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ABSTRACT

In this khesis,polé assignment problem,one of
fhe most commonly used control schemes,is considered
and special emphasis is given on the application Qf'
avaliable pole assignment algorithms in multi-input
systems,

A very convenient method,proven first by Acker-
mann,for‘détermining thg :equired feedback gaigs for
arbitrary pole agsignment in single-input sysféms,
is generalized to include the multivariable systems
as well,using a unity rank feedback matrix,The multi-
variable system is first converted into an "equivalent"
single—input/system and Ackermann's procedure is sub-
gsequently applied,v |

Furthérmore the relationship between various
model following control schemes and pole assignment

problem is discussed in detail.



OZETGE

Bu tez g¢aligmasinda,en sik 'kullanilan denetim
yﬁnteﬁlerinden biri olan geri besleme etkisi altinda
>kuﬁup yerlegtirilmesi yontemi incelenmigtir.Galisma-
nan biiylk bir kismi kutup yerlegtirilmesi yonteminin
cok girdili sistemlere uygulanmaslna ayrailmigtir.

oimdiye kadar yalniz tek girdili sistemlerde
uygulanabilen Ackermann yontemi;genellegtirilerek
¢cok girdili sistemlerde de uygulanabilecek duruma
getirilmigtir.Denetlenecek sistem Once tek girdili
egdeger bir sistem haline doniigtiriilmils ve daha son-
ra Ackermann yontemi uygulanarak sistemin kutuplari-
nin karmagik dlizlemde istenilep noktalara yerlegti-
rilmesi gerceklegtirilmisgtir.

Ayrica kutup yerlestirme ve model izleme yOn-
temleri arasaindaki benzerlik ve uyumsuzlﬁklar ayrin-

tilari ile ortaya kommugtur.
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INTRODUCTION

It is a well known fact that the free response of an
. uncontrolled linear plant is given by a linear combination
of the dynamical modes of the system,where the mode shapes
are determined by the eigenvectors and the time-domain
chéracteristics by the elgenvalues (poles) of the plant.
Therefore most of the cbmmonly used control procedures
are based ;n altering the closed lodp pole locations sé
that a satisfactory system performance is ob%ained°

In this context the root-locus method has been uséd
and is still being used by numerous control engineers in
a vast number of practical and.theoretiéal applications, .
Basically the root-locus method considers the efféct of
_ varying a gain parameter in the feedback loop,on the
closed loop pole locations.Unfortunately the use of the
root-locus method is somewhat limited since it can only.
be applied to single-input,single-output systems.However
with ‘ever increasing fields of application of the control
system theory,the systems dealt with are getting more and
more complex to be handled with the tools of classicgl
control theory.As a soiution to this problem,techniques
for time domain analysis and synthesis of control systems
have been developed.In this thesis the pole’placement
problem of multi-variable systems in state space repre-

sentation is discussed‘in detail and basic methods de-




2
veloped in this field are introduced.

'In the first chapter the motivating ideas in the
pole placement problem are briefly discussed and rela-
tions between pole assignability and classical concepts
of state space analysis such as controllability and aob--
servability are introduced.The second chapter deals Wifh.
~what seems as the fundamental idea of most pole place-
ment algorithms,namely the transformation of system
equationé with arbitrary structure into confrollable
companibn form.This transformation and its use in pole
placement will be discussed both for single-input andv
also for multi—input-éystems.The third chapter is
bagically concerned with Ackermann's procedure for
pole placement and its extension to multi-input systems.
In the fourth chapter a "model referencg control" scheme
is applied to the pole placement problem.Also the rela-
tions betweenbtracking and pole assignment is discussed
in detail.The fifth chapter considers pole placement in
stochastic case,the principle of separation and its use
in pole placement problem ﬁnder noisy conditions is also
discussed.The last section gives é prief summary of what
has been presented in this thesis and suggests topics,

of further research,



CHAPTER 1
POLE ASSIGNMENT VIA STATE VARIABLE FEEDBACK

Given the state space represenfation of a multi-

variable system:

:é(t):Ax(t)-gBu,(’t)

(1-1)
Y(t) :CX(t)

where A and B are matricesbof dimensioniin X n) and

(n x m) respectively;x(t) is an (n x 1) columﬁ vector
denoting the state of the system,u(t) is the (m x 1) '
external input vector and y(tj is the (p x 1) output
vector.Hence the matrix C is of dimension (p x n).
From now on we will assume that all the states of the
system (1-1) are available,and therefore the output
equation will not be used,The effects of partially‘
inaécesible state variables will be discussed later in
this chapter. \

The free response of the uncontrolled plant,i.eo
when u(t) is equal to zero vector;is given by a linear
combination of the dynamical modes of the system,where
the mode shapes are determined by the eigenvectors aﬂé
the time domain characteristics by the pole locations

of the system [lj.lt is possible that for some reason

or another the response of the uncontrolled plant is

<



unsatisfactory,The system response may be too slow for
a particular purpose,or it pay‘even be unstable due to
positive real parts of its poles,

However if control loops are intrcduced which ge—
nerate the input vector by linear féedback of the state.
vector of the plant,then the response characteristi9s
of the resulting closed loop system will no longer be
determined by the eigenproperties of the plant ﬁatrix;

" A,but those of some new closed loop plant matrix,whose
elgenvalues and elgenvectors will depend upon the nature

of the feedback loops.In other words we want to modify -

the external input u(t) ;
u(t) = ¥ x(t) + r(t) » (1-2)

where r(%) is an (m x 1) external reference input vec-

tor,such that the closed loep system equation becomes
x(t) = (A+BK) x(t) + B »(t) - (1-3)

The main concern of medal control theory is to choose
an appropriate feedback gain matrix (A+BK) has a de-
sired set of eigenvalues.In this chapter we want to
answer the following questions: | -
i.) Under which conditions is it possible to
find an appropriate K matrix,such that a
desired closed loop characteristic polyno-

mial. is obtained?

2



S id.) Whgt are the possible approaches to pole
assignment problem if all the state variables
are not accessible?

The procedure used to déterminé the K matrix will be
discussed in the next chapter, |
When one thinks about the conditions which have
to be satisfied,so that the existence of K is guaran-
teed,one is immediately led to\the idea,that the pas—‘
gibility of the existence depends on the céntrollabi—
1ity of the state x with respect to the external input
u oTo bé precise consider the following.Let |

A=Ay o a-n

! N

A be an arbitrary set of n complex‘numbers¢\i,such that
anyO\i with InK%i):+ O appears in a conjugate pair.

The necessary and sufficient condition for the existence
of an (m x n) real matrix K,such thatrthe closed loop
system‘matrix (A4+BK) has the setAas its eigenvalues .
is the controllability of the pair (A,B),i.e. the
existence of K implies that the (n x mn) controllability
matrix of the system (1-1)

€ = [B,AB,.,.,An‘,lB] (1-5)

ig of full rank n.This result has been proved by various

authors [2];[3],[4]cMost of these proofs are constructive

and some of them,such as the one in[2],are rather in-
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volved.The theorem will be stated here without giving

a formal proof.But the method shown in Chapter 2,to
evaluate K,for single and multi-input systems,is very
illustréting for a possible préof;

THEOREM (1-1) For the n-th order dynamical system given

in (1-1),letA(1-4) be an arbitrary desired set of n
complex nmbersxi,such that any ')\i with Im(?gi) + 0
appears in A.as a conjugate pair.The closed loop system
(1-3) has Afor its set of eigenvalues if and only if
(A,B) is controllable. g

i S
t l Y ’ I
(R B ~ C B>
Tor(y) 77+/n\/ u(t) 2(t) [ y(t)

l
|
I

— J

=

Fis.l'f

The general structure of the linear state variable feed-

back law given in (1-3) is shown in Fig (1-1).

Linear state variable feedback is an important
compengation technique in the synthesis of linear dyna-
mical systems.However one should be aware of one impo§;
tant factor concerning linear state variable feedback,
which can in many cases prevent its direct employment
‘for closed loop pole asgsignment.

In particular,on closer inspection of Fig.(1-1)



it its apparent that the feedback path from the state .
x(t) through the gain matrix K crosses the boundary which
encloses the original system.This clearly implies the
ability to directly measure the entire internal n-dim-
ensional state vector.In general,hdwevergonly the-exter—‘
nal input u(t) and the, output y(t) are directly measurable
so that the control scheme given in Fig.(1-1) is not
directly realizable.Since all the states of the system
are required to implement the control law;we can intro-
duce a state estimator (observer) into the system,such
that the states are estimated using only the exteimal
input u(t) and output y(t).Hence in the reaiization of
the control law (1—2) the n~dimensional estimated state
vector ;(t) will be used in place of x(t).Obviousl& this
idea of using a state estimator to reconstruct the un-
available states at the‘output,requires the éystem to

be completely observable.It has been shown in [3] that
complete observability of the pair (A,C) is necessary
for the realization of an estimator.Certainly the con-
vergence rate of ﬁhe estimator must be fast compared

to the time constant of the system,such that no signi-
ficant delay is added to the system performance,The *
block diagram of the system with aﬁ estimator éauses

a slight modification on Fig.(1l-1).
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Under these considerationswe can modify the statement
of Theorem (1-1) as follows : |
THEOREM (1-2) Consider the n-th order system given in

(1-1) and assume that initially not éll the states are.
available.Let N(1-4) be an arbitrary desired set of n
complex numbers ki,guch that any ?‘i with Im(é\i) + 0
appears in.jyin cojugate pair.The closed loop system
(1-3) has A.for its set of eigenvalues,i.e. complete
aﬁd arbitrary pole placement is realizable,if and only
;if (A,B) is controllable and (A,C) is observable,
- ‘ However estimating the unavailable states via a
state éstimator has one major disadvantage;it consi&er~
ably increases the system order.Let us assume that ggle
piacement is primarily used for plant stabilizationo.
The plant,however, may not neédvés many feedbacks as
there are étatea for its stabilization,since the respoﬁee
.to the normal fange of inputs is often determined by a

erw dominant poles of the system.Therefore one may try



to constuct feedback loops only from the available out-
put variables.Pole placement using only output féedback
‘is certainly an alternative approach to using an estimator
to establish the ﬁécessary gstate feedback law.For pole
placemenf using only output feedback the external input

- vector u(t) will be modified,and then it is equal to,

u(t) = K, y(t) 4 =(t)
u(t) = K C x(t) + r(%) (1-6)

The.closéd loop system equation becomes :
- x($) = (A+BK_C) x(%) + B (%) -(1-T7)

The output feedback matrix K must be chosen such that
det(A-&BKOC) will be eqﬁal $o the desired characteristic
'polynomial.However determiging Ko,such that arbitrary
pole placement is achieved,is not that easy.It has been
proved in [5],[6]that it is always possible to locate
exactly p (p is the rank of the output matrix C) of

the closed loop poles to arbitrary locations.If some
other additional constraints are also satisfied then

all of the n closed loop poles can be arbitrarily placed
using only thﬁut feedback [7]° -
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CHAPTER 2
COORDINATE TRAWSFORMATION and ITS USE IN
POLE ASSIGNMENT

.

