

AN ENHANCED MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

(MOEA/D-DE) FOR THE APPLICATIONS OF ANALOG SIZING WITH

BOTH W/L AND A NOVEL OPERATING POINT DRIVEN (OPD) BASED METHODS

By

Murat Pak

B.S. Electronics Engineering, İstanbul Technical University, 2008

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electronics Engineering

Boğaziçi University

2011

iii

ACKNOWLEDGMENTS

 First I would like to give my thanks to Professor Günhan Dündar for his guidance,

leading and helpful supervising during my thesis.

 I would like to thank to my fiance Hacer Kenar for her existence in my life and her

infinite support during my thesis work.

Later I would like to give my appreciation to my family, my father Halil Pak, my

mother Hediye Pak and my sister Aylin Pak for their support during the whole life I had so

far.

 I also feel so lucky to know Mustafa Çelik, my best friend, who supported me for

my whole education life.

 I am very grateful to all members of ESAT-MICAS, Katholieke Universiteit

Leuven and especially to my supervisors Bo Liu and Professor Georges Gielen. Also I will

not forget to thank to my project friend Suha Sipahi and all members of BETA, Boğaziçi.

 Last but not the least, I would like to express my thanks to TUBITAK for their

financial support during my graduate degree.

iv

ABSTRACT

AN ENHANCED MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHM (MOEA/D-DE) FOR THE APPLICATIONS OF

ANALOG SIZING WITH BOTH W/L AND A NOVEL OPERATING

POINT DRIVEN (OPD) BASED METHODS

 In today’s electronics world, due to the growing requirements of mixed

signal VLSI designs and the SoCs (system on chip), the design complexity is increasing

drastically. Since the well-designed CAD tools can easily support the design of the digital

circuits, analog CAD tools are still not enough for the needs of mixed signal VLSI designs

and SoCs. One of the biggest reasons for this deficiency is the complex design procedure

of an analog system. To design an analog circuit is much harder than designing a digital

circuit. However, the world we live in is analog and there is no way to avoid analog

circuitry. For all these reasons strong algorithms are trying to be implemented to automate

analog circuit design. The sizing problem of analog circuits to obtain the best performance

is an important subject of analog design automation.

 First of all, the reason why Evolutionary Algorithms are used for the analog sizing

problem has been explained. Then, a Multiobjective Evolutionary Algorithm based on the

Decomposition of the objective functions has been used as a background work. Lots of

improvements have been realized to improve the quality of this method for more complex

analog circuit sizing problems. Also, the optimization variables have been changed to DC

operating points of the transistors instead of W/L values, in order to improve the search

space. All the methods were implemented and the results are given in the work. It can be

seen that the proposed W/L or the novel OPD (operating point driven) based methods are

so powerful algorithms to optimize the analog sizing problem. During the thesis work, a

folded cascode amplifier and a gain boosted amplifier have been optimized.

v

ÖZET

ANALOG DEVRELERİN TRANSİSTÖR BOYUTLARININ

BELİRLENMESİ AMACIYLA KULLANILAN W/L VE OPD

YÖNTEMLERİNİ İÇEREN GELİŞTİRİLMİŞ ÇOK OBJEKTİFLİ

EVRİMSEL ALGORİTMA

 Bugünün elektronik dünyasında, karışık sinyal VLSI (çok geniş ölçekli

tümleşik devre) tasarımlarının ve SoC (tek çip üzerinde bir bütün sistem) yapılarının

yüksek performans gereksinimleri devre tasarımlarını giderek karmaşık hale getirmektedir.

Sayısal devre tasarımları için geliştirilmiş çok sayıda kaliteli CAD (bilgisayar destekli

tasarım) aracı olmasına rağmen analog devre tasarımları için bu durum bu kadar iyimser

değildir. Bunun en önemli nedeni analog devre tasarımının karmaşıklığıdır. Analog devre

tasarımları sayısal devre tasarımlarına göre çok zordur. Ancak, içinde yaşadığımız dünya

analog bir dünyadır ve her ne kadar sayısal tasarımlar tercih edilse de analog devre tasarımı

sürekli var olacaktır. Bütün bu sebeplerden dolayı analog devre tasarımının otomasyonu

için güçlü algoritmalar gerçeklenmeye çalışılmaktadır. Analog tümdevrelerdeki

transistörlerin boyutlarının en iyi devre sonuçlarının eldesi için belirlenmesi analog tasarım

otomasyonunun önemli bir öğesidir.

 Tez çalışmasında önce analog devrelerde transistör boyutlarının optimizasyonunun

neden Evrimsel Algoritmalarla yapıldığı ve bu algoritmaların özellikleri açıklandı. Daha

sonra Çok Performans Fonksiyonu olan ve farklı problemlerin ayrıştırılmasına dayanan bir

Evrimsel Algoritma ön çalışma olarak alındı. Bu algoritmanın kompleks analog devrelerde

çalışabilmesini sağlayacak çok sayıda iyileştirme yapıldı. Optimizasyon parametreleri W/L

ve transistörlerin DC akım ve gerilim değerleri olacak şekilde algoritma geliştirildi. Tüm

sonuçlar tez boyunca raporlandı. Yapılan testler her iki yöntemin de transistör boyutları

optimizasyonundaki gücünü göstermektedir. Tez boyunca bir katlanmış kaskod devre

yapısı ve bir kazancı arttırılmış kuvvetlendirici yapısının optimizasyonu yapılmıştır.

vi

TABLE OF CONTESTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

ÖZET .. v

LIST OF FIGURES ... viii

LIST OF TABLES .. xiii

LIST OF SYMBOLS/ABBREVIATIONS ... xiv

1. INTRODUCTION .. 1

 1.1. Background Information and Aim of the Thesis ... 1

 1.2. Outline of the Thesis .. 9

2. OPTIMIZATION METHODS AND EVOLUTIONARY ALGORITHMS 11

 2.1. Optimization Methods .. 11

 2.1.1. Introduction to Optimization Methods and their Properties 11

 2.1.2. Classification of the Optimization Methods .. 12

 2.1.3. Classification of the Multi-objective Optimization 16

 2.2. Evolutionary Algorithms .. 17

 2.2.1. Introduction to Evolutionary Algorithms .. 17

 2.2.2. Components of Evolutionary Algorithms .. 20

 2.2.3. Multi-objective Evolutionary Algorithms ... 23

 2.3. Differential Evolution .. 25

3. PERFORMANCE METRICS AND TEST CIRCUITS FOR THE ALGORITHMS

 IMPLEMENTED ... 28

 3.1. Performance Metrics .. 28

 3.1.1. Schott’s Spacing Metric .. 28

 3.1.2. IGD Metric ... 29

 3.1.3. Number of Dominated Points ... 29

 3.2. Circuits to be Optimized .. 30

 3.2.1. Folded Cascode Amplifier .. 31

 3.2.2. Gain Boosted Amplifier ... 33

4. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM WITH

vii

 DECOMPOSITION (MOEA/D) ... 38

 4.1. Definition of MOP ... 38

 4.2. The Concept of Decomposition .. 39

 4.2.1. Implementation of Decomposition on Evolutionary Algorithms 39

 4.2.2. Different Decomposition Methods ... 40

 4.3. MOEA/D Algorithm .. 40

 4.3.1. The Framework of the MOEA/D Algorithm .. 41

 4.3.2. The Features of the MOEA/D .. 43

 4.4. Discussions on MOEA/D .. 45

5. ENHANCED MOEA/D-DE ALGORITHM PROPOSED 48

 5.1. Introduction to MOEA/D-DE ... 48

 5.1.1. The Background Work and Introduction to MOEA/D-DE 48

 5.1.2. Enhancing the Algorithm Quality .. 50

 5.2. The Enhancements Realized .. 52

 5.2.1. A Novel Method for the Generation of the Weight Vectors 52

 5.2.2. Finding the Best Normalization Method ... 63

 5.2.3. Finding the Best Decomposition Method .. 70

 5.2.4. Enhancing the Search Ability with the Use of DE 78

 5.2.5 A New Replacement Mechanism 83

 5.3. Enhanced MOEA/D-DE Algorithm ... 91

 5.3.1. MOP for the MOEA/D-DE ... 91

 5.3.2. The Working Principles of the Algorithm .. 91

 5.3.3. Conclusions ... 94

6. ONLINE INTERPOLATION OPERATING POINT DRIVEN METHOD 95

 6.1. Introduction to OPD Based Methods ... 96

 6.2. OPD Methods .. 97

 6.2.1. Review of the OPD Methods .. 98

 6.2.2. OIOPD Method .. 99

 6.2.3. Selection of the LUT for OPD Method ... 102

 6.2.4. Comparisons of OIOPD with Different Methods 103

 6.2.5 Comparison of OIOPD with Extreme Cases of LUT 104

 6.3. Single-objective Optimization Tests for Gain-Boosted Amplifier 109

 6.4. Multi-objective Optimization Tests for Gain-Boosted Amplifier 110

viii

7. CONCLUSIONS AND FUTURE WORK ... 114

REFERENCES .. 116

ix

LIST OF FIGURES

Figure 1.1. The block diagram of a SoC .. 1

Figure 1.2. Overview of major analog EDA tools for analog synthesis developed

 in the last 20 years and published in open literature 7

Figure 1.3. Schematic representation of the design strategy applying selection of

 the topology before or after sizing ... 7

Figure 1.4. Example of a typical design flow for a basic analog cell consisting of

 topology selection followed by circuit sizing 8

Figure 2.1. The general scheme of an Evolutionary Algorithm in pseudo-code 19

Figure 2.2. Structure of a single population evolutionary algorithm 20

Figure 2.3. The General Procedure of MOEA .. 25

Figure 2.4. Illustrative example of differential evolution for single objective

optimization, in a 2-dimensional decision space model 26

Figure 3.1. The Folded Cascode Amplifier .. 32

Figure 3.2. V/I variables for the Folded Cascode Amplifier 33

Figure 3.3. The Gain Boosted Amplifier ... 34

Figure 3.4. The V/I variables for the Gain Boosted Amplifier 36

Figure 5.1. The Effects of the Weight Matrix on Fitness Functions 53

x

Figure 5.2. Orthogonal Array Example with Different Factors and Combinations.. 55

Figure 5.3. Orthogonality of the Orthogonal Array 3
4 (2)L where 4 Refers to

Final Number of the Vectors, 2 Refers to Number of the Levels and

3 is for the Number of the Sub-problems ... 56

Figure 5.4. Comparison of Two Weight Matrix Initialization Methods for 4

 Objective Analog Sizing Problem, Geometric Projections of the Gain

 and GainBandwith Objective Functions ... 59

Figure 5.5. Comparison of Two Weight Matrix Initialization Methods for 4

 objective Analog Sizing Problem, Geometric Projections of the Phase

 Margin and Area Objective Functions .. 59

Figure 5.6. Latin Hypercube Sampling Weight Matrix for 3 objectives 61

Figure 5.7. Orthogonal Array Weight Matrix for 3 objectives 62

Figure 5.8. Latin Hypercube Sampling for the first two objectives 62

Figure 5.9. Hand-made LUT for the first two objectives .. 63

Figure 5.10. Orthogonal Array Method for the first two objectives 63

Figure 5.11. Gain - GBW objectives for 4-objective Optimization with Local and

 Global Normalization Methods ... 67

Figure 5.12. GBW - Area objectives for 4-objective Optimization with Local and

 Global Normalization Methods ... 67

Figure 5.13. Phase Margin-Area objectives for 4-objective Optimization with Local

 and Global Normalization Methods .. 68

xi

Figure 5.14. Gain - Phase Margin objectives for 4-objective Optimization with 2

 different Local Normalization Methods ... 69

Figure 5.15. GBW - Area objectives for 4-objective Optimization with 2 different

Local Normalization Methods ... 69

Figure 5.16. Gain - Phase Margin objectives for 4-objective Optimization with 2

 different Local Normalization Methods ... 70

Figure 5.17. Illustration of boundary intersection approach 73

Figure 5.18. Illustration of penalty-based boundary intersection approach 74

Figure 5.19. Theta Optimization Tests for Gain-GBW Problem 75

Figure 5.20. Comparisons of PBI with different TE methods for Gain-GBW Pareto

 Front .. 76

Figure 5.21. Theta Optimization Tests for GBW-Area Problem 77

Figure 5.22. Comparisons of PBI with different TE methods for GBW - Area

 Pareto Front .. 77

Figure 5.23. Pareto Front’s 2-D projections obtained by DE2.2 for the test problem 82

Figure 5.24. Illustration of Mutant vectors obtained by the random-scale operator .. 82

Figure 5.25. Illustration of the replacement mechanism .. 85

Figure 5.26. PF for some of the benchmark problems with smallest IGD by FRD

 method .. 90

xii

Figure 5.27. The framework of the MOEA/D-DE Optimization Algorithm 93

Figure 6.1. OPD based analog sizing .. 98

Figure 6.2. W Guessing Procedure for OIOPD Method 99

Figure 6.3. Typical case of W- DSI curve ... 100

Figure 6.4. Errors for different number of samples for OIOPD Method 101

Figure 6.5. Phase Margin-Gm Optimization of Gain-boosted Amplifier with OIOPD

 based MOEA/D-DE and Original MOEA/D-DE 111

Figure 6.6. Gain – Power Optimization of Gain – boosted Amplifier with OIOPD

 based MOEA/D-DE and Original MOEA/D-DE 112

Figure 6.7. Gain – Phase Margin Optimization of Gain-boosted Amplifier with

 OIOPD based MOEA/D-DE and Original MOEA/D-DE 112

xiii

LIST OF TABLES

Table 2.1. The properties of different optimization techniques 15

Table 3.1. W-L Limits for the Optimization Variables ... 31

Table 3.2. V-I Limits for the Optimization Variables .. 31

Table 3.3. W/L components to be optimized .. 32

Table 3.4. The W/L values to be optimized for the Main Block of the Gain Boosted

 Amplifier .. 34

Table 3.5. The W/L values to be optimized for the P-Amplifier of the Gain Boosted

 Amplifier .. 35

Table 3.6. The W/L values to be optimized for the N-Amplifier of the Gain Boosted

 Amplifier .. 35

Table 5.1. The Comparison of the Algorithm Speed Before and After Software

Enhancement .. 50

Table 5.2. An Example for a 4 Objective Weight Matrix Initialization 58

Table 5.3. Comparisons between the Orthogonal Array Method and the Proposed

Method ... 58

Table 5.4. The Ranges of the Objective Functions with 2 Different Methods of

 Weight Matrix Initialization .. 60

xiv

Table 5.5. Extreme values of the weight vectors for Latin Hypercube Sampling and

Orthogonal Array Method ... 62

Table 5.6. Limit Values of the Objective Functions ... 65

Table 5.7. Average IGD values for Global and Local Normalization 66

Table 5.8. Number of Non-dominated Points for Global and Local Normalization 67

Table 5.9. Different Techniques to Find the Best DE Method 80

Table 5.10. IGD Values of Different DE tests for a 3-objective Benchmark Problem 81

Table 5.11. Effects of different
rn values on performed DE techniques 84

Table 5.12. The IGD statistics based on the average of 20 runs of different methods

based on the New Replacement Method and DE 88

Table 5.13. Ranking of the IGD values of different methods based on the New

Replacement Method and DE .. 89

Table 5.14. Statistics of the ranking of different methods based on the New

Replacement Method and DE .. 89

Table 6.1. Typical errors with different number of samples for OIOPD Method .. 101

Table 6.2. Different LUT for 0,18um technology ... 101

Table 6.3. Comparisons of different method in a 0,18um technology 103

xv

Table 6.4. Comparison of LUT and OIOPD in a 90nm technology 104

Table 6.5. W errors of 11 transistors for the LUT with 200/800 samples of W 104

Table 6.6. Different options for the large LUTs .. 105

Table 6.7. Memory needed by 3 LUTs A,B and C ... 105

Table 6.8. Interpolation time for the 3 LUTs A,B and C 105

Table 6.9. The W errors for the 3 LUTs A,B and C .. 106

Table 6.10. W errors for the folded cascode amplifier with the best LUT and OIOPD

Method .. 107

Table 6.11. W errors for the gain boosted amplifier with the best LUT and OIOPD

Method ... 108

Table 6.12. Results of the OIOPD and LUT method on MSOEA Optimizer 110

xvi

LIST OF SYMBOLS / ABBREVIATIONS

B The neihgborhood space

d Distance between the objective functions

f Fitness Function / Objective Function

F Scaling Factor for DE

g Optimization problem

L Transistor Length

m Dimension of the Objective Functions

N The Population Size

O Complexity of the problem

P Population

T Number of the individuals in the neighborhood

gs
v Gate to Source Voltage

dsv Drain to Source Voltage

bsv Bulk to Source Voltage

W Transistor Width

 x Optimization variable / solution

 Z* Ideal (True) Pareto Set

 δ The probability for the selection of parent solutions

γ Greediness of the DE

λ Weight Vector Matrix

Ω Solution space for the optimization variables

θ Penalty Factor

2-D Two Dimensional

CAD Computer Aided Design

CR Crossover Rate

DE Differential Evolution

DM Decision Maker

xvii

EA Evolutionary Algorithm

EDA Electronic Design Automation

EP External Population

GA Genetic Algorithm

GBW Gain Bandwith Product

IGD Inverted Generational Distance

LUT Look Up Table

MOEA Multi Objective Evolutionary Algorithm

MOGA Multi Objective Genetic Algorithm

MOP Multi-objective Optimization Problem

NN Neural Network

NSGA Non-dominated Sorting Genetic Algorithm

OIOPD Online Interpolation Operating Point Driven

OPD Operating Point Driven

PBI Penalty based Boundary Intersection

PF Pareto Front

PM Phase Margin

PS Pareto Set

SBX Simulated Binary Crossover

SoC System on Chip

SPEA Strength Pareto Evolutionary Algorithm

te Tchebycheff

VLSI Very Large Scaled Integrated

VEGA Vector Evaluated Genetic Algorithm

ws Weighted Sum

1

1. INTRODUCTION

1.1. Background Information and Aim of the Thesis

The nature, we live in, is mostly analog and the communication with the nature is

necessarily analog. The advent of computers and digital processing methods resulted in

processing of discrete signals which are not like the ones of the nature. This suggested that

analog circuit design was going to lose its importance; however, especially the need for

interface between the real world and digital circuits resulted in analog circuit design to be

even more vital. They provide the necessary signal modification and conditioning for

digital processing [1].

Because of some economic and other reasons, complete systems that occupy more

than one board have started to be integrated on a single chip in recent years, which is

known as System on a Chip (SoC). Like application specific integrated circuits (ASIC),

such systems also require important amount of analog hardware. A general figure of a SoC

is given in Figure 1.1.

Figure 1.1. The block diagram of a SoC

A trend to replace analog circuit functions with digital computations (like digital

signal processing instead of analog filtering) are quite often; however, there are some

circuits that will always remain analog for ASIC and for SoC needs. These analog circuits

can be classified into three main parts:

2

i. System’s input side: Signals coming from a sensor, antenna, microphone, wireline

and so on must firstly be sensed and then amplified and/or filtered up to a level

which is useful for digitization with reasonable signal to noise and distortion ratio

(SNDR). Low noise amplifiers (LNA), variable gain amplifiers (VGA), filters,

oscillators etc. are the analog circuits used for the input side of the system. These

blocks are used in applications such as instrumentation, sensor interfaces, process

control loops, smart cards, telecommunication receivers, and recording.

ii. System’s output side: The signal reconverted from digital to analog has to be

strengthened to be able to drive the output load. This load can be an antenna,

loudspeaker etc. The analog circuits of the output side of the system are typically

the drivers, buffers, filter, oscillators and mixers. Sample applications are

telecommunication transmitters, audio and video, process control loops, etc.

iii. Mixed signal (analog and digital signal together) circuits: DSP (digital signal

processing) unit and the analog interface parts are integrated to each other through

mixed signal circuits. Analog design is an important part of these kind of circuits.

Typical circuits used here are the sample and hold (S/H) circuits, analog to digital

converters (ADC), digital to analog converters (DAC), phase locked loops (PLL)

and frequency synthesizers [2].

In addition, the above circuits, given in three main parts, require stable references

for their operations which are generated by voltage and current reference circuits, crystal

oscillators, etc [2].

Clearly, analog circuits are necessary in all electronic applications that forms the

interface with the outside world, and they will be more important in life as long as the

designs go towards intelligent homes, mobile road/air offices and wireless workplaces of

the future [2].

 Growing requirements, especially for single chip mixed VLSI designs together

with the common trends towards smaller feature sizes and higher scales of integration have

3

brought about new dimensions in the complexity of the circuit design. Still, while the

design of digital circuits is throughly supported by well-designed CAD tools, analog CAD

tools are still not enough [1].

In digital circuit design, structured abstractions and hierarchy are fully used to

generate complex systems with large numbers of devices. For example, digital algorithms

can be easily developed with the use of hardware description languages (HDL) for

previously determined (in terms of transistor dimensions and gate layouts) logic gates. In

contrast, much of the design of analog circuits are still hand-crafted by expert circuit

designers. To also speed up the analog design with high quality solutions, efficient

methodologies supported by analog CAD programs are needed. CAD tools specifically

tailored to analog integrated circuit (IC) design can improve the design process in several

ways. These are as given below:

i. Reducing the design times: With the use of the CAD tools the productivity of

course increases. Also the time-to-market process gets faster and easier.

ii. Making the design process simpler: With the use of CAD tools, any designer will

be able to design standard analog circuits.

iii. Improving the probability of correct designs of the first fabrication run: Automating

the correctness capable design tasks reduces the possibility of making errors.

iv. Reducing production and design cost: Shorter design times and smaller design

cycle/success ratio (the ratio which defines the successful number of designs in a

whole design cycle) are obtained.

v. Improving the yield: Some computer-aided methods based on estimating and

enhancing the manufacturing yield of circuit are also popular. The main goal is

helping the return backs of the circuit to be faster.

vi. Allowing designs with different fabrication processes: CAD tools can be used to

design circuits for different technology files of different fabrications.

