mmmormr g1 [1,2]

Given systen 2, described by (15) (16) ,DDP is solvable
1f a:rld only if fC 2],',(_ ,where U is the max:.mal (A,B)-invariant
subspace conta:ned in /(erC '
M':’L_—_V"

. Given the system Z »DDP isg solVable' implies that
U4<A+BF/5>CI{¢rC31noe Eclr , U is (A,B)- 1nvar1ant and- UCI%I‘C
| 'U'CU* hencc A CU—}.




(21)

114,:___.'9 ’ .‘
e Given f < 7];‘ ,31nce e is (A B)~invariant,by LEMMA 1 5
there exists a state fecdback F such ‘bhat U is (A’fBF)—:anarlant

i,o. (A+BF)U;; CU; Then since g U
S L A+BFIES © (AHSFIU;‘7 = U; & KerC
hence <A+BF /57 E KerC. =

So Tar the analys:Ls of DDP has been abstract.However using
‘ the aigorithm of TIHH 1.8 we can alwdys compute 7],* and check if DDP
is'solvable or not,remembering.that E is a given matr.ix.’l‘hevk’fol—'
y'lowing block diagram gives a clear picture of the distlvlrbance"deco'up—

' 1ing.

10

R

FIGURE 2.4 ¢ DDP

Onoé it is known how to characterize ¥ in frequency domain
: 1t's easy to obtain the frequency doma:Ln formulatlon of DDP.As assu-
vm_ed‘ preYlously,the class of function @ ,where (—),é‘ Q ,13 large
B éﬁ_oughnot $0 give them.a special configuration,—r;md the only_restric—
~tion ic assumed to be ch the structure of E matrix,Thus it's wanted
in ’g’eneral' the disturbance to output transfez function mabti*ix"f\)e“u:‘,l*-
{lnulllfled by u51ng ‘state feedbaciz.The geometric condltlon belng .
6 2F @, 2ImE € U; vwe use LEMMA 1.10 to obtaln to frequency

domaln fTormulation of DDP,

. THEORFM 2.2 [9]

1

' DDP ig solvable if and only if there _éxis’cs strictly proper

matrices )((6) and U(5) such that . |
sI-A -BJIX®) E] | |

| = (18)

C ollus) O
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PROOT . .
The proof is straight Torward. By a’pplying LEMMA 1,10 to each |
colum of E ,we obtain that (18) ZLlelCS each columm oquoior

'\/qo éQ be an element of U ,and we use THH 2.1 to comnle’ce the

proof. =

At this point it is useful to Qons_ider another problem knowvm

as the exact model matching problem [33 .Our purpose is to show

that the ex1stence of a solutlon for DDP is equlvalent to the
existence ofasalutlon for the corresponding EIEIP.

Ixact model matching problem is motivated in general by the
notion of " model following control ",To be more explicite we may
think of a model system as a gystem having all desirable qualities.
The large sgale réalisation of it ﬁay introduce unwanted side-effect
The.compensation gcheme is then used to modify the roalloed sys tem

such that it behaves just like its model.

'PROBLEM (_mummIp ) L

’ Given a svstem with the (me) strictly proper,rational
transfer matrix G () and a model sydtem with the (qu) strictly
propér,ré’cional transfer matrixv G_g(ﬁ) ydoes there exist a cdmpensa—
"’cion‘ scheme which employs linear state ~s}rari.able feedback in combi-
nation with :anut dynamlcs guch that the transi‘or matrix of the gi-

ven system is equal to . GL?,(5> and when ?

THEORTY 2.3 (3]

EIMP is solvable if and only if there exists a strich;,ly
proper- I‘ublOl’l&l (mx q) matrlx QC5) such that
G () Q) = G5(5) . . B
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‘DDP we make the foliowing definitions.Given the obs‘ervable syétem

G (5) & C (5I-AY B

(A,CBE]C):

G, (DE C(sI-AY 'E

In fact (19) characterize the transfer function of the "given system"

and (20) the transfer function of the model sygtem,and we want to

(22)

(19
(20) ,

ow to show first the one to one corregpondance between EMMP and

—~—

exactly match the input/output transfer matrix Gn(s)to the dlsturbanée/

output transfer matrix Gza).'()“onversely when data for EMMP is given as

| G(S) and Ga(9),the corresponding data for DDP is constructed as obser-

| vable reallsatnons ( A B,€) ana ( A E, C) combined as rA [B E) C)

--By these deflnltlons we have to

For (A(BELQ)) ~

So:.w: EMMP

C-an) = (5l_A) B
Gip ()2 C (ST-ATE

THEOREM 2.4  [6]

EMMP is solvable if and only if the corresponding DDP is

solvable
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PROOF
Por systom 2 deflnod by (15), (1 6) let G\C$)— C (sI- -A) B
and  Cro(3) £ C(sI- ~AY E mmen DDP issolvable if and only if TH. 2.2
holds.By eliminating X(5) in the equations of (18) we have
C (sI-M'E = C (sI-ABUG)

| which implies ~C-;~1(s =- G (DU Cs) ywhere U(S) is grticly proper
by THM:2.2. | | | B
,‘The relation between DDP and' EMIP is attractive beceuse it gives |
a second framework to treat the EMMP.In order to solve EMMP we have.
always the poss:.bllity to construct the datak(A,[B.E],C> for the

corresponding DDP.Then by solving DDP we will have the realisation.of

the compensation transfer matrix QC5>-

@Modifiked Disturbance Decoupling Problem (MDDP)

“"We consider again the system 2 ,but this time we ~asé1.ime that the
dlsturbance 7175) is also directly avallable for measurement such that a

feedback from the disturbance 1nput is pogsible.

PROBLFM QIDDP)

‘ leen the system zZ determ1ne constant matrices F ana D such
that when “the linear state feedback law LL(‘U = FZC‘” + D_‘.?("") |

is used the output doesnot depend on q({’) c.e. C(-SI‘A E’F) (BDH:‘:) =0.
| The sgolvability of MDDP is formulated in a similar way to the
 one of DDP.

THEOREM - 2.5

MDDP is solvable if and only if

g <clUi+B : G

. where U;is the maximal (A,B)—-:anarlant gubsgpace contained in t«”fco
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PROOF :

" . ) : - : :
A : A '

Given gswfﬁ since &= ImE and,;g:‘?lmﬁ ,for any

basis matrix voq[ U;‘ there exists maps Di and (@ such that

E=VG&G+DBDy

which implies that :

| E - BD4= V& 3 hence IM{E“BDJ,}EU* < KerC .

Then by LEMMA 1.5 there existsF! I~ UL such that .

| (A‘f'B{:) Im{E— BDA} < U.;(. . Hence S'\-«—F('!'a'ev\fj holdsﬁj

e C(sI-A-BF)'(E-BD)=0 and bytaking D=-Dy.

~ Let MDDP be solvable,then there exist F ana D such that

by w = Fg_:+Dq the system is disturbance decoupled.Then by the

definition of disturbance decoupling

<A+BF|Im (£4+BD)> & KerC

and’ T (E+BD) & Vx . - (22)
Now since Tm (E+BD) 2 (E+BD) R =E& +BDE
and since - BD@ cImbB ‘

| (22) implies that E& + BD4 - BD& < Ux +}IME>

completing the proof.

Similar to the DDP case,we can tallk about the relation between

MDDP and the modified exact model matching problem (MEMMP),The MENLIP

is defined as follows:

I
IR

4
-

F1GURE 2.5: M™MDDP

 ROGAZICH ONVERSITES] KOTOPHANES! .



(25 )

PROBLINI ( MEIT'P )
Given the strictly proper transfer matrices Gi(s)and G2(5) find
a compensation‘schemevthat employs a transfer matrix(Q(ﬁ)proper

rational,’
Lablotar

RENARK : - | |

I,fact in [3]_Wolovich defines thé EMMP,in the most general case
by putting the condition of the existence of a proper rational (Q(s)- |
»HoWevervin {6} ©.Pure and ¥LJ.Heutus have splitted this general
formulation into two parts: i) a strictly pfoper Q) (BEL.mIP) and
11) a proper (Q(s) (MEIP). |

THEOREM 2.6 (6]

DDP is'soivablé if and only if thercorresponding MEMIP hasa
solution. ‘ | | n
'Thé‘one to one corresponding and the proof is completely analopous to
the one of THH 2.4 and avaible in [6] . |

The problems of digturbance decoupllng and modified disturbance
decoupling intend only to reduce the effect of disturbance at the
output,but they don't Qoﬂsider how the system dynamics aré changed by
the‘ﬁSed feedback Stability is the most'important'properiy which
- should be con51dered vhen 1nvest1gat1ng the effect of feedback on the

gystem dynamics.Next topices will take this into considerations.

_ (:} Stable Disturbance Decoupling Problem

As implied by the title of the section the problem that we are
going to'analyze is the stable version of DDP.For thig,we again consi-

der the systmn:Z(kﬂxmﬁbed by the equations (15),(16).




PROBLEM (SDDP): ‘
| Trind (if posgsible) a state feedback law g:Fg_.sgch that the
effect of the disturbance at the output ig anihilated and.the closed
loop system w ith (A+BF) is stable, i.e find F: x"u; such tha’c |
(A+BF|ED < HerC ana G (A+BF) < €7
In [1] we sen the definition of a family o;F‘ (A,B)~invariant

: gubspacé. ag followg: S
U= {U_ JF:X—U 3 (A+BF)UCU— UC-KerCand -
- G ((A+BP))y) < c 3 | (23)

One can immediatly notice tha;c Uél_),' is a " étabilizability subspace. "
opnté.ined in Karc ;50 the maximal element ﬂof y isv; y,Which was defined
in DLF 1.17 combined with DET 1.20 A ,as the maximel stabilizability
subgpace contained 1n Ker C. | |

) The formulation of the solvabilit‘y of SDDT is given by the

foyl‘lowing theorem.

