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nothing but joy in my life.

Last but not least, I would like to express my utter indebtedness to my family, who

has given me endless love and guidance, throughout the entire course of my academic

career. There are no words with which I could properly express my appreciation of

their steadfast support.



iv

ABSTRACT

VARIABLE STRUCTURE SYSTEMS BASED ONLINE

LEARNING ALGORITHMS FOR TYPE-1 AND TYPE-2

FUZZY NEURAL NETWORKS

Type-2 fuzzy logic systems are proposed in the literature as an alternative to

type-1 fuzzy logic systems because of their abilities to more effectively model rule

uncertainties. This thesis extends the idea of using the sliding mode control theory in

the training of type-1 fuzzy neural networks to type-2 fuzzy neural networks. In the

approach, instead of trying to minimize an error function, the weights of the network

are tuned by the proposed algorithm in a way that the error is enforced to satisfy a

stable equation. The parameter update rules are derived, and the convergence of the

weights is proved by Lyapunov stability method. The performance of the proposed

learning algorithms is tested for both type-1 and type-2 fuzzy neural networks on a

real-time laboratory servo system. Simulation and experimental results indicate that

the proposed type-2 fuzzy neural network with the proposed learning algorithm is more

robust to uncertainties and computationally effective than its type-1 fuzzy counterpart.
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ÖZET

TİP-1 VE TİP-2 NÜRO BULANIK SİSTEM İÇİN

DEĞİŞKEN YAPILI SİSTEMLER TABANLI ÇEVRİMİÇİ

ÖĞRENME ALGORİTMALARI

Tip-2 bulanık mantık sistemleri, tip-1 bulanık mantık sistemlerine göre belirsiz-

likleri daha etkin bir şekilde modelleyebildiğinden bu sistemlere alternatif bir sistem

olarak önerilmiştir. Bu tezde, tip-1 nüro-bulanık ağların eğitilmesinde kullanılan kayma

kipli kontrol kuramı fikri, tip-2 nüro-bulanık ağların eğitilmesi için geliştirilmiştir.

Önerilen yaklaşımda, hata fonksiyonunu sıfırlamak yerine, ağın öğrenme parametreleri

öyle ayarlanacaktir ki, hata kararlı bir denklemi sağlamaya zorlanacaktır. Paramet-

re güncelleme kuralları elde edilmiş ve öğrenme algoritmasının kararlılığı Lyapunov

kararlılık metodu ile kanıtlanmıştir. Önerilen öğrenme algoritmasının performansı

servo sistem olan gerçek zamanlı bir laboratuvar düzeneğinde test edilmiştir. Benzetim

ve gerçek zamanlı deney sonuçlarından, tip-2 nüro-bulanık ağların, tip-1 nüro-bulanık

ağlara oranla, belirsizliklere karşı daha gürbüz olduğu ve hesap açısından daha etkin

olduğu görülmüştür.
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1. INTRODUCTION

1.1. Literature Review

In real-time industrial control systems uncertainty is an unavoidable issue. Gen-

erally, when measurements are taken, they include uncertainties. These inaccuracies

can arise from a variety of sources in most controlled systems for example, due to,

lack of modeling information and incorrect interpretation of obtained data. Just like

uncertainties in a system, ambiguities in spoken language can cause misunderstandings

leading to miscommunication in daily life [1]. For example, when people communicate,

they rarely speak in strictly yes-no form, rather they use quantitative adjectives (such

as very, completely or a little) in order to present a clearer explanation with regard to

the amount to which a thing is a certain way.

Logic found its basis in the thinking of ancient philosophers. The philosopher

Aristotle defined logic on a bivalent basis, believing that all things could be defined as

either true or false. The problem with this type of thinking is that it leaves the world

to be seen of black and white as opposed to color. Since interpretation of information

provided is at the discretion of the person receiving the information, problems can

come up. For instance, when one says “It is freezing”, the temperature might be

subzero or just cold in her opinion. People can naturally deal with these kinds of

imprecisions, however, it is not easy for a machine to cope with them. While expressing

complex mathematical concepts, it is especially useful to give a more accurate view of

how much something is one way rather than another, and to have a clearer view of

potentially valuable information that would otherwise be vague. In order to overcome

the ambiguities which typically occur in engineering applications, Zadeh introduced

the concept of fuzzy sets in 1965 which are sets with uncertain amplitudes [2]. The

concept of fuzzy sets is based on the degree of memberships rather than true or false.

After Zadeh published his first paper on fuzzy sets [2], he opened the door for

other researchers to study type-1 fuzzy logic (T1FL) and he quickly amassed a large
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number of followers. Another critical point for fuzzy logic came about in the year 1974,

when Ebrahim Mamdani and S. Assilian used fuzzy logic to control a steam engine for

the first time [3]. After this initial break-through experiment, fuzzy logic began to gain

popularity as a method of control. In 1976, fuzzy logic had its first implementation

in an industrial manner. It was used to aid in the operation of a cement kiln by two

prominent Danish companies [4].

During the last few decades, T1FL has been applied in many industrial areas

such as elevator drive systems, robotics, DC-DC converters [5–7]. In [5], since the

proportional (P) and integral (I) values speed controller cannot generally be set to a

large value due to its mechanical resonance, instead of conventional speed controller, a

fuzzy logic controller (FLC) was used in elevator drive systems. Experimental results

show that for high-performance elevator drive systems, the proposed FLC is better than

the conventional PI controller in speed control. In [6], to accomplish a real-time and

robust control performance in reactive manners, FLC is used to encode the behaviors

for the quadruped walking robots which learn and execute soccer-playing behaviors.

These experimental studies show the effectiveness of the controller in representing

behavior of the robots. In [7], in order to smoothen the output power fluctuation of a

variable-speed wind farm, a FLC is used as a reference adjuster to control the DC-DC

converter. Simulation studies demonstrate that using FLC enhances the control ability

of the overall system, and reduces the cost of the energy capacitor system, yet keeps

the size of the energy storage system small.

When a system has a large amount of uncertainties, type-1 fuzzy logic systems

(T1FLSs) may not be capable of achieving the desired level of performance with a

reasonable complexity of structure [8]. In such cases, the use of type-2 fuzzy sets were

introduced as a preferable approach in the literature by Zadeh in 1975 as an extension

of type-1 fuzzy sets. A type-2 fuzzy set has fuzzy membership grades which means

the membership for each element of this set is fuzzy set in [0, 1] [9]. In the literature,

there are many applications of type-2 fuzzy logic systems (T2FLS) [10–15]. In [10],

a type-2 self-organizing fuzzy neural system and its hardware implementation is pro-

posed. It is reported that using interval type-2 fuzzy sets in that structure enables
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the overall system to be more robust than using type-1 fuzzy systems (T1FLSs). The

VLSI implementation of T2FLSs is discussed in literature and it is shown that the

inference speed can be sufficiently high for real-time applications [11]. In [12], T2FLSs

are applied to real-time mobile robots for indoor and outdoor environments. The real-

time implementations of this study demonstrate that a traditional type-1 fuzzy logic

controller (T1FLC) cannot handle the uncertainties in the system effectively, and a

type-2 fuzzy logic controller (T2FLC) using type-2 fuzzy sets gives a better perfor-

mance. Furthermore, with the latter approach, the number of rules to be used may be

reduced (it should be noted that this may not mean a corresponding decrease in the

parameters to be updated). In [13], a novel inference mechanism is proposed for an

interval type-2 Takagi-Sugeno-Kang (TSK) FLC system when antecedents are type-2

fuzzy sets and consequents are crisp numbers (A2-C0). Case studies reveal that the

proposed inference engine clearly outperforms its type-1 TSK counterpart. An interval

T2FLC architecture is proposed to resolve nonlinear control problems of vehicle active

suspension systems in [14]. Simulation results show that the proposed control algo-

rithm not only handles the system uncertainty effectively as well as improves control

performance but also saves actuator energy. In [15], a novel design methodology of

interval type-2 TSK FLCs for modular and reconfigurable robot manipulators with

uncertain dynamic parameters is presented. The results presented show that the de-

veloped controller can outperform some well-known linear and nonlinear controllers in

terms of tracking performances for different configurations.

Since fuzzy neural network (FNN) brings together the advantages of fuzzy logic

and artificial neural network (ANN), it has become a topic of interest for scientists and

used in this thesis [16]. It incorporates the advantages of neural networks since they

have low-level learning as well as computational power and the advantage of fuzzy logic

since it has high-level interpretation of human knowledge. For tuning the parameters

of a FNN, there are a number of methods used in the literature such as gradient-

descent-based algorithm and genetic algorithms (GAs). While these methods are widely

used for tuning the parameters of ANNs and FNNs, they may show some drawbacks

in online learning. For instance, although the gradient-descent method is easy to

implement, it includes partial derivatives of the overall system error with respect to the
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weights of the network and the parameters of the membership functions such as center

and/or sigma values. As a result, it may be very difficult to make these computations

and the convergence speed may be slow especially when the search space is complex.