4

vii. Design reuse: The knowledge held by the design systems can be re-used in order to

design circuits. This helps designer to spend less time especially on the design of a

complex system (since there are lots of same circuit blocks) [1].

Due to all these reasons, analog EDA (electronic design automation) has been a

challenging topic for today’s electronic systems in the last decades.

Analog EDA industry started with drawing schematics with transistors and layouts.

However, there are lots of variables in a design cycle which can be automated by CAD

tools. These can be classified as follows:

i. Simulation: The first and most important simulation CAD tools is known as SPICE

and it is used for calculating the time domain (transient analysis) and AC behavior

(AC analysis) of an electronic circuit. In today’s technology, time efficient

computer simulations are very important since the number of the transistors are

increasing for the circuits to be simulated. However, the original simulation

methods are still useful for small size circuits operating at moderate frequencies.

The commercialy available simulation techniques are however very diverse with

frequency domain approaches, discrete time methods and large scale algorithms

etc.

ii. Modeling: Simulation results are formed by using the models describing the

behavior of the system. This comes with a need of accurate models. For example,

models of larger dimensioned transistors and low frequencies are improved for

deep-submicron technologies or RF applications. Beyond the level of individual

transistors, various types of models are used for the whole building blocks with

different trade-offs between accuracy and complexity and written in different

HDL’s. There are also some algorithms developed to automatically generate good

models.

iii. Layout: Layout is an important part of the analog design cycle since it determines

the fabrication properties. There are some tasks used to automate the layout

5

drawing in analog IC’s. The generation of physical structure of individual devices

(transistors), their placement on the chip and interconnections between transistors

are some of them. Nowaday’s popular and come tools are the ones extracting the

layout parasitics and checking the correctness of layouts.

iv. Analysis: Analog designers are generally used to do the calculations by hand

analysis by using characteristic numbers, tranfer functions etc. However with the

improvement in IC design, more complex analysis such as yield estimations and

noise effects started to be analysed.

v. Synthesis: The design cycle of an electronic circuit is based on selecting the

transistors, sizing them and then using interconnections. Generally, analog designer

chooses the circuit schematic and then determines the dimensions by executing the

design plan which is basically translation of the analysis results into a set of

equations from which the sizes are calculated. Several CAD tools have been

implemented by using mathematical optimization methods for solving the problem

of transistor sizing. This is the topic of the thesis work. More recently, efforts have

been made to enhance the degree of automation of the design process towards the

level of the actual synthesis of analog and mixed signal systems, which also

includes the selection of the topology. Sizing problem is solved for elementary

blocks like op-amps or repetitive structures like filters.

vi. Verification: Since the simulations are using the behavior of the system for a set of

inputs, verification is used to show the correctness of the system for all input

conditions. Works on this research area has started to be worked on in last 10 years

[3].

The CAD tool realized for the thesis work is based on the synthesis process. The

goal of the thesis work is finding optimal dimensions for the transistors of an already

determined topology in order to get the best circuit performance in terms of gain, gain

bandwidth product, phase margin etc.

6

For the synthesis of the analog circuit, the topology should be chosen. There are

several methods that can be used to obtain the architecture in the design cycle. Analog

synthesis tools can be classified into four categories according to their architecture

selection mechanisms:

i. Selection before or after sizing: Finding optimal values for the optimization

parameters is not dependent on the selection of the architecture. To choose a

topology, the designer uses a knowledge-assistant tool or his/her experience.

ii. Selection during sizing: The topology is selected during the execution of the sizing

algorithm. Options for the topology are stored in a library as entire architectures or

as different choices for subblocks of a generalized architecture.

iii. Top-down creation: The functionality of the system is described at a higher

abstraction level (usually with a kind of hardware description language). Following

steps are used to map this description onto a specific topology. Sizing happens

either during or after the mapping operation in a constraint transformation step.

iv. Bottom-up generation: The architecture can also be created from a low abstraction

level. The design usually starts at the circuit level by connecting individual

transistors with each other in a knowledge-based, systematic or stochastic way. It is

possible to obtain several new circuit topologies with this class of design

approaches [4].

In Figure 1.2. an overview of the analog synthesis tools developed in the last 20

years has been given. The tools are classified according to their topology selection

mechanisms which are selection before or after sizing, selection during sizing, top-down

creation and bottom-up generation as given above. The analog synthesis tool developed for

the thesis work is a selection before sizing based method. The goal here is first selecting a

topology and then optimizing the dimension of the transistors by using optimization

techniques.

7

Figure 1.2. Overview of major analog EDA tools for analog synthesis developed in

the last 20 years and published in open literature [4]

In most design strategies the topology is selected before and then the sizes are

changed to obtain the performance values required. If the specifications are not met at the

end, redesign is done. The design flow is shown in Figure 1.3 and Figure 1.4.

Figure 1.3. Schematic representation of the design strategy applying selection of the

topology before or after sizing [4]

8

Figure 1.4. Example of a typical design flow for a basic analog cell consisting of topology

selection followed by circuit sizing [5]

The calculation of the performance is satisfied by evaluating a performance function

(analytical equations, simulation, lookup tables, symbolic analysis or performance models

etc.). In the thesis work the performance evaluator is SPICE simulations realized by using

HSpice. In case of multi-objective algorithms, multiple combinations of parameter values

are returned for a single topology, from which the best one is then selected. Re-design is

only necessary when none of the dimensioned topologies meets the specifications. For

specific building blocks, like op amps, the circuit level is usually selected. Sometimes this

is combined with the physical level, e.g., VCOs or LNAs. On the other hand, the

behavioral level is more appropriate for larger systems, like PLLs or complete RF systems

[4].

So far what has been mentioned is the history of EDA; CAD tools existing for

analog circuit design, the classification based on the topology selection for analog synthesis

tools and their design flows. From the design flows given in Figure 1.3, it can be seen that

the sizing is mainly realized by the optimizer which is an optimization algorithm. There are

several algorithms used for single or multi objective optimization. The details of

optimization tools will be given in Chapter 2. For now it should be noted that evolution

based algorithms are generally used for the analog sizing problem because of their

following properties: They can be used for both single and multi objective optimization, no

derivatives of the optimization variables are needed, for any type of problem global

convergence can be obtained, there is no need for specific design knowledge, and

9

convergence is satisfied after enough iterations. For all these reasons, the thesis work is also

a multi-objective evolutionary algorithm synthesizer.

Decomposing the objective functions (the functions to be optimized) into several

numbers of different scalar problems is known to be improving the convergence quality.

This information has been used as the background information of the thesis work and then

lots of improvements have been realized. They are basically the generation of weight

vectors of the objective functions, using differential evolution as a search algorithm,

implementing a novel replacement mechanism for the selection of the individuals, different

normalization and decomposition methods, etc. All these concepts will be explained in the

following chapters. Also the literature shows that there are important advantages of

optimizing the DC operating points of a transistor instead of W values in order to obtain

better performance results of the circuit.

As a result, since analog CAD tools are not good enough to satisfy the needs of

analog design automation, a thesis work on analog synthesis has been realized. The tool

shows good performance in terms of every criteria of design automation (like convergence

rate etc.) compared to the other methods realized.

1.2. Outline of the Thesis

The next chapter focuses on different optimization techniques by mentioning their

advantages and disadvantages. From this classification why Evolutionary Algorithms are

used for analog synthesis tools is also clarified. Since the optimization of multiple

performance functions is an important concept for analog synthesis, some works on multi-

objective optimization has also been realized. Later, evolutionary algorithms are explained

with their components used for optimization. At the end, differential evolution (DE) is

explained since it will be used as a search engine for the optimization algorithm realized.

In Chapter 3, the metrics used for comparing the test results of different methods

during the thesis work is given. Also, analog circuits used for optimization (as test cases)

are introduced with their variables to be optimized.

10

In Chapter 4, the algorithm MOEA/D which has been used as a background work is

introduced. The idea of using decomposition in evolutionary algorithms is explained and

the flow chart of the algorithm is given by explaining its advantages and disadvantages.

In Chapter 5, the new algorithm proposed, MOEA/D-DE is given with its flow

chart. The test results comparing different enhancing methods are also given. A novel

method for the weight matrix initialization of the objective function is explained and the

results are compared with the previous technique. Also, different methods of

decomposition and normalization are performed. A new replacement mechanism and

implementing DE to the Evolutionary Algorithm is also performed and the comparisons of

the tests are given. The algorithm developed is used for sizing of an analog circuit.

Chapter 6 includes another novel work based on operating point driven methods.

The advantages of OPD methods are given and a novel OPD method called OIOPD is

explained. The proposed method is compared with the existing methods and the results are

given. Also, some tests on sizing of a complex analog circuit are realized.

The last chapter concludes the thesis work by giving the final conclusions and the

possible future works.

11

2. OPTIMIZATION METHODS AND EVOLUTIONARY

ALGORITHMS

 This chapter focuses on the different optimization methods and the selection of the

evolutionary algorithms as the main optimization search algorithm for the analog sizing

problem. The concept of multi-objective optimization is also given with the definition and

components of the evolutionary algorithms. The differential evolution which was used in

the thesis work is also introduced.

2.1. Optimization Methods

2.1.1. Introduction to Optimization Methods and their Properties

The values of the fitness functions can be changed by altering the variables. Finding

the optimal values for these variables is known as optimization. For example, for an analog

IC optimizations, W and L values have to be optimized in order to obtain best

specifications like gain, power etc. Some methods have been realized to cope with the

optimization problem. For analog circuit optimization it should be noted that complex

device models can make the feasibility space of an analog system quite difficult. It should

be noted that the problem is nonlinear and nonconvex and multiple locally optimal points

can be faced. Furthermore, lack of analytical expressions for the performance function

results in the need for time-consuming numerical function evaluations through simulations

leading to long optimization processes. There are several properties which can characterize

the different methods for optimizing the parameters of analog and mixed-signal systems:

i. The objective functions to be optimized can be single or multiple.

ii. For both deterministic function or methods based on stochastic variables, the

individuals are optimized in each iteration and they can result in different solutions.

iii. An optimization algorithm may guarantee that the result of the optimization process

can reach to the global optimum, whereas others can get stuck in a local optimum.

12

This is one of the most critical properties for the selection of the optimization

algorithm.

iv. The algorithm may have limitations on the models used to represent the system. For

example, continuity or convexity are some of these limits.

v. The analog and mixed-signal system optimization can be defined as a mathematical

problem which doesn’t need introducing any design knowledge about the system.

Further, some heuristics can be translated into a set of mathematical sizing rules,

e.g., to guarantee the functionality or robustness of subblocks.

vi. The optimization parameters can be discrete values or continous. When the

continuous values are used, they may be transformed into discrete values once the

final solution has been found (e.g., for transistor dimensions), although this

operation can deteriorate the performance.

vii. An algorithm can theoretically guarantee to converge to the global optimum;

however, it may be reached only after an infinite number of iterations. This is also

an important thing to be considered.

viii. The optimization time needed by an algorithm depends on properties, like the

convergence rate, the complexity of the calculations at each step, the different

possibilities for choosing a cost function, the population size, optimization

algorithm, etc. This is one of the most common properties of all optimization

algorithms [4].

2.1.2. Classification of the Optimization Methods

All the above properties are related to lots of different optimization methodologies.

Roughly speaking, six base categories are frequently seen in CAD tools for analog

synthesis:

13

i. Design knowledge: This optimization method is used in CAD tools by compiling

complete design plans for each topology and objective or by building an expert

system which contains general rules. Analog EDA tools often firmly contain design

knowledge, like boundaries and typical values for parameters, initial rough sizings

based on simplified models, or module generators or templates for layouts. Explicit

incorporation of heuristics as mathematical relations is achieved by using the sizing

rules method.

ii. Local unconstrained optimizers: Defining a scalar function to minimize is the

method used by the transformation of the sizing problem for analog sizing into

local unconstraint optimization problem. At low abstraction levels, models and

specifications for manufacturing or operating tolerances can be considered. The

scalar function may be referred to as the objective, error performance or cost

function. To find the optimal value of the cost function, lots of algorithms have

been developed. Some examples of the methods implemented in analog CAD tools

are simplex methods, gradient-based methods, Newton-like approaches and trust

region.

iii. Constrained optimization: Another method is based on considering the analog

sizing problem as a constrained optimization problem, also known as linear,

quadratic or nonlinear programming, instead of combining all objectives and

constraints into one scalar function. Since problems in analog circuit optimization

are almost always nonlinear, nonlinear programming is used most commonly.

Several algorithms have been successfully applied for analog designs, like gradient-

based approaches, and SQP for op amps, LNAs, analog filters etc. A global

optimum is guaranteed with a Geometric Program (GP) which has been used for

sizing several analog systems, like CMOS opamps, multi-stage amplifiers, on-chip

inductors etc. The biggest disadvantage of this method is the restriction on the

modeling strategy, especially if a model has to be derived for each topology by

hand. Possible solutions consist in fitting the performance function with a

posynomial model or solving a series of GPs. Of course, this makes the procedure

go on slower and makes the method less attractive.

14

iv. Greedy stochastic optimization: These algorithms are based on accepting a new set

of parameters as long as there is improvement. Elementary stochastic optimization

methods like a random grid search and random step are not feasible for finding

optimal parameter values for an analog system because of the rather extended

design space. Instead, they are usually encountered in combination with other

approaches. A straightforward combination is with the design knowledge, like

heuristics or information derived during the execution. Also, the gradient used in a

deterministic approach can be replaced by an estimation based on random

perturbations resulting in a stochastic approximation approach. A globally optimal

point is more likely found (not guaranteed) if random pattern searches are

combined with a population-based approach.

v. Annealing: This method is based on starting from some point in the parameter

space, and then a new set of parameters is derived by selecting statistically a new

point in the neighborhood of the old one, or by applying a step of a local optimizer.

Comparing to the greedy algorithms, up-hill moves have a certain probability to be

accepted in annealing approaches and as a result the method can escape from the

risk of the local minima. Consequently, after an infinite number of iterations, the

global optimum can theoretically be reached. In a practical implementation;

however, it is likely (although not guaranteed) that after enough iterations, the

solution is close to the global optimum. The ability to calculate optimal dimensions

without the need for derivatives makes the basic simulated annealing algorithm an

attractive choice for optimization in analog CAD tools. Some of the applications

for analog CAD are the sizing of general analog cells, op amps, VCOs, DS

modulators and RF receivers, as well as layout generation.

vi. Evolution: A population of individuals is created in these methods where the

parameters of a creature are collected in its genome represented by a binary string

(in original genetic algorithms), trees (in genetic programming) or real-valued

vectors (in evolution strategies). In these methods each individual has a fitness

value defining the cost function which is used for ranking and selection. During the

optimization process, new generations are built up by genetic operators. These

operators are selection, mutation, and recombination or crossover operators.

15

Usually, some adaptations are made to the original algorithms to guarantee

convergence to the global optimum (e.g., by employing an elitist selection

mechanism). However, similar to the annealing algorithms, this global optimum

results only after an infinite number of generations [4].

The direct use of the function values, without their derivatives, is the thing that

makes these algorithms able to be used in a wide application area. Analog CAD tools

based on EAs have been developed to find the optimal parameters of various systems, like

RF building blocks, voltage references, ADCs, op amps and power amplifiers.

Evolutionary algorithms can also be employed for multi-objective optimization. The

fitness then becomes a function of the Pareto dominance of the individuals [4].

The properties of the six base categories given above are listed in the Table 2.1

according to their implementation in CAD tools. However, practical implementations can

be based on a combination of these fundamental methods, e.g., simulated annealing

followed by a traditional unconstrained algorithm, or a genetic algorithm and simulated

annealing method [6].

Table 2.1. The properties of different optimization techniques [4]

From Table 2.1. and from the above explanations of the optimization methods, it

can be seen that Evolutionary Algorithms have clear advantages on globally converging to

the result, both single/multi objective optimization and no need for derivatives of the

16

optimization variables. These and other advantages of Evolutionary Algorithms have made

them useful for complex problems like analog sizing.

2.1.3. Classification of the Multi-objective Optimization

Most optimization problems are multi-objective optimization in which all

objectives should be taken into account. Since these objectives are usually creating a trade-

off between each other, it is impossible to find a single and best solution which supports all

of the objectives. Instead, there are a number of “Pareto-optimal” solutions which can be

explained by the fact that an improvement in an objective can only be satisfied with the

lose in performance in at least one other objective. This is basically known as a trade-off

between the objective functions [6].

Decision maker (DM) mechanism determines the importance of objective

functions. The preferences may be done either before (a priori), during (progressive), or

after (a posteriori) the optimization process [6].

A priori methods are the methods based on doing the preference specification

before the solution process. These methods aggregates different objectives to one overall

objective function and optimization result is then obtained with one optimal design. Of

course, the result is strongly dependent on how the objectives were aggregated. Different

methods have been developed to support the decision maker mechanism in a priori

methods and on aggregating the objectives [7].

Progressive methods are used for the case of a priori methods can not determine the

the preference information because of the complexity of the problem. Thus, the decision

maker specifies and adjusts his/her preferences at the same time as he/she is learning more

about the problem. However, a high effort is expected from the decision maker during the

overall search process. Consequently, these methods are almost never used [7].

In the a posteriori methods [8,9,34], optimization is realized without the decision

maker articulating any preferences among the objectives. The result of this optimization is

a set of optimal solutions which give a trade-off between the objectives. The decision

17

maker then has to trade the objectives against each other to select the final design. As a

result, the optimization is realized before the decision maker clearly indicates his

preferences. Basic a posteriori methods are the population based approach and the search

based on Pareto solutions [7].

In the population based approach the population size, which is given as N, is

divided into subproblems whose number is given as K. Subproblems are also known as the

objective functions. Vector Evaluated Genetic Algorithm (VEGA) is an example for this

type of approach. VEGA method is classified as a criterion selection technique in which

subpopulations (subproblems) are shuffled together to realize a new population which has

a size N. At the end crossover and mutation steps are applied to the resulting population

untill a stopping criterion is satisfied. The disadvantage of VEGA can be told as the best

chromosome at which the optimum decision for all set of functions is obtained, can be

rejected as for some from them it is not optimum [7].

There are a several techniques based on searching the solution space first (for

Pareto optimal solutions) and presenting them to the DM later. As seen, the advantage is

that the solutions are independent of the preferences of the DM. The analysis has to be

performed only once, since the Pareto set would not change as long as the problem remains

unchanged. However, this method can have a problem about high computational effort.

Another disadvantage is that the decision maker may have lots of solutions to choose from

[7].

 The MOEA/D-DE algorithm that has been implemented during the project is a

population based method, which is working with the subproblem logic.

2.2. Evolutionary Algorithms

2.2.1 Introduction to Evolutionary Algorithms

The evolution of nature, Darwinian theroy, has been a start for the evolutionary

algorithms (EAs). The change of species adaptively by the principle of natural selection,

which helps those individuals for survival and further evolution that are most suitable to

18

their environmental conditions are all included in these algorithms. The most of the

applications of evolutionary algorithms are in optimization. To compare with traditional

optimization techniques, evolutionary algorithms are more robust and can obtain a better

balance between efficiency and efficacy for many different real-world problems.

Evolutionary algorithms are usually used to solve the problems which are characterized by

chance, chaos and nonlinear interactivity which tend to be intractable to traditional

methods [10].

The basic definition that can be done for the EA techniques is the population full of

individuals are getting into a natural selection because of the hard enviromental conditions

and this results in a rise for the fitness of the population. Lets assume that a quality

function given has to be maximised, first, a set of candidate solutions can be randomly

created, i.e., elements of the function’s domain, and apply the quality function as an

abstract fitness measure which is known as the higher the better. Based on this fitness,

some of the better candidates are chosen to seed the next generation by applying

recombination and/or mutation to them. Recombination is an operator applied to two or

more selected candidates (parents) and creates one or more new candidates (the children).

Mutation is applied to one candidate and results in one new candidate. Executing

recombination and mutation leads to a set of new candidates (which is known as the off-

spring) that compete – based on their fitness (and possibly age) – with the old ones for a

place in the next generation. This process can be iterated until a candidate with sufficient

quality (a solution) is found or a previously set computational limit is reached [11].

There are two components that form the basis of evolutionary systems.

• Variation operators (recombination and mutation): They create the necessary

diversity and thereby ease the novelty

• Selection: It is a force to increase the quality

The combination of recombination, mutation and selection generally leads to

improving fitness values in consecutive populations. It is easy to see such a process as if

19

the evolution is optimising, or at least “approximising”, by approaching optimal values

closer and closer over its course [11].

It should be noted that many components of an evolutionary process are stochastic.

During selection, the fitter individuals have a higher chance to be selected than less fit

ones, but typically the weak individuals still have a chance to become a parent or to

survive. For recombination of individuals the choice of which pieces will be recombined is

random. Similarly for mutation, the pieces that will be mutated within a candidate solution,

and the new pieces replacing them, are chosen randomly. The general scheme of an

Evolutionary Algorithm as a pseudo-code is as follows:

Figure 2.1. The general scheme of an Evolutionary Algorithm in pseudo-code [11]

Evolutionary Algorithms (EAs) have a features which makes them available for the

generation and testing of the optimization problems. They are as follows:

• They are population based and process the whole collection of candidate solutions

simultaneously,

• EAs generally use recombination to mix information (for diversity aim) of more

candidate solutions into a new one,

20

• EAs are stochastic [11] .