‘mimorm 2.7 [1)

Given 2‘ , Suppose (A,B) is controllable.Then SDDP isrsolvable
if and only if. ‘c’; CU—* . =
‘ Now notice that thé formulatw on of the THI.2. 7 brings the
hypbthesis of (A,B) to be controllable,which implies that '(‘A;B)\ is
élvvéy§;:stabj.lizable according to THH 1.l6.However,as poin.ted out in
| lﬁhe&sequel of the samework in [1] Athis hypothesis is too <*”crong,}
‘since by LEMMA 1,184 it is only necessary thet. (A,B) is stabilizable.

Then the following formulation bring less restriction.

THEOREM 2.8  |7]

GivenZ_,SDDP is solvable if and only if (A,B) ig stabilizable

nd».ggw-. ' | ' |
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The difference between the formulatibns of THNM 2.7 ahd THM 2.8
is that in the first one it is wanted that 2, be completely control=
lable;but in the éecond,only the unsfable modes af:ZEu@‘required to\
be contfollabie.(Since (A,B) is stabilizable iff ZZLA)cz <34[f;>)

jecwill turn our attentidh now,to:the frequency domain charéc—
terisation of SDDP.Again'thiswill be a}direct translation from the;
‘geometric formulation.Tirst consider the follow1ng LEIMMA characterlzlng

the stabilizability of the palr (A, B) in frequency domain.

_Imma 2.9 . [7)

Given 2 ,(A,B) is otablllzable 1f and only if there exists

strlctly proper stable matrlccs XCS) LJ(Q) such that
(sI- ~A) X(s) — BUCS)"— (24) -
Proof :

By COROLLARY 1.21 (A,B) is stabilizable if and only ifr Uy=X.
Then'épplying THI{ 1.19 to:z y#with a basis {§h-u;§p}:for L where ec
Le{g;”n}are columns of-Ih~ matrix we obtain (24) with X(%) ana U(S)

gtrictly proper stable matrices. - a

"VI‘HEOHEP,E _2.10 [7, 9]

Given Z? SDDP is solvable if and only if (1) there eYIStS
¢9and Ljeastrlctly proper stable such that
C (SI-A)X(G) - BUS) =T

. and (ii) there exists K(s) and U(s)strictly proper stable such that

e,

Until now we have analyzed three problems DDP MDDP and SDDP,
We have to mention that this three preblems are generlcally unsolvable

since the localisation of the dlpturbances in to the wanted Subspace L&
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vof:t.is very difficult.It is also rather difficult to have a suffi-
’oiently large (A,B)-invariant subspace inNKerC.We algo have to notlce

that the constraints brbﬁght_in the stable verslon ‘of DDP are stron-
gef.The médified problen brings the difficulty of measuring the dis-
turbance which is normally not possible in most of the phV31cal Sys-—
- tems.However we think again that all of these three problems are
w;wuvery useful when a clever modelling is of consideration,and they
; 1ead to moxre efflclent design technlques such as partlal decouplﬂpg
of disturbances.
fﬁ the next gection we will consider more realistic problems which

are generically solv able.

.

— Output Stabilisation with Respect to Disturbance (OSDP)

Our purpose now is to obtain a gtable responge depending on

-fhe‘disturbance.MQre clearly the problem is:

~ PROBLEM _(OSDP):

Given 2, determine thellinear state feedback law 4§¥f%§'
- such that the disturbance/output transfer matrix
C(SI-A-BF)-‘E | is stable.

“Vle face two problems'together;the problem of finding a feedbac]
‘( in 6ther words a suitable (A,B)-inveriant subépace) and the problem
of maklng the output to dlsturbances stable using this feedback.
Récalllng that in the geometric approach e thlnk‘afjt ag the get of
all possible 1n1t1al states the response correﬂpbnding to initial
sta‘te Zo is stable if 2o has a (Z w )-repr(wr\ntatlon with Cz(s)staale.
Hence %o gives a stable response when z(s) is gtable or when the :

unstable poles ofa(s)are in KerC and decoupled at the ‘output.
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prrTHITION  2.11  [9]

Given Z ,gaenotes the subspace of points Zo 61 for whj_c’h'
there exiots a (Z,g«_f )-representation with Cg(s):;table; _ 2
- The a’oove-explioations make it clear that in extreme cases |
such points in.l: may be chosen from a stabilizability subspace osz
or from Uy .In gencral ‘Z_oé,é- can always be written as a sum |
'_ﬂ_:bh'z KXoy + Xez
where Zo € Uy ana 2oz el &); Vs () veing tne maxinal stabilizabi-
lity subspace céntained in.):and,Z&-being the maximal (A,B)~invariéht

bsubspace contained in A/erC ag stated previously.The following the'_o'reni

characte_x.‘izes' Jq in terms of ?};(Z) anc“'t ?j;é

mHmoRmM _ 2.12 (7] |
-J’::'U* 'f‘U*—(X) | ' ’ﬂ

The complete proof is in 7 .In the sequel we alsa needs -

THEOREM- __ 2.13 [7] ' | o

There exists a feedback F: %"’u such that (A+BF)U;¢§2};&
- ‘ D -
and C (SI-A-BF) % is stable for all Ze eST =

Combining the results of THIT 2.12 , THI 2.13 and the DEF 2.11

we .- state the solvability of OSDP as follows:

THEOREM _ 2.14 [8,9] -

'Givenz‘,'OSDP is solvable if and only if )‘j 2' g ]

~The above theorem gives the geometric formulation.When the DEF 2.11 is
applied t6 each column of E we obtain the frequency '}’éomain forz‘smla—.

tion.
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Tﬁﬁonmm 2.5 |9

Given 2. OSDP is solvaple if and only if there exlsto strlctl,)
proper matrices XG)and U(s) such that
(sI-A)X()- BU() =E
and CX(S) is gtable. ' | | . B
Comparcd with the decoupling problems prcvmusly an'alyzed ,
0SDP differs by héing generically solvable.This is since controllabﬂ‘—
1ity is a genexric property.Then according to CORQLL.\.RY 1.21, QX X

‘ig generically satlsi‘led which immediately satisfies the condition

g _C_:,,J- trivially.

(®); Output Stabilization Problem (OSP):

Given the systenm Z ,we-‘poée the problem as followg:

I’ROBLT“II (0SP):

Stablllze the output Y by means oi‘ a gtate feedback F ;
more precisely find the condltlons for tho existence of a state
'feedback matrix F whlch can be calculated in terms of ’che svc;tem

C t(A+BF)

,parameters (A,B,G) and such that the response " tends
to ‘iero, as t— 0

An alternate interpretation of the problem statement is to -
‘find'_such a feedback matrix F sthat the characteristic exponents -
appéaring in the responsé are in the stable subset d:‘ of d: . The

response function,which is written for arbitrary initial state,make

us understand that OSP is a generalisation of OSDP,in which initial
states are bounded by the subspace g —C—:I' .In [1] the geometric

~Tormulation is given as followsg:



labl_é or unobservable.The proof given in [l] is long-and tedious as

' brought by OSDP we notice that if the initial states are not bounded
by ‘5 CI ‘but asqumed totalh* arbltr'ary,we o:bta:.n the condition

( 31)

THROREM 2.16 (1]

Given Z 08P is solvable if a.nd only if

B ST TS R . .

Hence it's wanted that the unstable modes- of A be either control-

fhe formulation is based again on the controllability subspaces.
Hoﬁever,using the stabilizability subspace the formulation bhecomes
éiasier.In [9] the following prc;cedure is used:

: The largest stablllzaculltv subgpace 2L can be written as
U*— (1):<A}ﬁ>+13 (a) ,Wwhere 15 (A) = }(ero( (A)- |
So Vx (XD is the space of all initial conditions for which the
response can be made stable by means of a suitable fecdback matrix F
or is already ‘stéble’The i‘fbthe ¢ondition'of THI\.’T 2.16 is sa‘tisf‘ie‘d)

we have by

(X) <A} >+1 (A) and Ib(A) (A/ﬁ>+v;,
f J Uy +Ux (2) = <A/,é> +U;+IJ(A) Xy (A)+ 25 (A)

and 81nce Zé[f})-f j{A) X , we “have

,/ I appearing as the condition.We obtained the

formulation by direct translation,however using the information

‘for the’ solvablllty of OSP as ,J ,s:ane OSDP is transformed to 0OSD,

2

THEOREM  2.17 [9]
| 0SP is solvable if and only if J'l- X, | a

Now since the columnp of In matrix span the state Space x the

following gives the frequencv domain formulatlon.
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pHEOREN _ 2.18  [9]

_ OSP is solvable if and only if there exists strlcly proper
natrices P(G) and QG) such that

(sT-A) P(s) - BQRB)=T

ena CP() is stable. -  m

The stabilization’of output as -pvosed by OSP guarantees only
[the bufput Y ) - ds well-behaved but it brings no restriction on the
T“beh'a'viour of system map on the unooservable subquce ofx sand 11:'s a

pOSSlblllty this map be unstable.

@- Outnut Null Control

Tver it sounds as a conpletely new problem,the output null
: controllability has been derived from applications widely used in control

: t'heory,es;)ebially on discrete-time systems.

{PROBLEM _ ( ‘ONC )

Given 5_¢o 61 find a condition for the existence of a control
Jfunction g,(o) guch that for solutivn of = with Zo as the initial '
E_{sta’ce there exigts T70 such that y(t)=0 (Vt>T) \

~Vie first notice that the conditions is weaker than the one
irequifed by' output controllability,in which any arbitrafy gtate igs
,'kreachable” from Zo= o .However in ONC we have more freedom on choosing
"%(-)b guch that it only brings the responsg of a given state o to

zero at the end of some T70.
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MImORTM __ 2.19  [9]

2z, € X is output null controllable if and only if

;_z_oé‘z"'é(A/,é>+U;.}" - ﬁ‘

We think that the following exlanation will be sufficient.Since‘
vie understand by ONC to bring the initial state response to zero ?I‘th
é’ome ‘f?T vhere T70,we have two choices:either we choose .'the initial
state in the controllable subgpace of the system 2 or in the 1a1*gést
(A,B)-invariant subspace c;ontaine-d in KerC yto decouple of completely

at the output even if Zo dis not controllable.