2-1 Transformation into controllable companion form

In the previous chapter it has been shown that for _
a controllable system pair (A,B),all the poles of the
closed loop system can be assigned arbitrarily,subject
to complex conjugate pairing,by a suitable choice of the
feedback gain matrix K.For a single input system the
required feedback matrix is unique,whereas for a multi-
input system there are practically an infinite number
of solutions.Although the existence of such feedback
gains is known,determining their values for a particular
system is not that easy.Trying to solve for the K matrix
usually results in a set of non-linear equations,which
becomes almost impossible to solve with an increase in
gsystem order.Several algorithms have appeared in the
literature on this subject,where.the motivating idea
of most_of these methods is a transformation of the
original system equations in a coordinate'system where
the mathematiés is tractable for a particular purposd.

How in this chapter we are going to introduce a
transformation [3],[7] so that the transformed state
equations will be in controllable companion form,The

use of this form in pole assignment problem will be
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discussed and illustrated in detail.To start consider

the single input system which is expressible by the
 state space representation of the form :

x(t) = A x(t) + b u(t) . (2-1)

It is assumed that the system (2-1),or the pair (A,b)
- is controllable which implies that the rank of the |
(n x n) controllability matrix:@X is n.Now consider
the (n x n) matrix T obtained fronlﬁi by setting t%,
the first row of T,equal to the last (n.th) row of

3;1 and recursively computing the remaining rows of

T by successive postmultiplication of each preceding -

row of T by A.In particular,

A y (2-2)

where tg is the n-th row of'ﬁ;l,It is thus readily

apparent that t] b = by A b= ... =] A" % = 0,but

1

that t3 A% b = 1,which immediately implies the rela-

tion T b :{O O oo 1]T°Thése observétions also imply

-

the nonsingularity of T,since

-

(00 ... 01
0] X

T@X:

fH LXK
"

M

~
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where the x's are possibly non-zero elements.If z is
now defimed as Tx,1% is seen that the first element of
zZ,namely zl,when differenéiated with respect to time,
yields theKrelation (drepping the time arguments for

convenience)
. 7
By = (t7 4) x + (tl b) u

which in turn equals %o tg X = zz.Furthermore
By = (tg AQ)X + (t% A Dblu = 24 and 80 forth,or in gene-

ral éj_z zZ for i =1,2,...5(n-1).Therefore it follows

i+2
that the equivalent single-inpiut system representation.
(A,b) or 2 =A z + b u,where A = TAT * gnd b ~ Tb is in
a particular structural form which is termed as the

gcalar controllable companion form,i.e.

— —y p— =

0 1 0 ..,.0 Y
0 0 l..,.0 , 0

A = TATal = E ée 1 ] b = Tb = § (2"3)
—"an "an_l e s 0 "‘ald _l_

where E is the (n x n) companion matrix with the iden-
%;ty matrix in the upper right bleck and b is identically
zero except of a non-zero entry 1 in the n-th row,.Some
immediate benefits are derived from the reduction of -
-(A,b) to controllable companion form,In particular,the
characteristic polynomial,det(AI - A),of the'system is

apparent from the last row of A.Expanding the det(aI - A)

along any but the last row we obtain the characteriastic
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polynomial of the pair (A,b) or (A,b),1i.e,

A(A) = det(A - A) = det(AT - A) =

=AT ¢ al?\n“l +eee+a, JAta,  (2-4)

Furthermore the input u only effcts the last row of
g,due to its special sitructure abtained through +the
trangformation z = Tx. |

The notion of "controllable companion form" is .
npt confined only to scalar systems,and can be exten—
ded to more general multivariable cases.In particular,
consider any completely state controllable system pair
" (4,B),with B assumed to be of full rank m £ n.This
latter assumption implies that all m available inputs
are mutually independent,which is usually the cage in
practice.We now define‘éx as the (n x ﬁ) matrix obtain-
ed by selecting from left to right as many as n linear-
ly independent columns of the controllability matrix
€k{§,AB,,..,An~1B]}Sin¢e theﬂsystem was assumed to
be co‘ntrollable,éx has full rank n.We can construct
the nonsingular (n x n) matrix L by simply reorder-
ing the n(=n) columns of Ex,beginning with a power |
ordering of the first d; columns of €_ which involve -~

- b,,the first column of B,and then employing those d2

l)
columns of'éX which involve bz,next and so forth.In

particular :
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d.-1 d,-1 d -1

1 .
L:[bl,Ablyooo,A bl’bz,ceo,A 2 b2,0-°°’A m bm]

(2-5)

. We now define the m integers di as the controllability
indices of the system and denote by /u,max( di) for
i:l,...,m,wbich we further define as the controlla-
bility of the system.i,e. max(di):/.&.lt should now be
noted that all m columns of B are present in L since
we agsumed that B was of full rank m.We now sét

k _
T = .
k iZ:l di ,” k:l,z,c."m (2"‘6)

which implies that 7y= dl,<r2 = d1 + dz,q;l:d +o .+dm= n

1
We can now enlarge the algorithm employed in the single

input case to determine an appropriate equivalence
transformation matrix T in the multivarisble case,i.e.

1

we set 1:5 equal to the U‘k-—th row of I'~ for k=1l,c..,m

and consider the following (n X n) matrix T :

r— —

1Y

t
: | (2-7)
t
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vThe nonsgingularity of L implies neéessarily T of
bging full rank n.By now using the same reasoning
applied in the development of éhe single—input casge,
it follows that T represents an’equivalence transfor-
mation which reduces the given system to én equivalent
representation %::Xz +- gu,where the pair (X,ﬁ) agsumes

a particularly useful structured form,namely a multi-

input controllable companion form,i.e.
LY

- ~ ~ -
A A A
11 12 °°° “1im )
A=TAT ~= | . : e e (2-8a)
e ] L] *
el ~ o~
A A
L ml m2 “°° AmmJ
010 010.. oi 10 0 0]
[ ] I. -
001 0.. 0i0.. 01 .
1 { i
1! 1 ]
| 1 1
1 . ?
ll i i
] ] |
XX xix x x| fx x x
““““““““““ DR St S
00 . 0:0 10 0: :0 0.. 0
. -1 i i -
1001 0.. 0] .
i 1 1
! { {
H i |
t ll i
i | i
X XX X X X X « . . X
S PR, A S il lllllC (2-8b)
i ] 1
; } ]
] { 1
1 { 1
[} 1 t
{ ] i
t | i
! i -
___________ .L_..__.._..........._....{...._.._......_‘L.._.___....__..._._
00.. oioo.. o 1010 0
. ele . . |
. 1 . 10010..0
] { {
{ i 1
i { l
| i | 1
i 1 ;
X X % x Xy X X X
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0 0 0
0 0 0
1 X - X
R 0 0 0
and, B = 0 o 0 (2-8c)
Y
0 1 X X
o o p

where the m diagonal blocks Xii of A are éach‘én upper
right identity companion matrix of dimension-di,while'
- the off diagonal blocké,xij for i#:j are each identi-
cally zero except possibly for their respective\fingl
rows.We therefore note that all information reé&rding
the equivalent state matrix K'can be derivéd from know—
ledge of the m ordered controllability indices d, and

i
the m ordered a, rows of A.The same can also be gmaid

of B,since we note that only these same ordered Vk

rows of B are nonzero.

EXAMPLE (2-1) Consider the system x = Ax 4 Bu,where

0 0 1 O] 0 0 -
3 0 1 1 1 0

A = -1 1 4 -1 and B= o 1
1 0 -1 o] 0. 0

We readily verify that the system is controllable.

Furthermore éx::[bl,b2,Ab2,A2b2],the matrix consis-~
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ting of the first n=4 linearly independent columns
of € .Therefore no reordering of the columns of e,
is required and hence EX;-L.FOI? this example dq=1,
d2=3,(f' = 1 and U‘2=d1 + d2:n‘=4.'l‘he transformation

matrix T is computed next by first calculéting t,:{ and

T
o3

rows of 1 L,For this example t']r_r_[l 1 0 -2],and

t5,the first and fourth (corresponding to U, and 9”2)

42 _[1 0 0 1] ,which implies that :

~

- }
t] 1 1 0 -2
’tg 1 o 0 1
T = T = and.,
tg A 1 0 0 O
tg 22l lo o 1 o
0 o 1 O]
1 2 =3 0
pL
o 0 0 1
0 1 -1 0]
Therefore :
. 0!'1 o 0] 1 0]
"',"“k""—"‘——"—'—_ =
R 4 |oto 1 0 . 0 ©
A _ TAT ~. | ,B= TB=
0 { 0o o0 1 0 0
1,1 -3 4 0 1

We now note that the pair (A,B)is indeed in control-

~

lable companion form.In particular,All is a cjompanion

matr_ix of dimengion d1= 1,and A22 is a companion matrix

of dimension d2 = 3,Consequently,only the (first and
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fourth (éorresponding to ¢ and Gé) rows of A and B
are nontrivial and thus contain all the pertinent

information regarding the equivaléﬁt.state matrix A.

2-2 Extension of Controllable Companion Form to

Partially State Controllable Systems

We can now coﬁsider certain implicatiéns and
extensions ofvthe preceding results when the multi-
variable system is only partially state controllable,
In particular,we will gtiii assume that rank (B)=m<n
but we consider the case when rank(C_ )=n<n.Note that

it is still possible to define the (n x n) matrix z‘ix

consisting of the first & linearly independent columns
of'@i,as well as the (n x A) matrix L as given by (2-5)
but with Uﬁ:= i%& dizzﬁ instead of n.The & linearly
independent columns of L clearly form a basis of some
subspace W of EZ.If we define W, as the orthogonal
complement of W,i.e. the subspace of ER congisting of
all vectors in BR perpendicular to W in the sense of

a zero inner product,it follows that any vector v in
E® can be expressed as & linear combination of some
vector w in W and s&me vector w, in W, .In particular
v:uxw.+-@wl,for all v in Eé,which implies that E® can
be defined as the direct sum of W and W, .It is thus
clear that the dimension q of W, is n-n,since o

of dimension n.We let @l,@zﬁ..o,pq be any basis of W
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and consider the "extended" staté‘representation :
X = g x + B, u, - (2-9)

where/Be is the n x (m + q) matrix obtained by ap-
pending to B the g basis vectors of WL,igé._

B,= [B,@l,..o,gé} while u, is an (m+q)x 1) input vector
obtained by appending to u,q additional input elements,
i.e. uezz[ul,...,um,um %1”“’um +q] T The extended
system (2—9),thus’defined,is clearly a controllable .
one,and is therefore possible to employ the algorithm
presented earlier,to obtain a n-dimensional equivalence
transformation which reduces the extended syétem to’
controllable companibn form.We denote the appropriate
transformation matrix Te and utilize it to reduce the

original system to the equivalent representation
1

Z = A z + B u,where A::TeAT; and B=T_B.Due to the
gpecific-choice of Te,it follows that the equivalent
pair (A,B) "partially resembles" the multivariable

companion form.In particular

o
1]
}
1
|
P
]
?
| ol
o]
=
jon
(sel’
It
|
td >

(2-10)
L ' c -

(@]
=

!