 The structure of a single population evolutionary algorithm is given in Figure 2.2.

As seen firstly an initial population is generated randomly and then according to the results

of the evaluation of the objective function the optimization algorithm alters the design

variables by using genetic operators.

Figure 2.2. Structure of a single population evolutionary algorithm [12]

For more details of EA (evolutionary algorithms), reference [11] can be checked.

2.2.2 Components of Evolutionary Algorithms

EAs have some components and each of these components must be specified in

order to define a particular EA. Also, to obtain a running algorithm the initialisation

procedure and a termination condition must be also defined. The components are as

follows given below [11]:

Representation: It is basically the definition of the individuals. The first step in

defining an EA is to link the“real world” to the “EA world”, that is to set up a bridge

between the original problem context and the problem solving space where evolution will

take place.

21

Evaluation Function (Fitness Function): The evaluation function represents the

requirements to adapt to. It forms the basis for selection, and thereby it facilitates

improvements. In other words, it defines what improvement means and it represents the

task to solve in the evolutionary context.

The evaluation function is commonly called the fitness function in evolutionary

computation (EC). Quite often, the original problem to be solved by an EA is an

optimization problem. In this case the name objective function is used in the original

problem context and the evaluation (fitness) function can be identical to, or a simple

transformation of, the given objective function.

Population: Possible solutions are kept in a population. A population is a set of

individuals generating the solution set. Population size is an important represantation in the

optimization algorithms and it means the number of the individuals in a population. In

some Eas, a population has an additional spatial structure, with a distance measure or a

neighbourhood relation. In such cases the additional structure has to be defined as well to

fully specify a population.

Parent Selection Mechanism: The goal of parent selection or mating selection is to

distinguish among individuals based on their quality, in particular, to let the better

individuals to become parents of the next generation. An individual is a parent if it has

been selected to experience variation in order to create the off-spring. Together with the

survivor selection mechanism, parent selection is responsible for pushing quality

improvements. In evolutionary computation, parent selection is typically probabilistic. As

a result, high quality individuals get a higher chance to become parents than those with low

quality.

Variation Operators: The role of these operators is to create new individuals from

old ones. As a result they are the generation operators. Variation operators in evolutionary

computation are divided into two types.

22

Mutation: Mutation, a variation operator, is applied to one genotype and delivers a

(slightly) modified mutant, the child or its off-spring. A mutation operator is always

stochastic: its output, the child, depends on the outcomes of a series of random choices. It

should be noted that an arbitrary unary operator is not necessarily seen as mutation. A

problem specific heuristic operator acting on one individual could be termed as mutation

for being unary. However, in general mutation is supposed to cause a random, unbiased

change. For this reason it might be more appropriate not to call heuristic unary operators

mutation.

Recombination: A binary variation operator is called recombination or known as

the crossover. As it can be understood from its name, such an operator gets information

from two parent genotypes into one or two off-spring genotypes. Similar to mutation,

recombination is a stochastic operator: the choice of what parts of each parent are

combined, and the way these parts are combined, depend on random drawings. The

principal behind recombination is simple: an off-spring can be produced by mating two

individuals with different but desirable features. So the off-spring will have both of the

features of the mating individuals.

Replacement: This is also known as survivor selection mechanism. The aim of

survivor selection or environmental selection is to distinguish among individuals based on

their quality. It is similar to parent selection; however it is used in a different stage of the

evolutionary cycle. Also, the survivor selection is often called replacement or replacement

strategy.

Initialisation: Initialisation in EAs is based on randomly generating the first

population. During this work, to make the initialisation fair, compared tests are realized

with the same seed number for Matlab’s random number generation. In principle, problem

specific heuristics can be used in this step aiming at an initial population with higher

fitness. Whether this is worth the extra computational effort or not is very much dependent

on the application at hand. There are, however, some general observations concerning this

issue based on the so-called anytime behaviour of EAs.

23

Termination Condition: There are two cases to take into account about the

termination condition. In case the problem has a well known optimal fitness level,

probably coming from a known optimum of the given objective function, then reaching

this level (perhaps only with a given precision > 0) should be used as stopping condition.

However, there are no guarantees to reach an optimum in Eas because of their stochastic

nature, as a result this condition might never get satisfied and the algorithm may never

stop. This requires that this condition is extended with one that certainly stops the

algorithm. Commonly used options for this purpose are the following:

• The allowed maximum CPU time;

• The limit for the number of evaluations of the fitness functions;

• The limit defining the improvement in the fitness values

• The population diversity comparing to a given threshold [11].

The termination condition for the project is based on the threshold number of the

generations. That can also be told to be the number of the iterations for the multi-objective

optimization algorithm running.

2.2.3. Multi-objective Evolutionary Algorithms

 In recent years, the interest in “evolutionary multi objective optimization”

(which the solution optimizes all of the objectives) has increased. The problem of these

methods is that, an ideal solution for all objectives may never be obtained in practical

applications. Optimal performance (as long as such an optimum exists) according to a

single objective, often implies unacceptably low performance in one or more of the other

objective dimensions, creating the need for compromise to be obtained. In their

applications and nature, evolutionary algorithms explore a set of possible solutions

simultaneously. This method let the search for an overall set of Pareto optimal solutions, at

least approximately, in a single run of the algorithm unlike the mathematical programming

methods. Moreover, these algorithms are less susceptible to problem dependent

24

characteristics, such as the shape of the Pareto front and the mathematical properties of the

search space since they are so important on mathematical programming techniques [10].

The first practical approach for multi objective optimization using evolutionary

algorithms was the VEEA, vector evaluated evolutionary algorithm. This method includes

the concept of subpopulation and the implementation of recombination and mutation

operators on each objective function. None of the other evolutionary algorithms, which try

to promote multiple solutions, directly use the actual definition of Pareto optimality. The

Pareto-based fitness assignment is assigning equal probability of reproduction to all non-

dominated individuals in the population. This method assigns rank 1 to the non-dominated

solutions, and then deletes them from contention, then find a new non-dominated set in the

rest of the individuals, ranked 2, and so forth until all individuals in the population are

assigned ranks. Since the high rank individuals have higher fitness values, they have more

chance to reproduce offspring and be chosen into next generation. After VEEA, a multi-

objective genetic algorithm (MOGA) has been proposed using a slightly different fitness

evaluation scheme, whereby an individual's rank corresponds to the number of individuals

in the current population by which it is dominated. Non-dominated individuals are,

therefore, all assigned the same highest rank, while dominated ones are penalized

according to the population density in the corresponding region where this individual is

dominated. Also a similar sorting and fitness assignment procedure has been implemented,

which is called NSGA, the non-dominated sorting genetic algorithm, but based on

Goldberg's version of Pareto ranking. Also, niched Pareto genetic algorithm (NPGA) was

proposed using a tournament selection method based on Pareto dominance as an alternative

to the deterministic rank-based selection. More recent algorithms are NSGA-II [8], and the

strength Pareto evolutionary algorithm (SPEA2) algorithm [9].

The general procedure of MOEA is like the one in evolutionary algorithms for

single-objective optimization [10].

MOEAs realize the search by maintaining a population of individuals at time t

which is given as 1() { (),... ()}NP t p t p t= . The general procedure is given in Figure 2.3.

25

 Figure 2.3. The General Procedure of MOEA [10]

The use of probabilistic operators is because of generating a new and better

population (1)p t + . This step reproduction. Each () ()ip t P t∈ represents a potential

solution to the problem. The initialization and operations are critical for the performance of

the algorithm. The data structure to represent a solution is usually tailored with the

consideration of specific problems. Data structure which have been specifically designed

for real problems mostly reduce the effort in the search process [10].

2.3. Differential Evolution (DE)

Differential Evolution (DE) is an evolutionary algorithm used in optimization

problems. There are several variants of the original differential evolution. The one

described below has been chosen as an example to explain the basics of the DE. The main

operators controlling the evolutionary process are the reproduction and selection operators

[10].

The algorithm works with the general idea of an evolutionary algorithm. An initial

population is created by random selection and then evaluated; then the algorithm works in

26

the flow chart of generating offspring, evaluating offspring, and selecting individuals to

create the next generation. In DE, for every individual in the parent population, the

following reproduction operator is used to create its offspring [10]:

1

' . (1). . ()k k
a b

K

i best i i ik
p p p F p pγ γ

=
= + − + −∑ (2.1)

bestp is the best individual in the parent population, 'ip is the offspring that is

generated , γ represents greediness of the operator, and K is the number of perturbation

vectors, F is the scale factor of the perturbation, and k
ai

p and k
bi

p are randomly selected

mutually distinct individual pairs in the parent population. The DE approach is shown

schematically in Figure 2.4.

Figure 2.4. Illustrative example of differential evolution for single objective optimization,

in a 2-dimensional decision space [10]

The basic idea behind the DE is adapting the search step naturally along the

evolutionary process in a manner that trades exploitation off against exploration. The scale

of the perturbation vectors is proportional (roughly) to the extent of the population

diversity. At the beginning of the evolution, since the individuals are far away from each

other, the perturbation is large. As the evolutionary process reaches to the final stage, the

population converges to a small region and the perturbation gets smaller. As a result, the

adaptive search step benefits the evolution algorithm by performing global search with a

large perturbation step at the beginning of the evolutionary process and refines the

population with a small search step at the end [10].

27

The darker area in Figure 2.4 is for the better fitness values. The thick solid arrow is

for the differential vector, and dashed arrows represent the perturbation vectors. The

individual ip creates its offspring 'ip after the reproduction operation.

The selection operator in DE compares the fitness values of the parent and

offspring and chooses the better one as shown in Equation 2.2.

'() '() ()

1

()

() ()t t t

i i it

i t

i

p if p p
p

p otherwise

+
 Φ > Φ 

=  
  

 (2.2)

For more details about the DE approaches a PhD thesis work on multi-objective

differential evolution [10] can be checked.

28

3. PERFORMANCE METRICS AND TEST CIRCUITS FOR THE

ALGORITHMS IMPLEMENTED

To compare the results of different methods for multi-objective optimization, some

performance metrics and some analog circuitry to be sized are needed. The goal here is to

try different benchmark problems and analog circuits to make the comparison fair and to

use some metrics fairly comparing the distribution, range and especially dominance quality

of a Pareto Front with another one.

3.1. Performance Metrics

The metrics used to compare Pareto Fronts are about the distribution quality,

dominance and the range of the objective functions.

3.1.1 Schott’s Spacing Metric

Schott describes the following spacing metric:

2_

1

1
.

1 i

i

n d d
n +

 
− 

−  
∑ (3.1)

where ()1 1 2 2min () () () ()i j i j

i jd f x f x f x f x= − + −
r r r r

, , 1...i j n= ,
_

d is the mean of all

id and n Z= .

Schott’s Spacing Metric tries to find how evenly the points are distributed. It is an

independent metric, induces a complete ordering, and is cardinal. It exhibits neither

monotony nor relativity, since *Z may be non-uniform. Used in conjunction with other

metrics (as it is designed to be) it provides information about the distribution of vectors

obtained. It has low computational overhead. It can be generalized to more than two

29

dimensions by extending the definition of
id . Schott’s definition of

id does not specify the

use of normalized distances, which may be problematic [13].

3.1.2 IGD Metric

The inverted generational distance (IGD) is also used to determine the performance

of the algorithms. Let *P be a set of uniformly distributed points in the objective space

along the PF. Let A be an approximation to the PF, the inverted generational distance from

*P to A is defined as:

**

*

(,)
(,) v P

d V A
IGD A P

P

∈=
∑

 (3.2)

where (,)d V A is the minimum Euclidean distance between v and the points in A. This

method has been used as the main performance metric in the CEC09 conference [23].

3.1.3 Number of Dominated Points

 To find the true pareto (PF) from all possible pareto optimal solutions of lots

of tests of different methods, first of all, the dominated points from the whole possible PF

points are found out and then eliminated. So, the points left are used for the true Pareto

which is also called Pareto Front to use with metrics like IGD in order to compare the

performance of the methods.

The number of the dominated points for a single test is also a good method

especially for the dominance quality. If there are lots of dominated points in the objective

space of a method, then this method can be considered to be easily dominated by the other

methods.

30

Since m is the number of the objectives in a solution space with n individuals, for a

PF with lots of solution points on it, for 1:i m= if ()i if P∀ > is true for a minimization

problem than the related individual of the solution space inquired is dominated. For

example, if Method1 has 20 individuals dominated comparing to a PF1, Pareto Front, and

if Method2 has just 3 individuals like that, for fair conditions (like same seed number of

initialization) it will mean that Method2 is much better in terms of dominance quality.

3.2. Circuits to be Optimized

In this part two analog circuits used for the optimization during the thesis work are

presented. For the first part of the thesis work a W/L based method is used and for the tests

of this method the W and L values of the transistors are the design variables. For the

second part of the thesis an operating point driven (OPD) based method has been

implemented. The design variables for this method are the DC voltage and current values

of the transistors. For the analog circuits optimized these values have been shown in Table

3.1 and Table 3.2.

For 90nm and 180nm (TSMC) and 250nm (UMC) fabrication models, folded

cascode and gain boosted amplifier, have been simulated and the dimensions of the

transistors have been optimized during the project.

The variables are dependent on the algorithm used. If the MOEAD-DE algorithm

based on the W-L search space is used then (first part of the project) then the variables to

be optimized are W and L values. If the DC root solving method (OIOPD) is added, then

the optimization variables are basically V (voltage) and I (current) values of the nodes.

For different technology files (90nm, 180nm, 250nm), the W/L values and the V/I

values to be optimized are given in Table 3.1. and Table 3.2. respectively. It should be

noted that the values are for the upper and lower boundaries for the related technology

parameters.

31

Table 3.1. W-L Limits for the Optimization Variables

Technology: 90nm 180nm 250nm

Wmin 120nm 240nm 360nm

Wmax 200um 800um 800um

Lmin 90nm 180nm 250nm

Lmax 5um 10um 20um

Table 3.2. V-I Limits for the Optimization Variables

Technology: 90nm 180nm 250nm

Vmin -0,6V -0,9V -1.25V

Vmax 0,6V 0,9V 1.25V

Imin 0,1 mA 0,1 mA 0,1 mA

Imax 10mA 10mA 10mA

3.2.1 Folded Cascode Amplifier

 The folded cascode circuit seen below has been used as the main analog circuit to

try the sizing algorithm. In the circuit there are 13 transistors and 1 current source whose

values have to be altered. Because of the design properties (like symmetry), some values

are equalized to each other.

During the W-L optimization of the folded cascode amplifier there are 11 values to

be optimized. W1, W3, W5, W8, W10, L1, L3, L5, L8, L10 and ib. The ib value has been

searched in a range 0,5uA to 2,5mA. The W and L values are searched in the range

according to Table 3.1. The choice of values is dependent on the technology restrictions

(for the minimum values) and also experimental (for the maximum values).

32

Figure 3.1. The Folded Cascode Amplifier

Table 3.3. W/L components to be optimized

Transistor Width Length

m1A W1 L1

m2A W1 L1

m3A W3 L3

m4A W3 L3

m5A W5 L5

m6A W5 L5

m7A W5 L5

m8A W8 L8

m9A W8 L8

m10A W10 L10

m11A W10 L10

mbnA W3/1.1 L3

mbpA W5 L5

33

OIOPD method, based on optimizing the DC variables have 7 voltage and 3 current

values to be optimized as seen below. Since this method is based on the guessing W

process (that will be explained on the related part of the thesis) L values also have to be

optimized. So there are 5 different transistor length values also (they were given before).

As a result, a total of 15 variables need to be altered to find the best Pareto Optimal

solutions. The DC values need to be altered are given in Figure 3.2.

Figure 3.2. V/I variables for the Folded Cascode Amplifier

3.2.2 Gain Boosted Amplifier:

The gain boosted amplifier circuit given in Figure 3.3 has been used as the main

analog circuit to try the sizing algorithm. In the circuit there are 39 transistors and 4

capacitors whose values have to be altered. Since the N amplifier and P amplifier wil be

used 2 times then the number of the transistors to be optimized decrease to 25 and number

of the capacitors decrease to 2. Also because of the design properties (like symmetry),

some values are equated to each other.

During the optimization of the gain boosted amplifier, there are 38 values (18 W,

18 L, 2 C) to be optimized.

34

Figure 3.3. The Gain Boosted Amplifier

Table 3.4. The W/L values to be optimized for the Main Block of the Gain Boosted

Amplifier

Transistor Width Length

Main Block:

m1a fw1a fl1a

m1b fw1a fl1b

m2 fw2 fl2

m3a fw3a fl3a

m3b fw3a fl3a

m4a fw4a fl4a

m4b fw4a fl4a

m5a fw5a fl5a

m5b fw5a fl5a

m6a fw6a fl6a

m6b fw6a fl6a

35

Table 3.5. The W/L values to be optimized for the P-Amplifier of the Gain Boosted

Amplifier

P-Amplifier: W L

m1 sw1 sl1

m2 sw1 sl1

m3 sw3 sl3

m5 sw5 sl5

m6 sw6 sl6

m8 sw8 sl8

m10 sw10 sl10

Table 3.6. The W/L values to be optimized for the N-Amplifier of the Gain Boosted

Amplifier

N-Amplifier: W L

m1 tw1 tl1

m2 tw1 tl1

m3 tw3 tl3

m5 tw5 tl5

m6 tw6 tl6

m8 tw8 tl8

m10 tw10 tl10

The capacitor value has been searched in the 0,5pF to 20pF range. The W and L

values have been searched in the range according to Table 3.1.

OIOPD method, based on optimizing the DC variables for the gain boosted

amplifier has 16 voltage and 10 current values to be optimized. Again L values are also

supposed to be altered. There are 18 different transistor length values also (they were given

before). When 2 capacitor values to be altered are added, a total number of optimization

36

variables is found to be 46. The DC values of the gain boosted amplifier which need to be

altered are as given in Figure 3.4.

Figure 3.4. The V/I variables for the Gain Boosted Amplifier

The constraint handling has also been implemented during the evaluation of some

of the folded cascode tests. The HSpice output, .sp file, gives dm values which refer to the

saturation conditions of the transistors. If a transistor is not in saturation, these dm values

for the related transistors are added to the performance values of the optimization

algorithm, so the algorithm tries to find some new solutions which will lead to a transistor

in saturation, since the goal of minimization is not satisfied. As a result, handling

constraints is satisfied by using the dm values given by the simulation output file of the

HSpice. For the OIOPD method the generation of the V and I values are already being

37

determined with the saturation conditions, so there is no need for extra saturation constraint

handling.

Another trick on the performance value evaluation mechanism has been used for

the failed values of the HSpice output. If the HSpice simulator fails to find a result, the

code generates a feedback value 1000, which is a high cost value, to the main algorithm.

Since the algorithm works on the minimization problem, then this solution is chosen as a

bad result and is not used.

38

4. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM WITH

DECOMPOSITION (MOEA/D)

4.1. Definition of MOP

A multi-objective optimization problem (MOP) can be given as follows:

 maximize ()1() (),..., ()
T

m
F x f x f x= subject to x∈Ω (4.1)

Ω is the decision (design variable) space while : mF RΩ → consists of m real-valued

objective functions and mR is the objective space. The reachable objective set is defined as

the set { () }F x x ∈Ω [14].

Ω is described by Equation 4.2 if all the objectives are continuous and nx R∈ ;

{ () 0, 1,..., }n

j
x R h x j mΩ = ∈ ≤ = (4.2)

j
h here are continous functions, (4.1) is called a continuous MOP. Very often, since the

objectives in (4.1) contradict each other, no point in Ω maximizes all the objectives

simultaneously. They have to be balanced. The best tradeoffs among the objectives can be

defined in terms of Pareto optimality [14].

Let , m
u v R∈ , it is said to dominate v if and only if i iu v≤ for every {1,..., }i m∈

and
j j

u v> for at least one index {1,..., }j m∈ . A point *x ∈Ω is Pareto optimal to (4.1) as

long as there is no point x ∈Ω which satisfies F(x) dominates F(x*). F(x*) is then called a

Pareto optimal vector. In other words, any improvement in a Pareto optimal point in one

objective must lead to deterioration in at least one other objective, which is the trade-off

39

concept. Pareto set (PS) is known as the set of all pareto optimal points, and the set of all

the pareto optimal objective vectors is the Pareto front (PF) [14].

4.2. The Concept of Decomposition

 In this part, implementation of the decomposition method on Evolutionary

Algorithms has been introduced. Different techniques for decomposition of the multi-

objective problems are also tested and compared to each other.

4.2.1 Implementation of Decomposition on Evolutionary Algorithms

Analog sizing problem is a pareto based problem, a MOP, whose objective function

is a function of all the 'if s , which are the performance values like gain etc, and this

objective function could be an optimal solution of a scalar optimization problem. That

means PF approximation can be decomposed into a number of scalar objective

optimization subproblems. There are several methods for constructing aggregation

functions, 'if s , the most popular ones are the weighted sum approach and Tchebycheff

approach. Boundary intersection methods have also got lots of attention recently [14].