LEmme__2.20 9]

M

Vj is an A-invariant subspace of Z. : i

FPROOTI"

Since by definition WA w +<Al;é’> ~ we sece that (A/ﬁ)
ig A~invariant and <A/$> D)é implies

AV - AU +ALAIBY € 7);+£+<A/;é> =Y
as AU* < U* +;é . ‘ m

The following lemma is used in the characterisation of the frequency

‘domain f ormul ation,

Immm o 2.21 [9]

Zo & <A//3§> if and only if there exists polynomial

vectors ’g(’y) and w(s) guch that
B = (sI-A) 7 (5) - Bur¢s).
PROOF :
"4

Let 5(5) (,0'(5) be polynonlal vectors such that
Zo :CSI A)g(&)~ BLJCS)
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\
Jhlch can be written explicitely as

ZO_GI“A)[ Zh SNy o +goj - B[l:_u'ms”)-(- -t li):b] :
Now o Dbeing a constant véetor,obviously m=n+4  and we have by

equating the coefficients

Zq - B(f-u'nﬂ
Z”‘_AZ = Bw',\ ‘
&o- A.g,= BMH -
= Buwiyo

Solving f‘orz"q‘,bv successive subtitutions

Lo :—BWO—AZO:—BWO—AE A Bur -
‘finally we obtain | -

%oz ~Bw, - ABwy _ A%Bus,- .. - ATTB (W vk W)
~where 'P-_- dim (A) .Since

L[ 2 ferfa AP .

o€ (A|BY as Bwch, ABweAB ... ATB 0+ w,, €

= Let 2 € <A/B> ,then we can write | A,P-’ﬁ
i Zo = Bey+ ABcy + ...+ AP Bep (25)
‘; Define: -, 2C4 and in 3enera/ - Wiy —ﬁgg for (€ {4,-:», P"}

then also defining

L2 £ Py,
g p-3

lip

Bt PO,

: A
Zo, = A’C' + BLO}

(25) can be written as : ' ' ' -

| xo* CSI A) L} t - ZP SP Zj B(wo"-‘-'-t-UfP,SP—’j
completing the proof. - . : ﬂ

“Combining this result with THM 2.19 we obtain:

THEOREH 2.22 [9]

,’to € (f} if end only if there exists rational vcctoxo Z(s)
and W(s)such that :(b—(SI’A)E()) 3w(s)nd 62(5) IS a polynomial. m
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PROOF :

T 1] ' ‘ | R , :

R _
Let f_z_oeLP =<A[ﬁ>+U¥- ., then %, can be
writeh ag Zo = Zo‘f-ﬁ_z_o_z v , v
yWhere Zof é?]; ) 2oz € {A/_"B>
which implies that |
Lot = (5_'[—,4)g (s) — Bw't(S) with Z, Wi strictly proper
and Ca(s)o‘ . o

Zog = (sI- A)g (s) — E)w () with 3 Wy, | polynomial.
He -
fence Zo= (SI-A)lg,cs) +g, 9] - BLWics) 1 L 57
then , E (9) 2’6)"'3 Cs) ig rational and
.Cg(s) = C’;ngsj‘“k CZ ) = C_ZZ(S) ~ is polynomial
and - W)= Loy €5) +L02(S) - is rational,and
 Ze = (ST-A)g () —Burts) with z5), wr(s)
rational and Czcs) po-lyn'om’ial. ‘ ) |
uv' ’  /,_ - '
Let Zo = (SI"A)Z&) — Bw"(s) with Z(S)u)(s)ratlonal
and CZ CS) pol,/nomlal Defining
Cs) 2 (zCS)) ) we have ZCS)— Z (5 t+ Z Cs)

whexre Z (s) polynomial,And since Cg(s) is palynomlal and C is a
congtant matrix,obviously Cz sy = O .Also defining u]’,(S) (w(}))_
,wex_ha‘ve» wisd) = Wil + l/_'-}"z(s) o owith 0, (S) polynomlal.

Then . Zo —@J}A)Z (sy = BU)'CS) + @I P—r)g () - B_Lpzcs)zvzm +Zoz
2 (SI-A)Z (s> - Bqus) eU;f- ) )
2 (sI—A)Z ()~ Buwsls) € <A/;§> B

where

@ _COnC-luding Remarks .
We want to end this chaptcr with the following table summnarising

the condltjons corresponding to the solvability of the problems that

have been cons1dered.

TS




Given Z :

n

Z=
2

-\ 20

A_2_2+Bu.+Eq
Cx |

—

Problem - <E

i)DP 15 SOLVABLE

6256,7;(:2;

> Geometric conditiong

—>  Irequency domain condition

= X),U(S) stRIcTLY PROPER
Such that.

SL-A - B] I:X(s)] _ [E]
cC OJLue o

IDDP 1S SOLVABLE

GLEQ = U +B

3 Q) PRO‘PEQ,
such that ’
R(5) QL5) = RzCs)

wheﬁemé C(I-A'B
Ra. ()2 C (sI-A'E

DOP 1S SOLVABLE

CAEQe Us

@3 XCs) O(5) sTRiCTEY PRoPER
STABLE such -de' |
(sI-A) X(s) - BUG)=T

o 3 X(S), ((5) STRICTLY PROPER
bTABLE such -H'\a.t

24 2l (5]

L ey 7

SDP |5 SOoLVARLE

J X, Us) STRICTLY PROPER
suchthat -

BI-A) XY~ BUlS)=E

Gnd CX(5) (s sSTABLT.

dsP

4

IS SoLVABRLE

- X(s), des) bTRlCTL:) PROPER
such that ,

(__I‘A) X(S) — BUC S)

and CX(S) rs STABu:

‘1S SoLVABLE

g ECS) and wr(s) r‘b:h‘orxal

such ‘tha.
2o =(SI-A) g - Burtsy

and CE(S) MY Poljnom(al




Ve hgve mentioned before that disturbanoehdecoupling.
problems are generically unsolvable.In many gyastem descrip%ions a
large enough 15‘ does not exists.However if our purpose- ig to obtain
a partial decoupling we can achiGVGthis#ery eagily.Le¥ us ‘definé.by

TEF the subspace

2 ENUY.

Now -choosing a suitable feedback}; it's possible to decouple the
noige components q‘ -such that- Eq € 5: Also we notlce that 1f
C:)gé?’ ig satisfied (generally it is ) we have always the
possibility to choose the fecdback Fp such that  Gp  is
vdecoupled and the remaining noise components is stabilized at the

output.
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III - PROPTRTTuo OF A  TLINEAR mwm-PORT SYSTDM COMPOSED-

OF' SEPARATED "LOSSIGLSS" AND "ALGEBRAICHM PARTS

In many applications,a linear m-port system detérmined.by a
gtate gpace description consists of a "loésless component Np " and a
"oigebraic component NA ",as in Fig.3.l.4As an example cons 1der.an
'eloctrlcal notwork the lossless components are 1nductors cana01tors
and the algebraic componénts:are re31dtors,dependent sources,etc.
rﬁ'[lo] a detailed work on obtaining the state space description of
éuch an m-port and on the obsgervability and controllability conditions
has been done.Here our aim is to investigate further properties of thié
m-port system;the interconnection of N, and N brings a larger
degree of freedom in the salution of the problems considered in chapter
II.Ve will concentrate our investigation on the improvements obtained
for the solutlon of DDP in such an m-port.Ve begin by giving the system

descrlptlon.

v.CDT-Fﬁrst Level System Decomposition

We consider an m-port obtained by interconnecting an algeb-

raic ( m+n )-port Np and a lossless n-port Np,as shown in Iig.3.1.

No N

1-5 | de |weFihe| o,
~ -~ ~ ~

aiorant

Floure B.L: System OBTAINED BY INTERConnECTnG Na & No
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 The defining equations of Np and@ Np are

y:—ﬁi"%% ‘ ; : i - (26)
y=Cz+Gy | )
z=Hz (29

~ ‘ - (29)

The input vector ( Z,4 ) and the output vector (W, Y ) of N, :are

usually hybrid pairs ( te the ith olement of (éf,u,) is a current,then
. ~ e

the " element of (W, Y ) is a voltage variable).Same observation

cen Be hade for the ihput vector Q}’and output vector Z2 of Tp;when

equations (26),(27),(28),(29) are combined the state space description

of this gy,tom is given by

o= FHx+Bu o)
H%+CT£. L . @)

ecc?

whcreié% is the Btate veotoi' uéZL is the input vector and 365
is the output vector.These equatlons give the state equatlon as a
functlon of charges and flux llnkages A more convenient dcscrlptlon
can be obtained in terms of capacitor voltages and, inductor currents,

as

z=HRz + HRY o (32)
y=Cz+ Gu (33)

jAn;impgxtant remark is,that_H”,must'be invertible.If this condition

is‘hof gatisfied the above equationgs are no longer the state equations

'cfﬁthe gyatem of TFig.3.l.For simplicity we will neglect the direct

coupling of u  to the output 5 and also denote by D the inverse of

A -
the matrix H ,hence D= H  .We will call the ¥ystmn = the follo-
wing system described by the state equationsg
Di=fz+hw | (34)
Yy = CZ' : (35)

whereyzy-iS'the Qtate vector,'g.is the ihput vector, Y is the output

vector.When analyzing the disturbance decoupling problem we will intro-

duce the noise componmmqu to the‘equation (34) to give a description




\a4yv/

of the distufbance.We also immediatcly notice that the matrix D is
totally a function of the internal properties of Ng .So we can Say’
that in an electiical network' ’Ghe‘ entries of D are determiﬁed’_by
the values of inductorg and capacitovrs} |

| In the sequel we ..will also need the conditions for which. the
gystem 2 is controllable,observable, The fdilowing tables ,[10], gi'ves

us the necessary and sufficient conditions.

i

rank £ |rank[F iF] T
%0 =n |&=p|3 D suchthat Z is cont.
=n =n &b VD,Z ) Cor\‘t.
=0 arbitrary i» D suchthatZis
—V] corit.
+0 {n

TABLE 3.2a ! ComtrotLABILITY ConD. OF Z

rank C [rank [E‘] : 2 is
“-’:O =n ¢:¢> HD suchthat = is observ. |
;-:n =N 4=(7 VD,Z {s observ.