o |

where the pair (AC,BC) ig in n-dimensional controllable

companion form;i.e. the pair (AC;BC) assumes the struc-

m . -— .
ture indicated by (2-8) with i?; d, = n.Furthermore

the lower left (g x n) block of A as well as the final
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q rows of ﬁ are identiqally zero:0n cloger inspection
>it becomes apparent that the controllable and the
completely uncontrollable "portions" of the system
have been separated.More specifically, the n-dimensional

subgystem defined by the first n rows of the pair

A

(A4,B)namely z.= 4, fc + A zg + B, u is clearly
controllable,since ACE z- can be treated as a known
disturbance.Furthermore,the,q—diméhsional subsystem
defined by the remaining rows of (A;B),namely

® ~

56:=A6 zé ia completely uncontrollasble.We further note
that in view of (2-4) and (2-10) the characteristic -
polynomial det(AI -~ A) of A (and hence of K) can be
written as the product of the characteristic polyno-
mials of the controlable and’éompletely uncontroilab;e

portions of the system;i.e.

deb(AI - A)=det(AI - A4) = deb(AI - A )det(AL - Ac)
(2-11)

2-3 Pole Assignment via the Controllable Companion Form

We will now consider the general employment of
linear state variable feedback for arbitrary assignu@nt

of the closed loop poles of the maltivariable gystem

x=Ax+3Bu | (2-12)
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In particular if the linear state variable feedback

cpntrol law, .

u=Kx+r (2-13)
is employed to alter fhe pole configuration of the open
loop system,we can readily obtain a state épace'repre~ |
gentation for the'dynamical behaviour of the compensa-
tion system by simply substituting (2-13) for u into

(2-12) &
Xx=(A+BK) x +Br (2-14)

In general it is not all clear what effect the control
law (2-13) has on the system (2-12),since we consider
any arbitrary "unstructured" open loop system pair
(A,B).However,if the open loop system is in controliable
companion form,the effect of the feedback law in (2-13)
on the pole locations can be easily clarified.lLet us
give the main result of this‘section as a theorem,

THEOREM (2-1) 3 Consider the system (2-12) and the

linear'state variable feedback law (2-13).A11 & cont-
rollable poles of the closed loop system (2-14) can be
completely and arbitrarily assigned via linear state
variable feedback while the n-n uncontrollable poles
of the system are unaffected by (2—13).

Pfoof: Assume that we have already transforméd the
= \

given system into the controllable companion form (2~i0)

The pair (Ec,éc) is an n—dimensional controllable com-
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panion form,while X— represents‘the completely uncont-
rollable portion of the state matrix.As we have pre-
viously noted all (m) U&‘rows of A + B K can be comp;
letely and arbitrarily altered via K.(K is the required
feedback gain matrix in the transformed‘coordinate
system,and %é is the portion of % corresponding to the
n-dimensional controllablersystem (Xc,gc)a)We can choose

the first n columns K_,of K,such that

0 1 0 6so O
o 0 0 1...0
A + B K, = : °*, 1 (2-15)
e =
| n an_l (-3 -2~ a

is an n-dimensional companion matrix,where the scalars
dl,aoo,aﬁ represgent the coefficients of the desired
characteristic polynomial,i.e. the coefficients of the
polynomial det(AI - Kc - gcﬁc),Since the remaining n-n
columns of ﬁ affect only Ece,the'final n-n rows of i
are completely unaffected by %,Which implies that the
n-n éigenvalues chor equivalently the uncontrollable
poles of the system,remain unaltered py linear stafé
feedback.This follows formally from the fact that all.

n poles of the closed loop system are equivalent to the

zeros of :

det(AI — A - BK) = det(AI - A - BK) =
= det(ZI - A - BK.) det®\ - A7)  (2-16)
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In order to explicitly determine a XK which yields the
controllable part of the closed loop sjstem matrix as
represented by (2-15),we let Kz'dehote the m ordered
Uk rows of Kc + ﬁogc as given by (2-15) and define

A

Acm and ch as the same ordered Gk TrowWs of"Ac and Bc’

~ ~

respectively.It therefore follows tﬁat

N ] ~ -~ A%
Ao+ BepKe = A (2-17)

or that the control law (2-13),with the first n columns .

of K given by
A - A ) (2-18)

yields the desired n-dimensional closed loop sysfem
submatrix (2-15).

The-final n-n columns of R play no part in closed-
loop pole assignment,since they affect\only KCE which
in turn,has no effect on the eigenvalues of the closed
loop system matrix.We can therefore set the final n-n .
columns of ﬁ equal to zero in order to complete our
assignment of all (mn) entries of an appropriate.The
state feedback gain matrix K,associated with the original
system is glven by ' | -

~

u=Kz+r=Klx+r=Kx+r (2-19)

where,

-

K = KT : (2-20)
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EXAMPLE (2-2) To illustrate the above constructive pro-

cedure for finding a state feedback gain matrix K,which
yields any arbitrary set of 1 closed locp poles,consider

the following system in the state form (2;12),wheré

-1 0 0-6 3 -1] (o0 1]
1-2 1 0-1-1 -1 -2
Ao/l 10 6-2 1| 5 lo-1
1 00 00 O 0 0

1 2-1 0 2 1 1 2
-2 0 0 2 0 -1] Lo o

We first transform this system to an equivalent one via
the transformation matrix T,noting that the-controlla—
bility matrix'ek for this system has rank 5€:n = 6,and
therefore that the system is not completely controllable.

Therefore,in view of the results given in the previous

section ~ -
{11 01 0 0 o0
01 0 0 1 ©
O 0 0 01 0
T=10 001 0 0
. 1 0 0 0 0 O
|0 0 0 2 0 1]
0 1 0:0 0,0] [ | B
0 0 1:0 0,0 X L
Ao 422 082 Ol 1) A, 1A g
A=TAT " =|g o 0i0 110" z
0 0 _3i4-li-1 || 4
0 0 oio oj-1] | 0 3 |
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los b
13
o>

and

—— e o s

0 ‘ \

C5:C)<D§F4 O ©
Oka O O O
i ’

Clearly the pair (Acch) is in controllable companion

form,with dl

§

3 and d, = 2.Therefore 0} = d; = 3 and

7 = d; + d, = 5 = B.We further note that Az =[~1],or

2 = "1 2=
that n-n = 1 uncontrollable pole at A= -1 is an asymp- .
totically stable one.If we now require that the five
controllable closed loop poles of the system be given
by %1 = "‘Ool,?\2 = —062,%2’4 :W’"lA i' 399\5 -— -Z,i‘b fcllQWS
that we will require an Kc such that

det(AI - A_ - BK) = (A+ 0.1)(A+ 0.2)(8% + 2 +2)(A+2)
=27 + (430 + (7.22)07 = (5.880A° + (1.32)A+ (0.08)

T )

0 1 0 0 0
0 0 1 0 0
A+ BE_ =| 0 0 0.1 0
. 0 0 0 o 1
: ‘ _"'Oa08 "1932 "5488 "7022 ""403__
which implies tha?, _
| o 0 0 1 0
710,08 ~1.32 -5.88 -7.22 -4.3] -~
ince e 2 o -2 0o 1
im = .
cm -l o 0 3 -4  -1. =1

BOGAZICI ONIVERSITESI KO TUPHANES!
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- 1 : ' |
and ch :[ 0 i:l,lt follows from (2-18) +that :

R, = Bl (A% Ry .| 116 0641776 9.44 6.6
~0.08 -1,32 -8,88 -3.22 ~3.3

An appropriate X can' now be found by adding a zero
8ixth column to Kc and postmultiplying the resulting

matrix K,by T as indicated in (2-20),which equals to

kK = | T.76 0.64 1.16 9.44 18.4 O.
—'3038 "'1932 "0808 _3;22 10o2 Oo

2;4 Application of Linear State Varigble Feedﬁack

to System Stabilization

Another important point which deserves special
attention is the application of state feedback to . -
gystem stabilization.In thg previous section it has
been proved that all the controllable poles of any
system can be altered via a suitably'chosen feedback
matrix K.But the n-n uncontrollable poles remain unal-
téred by this feedback,since the uncontrollable por-
tion of the system has no couplingrwith the external
input u.Even 1f the n controllable poles have initiaily
positive real pérts,i,e. they cause the system to be~
ﬁnstable,they can be moved in the complex plane via
state feedback,so that they all have negative real
parts;they are stabilizable. |

But if any one of the n-h uncontrollable poles

is initially unstable,the complete system remains
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-unstable,since  the n-na poles are completely unaffected
by the feedback of (2-13).§Qre,at this point a defini-
tion of system stabilizability-which is a weaker con-
dition than controllability-can be given as : -

DEFINITION [3]: A system as in (2-12) is called asymp-

totically stabilizable via state feedback if and only
if the n-1 uncontrollable poles of the system (the

eigenvalues of AE) lie in the left half complex plane.

2-5 PFPinal Remarks

It should be noted that the procedure outlined
in the previous sections to determine the required
feedback gain matrix K, and K as in (2-18) and (2-20)

will be extremely simplified for single input sjrstems°

For any single input system d, :’ﬁ,henceﬂfﬁ = n.

Therefore there exists only a single row of the matrix

~

A;x ~
Acm’Am and ch

Xcm = [ —8.5,—8.5_1, es 0 9"8.]_] (2—'21)
Ef = [ "KE,—«E_:L' coe 9—0(1] (2"22)
ch :[1] _ (2"23)

>
"~

Hence the formula for determining K, is reduced to

the computation of a row vector

kT - p~l (a¥

P2l
¢ = “em ‘*m Acm) =

:[ —(ocﬁ - aﬁ)’ sos 5= (Xq - al)] (2_24)A
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kL _

- and - kT T ‘ (2-25)

where i is obtained from ﬁg-by’placing appropriate
number of zero entries to the end of Qc’

‘In various books on modern control engineering
one can see several different procedures designed to
determine the transformation matrix which will conver?
the single input system of (2—1) into the controllable
companion form.The procedure presented in the first
gsection and given by the equation-(2—2) is‘a very coﬁ—
venient one,if one considers equation (2—25) where
the transformation back to the original coordinate,”
gsystem has to be realized via T.The matrix T,deter- (
mined by (2-2) will give us immediately the #alue of
k.In most other procedures however,T_l,the inverse of
the transformation matrix,is determined first,from
which T must be evaluated.Therefore the procedure
presented in this chapter is a very convenient one to
uge feor afbitrary‘pale assignment in single input

gystems,
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CHAPTER 3

POLE ASSIGNMENT in LINEAR MULTIVARIABLE
SYSTEMS USiNG UNITY RANK FEEDBACK MATRICES

-

3-1 Introduction -

In the previous chapter the basic approach of
most pole assignment procedures has been discussed,The
main part of the procedure introduced in the second
chapter,is determining a non-singular transformation:
such that the canonical system equations in the trans-
formed coordinate system are convenient from fhe pdéint
of mathematical tractability df computations.But in
general determining the required transformation matrix
egpecially for higher order systems is a very tiﬁe
consuming computational process, K

In this chapter a new procedure,proved first by
- Ackermann [9] will be introduced which will eliminate
all of the difficulties described above.