Most of the MOEA’s do not use the concept of decomposition. Instead of

associating each individual solution with any scalar optimization problem, these algorithms

consider a MOP as a whole. In a scalar objective optimization problem, all the solutions

can be compared based on their objective function values and the task of a scalar objective

evolutionary algorithm (EA) is often to find one single optimal solution. In MOPs,

however, domination does not define a complete ordering among the solutions in the

objective space and MOEAs aim at producing a number of Pareto optimal solutions as

diverse as possible for representing the whole PF. As a result, conventional selection

operators, which were designed for scalar optimization, can not be directly used in

nondecomposition MOEAs. If there is a fitness assignment scheme for assigning an

individual solution a relative fitness value to reflect its utility for selection, then scalar

optimization EAs can be extended for dealing with MOPs, although other techniques such

as mating restriction, diversity maintaining etc. Some properties of MOPs, and external

40

populations may also be needed for increasing the performances of these extended

algorithms. Because of that, fitness assignment has been a major issue in current MOEA

research. Popular fitness assignment strategies include alternating objectives-based fitness

assignment such as the vector evaluation genetic algorithm (VEGA), and domination-

based fitness assignment such as Pareto archived evolutionary strategy (PAES), non-

dominated sorting genetic algorithm (NSGA-II [8]) and strength Pareto evolutionary

algorithm (SPEA-II [9]) [14].

4.2.2 Different Decomposition Methods:

There are several approaches for converting the problem of approximation of the

PF into a number of scalar optimization problems. In the MOEA/D algorithm proposed 3

of these decomposition methods are offered. These methods are Weighted-Sum Approach,

Tchebycheff Approach and Boundary Intersection Approach. Detailed information about

these methods will be given in Chapter 5.

The three approaches above can be used to decompose the approximation of the PF

into a number of scalar optimization problems. A reasonably large number of evenly

distributed weight vectors usually leads to a set of Pareto optimal vectors, which may not

be evenly spread but could approximate the PF very well. There are many other

decomposition approaches in the literature that could also be used in our algorithm

framework. Since the major purpose is to study the feasibility and efficiency of the

algorithm framework, only the above three decomposition approaches are used [14].

4.3. MOEA/D Algorithm

 This algorithm has been used as the background work for the enhanced MOEA/D-

DE Algorithm proposed. Background work MOEA/D can be checked from the reference

number 14. In the following pages, the flow-chart of the algorithm with the details of the

optimization method can be found. On 4.3.2, the features of the MOEA/D algorithm are

given.

41

4.3.1 The Framework of the MOEA/D Algorithm

MOEA/D is in a need of decomposing the MOP under consideration. There are

several methods that can be used for this. Tchebycheff approach is used for the following

descriptions. When the other decomposition methods are used it is very easy to modify the

following MOEA/D [14].

Let 1,..., Nλ λ is a set of even spread weight vectors and z* is the reference point for

the objective functions. The problem of approximation of the PF of (4.1) can be

decomposed into scalar optimization subproblems, with number N, by using the

Tchebycheff approach. The objective function of the thk subproblem is:

 ()
1

, * max{ () *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= − (4.3)

for 1(,...,)k k k T

m
λ λ λ= . In a single run, the algorithm optimizes (minimizes in this case) all

these objective functions simultaneously.

Note that te
g is continuous in λ , and that optimal solution of (), *te i

g x zλ should

be close to that of (), *te k
g x zλ if iλ and kλ are close to each other. This is the

neighborhood concept. So, any information about these te
g ’s with weight vectors close to

iλ should be helpful for optimizing (), *te i
g x zλ . This is the basic behind MOEA/D [14].

In MOEA/D, the neighborhood of weight vector iλ is defined as its several closest

weight vectors in 1{ ,..., }Nλ λ . The neighborhood of the thi subproblem consists of all the

subproblems with the weight vectors from the neighborhood of iλ . The best solution of

any subproblem is composing the population. Only the current solutions to its neighboring

subproblems are used for optimizing a subproblem in MOEA/D. MOEA/D with the

Tchebycheff approach includes the following features at each generation.

42

• A population with size N whose components are 1,..., N
x x ∈Ω since ix is the

current solution to the subproblem i ;

• Since iz is the best value found for the objective if , 1(,...,)T

m
z z z= .

• 1,..., N
FV FV , iFV is the fitness value for ix , i.e., ()i i

FV F x= for all 1,..., ;i N=

• Storing the non-dominated individuals to an extra population which is also known

as EP, external population. The algorithm works as follows:

Inputs are:

• MOP as given in Equation 4.1;

• The number of subproblems;

• Stopping criteria;

• N spread of weight vectors 1,..., Nλ λ which has been generated uniformly;

• The neighborhood number of each weight vector, T.

Output: External Population (EP)

First of all, an initialization step exists. In this step, the external population is set to

zero. Later, the Euclidean distances between weight vectors are calculated in order to find

the T closest weight vectors to each weight vector and the neighborhood 1() { ,..., }TB i i i= is set

for the T closest weight vectors iλ . After that, an initial population, which is the set of

solutions, is randomly generated and the objective functions are evaluated for these

solution individuals. The minimum and maximum values of 1(,...,)T

m
z z z= for each

objective function is set to infinite and minus infinite.

 Secondly, the algorithm starts a loop of N turns to realize the updates. First of all

the randomly selected two indexes of B(i) are used to generate a new solution by using the

genetic operators. Later an improvement is applied on the solution. The improved, new

solution is used to calculate the objective functions in order to update the z values. Later if

43

() ()' , ,te j te j j
g y z g x zλ λ≤

 is satisfied (y’ is the new solution), the solution set and the

fitness values are updated. After that, EP is updated by removing all the dominated vectors

by (')F y and including (')F y to the external population if no vectors in EP can

dominated (')F y .

At the last step if the stopping condition is satisfied (it may be max number of

iterations) the algorithm stops and outputs the EP. Otherwise the update loop goes on.

During the initialization ()B i is determined by the closest T vectors of iλ . The

closest weight vectors are found out by the Euclidean distance formula. As a result the

index i will be the first index of ()B i . The following T-1 indexes are determined by the

Euclidean distance to thi vector and if an index j is a member of ()B i then it can be told

that j is a neighbor of i [14].

As mentioned before, an initial population is randomly generated and then the

reference points of the optimization functions are updated. With this information, the

update loop starts. From the ()B i neighborhoods kx and lx are used to generate a new

solution and if the solution is better than the parents, then it is copied into the all the

neighbors of the related sub-problem. Different indexes have different neighbors, so the

information is varied in a parallel (fast) and effective way. The fitness values are also used

to update the reference points. When the stopping criteria (which is the maximum number

of iterations) is met, then the algorithm stops and outputs the obtained population as a

Pareto Set and Pareto Front [14].

4.3.2 The Features of the MOEA/D

 The proposed work for the thesis is an enhanced version of the multiobjective

evolutionary algorithm based on decomposition (MOEA/D) [14]. The goal of the

MOEA/D is decomposing the multi-objective optimization problem into N scalar problems

which are the subproblems and then solving these subproblems (scalar aggregation

function) simultaneously. The solution is satisfied by evolving the indiviuals of the

44

population. At each generation (iteration in terms of mathematical programming) and for

each subproblem the population is composed of the best solution found so far. The

neighborhood relations among these subproblems are defined based on the distances

between their aggregation coefficient vectors which can be calculated with Euclidean

distance. The optimal solutions of two neighboring subproblems should be very similar.

Each subproblem is optimized in MOEA/D by using information from its neighboring

subproblems. The following features belong to MOEA/D:

• This algorithm is a good method for including decomposition technique into

multi-objective optimization problem solving. With the help of this method the

decomposition based methods are expanded from mathematical programming to

evolutionary algorithms.

• The MOEA based methods try to solve the MOP directly so it can get harder to

solve the issues like fitness assigment, diversity maintenance etc. However, by introducing

decomposition into MOEA, the optimization is satisfied for N scalar optimization problems

and this makes things easier to handle in the framework of MOEA/D.

• Comparing to popular methods like NSGA-II and MOGLS, MOEA/D has lower

computational complexity at each generation. Also, it has been proven that MOEA/D

outperforms, in terms of solution quality, MOGLS on 0–1 multiobjective knapsack (for

more information, check [3]) test instances when both algorithms use the same

decomposition approach. MOEA/D with the Tchebycheff decomposition approach

performs similarly to NSGA-II on a set of continuous MOP test instances for 2 objective

cases. For 3 objective cases MOEA/D is fairly better than NSGA-II. This criteria has been

used during the thesis work by comparing NSGA-II with novel methods implemented on

Enhanced MOEA/D-DE. MOEA/D using a small population is able to produce a small

number of very evenly distributed solutions.

• For large range of objective function values, normalization can be realized on

MOEA/D [14].

45

4.4. Discussions on MOEA/D

There are several subjects to consider about the MOEA/D algorithm in order to

understand its quality. The use of finite number of sub problems is an important issue. Also

the satisfaction of the diversity is critical in order to find the global result. The

neighborhood concept and the complexity of the algorithm compared to other algorithms

has to be considered. Details of this part can be checked from [14]. Since the thesis work is

based on the flowchart of MOEA/D, all of the discussions given below is also about the

MOEA/D-DE algorithm proposed for the thesis work.

I. Why a finite number of subproblems are used in MOEA/D?

The weight vector used in MOEA/D is a previously selected N sized one. MOEA/D

spends about the same amount of effort on each of the N objective functions, while

MOGLS (a method used for comparison in this work; for more detailed information see

[4]) randomly generates a weight vector at each iteration, which aims to optimize all the

possible aggregation functions. What a decision maker needs is taht a finite number of

evenly/fairly distributed Pareto optimal solutions; optimizing a finite number of selected

scalar optimization subproblems. Since the computational resource is always limited,

optimizing all the possible aggregation functions would not be very practical, and also that

may waste some computational effort.

II. How is the diversity maintained in MOEA/D?

A multi-objective evolutionary algorithm needs to satisfy diversity in its population

for producing a set of representative solutions. The MOEAs which do not use

decomposition, like NSGA-II (for detailed information see [2]) and SPEA-II (for detailed

information see [5]), use crowding distances among the solutions in their selection to

maintain diversity, but it is not always easy to generate a uniform distribution of pareto

optimal objective vectors in such algorithms. As mentioned several times, a MOP is

decomposed into a number of scalar optimization subproblems in MOEA/D. Different

solutions in the current population are related to different subproblems. The “diversity”

46

among these subproblems will of course create the diversity in the population. As long as

the decomposition method and the weight vectors are properly/uniformly chosen, and thus

the optimal solutions to the resultant subproblems are evenly distributed along the PF, this

algorithm will have a good chance of producing a uniform distribution of pareto solutions

if it can optimize all these subproblems well.

III. Role of neighborhood size T in MOEA/D and mating restriction:

As mentioned before, T is known as the size of the neighborhood in a population of

N individuals. Only current solutions to the closest neighbors of a subproblem are used for

being optimized in MOEA/D. In other words, two solutions have a chance to mate just

when they are for two neighboring subproblems. This is known as mating restriction.

Setting of T is an important subject. If this value is too small, two solutions (kx and lx)

chosen for undergoing genetic operators may be very similar (close to each other) since

they are for very similar subproblems, as a result, the solution generated could be very

close to their parents. As a result, the algorithm loses the ability to explore new areas in the

search space. On the other hand, a too large T can make the chosen two solutions poor for

the subproblem under consideration, and so a too large T can also make their offspring

poor. Finally, the benefiting ability of the algorithm gets weaker. It should also be noted

that a too large T will increase the computational overhead of updating the neighboring

solutions.

IV. Comparison of computational complexity of the MOEA/D and NSGA-II:

In MOEA/D, the major computational expenses are in the update steps. In these

steps MOEA/D generates N trial solutions, like NSGA-II does at each generation. Note

that updating the reference points perform O(m) comparisons and assignments, and

updating the neighboring solutions need O(mT) basic operations since its major costs are

to compute the values of te
g for T solutions since the computation of one such a value

requires O(m) basic operations. As a result, if both MOEA/D and NSGA-II use the same

population size, at each generation, the ratio of their computational complexities will be:

47

2

() ()

() ()

O mNT O T

O mN O N
=

(4.4)

Since T is smaller than N, the MOEA/D algorithm has lower computational

complexity than NSGA-II at each generation [14].

48

5. ENHANCED MOEA/D-DE ALGORITHM PROPOSED

5.1.Introduction to MOEA/D-DE

 In this Part an introduction to the Enhanced MOEA/D-DE Algorithm will be given

where [14] has been used as a background work. Also, the enhancements realized to make

it more powerful and able to solve the analog sizing problem will be introduced [15].

5.1.1. The Background Work and Introduction to MOEA/D-DE

In the first part of the project, a multiobjective evolutionary algorithm based on

decomposition (MOEA/D) [14] with its extended version by using differential evolution

(DE) as the main search engine (MOEA/D-DE) has been proposed. This method

outperform several widely used multiobjective evolutionary algorithms. MOEA/D-DE

decomposes a multiobjective problem into a number of scalar optimization sub-problems

with a neighborhood structure and optimizes them simultaneously to approximate the

Pareto-optimal set. In this work, additional to MOEA/D lots of mechanisms are

investigated to enhance the performance of MOEA/D-DE. Firstly, the MOEA/D algorithm

code has been simplified to improve the performance in terms of software quality. Later

on, a novel method for generating the weight vectors has been proposed and it has been

observed that it enhances the overall quality of the Pareto Fronts. After that, different

normalization methods for the objective functions have been implemented and the best

solution has been determined. Later on different decomposition methods have been

performed to find the best one. For the reproduction of the new individuals, a new

replacement mechanism is proposed to call for a balance between the diversity of the

population and the employment of good information from neighbors. Secondly, DE search

algorithm has been added instead of polynomial mutation of the MOEA/D and the scaling

factor in DE is randomized to enhance the search ability. Comparisons are carried out with

MOEA/D-DE on ten benchmark problems, showing that the proposed method exhibits

significant improvements. Finally, the enhanced MOEA/D-DE is applied to a real world

problem, the sizing of a folded-cascode amplifier with four performance objectives.

49

Many real-world optimization applications involve several conflicting objectives.

According to different goals and requirements in the decision-making process,

multiobjective optimization techniques can be roughly classified into two categories: (1) a

priori methods: a decision maker specifies their preferences on these objectives and so

transform the multiobjective problem into a single objective one by using aggregation

methods, and (2) a posteriori methods: they produce a number of well representative

optimal trade-off candidate solutions for a decision-maker to check. These had been

mentioned on Chapter 2. A Pareto optimal solution is a candidate solution for achieving

the best trade-off. There can be many, even infinite Pareto optimal solutions to a

multiobjective optimization problem (MOP). The set of all the Pareto optimal solutions is

called the Pareto set (PS) and its image in the objective space is the Pareto front (PF). Most

multiobjective optimization evolutionary algorithms (MOEA) aim at finding a reasonable

number of solutions to approximate the PF. This means that MOEA’s are members of a

posteriori methods. This had been mentioned before. Most MOEAs compare solutions

based on dominance. However, domination can not provide a full ranking among all the

solutions. Therefore, these MOEAs need some other techniques for ranking solutions (e.g.

crowding distances, fitness sharing, niching). Among these algorithms, non-dominated

sorting genetic algorithm II (NSGA-II) [8] and strength Pareto evolutionary algorithm 2

(SPEA2) [9] have received much attention in real world applications. However, it is shown

that these methods cannot always provide good results, especially when the MOP is

complicated.

Recently, a new MOEA framework, multiobjective evolutionary algorithm based

on decomposition (MOEA/D) [14], was proposed. It decomposes a MOP into a set of

scalar optimization sub-problems with neighborhood relations. The neighborhood relations

are defined by the distances between their aggregation coefficient vectors. In this way, the

fitness assignment is the same as single objective optimization, and the diversity is

maintained by the diverse search directions determined by the uniformly distributed weight

vectors. The first version of MOEA/D uses simulated binary crossover (SBX) and

polynomial mutation as the search engines.

50

5.1.2. Enhancing the Algorithm Quality?

 Several studies have been carried out to enhance the performance of the MOEA/D

framework. These can be classified as below:

I. Improving the algorithm in terms of software speed:

First of all the software code (Matlab) of the MOEA/D has been simplified to

prevent some extra computational work. Later, the overall algorithm has been transformed

into script files instead of functions to make them work faster and to be able to follow the

parameters easily. Another work in this topic was deleting the structs which slows down

the algorithm and writing the parameters seperately. During this phase, the speed of the

software code has been increased and nothing related to algorithm improvement has been

realized. After these updates, comparing the speeds of the old version MOEA/D code and

new MOEA/D code is as given in Table 5.1.

Table 5.1. The Comparison of the Algorithm Speed Before and After Software

Enhancement

First Version MOEA/D code 0,41 sec

Updated MOEA/D code 0,26 sec

These are the average time of 100 optimizations of a 2 objective benchmark

problem. As seen the speed of the algorithm has been increased by %36 as compared to the

first version.

II. A novel method generating the weight vectors:

Initialization of the weights has the utmost importance in order to have a reasonable

solution range. By assigning well spread weights to each objective makes the solution

space spanning both extreme points. Otherwise the solution might get stuck around a

limited region. A new method has been proposed for generating the weight vectors. This

method is a composition of an orthogonal array based method and a LUT. The novel

51

method increases the dominance and distribution quality of the MOEA/D. Detailed

information about this work can be found in Part 5.2.1.

III. Finding the best Normalization Method:

For the decomposition based MOEA methods, fair optimization of each objective is

an important issue. If the range of a fitness value (the result of an objective function) is

smaller than the others, the optimization probability of that function gets smaller. As a

result all of the objective functions have to be equalized to the same range, which is [0 1],

for the normalization case. This will make the optimization of different functions fair.

Different normalization methods have been performed and compared to see the best one.

Detailed information about this work is given in Part 5.2.2

IV. Finding the best Decomposition Method:

When the objective is an aggregation of all the 'if s , it is known that a Pareto

optimal solution to a MOP, under mild conditions, could be an optimal solution of a scalar

optimization problem. As a result, PF approximation can be decomposed into a number of

scalar objective optimization subproblems. There are several methods for constructing

aggregation functions, and the most popular ones among them include the weighted sum

approach and Tchebycheff approach. Recently, the boundary intersection methods have

also attracted a lot of attention [14]. All of these three methods recommended by the

MOEA/D authors have been performed and compared to each other in order to find the

best method. More information about the methods and the tests done can be found in Part

5.2.3.

V. Enhancing the search ability:

To enhance the search ability of the MOEA/D, a DE search algorithm has been

added instead of the mutation method of the MOEA/D. Also the scaling factor in the DE

mutation has been randomized to achieve this. In the proposed algorithm, a new version

using the mutation (DE/best/1/bin [5]) in differential evolution (DE) as the main search

52

engine was proposed and shown to outperform MOEA/D and NSGA-II, especially for

complex problems. Detailed information is given in Part 5.2.4.

VI. A new replacement mechanism:

Another work to enhance the quality of the MOEA/D is on the population

replacement. The goal is to call for a balance between information sharing and diversity

maintenance. In the proposed method, when the number of parent solutions that can be

replaced by a high quality child solution exceeds the maximum number, the parent

solutions are ranked and those that are closer to the child solution are firstly replaced. This

novel method increases the quality of the dominance and distribution of the Pareto Set.

More details can be found in Part 5.2.5.

After all these improvements on MOEA/D framework, a novel method called

Enhanced MOEA/D-DE is obtained. This algorithm is quite powerful in terms of the

solution dominance, distribution quality, convergence speed and the range of the objective

functions on the Pareto Front.

5.2.The Enhancements Realized

 In this Section, the enhancements realized for improving the MOEA/D Algorithm

will be discussed. They were mentioned in Section 5.1; however this time they will be

explained in detail and with the tests using folded cascode amplifier and several

benchmark problems.

5.2.1. A Novel Method for the Generation of the Weight Vectors

All of the decomposition methods used for MOEA optimization algorithm which

are weighted sum approach, Tchebycheff approach and boundary intersection (BI)

approach use a weight vector set N

m
λ where m is the number of the objective functions and

N is the number of the subproblems. Basically it can be told that weight vectors are used as

a method of decomposition of different subroblems into a single subproblem. Let

53

1(,...,)T

m
λ λ λ= be a weight vector, for 0iλ ≥ and m be the number of the objective functions,

1
1

m

ii
λ

=
=∑ should be satisfied for each individiual of the population to set the weight

matrix.

With weight matrix, each objective function to be optimized will have a different

weight value which will make it easy or hard to be optimized compared to other objective

functions for the related individual of the whole Pareto front. For example in a MOP with 2

objective functions to be minimized, in the final Pareto front which has N individuals there

will be N weight vectors which include 2 weight matrix values whose sum is equal to 1. As

seen below for the left side of the Pareto set, objective function 2 will be minimized like a

single objective optimization case since the weight vector 1λ is just taking care of the

second objective function. Nλ will be working with the same logic to minimize objective

function 1. An internal weight vector like 2 [0.1,0.9]λ = will be helping the MOEA to

minimize both of the objective functions. However, for the fair conditions of the trade-off

of these objective functions, objective function 2 will have more chance to be minimized

since its weight value is higher.

Figure 5.1. The Effects of the Weight Matrix on Fitness Functions

As seen above, evenly distributed weight matrix will let the Pareto front to be

evenly distributed and will let the limit conditions of the Pareto set (like smallest obj

function 1 value or obj function 2 value for the figure) to have a higher range. Good Pareto

optimal solutions can be obtained by weight vectors and if the weight vectors are altered,

the Pareto optimal results will also change.

54

As mentioned above, initialization of the weights has the utmost importance in

order to have a reasonable solution range. By assigning well spread weights to each

objective, the solution space extends to the both extreme points. Otherwise the solution

might get stuck around a limited region.

In the previous work used as a background work [14], the weight matrix is just

assigned for 2 objective optimization problem. The weight matrix initialization logic is very

simple. For N individuals, the weight matrix is in the form of

[1 (1) / (1), (1) / (1)]a
a N a Nλ = − − − − − where a is the number individual which can vary

between 1 and N, the population size.