Additionally, the tuning process can easily be trapped at a local minima [17]. To

overcome these drawbacks, evolutionary approaches have been proposed [18]. Although

GAs do not include partial derivatives, the computational burden may be rather high

and its stability is questionable. Furthermore, the optimal values for the stochastic

operators are difficult to derive and therefore, its use is very difficult in real-time

applications . In order to handle these difficulties, variable structure systems (VSSs)

theory based algorithms are proposed [19–21] for parameter update rules of ANNs and

FNNs.

Sliding mode control (SMC) is a preferred option among other techniques in the

literature because it guarantees the robustness of the system in the case of external

disturbances and uncertainties. The main idea behind this control scheme is to restrict

the motion of the system in a plane referred to as the sliding surface, where a predefined

function of the error is zero [22]. SMC theory not only makes the overall system more

robust but also creates faster convergence than the traditional learning techniques in

online tuning of ANNs and FNNs [23]. There are various studies in the literature

that aim to use the robustness property of SMC in the learning process of ANNs and

FNNs [24].

In this thesis, feedback-error-learning (FEL) is used as the control structure for

both type-1 fuzzy neural network (T1FNN) and type-2 fuzzy neural network (T2FNN).

FEL method was first proposed by Kawato in 1988 for robot control in which a neural

network works in parallel with a proportional-derivative (PD) controller [25]. In [25],

FEL is defined as a learning scheme in which the feedback signal generally heads toward

zero due to the fact that instead of the teaching signal or the desired output, the

feedback torque is used as the error signal also because both the control and learning

processes are done simultaneously.
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1.2. Motivation and Scope of the Thesis

In this thesis, the output of a PI controller is used as a learning error signal

to train both T1FNN and T2FNN. Even though this approach has been used with

T1FNN before [26], through this study, the novel update rules are derived for T1FNN;

what is more, this idea is extended to T2FNNs structures as well. More specifically,

instead of trying to minimize an error function as is usually done with the gradient-

based algorithms, the learning parameters are tuned by the proposed algorithm in a

way that enforces the error to satisfy a stable equation. The contributions of this thesis

to the existing literature are (i) to extend the parameter update rules of T1FNNs to

T2FNNs by using SMC theory-based learning algorithm, and (ii) prove its stability in

Lyapunov stability method.

This thesis is organized into six chapters. Chapter 1 starts with background

information on T1FLS, T2FLS, SMC and FEL. The historical review and application

examples of fuzzy logic and FEL are explained. The most commonly used training

algorithms have been compared and the reasons of using SMC based learning algorithm

have been given.

In Chapter 2, the concept and mathematical definitions of T1FLSs and T2FLSs

are presented.

The basic information about T1FNN and T2FNN and the proposed FEL are

shown in Chapter 3. The underlying idea and mathematical equations of adaptive

fuzzy neuro scheme and the structure of FNN have been introduced.

An introduction to commonly used training methods and SMC is presented in

Chapter 4. The parameter update rules for T1FNN and T2FNN are derived.

To illustrate the applicability and the efficacy of the proposed method, the control

problem of a DC motor with linear and nonlinear load conditions is studied and the

simulation results for T1FNN obtained are presented. The proposed algorithm is also

tested on a real-time laboratory setup for both T1FNN and T2FNN.

Chapter 6 provides conclusion of this research.
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2. FUZZY LOGIC THEORY

Incomplete or insufficient information in real-time industrial control applications

is either due to the deficiency of modeling information or due to the fact that the

right observation and control variables have not been employed. These factors create a

difficulty in obtaining an accurate model. Even if the controlled system has an accurate

model, there are many other uncertainties originating from the precision of the sensors,

noise produced by the sensors, environmental conditions of the sensors and nonlinear

characteristics of the actuators. In such cases, model-free approaches are generally

preferred. The most common model-free approaches in literature are ANNs and FLSs.

Zadeh made a statement about fuzzy logic theory that “fuzzy logic is a precise

conceptual system of reasoning, deduction and computation in which the objects of dis-

course and analysis are, or are allowed to be, associated with imperfect information.

Imperfect information is information which in one or more respects is imprecise, un-

certain, incomplete, unreliable, vague or partially true” [27].

Studies in literature show that FLSs can usually handle the uncertainties better

when compared to ANNs [8]. There are two different types of approaches to FLSs

design: T1FLSs and T2FLSs.

2.1. Type-1 Fuzzy Logic Systems

The core technique of fuzzy logic is focused on four main points [9].

(i) fuzzy sets : sets with smooth boundaries

(ii) linguistic variables : variables whose values are both qualitatively and quantita-

tively described by a fuzzy set

(iii) possibility distributions : constraints on the value of a linguistic variable imposed

by assigning it a fuzzy set and

(iv) fuzzy if-then rules : a knowledge scheme for describing a functional mapping or a
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logic formula that generalizes an implication in two valued logic.

2.1.1. Type-1 Fuzzy Sets and Membership Functions

There are many vague expressions on daily conversation from gossip such as “My

best friend’s girlfriend is so skinny” to a biologist’s statement that “the number of

fishes living in Atlantic Ocean is decreasing dramatically.” Fuzzy sets can overcome

such uncertain concepts which cannot be expressed by conventional set theory. To

define such ambiguous expressions on conventional set, a threshold value should be set

such as “the girls under 55 kg are skinny.” Through this value, it is possible to make

groups who are skinny and who are fat. Such conventional sets are called “crisp sets”.

Definition 2.1. Let A represent a crisp set on the universe X. Its characteristic

function χA can be defined by a mapping as follows:

χA : X → {0, 1} as χA =

 1 x ∈ X

0 x /∈ X
(2.1)

Equation 2.1 indicates that if the element x belongs to A, χA is 1, and if it does

not belong to A, χA is 0. Unlike the conventional set, a fuzzy set [2] expresses the

degree to which an element belongs to a set. Therefore, the characteristic function

of fuzzy set is allowed to have values between 0 and 1, which denotes the degree of

membership of an element in a given set.

The methods of expressing fuzzy sets can be roughly divided into two as in the

following definitions.

Definition 2.2. Let the universe X be X = {x1, x2, ..., xn}. For discrete expres-

sion (when the universe is finite), a fuzzy set A on X can be represented as follows:

A = µA(x1)/x1 + µA(x2)/x2 + ...+ µA(xn)/xn =
n∑
i=1

µA(xi)/xi (2.2)
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Definition 2.3. For continuous expression (when the universe X is an infinite set), a

fuzzy set A on X can be represented as follows:

A =

∫
x

µA(xi)/xi (2.3)

WhenX denotes the universe of discourse, x represents an element of the universe,

X and A denote a fuzzy set, it can be characterized by its membership function, µA(x)

as follows:

µA(x) : X → [0, 1] (2.4)

Membership function states that values assigned to the elements of the universal

set, X, fall within a specified range. At the same time, it also represent the membership

grade of these elements in fuzzy set A. In literature, there are three prevailingly used

membership functions which are Gaussian, triangular and trapezoidal ones.

Definition 2.4. A type-1 Gaussian membership function is specified by two

parameters {c, σ}:

Gaussian(x; c, σ) = µ(x) = e−(x−c)
2/σ2

(2.5)

A Gaussian membership function is determined completely by c and σ; c repre-

sents the membership functions center and σ determines membership functions width

as can be seen in Figure 2.1.

Definition 2.5. A type-1 triangular membership function is specified by three

parameters {a, b, c} where a is the left endpoint, b is the central point, and c is the

right endpoint as follows:
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Figure 2.1. Gaussian membership function.

Triangle(x; a, b, c) = µ(x) =



0, x ≤ a.

(x− a)/(b− a), a ≤ x ≤ b.

(c− x)/(c− b), b ≤ x ≤ c.

0, c ≤ x.

The parameters a, b, c (where a < b < c) determine the x coordinates of the three

corners of the underlying triangular membership function as it can be seen in Figure

2.2.

Definition 2.6. A type-1 trapezoidal membership function is specified by four

parameters {a, b, c, d} as follows:

Trapezoid(x; a, b, c, d) = µ(x) =



0, x ≤ a.

(x− a)/(b− a), a ≤ x ≤ b.

1, b ≤ x ≤ c.

(d− x)/(d− c), c ≤ x ≤ d.

0, d ≤ x.

The parameters a, b, c, d (where a < b ≤ c < d) determine the x coordinates of

the four corners of the underlying trapezoidal membership function as it can be seen

in Figure 2.3.
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Figure 2.2. Triangular membership function.

2.1.2. If-Then Rules

Fuzzy sets and their operations are the subjects and verbs of fuzzy logic. If-then

rule statements are used to formulate the conditional statements that comprise fuzzy

logic.

In also daily language, there are many examples of if-then rule such as

• If the relative humidity is 100%, then it rains.

• If speed is slow, then pressure should be high.

• If a person’s IQ is high, then the person is smart.

A fuzzy if-then rule is expressed in the form of:

if x is A then y is B (2.6)

where A and B are linguistic values defined by fuzzy sets on universes of discourse X

and Y , respectively. In general, “x is A” is called “antecedent” or “premise” and “y is
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Figure 2.3. Trapezoidal membership function.

B” is called the “consequence”.