=0 | arbifrary ﬁD such that Z is
&>

observ.

F+0 <hn

TabLE 3.2.b: OBSERVABH.ITS CoND. OF 2

As can be seen from tables 3.2.a,3.2.D ’the’_control_lability and
obgservahility coﬁditions are derived independently.However in general
we expect a system to be controllable and observable at the game tine.

The necessary and sufficient conditions for this case is given by the

following theorem.
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THREOREM 3.1 [10)

“Given Py ,1, and C  there exist matrix D E(not necassarily

uﬂique) such the sygten Z:is obgservable and controllable if and only if.

both of the following conditions are satisfied:
(i) E#—Q ) rank [F,:.E—;]v:ﬂ ;
(11) C#Q, rank [§]=”', , =
In the same'work,ﬁhe proof of this theoéém also gives an algorithm~i
that shows ﬁﬂw such =D matrices can be belected whem T, ,F, ,C arc given. k
In the gequel we will assume that. we kﬁow how to-choose. D matriccs. anid |

concentrate an other properties of .

~

(:) - Polynomial System Matrices Etﬂ
Congider the state space equations of a linear system,as
i-Ag+Bs o
Yy = CZ- +GE | - 1) -

it's obvibus that these equations are linear time -invariant differential f
equations.In control theory,the advantage of gsing the frequency domain
approach ieads us to consgider the Laplace transform of the state vari-

ables for meny application purposes.Then agsuming zero initialvstate

the equations (36),(37) turns out to be -

sxT =A% +Ba | o (38)
g=Cxz tGa | @q;
where C—(:'-‘¢6 (&) , aéog(%(f)) }and §=£(§w)~

Rearranging (38) and (39) we obtain o v _
CIAE-BI=0 6o [ix-a 8 [E] o],
~CZ-Dl=-3 @ —¢  POIER] LD

‘ | P .
In 1;3] ,the coefficient matrix P(s) of the vector El G] is called a

- ) . ! \ Ay
polynomial system matrix.Although the results seem to be‘trivial,the
represetation of a linear time invariant system as a single polynomial

matrix has many advanteges.First,in the case of general linear constant
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differential asystems i1t is moat of the time difficult to oBtain afsﬁi—

| tahle'statg apace descriptippfﬁpgondly,using the system matrix P(s)

all transformations of the system equations can be expressed as oﬁerafior
on P(g).( Third they appear naturally,by éimply taking the Laplacé trans
form of the describing diffefential’equationg;) Therefore the pr0perties
- of the operations on P(s) can be morersystematically studied.In general

. a linear constant differential equatibnsﬁsystém gives the following

gystem matrix

Pes) =

T(s) UG)
-V(s) W6
‘We restrict ourselves to the case of system :f and‘the corregponding
sysfem matrix R®is |
Ds-F F
- 0

g.(s) =

(:)7 P%oblem Statement

In a first level gystem dedomposition one can notice that
given the triple ( %,5,C ) a D matrix giv@ngrise to a controllable
and obsefvable system 2. is not necessarily unique.Hence,by changing

D métrii{_ in such a way that 2 rema:ms.com;rollablg and observable we
obtain different state deécriptions leading probably to different transy
fer function matrices.Then the following questions can be asked for

realisation purposes:

a) Given ( F,,FZ,C“) fixed,are the matrices D giving rise

to controllable and obgervable systems having same transfer function

matricés unique ?

b) ASsuming that such matrices D are not unique,is it
possible to decouple a noise compgneni:Eq ugsing a special D matrix
froﬁ the. above equivalenoévclass w hich leaves the transfér_fuﬁction
matrix invariant. |

The answer to the first question obviously prepares the



invéstigatidn of the seccond one.In fact,the idea is to»investigéte if
a first 1evel gystem decomposition brings any extra degree of freedom

- to tfeat several contrbl problems,and more specifically- the disturbance
deooupling'problém.This degrec of‘freodom can also be useful for reali-
gsations of a given~transfer function, if many D matrices aré avai-

" lable to describe-the "1ossless" n—port Np one can choose-a proper

one for a more suitable physical realisation.

(Z} Bquivalence Transformations of System Matrices

We shall be particularly interested in a tremsformation which |

leaves unchanged the transfer function matrix and the system order:

Strict System Equivalence (SSI) [13)

Let an (r+m)x(r+f) polynomial system matrix P(s) be given.
Let - M(s),N(s) be ( rxr ) unimodular Fatrices;that ig their determi-
nanfS'éhé nonzero and indepéndant'of s .Also let ¥(s), Y(s) be poly-
'nomial‘matrices,respectively (mxr ) and (rxf ). If two system
matrices - | |
' T ue)| T(s) ULs)

PGy =  and  BG&Y=

~NG) W(Si ~NG) W6,

are related»by the transformation

M) o]fTe usliNG Yo [fe Ul | -
| - - @3)
| X6 Im| NG WO L M(s) W6)
then P (s) and P, (8) are said to be sirictly system equivalent. m

A very important property of SSE trénsformétion is given

. as'follows.‘

THEOREM 3.2 [13]

Two system matrices which are strictly system equivalent give

rise to the same transfer function matrix and have same order. s
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Hence, because of the property stated by THM 3.2 ,it's very
ﬁrobable tnat for the sys stem Z described by the equatlons (34) (35),
EZ(S) matrices giv1ng rise to the same transfer function matrix ( i.e. Dv
matrices since they are the only changing parameter of 35(82)are rela—

- ted by SSE transformations More prec1se1y the question EEE

\

QUDSTION 3.3t e

Given the system :Zd described by the state equations
Oz = Ra+Bu - | (44)

AN

and the corresponding 'BZ‘(S) ,are all system matrices giving rise to
- the same‘transfer function matrix"related by SSE transformations ?

To give the answer of this question we need the follow1ng

results which are instrumental.

LN

V 'GDF- Decoupling,Zeroes and Relatively DPrime Pol&noﬁials"

Let's consider first the Smith Form of a polynomial matrix

YA(s);il*

THEORE 3.4 [13 14]

";”‘combinafion of elemenfary ro_.and column.operations, -

| en (rnxrn‘)‘polynomial matrix A(s) can be reduced to its Smith form
. s(=)=1(s) A(s) N(s) | |

kwhere M N are unimodular and represent the elementary row and column

‘operations,and

L




\&427

gonal the invariant polynonmials E: () .Fach non-zero invariant polyhoﬁial
hasg the~§oefficient of its higest power of S équal to L . In Smith formﬂ
if the rank of A(s)‘is‘r,thereyarer-non—zero'invariant polynomials ogcu—
pying the leading positions end the remaining'invariant polynomials
are zero. |
o TI! 3.4 gives a detailed definition of the Smith TForm.liow

1ét's consider a system matrix P(s) in which the matrix [T(s) U(sﬂ
has a Smith form S(s) = [Q(s) 0] .Then the determinant [Q)|2D.(5) ig
éalled the greatestmonic common divisor of minors of order r in v

[&(s)' U(s)] .The roots {[3,;1‘,17'6{‘.~-.530.f the equation D-)=0 will be

called .zeroes of S(s).The complete set of these roots is called input-

decounling zeroes [13] .The removal of these roots from [T(s) U(sil by
dividing one by one by factors of (5-@; ),the Smith form turns out to
be ‘Scn='g’g],P<r .In'[13,14] we equivalently find the definition for -

. - T T
output-decoupling zeroeg where the[ﬁ@) 4V6)] submatrix of P(s) is

taken into consgideration. Sﬂmllarly by removing the output-decoupling
zeroes from ETC$ VC$] the Smith form becomes 5(5%-[I§ D] q<r .

chce by these definitions the followving lonna is immediate.

LA - 3.5 |
4 A gy stem descrlbed by the polynomial Syétem matrix»P(s) has no
decoupling zeroes if and only if the following conditions hold:
(i) the Swmith Form of [z(s) U(e)] is s(s)=[I, o]
(ii) the Smith form of [T -V ig 5()=[27 07,
where 1|;§A§dimension of the spuare matrix T(sg n
| The fol1ow1ng theorem is basic to flnd an answer to the Ques-.

tion 3.3.




Y ' ¥
EﬂEORﬁH 3.6 [13} | (4 ? .

Let P(s) and P1(s)ﬂbe two éﬂ%n)x(ﬁ+t)polynomial syaten mat=
rices having no decoupling zeroes.,Then P(s) and P1(s) are gtrictly sys-
tem equivalent if and only if fhey give rise to the same transfer func-
tion matrix. | ", =

| We also nesd thé following definition of relatively primé poly-

nomial.

DEFINITION 3.6  [13]

Polynomial matrices T(g) and V(s) are called relatively left

(right) prime if and only if their greatest common left divisor (EL@Q
_ (g_c.r".cl. Gip () ) is unimodular. | | 8
‘ ‘A property of the relatively prime polynomials is given by the

_following theorem.

The polynomial matrices T(s),V(s) respectively (rxr ) and (rx[)
are relatively left prime if and only if the Smith form of [T(s) V(Sﬂ

is [1r CJ.A gimilar result can be stated for right primeness. =

| Thus ifbﬁfs),V(s) are the submatrices of a given polynomial system mat-—
rix P(s);they are relatively left prime if and only if this system has

no input decoupling zeroes.

THEOR®M 3.8  [3]

=

¥

Given a system described by the polynomial matrix
4T U
S) = LT (s
PE) NG W) -

(a) completely cdntrollable if and oniy il any g.c.l.d

Gﬁﬂbf {T(s), V(s)} is unimodular



(b) complétely observable if and only if any g.c.r.d
Gt ‘£~V(s),7T(s)} is uninodular »
(c¢) completely controliable and completely observable if and
only if both (a) end (b) holds. S
The properties of leastvorder systems that we have mentioned

one by one lead to a very important resilt that gives an answer to ques-

tion 3.3.The next part of the investigation is mainly based on the follo-

wing result.

