
 
 

AN ENHANCED MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM  

(MOEA/D-DE) FOR THE APPLICATIONS OF ANALOG SIZING WITH  

BOTH W/L AND A NOVEL OPERATING POINT DRIVEN (OPD) BASED METHODS 

 

 

 

 

 

 

By 

Murat Pak 

B.S. Electronics Engineering, İstanbul Technical University, 2008 

 

 

 

 

 

 

 

 

Submitted to the Institute for Graduate Studies in 

Science and Engineering in partial fulfillment of  

the requirements for the degree of 

Master of Science 

 

 

 

 

Graduate Program in Electronics Engineering 

Boğaziçi University 

2011 

 

 



iii 
 

 

ACKNOWLEDGMENTS 

 

 

 First I would like to give my thanks to Professor Günhan Dündar for his guidance, 

leading and helpful supervising during my thesis. 

 

 I would like to thank to my fiance Hacer Kenar for her existence in my life and her 

infinite support during my thesis work. 

 

Later I would like to give my appreciation to my family, my father Halil Pak, my 

mother Hediye Pak and my sister Aylin Pak for their support during the whole life I had so 

far.  

  

 I also feel so lucky to know Mustafa Çelik, my best friend, who supported me for 

my whole education life. 

  

 I am very grateful to all members of ESAT-MICAS, Katholieke Universiteit 

Leuven and especially to my supervisors Bo Liu and Professor Georges Gielen. Also I will 

not forget to thank to my project friend Suha Sipahi and all members of BETA, Boğaziçi. 

 

 Last but not the least, I would like to express my thanks to TUBITAK for their 

financial support during my graduate degree. 

 

 

 

 

 

 

 

 



iv 
 

 

ABSTRACT 

 

 

AN ENHANCED MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHM  (MOEA/D-DE) FOR THE APPLICATIONS OF 

ANALOG SIZING WITH  BOTH W/L AND A NOVEL OPERATING 

POINT DRIVEN (OPD) BASED METHODS 

 

 

 In today’s electronics world, due to the growing requirements of mixed 

signal VLSI designs and the SoCs (system on chip), the design complexity is increasing 

drastically. Since the well-designed CAD tools can easily support the design of the digital 

circuits, analog CAD tools are still not enough for the needs of mixed signal VLSI designs 

and SoCs. One of the biggest reasons for this deficiency is the complex design procedure 

of an analog system. To design an analog circuit is much harder than designing a digital 

circuit. However, the world we live in is analog and there is no way to avoid analog 

circuitry. For all these reasons strong algorithms are trying to be implemented to automate 

analog circuit design. The sizing problem of analog circuits to obtain the best performance 

is an important subject of analog design automation.  

 

 First of all, the reason why Evolutionary Algorithms are used for the analog sizing 

problem has been explained. Then, a Multiobjective Evolutionary Algorithm based on the 

Decomposition of the objective functions has been used as a background work. Lots of 

improvements have been realized to improve the quality of this method for more complex 

analog circuit sizing problems. Also, the optimization variables have been changed to DC 

operating points of the transistors instead of W/L values, in order to improve the search 

space. All the methods were implemented and the results are given in the work. It can be 

seen that the proposed W/L or the novel OPD (operating point driven) based methods are 

so powerful algorithms to optimize the analog sizing problem. During the thesis work, a 

folded cascode amplifier and a gain boosted amplifier have been optimized. 
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ÖZET 

 

 

ANALOG DEVRELERİN TRANSİSTÖR BOYUTLARININ 

BELİRLENMESİ AMACIYLA KULLANILAN W/L VE OPD 

YÖNTEMLERİNİ İÇEREN GELİŞTİRİLMİŞ ÇOK OBJEKTİFLİ 

EVRİMSEL ALGORİTMA 

 

 Bugünün elektronik dünyasında, karışık sinyal VLSI (çok geniş ölçekli 

tümleşik devre) tasarımlarının ve SoC (tek çip üzerinde bir bütün sistem) yapılarının 

yüksek performans gereksinimleri devre tasarımlarını giderek karmaşık hale getirmektedir. 

Sayısal devre tasarımları için geliştirilmiş çok sayıda kaliteli CAD (bilgisayar destekli 

tasarım) aracı olmasına rağmen analog devre tasarımları için bu durum bu kadar iyimser 

değildir. Bunun en önemli nedeni analog devre tasarımının karmaşıklığıdır. Analog devre 

tasarımları sayısal devre tasarımlarına göre çok zordur. Ancak, içinde yaşadığımız dünya 

analog bir dünyadır ve her ne kadar sayısal tasarımlar tercih edilse de analog devre tasarımı 

sürekli var olacaktır. Bütün bu sebeplerden dolayı analog devre tasarımının otomasyonu 

için güçlü algoritmalar gerçeklenmeye çalışılmaktadır. Analog tümdevrelerdeki 

transistörlerin boyutlarının en iyi devre sonuçlarının eldesi için belirlenmesi analog tasarım 

otomasyonunun önemli bir öğesidir. 