2.1.3. Type-1 Fuzzy Logic System Scheme

A T1FLS consists of four components which are fuzzifier, rule base, inference

engine and defuzzifier as it is seen in Figure 2.4. The fuzzification interface converts

the input values such that they can be understood in the rule-base. In other words, crisp

input values are transformed into the membership degrees for the fuzzy set antecedents.

The knowledge base includes both rule base and data based. The rule base is made up

of fuzzy rules. The data base provides information for fuzzification and defuzzification

processes. It also stores membership functions used in fuzzy rules.

There are two commonly used types of fuzzy inference models which are Mamdani

[28] and Takagi-Sugeno-Kang (TSK) ones [29, 30]. In [31], by using Mamdani fuzzy

inference model, a steam engine and boiler combination was controlled through the

linguistic control rules taken by experienced human operators.
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Figure 2.4. Type-1 fuzzy logic system.

TSK fuzzy model was proposed to develop a systematic approach to generating

fuzzy rules from a given input-output data set. A general form of TSK fuzzy rule for

two inputs is represented as follows:

if x1 is A and x2 is B then y = f(x1, x2) (2.7)

where both A and B are fuzzy sets in antecedent and y = f(x1, x2) is a function in the

consequence. Generally, f(x1, x2) is a polynomial function and if it is not changed by

the input values, the model is called “zero-order TSK model”. When the function is a

first-order polynomial, then it is called “first-order TSK model” and so on. By using

the weighted average of all outputs, the final output is presented as follows:

y =

∑N
i=1wiyi∑N
i=1wi

(2.8)

where wi is firing strength and yi is a first-order polynomial output.

2.2. Type-2 Fuzzy Logic Systems

The type-2 fuzzy sets have been introduced by Zadeh in 1975 and in the late

1990’s it became more popular when Mendel made T2FLSs easy to use by providing

some practical algorithms [8]. Type-2 fuzzy sets are proposed as an extension of the

ordinary type-1 fuzzy sets which aim to model the uncertainties better in the rule base
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of the system. When a system has large amount of uncertainties, T1FLSs may not

be able to achieve the desired performance level with a reasonable structural complex-

ity [8]. In such cases, the use of T2FLSs is suggested as a preferable approach in the

literature. In [32], T2FLSs are applied to real-time mobile robots for indoor and out-

door environments. Real-time implementations in [32] show that a traditional T1FLC

cannot handle the system uncertainties effectively, and a T2FLC using type-2 fuzzy

sets results in a better performance. Moreover, with the latter approach, the number

of rules to be determined may be reduced (it should be noted that this may not mean

a corresponding decrease in the parameters to be updated).

2.2.1. Type-2 Fuzzy Sets and Membership Functions

The membership grades of type-1 fuzzy sets are any crisp numbers in [0, 1], a

type-2 membership grade can take values in the closed interval of [0, 1] which is called

primary membership. On the other hand, there is a secondary membership value

corresponding to each primary membership value defines the possibility of the primary

memberships [32]. While secondary membership functions can take values in the closed

interval of [0, 1] in generalized T2FLSs, they are interval sets (either zero or one)

in interval T2FLSs. Since the general T2FLSs are computationally intensive, most

researchers prefer to use interval T2FLSs in their publications due to the fact that the

computations are more manageable.

Similar to type-1 case, the primary and the secondary membership functions of

type-2 fuzzy sets may have different shapes such as Gaussian, triangular, and trape-

zoidal. However, the most common one used in literature is Gaussian membership

function.

Definition 2.7. A type-2 Gaussian membership function consists of an infinite

number of type-1 ones. The general representation of type-2 Gaussian membership
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function shown in Figure 2.5 is given as follows:

µ̃(x) = exp

[
− (x− c)2

σ2

]
(2.9)

4

6

8

10

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x(input)Primary Membership

S
ec

on
da

ry
 M

em
be

rs
hi

p

Figure 2.5. Generalized type-2 Gaussian membership function.

Definition 2.8. Uncertainty, conveyed by the union of all type-2’s primary

memberships, consists of a bounded region that is called footprint of uncertainty (FOU).

By projecting a three-dimensional membership function in two-dimensional, the

FOU of the function can be taken. When the third-dimension value is set to a fix value,

that means the third-dimension is ignored, and FOU is used to describe it, then it is

called interval type-2 fuzzy set. As it can be seen in Figure 2.6, the FOU of an interval

type-2 fuzzy set is bounded with two type-1 membership functions. The upper bound

of FOU is called “upper membership function”, while the lower bound of it is called

“lower membership function”.
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2.2.2. If-Then Rules

If-then rule for type-2 fuzzy logic is not too much different than type-1 one. The

difference between them is about the nature of the membership functions which means

T2FLS’s antecedent or consequent sets are type-2 as well. Since this does not have

an important effect on forming the rules, the structure of the rules stays totally the

same for them. When a type-2 TSK have n inputs x1 ∈ X1, ..., xn ∈ Xn and one

output y ∈ Y , the ith rule of first-order type-2 TSK model with M rules, each giving

n antecedent can be given as follows:

Ri : If x1 is Ãi1 and ... xn is Ãin then Yi = Bi0 +Bi1x1 + ...+Binxn (2.10)

where (i = 1, ...,M), Bij (j = 1, ..., n) are consequent type-1 fuzzy sets, Yi is the output

of ith rule is also type-1 fuzzy set, and Ãik (k = 1, ..., n)) are type-2 antecedent fuzzy

sets.
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2.2.3. Type-2 Fuzzy Logic System Scheme

As type-1 FLS scheme, type-2 FLSs also include fuzzifier, rule base, fuzzy infer-

ence engine, and output processor as it is seen in Figure 2.7.

Fuzzifier

Inference

Rules Defuzzifier

Type

reducer

Crisp

Values

Fuzzy

Sets

Fuzzy

Sets

Type-reduced

Set

(Type-1)

Crisp

Values

Figure 2.7. Type-2 fuzzy logic system.

In fuzzifier process, crisp input values are converted to a fuzzy set. The rules are

generally if-then rules given in (2.10). Combining the rules and giving a mapping from

input fuzzy sets to the output fuzzy sets are done in inference engine process. Unlike

from type-1 defuzzifier which gives crisp output, type-2 defuzzifier gives a type-1 fuzzy

set. Due to the fact that from type-2 output sets obtained from inference engine, type-1

fuzzy set is taken; hence, it is called “type-reduction”.

Similar to type-1 fuzzy systems, in type-2 ones there are two mostly used fuzzy

inference systems which are Mamdani and TSK models. Both of these models charac-

terized by if-then rules and have the same antecedent part. However, their consequent

structures are not the same. Whereas Mamdani rule is a fuzzy set, TSK one’s is a

function.
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The form of the ith rule zero-order TSK type-2 fuzzy system for nth inputs is

given as follows:

If x1 is Ãi1 and x2 is Ãi2 and ... and xn is Ãin then y is bi (2.11)

where all xn’s are inputs, Ãin’s are antecedent sets, y is the output, and bi’s are crisp

values [32].
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3. FUZZY NEURAL NETWORKS

Since the FNNs combine the capability of fuzzy reasoning to handle uncertain

information and the capability of ANNs to learn from input-output data sets and

as such they have become a popular approach in engineering fields [33]. “While fuzzy

logic provides an inference mechanism under cognitive uncertainty, computational neu-

ral networks offer exciting advantages, such as learning, adaptation, fault-tolerance,

parallelism and generalization” [34].

3.1. The Control Scheme and FNN Structure

In this thesis FEL is used as the control structure for both type-1 fuzzy neural

network (T1FNN) and type-2 fuzzy neural network (T2FNN).

3.1.1. The Feedback-Error Learning (FEL) Control Scheme

The control scheme proposed in this thesis is presented on Figure 3.1 where the

FNN block with two inputs and one output can be a T1FNN or T2FNN. As it is

mentioned in the introduction part of the thesis, this scheme is known as FEL control

structure in literature [25]. It implements a TSK fuzzy model as presented on Figure

3.2 and Figure 3.3 for the T1FNN and T2FNN cases, respectively. In recent years,

the TSK fuzzy model has gained more and more attention, especially in fuzzy control.

This is due to the fact that by means of the TSK fuzzy model one is able to blend a

number linearized models of the system [35].

The PI controller shown on Figure 3.1 acts as an ordinary feedback controller to

ensure the stability of the system and as an inverse reference model of the response of

the system under control. The PI control law is described as follows:

τc = KP e+KI

∫
x

edx (3.1)
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where e = ωd − ω is the feedback error, ωd is the target value, KP and KI are the

controller gains.

PI controller
Servo-system 

setup

Fuzzy Neural 

Network

wd
w

e& e

ττc

τn

.

.

.

.

d/dt

Figure 3.1. Block diagram of the proposed adaptive fuzzy neuro scheme.

3.1.2. Type-1 Fuzzy Neural Networks

The incoming signals, x1(t)=e(t) and x2(t)= ˙e(t), are fuzzified by using Gaussian

membership functions, and are associated with 1i and 2j fuzzy subsets respectively

which are defined by their corresponding membership functions µ1i(x1) and µ2j(x2) for

i = 1, ..., I and j = 1, ..., J as it can be seen in Figure 3.2.