1

2

3

1

[1,0]

[1 1/ (1),1/ (1)]

[1 2 / (1),2 / (1)]

.

.

[1 (2) / (1), (2) / (1)]

[0,1]

N

N

N N

N N

N N N N

λ

λ

λ

λ

λ

−

=

= − − −

= − − −

= − − − − −

=

 (5.1)

Since this is the best distribution which can be obtained for the case of two

objective functions, this weight matrix initialization method has been used in the algorithm

proposed for two objective function cases.

For more than two objectives there are several ways for creating the weights. First

of all, the orthogonal genetic algorithm offered in [16] is implemented. It has been proved

that the orthogonal design is optimal for additive model and quadratic model, and the

selected combinations are good representatives for all the possible combinations. This

method proposes to create weight matrices by randomly distributing the possible

candidates. The basic algorithm of the method includes a selection of the levels which will

lead to the weight values and number of the factors which mean the number of the

objective functions. In the following Figure 5.2 it is shown a 4
9 (3)L orthogonal array with

3 levels and 4 factors.

55

Figure 5.2. Orthogonal Array Example with Different Factors and Combinations

[16]

The level number means how good the related objective function will be optimized.

For a combination, lets say with level values 2,1,2,3 of the four factors, the weight vector

will be 0.25, 0.125, 0.25, 0.375 (since the sum should be equal to 1) which is the ratio of

each weight to the overall weight. This is kind of a normalization of the levels to the

weight vector form.

The basic idea behind the orthogonal array is selecting a level limit and distributing

these levels between objective functions with a method which decreases the number of the

overall possibilities. In Figure 5.2 the combinations are decreased to 9, which means with a

level of 3 and 4 objective functions, a solution is offered with 9 weight vectors, making the

population size. Increasing the level number to 10 will increase that population size to 100

and it will create a larger search space and better distribution.

As mentioned above, by applying orthogonality to an array, the total number of

combinations can be decreased to an acceptable number. For example, in Figure 5.2 above,

9 points are used instead of all 81 possibilities. The orthogonality of an array means that 1)

for the factor in any column, every level occurs the same number of times; 2) for the two

56

factors in any two columns, every combination of two levels occurs the same number of

times; and 3) the selected combinations are uniformly distributed over the whole space of

all the possible combinations [16].

Figure 5.3 below shows the decrease in the number of all possibilities to an

acceptable number of possibilities. The orthogonal array tries to generate fairly distributed

vectors in the whole space.

Figure 5.3. Orthogonality of the Orthogonal Array 3
4 (2)L where 4 Refers to Final

Number of the Vectors, 2 Refers to Number of the Levels and 3 is for the Number

of the Sub-problems [16]

However, this random process does not concern the trade-offs very well. In other

words, by unfair distribution, some significant objectives might be overlooked and its

search space might be limited. For example, in Figure 5.3, for the first objective function

the highest weight values will be obtained at 7th and 8th combination which are
3

0.33
9

= .

This is not enough for the optimization range of the first function since the avarage weight

value it has is already 0.25. Thus, even if the number of the levels is increased, it is clear

that the limit conditions of the Pareto optimal solutions will get stuck due to the weak

weight matrix initialization.

57

In order to avoid this situation, the weights for more than two objectives problems

are initialized manually as a look-up table by concerning both fair distribution of the

weights and the three rules mentioned for orthogonal array which leads to good

distribution.

The weight initialization part of the final algorithm first checks the number of the

objectives. If there are just two objectives, the previously mentioned weights matrix is

exploited. In other cases , the manually initialized weight matrices which support up to

seven objectives are called. If it is more than seven objectives, the rest are created by the

orthogonal array method. Also the look-up table is prepared for up to 150 population size.

For more than 150 population size the rest of the weight matrix is filled with an orthogonal

array initialization. As a result the final version of the weight initialization may be a

combination of a look-up table and orthogonal array implentation.

The four objective case is illustrated below for a population size of 20. While

creating this matrix manually, some points are taken into account. First, the importance of

the objectives are equally distributed. Each objective must be dominant over others once as

seen at first 4 rows of the matrix. Then this dominance is shared equally by making them

same like the 5th row. The rest of the rows are written by changing the importance level of

the objectives by making sure that almost every possible value is assigned.

As a result the algorithm for initalizing the weight matrix works as follows:

First check the number of the objective functions, if it is equal to 2, then use the

method given in Equation 5.1. If the number of the objectives are more than 3 then first

load the LUT for the related number of the objectives. This LUT stores a data till 150

population size. If the population size is x which is less than 150, then the first x lines of

the LUT are used. If the population size is more than 150, first of all the whole LUT is

used, and the remaining lines are generated by the orthogonal array method.

Illustrative Example :

58

Table 5.2. An Example for a 4 Objective Weight Matrix Initialization

Obj1 Obj2 Obj3 Obj4

1,00 0,00 0,00 0,00

0,00 1,00 0,00 0,00

0,00 0,00 1,00 0,00

0,00 0,00 0,00 1,00

0,25 0,25 0,25 0,25

0,70 0,10 0,10 0,10

0,10 0,70 0,10 0,10

0,10 0,10 0,70 0,10

0,10 0,10 0,10 0,70

0,30 0,30 0,30 0,10

0,10 0,30 0,30 0,30

0,30 0,10 0,30 0,30

0,30 0,30 0,10 0,30

0,40 0,40 0,10 0,10

0,40 0,10 0,40 0,10

0,40 0,10 0,10 0,40

0,10 0,40 0,10 0,40

0,10 0,40 0,40 0,10

0,10 0,10 0,40 0,40

0,30 0,30 0,20 0,20

 The results comparing the orthogonal method with the proposed method for 10

different tests of global and local normalization methods are as given in Table 5.3. The

comparison metric is the IGD value. It can be seen that the proposed method is much better

than the orthogonal array method.

Table 5.3. Comparisons between the Orthogonal Array Method and the Proposed Method

Method Normalization Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10

Average

Orthogonal Global 0.3022 0.3094 0.2049 0.3629 0.2542 0.4101 0.3742 0.3068 0.3548 0.3310 0.3211

Proposed Global 0.1483 0.1504 0.1439 0.2103 0.1394 0.1663 0.1236 0.1971 0.1343 0.1373 0.1551

Orthogonal Local 0.0328 0.0349 0.0413 0.0411 0.0367 0.0458 0.0395 0.0464 0.0335 0.0416 0.0394

Proposed Local 0.0285 0.0357 0.0324 0.0351 0.0282 0.0376 0.0276 0.0550 0.0311 0.0362 0.0347

59

For a four objective analog sizing problem of folded cascode amplifier, some of the

comparisons of two objectives are given in Figure 5.4. and Figure 5.5.

Figure 5.4. Comparison of Two Weight Matrix Initialization Methods for 4 objective

Analog Sizing Problem, Geometric Projections of the Gain and GainBandwith Objective

Functions

Figure 5.5. Comparison of Two Weight Matrix Initialization Methods for 4 objective

Analog Sizing Problem, Geometric Projections of the Phase Margin and Area Objective

Functions

60

As seen from the Figure 5.4 and Figure 5.5, the results with LUT based method

dominates the ones with orthogonal array method since all of the objective functions have

been optimized much better, like higher gain value reached for the same gain-bandwidth

product etc.

Also the basic goal of the new method which is increasing the range of the

objectives is also satisfied. The ranges of the objective functions for the figures above are

given in Table 5.4.

Table 5.4. The Ranges of the Objective Functions with 2 Different Methods of

Weight Matrix Initialization

 LUT based Ort. Array based

GAIN 0,211 - 91,001 3,0879 - 75,197

GBW 0,0588 - 318,12 0,267 - 292,85

PM 25,518 - 167,41 70,005 - 134,4

AREA 5,5275 - 64,145 7,845 - 57,757

As seen above all limit values (min or max) for all of the objective functions are

better for the new method.

The novel method described is basically using an hand-made LUT data which

especially shows the effects of the extreme points (for the goal of single objective

optimization) on the weight vectors. However such a LUT should be implemented with

respect to some sampling methods from the literature. A good example for such a sampling

technique is known as Latin Hypercube Sampling (LHS).

Latin Hypercube sampling, LHS, is an option which is now available for most

simple risk analysis simulation software programs. It uses a technique known as “stratified

sampling without replacement” [35]. The probability distribution is divided into n intervals

of equal probability, where n is the number of samples that are to be performed on the

model. As the simulation runs, each of the n intervals is sampled once.

61

The advantage of the LHS is that, it generates a set of samples that more precisely

reflect the shape of a sampled distribution than pure random (Monte Carlo) samples. The

general effect is that, the mean of a set of simulation results more quickly approaches the

“true” value, particularly for models that are simply subtracting or adding a number of

variables.

Extreme values of the weight vectors of the objective functions for the Latin

Hypercube Sampling and Orthogonal Array is given in Table 5.5.

Table 5.5. Extreme values of the weight vectors for Latin Hypercube Sampling and

Orthogonal Array Method

Method / Number of

Objectives Max.Weight of Obj1 Max.Weight of Obj2 Max.Weight of Obj3 Max.Weight of Obj4 Max.Weight of Obj5

Latin Hypercube - 3 objectives 0,7579 0,7983 0,7663

Latin Hypercube - 4 objectives 0,6242 0,6775 0,7228 0,7179

Orthogonal Array - 4 objectives 0,6667 0,5833 0,5625 0,6429

Latin Hypercube - 5 objectives 0,4267 0,4649 0,5774 0,4749 0,4875

Orthogonal Array - 5 objectives 0,4615 0,4545 0,5263 0,5625 0,4545

Weight vectors generated for 3 objective case with Latin Hypercube Sampling and

Orthogonal Array are given in Figure 5.6 and Figure 5.7.

Figure 5.6. Latin Hypercube Sampling Weight Matrix for 3 objectives

62

Figure 5.7. Orthogonal Array Weight Matrix for 3 objectives

As a result, a novel method for generating the weight matrix has been proposed.

This method uses the combination of a LUT and an Orthogonal Array based method. The

test results show the effects of the new method on the dominance, distribution quality and

range of the objectives on PFs are better than the methods which already exist.

The weight values for the first and second objectives are distributed as given in

Figure 5.8, Figure 5.9 and Figure 5.10 for all three methods.

Figure 5.8. Latin Hypercube Sampling for the first two objectives

63

Figure 5.9. Hand-made LUT for the first two objectives

Figure 5.10. Orthogonal Array Method for the first two objectives

5.2.2. Finding the Best Normalization Method

For the decomposition methods of the MOEA-D, the function to be minimized is

linearly dependent on the values of the objective functions. For example, in the case of

Tchebycheff Approach, it is as follows:

64

 minimize ()
1

, * max{ () *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= − subject to x∈Ω (5.2)

where Ω is the decision space which is also known as the population of Pareto

optimal points, ()1* *,..., *
T

m
z z z= is the reference point since ()* max ()i iz f x x= ∈Ω for

each 1,...,i m=

As seen, the scalar optimization function is directly dependent on the minimum

values (z) obtained in the population and also the objective function values. Let’s assume

that for an analog sizing problem, the objective function gain changes in the range of 0-100

dB and power changes in the range of 0.1-10 mW. An average value of gain which is 50

will be having a value of 50 for () *i if x z− function form. Here it was assumed that the

objective function was turned into a minimization problem (by multiplying the function

values with a minus) case, so z value will be -100 dB and if will be -50 dB. For the power

calculation, 5 mW is an average value of if and for 0.1z = , () * 4.9i if x z− = will be

obtained. For the fair weight values, between these two objectives the minimization

possibility of the gain will be much higher than the power. Even if the power has a weight

value of 0.9 and gain will have 0.1 the minimization will be focusing on the gain. In

conclusion, different ranges and limit values of different objective functions will be

creating an unfair minimization enviroment.

To avoid this problem, the objective functions are supposed to be scaled into the

same range, for example [0,1], which is also known as normalization. This normalization

has been implemented on the fitness values of the analog sizing problem. A general

function of the normalization of if is as given in Equation 5.3.

*

*
i i i

nad

i i

f z
f

z z

−
=

−
 (5.3)

nad

i
z is used for the nadir points for the related objective and i

f is for the updated

objective function values.

65

According to *z values chosen, the normalization methods can be generalized into

two main groups which are global and local normalization.

I. Global Normalization:

For the selection of the new objective functions which will be scaled to [0,1] range,

the *z reference values can be chosen prior to algorithm run. For this case a single

objective optimization algorithm, MSOEA [17] was run to find the limit values of the

objective functions to be used for the analog sizing problem. For the 7 objectives of the

analog sizing of folded cascode amplifier the extreme values found by MSOEA with 100

population size, 1000 iterations and chosen values for the global normalization method are

as given in Table 5.6 below.

Table 5.6. Limit Values of the Objective Functions

 Max obtained Min obtained Max used Min used

Gain 110 -44 120 0

Gain Bandwidth 460 -7,55 380 0

Phase Margin 172 7 180 0

Output Swing 7,8 0,025 2,5 0

Slew Rate 324 -61 324 0

Power 6,9 -1,2 6,9 0

Area 109 0,038 110 0

In the multi-objective optimization trials with local or global normalization (with

tens of different extreme values tried), it was found out that normalization becomes fairer

with the values selected above. For example, for a multi-objective optimization problem

even a GBW value is set to 460 MHz, it never goes over 380 MHz. It was also

experimented that setting the minimum values to 0 is not only logical but also much better

in terms of global normalization based MOEA-D. A method for this reason has been

66

realized as evolving new individuals for the negative evalulation results of objective

functions. This is kind of a direct way of constraint using.

II. Local Normalization:

Another method for the normalization is that, the *z reference values can be

chosen during the algorithm run. It is also same for the nadir (worst case) points. This can

be satisfied by updating the extreme values obtained by the simulation results (which are

the objective function evaluation values). This update can be realized after a generation or

inside a generation. According to that, local normalization can be classified into two sub

groups. The first one is called “local so far normalization” which updates the extreme

values after each generation and uses the updated value for the next generations. If it is

updated again, a new value will be used for the following generations. Another method

called “local normalization in current population” was also performed. In this method the

z* reference values and nadir points are updated and used inside the current population.

For the new generation the extreme values are starting with ±∞ and being updated for the

first evaluation of objective functions. These updated values are used until they are updated

again inside the current population till the next generation starts.

First, global normalization and “local so far normalization” were compared in terms

of dominance and distribution quality. Later on local normalization methods were

compared with each other. For the more realistic test of each method and for better

comparison, 10 tests were run with each having 150 population size, 60 niches and 150

iterations. Each method uses MOEA-D algorithm to optimize four analog objectives which

are gain, gain bandwidth product, phase margin and area of the folded cascode amplifier.

Later on, a true Pareto front (a final pareto front with non-dominated points) was obtained

by these 30 tests (10 for each method) so IGD values and number of dominated points have

been calculated. The results are as follows:

Table 5.7. Average IGD Values for Global and Local Normalization

 Global Norm. Local Norm.

Average IGD 0,3211 0,0394

67

Table 5.8. Number of Non-dominated Points for Global and Local Normalization

(max 10*150 = 1500) Global Norm. Local Norm.

Non-Dominated
Points 367 1239

The comparison of methods by the projection of the objectives on 2D space are as

shown in Figure 5.11, Figure 5.12 and Figure 5.13.

Figure 5.11. Gain-GBW objectives for 4-objective Optimization with Local and Global

Normalization Methods

Figure 5.12. GBW-Area objectives for 4-objective Optimization with Local and Global

Normalization Methods

68

Figure 5.13. Phase Margin-Area objectives for 4-objective Optimization with Local and

Global Normalization Methods

As seen from the three figures above, local normalization generally dominates the

results of global normalization. The goal is to maximize the phase margin, gain, gbw and

minimize the area objectives. Also the ranges of the Pareto optimal results differ a lot from

local to global normalization. Local normalization is much better in terms of range and

thus distribution quality.

Since the “local so far normalization” yielded much better results than the global

normalization, a further method based on “local normalization in current population” was

also implemented. In this method the ideal points (minimum fitness values) and the

maximum points of the objective functions are updated inside the population. In other

words, the reference points of the scalar optimization function starts from infinite values

and update themselves on each generation.

Figure 5.14, Figure 5.15 and Figure 5.16 show the comparisons between two

methods of the local normalization. It can be easily told that “local normalization in current

population” is not even comparable with “local so far normalization” for distribution

quality, range and dominance quality.

69

Figure 5.14. Gain-Phase Margin objectives for 4-objective Optimization with 2 different

Local Normalization Methods

Figure 5.15. GBW-Area objectives for 4-objective Optimization with 2 different Local

Normalization Methods

70

Figure 5.16. Gain-Phase Margin objectives for 4-objective Optimization with 2 different

Local Normalization Methods

As a result, normalization is an important subject for fair optimization of the

objective functions in such a decomposition based algorithm. Different methods were

implemented and compared to each other to see the effects on the Pareto front about the

solution’s distribution quality, range and dominance quality. The local normalization based

on the update of extreme values for all generations, performed better than the other

methods and that was proved by a large number of tests.

5.2.3. Finding the Best Decomposition Mehod

There are several approaches for converting the problem of approximation of the

PF into a number of scalar optimization problems. In the MOEA-D algorithm [14], 3

different ways of decomposition methods has been mentioned.

I. Weighted Sum Approach:

A convex combination of the different objectives is considered. If 1(,...,)T

M
λ λ λ=

71

is a weight vector, i.e., 0iλ ≥ for all 1,...,i m= and
1

1
m

i

i

λ
=

=∑ . As a result, the optimal

solution to the following scalar optimization problem is as given in Equation 5.5.

 maximize ()
1

. ()
m

ws

i i

i

g x f xλ λ
=

=∑ subject to x∈Ω (5.5)

()ws
g x λ

 is used to mention that λ is a coefficient vector in this objective function, since

x are the design variables to be optimized. To generate a set of different Pareto optimal

vectors, different weight vectors λ in the above scalar optimization problem can be used

[14].

The biggest disadvantage of the approach is that the optimization function g will

focus on optimizing the if with highest value. There is no minimum/maximum reference

for the optimization algorithm to converge so lots of efforts have not been shown for this

approach.

II. Tchebycheff Approach:

In this approach, the scalar optimization problem is as given in Equation 5.6:

 minimize ()
1

, * max{ () *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= − subject to x∈Ω (5.6)

here Ω is again the decision space, ()1* *,..., *
T

m
z z z= is the reference point since

()* max ()i iz f x x= ∈Ω for each 1,...,i m= . For each Pareto optimal point x* there exists

a weight vector λ such that x* is the optimal solution of te
g . Consequently, one is able to

obtain different Pareto optimal solutions by changing the weight vector. One weakness

with this approach is that its aggregation function is not smooth for a continuous MOP.

However, it can be used in the EA framework proposed since the algorithm does not need

to compute the derivative of the aggregation function [14].

72

III. Boundary Intersection (BI) Approach:

Several recent MOP decomposition methods such as Normal-Boundary Intersection

Method and Normalized Normal Constraint Method [18] can be classified as the BI

approaches. They were designed for a continuous MOP. The PF of a continuous MOP is

part of the most top right boundary of its attainable objective set under some conditions.

Geometrically, these BI approaches aim to find intersection points of the most top

boundary and a set of lines. If these lines are evenly distributed, it can expected that the

resultant intersection points provide a good approximation to the whole PF. These

approaches are able to deal with nonconcave PFs. In this work, a set of lines emanating

from the reference point are used. As a result, the following scalar optimization subp

roblem is considered [14]:

minimize (), *bi
g x z dλ =

 subject to * () .z F x d λ− = (5.7)

x∈Ω

As shown in Figure 5.17, the constraint * () .z F x d λ− = guarantees that ()F x is

always in line L , the line with direction λ and passing through *z . The goal is to push

()F x as high as possible so that it reaches the boundary of the attainable objective set. One

of the drawbacks of the above approach is that it has to handle the equality constraint. To

cope with the constraint handling problem, using a penalty factor can be considered as a

good method.

One of the drawbacks of the above approach is that it has to handle the equality

constraint. Using a penalty method to deal with the constraint is a good method for it. It is

given in Equation 5.8.

73

Figure 5.17: Illustration of boundary intersection approach [14]

 minimize () 1 2, *bi
g x z d dλ θ= +

 subject to x∈Ω where; (5.8)

1

(* ()) .T
z F x

d
λ

λ

−
= and 2 1() (* .d F x z d λ= − −

0θ > is a previously set penalty parameter. If y is the projection of ()F x on the

line L , as shown in Figure 5.18, 1d will be the distance between *z and y . 2d is the

distance between ()F x and L . If θ is set appropriately, the solutions to (5.7) and (5.8)

should be very close. Hereafter, this method is called the penalty-based boundary

intersection (PBI) approach [14].

The advantages of the PBI approach (or general BI approaches) comparing to the

Tchebycheff approach are as follows:

• In the case of more than two objectives, let both the PBI approach and the

Tchebycheff approach use the same set of evenly distributed weight vectors, the

resultant optimal solutions in the PBI should be much more uniformly distributed

74

than those obtained by the Tchebycheff approach, particularly when the number of

weight vectors is not large.

• If x dominates y , it is still possible that () (), * , *te te
g x z g y zλ λ= , while it is

rare for bip
g and other BI aggregation functions [14].

Figure 5.18. Illustration of penalty-based boundary intersection approach [14]

However, these benefits of course have a price which is that, one has to set the

value of the penalty factor. It is well-known that a too large or too small penalty factor will

even decrease the quality of the method [14]. It has also been experimented that best

penalty factor is problem dependent.