13

THEOREM 3.9

Consider two: completely controllable and completely observable .
systems described by the polynomial matrices B (s) and B, (s).Then P, (s)
and Iz(s) give rise to the same transfer function matrix if and only if-

they are sirictly system equivalent. ‘ ®

PROOF :
_After THM 3.6 ,all we need to show iS'thgt a system is completely
6ontrollable and completely observable if and only if it has no decoup-

ling zeroes.Ior this: P(s) iS*completely'controllable 5@ completely

. T - M3.8 . ‘
_'obgervable 22==p g.c.l.d of iT(s),V(s)} is unimodular and g.c.r.d
v T ; » ‘ * . DEF3.6 ) : :
of {- V(s),T(sﬁ ig unimodular 4= T(9),V(s) are relatively left

. , ' . . THM 3.3 .
prime and -V(s),T(s) are relatively right prime ¢ Smith form of

, . ) .
[T(S) V(Sﬂ ={Te 01 and Smith form of [fks) V] =[1r 0"1
LEMNA 3.S
d—b P(s) has no decoupling zeroes. ﬁ : ke

Now consider the systems 24 described by the equétions.(44),(45).



(4i3)

COROLLARY 3.10
Let system 2« be described by
Dai =Rz +hu
y = L2

-

wvhere D and Ty are (nxn), 7, is (nxq) and C is (gxn ).Let the

corresponding system matrices be

Ds-F, B |-
PdCS) = % ; 1
~-c 0
; T T
Let also rank [F.; F2]=n and rank [F, i C _]:n
Congider allvsystemstZk which are controllable and observable;then these

systems have the same transfer function matrix if and only if they arc

| strictly system equivalent. ' , ”

(z) —- Eguivalence Class of Dg Matrices which Leaves The Transfer

Tunction Invariant

The answer t6 the question 3 3 is given byFCOR 3.10.As suming
that we have a controllable and ooservaole firgt 1eve1 decomposition

| with an initial Dy, ,we can obtain all other Dy giving the same

E transfer function by using SSD transformatlons For this we will use the

f following procedure.

Dys-Fi R
"be the initial controllable

B L (o) =

' i I% { -C 0 |
lfand observable decomposition.A l% () which is strictly gystem equivalent

to f&éﬁxuﬂl also be completely controllable and observable and related
| 4 B (s) Dby equation (43),such that
[\]
= R (4¢6)

) Iq -C 0] 0 Iq ~C ol )

{where M(s), N(s) are unimodular and X(s),Y(s8) are polynomiai.




(49)

THEOREM _ 3.10.a  [i3)

Two system matrices P1(s) and P,(s) which are in state
space forﬁ are'stfibtly system eqqualeﬁtlif and only if they are
syStem similar. | k‘u
Then using THII 3.10.a and the nonsingularity of‘C&oandllQﬁe can ;

restrict M(s),N(s) to be constant nonsingular matrices and X6)<¥Y(6)=0.

THEOREM  3.10.Db

Givon Fuo(®)and Ri(S), they are strictly system equivalent

if agd‘only if there exists nonsingulaf constant matrices M and N
guch that - : :
M O |{Ds-F B |IN O Dys-R £ ‘
0 Iqf| -¢ Ollo 14 | ¢ o© @)
Proof ‘

| The equation (46) is équivalenﬁito :

i o |[Me ook of-mR mE| (NG o) [s1-0kR tis

lo Iq|[x» Iqfjo Tl -c o |0 3j| -¢ ©
sincé, D,,go, x; are nonsingular matrices.NoW‘letting ﬁCs}: D:(i Mes) Dy,

é‘us)' o |[s1- pg. a”__b;,',& NORT ST~ DG, Ok |

{X(s) Iq:” ¢ o)lom|T| ¢ o @2)
Tn the matrix eqﬁation'(AB),the.SSE transformation is preserved;
further more the polynomial systewm matrices are in state space form.
Théﬁ bj THM 3.i0;a fhéy are SS5E if_and only if fhey are system sini-
,.lai.Therefore there exist a COnstanfvnonsingular matrix H such that

[H“ 0][sI-DiF DE][H O [sI-Dif iE

¢ LJ[—’C o:”o Ia) | -¢ © . (49)
or equivalently ' -

[D«:H“Dié OJ[ons-ﬂ 5 [H o] [oxsk R

0 Iq4] -c¢ O |lo Iq :—C 0O



(50)
and call fﬂ§f4 qnd M4 E&LFF'[k;ﬂ ’. B

Thus without loss of Fenera71ty we can restrict the unlmodular

matrices M(u) and M(s) to belng constant and nonsingular,also choose

X(5)=0 and Y(5)=0

COROLLARY  3.10.c

Given E;(S) and F&ﬂ5) they are strlctly syotcm equlvalent and
give rise to the same transfer function matrix if and only if there |
exist M and N constant and nonsingular such that the follow1ng equa-

tlons are satigsfied:

(1) M D W=Dy, (51)
(1) M T, W= T, | (52)
(iii) M F =, - (53)
(iv) ¢ N=¢C _ - (54) »

Obviously,since (ﬁ F,C, Dxo ) are given we can compute II and N
matrices from equatlon (52),(53),(54) then using equation (51) we can
comDuue Eh,.The degree of freedom obtained on (1,I0) counle will also
determine the degree of freedom in choosging the matrlceu E&b.An 1mnortant
remark is that (52) (53),(54) always have a trivial sulution,that is the
| (M,N) couple where IM=T and =TI ,In this case all Tour equations hbld
f but'giving E&d=Eu; «The following theorem gives the necessary and suf-

f ficient conditions for which a nontr1V1a1 solution of equations (52),(53)

(54) exlstu.

| mmoRmI 3,11

Given the matrices n,L,C respectively (nxn ), (nxq ), (qxn )
[and such that rank[ﬁifij n and rmf“[FT C }4?,baore exist nontrivial

aolutvons of the matrix equations

(32l &lhel =[5 o9



with nonsingular M, matrices if and . only if rank 6<n and

‘re.nk C<&n. B

Due to THM 3.11 th'e»‘existence of nohtrivial_solutions ef
(52),(53),(54) is a generic property since the theorem excludes only
the special cases where rank ngn and/ or rank C=n,

The following lemma 13 needed in the proof of TIII 3.11.

ILEMMA 3,12

Given the matrix XCth),ﬂ?njthere exists a nonsingular and
nontrivial (l'.e._ -'FI) golution of the matrix equation
X=XY (56)

where' Y is (nxn ),if and only if l(erx#- {O}

PROOF :, 4 S |
Given KerX#{o} °rank'[)(]<n gince X has less than n
llnearlryr independent columns.By elementary row and colummn Opeletlons

represented by I (‘fﬂ]) and-ﬁ(hxn) we brlng X to its Smith form

TXB—[ ©

0 O] , where r= ran[X] <n .

Heﬁce,(56) becomes

-1 | Ir - =1 0 -1

Lo h [o 0] YT [oo]T |

more fr =Ty [ 809 <[5 ] ¥

Then partitionning we obtain

ol dse

which gives YH 1‘., Yu 0 w:Lth )QJ \/22 totally arbltrar\r therfore ta! wing

\/“ to be 1dent1ty ma’crlx Y can be made nonolngular by careifully

choosing 721 and /9o .




Tinelly is obtained ag szz YB.-‘-

" .
P V4 '
Let Y be & nontrivial solution of (56),then X (Y-I) =0.

Since J#X we have Y-T #0O then KerX + {O}. [

"PROOF OI' THEOREM 3,11

7 P R . . . . . o
- Ve will consider all possible cases one by one.

(1) Let rank F,=n and rank C=n ,fthen KerET= {O}
and (M-I)R=0 = M=T | Also KerC = S-Og and and -
C(N-I)=0 => N=T. |

(ii) Let rank P,{n and rank C=n ,then as in (i)

N=1I hence the matrix equations (52),(53) give

MR =F }:p MiFE]= [RIE]

ME= 7 _
 Since rank[h: 2].-4'\. for (M-I)[F ;K] =0 = M=T.

(iii) Let rank F=n  andronkl <n .ulmllarly,ao in (i)

M =TI and (52), (54) glve

CN=z=C

Then since ranlk [_Fé.]ﬂw e have (N-I)=0O or N=I .

Let rank K <n and'rankC<n. Proceed as follows:

#Put F,,C to Shith form keeping the structure of the matrix

equatiéns (55). - . o '
FIE| | "i0||F toof|R:0O 5
resetrsaslm | s 0w e nc-:o-o ...:.o- (5
Ci0] [0:im][32:0]01h

Save matrices T,,P,



4 Partition as

u:iz:Ia-'o —E-
FsiFy 1010 IQOO

'L,?OEO:O Oélq'

Save

to Smith form.

. -

o Tl

F{‘ :ng‘IQ;O

.-, am -

:I:. .
o “.°:o.o,

-

'
[
[
]
.
[
[ 4
L
Py
-
L L&
-
[ ]
.
Q
[
]
L

Ty y B, nmatrices.

2
r~A—
Ib; (o} ‘
oin: O
O-1I

\J./

(59)

Q)




»# Partition as

Save

bI,,§o

Peo cmeainmann

OOS
b m

N M
Reduce For  ana Fizy
~ "'a ' - v T
' ! 3
o Fat Ras I“ Cl| ~——
o PR | IaiT10
P! Im: 0 10 0 1 15150 O
S ' 0i0{Inam
B! O .0'0 . 0= ..-g_,!‘.t'.".':“.".!-..

_Ts y Ty metrices.

lzl

[~ VA ‘A
6| f 1 Rat R
-;~..:
m | F. -

o

I O
,él"‘_lm 0 O O
m« O O 'o :o<
3 '5' 0
C> O .C)J

n- b-m a g-a

s

Fm

-

-~ - -
.