The fuzzy if-then rule Rij of a first-order TSK model with two input variables

where the consequent part is a linear function of the input variables can be defined as

follows:

Rij : If x1 is 1i and x2 is 2j, then fij = aix1 + bjx2 + dij (3.2)

where ai, bj and dij are given constants. In the current investigation the coefficients ai

and bj in the TSK fuzzy rule Rij are assumed to be equal to zero.

The firing strength of the rule Rij is obtained as a T -norm of the membership
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Figure 3.2. Structure of T1FNN for m inputs.

functions in the premise part (by using a multiplication operator):

Wij = µ1i(x1)µ2j(x2) (3.3)

The Gaussian membership functions µ1i(x1) and µ2j(x2) of the inputs x1 and x2

in the above expression have the following appearance:

µ1i (x1) = exp

[
−(x1 − c1i)

2

σ2
1i

]
(3.4)

µ2j (x2) = exp

[
−
(
x2 − c2j

)2
σ2
2j

]

where the real constants c, σ > 0 are among the tunable parameters of the above fuzzy

neural structure.
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Equation (3.3) can be rewritten also as follows:

Wij = exp

[
−(x1 − c1i)

2

σ2
1i

−
(
x2 − c2j

)2
σ2
2j

]
(3.5)

The output signal of the FNN τn(t) is calculated as a weighted average of the

output of each rule [35]:

τn(t) =

∑I
i=1

∑J
j=1 fijWij∑I

i=1

∑J
j=1Wij

(3.6)

After the normalization of Equation (3.6), the output signal of the FNN will

acquire the following form:

τn(t) =
I∑
i=1

J∑
j=1

fijW ij (3.7)

where W ij is the normalized value of the output signal of the neuron ij from the second

hidden layer of the network:

W̄ij =
Wij∑I

i=1

∑J
j=1Wij

(3.8)

The input signal τ to the system to be controlled is as follows:

τ = τc − τn (3.9)

where τc and τn are the control signals generated by the PI controller and the fuzzy

neuro feedback controller, respectively.

The following vectors have been specified:
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• X (t) = [x1 (t) x2 (t)]T is the vector of the time varying input signals;

• W (t) =
[
W 11 (t) W 12 (t) ... W 21 (t) ... W ij (t) ... W IJ (t)

]T
is the vector of the

normalized output signals of the neurons from the second hidden layer;

• σ1 = [σ11 ... σ1i ... σ1I ]
T , σ2 =

[
σ21 ... σ2j ... σ2J

]T
, c1 = [c11 ... c1i ... c1I ]

T and

c2 =
[
c21 ... c2j ... c2J

]T
are the vectors of the tuning parameters σ and c of the

Gaussian membership functions relevant to the fuzzification of the signals sup-

plied to the first and second input of the T1FNN, respectively;

• f (t) = [f11 (t) f12 (t) ... f21 (t) f22 (t) ... fij (t) ... fIJ (t)] is the vector of the time

variable weight coefficients of the connections between the neurons from the sec-

ond hidden layer and the output neuron of the fuzzy rule-based neural network.

Due to the control scheme adopted (Figure 3.1), where the conventional controller

serves to guarantee stability in compact space, the input signals x1(t) and x2(t), and

their time derivatives can be considered bounded. The following assumptions have

been used in this thesis:

|x1(t)| ≤ Bx, |x2(t)| ≤ Bx ∀t (3.10)

|ẋ1(t)| ≤ Bẋ, |ẋ2(t)| ≤ Bẋ ∀t (3.11)

where Bx and Bẋ are assumed to be some known positive constants.

Based on the same arguments, the vectors defining the tuning parameters σ and

c of the Gaussian membership functions are considered bounded as follows:

‖σ1‖ ≤ Bσ , ‖σ2‖ ≤ Bσ , ‖c1‖ ≤ Bc, ‖c2‖ ≤ Bc (3.12)

where Bσ and Bc are some known positive constants.
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It will be assumed that, due to physical constraints, the time variable weight

coefficients of the connections between the neurons in the second hidden layer and the

output neuron are also bounded, i.e.,

|fij| ≤ Bf ∀t (3.13)

for some positive constant Bf .

From Equations (3.3)-(3.8) and Equations (3.10)-(3.12) it follows that 0 < W ij <

1. In addition, it can be easily seen from Equation (3.8) that
∑I

i=1

∑J
j=1W ij = 1.

From Equations (3.10)-(3.13) it follows that τ and τ̇ will be bounded signals too,

i.e.

|τ (t)| ≤ Bτ , |τ̇ (t)| ≤ Bτ̇ ∀t (3.14)

where Bτ and Bτ̇ are some known positive constants.

3.1.3. Type-2 Fuzzy Neural Networks

The fuzzy if-then rule Rij of a zeroth-order type-2 TSK model with two input

variables where the consequent part is a crisp number can be defined as follows:

Rij : If x1 is 1̃i and x2 is 2̃j, then fij = dij (3.15)

The T2FNN considered in this study uses type-2 membership functions in the

premise part and crisp numbers in the consequent part as shown in Figure 3.3 (where a

general first order TSK model is shown). This structure is called A2-C0 fuzzy system

[13].

In the first layer of Figure 3.3, the input signals are fed into the system. In
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Figure 3.3. Structure of T2FNN for m inputs.

the second layer, each node corresponds to one linguistic term. In this layer, for each

input signal entering the system, the upper and the lower membership degrees µ and

µ are determined. The third layer calculates the firing strengths of the rules which are

realized using the prod t-norm operator.

Wij = µ
1i

(x1)µ2j
(x2) (3.16)

Wij = µ1i
(x1)µ2j

(x2) (3.17)

The fourth layer determines the outputs of the linear functions fij (i = 1, . . . , I

and j = 1, . . . , J), in the consequent parts. In this thesis, as has been stated earlier, a

zero order system is assumed and therefore

fij = dij (3.18)

The fifth, the sixth and the seventh layers perform the type reduction and the

defuzzification operations. After determining the firing strengths of rules, the defuzzi-

fied output of the type-2 TSK fuzzy system is determined. The final output of T2FNN
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is determined as:

YTSK =

∫
W11ε[W 11,W 11]

. . .

∫
WIJ ε[W IJ ,W IJ ]

1

/∑I
i=1

∑J
j=1Wij(x)fij∑I

i=1

∑J
j=1Wij(x)

(3.19)

where fij is given by the if-then rule. In this study, the inference engine for type-2

TSK system proposed in [36] is used. The inference engine replaces the type-reduction

which is given as:

τn =
q
∑M

i=1

∑N
j=1W ijfij∑M

i=1

∑N
j=1W ij

+
(1− q)

∑M
i=1

∑N
j=1W ijfij∑M

i=1

∑N
j=1W ij

(3.20)

The design parameter, q, weights the sharing of the lower and the upper firing

levels of each fired rule [36]. W ij and W ijare determined using Equations (3.16)-

(3.17), and fij is determined using Equation (3.18).

In Figure 3.3, Layer 5 computes the product of the firing levels Wij and Wij

and the linear functions fij. Layer 6 includes two summation blocks. One of these

blocks computes the sum of the output signals from Layer 5 (the nominator part of

Equation (3.20)) and the other block computes the sum of the output signal of Layer 4

(denominator part of Equation (3.20)). Layer 7 calculates output of the network using

Equation (3.20).

After the calculation of the output signal in the T2FNN, the training of the

network is started. The training includes an adjustment of the parameters cij and

σij in the membership functions in the second layer and the parameters of the linear

functions in the fourth layer. In the next section, the parameter update rules of T2FNN

are derived.

In Figures 3.4a-3.4b, Gaussian type-2 fuzzy membership functions µ1i(x1), µ1i(x1),

µ2j(x2), and µ2j(x2) of the inputs x1 and x2 are shown. They have uncertain standard
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deviation as well as uncertain mean and their mathematical expressions are as follows:

µ1i(x1) = exp

[
−
(
x1 − c1i
σ1i

)2]
(3.21)

µ1i(x1) = exp

[
−
(
x1 − c1i
σ1i

)2]
(3.22)

µ2j(x2) = exp

[
−
(
x2 − c2j
σ2j

)2]
(3.23)

µ2j(x2) = exp

[
−
(
x2 − c2j
σ2j

)2]
(3.24)

where the real constants c, c, σ, σ > 0 are among the tunable parameters of the fuzzy

neuro structure.

Hence, Equations (3.16)-(3.17) can be rewritten as follows:

Wij = exp

[
−
(
x1 − c1i
σ1i

)2

−
(
x2 − c2j
σ2j

)2]
(3.25)

Wij = exp

[
−
(
x1 − c1i
σ1i

)2

−
(
x2 − c2j
σ2j

)2]
(3.26)

After the normalization of Equation (3.20), the output signal of the FNN will

acquire the following form:

τn = q

I∑
i=1

J∑
j=1

fijW̃ij + (1− q)
I∑
i=1

J∑
j=1

fijW̃ij (3.27)
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where W̃ij and W̃ij are the normalized values of the lower and the upper output signals

of the neuron ij from the second hidden layer of the network:

W̃ij =
Wij∑I

i=1

∑J
j=1Wij

(3.28)

W̃ij =
Wij∑I

i=1

∑J
j=1Wij

(3.29)

The input signal to the plant, τ , is as follows:

τ = τc − τn (3.30)

where τc and τn are the control signals generated by the PI controller and the fuzzy

neuro feedback controller, respectively.