The above approaches can be used to decompose the approximation of the PF into a

number of scalar optimization problems. A reasonably large number of evenly distributed

weight vectors usually leads to a set of Pareto optimal vectors, which may not be evenly

spread but could approximate the PF very well [14].

75

There are also other decomposition approaches in the literature which can be used

in EA algorithms. Since the main goal is to study the feasibility and efficiency of the

algorithm framework the above three decomposition approaches were considered [14].

For the reasons given above, Weighted-Sum approach has not even been performed

and compared with the other methods. However, lots of effort have been shown on the

qualities of Tchebycheff approach and Penalty-Based Boundary Intersection Point

approach.

The tests have been realized with two objectives of folded cascode analog

amplifier, 100 population size, 40 niche and 100 generations. Tchebycheff approach has

been implemented with both local and global normalization. The results of TE

(Tchebycheff Approach) and PBI (Penalty-Based Boundary Intersection Point Approach)

have also been compared with NSGAII algorithm.

Schotts metric has been used to compare the quality of the pareto front obtained by

different theta (θ) penalty parameters. The θ values have been searched in a space of 0-

10. For the gain-gbw trade-off the best θ has been found to be 3,2. In Figure 5.19, the

good result range of theta for gain-gbw 2 objective problem has been shown.

Figure 5.19. Theta Optimization Tests for Gain-GBW Problem

76

For 3, 2θ = the PBI decomposition method has been implemented. The algorithm

has also been run for TE approach with local and global normalization. NSGAII has also

been performed. To make the comparison fair same number of population size and

generations has been chosen. Moreover, to equalise the initial values of the individuals

seed numbers of the random number generator has been set to a same value. The results are

as seen below:

Figure 5.20. Comparisons of PBI with different TE methods for Gain-GBW Pareto

Front

Figure 5.20 shows that the TE method with local normalization performs the best in

terms of dominance and range of the pareto optimal solutions. TE with global

normalization performs as good as NSGAII method; however PBI method has a smaller

range than the other ones, also the distribution quality it has seems to be worse than the

other methods.

Same trials have been realized on gbw-area trade-off. 4, 4θ = seems to be the best

option for this two objective optimization problem. It should be noted that best theta value

is changing from problem to problem which means extra computational effort needs in

order to alter and find the best theta for each problem.

77

Figure 5.21. Theta Optimization Tests for GBW-Area Problem

PBI approach with 4, 4θ = has again been compared with TE approach and

NSGAII algorithm. The results show that TE method performs almost as good as NSGAII.

For the PBI approach with the best theta value obtained the dominance seems to best but

not far away from other methods. The critical point is that, PBI method has a small range

in the pareto front also with a bad distribution.

Figure 5.22. Comparisons of PBI with different TE methods for GBW-Area Pareto

Front

78

Some decomposition methods which convert a Pareto Front to scalar optimization

problems have been performed and compared in terms of distribution quality, range of the

objective functions and dominance.

Weighted-Sum approach is not recommended for the optimization problems with

very different ranged objective functions (For example, phase margin can vary between 0

to 180 degrees since power can just change from 0 to 6,9 mW). PBI approach has the

disadvantage of obtaining a penalty factor which changes for every optimization problem.

It is hard to obtain this value. Also, it has been observed that, the range and distribution of

the functions to be optimized are not as good as other methods. TE approach seems like the

best method for MOEA-D algorithm. It has no range, distribution or dominance problem,

and no parameters need to be tuned prior to run.

As a result Tchebycheff approach has been chosen for the decomposition method of

the main algorithm implemented.

5.2.4. Enhancing the Search Ability with the Use of DE

DE is without doubt, a very powerful search engine for single objective

optimization. But when it comes to multiobjective problems, it seems to converge very fast

to the vicinity of the true PF, but somtimes it may have some problems to actually reach it.

What has been studied so far shows that for F scaling values between 0.5 and 1 is more

close to overcome this problem [19].

DE mutation used, DE/best/1/bin [20], is as follows:

' 1 2() (() ())i r r

y x t F x t x t= + − (5.9)

where the indices 1r and 2r are randomly chosen and mutually different, and also

different from the current index i. (0,1]F ∈ is the scaling factor that controls the

amplification of the differential variation 1 2() ()r r
x t x t− .

79

An extended version of the DE mutation above has also been performed and

compared with the other DE mutation method. This mutation equation uses the best

solution as an extra parameter:

' 1 2() (() ()) (() ())i i r r

best
y x t F x t x t F x t x t= + − + − (5.10)

Besides two different equations given, also a novel method randomizing the scaling

factor (instead of setting it to a value between 0 and 1) has been used. In this work, a

Gaussian distributed random scaling factor with mean value µ and variance σ has been

used.

 , (,)

i k
F norm µ σ= , 1,..,i N= and 1,..,k n= (5.11)

For each variable in the search space, scaling factor ,i kF of each differential

variation 1 2() ()r r
x t x t− is different.

^

F is continously and randomly generated in each

iteration. So Equation 5.9 can be rewritten as:

^

' 1 2() (() ())i r r
y x t F x t x t= + − (5.12)

Two different equations and two different scaling factor (F) determinations result in

four different variations for the tests. In these tests, the parameter δ (it is the parameter

which determines the probability that parent solutions are selected from the neighborhood)

is set to 0,9. A 5th test with δ=1, which means parent solutions will always be selected

from the neighborhood, has also been performed. At last, the tests with the polynomial

mutation, which has been used in the first version MOEAD [14], has also been performed.

All these six type of methods, which have been mentioned above, are as given below in

Table 5.9.

80

Table 5.9. Different Techniques to Find the Best DE Method

Equation for

Mutation

Scaling factor

selection δ

DE1 Equation 1 F=0.5 1

DE2.1 Equation 1 F=0.5 0.9

DE2.2 Equation 1 F=norm (µ,σ) 0.9

DE3.1 Equation 2 F=0.5 0.9

DE3.2 Equation 2 F=norm (µ,σ) 0.9

Polynomial Mutation - - -

For the test conditions 50popsize = , the maximum number of solutions replaced by

a child solution 0.1*rn niche= and 20niche = , 30 tests were performed to generate the

true PF for the test problem. 10 tests of each method (DE1, DE2.1 etc.) has been run for

100 iterations. For the same number of iterations, population size and probablity of

polynomial mutation and with a SBX distribution index set to 20, NSGAII was also run for

the same test problem.

The benchmark test problem is an extended version of MOP-C3/Viennet4 [21]

problem. The original version is for 3 objectives and with similar rules a 4th objective

function has been added.

1 2 3 4

2 2

1

2 2

2

2 2

3

2 2

4

((,), (,), (,), (,))

(2) (1)
(,) 3,

2 13

(3) (2)
(,) 13,

175 17

(3 2 4) (1)
(,) 15,

8 27

(3) (2)
(,) 5

16 8

F f x y f x y f x y f x y

x y
f x y

x y y x
f x y

x y x y
f x y

y x x y
f x y

=

− +
= + +

+ − −
= + −

− + − +
= + +

− − − +
= + +

 (5.13)

The performance metric IGD has been used to compare the methods. The results for

10 tests are given in Table 5.10.

81

Table 5.10. IGD Values of Different DE tests for a 3-objective Benchmark Problem

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Average

Poly.

Mut. 0.0028 0.0017 0.0021 0.0034 0.0045 0.0022 0.0038 0.0031 0.0025 0.0024 0.0029

DE1 0.0017 0.0018 0.0029 0.0013 0.0029 0.0020 0.0017 0.0039 0.0015 0.0017 0.0021

DE2.1 0.0017 0.0018 0.0016 0.0024 0.0017 0.0017 0.0014 0.0014 0.0015 0.0015 0.0017

DE2.2 0.0017 0.0018 0.0012 0.0020 0.0018 0.0021 0.0013 0.0017 0.0014 0.0017 (best) 0.0016

DE3.1 0.0018 0.0011 0.0036 0.0017 0.0011 0.0021 0.0022 0.0016 0.0016 0.0020 0.0019

DE3.2 0.0018 0.0012 0.0031 0.0020 0.0017 0.0019 0.0018 0.0017 0.0015 0.0017 0.0018

NSGAII 0.0053 0.0122 0.0089 0.0035 0.0089 0.0056 0.0081 0.0068 0.0070 0.0095 0.0076

From the results, it can be seen that, DE mutation enhanced the search ability

comparing to the polynomial mutation which was used in the first version of MOEAD

[14]. Also, including a δ parameter (the probability that parent solutions are selected from

the neighborhood) with a value of 0,9 resulted much better than the case with δ=1. NSGAII

has easily been beaten by any of the MOEAD-DE methods. For the selection of the DE

mutation equation, the first equation (Equation 1) seems to be working than the second one

(Equation 2).

 According to the test results, DE2.2 has been chosen. The reason for that choice

is that it has the best IGD value. This method is using Equation 5.9 for the DE mutation

and it is also randomizing the scaling factor method. The true PF obtained by DE2.2 has

1427 points which means just 73 (since 50*30 = 1500) points have been dominated by all

other methods (For all 30 tests per method). This is a quite good point to note, especially in

terms of the dominance quality of the optimization algorithm. The projection of the true PF

obtained by DE2.2 on the 2-D space is as given in Figure 5.23. The Pareto Set points are

the points from the True Pareto of the related method (The non-dominated points among

all of the tests)

82

Figure.5.23. Pareto Front’s 2-D projections obtained by DE2.2 for the test problem

 Most important comparison is on the scaling factors, since it is a novel method

proposed. The results show that, the method randomizing the scaling factor performs better

than the one setting the scaling factor to a constant value. Figure 5.24 shows the effect of

randomizing F. It can be seen that a cloud of potential points centered around the mutant

vector could be generated.

Figure 5.24. Illustration of Mutant vectors obtained by the random-scale operator

83

The random amplification induces two advantages: (1) The algorithm has a lower

probability of providing premature solutions because of the reasonable diversity; (2) The

vicinity of the mutant vector is investigated by the randomized amplification of the

differential variation 1 2() ()r r
x t x t− . Even when stagnation appears, a new trial vector has

fair chances of pointing at an even better location on the multimodal functional surface.

As a result DE mutation enchances the search quality for the multi-objective

optimization. For the mutation function DE/best/1/bin [20] has been used. Also a novel

method based on randomizing the scaling factor has been tried and successfull results have

been obtained.

5.2.5. A New Replacement Mechanism

Besides DE mutation, to enhance the performance of the MOEA/D-DE framework,

another work on population replacement has been realized. The goal here is to call for a

balance between information sharing and diversity maintenance. In the method proposed,

when the number of parent solutions that can be replaced by a high quality child solution

exceeds the maximum number, the parent solutions are ranked and those that are closer to

the child solution are replaced first.

Previous method for the reproduction was based on the replacement of each index

of the neighborhood in the population. It was basically as follows:

For each index ()j B i∈ , if () ()' , ,te j te j j
g y z g x zλ λ≤ then set 'j

x y= (5.14)

In the proposed method the replacement is realized under some conditions, instead

of replacing the whole neighborhood. The new replacement mechanism first calculates

(),j
g y zλ and (),j j

g x zλ for each j in P .

 Secondly, 0c = is selected. In case () (), ,j j j
g y z g x zλ λ≤ , this c parameter is

increased by one (1c c= +) in order to control the number of the replaced solutions.

84

 Thirdly, the comparison of c with
rn is realized. If

rc n≤ is true for each j with

() (), ,j j j
g y z g x zλ λ≤ , all the improved solutions (the children) are replaced (j

x y=)

with the old ones. If rc n> , for each j with () (), ,j j j
g y z g x zλ λ≤ , then euclidean

distances between ()f y and ()j
f x are calculated and and ranked. After the ranking, rn

solutions with the smallest distances are chosen for the replacement.

In MOEAs, the replacement mechanism is intended to improve the quality (in terms

of domination) of the population and maintain the diversity. Although in decomposition-

based methods, search in different directions according to different weight vectors can

“naturally” help the diversity, diversity maintenance is also affected by the replacement

mechanism. A high quality child solution may replace most of the current solutions to its

neighboring sub-problems. Consequently, diversity decreases significantly. In MOEA/D

[14], the maximum number of solutions that can be replaced by a child solution is the size

of the neighborhood, T, whose disadvantage is shown in [22]. MOEA/D-DE improves the

replacement mechanism by adding a bound rn , which is much smaller than T. A high

quality child solution can replace rn current solutions at most, which helps the diversity

maintenance.

However, setting the value of rn is not a trivial problem. rn controls the balance of

information sharing and diversity maintenance. If
rn is large, the information of a good

solution can be shared by more current solutions, but the risk of diversity reduction is

higher. In contrast, if rn is small, the information can be shared by less solutions, but the

diversity is maintained.

An empirical rule is proposed by setting T = 0.1N , rn = 0.01N , and the rn current

solutions which will be replaced by a high quality child solution are randomly chosen if the

bound is exceeded. Generally, this rule is reasonable. Nevertheless, both conditions, c (the

number of current solutions with () (), ,j j j
g y z g x zλ λ≤ much smaller than 0.01N and c

much larger than 0.01N may appear in the evolution process. When c is much larger than

85

0.01N , randomly selecting 0.01N individuals to be replaced may not always be a good

solution.

 It can be seen that rn is approximately 10% of T, that is, for one segment with 10

points that can be replaced by a high quality child solution, only one of them can be

updated. Such rn is small to share the good information. On the other hand, rn cannot be

larger to keep the diversity. Hence, selecting which points should be replaced in order to

make the sharing more effectively is a significant problem. It can be argued that in the

objective space, points that are near to the newly generated high quality child solution can

be benefit more compared with the ones that have longer distance from it if the

replacement is performed. The reason is that for neighbors which have similar fitness

landscapes, their optimal solutions should be close to each other in the decision space. This

is the principle of MOEA/D which can be seen as “neighbor’s neighbor”. In Figure 5.25,

the bottom point with a coordinate (1,1) is the high quality child solution, and can replace

all of the 6 points with ‘*’ symbol. If only one can be selected, then the two points in the

circle will benefit more than the other 4 points if the schema of the bottom point is used.

Figure 5.25. Illustration of the replacement mechanism

Therefore, the mechanism is that when a high quality child solution, which has the

ability to replace most of the current solutions in T, appears, instead of randomly choosing

rn current solutions, their distances are ranked to the high quality child solution in the

objective space and the rn solutions are replaces with the smallest distances.

86

Table 5.11. Effects of different
rn values on performed DE techniques

 Test 1 Test 2 Test 3 Test 4 Ave. IGD

DE1

nr=0.05*niche 0.0060 0.0061 0.0058 0.0064 0.0061

nr=0.10*niche 0.0051 0.0055 0.0055 0.0059 0.0055

nr=0.15*niche 0.0068 0.0080 0.0059 0.0064 0.0068

nr=0.20*niche 0.0078 0.0060 0.0058 0.0067 0.0066

 Average: 0.0063

DE2.1

nr=0.05*niche 0.0062 0.0066 0.0043 0.0056 0.0057

nr=0.10*niche 0.0058 0.0066 0.0047 0.0064 0.0059

nr=0.15*niche 0.0059 0.0052 0.0050 0.0061 0.0056

nr=0.20*niche 0.0076 0.0068 0.0045 0.0054 0.0061

 Average: 0.0058

DE2.2

nr=0.05*niche 0.0048 0.0045 0.0056 0.0056 0.0051

nr=0.10*niche 0.0043 0.0050 0.0070 0.0057 0.0055

nr=0.15*niche 0.0064 0.0064 0.0050 0.0042 0.0055

nr=0.20*niche 0.0046 0.0057 0.0053 0.0046 0.0050

 Average: 0.0053

DE3.1

nr=0.05*niche 0.0072 0.0042 0.0060 0.0053 0.0057

nr=0.10*niche 0.0097 0.0054 0.0059 0.0062 0.0068

nr=0.15*niche 0.0033 0.0048 0.0056 0.0109 0.0062

nr=0.20*niche 0.0052 0.0057 0.0063 0.0056 0.0057

 Average: 0.0061

DE3.2

nr=0.05*niche 0.0052 0.0061 0.0051 0.0050 0.0054

nr=0.10*niche 0.0061 0.0040 0.0046 0.0047 0.0049

nr=0.15*niche 0.0054 0.0078 0.0043 0.0055 0.0057

nr=0.20*niche 0.0055 0.0047 0.0061 0.0046 0.0052

 Average: 0.0053

NSGAII 0.0253 0.0234 0.0221 0.0237 0.0236

87

The critical parameter for the quality of the proposed replacement method is clearly

the value of rn . To see the behavior of the change in rn and to be able to see more tests on

DE methods tried, the extended version of MOP-C3/Viennet4 [21] benchmark problem

has been run again with different seed numbers (setting seed number makes the

Comparisons fair by equalising the random numbers generated) than previous ones. 10 test

optimizations were done for each DE method and different rn to create the true PF’s. 4

tests for each conditions were run to compare the results. The results are shown above in

Table 5.11.

As it can be seen from the tests, DE2.2 looks like having the best results. DE3.2 can

compete with DE2.2. The results are compatable with the previous tests and they show that

NSGAII has been beaten very easily again.

About different rn values, it looks like there is no big difference. Sometimes a

small value of rn can give good results and sometimes a large value. For the DE methods

performed 0.05*rn niche= , 0.15*rn niche= and 0.20*rn niche= has the best results just

for 1 methods. However 0.10*rn niche= is the best result for 2 cases.

As a result 0.10*rn niche= and DE2.2 methods have been chosen as the main

parameters and mutation methods. The following tests are using DE2.2 mutation as the

search engine and 0.10*rn niche= parameter.

 So far, it as been mentioned that, DE is a good method to enhance the search ability

comparing to the previous mutation. Also with an emprical method, 0.10*rn niche= has

been decided. To see the effects of randomizing F scaling factor and adding new

replacement rules, MOEA/D-DE (OD) which is using DE2.1 mutation (F has already been

set to 0.5, no new replacement methods), MOEA/D-DE with new replacement rules (RD),

MOEA/D-DE with stochastic scaling factor (FD) and MOEA/D-DE with both new

replacement rules and stochastic scaling factor (FRD) have been compared. The test

problem instances are UF1 to UF10 in CEC 2009 competition (2-3 objectives) [23] and a

88

real world problem, sizing of folded-cascode amplifier (4 objectives) are performed on the

test problem instances UF1 to UF10 in CEC 2009 competition (2-3 objectives) [23] and a

real world problem, sizing of folded-cascode amplifier (4 objectives). The performance

metric is again IGD.

The test problems include benchmark problems and a four objective analog sizing

problem. The benchmark problems are UF1 to UF10 in [23]. The multiobjective analog

sizing is optimization of a folded-cascode amplifier, where the DC gain, GBW, phase

margin and power are the 4 objectives. In the analog sizing problem, there is no analytical

formulation of the optimization goals. They are based on the SPICE simulation. There are

11 design variables, 5 of which For UF1 to UF10 in [23], the number of decision variables

is 30. For the analog sizing problem, the number of design variables is 11. The number of

sub-problems (population size), N, is 300 for 2 objective problems, 500 for three objective

problems and 148 for the analog sizing problem (though 4 objectives, considering the

computational effort, N is reduced to 148) . T is set to 0.1N, 0.01*rn N= , δ is set to 0.9. In

DE operators, CR is set to 1, F is a Gaussian distributed vector with a mean of 0.5 and a

variance of 0.15. In GA operators, η and mp are the same as MOEA/D-DE. For

benchmark problems, the algorithm stops after 1000 generations for 2 objective problems,

and 1200 generations for 3 objective problems. For the analog sizing problem, the

algorithm stops after 200 iterations.

Table 5.12. The IGD statistics based on the average of 20 runs of different methods

based on the New Replacement Method and DE

Tests FRD FD RD OD

UF1 0.0096 0.0064 0.0025 0.0027

UF2 0.0084 0.0072 0.0094 0.0098

UF3 0.0472 0.0311 0.0093 0.0105

UF4 0.0592 0.0788 0.0881 0.0858

UF5 0.5577 0.7650 0.8476 0.9247

UF6 0.1795 0.2726 0.2381 0.2665

UF7 0.0056 0.0063 0.0054 0.0032

UF8 0.0660 0.0611 0.0569 0.0562

UF9 0.1304 0.1299 0.1170 0.1501

UF10 0.4035 0.4370 0.4119 0.4781

Analog 9.4572 9.5344 9.5199 9.6079

89

 For UF1 to UF10 in [23], the set P* ∈ PF is available (P* is the true Pareto Front

to converge). For the analog sizing problem, 30 runs are first performed using each

method, whose results are combined to approximate the P* the True PF. Table 5.11 shows

the mean values of IGD results for each problem in 20 runs.

Here are some observations of the results. For each problem, the different methods

are ranked according to the IGD values and Table 5.13 and Table 5.14 are obtained.

Table 5.13. Ranking of the IGD values of different methods based on the New

Replacement Method and DE

Tests FRD FD RD OD

UF1 Rank 4 Rank 3 Rank 1 Rank 2

UF2 Rank 2 Rank 1 Rank 3 Rank 4

UF3 Rank 4 Rank 3 Rank 1 Rank 2

UF4 Rank 1 Rank 2 Rank 4 Rank 3

UF5 Rank 1 Rank 2 Rank 3 Rank 4

UF6 Rank 1 Rank 4 Rank 2 Rank 3

UF7 Rank 3 Rank 4 Rank 2 Rank 1

UF8 Rank 4 Rank 3 Rank 2 Rank 1

UF9 Rank 3 Rank 2 Rank 1 Rank 4

UF10 Rank 1 Rank 3 Rank 2 Rank 4

Analog Rank 1 Rank 2 Rank 3 Rank 4

Table 5.14. Statistics of the ranking of different methods based on the New Replacement

Method and DE

Methods Rank 1 Rank 2 Rank 3 Rank 4

FRD 5 1 2 3

FD 1 4 4 2

RD 3 4 3 1

OD 2 2 2 5

 It can be seen that the improvement of the new replacement mechanism is obvious.