’

HIQ

ral

N

Py

X R II]
4
s ]

.
9®p o ve »
1
»

F,
o m O

l

Al 'O
Ib'o O.OO

At .

1] {

OOOOO

“pee ma

oO

00090‘00 .oo L Ouo.q'o e 8-

- -

-4

(é1)

by elementary row or column operations. -

€2
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# Pinally we obtain equation (55) as

Bati e Ly PP

= o VT e = -

Ov,F.4fO:47_; a.:o Ec:O:EzI'O

--..-—...---—-'—\ -'- - R R I e mmme

N R B MR IR | P OiImi 0300

Mio P | R e -
: tO0 00 0 |l = |FBp 0108000 63)

22 L Y T P Y R YW TR Y T T

. Iq ‘otrc‘oon.:'loo.ﬁfpo-‘viqoﬂ O Iq U.to?.oo&.rrta'o 010..:000'!
bIb:ozo:o;o_ C I, 10 .00 :0
.......... ‘--‘- .--.--'-——- -....-.:...... :..-.-- ——---3—--»»

4| 010 :0:0.0 0:6:030i0

where

¥ Block multiplications in (63) give first:

N [}
[

‘A ’ . .
a Mu;Mn_ a Iq':o I,. O
R e e i o I Sost i | o)
ha [ My| My ol O, O . C

[y
.

a h-a a q-a.

S A ; A v | _
- Thus My=I, and Mgy=0 ,end by partitioning

’ -

- [ A ' A
A ‘ a ~I“: Mm‘ Moz
% Tat My B :
M SRR O 1 Mz Mzl | (65)
. N PR R S, ’

o EMZZ t oA :/\
‘ h-m-al O | Mgz Mz
et g

L T

A& ™ n-m-a

i

|
f
3




A

- The second equation in N is obtained as

b .Ik:o_ b NHE i‘]az Ip: 0

1*| O : O [ mb I’\]213 Kliz O
b n-b ‘b 'n-—b

Thus N.. Ib} Nu:O

(66)

1

]

t
A
t

| O

and by partitioning

biI,. O E o}
A Ib o) ‘““‘**“A-“ |
N = ColE Nzu- NZZ.I}NZZZ (%)
Nzlisz TNt Tat .
' "'b"" Nzxz: sza; N224

b m n-b-m

Replacing N anda B obtained in (65) and (67) in the third
equation fcﬂz‘ﬁ:?, e obtain

~ o R ' [ ‘- ' ' - . . ' Ny

B ool [RIoln
.-‘3-;.‘"?33‘.@“:22 ©:Tn 0 _f’z".f e (o = OI'O =
_.O X Mm' Mﬂﬂ 432; o) i O J —ﬁzgz; N2233§2?Aj —f'iﬁzj @) ;l O‘J

* Block mu.ltipl:i cations in equation (68) givé :

Fu + MuzF + Mm Nzii *+ F122 N2I2 =R . (£9)

me szl + F\zzsza =0 : G}Q)

p‘m Nagas + F4zz sz4 = Fia (21)
MUZ Fl’bz + Mzzg Nzu =0 (72)
M27.| Nm = Im (73)
Mzzl fizzz = O : ‘ : : (14)
: MZM 122+ Mzzs Nzn = F132 _ | : : - (35)
M223 Nm =0 (7¢)

'MZ?.} N27_7_:O ‘ ; . | ()
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Then the following 3 cases covers all posagible structures

—

that F, matrix can take.

-

CASE A :m=n-a=n->oh

— —

o 7 N A
Ve have immediately F,Z?_:O; F',32—‘-‘0:111 F, .Then M , ¥ to be

nongingular a choice,
/“ N 1 . - A . A
Moo= Noy 3T with M, =0 and Mz|; O

always exists.Then computing M and N matrices by inverse

4

transformations ( T, P etc.) we end up with a nontrivial ( M,N)

A N
couples,since ( 1 , W ) couple is nontrivial.

CASE B :a#+b , m=+ O

In this we have the following implications:
A ~ 4 :
Eq.G'3) = Nizy = My,
)
Eq.(?a) = Magaz= 0O
N .
Eq(:}é) = ‘sz_z_ :Q
: Ao~ : A A
Then M , I are nonsingular if and only if May, and Nzzg
| are nonsingulaf.Now |

A

- (13),(74),(76), detérmine _N27-l , Maza, Maag [ "Naaeg
and (77) holds immediately since (74),(76).

9

~ Choosing Nz24=T |, My, =T . we gee that (71),(75) are

trivialky satisfied.

- Choosing Mpz;’-‘ol‘ , Mi2;=0  , Nz212=0 (69) is trivially

satisfied.

- i N A
'~ Choosing M2z2,=0 |, Nan=0 (72) is satisfied trivially

N P
- Choosing N2z23=0 (70) is satisfied trivially.
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However even 'aftor thege choices we have

~ |IvO O A Tq 00
N =]O N O and M=|0 N;I‘O
oo I O o1

N A :
which shows that ( M, W ) is nontrivial.Hence for a+b and m =+ 8

. . - » ’ A A
there always exists a nontrivial solutions for ( I , I ) couple.

CASE C : m=60

If m=0,then Eq‘—O .Then the resul‘cing‘ equation ig

~ )

[ -~ ‘N-‘ !
Life| R IR |[10 0] 77,
SR pa IR P e | B e R 39
. t L}
o) ‘Mzz n-a [:131 0 N?.”I N, s ! O
b n-b
and block multiplication gives
FH ¥ Ml'zFl?; Fm_ Nz| = F, : . (\?9)
o 80)
Fiz sz = Fy, (3
Mzz ha = '3
o ~ ~ A
, Tae block triangular form of ™ and N inposes 1M,, and
A
N,, to be nongingular.Now
- Tet KeeFp#fo]  and KerFJ# (o} ,then by I3iTm 3.12 the solu-

tion of the equation (oO) and (81) are nontrivial and nonulngular
Choosznp' M47_.. and Nz\ (79) 1s trivially ﬁatlsflod.'l‘hea since

M:zz and Nn are nontrlv:ml there exi sts always a nontrivial solutlon
of ( I.,I, i ) couole.

| - Let Ker Ef {0} and Ker ﬁ,: = goz ,then we have ranlk €2= n-b

and rank ﬁzzn—zx W3y LEMIA 3.12 IG;_Z—_-I and quz—_- I .lence
the solution of ( I?I,N ) couple is nontrivial if and 0111;," it {79) is
nontrivially satisfied,that is

Mz, E{g, + Ez Noy = O



(HY)

for Vha#(D and Nz\#(D Tor this by non31nﬁular transformations we

brln" Eg and Ez to their Smith forms

M42 T4 [In-a : O] Ts = - P4 [:-[g: ] Fs Nz& / , , (32)
°or L B | -
-t D oy, Ln-b - )
P4 ’ M|1T4 [In—ax 0] = P5N2|T5 ‘ . (33)
»Therefore o F Thon] ~o
C Fi[Tealo]=- ] . 5o

‘ ~ - A ~ A -}
V’h“ere M |2= P quTq anJ NQ_‘ = P5 NZ! T§ .
Lquatlon (84) impliesn ' ' '

[Finio] == [N} | 6

By partitioning (85) gives

1

n-b MIZIE O N?.u NZIZ n-b
, "r.v..:.‘. - - .:'... ’ ‘ ) (gé)
a-+b'—-ﬂ Mmf'_O O . O | a+b-n
n-a c\.(,b-n n-o atb-n
The ‘equation (86) implies that My z- Noy and Mi2=0 | Nen=0 .Since
a<f177b<r, ; th,and ﬁJzn are never zero.So/Ey inverse transfor-

mations nonzero P412 hﬁs can be calculated.
Therfore when kﬁrﬁz 105 and l@rﬁ§={o} nontrivial solutions always
exist.To complete,when m=o0 a nontrivial solutionrfor (m, ¥ ) couple
can always be found.

Finélly we have ¢onsidered all possibie cases in which a
'nontrivial golution oﬁ‘thg matrix eqﬁation‘(SS) always exists if and
only if rank - <n and rank C<n .This completes the pi‘éof. 2 |
We will close this chapter by the following rgsultvwhich is &

immediate after the previous theorems.

THROREM  3.13

E& giving rise to controllable and observable systems;§;
having same transferfunctionnatrix are not unique if and only if

rank F, <n and rank C<n. S -
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EXAUPLE  3.13

Congider the gystem Z:(,,

o~ (1 0 4 0 0
OiOi:‘iO%+1OQ_
o 0 {|° 0 00 | 1
o o i
= 2
5= 12 4]

and note that rank F;=22{2 and rank (=2<{3 ,The system is completely

cOn_trollable and coupletely ohservable.,The transfer function matrix

can be calculated easily and is equal to
% Y

610" 4-5
[5(s%3s41) sst3su) -

Te)= C(Ds-F'F =

Now we want to find all matrices Dagisuch that the new systems are
controllable,observable and have the same transfer function matrix
T(s).First we have to determine the ( ,N)-couples satisfying equations

of COROLLARY 3.10.c ,that is

MEN = F, | | | - 6P
M Fz = l:2 ) ' ' (88)
cN=C (or CNEC) | -89

Thexi the matrices Do(,;will be obtained from
Dy = MDio N. - (30)
The equation (89) gives: ’

A, Ay M
© o | rl',\zf_ A}ﬁaﬁﬂ_ooq
ol o PaNs Nl = 13, fAs A Lo 1 ©

Thexrfore .