. »The original procedure of Ackermann can only be
applied to single input systems,which is a severe
restriction on the applicability of this method.But in
the third section of this chapter a procedure willafe
outlined [ 2],[87,through which multi-input controllable
gystems can be transformed intd an equivalent singleQ
input system.This procedure enables us to apply Acker-

mann's formula for péle placement in multi-input

systems as well.
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. 3=2 Ackermann's Procedure for Pdle Asgignment in

Single Input Systems

-

THEOREM (3-1) Given the controllable single input

system :
X=Ax+Dbu (3-1)

it is desired to construct a feedback law of the

form
u = kT x ' (3-2)
such that /
det{AT - (& + bkD)] = AM) (3-3)

where the roots of A(\) are the desired poles of the
closed loop system,subject te complex pairing.Then
the feedbacﬁ»gain vector kT ig given by the following
equation :

T T -1 ‘
X = —e €T AA) (3-4)

where e is the (n x 1) column unit vector whose all
entries are all zero except the last entry which is
equal to l,ﬁ& is the controllability matrix of the.

controllable pair (A,b) and is defined by :

€ = (b,Ab, o. A" D) (3-5)

and A(A) is the characteristic polynomial evaluated
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- PROOF Under the feedback law given by (3-2) the closed

loop system equation becomes

x = (A + ka) x ) (3-6)
X = Fx
where F =

= A + bkT (3-7)

Let A(A) be the desired closed loop characteristic

polynomial of the closed loop system matrix F :

A(N) = det(AI - F) = /
= AT @A 4 L e N vy, (3-8)

Since the pair (A,b) is a controllable one,the cont-
rollability matrix €k,as given in (3-5),is invertible
and one cén write from the basic definition of the

inverse of a matrix,
erte =1
Let el denote the last row oftiil.Then
eT(b,Ab, ... A% 1B) = (00 ... 1) (3-9)
which is equivalent.to the following equalities :

o=

e b - eT(Ab) = scee = QT(An—zb) = 0O
T el (3-10)
(A : _

Using (3-10) we obtain the set of equations,
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eTF = oT(a + vxT) _ &Th

T v

e = (oTHP = (eTa)(4 + biT) = oTa2

: . - ° (3_11)
eTFn~l_ (eTFn—Z)F - ceTAn—Z)(A 4 ka) - eTAn—l
eTFn = eTAn - kT |

k-

Furthermore from the Cayley-Hamilton theorem we know

that every matrix satisfies its own characteristic

equation,i.e.
AF) = FP+ ()P o o+ (x )T =00 (3-12)
Multiplying (3-12) by et and using (3-11) we get;.

eIA(F) = eT(AI?) + eT(oalAn“l) T oee

T( T

coe + e OK.nI) + k =0 (3"'13)

Solving for kT we obtain,

KT o - eT A(A) (3-14)

We have to note also the fact that eT,the lagt row of

‘6;130an be written as,

7 -1 T ,-1
e (OOooo 1)‘@x:en6x

it

hence ' _ -~
7 R R | _
k* = - e 6X A(4) (3-15)

In the computation of the feedback gain vector kT,it

is only required to calculate the last row of%ﬁ;l,

' <
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Which saves much from computation time.,Furthermore even
if there are multiple openﬁloogwor closed loep poles,
the same theorem can be again applied without any
modifications which ig not the case in most of the
other pole assignment algorithms. |
Although Ackermann's original procegure can only
be applied fto single input and completely state cont-
rollable systems,the procedure is later modified [10],
go that it can a;so be applied to partially controllable
systems.In this latter case,it is only possible to ar-
bitrarily assign only n of the closed loop poles,where

T is the rank of the controllability matrix €

EXAMPLE (3-1) Given a controllable second order system :

S EiaHE

we want to design a feedback law of the form u = ka,

such that the closed loop poles will be at'%l = -3,
and?x2 = -5, therefore the closed loop characteristic
polynomial A(N\) should be A(N) =% 4+ 8A+ 15.

Using the results of the previous theorem we

obtain : ~

26 61

T o1
enﬁx - (0 1/4)

and,

<
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80 that the required feedback gain‘vector becones,

k' = - elBT AN = (-13/2 -61/4)

with the above feedback law the'closed loop system
equation equals to, |
%= (A + bkY) x {“12 ’63/2] x
2 4
A check of the closed loop poles will assure that the
desired pole configuration is realized via the above

feedback law.

3-3 Extension of Ackermann's Formula to Multivariable

Systems

Some of the existing methods developed for
assigning specified values to the poles of a linear
multivariable system by means of state or output
feedback restrict the feedback matrix (explicitly ox
implicitly) te having unity rank by predefining its
structure as a product of a row and a column vector,
which is also referred as the dyédic form.This res-
triction results in considerable simplifications in
the calculation of the required feedback matrix by _
reducing the multivariable system %o an "equivaleﬁt"
single input system.However,the preservation of the
controllability under this reduction of the control

space is often taken for granted.In this section

7
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we want to discuss the relationship between this
problem and the concept of cyclic subsgpaces from
linear algebra.For the sake of completeness pre-
liminary results from linear algebra on cyclic

subspaces [11] are collected and presented first.

3-3,1 Cyclicity of a Bpace with respect to a
Matrix Operator

Consider the‘n—dimensional Euclidean vector
space E" and a linear bperator in this space rep-
resented by a given constant (n x n) matrix A.Take
an arbitrary non-zero x in En and the sequence of

vectors
X,A XsAQX: o00 (3-16)

gince the space is finite dimensional,there exists
én integer r,04r < n,such that the first r vectors
X, A%, oo ,Ar"lx of this sequence are linearly in-
dependent.In other words,r is the greatest integer

guch that the vectors .

X, A%, o.. AT lx " (3-17)

P

are linearly independent.These vectors form the basis
of an r-dimensional subspace EY ,This subspace is called
"oyclic" with respect to the operator A,in view of the

special character of the basis vectors (3-17).The

z
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operator A carries the first vector of (3-17) into
the second, the second into the. third,and so on.The
last basis vector is carried by A into a linear com-
bination of the basis vectors.The vector x is said
to generate the r-dimensional cyclic subspace ol

by means of the operator A.

The space ED is cyclic with respect to A if
and only if there exists a vector x in E? such that
its cyclic subspace ET is the entire space,that is
r = n.In other words,En is cyclic with respect to 4
if there exists a vector x in E® such that the:set

of vectors
X,AK, oo 9An-lx (3-18)

gpan the entire space E".The condition of linear
independence of the basis vectors (3-18) can be

expressed as
n-1
I‘ank(}{,AX, ace ,A X) = 1 (3"19)

when EY is not cyclic with respect to A,then for

all ¥ in EU

rank(x,Ax, 0. ;A% Yx) < n (3-20)
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3-3.2 Application of Cyclicity in State Feedback
| Design [12]

A controllable linear multivariable system deacribed by
X=AX+ Bu

with the state vector x in E" and the control vector

u in E® can be effectively controlled by a scalar
control h in El which 18 applied to the m inputs of
the system through a constant (m x 1) vectdr'q,u,= qh'

1 with the

This reduction of the control apace E® to E
préservation of the éontrollability is possible excépt
for some rather exceptional caées,

The single input controi approach is mostly
used in state feedback design in pole assignment in
multivariable systems and is referred to as "dyadich
or "unity rank" feeaback design.This involves deter—
mining en (m x n) state feedback matrix XK which is con-
gtrained to having unity rank by predefining its struc-
ture in the dyadic form K = qu,where q is an (m x 1)
vector specified by the designer,while pT is a (1 x n)
vector of unkhown feqdback gains,determined so .as tq_

assign sgpecified values to the closed loop eigenvalues

of the single‘input gystem :

x = Ax+ (Bg) h (3-21)
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with the state feedback.control law h = pTxoThe Tes-
triction of the feedback matrix to having unity rank
thus reduces the state feedback design of a multiva-
riable system (A,B) to that 6f much simpler "equivalent'
single input system (A,(Bq)),for which pT can be rea-
dily calculated using the résults of the previous
sectio? or using any other possible method derived

only for single input systems.The state feedback matrix
T

for the multivariable systém ig then given by XK'= qp
The desirgd closed loop poles are obtained for the

multivariable system by an appropriate choice of pT'
gince the closed loop system matrices of the equivalent

gingle input system and the multivariable system are

the same,
r(e) + w(t) b ) - e (k) .
e Y U] -
+W\ : +
A G
: FEEDBACK GAIN MATRIX K=qp¥
};~~d—"—_1
' T ]

Fig. 3-1 State Feedback Control Structure
Using Dyadic Feedback Matrix )

The unity rank state feedback matrix K can be determined
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from the above procedure if and only if the vector g
is chosen such that the equivalent single input system
(A,Bq) is controllable.This requires the controllability

matrix of this system, : : S
X} ' -
ﬁx = [ (BQ),;A(BQ), L] gAn l(Bq)] (3"'22)

to be of full rank n,On:comparing expressions (3-19)
and (3-20),it is clear that the necessary and sufficient
condition for the existence of an appropriate q is

that the multivariable system (A,B) is cyclic with
respect to the system matrix A.Wonham [2] has shown .
that if the multivariable system is controliable and

A is cyclic,then there exists an (m x 1) vector be;{B}
such that (A,b) is controllable,where {B} denotes the
subspace of E" spanned by the columns bl’ o ,bm of B.
In other words there exists real numbers Qys eee 3Qy
such that b = élbl + ooe + qmbm = Bgqg forms a contrél-
lable pair (A,Bq).In fact Gopinath [13] has pointed
out that when (A,B) is controllable and A is cyclic,

a randomly chosen q will ensure that (A4,Bq) is cont- .
rollable with probability 1l.Once thé required trans-
formation from é multivariable system to the equival®nt
single input system by a suitably chosen q,then the

A

feedback gain vector pT is determined :

T = - ol (€Htaw | (3-23)

R
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-and K = qu,Where q is chosen by the designer.

Most multivariable systems are cyclic because
the condition of not being cyglic is caused 5y having
two identical subsystems embedded in one systenm and
yet completely decoupled from one another [l}].Hence
it is a singular situation.Gopinath has pointed out
that only cyclic systems neéd to be considered in

connection with control system design,since,when a

system is not cyclic,then a slight amount of feedback -

will make the system cyclic.lMore precisely it has been
shown [2] that if the system (4,B) is controllable
but not c¢yclic,then for any non-zero vector q,there
exists a state feedback matrix Kl,such that the single
input system (A =* BKl,Bq) is cyclic and controllable.
In fact the controllability of the system (A,B) im-
plies that the closed loop system matrix (A +BK1),
resulting from a randomly chosen feedback matrix Kl
will be cyclic with probability 1.