The following vectors have been specified:

• X (t) = [x1 (t) x2 (t)]T is the vector of the time varying input signals;

• W̃ (t) =
[
W̃11 (t) W̃12 (t) ... W̃21 (t) ... W̃ij (t) ... W̃ IJ (t)

]T
is the vector of the

normalized lower output signals of the neurons from the second hidden layer;

• W̃ (t) =
[
W̃11 (t) W̃12 (t) ... W̃21 (t) ... W̃ij (t) ... W̃ IJ (t)

]T
is the vector of the

normalized upper output signals of the neurons from the second hidden layer;

• σ1 =
[
σ11

... σ1i
... σ1I

]T
, σ2 =

[
σ21

... σ2j
... σ2J

]T
, c1 =

[
c11 ... c1i ... c1I

]T
and

c2 =
[
c21 ... c2j ... c2J

]T
are the vectors of the tuning parameters σ and c of the

Gaussian membership functions relevant to the first and the second lower mem-

bership functions of the T2FNN, respectively;
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• σ1 = [σ11 ... σ1i ... σ1I ]
T , σ2 =

[
σ21 ... σ2j ... σ2J

]T
, c1 = [c11 ... c1i ... c1I ]

T and

c2 =
[
c21 ... c2j ... c2J

]T
are the vectors of the tuning parameters σ and c of the

Gaussian membership functions relevant to the the first and the second upper

membership functions of the T2FNN, respectively.

Due to the control scheme adopted Figure 3.1, where the conventional controller

serves to guarantee stability in compact space, the input signals x1(t) and x2(t), and

their time derivatives can be considered bounded. The following assumptions have

been used in this thesis:

|x1(t)| ≤ B̃x, |x2(t)| ≤ B̃x ∀t (3.31)

|ẋ1(t)| ≤ B̃ẋ, |ẋ2(t)| ≤ B̃ẋ ∀t (3.32)

where B̃x and B̃ẋ are assumed to be some known positive constants.

Based on the same arguments,the vectors defining the tuning parameters σ, σ, c,

and c of the Gaussian membership functions are considered bounded as follows:

‖σ1‖ ≤ Bσ , ‖σ2‖ ≤ Bσ , ‖c1‖ ≤ Bc, ‖c2‖ ≤ Bc (3.33)

‖σ1‖ ≤ B
σ
, ‖σ2‖ ≤ B

σ
, ‖c1‖ ≤ Bc, ‖c2‖ ≤ Bc (3.34)

where Bσ, Bσ, Bc, and Bc are some known positive constants.

It is to be noted that 0 < W̃ij < 1 and 0 < W̃ij < 1. In addition, it can be easily

seen that
∑I

i=1

∑J
j=1 W̃ij = 1 and

∑I
i=1

∑J
j=1 W̃ij = 1. It is also considered that, τ
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and τ̇ are bounded signals , i.e.

|τ (t)| ≤ Bτ , |τ̇ (t)| ≤ Bτ̇ ∀t (3.35)

where Bτ and Bτ̇ are some known positive constants.
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4. TRAINING ALGORITHMS FOR FNNs

For tuning the parameters of FNNs, mostly gradient based and evolutionary

algorithms are used in literature. The former works well when the system in hand

has very slow variations in its dynamics. However, since the gradient-based algorithms

(e.g. dynamic back propagation) include partial derivatives, the convergence speed

may be slow especially when the search space is complex. What is more, with the

repetitive algorithms, a number of numerical robustness issues may emerge when they

are applied over long periods of time [37]. In addition to these drawbacks, the tuning

process can easily be trapped into a local minimum [17]. To alleviate the problems

mentioned, the use of the latter algorithm has been suggested [18]. However, the

stability of such approaches is questionable and the optimal values for the stochastic

operators are difficult to derive. Furthermore, the computational burden can be very

high. To overcome these issues, VSSs theory-based algorithms are proposed for the

parameter update rules of ANNs and T1FNNs as robust learning algorithms [19], [20].

4.1. The Basics of Sliding Mode Control

SMC is an alternative control method to handle the uncertainties in both linear

and nonlinear systems in that it guarantees the robustness of a system in the case of

changing working conditions and modeling ambiguities. Since SMC decreases the order

of a system by one resulting in a possible simplification of the design procedure [38].

Using the sliding mode control theory principles [39] the zero value of the learning

error coordinate τc (t) can be defined as time-varying sliding surface, i.e.,

Sc (τn, τ) = τc (t) = τn (t) + τ (t) = 0 (4.1)

which is the condition that the fuzzy neural network is trained to become a nonlinear

regulator to obtain the desired response during the tracking-error convergence move-

ment by compensation for the nonlinearity of the controlled plant.
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The sliding surface for the nonlinear system under control Sp (e, ė) is defined as:

Sp (e, ė) = ė+ χe (4.2)

with χ being a constant determining the slope of the sliding surface.

Definition 4.1. A sliding motion will appear on the sliding manifold Sc (τn, τ) =

τc (t) = 0 after a time th, if the condition Sc(t)Ṡc(t) = τc (t) τ̇c (t) < 0 is satisfied for all

t in some nontrivial semi-open subinterval of time of the form [t, th) ⊂ (−∞, th).

It is desired to devise a dynamical feedback adaptation mechanism, or online

learning algorithm for the fuzzy neural network parameters such that the sliding mode

condition of the above definition is enforced.

4.1.1. Sliding-Mode Control-Based Learning Algorithm for T1FNN

Theorem 4.1. If the adaptation law for the parameters of the considered

T1FNN is chosen respectively as:

ċ1i = ẋ1 (4.3)

ċ2j = ẋ2 (4.4)

σ̇1i = − (σ1i)
3

(x1 − c1i)2
αsgn(τc) (4.5)

˙σ2j = − (σ2j)
3

(x2 − c2j)2
αsgn(τc) (4.6)
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ḟij = − W ij

W
T
W
αsign (τc) (4.7)

where α is a sufficiently large positive design constant satisfying the following inequality:

α > Bτ̇ (4.8)

then, given an arbitrary initial condition τc(0), the learning error τc(t) will converge

firmly to zero during a finite time th.

Proof. The proof is given in Appendix A due to space constraints. �

In the adaptation laws of Equations (4.3)-(4.7), in order to avoid divisions by

very small numbers, a lower limit of 0.001 is imposed on the denominators.

The relation between the sliding line Sp and the zero adaptive learning error level

Sc, if χ is taken as χ = KP
KI

, is determined by the following equation:

Sc = τc = KI

∫
e+KP e = KI

(∫
e+

KP

KI

e

)
= KISp (4.9)

The tracking performance of the feedback control system in servo system can be

analyzed by introducing the following Lyapunov function candidate:

Vp =
1

2
S2
p (4.10)

Theorem 4.2. If the adaptation strategy for the adjustable parameters of the

T1FNN is chosen as in Equations (4.3)-(4.7), then the negative definiteness of the

time derivative of the Lyapunov function in Equation (4.10) is ensured.

Proof. The proof is given in Appendix B owing to space limits. �
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It is noted that assuming the sliding mode control task is achievable using τc as a

learning error for the T1FNN together with the adaptation laws Equations (4.3)-(4.7)

enforces the desired reaching mode followed by a sliding regime for the system under

control.

4.1.2. Sliding-Mode Control-Based Learning Algorithm for T2FNN

Theorem 4.3. If the adaptation law for the parameters of the considered fuzzy

neuro network is chosen respectively as:

ċ1i = ˙̄c1i = ẋ1 (4.11)

ċ2j = ˙̄c2j = ẋ2 (4.12)

σ̇1i = −
(σ1i)

3

(x1 − c1i)2
αsgn(τc) (4.13)

˙σ2j = −
(σ2j)

3

(x2 − c2j)2
αsgn(τc) (4.14)

˙̄σ1i = − (σ̄1i)
3

(x1 − c̄1i)2
αsgn(τc) (4.15)

˙̄σ2j = − (σ̄2j)
3

(x2 − c̄2j)2
αsgn(τc) (4.16)

ḟij = −
(qW̃ij + (1− q)W̃ij)

(qW̃ + (1− q)W̃ )T (qW̃ + (1− q)W̃ )
αsgn(τc) (4.17)
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where α is a sufficiently large positive design constant satisfying the inequality:

α > Bτ̇ (4.18)

then, given an arbitrary initial condition τc(0), the learning error τc(t) will converge

firmly to zero during a finite time th.

Proof. The proof is given in Appendix C due to space constraints. �

In the adaptation laws of Equations (4.11)-(4.17), in order to avoid divisions by

very small numbers, a lower limit of 0.001 is imposed to the denominators.

It is well-known that sliding mode controllers suffer from high-frequency oscilla-

tions in the control input, which are called chattering. Chattering is an undesirable

phenomena because it may excite the high-frequency dynamics of the system. There

are two common methods used to eliminate it [40]: (i) The use of a saturation func-

tion to replace the signum function and (ii) the use of a boundary layer so that an

equivalent control replaces the corrective one when the system is inside this layer.