3
S5
~
&

L
N =

c O



Similarly equation (88) gives

my Moy, myt O 0 . m2+m3
Mams Mgl 1 O

my mg mgl 14|

m | o
= h’\5+ Mé - mg = {

Therefore

m, 0 0
o M= fmgt o0
mz O |

Substituting M and ¥ in (87)

my O
{
o)

O -0
c o~

| |
Ol =1t
o 0

o olfl
m4'1 ofl}
o {10

equivalently.
S .
m, O m ny ?')2 63-&‘
Tﬂqﬂ 4 g | 7’1\1 ﬁzf’ 5{1‘3

m3 O mz o O O

then we have
A\
m1:n|
A
Mq= n‘-‘
A A
Ny = M-
A
Ny =0
m?,:O

vhich gives for N, =

% o o |

M=18 1 o ‘N =

T o 1

o 0 | o O
Therefore

4

| % 0 o]t ~1 4
Dy (8) = %5? i olle 1 ©
o O | o 0

O O o



, ) (62)
1 =he oy |
D, (8) |1-6 ig; ) with 8§40
o o 1]

e notice that E&U)=Eho and the upper triangular fora of the matrix
D4, is not preserved for S#! .Let us check if for Dy () in general,

the transfer function matrix equalsg the given T(s).lor this we Tirst

form - -
| 5-4 , "/6'5 S-1
‘(D,,( (d) s - .Fi') = 1(-8)s-1 ‘?-gl's-l - (1-8)s
(o) (o) S
and
é§3!§>5 S/ -54%%L]
(5 PV i o0 o
Du(8)s-F ) = —(1-8) ) -
A | S (52 3oe1) (1-8)s+s  s(s1)  4-s
’ .0 O 35+
| 5+J
finally /
o 5 -JF Y % y
T@=C(D@®s-R)R=| o 4o |7 TG §#o0
5(51735+l) S{s%-35+1)



"~ subgpace contained in KerC.
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IV SOLVABILITY OF DDP I AT m—VOhT SYSTHELL WITH

SBPERATED _ALGHDRATC AND TOSSLESS PARTS

Before considering the DDP for two different disturbance struc-

. - -1 -t . .
tureswe need to characterize the largest (D, R,Dx R ~ )invariant

LEMITA 4.1

Given the sygtem :i*
Dx 2= Fx+ Ru

2o & U¥(D‘,Z) _if and only if there exist Z(s) - and w () gtrictly

proper rational such that
Dis-F R |z |z

AR L ‘ (9D
~-C O wiey o

—

B ‘ -1
-where Ux(oo() denotes the largest ( Dd F, Do( ) 1nvar1ant subgpace

contained in KerC. | | | ‘

The proof can be achieved by inverting Do( and applying LEMMIA 1.10.

Now let Zdobe a controllable ano observable gystem as described

before and let rankl:<r1 and rank(:<n .Then by .COROLLARY 3. 10 and

THM 3.13 it is known that Ddtmatrn ces 1eav1ng the transfer matrix

invariant under SSE transformations are not unique.

Now let a decomposition (D4,,Fi iz, C ) be given and satisfy the above

c‘onditions_.Then applyin,g S’SE,

My Of|Dgs-F R[N« O Dys-F, F

J

o 1|l ¢ ollo 1 c 0
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( M4 , My )-couples and by Mot Poto Ny = D811 Dy matrices can be com-

puted giving the following lemma.

LEMT 4.2

-1 -1 '
Let U* (Do(o)be the largest ( Do(o (:4) D,,(D Fz')—invariant subspace
contained in REr C of Z%o , then | |

Nie Vs (0ue) = Vs (D) ©2)

where Na;is such that Da = Mo Oxo Nao .

Prdol

bat ’X.of:U—x(Do(;) by LEMMA 4.1 we have

Dais-Fy R | A% Di; %o

C. O||lww 0
where 'Z(s))uyts) are strictly proper.Using SSE transformetion we
~obtain

~

Mi O ||Dus-F R ||N« Oflz® M ¢ Dy, Nc Zo

—

O I({ ¢ oOolio 1|we® ®)

or .

;. Dg{os"’ Fl Fz Ncﬂ Z (s) Ddo NO(L go

‘ = (83)
C O "(U(S) O
Since' Np(,: Z(‘:) s S‘h’ic‘l'lj ProPer e have I:vj LEMMA 4.1
Nyzo € Uy (D) = 20 € Ny Ux (Do)
equivalently - ' ‘
Uy. ( Dol[_) C N"lt U-){ CDo(o> ‘ . (94)
Similarly let ZOEN;!U;(DQ(’O) ,wie have by nonsingularity of No(;/

'“No(c"xo & QL (Dy,) -Using the above procedure we ohtain

ZOEUL,(DOQ) =D NJL‘Q);(Do(‘,} < 'U;; (OXLS @35)



Hence (94) and (95) inply: ' - .
]J; C[lw) = NuJ'UQ(:Eko), ' V ' - : B

/

Wow we will consider two different disturbance component

structureskfor which we will formulate the solvability of DDP.

CASE T :

Consider the system'

Do(o('_i = F:ig' + E?g""Edoq (:96)
-, gz C% . | , . o1

N

where E;oq is the disturbance component.We assume that the application
of SSh t;énsformations also changes the matrix‘EQO.Hence while the

: inpﬁt/outbut transfer function remains the same,disturbance/output
transfer function may change. |

More precisely

Md;’. D‘"o No(; %-’-‘- Mo(iFl hLlLZ' + Mo(iEz_u;*' Mdt Eﬂ’o‘j @
Y= C No(t'&

)
7

where Eg;=lﬂdiﬁh, «The gygtem:: Zi<is shown in Iigure 4.1.

) Fz *—O

Duc

, Equ —°

Fieure 4.1: STRUCTORE oF cAse1

Now in general;by TIH 2.1 we have the following lemma for the solvabi-

lity of DDP in CASE I,
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LEMMA 4.3

DDP is solvable if and only if

-4 . : .
Do(,: gd[ g’ U.y ( Da(,:) . ‘ ' ]
This trivial rcsult cen be coumpleted by

. 1

LOA 4.4 | |
' - . . -1
°(:, 60(0 any 'U; (D"“’) if and only if DO(L_ E‘Jc < _U—X(Do(()~

Proof : o
—_— o - i :
Let Dy & & Ve (D) = N Uy (Do) by LULMA 4.2.
Since  Euc= Mu; Edo '
-1 -~ ~! —1
Dolc 60(( ‘ & Nc{( ’U;‘ (DJ°>4=‘> Do(g ’\43(( Eo/o = NOJL' Uy (Do((,).
Since ‘ Do(L) Mo(l' are honanju“O.P
X -\ I -!
Do{( Mo(( 80(0 g No[,: U,x (Ddo) 4o .NO(C D°(o MOZ\ IVL(( gdo g N°1\' UJV([)D(D)
-1 :
&P D"(u E"o(c. c ’D‘*(Dio)- @
Hence by LEITMA 4.4 we show,assuming the strudture of CASE I,
that'we bring no improvement in the solvability range of DDI.In this

case DDP is either solvable in all systems Zix obtained by SSE or not

sélvable at all.

ASE TIT @

Now let the system be described by
. [ . — . L
' DO(C’,_X: = E‘Z‘ + }'}.,_L}-‘»Eq . (93)
y = (x / ‘ (39)

We agsume that we want to decouple a noise component Eq without chan-
ging input/output transfer matrix and without violating the obgervabi-
lity and the controllability,by properity selecting Qﬂ .In other words

- the general description for the SSI systems is shovm in TFig.4.2.
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FIGURE 4.2 : STRUCTURE OF CASETNN

The following 1emmas clearify the range of the solutions for DDP

n the CASE II.

EMMA 4.5
o - Given the systems Z4 of CASE IT, DDP is solvable for both

2 and Zy; if and only if Zé?]m,mere UW(_ ig the Moz;-invari—
nt subspace of MDo(o 'U*( Duto). ‘

. S g o 1 N
DDP is solvable for,Doz;if and only if Dogc 5 = U; (Dt)
r &€ Dy Vs (D) By tmon 4.2 o
: -1
| Uy (D) = Ny Uy (Do)
nd ; ) - '
& <= Mutc Dato Nai Ny; 7fx (Do) = Mute Do U (Do)
ince DDP is solvable for Do o
% C Du Uk (D).
ence DDP is.solvable simultaneously for Da(o and. Dd\- implies

'8__<___'TI\/L(L .Q(OU_)‘(D,IO)'H Do/o U;;(Dolo) '—%’lfm; 5

here U}u‘. ish necessarily the Molc —':‘_anariant subspace of- Do(o U;(D:zo).

DAY v - i
| - (€€ M D VelDe) = & & Delh(ny)
&< Uy, = N A CT |
7 oL ( 6 Q D>J° "D-;LCD"ZO) e > 6

D

: DOZO‘U;(D’(D). a :
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Thug by LEITA 4.5 we understand tnat,g:ven (ll@)F R,E,C ) for
which DDP is solvable,DDP will also be solvable for all ( Du: ,F}’F;)

E, C ) obtained using ( Tﬂdc,hb;) couples for which Zlis My, ~inva-

riant.

- LEITTA 4.6

Given 2&0 ]ef DDP be unsolvable for Z;o.Thcn DDP is not

solvable forz&‘obtajacd using (Wh”hk) couples Tor which the subspace

Ddolf*Lon ig Mi; -invariant. ' o

The proof of LEMMA 4.6 is straight forward since
Do & DeUx(Di) = M Deo Wy (Do) = D Vi ( Dey).

Hence by LEMNMA 4.6 we see that we may have an inmprovement
for the sdlvability of DDP.If for the initial decompogition ( Do, F,
F, E,C ) DDP is not solvable,we will find ovut all ( Md:, Na’) couples
for whichﬂ[hoﬂ}(&%)iﬁ;VH;—invariant and exclude then.The condition
for the solvability of DDP can he saltisfied in systems Zx.: obtained
using the remaining ( M, ,Na;)-couples.

In fact it will be wisc to detormine first ( W&f,Ni;)—couples:
parametrically and check»if the cOndition.Z;SQFQLELJU;U&)is satisfied
for any choice of free parameters.We will close this chapter Sy the

following example illustrating the above results.