Consequently,pole assignment in a non-cyclic
gystem is carried out in {wo stages.In the first
stage, the non-oyclicity ig removed by applying an
arbitrary state feedback matrix K,.It is noted that -

K. is subject only to the requirement that (A + BKl)

l .
be cyclic,for instance by ensuring it to have distinct

| eigenvalues (see section 3-3.3).Since controllability

-~
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is invariant under state feedback,the modified system
(A + BKl,B) is controllable and the feedback gain vec-
tor pT,required for pole assignment,is célculated,The

unity rank state feedback for the modified multivari-

‘able gystem is given by K2 = QPT,where pT

(3-23).The total state feedback matrix for the origi-

is given by

nal system is then,

T
X = Kl + K2,= Kl + gp” =
= Ky - qeg(€§)'lA(A + BKq) (3-—%4)
ORI +  x(%) 7 x (&) .
> B == , >
+ A ’ + T
A R 14

-

Pig. 3-2 Modified State Feedback Control Schem¢

for an Initially Non-cyclic System

3-3,3 Criterion for Cyclicity

For an originally non-cyclic system it is impor-

tant to know how to choose the feedback matrix Kl,such
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that the closed loop system (A + BKl,B) will be cyclic
with respect to the matrix operator (A + BKl).Here in

this section two efficient criteria to determine cyc-

licity of the system are presented :

THEOREM (3-2) EJJ A space E" is cyclic with respect

to matrix operator A if and only if,its dimension is
equal to the degree of its minimal polynomial.

THEOREM (3-3) [12] A sufficient condition for the cyc-

licity of E" with respect to A,is that the eigenvalues

of A are all distinct.

Though these tests to determine the cyclicity '
of EP with respect to A will remove some of the ad-
vantages of Ackermann's procedure,it should be noted
that most systems are already cyclic and even if they
are not,an appropriate feedback matrix Kl can be easily

found which will realize a cyclic system (4 + BKl,B).

EXAMPLE (3-2) Consider the following multivariable

system :

k[l 0“[3 2|y
0 1 -1 =2

we want to design a feedback control law,such that
the closed loop poles are at‘kl = —2,'%2 = =3,
. Step 1 The original system pair (A,B) is control-

lable,since
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\ I
rank & - rank[3 21 3 21 . 2
X | =
-1 -2} -1 =2

minimal polynomial of A = (N - 1)

1]

. Step 2 p(A)
AlN) characteristic poly. of A = (A - 1)2
,

Hence degree ofcf(ﬁ) = 1lg2 = dimension of E °
e E2 is not cyclic with respect to A
. Step 3 Let Ky = -1

then
A+ BE, = |72 72
1 3

2 is now cyclic with respect to (A + BK;),since

E
the eigenvalues of (A + BKl) are at’%l = (1 - V17)/2
and A\, = (1 - N17)/2,i.e. they are distinct.

. Step 4 Let q = {Ol ,then rank(@i) = rank(Bq,ABq)
1 .
s.(A,Bq) is controllable.

T T g1
. Step 5‘ ) -e (ﬁ&) (A + BKl)
pt = (1 74)

The overall closed loop system matrix,becomes

)

A + BEK; + (Bq)pT = A+ B(Kl'+ k) = {_g _2]

i
i

which has -2 and -3 as its eigenvalues.
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CHAPTER 4
MODEL FOLLOWING CONTROL SCHEMES

4-1 Pole Assignment and Explicit Model Following

When we Pirst started this study oh pole assign-
ment in multivariable linear systems,our firét approach‘
to the problem was simply to build a model reference
(MR) system,which basicélly has the same dynamics as
the plant,with the only exception of poles,which are
in the desired locations in the complex plang,Using
the well-established tools of optimal_control theory;
with the aim of minimizing the error between the' MR
system and the plant,we hoped that,once the error bet-
ween these two systems will be approaching zero,so-
will the poles of the plant approach the desired pole
locations in the complex plane.

In this chapfer thé gignificant results of eX-
plicit model following control scheme will be summar-
ized.gwhich is nothing but a control scheme based upon
the idea as explained in the abové paragraph) .Then, the
effecfsAof the explicit model following type control
procedure on the pole locations of the plant will bg.
explained and clarified.The plant and MR system eqan
tions can be described by [14],[15]

. + B u '
P AP *p ¥ P P (4-1)

n = An ot Bp B

o
i

)
™
{
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where the subscript p:denotes the plant and m denotes
the MR systemoxp and X, are the n-dimensional column
state vectors of the plant and the MR system,respec-
tivelj,Ap and Am are square matricesAof order n,and
Bp and B are (n x m) matrices of full rank m = n.
We also assume fhat the state variables of the plént_
and those of the MR system are accessible.,Since we
are constructing the MR system in such a way,where
the MR system and the plant dynamics only differ in
their réspective system matrices,namely Ap and Am,it
is expected to choose Bp = Bm,Thérefore we_will only
use the gsymbol B to refer to both the plant and MR
gystem input matrices.Another point which must ob-
viously be clarified is the input vectors u and up.
The MR systems input vector w, is only a reference
input to the system,where up consists of state feed-
- back terms,feedforward terms and also a reference in-
put,which is the same as the reference input to the
model.Hence,

b = X - (4-2)

bid Kx + x(t
u, Kp . + K xo (%)

3]

{1

-

where r(t) is a m-dimensional reference input vector.
Noﬁ we are trying to determine the feedback gain mat-

rix Kp and feedforward gain matrix Km.Obviously Kp is

of more importance for pole assignment,since KPXP is
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the term which can alter the closed loop plant's pole
configuration.With the above considerations,a block |

diagram of the explicit model following control scheme

can be drawn as :

r®)

H:> it S % JL* *p
system —= K T PLANT [F=r—>
) 4

Fig.4-1

If we define the augmented state vectorVX&,which\is

of dimension 2n,as follows :

then the augmented state equations can be written

. Tato B ' ollu
e
| 0 ‘| NI 01 B|u

Let us also define the butput vector of the augmented

-~~~

systemn,
) | *m
y - I I -I]—--—-— (4""38')
xp ' .

which is obviously nothing but the error vector bet-

ween the plant and the model,The performance index
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below minimizes the error between the plant and the
model,and also penalizes excess amount of control ef-

fort.,

4

T
J = 1/2 of (' ay+ (w7 g2 (u®)) at

r..D T
where u® - [um ;upj]T,Q is defined as a symmetric,
possibly diagonal,and positive definite matrix of
order 2n.R® is also a symmetric,positive definite

2m~dimensional matrix of the form,

o' 0

a 1
R = (~—t——
{O 1 R}

For a better understanding of the problem,iet us first
choose the reference input to both systems,namely r(%),
to be equal to zero.Once the results for this case are
obtaiﬁed,they can very easily be extended to include
the more general cése,when r(t) is an arbitrary vector
function of time.

For the caée r(t) = O,the augmented state equa-

tions gi#en by (4-3),are reduced to the form :

LJ | .
X A 0 X 0
| B :
*p O 1 Al
X

y=[I]| —1]{.5%: Xy~ Xp = e

(4-3b)

*p

The performance index which will minimize the error

gignal between the MR system and the plant,and alsc
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Penalize excess amount of control‘will be in the well
known quadratic structure given by :
T - . .
J=12 [ (v Qy e uwp Ru) at (4-4) -
0 .
where Q is a symmetric positive definite matrix and
1R is an (m x m) symmetric positive definite control
weighting matrix.If equation (4-4) iwaritten in terms
of the augmented state vector,it becomes
T

J = 1/2 8T g8 (43 TR udat (4
Of((X) Q (X)+up _up) ‘(44a)

- The control input up which minimizes the performance
index (4-4a) under the constraint of the augmenfed

system equations,is given by,
W = - B TR(e) < (4-5)

where P(t) is the time varying solution of the matrix
Ricatti equation,

(4 Tp 4 pa? - PRERNBM)TP + Q = P (4-6)
Since we are only interested in the effect of minimum
output error on the polc locations of the plant,only
the steady state solution of the above matrix Ricatti
equation will be used.To be able to determine the ef-

fects of the state feedback on the plant dynamics let

I3
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us partition P matrix appropriately.In terms of the

partioned P,(4-6) becomes :

T‘ .

A* i i | |

An g 0 MRy Py L 1Fn i FiofiAe g ©

A | A e g | et st B
P ]

S (S PR B RS PRR 2P | KU
i |
- F}}JEEQ H R0 | BT_][PH’ Plz]
| ST T+
Pio 1 PpollB Pio1 oo
Q | -Q
+ - = 0 (4-T7)
-Q 1 Q
i | ~1.T '
APiq + PgA - P1,BR B'Pi, + Q= O (4~Ta)
A% o epoa - P BRI 4+ Q= O (4-Tb)
m- 12 127%p 12 22 =
2lp v pooA - P BREBTE.. + Q= 0 (4-Tc)
ApPio  Piohy - Foy 22 =
ATP. o+ PooA - P BRIP.. + Q= 0  (4-7d)
p- 22 227°p 22 22 -

If the above set of matrix equations is solved for P
- and substituted into (4-3b),the closed loop augﬁented

state equations are obtained as

- x A l 0 %
e e i | B O
: x, ||-BR B PlZ{ Ap - BR "BTPy,| | %,

From the above'eqﬁation it is clear that there is a-~
feedback and also a feedforward term in the plant in-
put vector,which will alter the plant dynamics.Hence

the Eloaed loop plant dynamics are

o -1.7T -1,T
XD = (Ap - BR "B P22.) XP + ("'BR B PlZ) Xm (4""9)

<
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The important point here is that %he P22 matriwahich
is expeqted to alter the plant dynamics is independent
of the MR system.This fact caﬂ be very easily seen by
considering the matrix equation (4-74d) .The equation

through which P22 can be obtained,is répéated here for_.

convenience :

T ' -1.T
APP22 + P22AP ~ P,oBR "B B,, + Q= O (4-10)

N
Let us stop here at this point for a while,and be only

concerned with the usual regulator problem,i.e. we
want to generate a control law Which will drive the.
output of the plant to the arigin of the é%atenspace.
Once the solution for the regulator problem will be
obtained,;its similarity with the previous result,name-
ly equation (4-10),will indicate that the explicit
model following control scheme is unsuitable for pole
agsignment purposés,To obtain the solution for the re-
gulator problem,we must modify the performance index
of (4-4a) so that only the plant states are incorporaf’

ted within the performance index :

T
: P T
J-=-1/2 (xp Q %, + uy

R u_)dt (4-11)
0 P -~

The optimum control law which will drive the output of

the plant to zero is given by the equa%ion,:
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where P, is the solution (as before only the steady
state solutions are used) of the algebraic matrix

Ricatti equation,

‘.