Since when applying the second method, a finite steady-state error would always

exist, most of the approaches use the saturation or the sigmoid function to replace

the signum function. In order to reduce the chattering effect the function in Equation

(4.19) has been used in this investigation instead of the sign function in the dynamic

strategy described in Equations (4.11)-(4.17).

sign(τc) =
τc

|τc|+ δ
(4.19)

where δ = 0.05.
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5. SIMULATION AND REAL-TIME RESULTS

In this thesis, SMC-theory based learning algorithm for T1FNN and T2FNN is

tested on a permanently excited servo system specifically DC motor for both linear

and nonlinear load conditions.

5.1. Mathematical Description of the Permanently Excited Servo System

The experimental setup [41] consists of two DC motors, which are connected by

a mechanical clutch. The first motor is used for the control of the rotation speed or

the shaft angle. The second one acts as a generator, by means of which nonlinear load

conditions can be created (See Figure 5.1).

Figure 5.1. Servo system setup.

The nomenclature of the symbols being used is given in Table 1. The transfer

function of the overall system can easily be derived as follows:

ω(s) =
1

CΦ

1

1 + TMs+ TMTAs2
UA(s)− RA

KMCΦ

1 + TAs

1 + TMs+ TMTAs2
ML(s) (5.1)

where

TM =
JRA

KMCΦ
and TA =

LA
RA
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Figure 5.2. Block diagram of the motor with load.

Table 5.1. Nomenclature.

Name Description

ML Load torque

KM Torque constant

IA Armature current

Ω Speed of the rotor

CΦ Back emf constant

MB Acceleration torque

TA Electrical time constant

TM Mechanical time constant

UA Armature terminal voltage

E Induced electromotive force

RA Armature winding resistance

LA Armature winding inductance

J Moment of inertia of the system

M The torque produced by the motor

The numerical values used in this study are: Armature terminal voltage= 24V ,

rated torque= 0.096Nm, moment of inertia of the system= 80.45x10−6kgm2, armature

inductance= 3mH, armature resistance= 3.13ohm, back emf constant= 0.06V s, torque
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constant= 0.06Nm/A.

5.2. Case 1: Type-1 FNN Simulation and Real-time Results

5.2.1. Simulation Studies

The dynamic model of AMIRA DR300 DC motor experimental setup is used to

test the performance of the FNS with the proposed learning algorithm. The sampling

time is set to 1 ms for all the simulations.

In order to determine the efficiency and the accuracy of the proposed controller,

two different types of load conditions are considered. Figures 5.3-5.5 show the speed

responses of the motor for the proposed controller. The corresponding load condition

starts with a value of 0 Nm, and increases suddenly to 0.032 Nm at the 2.5ths, then

again increases to 0.048 Nm at the 5ths, finally reaches to 0.096 Nm (rated torque value

for this motor) at the 7.5ths. As can be seen from Figures. 5.3-5.5, FNS adapts its

parameters when the load of the motor changes suddenly on different time periods.

At the beginning, the dominating control signal has been the one coming from the PI

controller. After a short time period however, using the control signal τc as a learning

error, the neuro-fuzzy feedback controller has been able to take over the control, thus

becoming the leading controller (see Figure 5.5).

Figures 5.6a-5.6b show the initial and the final places of the membership functions

for the error and the time derivative of the error. As can be seen from this figure, both

the center and the variance values of the Gaussian membership functions are being

updated by the proposed learning algorithm.

Figures 5.7-5.9 show the speed response of motor under load condition which is

proportional to the square of the speed, i.e. ML(t) = 0.00017(ω)2. This type of load

corresponds to the load-torque characteristics of centrifugal fans, pumps and blowers.

This type of load requires much lower torque at low speeds than at high speeds. In both

cases, the FNS with the proposed learning algorithms gives satisfactory performance.
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Figure 5.3. The speed responses of the motor for FNS.

5.2.2. Real-time Studies

AMIRA DR300 DC motor experimental setup is used to test the performance of

the FNS with the proposed learning algorithm. The sampling time is set to 10 ms for

all the experiments. Besides, the speed of the motor and the load torque are scaled to

[-1,1] in real-time experiments.

Figures 5.10-5.12 show the output speed of the real-time setup, the error of the

overall system and the control signals coming from the conventional controller (PI) and

the FNS with the proposed learning algorithm, respectively. The corresponding load

conditions start with a value of 0.024Nm, and increases suddenly to 0.048Nm at the

3.5ths, then decreases to 0.024Nm at the 7.5ths.

Similar to the simulation results, the performance of PI control law has been

improved by the hybrid control methodology consisting of a conventional PI controller

and FNS. As can be seen from Figure 5.12, the FNS is trying to take over the control
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Figure 5.4. The error between the reference signal and the output of the motor for

FNS.

operation after a short time period. The output of the PI controller tends to go to zero

simultaneously.

5.3. Case 2: Type-2 FNN Real-time Results

AMIRA DR300 DC motor experimental setup is used to test the performance

of the T2FNS with the proposed learning algorithm. The sampling time is set to 10

ms for all the experiments. In order to determine the efficiency and the accuracy of

the proposed controller, two different types of load are used. Figures 5.13-5.15 show

the speed responses of the motor for the proposed controller. The corresponding load

condition starts with a value of 0.048Nm, and decreases suddenly to 0.024Nm on 3.5ths,

finally reaches to 0.048Nm on 7ths. The load given to the system is noisy, and the noise

power is 0.00005.

As can be seen from Figures 5.13-5.15, T2FNS adapts its parameters when the

load of the motor changes suddenly on different time periods. At the beginning, the

dominating control signal has been the one coming from the PI controller. After a
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Figure 5.5. The control signals of the PI and FNS.

short time period however, using the control signal τc as a learning error, T2FNN-

based controller has been able to take over the control, thus becoming the leading

controller (see Figure 5.15)

Figures 5.16- 5.18 show the speed response of motor under load condition which is

proportional to the square of the speed, i.e. ML(t) = 0.192∗(ω)2Nm. This type of load

corresponds to the load-torque characteristics of centrifugal fans, pumps and blowers.

This type of load requires much lower torque at low speeds than at high speeds. In both

cases, the FNS with the proposed learning algorithms gives satisfactory performance.

Table 5.2. Square of the error values at each time step.

Load type 1 Load type 2

T1FNS 1.8170 1.5475

T2FNS 1.7505 1.5436

To be able to make a quantative comparison between T1FNNs and T2FNNs,

Table 5.2 is given. As can be seen from it, T2FNN gives more accurate results than
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its type-1 counterpart. Moreover, the the initial and the final places of the type-2

membership functions can be seen in Table 5.3 and Table 5.4.

Table 5.3. Initial values of the centers and standard deviations of the input

membership functions for load type 1.

Load type 1

c1i -0.5000 0.0000 0.5000

c2i -5.0000 0.0000 5.0000

σ1i 0.5000 0.5000 0.5000

σ1i 0.2500 0.2500 0.2500

σ2i 5.0000 5.0000 5.0000

σ2i 2.5000 2.5000 2.5000

Table 5.4. Final values of the centers and standard deviations of the input

membership functions for load type 1.

Load type 1

c1i -0.4498 0.0051 0.5550

c2i -4.0537 0.9462 5.9463

σ1i 0.3052 0.0296 0.1856

σ1i 0.2530 0.0113 0.1759

σ2i 1.6410 0.1591 0.9979

σ2i 1.3108 0.1032 0.6066
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Figure 5.7. The speed responses of the motor for FNS.
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Figure 5.8. The error between the reference signal and the output of the motor for

FNS.
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Figure 5.9. The control signals of the PI and FNS.
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Figure 5.10. The speed responses of the motor for FNS.
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Figure 5.11. The error between the reference signal and the output of the motor for

FNS.
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Figure 5.12. The control signals of the PI and FNS.
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Figure 5.13. The speed responses of the motor for FNS.
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Figure 5.14. The error between the reference signal and the output of the motor for

FNS.



48

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

time (s)

 

 
tau

n

tau
c

Figure 5.15. The control signals of the PI and FNS.
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Figure 5.16. The speed responses of the motor for FNS.
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Figure 5.17. The error between the reference signal and the output of the motor for

FNS.
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Figure 5.18. The control signals of the PI and FNS.
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6. CONCLUSION

In industrial applications, uncertainty is an inevitable problem and FLSs provide

a way to handle ambigious knowledge. Since FLSs are able to overcome imprecision

information and ANNs are capable of learning from input-output data sets , FNNs

combine them to have a better behavior. To train FNNs, there are commonly used

training methods such as gradient based and evolutionary algorithms. Owing to the

fact that the former includes partial derivatives, the convergence speed might be slower

than the desired time and the latter’s computational burden is too much, it is not useful

in all cases. As an alternative approach, in this thesis, an SMC-based learning algorithm

is proposed to train T2FNNs for the first time in literature besides training T1FNNs.