In 7 cases out of 11, the RD (MOEA/D-DE with new replacement) method ranks 1 or 2,

FRD (RD plus random scaling factor) method has 6 cases with rank 1 or 2, FD (MOEA/D-

90

DE with random-scale F) have 5 cases with rank 1 or 2 and the original MOEA/D-DE has

4 cases. If only considering the rank 1 column, it can be seen that RD and FRD have more

distinct advantages. If only adding a random scaling factor, slight improvements have been

observed in high rank region (rank 1 or 2). But it is obvious that the FD method ranks 3 in

4 cases and ranks 4 in 2 case, while the original MOEA/D-DE (OD) ranks 3 in 2 cases, and

ranks 4 in 5 cases. When the two mechanisms are combined together, it can be seen that

FRD have 5 cases with rank 1, which has distinct advantage compared with other methods.

On the other hand, it has 3 cases with rank 4. Therefore, it can be concluded as FRD is a

method which can obtain very good result, and RD method is more stable.

Best results (which are the tests with the smallest IGD values from all tests) of

some of the benchmark problems for FRD method are as seen in Figure 5.26. The Pareto

Fronts for all benchmark problems have been plotted.

 NSGA-II is also implemented for the analog sizing problem using the same

population size, η and mp . The distribution index in SBX is set to 20. The average IGD

value is 15.8656, which is much larger than MOEA/D-based methods.

Figure 5.26. PF for some of the benchmark problems with smallest IGD by FRD method

91

5.3. Enhanced MOEA/D-DE Algorithm

 In this Section, the Enhanced MOEA/D-DE Algorithm will be given with the

Multi-objective Optimization Problem (MOP) definition and with the flow chart of the

algorithm.

5.3.1. MOP for the MOEA/D-DE

 A multiobjective optimization problem can be stated as follows:

 1min{ (),..., ()},mf x f x x∈Ω (5.16)

where 1(,...,)nx x x= is the decision variable vector and ()if x are the objective functions.

Ω is the decision space. A solution x is said to dominate solution y if and only if

() ()i if x f y≤ for every i ∈{1,...,m} and () ()j jf x f y< for at least one index j ∈{1,...,m}.

A point x*∈Ω is Pareto optimal to (1) if there is no point x∈Ω such that f (x) dominates f

(x*). f (x*) is Pareto-optimal objective vector. The set of all the Pareto-optimal points is

called the Pareto Set (PS). The set of all the Pareto-optimal objective vectors is called the

Pareto Front (PF).

5.3.2. The Working Principles of the Algorithm

 For the Tchebycheff approach, the scalar function is as follows:

 ()
1

, * max{ () *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= − (5.17)

where ()1,.., mλ λ λ= is a weight vector and
1

1
m

ii
λ

=
=∑ . Ω is the solution space and

1* (*,..., *)mz z z= is the reference point. If N is reasonably large and 1,... Nλ λ are properly

92

selected, the optimal solutions to those scalar functions will provide a good approximation

to the PS/PF. The major components in MOEA/D are its neighborhood concept, and its

population replacement mechanism. The enhanced MOEA/D-DE, proposed works as

follows:

 Inputs are:

i. A MOP

ii. A stopping criterion

iii. N: the number of sub-problems

iv. T: the neighborhood size

v. δ : the probability that parent solutions are selected from the neighborhood

vi.
rn : the maximum number of solutions replaced by a child solution

vii. CR: crossover rate in DE

viii. µ,σ : the mean and variance of the scaling factor
^

F in the DE mutation

ix. mp : the probability to perform polynomial mutation

x. λ : weight vector

 Outputs are:

i. Approximation to the PF

ii. Approximation to the PS

First of all, an initialization step exists. In this step, the external population is set to

zero. Later, the Euclidean distances between weight vectors are calculated in order to find

the T closest weight vectors to each weight vector and the neighborhood 1() { ,..., }TB i i i= is set

93

for the T closest weight vectors iλ . After that, an initial population, which is the set of

solutions, is randomly generated and the objective functions are evaluated for these

solution individuals. The minimum and maximum values of 1(,...,)T

mz z z= for each

objective function evaluated before.

 Secondly, the algorithm starts a loop of N turns to realize the updates. First of all

the neighborhood set is selected with respect to the δ value. Later on, randomly selected

two indexes of B(i) are used to generate a new solution by using the genetic operators.

Here, the DE mutation is used as the main search engine. Later an improvement is applied

on the solution. If the solution is out of boundary then it is regenerated. The improved, new

solution is used to calculate the objective functions in order to update the z values. Later,

with respect to rn if () ()' , ,te j te j j
g y z g x zλ λ≤

 is satisfied (y’ is the new solution), the

solution set and the fitness values are updated. It should be noted that if the number of the

solutions to be replaced exceeds the rn , then rn number of solutions are ranked and the

parents with the smallest Euclidean distance to the solutions are updated.

At the last step if the stopping condition is satisfied (it may be max number of

iterations) the algorithm stops and outputs the EP. Otherwise the update loop goes on.

The general framework of the proposed MOEA/D-DE method works as given in

Figure 5.27.

Figure 5.27. The framework of the MOEA/D-DE Optimization Algorithm

94

5.3.3. Conclusions

First of all, W and L values for the selected topology are randomly generated.

These values are simulated by using HSPICE A. 2007-2009 simulator. The outputs are the

evaluated performance values of the analog circuit. Because of the general behavior of the

algorithm, all of the objectives are supposed to be minimized. This is satisfied by using a

minus sign for the fitness values which are expected be maximized. For example, the

“area” is a function to be minimized, so it’s value is directly used as obtained from HSpice;

however, the function “gain” has to be maximixed so the return value of the HSpice is

multiplied by -1 and the problem turns into a minimization problem. According to that

fitness values as mentioned before the algorithm generates new W, L values to enhance the

performance of the circuit. This is done by the search algorithm of the MOAE/D-DE which

was coded on MATLAB. New W, L values are then simulated on HSpice and new fitness

functions are obtained. According to these fitness values, the algorithm generates new W,

L values and so on. This loop goes until the set value for the generation (iteration) number

is reached. The parameters (variables) to be optimized are not only supposed to be W or L,

they can also be capacitor values (C), inductor values (L), or current source values (ib), etc.

All the runs were realized on a Pentium Dual Core CPU - T4300 @ 2.10 GHz.

95

6. ON-LINE INTERPOLATION OPERATING POINT DRIVEN

METHOD

 There are two methods for chosing the variables of optimization in analog design

automation. First one is direct optimization of the dimensions, W and L. The second type

of methods are based on optimizing the DC values of the nodes (voltages) and the branches

(currents) in an analog circuit. These algorithms have DC root solving mechanisms. DC

root solving is basically guessing the W of the transistors by using DC optimization

variables. This is the only way to evaluate the analog circuit and let the optimization go on.

A novel method for DC root solving has been proposed, and the results show that proposed

method is much more sufficient than the methods in the literature in terms of accuracy,

speed, use of memory etc.

6.1 Introduction to OPD Based Methods

 In recent years, analog design automation methodologies receive much attention in

both literature and industrial applications. Besides the development of the cell-level analog

sizing methods, yield-aware sizing, parasitic-aware sizing and hierarchical synthesis

methods are developing in a high speed. On the other hand, fundamental analog sizing

(cell-level optimization for analog ICs in nominal condition) remains a key problem. The

reasons are that: (1) analog sizing methods considering other factors, e.g. hierarchical, also

rely on fundamental cell-level optimization; (2) many advanced analog sizing methods

need a good starting point generated by fundamental cell-level optimization. This work

focuses on fundamental analog cell sizing.

 Fundamental analog cell sizing methods can be classified to two main categories:

width and length (W/L)-based methods [17,24,25] and operating-point driven (OPD)-based

methods [26-28]. The former method uses the width and length as the design variables and

considers the analog sizing as a constrained optimization problem. The latter method,

however, uses operating point as the design variables and the device dimensions (W) are

determined out of it. OPD-based method is used much less than width and length-based

96

method in recent literatures. However, it has been reported that OPD-based methods have

advantages [26-28], which can be summarized as follows. Firstly, it highly relieves the

convergence problem of electrical simulators, as a DC consistent solution cannot be found

for some W/L in the search space and these W/L are difficult to be pruned beforehand [26].

Secondly, device operating constraints (e.g. 0gsv > , transistor in the saturation region) [29]

are self-contained in the generation of the candidate solutions in the OPD-based methods,

which can ensure the devices to operate in the intended region. These constraints are

obvious to the designer, but not to the optimization algorithm. For W/L-based methods,

explicitly measurements and enforcements need to be added, which increase the number of

constraints and make the optimization problem more difficult [28]. Thirdly, the design

variable W often has a large range in W/L-based method, which adds high pressure to the

search algorithm, especially when the circuit is complex. On the other hand, W is

calculated from device biases (voltages, currents) in OPD-based methods, which decreases

the search space in another way (The search area for a W may change from less than 1um

to hundreds of micrometers. DC points of the circuit have lower range to search. For

example a voltage value in a 0,25um technology can change from 0 to 2.5 Volts which

means it is easier to converge to the optimal value). Fourthly, OPD-based methods allow

the designer to reason in terms of voltages and currents and relieve him from the burden of

determining device sizes [26].

OPD-based methods have such advantages, but why they seldom appear in recent

literatures? An important reason is that with the scaling down of devices, the models are

becoming more and more complex. This makes the available DC root solving algorithms

and the look-up-table-based methods face significant challenges on accuracy, efficiency

and memory requirements. Also obtaining W by solving equations loose their accuracy,

which leads to the difficulty to compute an acceptable W by L and device biases. For look-

up-table (LUT) methods, the trade-off between accuracy, look-up time (the time to find the

corresponding data in the LUT) and memory consumption is important. The experiments

in the following parts of the work show that a LUT with acceptable accuracy need a large

amount of data, which consumes long look-up time and large memory.

97

To address these problems, a new OPD method, called on-line interpolation

operating-point driven (OIOPD), is proposed. In OIOPD, the width of a transistor is

computed by the interpolation of the width-current curve with a determined set of length

and voltage biases. The two min min(,)W I and max max(,)W I . minW and maxW are the two

extreme allowed values of W for a technology) are first simulated on-line, then the request

W is computed by SPLINE interpolation. OIOPD has 10 times improvement on accuracy,

300-1100 times improvement on efficiency compared with the available methods. In

addition, OIOPD need not to tune the parameters, e.g. the size of the LUT, number of

neurons in NN. Also there is no need for a memory.

6.2 OPD Methods

6.2.1. Review of the OPD Methods

 Figure 6.1 shows the flow of the OPD method in analog sizing. In each iteration,

for each transistor of each candidate design, the input is the length and device biases. As

shown by Equation 6.1, the W is computed by { }, , , ,DS ds gs bsL I V V V .

 ()*, , , , 0DS DS ds gs bsI I V V V W L− = (6.1)

where W is the independent variable and the drain source current is a function of the drain-

source, gate-source, bulk-source DC voltages, W and the L. The estimated W for all the

transistors are collected and SPICE simulation using the L and the estimated W is done to

obtain the performance of the candidate solution. The performances are sent to the

optimization algorithm to start the next iteration.

It can be seen that the DC root solving is a critical problem in this flow. Whether

the W can be computed with an acceptable accuracy determines the successfulness of the

OPD-based analog sizing. The methods to obtain W from Equation 6.1 can be classified to

three main categories.

98

Figure 6.1. OPD based analog sizing

 The first kind of method is to find W by directly solving Equation 6.1 [26,27].

First-order models can be computed easily, since an explicit equation for W exists. But it is

too inaccurate. Hence, high-order models are necessary. Reference [26] suggests using the

first-order solution as the starting point and then using SPICE-in the-loop method to solve

the equation. It also suggests scaling the variables to linearize strongly non-linear

functions, which transforms Equation 6.1 to Equation 6.2.

 ()*log log log , log , log 0DS DSI I V W L− = (6.2)

 Because of using SPICE simulation in the equation (no analytical form), using

iteration methods to solve the equation are appropriate. Newton-Raphson method [31] and

Golden Section Search method [32] are tried to solve (6.2) and found that a good W is

difficult to be obtain. The test results are given at the following parts.

 Another method to obtain W is regression. First, a set of training data are

generated, and a regression model is constructed to predict W by the inputs

, , , ,DS ds gs bsL I V V V . Neural network (NN) [30] is often considered as a powerful regressor.

However, in the experiments realized, it was found that NN is difficult to achieve high

accuracy and generality at the same time.

 LUT is another kind of method to find W [33]. Many points are sampled in the

{ }, , , ,DS ds gs bsL I V V V space and stored in an LUT. When using LUT to find W, a hierarchical

99

look-up method is used [28]. For example, the method first finds the nearest left and right

points of the given dsV and two candidate dsV are selected. In the LUT, there exist some

points with these two dsV . The algorithm again finds the nearest left and right points of the

given
gsV in the points with the two candidate dsV . This process continues until the problem

becomes a one-dimensional interpolation problem, e.g. the last variable is
DSI . The

interpolation is realized by left and right side options of these 3 voltage values and the L.

For all these 16 options drain-source current value is obtained and at last interpolation

method is used to obtain the W. According to the experiments, it was found that the LUT

method has relatively high accuracy when a large amount of samplings are used. But it

costs a long look-up time and huge memory.

6.2.2. OIOPD Method

From the review of the above, three methods using modern technologies, LUT is

better than the other two methods. It can be seen that interpolation is an effective way. In

the LUT method, there need 4 approximations before a one-dimensional interpolation. This

process looses accuracy since all of the approximations already have their own errors. To

prevent this, LUT need to include a large number of samples, which cause longer look-up

time and more memory. On the other hand, for each operating point, the

{ }, , , ,DS ds gs bsL I V V V are determined. Therefore, selecting one variable to do the one-

dimensional interpolation with W under the condition of the fixed other 4 variables (need

on-line simulations) can enhance the accuracy. The reason is that by on-line simulation

method, the other 4 variables are accurate (%100 accuracy), not by approximation.

Figure 6.2. W Guessing Procedure for OIOPD Method

100

In OIOPD,
DSI is selected as the variable to do the interpolation with W, using the

determined { }, , ,ds gs bsL V V V . First different samples of W are used in the technology

allowed range to generate the corresponding DSI . Then, the estimated W can be

interpolated using the given
DSI . Another advantage of on-line simulation (a single NMOS

and PMOS transistor is simulated for the given , , ,ds gs bsL V V V values and for the limit values

of W) is that the memory requirement problem is solved. The key problem is the necessary

number of samples to achieve an accurate estimation and the comparison between the time

spent to generate the samples and the look-up time in the LUT method.

Figure 6.3. Typical case of W-
DSI curve

 Figure 6.3 shows two typical cases of the curve in a 0.25um technology. It can be

seen that the linearity between W and DSI is strong in most part. For W smaller than 10um

, the linearity decreases a little. Because of the generally strong linearity, it is reasonable to

use few samples. The results of using 200 samples, 50 samples and 2 samples (the

maximum and minimum width in a technology) have been compared. Some typical results

are shown in Table 6.1. The tested W are uniformly distributed in the allowed range of

each technology. From Table 6.1, it can be seen that the result of using 2 samples is

comparable to, or even better than that of using 200 samples when the width is large than

10um. The reason is that the linearity is stronger in a global range compared with in a local

range, as shown by Figure 6.3. This is also an important reason to describe why directly

solving Equation 6.2 to obtain W often cannot receive good results. For the transistors with

101

width smaller than 10um, using 2 samples have larger error. Using 50 samples or 200

samples all have good accuracy, and the result of using 200 samples is only a little better

than using 50 samples, but it costs 4 times of the simulations.

Table 6.1. Typical errors with different number of samples for OIOPD Method

technology region W 200 samples 50 samples 2 samples

250nm Saturation >10um 1.90% 1.91% 0.88%

250nm Saturation <10um 0.41% 0.44% 6.31%

250nm Linear >10um 2.13% 2.13% 1.86%

180nm Saturation >10um 2.84% 2.83% 1.71%

180nm Linear >10um 1.50% 1.52% 0.99%

180nm Linear <10um 0.77% 0.77% 6.45%

90nm Saturation >10um 1.81% 1.84% 1.86%

90nm Saturation <10um 0.05% 0.06% 4.32%

90nm Linear >10um 0.24% 0.26% 0.08%

Figure 6.4 shows the errors of using 200, 50 and 2 samples from 0.6um to 50um

under typical device biases and L in a 0.25um technology.

Figure 6.4. Errors for different number of samples for OIOPD Method

102

 According to the experimental results, the OIOPD method uses the following rules

to set the number of samples: (1) First uses the maximum and minimum W as the samples.

(2) If the estimated transistor width is smaller than 10 um uses randomly distributed 50

samples within the minimum allowed W and 10um. On the other hand, it can be seen from

Figure 6.4 that even when the width is smaller than 10um the error is within 10% in most

cases. It will be shown on the experiment results. Hence, it is also reasonable to use 2

samples for all the transistors.

According to experiments, it was found that SPLINE interpolation [33] performs

better than linear and cubic interpolation. Hence, OIOPD use SPLINE interpolation.

6.2.3. Selection of the LUT for OPD Method

There exists a trade-off between the accuracy, the look-up time and the memory

requirement for different sizes of LUT. To make a fair comparison, a good LUT is

necessary to be selected. The example below shows the selection of the LUT for a 0,18um

technology, and the selection of 90nm technology is done in the same way. The accuracy,

look-up time for each transistor and memory requirement of 3 LUT are shown in Table

6.2. LUT 1 uses uniformly distributed 54 points within the range of W of the technology

(0,24um to 800um). LUT 2 uses 104 points of W, and LUT 3 uses 206 points of W. L has a

range of 0,18um to 10um, , ,ds gs bsV V V have a range of 0 to 1,8 Volts. LUT1 has 810,000

points, LUT2 has 1,560,000 points and LUT3 has 3,090,000 points. In the test process, 278

test points are selected, 40% of which are in the linear region, 60% of which are in the

saturation region, and they are uniformly distributed. The experiments are run on a PC with

Xeon processor and 8GB RAM memory in Linux system.

Table 6.2. Different LUT for 0,18um technology

Look-up Tables Error Look-Up Time Memory

LUT1 31% 0.62 sec 55.6 MB

LUT2 23% 1.19 sec 108.4 MB

LUT3 20% 2.24 sec 205.4 MB

103

It can be seen that LUT 1 (the sparsest table) has the fastest speed to find the data in

the LUT but with the lowest accuracy. LUT 2 spends longer time, but renders a remarkable

improvement (8%) by doubling the points in the LUT. Although LUT 3 provides the best

accuracy, it consumes twice the time of LUT 2 and the improvement in accuracy is not

impressive (only 3%) compared with LUT 2. Note that the look-up time for one transistor

is not long to each LUT. But in the analog sizing, thousand times of this estimation are

necessary, so the look-up time is an important factor. Hence, LUT 2 is chosen to compare

with OIOPD.

6.2.4. Comparisons of OIOPD with Different Methods

Table 6.3 shows the comparisons of the Golden Section Search method, NN, LUT

and OIOPD. Traditional DC root solving methods include gradient-based ones and direct

search ones (using no gradients). A typical method of gradient-based equation solving

method is Newton-Raphson method. According to experiments, Newton-Raphson method

always causes SPICE unconvergence problem and cannot give a result. Hence, Table 6.3

only includes the solution of Golden Section Search method. NN is selected in the same

way as LUT. Tens of NN with different training data (at least 8000 training data has been

used for each network) have been compared, different number of neurons and different

training methods. However, their performances are all not good. Table 6.3 shows the best

result obtained from these NNs.

Table 6.3. Comparisons of different method in a 0,18um technology

Methods Error Look-Up Time Memory

Golden Section 872% 4.39 sec X

NN 143% 0.30 sec 5 KB

LUT 23% 1.19 sec 108.4 MB

OIOPD 2.23% 0.003 sec X

 From Table 6.3, it can be seen that the accuracy of Golden Section Search and

NN are far from anticipation. OIOPD has 10 times improvement on accuracy compared

104

with LUT and 400 times improvement on efficiency. In addition, no extra memory is

needed. Comparison of LUT and OIOPD in a 90nm technology is shown in Table 6.4.

Table 6.4. Comparison of LUT and OIOPD in a 90nm technology

Methods Error Look-Up Time Memory

LUT 23% 2.32 sec 475.6 MB

OIOPD 1.92% 0.0021 sec X

From Table 6.4, it can be seen that OIOPD has approximately 12 times

improvement on accuracy and 1100 times improvement on efficiency.

6.2.5. Comparisons of OIOPD with Extreme Cases of LUT

 Since the best method competing with the proposed OIOPD method is LUT’s, To

see the most accurate cases of LUT method than LUT 2, more extreme (in terms of

sampling points, so the memory) table options were used. Since the step sizes for

, ,ds gs bsV V V are equal to 20, step size of L is equal to 50 and W is equal to 200 and 800 for 2

different tests. The errors on W for 0,25nm folded cascode example test points are:

Table 6.5. W errors of 11 transistors for the LUT with 200/800 samples of W

W deviations: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 max ave

W=200 7,5287 7,529 5,833 5,833 5,833 0,985 0,985 10,61 10,61 13,73 13,73 13,73 7,564

W=800 6,5774 6,577 5,241 5,241 5,241 0,761 0,761 8,463 8,463 11,49 11,49 11,49 6,3923

 The second LUT above has 32,000,000 samples to find W. Since the accuracy

reached up to the quality of % 6,39 more tests on LUT have been tried. In Table 6.6 below

there are 3 different extremely large LUTs. Memory issue is given on Table 6.7.