1.T

ik - ,
- PBRBP.+Q=0 (4-12)

APPr + PrAp

Comparing the above equation with (4-10),it can be
clearly seen that Pr = P22.Hence the closed loop plant
matrix in the case of regulator problem,(Ap.— BR—lBTPr),
is exactly the same as it would be obtained thrbugh the
explicit model following scheme.Hence the effect of the
feedback term in (4—9) ig simply to alter the plant.
dynamics,such that the plant outﬁut will aﬁproach to
the origin of the state space at the fastest possible
rate determined by the relative weights on the state
and input terms in the performence index.Therefore it
is not expected that the eigenvalues of the closed loop
plant matrix will be shifted to the desired pble loca-
tions in the cbmplex plane.The same interp:etation of
the result can also be deduced from the fact that the
feedback gain matrix P,, is totaily indepehdent of the
MR system's dynamics.

In the‘cése when both of the systems are drivén
by a reference input, the results obtained_will be of
exactly the same form.The feedback terms determined
with and without the model are exactly the same,hence

the changes in plant dynamics are again independent of

the MR system.
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4-2 Tmplicit Model Following

As 1t has been shown in the previous section
explicit model followiqg con?rol gcheme is not suilt-
able for pole aésignment problem.At this point one is
inevitably lead to think of what happens if the state
variables of the model are chosen to be the state va-
riables of the original plant.In other words rather
thaﬁ comparing the outputs of the plant and the model,'
where their dynamics are totally independent from each
other,we might as well formulate the model d&namics
as follows |

Xm = Am\xp . (4"13)

That is we want to see how the plant states xp will
propagate in time if the eigenvalues of the plant

would be in the desired locations.A comparison of
xp ,
and x_ cbtained by (4-13) leads to a new problem for-

-

,which are obtained through the plant equation (4—1),

mulation,which is known as the implicit model follo-

wing algorithm [16],or as the model-in-the perqumance

index algorithm [14] . _
Let us define the error between the model and

the plant as

e = X - X, (4-14)

Since it is desired to- have the plant dynamics approach
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~

those of the model, the performance index is set up so
-that one term will consist of the error between the

model and the plant derivatives.The performance index

is defined as ,

T ® ® :
_ _ T * _ * T
J ".1/2 é'((xp x) Q(xp X)) + u 3 u)dt
(4-15)
which equals,once (4-13) is substituted into (4-15),%o

T

J = 1/2 T
72 L (e vmn Tl (a - )% .

+ Bu) + uTRu} at (4-16)

At this point before proceeding any further towards

the derivation of the feedback law which will minimize
the above performance index,the attention of the feader
must be drawn to an important point.From (4-16) it can
be clearly seen that the difference between the plant
and the model matrices is directly calculated,Since
this difference must be a measure of the difference

of the.eigenvalues of the matrices,Ap and A must be

of the same form,i,e, if Ap is in companion form,so
must be A_,or if Ap ig in diagonal form,so must be %m.
Otherwise & comparison of eigenvalue locations cannot
 be concluded from the difference (Ap—Am),This fact,

that Ap and Am are of the samé structure,ié as fun-

\
damental as the idea of adding and subtracting quan-

3
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‘tities with the same units.To describe the most general
cage,assume that Ap has initially no special structure.
If the system under consideration,i.e, the pair (AP,B)
is a controllable one-which We assume it is,since it
is a necessary condition to position all the poles

of the plant-then the plant equations can always be
~transformed into the Qontro};able companibn form via a
nonsingular transformation denoted by the matrix oﬁe-
rator T.In particuler ifvwe choose z = T xp,the plant

equations will be equal to

~ ~

% - (TAPT"l) z+ (IB) u= A4 z+Bu

guch that the plant matrices Ep and ﬁ in the transformed
coordinate system have the controllable companion form
(see 2.1).From this point on we assume that the plant
and also the model matrices are already in the cont-

roliable companion form,

‘The derivation of the control for the minimization
of the performance index (4-16) is developed in [14], .
Once the/performance index is defined as in (4—16),the
Hamiltonian function # is set,into which the system
differential équations are included as constraints.For

the performance index (4-16) and the plant described

. by (4—1);‘ is :
36 = 1/2 {((AP-Am)XpTBu)TQ ((A A )% +Bu) +

T ‘ T
£+ WwRu+ 2N (Apxp+Bu)} (4-17)
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To find the optimal control,the partial derivative of
(4-17) is taken with respect to u and the result is
equated to zero,The control u° which minimizes (4-17)

is given by :

u® :,—(3TQB-+ R)THBT + BTQ(AP—Am)XP) (4-18)
Pontryagin's maximum principle may be used to evaluate
the necessary conditions for optimizing the performance

~ index.These conditions are,

28 N=H QHx + AN (4-19)
axp P /

o€ _ 2 _ ) . ' -20

Yl xp - A xp + Bu (4-20)

where the new "hat" matrices are defined as

R - (BYQB + R)

A=A, - BB Qla, - Ap) |
B = B (4~-21)
Qg = 9 - qBR *BTq

Ha= Ay - Ay

Equations {4-19) and (4-20) with the "hat" matrices
are in the game form as the canbnical equations of,.
the regulator problem.These equations may be solved
for the adjoint vector Nand the control of (4-16),
The adjoint vector h depends on the solution of the

Matrix Ricatti equation for P(t) and is expressed as
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A= B(E) x, | (4-22)

The Ricatti equation for the ™hat" matrices has the

form,

P - PA + ATP - PBR™ T

L Tf v H‘aﬁ , (4-23)

B
The control matrix resulting from the Ricatti equation
is then,

K. = RBTR(+t) (4-24)

R

The control from the product of matrices is :

o p-LT | .

The total control of (4-18) may be expresséd as

= ~(Kp(t) + Ky x, = QK(t) x (4-26)

p

Since it is desirable fo have constant feedback gains
only the steady.state value of the Ricatti equation
will be used.This eliminates the need to define the
'origin of time and program time varying gains.Constant
gains are obtained by letting tha upper limit of integ-
ration in,the performance ihdex approach infinity and
solving the algebraic rather than the differential
Ricatti equatidn.This algebraic'sqlution is denoted~
by omitting the indication of time variation on P(t)
and K(t) matrices.Besides fhe simplicity of implemen-
ting’the control law of (4~26) using only the steady
state solution of (4-23),one is forced to let the

upper limit of integration in the performance index

-
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to approach infinity,since a continous eigenvalue

matching between the plant and the model is required,

The gimplicity of control as well
this method works may be shown by

as the way in which

congidering a second

order,single input example.A seccnd order system that

is to follow the‘same order model
The matrices of the plant and the

form, .

If these matrices are substituted

formulas of/(4~21)

will be considered,

model will have the

into the hat" valued

R=BQB + Rz gyb° + 7 (4-28)
A 2~1,T -
‘A = A, - BE B Q(AP A) = (4-29)

0 J 1.
i 7Pl — T g — T
e L (o -8p5)d0 L. ! (ap-a50)dy,
A R qi22b2 $ T { p2 q22b2'+ r
- 0
B=3B = [bJ (4-30)
" | 0 Ioo
Hz A - A =|-;——m b o ‘
P Ag a. aplv:am2 ap2 (4-31Y
- ~_ qa |
and Q= Q- QBRBQ =|--12y 2 _nq, __|(4-32)
0 1a55- -
227 T3
! bTagp + T

The control u® can be found from :

<
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) | 21T f=1,T ; \
u = ~[_R B"P + R °B Q(Ap Ami} xp

(4-33)

The first term depends upon the steady state solution
of the Ricatti equation,KR,wbile the second term,KM,

may be evaluated directly from (4-25) as :

l .
bay,(ay, = a ) (bayy(a,, - a5)
Ky = = ; 5 (4-34)
b doo + T l b dop + T

For this single input case,the steady state Ricatti
equation may be evaluated by letting P = O in (4-23)
and solving the individual algebraic equatidﬁs.lf these

equations are evaluated for P21 and P22 the results are,

~ A A ~ 1
- a_r r S ‘
1 17,2 2
P21= - %7 r +JQ—§§) - §§ q22(a - apl) (4_35)
~ A A A~ N 1
a, ~ a,r PN
2 S27\2 2
Fop= " 73 T ﬁj(~§?) 7 dpplfpp ~ Bpp)"  (4-36)

Since P ié a symmetric matrix P12 = le,therefore only
one of these equations must be solved.Also Pll need not
be found,as it has no effect on control.To observe the
effect of the control found in this example assume that
the weight‘put on the error term is much greater than
the weight put on the control,i.e. q22>a>r.With thi;
assumption we can assume that,

Rz bqy, + r ¥ b, (4-37)

This effect in R affects the other matrices as follows,
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~ [o 1

AY | , (4-38)
"Bm1  TPm2

A [ q

Q¥ | M J (4-39)
0 0
[ (2 - a_ ) ! (a - )

Ry & __lEkfg__PE;.: __lﬁéfg__Pg_l (4~40)
_ |

—~

Equation (4-38) shows that the equivalent system matrix
becomes the model and the doo term which is the only
Q\element that has any effect,becomes zero,Equations
(4-35) end (4-36) show that if q,,=0,B,; and P,, are
also zero.Thus as the weight on the error term becomes
greater,the control terms from the Ricattli equation
approach zero.For large q22/r;then,the total control

is simply the Ky of (4-40) .This effect has been found
to be true for multivariable systems as well,and may

be verified analytically by assuming R of (4-16) to

be the null matrix.The result of evaluating the control
for this performance indéx is that the term KR(t) in
(4-26)"will be zero.The way in which the model is
méfchea may be seen by evaluating the closed loop system

matrix as

0 1 -~
A_ - BK, = -
P M= e . -a :

y p1  "p2 |

. :

*{ }{%qZZ(aml B apl) : bayp(ay, - ap2)

2 2

b b oy + T | b Qop + T

which for b2q92:$>r reduces to : "
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0 1

.—a —
mi am2

..

Ag it has been'clearly illustrated in this example an
exact model matching,which in furn implies eigenvalue
matching,is possible if the relative weights assigned
on the error terms?i.e. 954
greater than the'weights placed on the control,

i = 19 so0e gligare much

rii;: 1, ¢o. ,m.If for some reason or another one wishes
the poles of the cloged loop plant to be exactly equai
to the poles of the model,then there is no other choice
but setting R in the performance index to be equal to
the null matrix.On the ofher hand if it is acceptable
that the poles of the closed loop system are within‘a
reagsonable neighbourhood of the model system's pelés 9
then additional freedom is introduced in the cantroller
’désign,which can be used to limit fhe feedback gains,
by introducing an appropriate non-zero R matrix into
the performance index.Hence choosing the correct Q/R
ratio Hepgnds simply on the particular design and on

the required system performance.’