The methods proposed in this study has the ability to learn the plant model online

instead of using an accurate predefined dynamical equations of the system. Using a

combination of FLSs, ANNs, and VSSs theory harmoniously allows us to better handle

the uncertainties and lack of modeling information.

The main objective of this thesis are to train T2FNNs by using SMC-based learn-

ing algorithm. The parameter update rules are derived for a structure with two inputs,

each being modeled by type-2 membership functions with uncertain standard devia-

tions but fixed means. In order to show the effectiveness of the algorithm, the method

is tested through simulations and on a real-time laboratory set-up, namely, servo sys-

tem. It is seen through the studies carried out that the T2FNN with sliding mode

learning algorithm can control the real-time servo system effectively, with better noise

rejection capabilities as compared to a T1FNN structure. The prominent feature of

the learning algorithm proposed (in addition to its robustness) is its computational

simplicity as compared with gradient based and genetic algorithms. Hence, it makes

the proposed algorithm relatively easy to implement.
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APPENDIX A: Proof of Theorem 1

µ1i(x1) = exp

[
− (

x1 − c1i
σ1i

)2
]

(A.1)

µ2j(x2) = exp

[
− (

x2 − c2j
σ2j

)2
]

(A.2)

The time derivatives of Equations (A.1)-(A.2) are as follows:

˙µ1i(x1) = −2(
x1 − c1i
σ1i

)(
x1 − c1i
σ1i

)′ exp

[
− (

x1 − c1i
σ1i

)2
]

(A.3)

˙µ2j(x2) = −2(
x2 − c2j
σ2j

)(
x2 − c2j
σ2j

)′ exp

[
− (

x2 − c2j
σ2j

)2
]

(A.4)

By defining Equations (A.5)-(A.6), the Equations (A.3)-(A.4) are written in a

simpler way as follows:

A1i = (
x1 − c1i
σ1i

) (A.5)

A2j = (
x2 − c2j
σ2j

) (A.6)

Then Equations (A.3)-(A.4) can be written as follows:

˙µ1i(x1) = −2A1i(A1i)
′µ1i(x1) (A.7)
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˙µ2j(x2) = −2A2j(A2j)
′µ2j(x2) (A.8)

Wij = µ1i(x1)µ2j(x2) (A.9)

The normalized value of the output signal of the neuron ij from the second hidden

layer of the network can be written as below:

Wij =
Wij∑I

i=1

∑J
j=1Wij

(A.10)

By using Equation (A.9), the time derivative of Equation (A.10) is taken as

follows:

Ẇij =

(
µ1i(x1)µ2j(x2)

)′(∑I
i=1

∑J
j=1Wij

)
(
∑I

i=1

∑J
j=1Wij)2

−

(
Wij

)(∑I
i=1

∑J
j=1 µ1i(x1)µ2j(x2)

)′
(
∑I

i=1

∑J
j=1Wij)2

(A.11)

Ẇij =

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)(∑I
i=1

∑J
j=1Wij

)
(
∑I

i=1

∑J
j=1Wij)2

−
(Wij)

[∑I
i=1

∑J
j=1

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)2

(A.12)

Equation (A.12) can be simplified as follows, by using Equation (A.10):

Ẇij =

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)
(
∑I

i=1

∑J
j=1Wij)

−
(Wij)

[∑I
i=1

∑J
j=1

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)

(A.13)



53

Ẇij =

(
− 2A1i(A1i)

′µ1i(x1)µ2j(x2)− 2A2j(A2j)
′µ1i(x1)µ2j(x2)

)
(
∑I

i=1

∑J
j=1Wij)

−
(Wij)

[∑I
i=1

∑J
j=1

(
− 2A1i(A1i)

′µ1i(x1)µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)

−
(Wij)

[∑I
i=1

∑J
j=1

(
− 2A2j(A2j)

′µ1i(x1)µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)

(A.14)

Ẇij =

(
µ1i(x1)µ2j(x2)

)(
− 2A1i(A1i)

′ − 2A2j(A2j)
′
)

(
∑I

i=1

∑J
j=1Wij)

−
(Wij)

[∑I
i=1

∑J
j=1

(
µ1i(x1)µ2j(x2)

)(
− 2A1i(A1i)

′ − 2A2j(A2j)
′
)]

(
∑I

i=1

∑J
j=1Wij)

(A.15)

Ẇ ij = −W ijK̇ij +W ij

I∑
i=1

J∑
j=1

(
W ijK̇ij

)
(A.16)

where

K̇ij = 2

(
A1i(A1i)

′ + A2j(A2j)
′
)

By using the following Lyapunov function, the stability condition can be checked:

Vc =
1

2
τ 2c (t) (A.17)

The time derivative of Vc is given by:

V̇c = τcτ̇c = τc(τ̇n + τ̇) (A.18)
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where τn =
∑I

i=1

∑J
j=1 fijWij and τ̇n =

∑I
i=1

∑J
j=1(ḟijWij + fijẆij).

V̇c = τc

{ I∑
i=1

J∑
j=1

[
ḟijW ij + fij

(
−W ijK̇ij +W ij

I∑
i=1

J∑
j=1

W ijK̇ij

)]
+ τ̇

}
=

= τc

[ I∑
i=1

J∑
j=1

ḟijW ij − 2
I∑
i=1

J∑
j=1

W ij

(
A1i(A1i)

′ + A2j(A2j)
′
)
fij+

+ 2
I∑
i=1

J∑
j=1

[W ijfij

I∑
i=1

J∑
j=1

W ij

(
A1i(A1i)

′ + A2j(A2j)
′
)

] + τ̇

]
=

where

Ȧ1i =
(ẋ1 − ˙c1i)(σ1i)− (x1 − c1i)σ̇1i

σ1i2

Ȧ2j =
(ẋ2 − ˙c2j)(σ2j)− (x2 − c2j) ˙σ2j

σ2j2

Equation (A.19) can be obtained by using Equations (4.3)-(4.6);

A1iȦ1i = A2jȦ2j = αsgn(τc) (A.19)

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij − 4
I∑
i=1

J∑
j=1

W ij(αsgn(τc))fij+

+ 4
I∑
i=1

J∑
j=1

(
W ijfij

I∑
i=1

J∑
j=1

W ij(αsgn(τc))

)
+ τ̇

]

Since
∑I

i=1

∑J
j=1 W̃ij = 1,

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟijW ij + τ̇

]
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where

ḟij = − W ij

W
T
W
αsign (τc) (A.20)

V̇c = τc

[
− αsgn(τc) + τ̇

]
(A.21)

V̇c =

[
− α|τc|+ |τc|Bτ̇

]
< 0 (A.22)

�
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APPENDIX B: Proof of Theorem 2

Evaluating the time derivative of the Lyapunov function in Equation (4.10) yields:

V̇p = ṠpSp =
1

K2
I

ṠcSc

≤ |τc|
K2
I

[
−α +Bτ̇

]
< 0, ∀Sc, Sp 6= 0

(B.1)

�
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APPENDIX C: Proof of Theorem 3

µ1i(x1) = exp

[
− (

x1 − c1i
σ1i

)2
]

(C.1)

µ1i(x1) = exp

[
− (

x1 − c1i
σ1i

)2
]

(C.2)

µ2j(x2) = exp

[
− (

x2 − c2j
σ2j

)2
]

(C.3)

µ2j(x2) = exp

[
− (

x2 − c2j
σ2j

)2
]

(C.4)

Time derivative of the all Gaussian membership functions is written as follows:

˙µ1i(x1) = −2(
x1 − c1i
σ1i

)(
x1 − c1i
σ1i

)′ exp

[
− (

x1 − c1i
σ1i

)2
]

(C.5)

˙
µ1i(x1) = −2(

x1 − c1i
σ1i

)(
x1 − c1i
σ1i

)′ exp

[
− (

x1 − c1i
σ1i

)2
]

(C.6)

˙µ2j(x2) = −2(
x2 − c2j
σ2j

)(
x2 − c2j
σ2j

)′ exp

[
− (

x2 − c2j
σ2j

)2
]

(C.7)

˙
µ2j(x2) = −2(

x2 − c2j
σ2j

)(
x2 − c2j
σ2j

)′ exp

[
− (

x2 − c2j
σ2j

)2
]

(C.8)
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By defining (C.9)-(C.12), the equation (C.5)-(C.8) are written in a simpler way

as follows:

A1i = (
x1 − c1i
σ1i

) (C.9)

A2j = (
x2 − c2j
σ2j

) (C.10)

U1i = (
x1 − c1i
σ1i

) (C.11)

U2j = (
x2 − c2j
σ2j

) (C.12)

Then Equations (C.5)-(C.12) can be written as follows:

˙µ1i(x1) = −2A1i(A1i)
′µ1i(x1) (C.13)

˙
µ1i(x1) = −2U1i(U1i)

′µ1i(x1) (C.14)

˙µ2j(x2) = −2A2j(A2j)
′µ2j(x2) (C.15)

˙
µ2j(x2) = −2U2j(U2j)

′µ2j(x2) (C.16)

Wij = µ1i(x1)µ2j(x2) (C.17)
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Wij = µ1i(x1)µ2j(x2) (C.18)