105

Table 6.6. Different options for the large LUTs

Method Step Num Step Num Step Num Step Num Step Num

Option A L=50 Vgs=30 Vgs=30 Vgs=30 W=200

Option B L=80 Vgs=40 Vds=40 Vds=40 W=200

Option C L=100 Vgs=80 Vbs=80 Vbs=80 W=200

OIOPD fixed fixed fixed fixed W=2 or W=50

Table 6.7. Memory needed by 3 LUTs A,B and C

 for generating every file seperately overwriting the unneeded table files Just the needed data

Method
memory needed during data

generation
memory needed during data

generation
memory needed for

data store

Option A 125,8 Gbyte 8,16 Gbyte 6,12 Gbyte

Option B 473,6 Gbyte 30,72 Gbyte 23,04 Gbyte

Option C 4, 736 Tbyte 307,2 Gbyte 230,4 Gbyte

OIOPD 0 bit - online simulation 0 bit - online simulation

 For 3 options of LUT and for the proposed method, the time issue related to the

data acquisition for interpolation (for LUT it means reading and interpolating the data from

that tree structure, for proposed method it means online simulation of single transistor) and

the time consumed by the whole W guess process for both of the methods is as follows:

Table 6.8. Interpolation time for the 3 LUTs A,B and C

 Pentium Dual Core CPU-T4300@ 2.10GHz Pentium Dual Core CPU-T4300@ 2.10GHz

 For entire Circuit (Folded Cascode) For entire Circuit (Folded Cascode)

Method Look-up time overall time of W guessing (with interpolation)

Option A 0.35 sec * number of transistor = 3.85 sec. 0.39 sec * number of transistor = 4.29 sec.

Option B 0.35 sec * number of transistor = 3.85 sec. 0.39 sec * number of transistor = 4.29 sec.

Option C 0.35 sec * number of transistor = 3.85 sec. 0.39 sec * number of transistor = 4.29 sec.

OIOPD 0.42 sec. 0.48 sec.

106

 The accuracy results for these 3 different LUT and proposed method are as

follows:

Table 6.9. W errors for the 3 LUTs A,B and C

W errors (%) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 max ave

Option A 14,017 14,017 3,328 3,328 3,328 29,548 29,55 0,601 0,601 12,037 12,037 29,5482 11,127

Option B 7,4182 7,4182 0,135 0,135 0,135 11,08 11,08 2,903 2,903 0,278 0,278 11,0795 3,9786

Option C 6,4175 6,4175 0,242 0,242 0,242 5,946 5,946 3,837 3,837 2,1884 2,1884 6,4175 3,4094

OIOPD 1,9015 1,9015 0,1 0,1 0,1 1,8088 1,809 3,111 3,111 2,1355 2,1355 3,1114 1,6559

 As seen from all the extreme LUTs, there is a huge need for the memory to store

the tables. For an accurate LUT the need for the table is around hundreds of Gbytes. Also

the look-up time in order to obtain the W value even for a single transistor is a lot larger

than OIOPD for the LUTs performed. Finally the best W value convergence obtained by a

LUT method is more than % 3,4 (for the average of the whole circuit) since it is less than

% 1,7 for the OIOPD method.

 It can be seen from Tables 6.10 and Table 6.11 that for all 3 different technology

files (90nm, 180nm, 250nm) the errors on W guessing of the LUT methods is larger than

% 6. This looks like an acceptable error; however, the problems including a large memory,

long look-up time etc. still exist. Also the results show that W errors of all 11 transistors

for OIOPD method is less than % 3,12 for the folded cascode amplifier example and again

less than % 2,37 for the shown transistors of the gain boosted amplifier. Also the results

show that for the gain boosted amplifier average error on W for the transistors is less than

% 0,5 for any technology. This shows how powerfull the OIOPD is to converge to the real

W values.

 Errors on the W change the performance values of the circuits (fitness values). As a

result, during the optimization flow, the objective functions with high error can occur if the

107

error on W is large. This will result in that, the optimization algorithm works less accurate

while generating new individuals by using genetic operators. The performance value (gain,

phase margin etc.) error comparison for the W’s generated by the methods have also been

tested for the gain boosted amplifier.

 For the Folded Cascode Amplifier:

Table 6.10. W errors for the folded cascode amplifier with the best LUT and OIOPD

Method

 OIOPD OIOPD OIOPD LUT LUT LUT

W errors 90nm 180nm 250nm 90nm 180nm 250nm

(%) 1,8099 2,8429 1,9015 1,7148 28,8545 7,5286

 1,8099 2,8429 1,9015 1,7148 28,8545 7,5286

 0,1719 0,5017 0,1 8,1508 5,3437 5,8329

 0,1719 0,5017 0,1 8,1508 5,3437 5,8329

11 transistors 0,1719 0,5017 0,1 8,1508 5,3437 5,8329

 0,0968 0,2113 1,8088 21,9032 2,4734 0,9851

 0,0968 0,2113 1,8088 21,9032 2,4734 0,9851

 1,196 0,2251 3,1114 9,1056 3,2113 10,61

 1,196 0,2251 3,1114 9,1056 3,2113 10,61

 0,2487 1,5038 2,1355 2,4815 8,0672 13,728

 0,2487 1,5038 2,1355 2,4815 8,0672 13,728

average 0,656227 1,006482 1,655855 8,623873 9,203991 7,563827

max 1,8099 2,8429 3,1114 21,9032 28,8545 13,728

For the Gain Boosted Amplifier, the results are as given on Table 6.11 which can

be seen below:

108

Table 6.11. W errors for the gain boosted amplifier with the best LUT and OIOPD Method

 OIOPD OIOPD OIOPD LUT LUT LUT

W errors 90nm 180nm 250nm 90nm 180nm 250nm

(%) 0,0514 0,2987 0,0401 7,5701 7,3771 16,1057

 0,0514 0,2987 0,0949 7,5701 7,3771 1,0395

 0,0952 0,0015 0,0949 45,0067 0,7006 1,0395

 0,05 0,0015 0,108 23,0833 0,7006 14,6427

10 transistors 0,05 0,0452 0,108 23,0833 16,8199 14,6427

 0 0,0452 0,0187 127,1 16,8199 12,028

 0 1,6871 0,0187 127,1 2,4083 12,028

 0,0108 1,6871 0,0517 93,9189 2,4083 2,931

 0,0447 0,0228 0,0064 86,7337 0,8648 13,6703

 0 0,1683 2,3609 11,6032 8,8335 17,8758

average 0,03535 0,42561 0,29023 55,2769 6,43101 10,60032

max 0,0952 1,6871 2,3609 127,1 16,8199 17,8758

 OIOPD OIOPD OIOPD LUT LUT LUT

Performance 90nm 180nm 250nm 90nm 180nm 250nm

errors 0,0087 0,142 0,0426 25,8735 6,0212 1,1837

(%) 0,0125 0,2907 0,0333 1,2912 22,5079 9,2834

 0,0511 0,0418 0,0333 13,5786 7,412 7,5435

 0,1522 0,2704 0,02 45,9572 49,531 2,6891

 0,0114 0,1546 0,0056 28,2165 7,4226 1,7755

 0,0539 0,1895 0,0093 10,6972 8,9543 4,8323

10 objectives 0,0295 0,0112 0 5,9866 2,9612 3,1823

 0,026 0,3114 0,0198 26,1336 0,9043 3,7862

 0 0 0,0545 0,0469 11,9212 11,6996

 0,0316 0,4187 0,1963 63,451 6,9753 8,4953

average 0,03769 0,18303 0,04147 22,1232 12,4611 5,44709

max 0,1522 0,4187 0,1963 63,451 49,531 11,6996

109

 To mention again, the results show that, OIOPD is much powerfull even than a

large LUT. Also it can be seen that large deviations on W result in the large errors on the

performance values of the circuit (it goes up to % 63 for the LUT for 90nm) which

inconveniences the work of the optimization algorithm.

 From the results, it is also proven that for the technology scaling down, an old

method (LUT) has more problems about the DC root solving. However the proposed

method OIOPD does not suffer from the scale down of the technology and works perfect

even for 90nm. This is an extra advantage of the proposed method.

6.3 Single-objective Optimization Tests for Gain-Boosted Amplifier

 An example of using OIOPD to size complex analog circuit is provided. This

example is very complex and needs more than 800 iterations. Because it is shown that the

LUT method is much better than the traditional DC root solving methods and the

regression-based methods, OIOPD is compared with a selected LUT . The gain-boosted

which was given in the previous parts of the work has been optimized by the OIOPD and

LUT-based analog sizing method. This circuit has 23 constraints (including those

necessary to ensure the proper operating region for all transistors). 0.25um CMOS

technology with 2.5V power supply s used. The transistor lengths are allowed to vary

between the minimum value allowed by the technological process, 0.25um, up to 10um.

The transistor widths are changed between the minimum technology value, 0.6um, up to

700um. The capacitor values could change from 100fF to 20pF. The design specifications

are DC gain>135dB, GBW>180MHz, phase margin>70, gain margin<1, output

swing>3.5V. All transistors should work in the saturation region. The optimization goal is

the power consumption. For the search algorithm MSOEA [17] has been chosen since the

optimization is a single optimization case and since it is easy to implement DC Driven

methods on.

 The population size is chosen as 80, the DE step size F is 0.8, the crossover

probability CR is 0.8, δ is 0.2, OT is 0.9, and η in SBX is 10 [3]. Because of the influences

of random numbers in evolutionary computation algorithms, 5 times are run for each

110

method and the average results are shown in Table 6.12. The experiments are run on a PC

with Xeon processor and 8GB RAM memory in Linux system.

Table 6.12. Results of the OIOPD and LUT method on MSOEA Optimizer

Look-up Tables Objective Function Constraint Satisfaction CPU Time

OIOPD 6.51 mW 23/23 4654.5 sec

LUT 9.20 mW 21.4/23 1.31 e+6 sec

 From Table 6.12, it can be seen that the OIOPD method has better objective

function values and satisfy all the 23 constraints in all the 5 runs. By LUT method, only 2

runs satisfy all the constraints. This is because the OIOPD method can provide more

accurate estimations of W. The CPU time of OIOPD is also much smaller than that of

using LUT. In order to get higher accuracy, the LUT need to include sufficient samples,

and this increase the look up time, which is much longer than the time of simulations of 2

extreme points. Because this example needs a large number of iterations, it can be seen that

the time cost of the LUT method is impractical, but the OIOPD method also performs well

(according to experiments, normally for a less complex circuit, the time cost of the LUT

method is long but practical).

6.4 Multi-objective Optimization Tests for Gain-Boosted Amplifier

 The novel OIOPD based method has been implemented on the Enhanced

MOEA/D-DE Algorithm, which was represented in Chapter 5, in order to see the

enhancements in the results. As mentioned before, OIOPD is a very fast and accurate

model to guess the W from DC points of the circuit. With this way the DC variables are

used as the optimization variables which are easier to be optimized. This has lots of

reasons which have been mentioned before but most importantly, again, it should be noted

that a W can vary from 0,24um to 800um, since a voltage value can change from 0 Volts to

1,8 Volts for a 0,18um technology. This will lead to a faster convergence to the ideal

Pareto Front.

111

 The OIOPD based MOEA/D-DE has been compared with the original one for 2

objective optimization cases of gain boosted amplifier. The optimization functions have

been chosen as phase margin-gm for the first test, gain-power for the second test and gain-

phase margin for the third test. All of the runs have been realized for 100 iterations, 100

population size and 40 niche. Other parameters and the seed number of the random number

generator are equalized to make it a fair comparison.

It should be noted that the reason for the small ranges of some of the objective

functions are because small number of iterations. It was experimented that an optimization

whose results will be used for a real design should have at least 300 iterations (this is an

approximation for the global optimum points) for 2 objective optimization. However 100

iterations for 2 objective are good enough for the comparison cases. The results for 2

objective optimization of gain boosted amplifier with OIOPD based MOEA/D-DE and

with Original MOEA/D-DE are as follows:

Figure 6.5. Phase Margin – Gm Optimization of Gain-boosted Amplifier with OIOPD

based MOEA/D-DE and Original MOEA/D-DE

112

Figure 6.6. Gain – Power Optimization of Gain-boosted Amplifier with OIOPD based

MOEA/D-DE and Original MOEA/D-DE

Figure 6.7. Gain – Phase Margin Optimization of Gain-boosted Amplifier with OIOPD

based MOEA/D-DE and Original MOEA/D-DE

113

 The results of the optimization show that OIOPD based DC root solving method

implementation on MOEA/D-DE has increased the dominance quality and the solution

ranges of the Pareto Fronts, which can be obtained by the original MOEA/D-DE.

114

7. CONCLUSIONS AND FUTURE WORK

Since there are several numbers of well designed CAD tools for digital design, this

number is so limited for the analog CAD tools. It is clear that analog circuit design will

always remain so important due to the fact that the nature we live in is analog. Increasing

needs of complex analog designs, especially for the integrations on System on Chips

(SoCs), are coming up with the needs of good analog CAD tools. One of the most

important automation methods of analog EDA is the sizing optimization of the analog

circuits.

 During the thesis, several optimization methods have been discussed and it was

mentioned that the Evolutionary Algorithms are used so often for analog sizing problem,

because of their several advantages. A background work based on the decomposition of the

whole problem into different scalar problems has been chosen and several enchancements

have been realized to improve that algorithm. First of all some software enchancements

have been realized to make it work faster. Later some new methods have been proposed in

order to increase the quality of the convergence, dominance and distribution on Pareto

Fronts etc. All these works leaded us to a new method called Enhanced MOEA/D-DE.

 There are two choices for the selection of the optimization variables for analog

sizing problem. The transistor dimensions can be directly optimized, or the DC operating

points of the transistors can be optimized. The optimization with second type of variables

are called OPD based methods. In these methods the critical point is finding the proper W

from the DC points with a high accuracy. This will let the algorithm evaluate the circuit by

using a SPICE simulator. In the second part of the project a DC root solving algorithm has

been proposed. The novel method can guess W from the DC points in a fast and highly

accurate way. This method has been compared with other OPD methods and it was seen

that the results for the novel method OIOPD are much better. This novel method has been

implemented on the Enhanced MOEA/D-DE to see the improvements. The results are

given on Chapter 6. It can be seen that the proposed method enchanced the quality of the

MOEA/D-DE algorithm proposed on Chapter 5. As a result the last version of the analog

sizing optimization algorithm is the OIOPD based Enhanced MOEA/D-DE.

115

 There are several works to be done in order to increase the quality of the algorithm

and to make it more user friendly. First of all, the ranges of the objective functions on the

Pareto Fronts can be more fair. For example, as it can be seen from Figure 6.6, the power

objective is changing in a small range. To fix that problem some further works should be

done on the normalization of the objective functions.

 Also, an adaptive method for the determination of the iteration numbers is

something to work on. A method like comparing the previous pareto front (what previous

means here is the previous iteration’s PF) with the present one and checking the

improvement in a systematic way can be used to achieve that.

 More future works can also be performed in order to improve the quality of the

optimization algorithm.

 Finally, all considered, it can be said that the OIOPD based Enhanced MOEA/D-

DE Algorithm is an effective algorithm for optimizing the dimensions of the transistors on

analog circuits. The results of the implemented methods building up the overall algorithm

have been compared with the other works from the literature and sometimes slight,

sometimes significant improvements have been obtained.

116

REFERENCES

1. Toumazou, C. and C. A. Makris, “Analog IC Design Automation: Part I-Automated

Circuit Generation: New Concepts and Methods”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 14, no. 2, February 1995

2. Van der Plas, G., G. Gielen, W. Sansen, A Computer-Aided Design and Synthesis

Enviroment for Analog Integrated Circuits, Kluwer Academic Publishers, 2002.

3. Martens, E. S. J. and G. G. E. Gielen, High-Level Modeling and Synthesis of Analog

Integrated Systems, Springer, 2008.

4. Martens, E. and G. G. E. Gielen, “Classification of analog synthesis tools based on

their architecture selection mechanisms”, Integration – the VLSI journal 41, pp. 238-

252, 2008.

5. Gielen, G. G. E. and R. A. Rutenbar, “Computer-Aided Design of Analog and Mixed-

Signal Integrated Circuits”, Proceedings of the IEEE, vol. 88, no. 12, December 2000.

6. Branke, J., K. Deb, H. Dierolf and M. Osswald, Finding Knees in Multi-objective

Optimization, KanGAL Report No: 2004010.

7. Subbotin, S. and A. Oleynik, “The Multi Objective Evolutionary Feature Selection”,

TCSET 2008, 19-23 February.

8. Deb, K., A. Prapat, S. Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective

Genetic Algorithm: NSGAII”, IEEE Transactions on Evolutionary Computation, vol.

6, no. 2, April 2002.

9. Zitzler, E., M. Laumanns and L. Thiele, “SPEA2: Improving the Strength Pareto

Evolutionary Algorithm”, ETH Zurich, May 2001.

117

10. Xue, F., “Multi-Ojective Differential Evolution: Theory and Applications”, Rensselaer

Polytechnic Institute, PhD Thesis, September 2004.

11. Smith, E., “What is an Evolutionary Algorithm”, Introduction to Evolutionary

Computation, Chapter 2, pp. 15-24.

12. Pohlheim, H., “Introduction Evolutionary Algorithms: Overview, Methods and

Operators”, Genetic Algorithms Toolbox for Matlab, December 2006.

13. Knowles, J. and D. Corne, “On Metrics for Comparing Non Dominated Sets”, IRIDIA,

Free University of Brussels Belgium, Dept. of Computer Science, University of

Reading, December 20, 2001.

14. Zhang, Q. and H. Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based on

Decomposition”, IEEE Transactions on Evolutionary Computation, vol. 11, no. 6,

December 2007.

15. Liu, B., V. Fernandez, Q. Zhang, M. Pak, S. Sipahi and G. Gielen, “An Enhanced

MOEA/D-DE and Its Application to Multiobjective Analog Cell Sizing”, IEEE,

Congress on Evolutionary Computation, 23 July 2010.

16. Zhang, Q. and Y. W. Leung, “An Orthogonal Genetic Algorithm for Multimedia

Multicast Routing”, IEEE Transactions On Evolutionary Computation, vol. 3, no. 1,

April 1999.

17. Liu, B., F. V. Fernandez, G. Gielen, R. C. Lopez and E. Roca, “A Memetic Approach

to the Automatic Design of High-Performance Analog Integrated Circuits”, ACM

Transactions on Design Automation of Electronic Systems, vol. 14, no. 3, May 2009.

18. Messac, A., A. I. Yahaya, C. A. Mattson, The normalized normal constraint method for

generating the Pareto Frontier, Springer, June 2003.

118

19. Das, S., A. Konar and U. Chakraborty, “Two improved differential evolution schemes

for faster global search”, Genetic and Evolutionary Computation Conference, 2005. pp.

991-998.

20. Price, K., R. Storn and J. Lampinen, Differential Evolution. A Practical Approach to

Global Optimization, Springer, 2005.

21. Coello Coello, C. A., G. B. Lamont, D. A. V. Veldhuizen, Evolutionary Algorithms for

Solving Multi-Objective Problems, p. 189.

22. Li, H. and Q. Zhang, “Multiobjective optimization problems with complicated Pareto

sets, MOEA/D and NSGA-II”, IEEE Transactions on Evolutionary Computation,

2008. pp. 1-19.

23. CEC 2009, Benchmark Problems and Test Conditions, “CEC 09 MOEA Competition”,

 http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm.

24. Agarwal, A. et al., “Fast and accurate parasitic capacitance models for layout-aware

synthesis of analog circuits”, Proc. of DAC, pp. 145-150, 2001.

25. Mueller, D. et al., “Trade-off Design of Analog Circuits Using Goal Attainment and

“Wave Front” Sequential Quadratic Programming”, Proc. Of DATE, pp. 16-20, 2007.

26. Leyn, F. et al., “An Efficient DC Root Solving Algorithm with Guaranteed

Convergence for Analog Integrated CMOS Circuits”, Proc. of ICCAD, pp. 304-307,

1998.

27. Leyn, F. et al., “Analog Circuit Sizing with Constraint Programming Modeling and

Minimax Optimization”, Proc. Of ISCAS, pp. 1500-1503, 1997.

28. McConaghy, T. et al., “Trustworthy, variation-aware structural synthesis of analog

circuits via structural homotopy”, IEEE TCAD, pp. 1281-1294, 2009.

119

29. Graeb, H., Analog Design Centering and Sizing, Spring, 2009.

30. Wasserman, P. D., Neural computing: theory and practice, New York: Van Nostrand

Reinhold, 1988.

31. Kelley, C., “Solving Nonlinear Equations Using Newton’s method”, SIAM, 2003.

32. Press, W. et al., Numerical Recipes in C, The Art of Scientific Computing (2nd edition),

Cambridge University Press, 1999.

33. Boor, C., A Practical Guides to Splines, Springer-Verlag, 1978.

34. Sönmez, Ö. S., Circuit Level Analog Design Automation, PhD Thesis, Boğaziçi

University, Istanbul, 2010.

35. Iman, R. L., J. M. Davenport, and D. K. Zeigler, “Latin Hypercube Sampling (A

Program User's Guide)”, Technical Report SAND79-1473, Sandia Laboratories,

Albuquerque, 1980.