4-3 The Relationship Between Implicit Model Following

and Eigenvalue Asgssignment

To show that implicit model following‘control
scheme 1is equivalent to arbitrary pole assignment we

will show that the equations governing the implicit
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modellfollowing will yield a closé& loop plant equa~-
tion which exactly equals to tpe system equations of
the model.However an exact model matching is only pos-
gible if the error weighting matrix R in the performan-
ce index (4-16) is set equal to zero (this fact has
been discussed in the previous sgction 4-2 further in
detail) .With the above modification in the pérférmance

index,(4~16) is reduced to the form :

T -
T ‘
J = 1/2 { {(Ca,-a, )= +Bu) Q((Ap-Am)xpg»gu)} dt (4-41)

\

The optimum control u® minimizing the above performance

index is found to be,

o Trany—1,T ,
u = -(B7QB) "B Q(AP - Am) x5 (4-42)

Hence the control input is only dependent on the dif-
ference between the plant's and the model's system
/matricesfﬂote that BTQB is a‘positiYg definite matrix;
since Q has initially been assumed to be positive de-
finite.and possibly a diagonal matrixz.
In general,that is with the system (AP,B) in

an arbitrary unstructured form,it is not possible to
prove the equivélency between the implicit model fdl-
lowing and eigenvalue assignment.However it has already
been explained in the section 4-2,that for the term
(AP—Am) to be a measure of the difference of the eigen-

value locations,AP and Am must be of the same form,
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14

Therefore it is assumed that the\piant'and the model
reference system's equations.haye been initially trans-
formed into the controllable companion form given in
the second chapter,That;iS,eﬁen if the symbols Kp’gm
andg refering to the controllable companion form,are
not used, it is implicitly meant that the derivation

of the control law in section 4-2 and section 4-3,0r
any mathematical operation og the system equations are
carried but in the transformed coordinate system,To

be more precise,it is known that Ab and B have the
structure given by the equations (2-8b) and (2-8c), -
regpectively,with only the ordered<Tk,k:l,..,,m rows
of Ap are ;mpoftant in obtaining information with re-
gard to the pole locations of the open loop plant.

The same can also be said of Bysince only these same
éfdered 7 rows of B are noh—zero,where the numbers
Uksk:l;;.o,m are as defined by the equation (2-6).

The main idea in the proof of equivalency bet-

ween the implicit model foliowing and eigenvalue agsign—
ment is to show that the closed loop plant équation,,*

%, = (4, - B(ETQB)'BT(ap - A)) x

5 (4-43)

b

can considerably be simplified using the special cano-

nical structure of Ap and B matriées;The matrix BT

" has exactly n-m columns with all the entries on these
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columns being equal to zero.Therefore in the multipli~

cation of BT

with Q these columns and the corresponding
rows of Q will not have ény effect on the resulting
matrix,since their product will be identically equal

to zero.By deleting these ftrivial columus of BT,the

T

cm,which becomes a

reduced transposed input matrix é
square matrix of order m,is obtained.Similarly the cor-
regponding rows of Q must be deleted,so that it 1s now
reduced down to a (m x n) matrix.In the game way the
zero rows of B do not have any contribution td/thé
product of the first two matrices,Therefore without -
any loss in information the n-m zero rows of B and the
columns of Q corresponding %o the deleted rows of B
‘can be eiiminated.This reductions in B and Q matrices
can be done,since the only rows of the plant and the
model's system matrices required in the computation

of the state feedback term are the ordered Vk,k:l,;,o,m
rows of Ap and A_.Let (M)i denote the i-th row of the
matrix M, then uéing the considerations as explained

in detail above,the following equality can easily be‘
egtablished : | ‘

T qy-1,T
(4, - B(B'QB) BYa(A - A1), =

= (Ap)i = BonlBenSrBen) chQr(Ap‘",Am))i

i :Tlgooéyﬂ_m (4""43)

where B__ is the (m x'm) matrix consisting of the non-
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trivial (non-zero) rows of B (see eq'n (2-8¢)),and Q.
being an (m x m) matrix obtained from Q by deleting
the rows and columns cbrfesponding to the zero columns

T

of B™ and the zero rows of B.Due to its special struc-

ture ﬁcm is\nonsingular,Furthermore the nénsingularity
of Q is preserved in Qr,since the same rows and columns
‘have been deleted in the procéss of obfaining”Qr;There—
fore using the property (CD) %= D *¢™1,equation (4-43)

can be reformulated as :

A WS Iy, T o | .
(Ap)i - BemBemlr (ch) 1chQr(Ap - Am)i = (AmZi

— ) , i:flgaocyﬂ;m (4_4‘4‘)

Hence the ordered T, ,k=1,...,m rows of the closed loocp

K’
plant matrix have been exac%ly'matched with that ofi
the model,In other words the entries on these ordered
U& rows which are actually the coefficients of the
characteristic equations of different subblocks of the
new giosed loop plant matrix,have been replaced by the
coefficients of model characteristic equation,in the
case when the igput weighting matrix R in the perfor--
mance index is set equal to zero.

Note that this result is independent of the
specific choice of Q.If Q is chosen as the identity
matrix I,then equation (4-42) can Be actually'simpli—
‘fied to the form of the equations (2-19) and (2-18).

There are some other works [16],[17],[18],pub~
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lished in this field Whichrprove‘the equivalency bet-
ween the implicit model following and pole assignment,
However their work only cover a certain class of pole
assignment problems,such as dll the eigenvalues of the
model are restricted to,bé distinct,and there are some
other limitations on the chosen model equations.This
approach followed in this section cover all possible

pole assignment problems without any restrictions.
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CHAPTER 5

POLE ASSIGNMENT
in DISCRETE TIME and STOCHASTIC SYSTEMS

5-1 A Recursive Pole Agsignment Algorithm for Discrefe

Time Systems

In some cases determining the feedback gain matrix
K necessary for implicit model following and therefore’
for eigenvalue placement is rather cumbersomé,since
in higher order systems solutions of fhe Métrix Ricatti
equation cannot be eagily obtained.For discrete time
gystem a recursive algorithm,to evaluate the K matrices
cén be set up,so that arbitrary polé agsignment can be
realized.In the algorithm introduced in [21] slight
modifications in the problem formulation must be in-
troduced so that the desired results can be obtained.
The plant and the medel equations are bésically
fhe same as in the previous chapter,With the only dif-
ference being the'notafions Fp,Fm and G,which are used
to denote the plant matrix,model matrix and the input

-

matrix,respectively.In particular the plant and model

-equations are

’

PIANT: x (k+1) = F_ x (k) + G(u(k) + r(k))
P b P (5-1)
MODEL: xm(k+l) - Fm xp(k) + G r(k)
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where, Fp:open loop plant system matrix of order n,

Fm:model gystem matrix of order n,whose eigen-
values are the desif;d pole locations in the
complex plane.
NOTE :Fp and Fm must be of the same structure

G :(n x m) input matrix of both systems,with
rank(G) = m £ n,

w(k):(m x 1) control input to the plant.

r(k):(m x 1) reference input to both systems.

) -
We also assume that all the states of the plant and

the model are avaiable at their outputs.

The error e Yetween the plant and the model sys—‘
tem outputs at the (k+l)-st sampling period is defined
as : / | 7 |

e(k+1)

it

x, (k1) = x (ketl) =

= (Fp~— Fm)xp(k) + G u(k)

(5-2)
The performance index,which is a measure of the errcr,
is given for, a N-stage optimization problem as follows,

N
J = min ... min { > (el(1)Q(i)e(d) +
u@-1) u(O) i=1

+ uT(i—l)R(i~1)u(i—l)} (5-3)

where Q(1i) and R(1i-1) are the error and control weigh-
ting matrices of appropriate dimensions.Rather than

keeping the weighting matrices consgtant they can as
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well be chosen as time varying matfgoes,such that an
additional flexibility is inﬁroduced in the control
“system design.The recursive ed&ations for the control
vector u are nothing but a sbecial case of the algorithm
derived in [21] for discrete time optimai control prob-,

lem,The results can be easily summarized in the follo-

wing theorem :

THEOREM (5-1) The optimal control law for the deter-
ministic system described in (5-1) which minimizes the

/

performance index (5-3) is :
u(k) = S(k) xp(k) . (5-4)

where the (m x n) feedback control matrix S(k) is to

be determined recursively from the set of relations:

W(k+1) = M(k+1) + Q(k+1) (5-5)
- S(k) :_-[GTw(k+1)G r RO, M (e 1) (B~
(5-6)

H(k) = (F-Fp) W(ke ) [(F-P) + 6S(k)] (5-7)

for k= N-1,N-2,...,0,where W(W)=Q(N) and the (m x m)
matrix (GTW(k+1)G + R(k)) is required to be positive
definite for all k.Furthermore the minimum value of _

the performance measure for H-k stages of control is

Vp = xg( )UK %, (k) (5-8)
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PCk) 1L . xp(K+$) lJL’
——>  PLANT : y MODEL

CONTROLLER []
wo(t1) X (K1)

Fig.5-1 Block Diagram of the Control System
of Thtm (5-1)

For this N—stége optimal control problem first N fee&—‘
back control matrices S(k),k:(N—l),kN—z),;..gO must |
be computed recursively backwards in time aﬁa then
storéd for actual use.Once the plant~is rua forward-
‘in time,these stored feedback gain matrix element
valués are used one by one at the appropriate time
instants. |

_ If in the performance index (5-3) excess amount -
of input is not penalized,the sequence of control
weighting matrices R(0),...,R(N-1) must be all set
identically equal to zero matrix.In this case only a
single~stage control will give us the required pole
configuration for the closed loop system.As a further
remark we also note that,in this special case any i
other algorithm to evalﬁate the feedback gain matrix
can be equally well employed—suChvas the_Ackermannis
procedure outlined in Chapter 3. |

Choosing the correct Q and R matrices is again

a problem which can oxdly be answered according to the
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design criteria of a particular problem.Since usually

we wish exact matching between the closed loop plant's

and the model poles for all timé.the plant is under

operation,we should either let N-number of optimization

stages- approach to infinity or_use a steady-state
- feedback gain after a finite-stage optimization proce-
dure has been applied to the sgystem,I¥ the error and

control weighting matrices Q(k) and R(k) are constant

for all k=0,...,(N-1),then it has been noted that the -

eigenvalue configuration of the closed loop plént in
the first few gteps of a finite-stage optim;zation
procedure is cloger to the model's eigenvalues.Then
‘how can we choose a reasonable steady-state feedback
gain?If we insist on using the last feedback matrix -
S(N-1) as the steady-state gain matrix,then certain
modifiqations ghould be made on the performance index
(5-3).Either we can introduce a terminal error term

into (5-3),s0 that it becomes :

-

J = min eeo mingleT(N)Qe(N)-+

nli-1) - ulo) (5- 9).
A g 7 '
+ 2o (e (1)Qe(i) + u (i-1)Ru(i~-1))
=1 -

Or,we can choose the error weighting matrices to be
time varying with the constraint that Q(k)> Q(j),if
'k>j,It must be again noted that if the control welgh-
ting matrix R.is chosep,such that it is equal to zero

for an exact model matching, then none of the above
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modifications is necessary 8ince a single-stage opfi -
mization will” give the correct feedback gain which in
turn can be used for the rest of the time,;the system

is under operation,

5-2 Pole Assignment in Stochastic Case

In all the previous chapters and sections our
main concern has primarily been the.dgtermiﬁistic type
of systems.We have throughly discussed the pole assigp;
ment problem inrkhis gpecific class of systems.A natu-
ral extension of deterministic pole assignment problem
will certainly be the pole placement in stéchastic
- gystems.In this section we want to discuss this problem,
if the system under consideration is operating in é‘
noisy environment;

An optimﬁm multivariable control system operating
under noisy conditioné is generally equipped with an
optimum controller and a filter.The controller is used
to gengrate the optimum control law;and the filter is
employed to filter out the uncertainties created by
the input and dutput noises and to obtain the best es-
timates of all the state variables from the measurable
outputs of the process.One may immediately aék the
question whether the separate optimization and statis-
tical estimation yields a system which is optimal in
the over-all sense.The answer to this question is an

<

affirmative one and has been first proved by Kalman
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and Koepcke [22],and then by [23],[24].This idea of
determingng the parameters of the filter and the cont-
rollexr séparately but still égtaining an optimum'system
performance in the overall éénse is known as the

"Principle of Separation',

mPUTU OUTPUT NOISES v

Ny
av)
r
>
yA
..{

STOCHASTIC OPTIMAL CONTAROL SYSTEM-

Fig.5-2 Block Diagrem Illustrating
the Principle of Separation

The most striking feature of the éeparation principle
is that the feedback contrel gain matrix is indepen-
dént of all the statistical parameters in the problem,
whereas the optimel filter is independent of the mat-
rices.in the performance index.