The normalized value of the lower and upper output signal of the neuron ij from

the second hidden layer of the network can be written as below:

W̃ij =
Wij∑I

i=1

∑J
j=1Wij

(C.19)

W̃ij =
Wij∑I

i=1

∑J
j=1Wij

(C.20)

The time derivative of Equations (C.19)-(C.20) are written as follows:

˙̃
Wij =

(
µ1i(x1)µ2j(x2)

)′(∑I
i=1

∑J
j=1Wij

)
(
∑I

i=1

∑J
j=1Wij)2

−

(
Wij

)(∑I
i=1

∑J
j=1 µ1i(x1)µ2j(x2)

)′
(
∑I

i=1

∑J
j=1Wij)2

(C.21)

˙̃
Wij =

(
µ1i(x1)µ2j(x2)

)′(∑I
i=1

∑J
j=1Wij

)
(
∑I

i=1

∑J
j=1Wij)2

−

(
Wij

)(∑I
i=1

∑J
j=1 µ1i(x1)µ2j(x2)

)′
(
∑I

i=1

∑J
j=1Wij)2

(C.22)

˙̃
Wij =

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)(∑I
i=1

∑J
j=1Wij

)
(
∑I

i=1

∑J
j=1Wij)2

−
(Wij)

[∑I
i=1

∑J
j=1

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)2

(C.23)
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Since W̃ij =
Wij∑I

i=1

∑J
j=1Wij

,

˙̃
Wij =

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)
(
∑I

i=1

∑J
j=1Wij)

−
(W̃ij)

[∑I
i=1

∑J
j=1

(
˙µ1i(x1)µ2j(x2) + µ1i(x1) ˙µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)

(C.24)

˙̃
Wij =

(
− 2A1i(A1i)

′µ1i(x1)µ2j(x2)− 2A2j(A2j)
′µ1i(x1)µ2j(x2)

)
(
∑I

i=1

∑J
j=1Wij)

−
(W̃ij)

[∑I
i=1

∑J
j=1

(
− 2A1i(A1i)

′µ1i(x1)µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)

−
(W̃ij)

[∑I
i=1

∑J
j=1

(
− 2A2j(A2j)

′µ1i(x1)µ2j(x2)

)]
(
∑I

i=1

∑J
j=1Wij)

(C.25)

˙̃
Wij =

(
µ1i(x1)µ2j(x2)

)(
− 2A1i(A1i)

′ − 2A2j(A2j)
′
)

(
∑I

i=1

∑J
j=1Wij)

−
(W̃ij)

[∑I
i=1

∑J
j=1

(
µ1i(x1)µ2j(x2)

)(
− 2A1i(A1i)

′ − 2A2j(A2j)
′
)]

(
∑I

i=1

∑J
j=1Wij)

(C.26)

˙̃
Wij = −W̃ij(Kij)

′ + W̃ij

I∑
i=1

J∑
j=1

W̃ij(Kij)
′ (C.27)

˙̃
Wij = −W̃ij(Kij)

′ + W̃ij

I∑
i=1

J∑
j=1

W̃ij(Kij)
′ (C.28)
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where

(Kij)
′ = 2

(
A1i(A1i)

′ + A2j(A2j)
′
)

(Kij)
′ = 2

(
U1i(U1i)

′ + U2j(U2j)
′
)

By using the following Lyapunov function, the stability condition is checked as

follows;

Vc =
1

2
τ 2c (t) (C.29)

V̇c = τcτ̇c = τc(τ̇n + τ̇) (C.30)

τn =
q
∑I

i=1

∑J
j=1 fijWij∑I

i=1

∑J
j=1Wij

+
(1− q)

∑I
i=1

∑J
j=1 fijWij∑I

i=1

∑J
j=1Wij

(C.31)

τn = q

I∑
i=1

J∑
j=1

fijW̃ij + (1− q)
I∑
i=1

J∑
j=1

fijW̃ij (C.32)

τ̇n = q

I∑
i=1

J∑
j=1

(ḟijW̃ij + fij
˙̃
Wij) + (1− q)

I∑
i=1

J∑
j=1

(ḟijW̃ij + fij
˙̃
Wij) (C.33)
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τ̇n = q

I∑
i=1

J∑
j=1

(
(−W̃ij(Kij)

′ + W̃ij

I∑
i=1

J∑
j=1

W̃ij(Kij)
′)fij + W̃ij ḟij

)

+ (1− q)
I∑
i=1

J∑
j=1

(
(−W̃ij(Kij)

′ + W̃ij

I∑
i=1

J∑
j=1

W̃ij(Kij)
′)fij + W̃ij ḟij

)
(C.34)

V̇c = τcτ̇c = τc

[
q

I∑
i=1

J∑
j=1

[(
− W̃ij(Kij)

′ + W̃ij

I∑
i=1

J∑
j=1

W̃ij(Kij)
′
)
fij + W̃ij ḟij

]
+ (1− q)

I∑
i=1

J∑
j=1

[

(
− W̃ij(Kij)

′ + W̃ij

I∑
i=1

J∑
j=1

W̃ij(Kij)
′
)
fij + W̃ij ḟij]

+ τ̇

]
(C.35)

V̇c = τc

[
q

I∑
i=1

J∑
j=1

[

(
− W̃ij(2A1i(A1i)

′ + 2A2j(A2j)
′)

+ W̃ij

I∑
i=1

J∑
j=1

W̃ij(2A1i(A1i)
′ + 2A2j(A2j)

′)

)
fij + W̃ij ḟij]

+(1− q)
I∑
i=1

J∑
j=1

([
− W̃ij(2U1i(U1i)

′ + 2U2j(U2j)
′)

+ W̃ij

I∑
i=1

J∑
j=1

W̃ij(2U1i(U1i)
′ + 2U2j(U2j)

′)
]
fij + W̃ij ḟij

)
+ τ̇

]
(C.36)

where

Ȧ1i =
(ẋ1 − ˙c1i)(σ1i)− (x1 − c1i)σ̇1i

σ1i2

Ȧ2j =
(ẋ2 − ˙c2j)(σ2j)− (x2 − c2j) ˙σ2j

σ2j2
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U̇1i =
(ẋ1 − ˙c1i)(σ1i)− (x1 − c1i)σ̇1i

σ1i
2

U̇2j =
(ẋ2 − ˙c2j)(σ2j)− (x2 − c2j) ˙σ2j

σ2j
2

Equation (C.37) can be obtained by using Equations (4.11)-(4.16);

A1iȦ1i = A2jȦ2j = U1iU̇1i = U2jU̇2j = αsgn(τc) (C.37)

V̇c = τc

[
q

I∑
i=1

J∑
j=1

(
2
[
− W̃ijfij2αsgn(τc)

+ W̃ijfij

I∑
i=1

J∑
j=1

W̃ij2αsgn(τc)
]

+ W̃ij ḟij

)

+(1− q)
I∑
i=1

J∑
j=1

(
2
[
− W̃ijfij2αsgn(τc)

+ W̃ijfij

I∑
i=1

J∑
j=1

W̃ij2αsgn(τc)
]
W̃ij ḟij

)
+ τ̇

]
(C.38)

V̇c = τc

[
q

I∑
i=1

J∑
j=1

([
− 4αsgn(τc)W̃ijfij

+ 4αsgn(τc)W̃ijfij

I∑
i=1

J∑
j=1

W̃ij

]
+ W̃ij ḟij

)

+ (1− q)
I∑
i=1

J∑
j=1

([
− 4αsgn(τc)W̃ijfij

+ 4αsgn(τc)W̃ijfij

I∑
i=1

J∑
j=1

W̃ij

]
+ W̃ij ḟij

)
+ τ̇

]
(C.39)
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V̇c = τc

[(
− q4αsgn(τc)

I∑
i=1

J∑
j=1

[
W̃ijfij − W̃ijfij

I∑
i=1

J∑
j=1

W̃ij

]
+ q

I∑
i=1

J∑
j=1

W̃ij ḟij − (1− q)4αsgn(τc)
I∑
i=1

J∑
j=1

[
W̃ijfij − W̃ijfij

I∑
i=1

J∑
j=1

W̃ij

]
+ (1− q)

I∑
i=1

J∑
j=1

W̃ij ḟij

)
+ τ̇

]
(C.40)

Since
∑I

i=1

∑J
j=1 W̃ij = 1 and

∑I
i=1

∑J
j=1 W̃ij = 1, Equation (C.40) becomes as

follow:

V̇c = τc

[
q

I∑
i=1

J∑
j=1

W̃ij ḟij + (1− q)
I∑
i=1

J∑
j=1

W̃ij ḟij + τ̇

]
(C.41)

V̇c = τc

[ I∑
i=1

J∑
j=1

(
qW̃ij ḟij + (1− q)W̃ij ḟij

)
+ τ̇

]
(C.42)

V̇c = τc

[ I∑
i=1

J∑
j=1

ḟij

(
qW̃ij + (1− q)W̃ij

)
+ τ̇

]
(C.43)

V̇c = τc

[
− αsgn(τc) + τ̇

]
(C.44)

V̇c =

[
− α|τc|+ |τc|Bτ̇

]
< 0 (C.45)

�
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