PYAUPLT 4.1

Consider the controllable and observable gsysten ;Zu degcrived

by the equations:

T (1 0 04 ool el
o 4t tf, |0V OO 1ol &
o ot -X= |o o000t jo1fts 9
| : )
0 00 1| o 0 1o Lood &
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4 00 O
¥ = [o oo t |%

vhere X is the state vector,id is the input vector, q ig the distur-

bance vector and Y is the output’veotor.We will first try to find
out-the congtraints in the structure of & matrix for DDP to be sol-
vable in 24, .According to LTIFA 4.1 DDP ig solvable if and only if

there exists stricily proper X(8)and U®) such that

- r ' L] ' -4 r - r- -

54 -5 s -25'—1; O o X1(9) e,
O 54 -5 S.1 O] |%) €,
O 0o s -5.0 1 *3(5) €3
O O -1 38:0 0] |x® |e
{1 0 0 0:0 O |we) o
0O 0 0 1:0 0] |uw o
- S B

cexplicitly we obtain tha following equations

(5-1) %,(8) = 5%y(5) + $%3(9) —(25+1)%4(8) = & o (100)
C(-DXa(8) = SX3(8) +5%4(s) +U)= €a ttov)
| | SKz(s) —5X3(0) +Ua ()= €3 | Uoz)
— %3 (5) +5%4(5)=€4 : (1o3)
X 0)=0 L (lod)
Xg (5)=0 ‘ (105D
Then (104),(105) implies that
| Eq.(o0) <= ~5%2(5) +5%a(%) =€ (106) ~
Eq(‘ol) =g (5-'1))(2('7) -'_S Xs(s) +Wy(s) = €5 uo?')
k (103

Eq.(lo2) g 5X3(5) + U2(9) = es |
Eq.(1e3) = “Kals) seq - o9
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Mow Tor DDT to be golvable
9 —t = — . . .
Eq(109) =t —xa(s)=€4=0 gince Xas) is required to be

strictly proper,

' Eq,moa) =5 U,(5)=€=0 gince dz(s) rnust be strictly proper
and then
Eq.(loé) =  Ky(5)= —-%‘ which is strictly proper,

finally

583 + 58y - €4

Eq-('ﬂ‘)*’? Uyls)= p which is s;l:_x;ictly proper only foreé:-e.

]

Hence DDP is solvable if and only if E=lol » e €R.
0
N

In fact one can immediately check that

T ' :
ImE =span{i-l 0 o]= DUk (D4y) .To be more explicit . we can

construct the subspace U*(D’(o) by using the Mowchart 1L.8.Ve deline

Tirst
D T B ’4 O—
-1 ‘
A _Jo 1 0 0 -1
AEDGF = BAD E= |t 4
;o 6 0+ 0 o
{ ©

0 © _J 0 o

Then we obtain

o)[o]

Ke,rc:ﬁpan‘ :) ‘

Setting e
Uo—"A—' Kerc

from UL: U‘.;‘n A;’ ('U‘:"_,_ ﬁ) we obtain ;



" iteration o
1 -1
V'=VnA (U+B)
) ol
1[4 0
'-.5‘ ' and U +’B=S an ol|4}jo
0]}© ollo
L . - .0.455 4

where

(71)

% . . | i
nce A’ denotes the "functional inverse of map /\",by forming

3 4y ][]
o 0O 1 o olln
Az = o 0 1 olln
LO'O 4Oq_24J

Il

p-

Xy+ Xy + Zg,'f'}lj
2,
23

X3

] -l

' A;_r__ € U°+.)B | l‘.f' ar?cL m'j Cf 23=0

a AR -
’ o rfOFO , R ro
' {0 A A=t ay0
° £)= span{|® and U NA (U+B)= span {|1
V4 B)=spandl |l )= sp il
1ollo1
\.- .b; H A '\‘ \LOJ
iteration 

-

O,

nce 11*([&0): span

QO

, _ , Y
i1 2.1 ,DDP is solvable for

, ol

VU A DS B) = spon flo 1 00T = Uy (00)

and acéording to the

4o if and only if 55_3 D\,«; U-);(D,Q,), Le.

Span {[—l 10 o]’}f ‘
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Now we will try to out if we have any important improvenent to

enlarge the subspace [LOIL;([QO) ,using the procedure defined in

' CASE II. | -
Let .
F my Mz My my ny Ny nNj Ny
4 A My me my omyg N, 4 Ns Ng ny ng
Mg, = | L =
Mg M My my, Ng N Nu N
My My lmf'Mﬂ Ny Myg M5 Mg

Then according to COROLLARY‘3.10.c,we determine the free parameters

: ol Ph;‘ and PLK using the equations

Mu; Ry = Fz, ' : o)

- |
. C Ndi = C : ()
| = . ) ("2

Mol( Fy = F1 No(,: ' )
whefe
' N A N A
mg | o My Ry he B ha A
Eq(HO):D Mo(; = ’ ' and Eq(i”):{;de: = 5 e 3 8
: A A
mg O | my .ﬁg Nyo N N2
ml':') 0 0 mye ‘ ’ ] s . o 0 {




Substituting them in (112) we obtain

[~ : T
1 O O O
ninn_"' nsny ‘ O ‘ﬂ
ny "
g 4
= 00y
L ( | ‘y’ . C i

ng, Ny,MNyg € fR
Anci in general with

D = M D Na:

where:

transfer function matrix.

solve DDP we check

4y O
- s L &
Ndi: Ny O My
O o0 O
L

»-and‘ ny, & R-—{o} _

Da; Uy ( Dy = ‘Ma([ Dx, Vs (Duo)

:§‘:>an

How

n|2:«0

DuVu(Dap) = Span

po

T A
B 0O O O

N.Na-Nsh | QO =My

T he Ny

Nyy

O o | 00
e 0 0= lo
ny L]

L J

Duc Vs (Dai) € DUy (04

and Ns=o0 .Other wise we obtain

- (73)

#SPQ"

—

,lreeping E, FQ,C fixed we obtain the same

To judge vhether there is an improveuent to-

Ny

if and only
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with | (O(,(z’ ) € [R. - gOK | .f‘.fquivalentlj
-\

6 < Span o

O

P

-and the structure of T matrix for DDP to be solvable is
-9 &
ol e \ '
E = 9 S with €,22 4 ¢ m ) le\“"raf;j.
o )
o
P Leg

+

lence choosing suitable ( Mo{l,l\&‘ )-couples we can solve DDP

for E- [64 €z 064] by simnly changing Dl,(L matrices and keeping the

the tlan fer function matrix unchanged.
Thus the subspace that Z must be included is determined by the
proouut of DOQ,U'# (Dﬂ(o.)aﬂd the degrec of freedom obtained in Mdt in

gone"r al.
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V. CONCTLUSION

In this work,it is presented a reportAwhich consists
of ﬁwo'seperated parts:a survey and an investigation.While comple-
ting,it will be usefull-to‘give;some‘extra notes éo emphasize the
importance ofFVarions concepts encountered. | |

' , The bagic reference for thek"Geometrio Approach" isl]l
Homever it is full of sophisticated mathemqtlos and concepts whlch
" make’ the study for a beginner,difficult. So the aim of the survey
1s to give: tne eusentlal idea 1nbroduced by this new approach For
thlg,bamc-oonceptu (such as A-invariance,(A,B)-invariance, Stabl—
1izability)‘and;baeic_problems (suon as DDP, SDDP,0SDP,ONC} are stu-
died es-simply as possible. Thﬁnking of thevfabf that most of the
readers ave familiar with the frequency domain approach frequenCJ
domaln treatment of these basic concepts and problems is also stu—
dledlas-lntroduoed in [6,7,8,ﬂ .30,a survey of the modern control

problehs chosen isg obtained,complete‘with.their golutions the ,eo—

" metric framework and in the frequency domain.

| Theb"geometrlc approach" will tend to be the "exponent"
| - of the "Modern Control Theory",ln the future.In this new framework,
we belleve-that it will be.p0881b1e to ea31ly 1nvest1gate the pro-
perties of the solvability criteria of new confrollproblems and the
otherlrelétions existing in the diverging methods’of the Control
 Theory.
. The second part Which is an investigation is helieved
to be new;The problem is essentially based on the,work‘introduced

in[49], The considered linear m-part has a special configuration

A
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Whlch is obtained using a first level decompos ition,and tne ob-
- tained state equations are not in stete-space form.Hence the
| eggential idea is to investigste if the "extra paraneter:matrix
D‘ﬁ brings'any degree of freedom.It has to be mentioned hére
that: in this.study it is only considered completely contollable
and observable'syétems of‘the above structure,in which state-
- gpace form of the’ state equatlons can be obtained by slmnly 1nver-:
ting D matrix.In Chapter III the mathematlcal tools used are
presented in full detail, and an important property of such sys-
~tems 1is preSsntcd by THM 3.11.This result is totally new.Based
“on this property of "the ex1stence of D matrices leaving trans-
fer functlon 1nvar1ant whlle 5,5 ,C kept unchangea" another
questlon is asked ‘and ansuered in Chapter IV : To use D matrlces-_‘
for decoupling the dlsturbance at the output.The result obtained
is that in the disturbance structure of CASE IT the dimension of
'U; ,the maximal (A,B)—invariant subspace in Ker C,doss nok |
increased,however a larger dégreevof freédom may be obtained
for some D , As seen in the}examplsA4.1‘a IL.Which is initially
equal to spani&11oojﬁ} can be mapbed to span.{[id Oﬂjfi vith
’F’ EFR Ojarbltrary for a sultable choice of = D 'furthermore
~we also know that thls choice D does not change the transfer
‘functlon natrix of the»system.
As‘we stated in‘the context,it can be expected that
it finds an efficient arsa of application in the electrical an -
'electronic circuitpy designes.The analysis rélated to the solva-
Dbility of DDP may be extended,to more generic decoupling prob-
lems.For further investigations the determination of ths bounda-
ries of tne equivalence slass of «( M,N‘):matrix couplés using
the information'brought‘by the stucture of § ,I, ,C matrices,can

be3suggested.

—— !
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In general,the study includes an introductive survey,concer-
ning both the geometric and frequency domain treatment of some
new conceptsjand the second part may be considered as a partial

application of the methods that make partiéf‘the survey.
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