* In this section about the stochastic systems we
are going to make use of the recursive discrete-time
control algorithm deScribed in in the previous secﬁéone
It is clear from the previous results that the best or
. optimum control is the .one which produces the minimum
performance index of (5~3)9Howeﬁer,the random variables

in the system cauge unknowns that preclude the possi-

bility of finding an input which will be optimum in
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evefy case.A reasonable course of action is to choose
a sequence of inputs ﬁhanWill minimize the expected
Vélﬁe of the performance index.Hence equation (5-3)
in this modified form‘becomeé :

. : N
J = min ... min E{.ZE (eT(i)Q(i)e(i) +
u(N-1) u(0) i=1

+ /uT(i—l)R(i—l)u(i—-l))} (5-10)

The proof of the separation principle is a constructive
one and is‘based primarily on showing that the feedback
gain matrices of the control law which minimize the
performance index of the determinisfic and stochastic
systems are identically the same.In the case of dealing
with a}stochastic system the only change in the cont-
roller equations is the fact that the term xp(k),which
appeérs in the optimal control law u’= S(k)xp(k),must
be replaced by £p(k\k),where gp(klk) igs defined as the
optimal filtered estimate of the plant state vector at
the k-th sampling period,obtained using the k avaiable
measurements.

The revised form of Theorem (5-1) will then be
as fellows : : -~

THEQREM (5-2) For a stochastic system the optimal

control law which minimizes the performance index of

(5~10) is given by :
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W© = S(k) ép(k|k> ) “ (5-11)

where x (klk) is the optimal filtered estimate of the
plant state vector.The (m x n) feedback control mat-
rices S(k);k= O0,¢0.,(N-1) i8 to be determined recur-

gively from the setvof relations (5-5),(5-6) énd (5-7)§

Now let us illustfate the effects of cascading
a filter with a controller,on the closged loop system
dynamics.We asgsume that there are Gaussian white input
and output disturbances present.The plant equationsg of

a complefely controllable and observable system are:

x (k+l) = F x#k)+Ghﬁk)%rUﬂ)+Pw&J

- P o (5-12)
yp(k+l) CP xp(k+l) + v(k+1) \ ,

]

where w(k) and v(k+1l) are the zero mean Gaussian white
input and measurement disturbances,respectively.Cp is
the (p x n) output matrix and yp(k+1) is the p-dimen-
gional output vector of the stochastic system given
in (5f12)‘1f we use a Kalman-Bucy filter to obtain the

state vector estimetes X shecessary to implement the
\ I

control law of (5~11) .We can write thevfilter dynamics

making use of the equations derived in [21]c -

%p(k+1&k+1) = (Fp-K(k+1)chp)§p(klk) + Gu(k) +
+ (K(k+l)CpF?)£p(k) s (K(k+l)CpP)W(k) ¥
+ K(k+l)v(k+1) (5-13)

<
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Using (5-13) and (5-12) we can write the augmented
state equations,where the (2n x-1) dimensional aug-

mented state vector x° is equal to,

K(k-1)C M1 K(k+1)|{v(k+1)

k1 c. 1 olix (kel) ] [y ;
F_(_L)____} [ 131_“”78._1_“ +[f.}y(1c+1) (5-15)
JEa[EN | "o |

Zei1tertitl)

e tooo o w(k)
+ u(k) + f—ji*_t“““‘?_—— (5-14)

At this point using the fact that u°= S(k);p(k k) and
the equivalence transformation,

T :_{% _%} = T™%,we can transform the equation (5-14)
and (5-15) into the form, |

xEFk+1) xp(k+1) i
e (et | = [ |
'Fp+Gs(k)‘ aS(Ik) x, (k+1)]
R x(klk)_

) 0 |F ~-K(k+1)C o'p

i r | 0 ][w(k) } o
b = | (5-16)
{P-E(e-1)e l_K(k+1) || v(ke1) -~

It is now immediately apparent that the plant dynamics
can be altered by a suitable choice of the feedback
matrices S(k),k=0,...,(N-1),i.e. according to the

<
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recursive algorithm described by (5-5),(5—6) and(5-7) .
Thé entire n—dimensional‘filtering error ,

kel k1) = kp(k+l) - ;p(k+1}k;l) is proved [21] to

be a zero-mean Gauss-larkov sequence.Hence with enough
time elapsed since the system has been in operation,
the filtering error state will approach the origin of
gtate space which in turn will make the closed loop
plant‘equationé and closed loop eigenvalues ideﬁtically

equal to that of the model,

EXAMPLE (5-1) To-illustrate the use of the control

procedure outlined in the previous pages we consider

a first order system described by the equations,
xp(k+1) = (2)xp(k) + (Dulk) + (Lx(k)

The equation of the model is given as :
Xplkel) = (1/2)x (k) + (1)x(k)

We have chosen a deterministic system,since uncertain-
ties in the system will only affect the overall res-

ponse time of the system and not the control sequence.

. Set Q = 10 and R = O and let k:o denote the firs}

gampling period when the control is applied,then :

| i\ ~1.T - .
s(k,) = -(6'ae + R)TrTa(r -F) = -1.5
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i

and x (k +1) = (2)x (k) + (1)(-1.5)x (k) + (1)z(k)
(1/2)x, (k) + (1)r(k,)

i

It can be seen that only a single-stage procedure is

| necesgsary to achieve -a perfect match between the poles
of the plant and the model.Using S(ko) ag the steady
state feedback gain we obtain the desired pole confi-

guration for the rest of the operational time,

' Set Q = 20 and R = 2 and solve for the required

feedback gains for a 5-stage optimization procedure:

k S(k) %plant
k -1 0 2
_..O-— — e e o - e - o ar et et -
ko -1.385 0.6146
ko+1 "‘19385 006146 (}\model =005
ko +2 -1.386 | 0,6147 '
k +3 ~1.387 | 0.6149
k0+4 -1.364 0.6364
2 ~& ‘A of tke
) uncontrollsd
|
1 ! R
/2’ ;L R lﬁmocid,
E,.-I | P i ! | )
} AR =
S ;ﬁ/;".;t’ ‘;‘c
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(:; Let us elmo illustrate the effect of various Q/R
ratios on the best obtainable value when the last

feedback gain,S(ko+4),is taken as the steady-state .

feedback gain. <

Q/R 0 coe 2 4 10 (20 |40 {100
%best 2. ..o 1 0.8 {0,64{0.57({0.54{0.51
Q/R 200 {eee | oo

Moest || 051 ..s| 005

This time to obtain a better steady-state perfor-

mance we modify our performance index as in (5-9)

J - min ... min {?eT(kO+S)Qe(kO+5) +
u(k ) u(k +4)

4 |
¢ 3 (eT(k +1¢1)Qe(k +14i)+u’ (k +i)Ru(k +1)
1=0 (e} Q 0 o}

’

If we again use the last feedback gain S(ko+4) as the

éteady gstate value,we obtain the following table :

Q/R ol...| 2 | 4 |10 |20 |40 100
Moest T2 ... 0.8 0,67/ 0.57 0.54] 0,518 0,507
“Q/R éoo seo | 0O |

Negt || 0o504|cee | 065 -
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CHAPTER 6

o

CONCLUSIONS

In.this gtudy various approaches to polérassignment
problem have been discussed in detail.Unfortunately most
of the preViously appeared dontrol gschemes used in the
pole assignment problem lack the flexibility of adopting
| themselves to different types of poie agsignment probléms,
such as in the case of multiple open loop orfmultiple
closed loop poles.Furthermore most of the avaiable algo-
rithms proceed by first transforming the system equations
into a canonical form in the interest of computational
tractability.

The most attention deserving part of this study
ié the generalization of Ackermann's ]9] procedure to
multivariable systems.A trick is used to generalize
Ackermann's procedure to multivariable gystems,namely
by first transfqrming the system of interest into an
"equivalent" single input system.Ackermann's procedure
is extremely convenient to use with multivariable systéms,
gince it requires no explicit transformation of the gystem |
equations into a canonical form and it considerably
reduces the number of computationé required in determi-

ning the feedback gain matrix K.As explained in detail

ih fhe third chapter,this_transformation into an equivalent

~
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single'input system is established by choosing the
feedback matrix K to bs of unity rank,namely by setting
K = qu,pT is determined for a particular closed loop
péle configuration,where ¢ i§ arbitrarily chosen,with
the only restriction of preserving the system's cont-
rollability characteristics.However additional flexibi-
1ity can be introduced into the control system design

if q can be chosen appropriately.Therefore an interes-—

ting point which still deserves special attention is

the way in which g must be chosen.If a two-stage control

algorithm can be established such that first q is seglec-
ted to minimizé a certain performance indei and then pT
ié subsequently calculated to obtain the desired closed
loop pole configuration. |

Another point which is still open for further re-
gsearch is the modification of Ackermann's original pro-
éedure gsuch that it will also cover pole assignment

through only output feedback.Use of the output cont-

rollebility matrix to derive a formula similar to Acker-‘

mann's original one will be a logical step to start this
further research.

The second important result egtablished in = =~
© the remaining part of this gtudy is the proof of equi§a¥
lency betweén'implicit model following control scheme
and eigenvalue placement.This particular topic has been
recently considered by some authors [16},[17} and they

egtablished the same equivaiency for only a restricted
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number of cases,i.e. when the\closed loop poles are all
distinctvénd only for a specific model type.However the
proof presented in this study mékes use of the canonical
system equations and is general enough to include all
possible cases. Hence‘ib is a big improvement over what.

hag appeared in this field before.
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