 

 Tez çalışmasında önce analog devrelerde transistör boyutlarının optimizasyonunun 

neden Evrimsel Algoritmalarla yapıldığı ve bu algoritmaların özellikleri açıklandı. Daha 

sonra Çok Performans Fonksiyonu olan ve farklı problemlerin ayrıştırılmasına dayanan bir 

Evrimsel Algoritma ön çalışma olarak alındı. Bu algoritmanın kompleks analog devrelerde 

çalışabilmesini sağlayacak çok sayıda iyileştirme yapıldı. Optimizasyon parametreleri W/L 

ve transistörlerin DC akım ve gerilim değerleri olacak şekilde algoritma geliştirildi. Tüm 

sonuçlar tez boyunca raporlandı. Yapılan testler her iki yöntemin de transistör boyutları 

optimizasyonundaki gücünü göstermektedir. Tez boyunca bir katlanmış kaskod devre 

yapısı ve bir kazancı arttırılmış kuvvetlendirici yapısının optimizasyonu yapılmıştır. 
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1. INTRODUCTION 

 

 

1.1.  Background Information and Aim of the Thesis 

 

The  nature, we live in, is mostly analog and the communication with the nature is 

necessarily analog. The advent of computers and digital processing methods resulted in 

processing of discrete signals which are not like the ones of the nature. This suggested that 

analog circuit design was going to lose its importance; however, especially the need for 

interface between the real world and digital circuits resulted in analog circuit design to be 

even more vital. They provide the necessary signal modification and conditioning for 

digital processing [1]. 

 

Because of some economic and other reasons, complete systems that occupy more 

than one board have started to be integrated on a single chip in recent years, which is 

known as System on a Chip (SoC). Like application specific integrated circuits (ASIC), 

such systems also require important amount of analog hardware. A general figure of a SoC 

is given in Figure 1.1. 

 

 

Figure 1.1. The block diagram of a SoC  

 

A trend to replace analog circuit functions with digital computations (like digital 

signal processing instead of analog filtering) are quite often; however, there are some 

circuits that will always remain analog for ASIC and for SoC needs. These analog circuits 

can be classified into three main parts: 
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i. System’s input side: Signals coming from a sensor, antenna, microphone, wireline 

and so on must firstly be sensed and then amplified and/or filtered up to a level 

which is useful for digitization with reasonable signal to noise and distortion ratio 

(SNDR). Low noise amplifiers (LNA), variable gain amplifiers (VGA), filters, 

oscillators etc. are the analog circuits used for the input side of the system. These 

blocks are used in applications such as instrumentation, sensor interfaces, process 

control loops, smart cards, telecommunication receivers, and recording. 

 

ii. System’s output side: The signal reconverted from digital to analog has to be 

strengthened to be able to drive the output load. This load can be an antenna, 

loudspeaker etc. The analog circuits of the output side of the system are typically 

the drivers, buffers, filter, oscillators and mixers. Sample applications are  

telecommunication transmitters, audio and video, process control loops, etc. 

 

iii. Mixed signal (analog and digital signal together) circuits: DSP (digital signal 

processing) unit and the analog interface parts are integrated to each other through 

mixed signal circuits. Analog design is an important part of these kind of circuits. 

Typical circuits used here are the sample and hold  (S/H) circuits, analog to digital 

converters (ADC), digital to analog converters (DAC), phase locked loops (PLL) 

and frequency synthesizers [2]. 

 

In addition, the above circuits, given in three main parts, require stable references 

for their operations which are generated by voltage and current reference circuits, crystal 

oscillators, etc [2]. 

 

Clearly, analog circuits are necessary in all electronic applications that forms the 

interface with the outside world, and they will be more important in life as long as the 

designs go towards intelligent homes, mobile road/air offices and wireless workplaces of 

the future [2]. 

 

 Growing requirements, especially for single chip mixed VLSI designs together 

with the common trends towards smaller feature sizes and higher scales of integration have 
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brought about new dimensions in the complexity of the circuit design. Still, while the 

design of digital circuits is throughly supported by well-designed CAD tools, analog CAD 

tools are still not enough [1]. 

 

In digital circuit design, structured abstractions and hierarchy are fully used to 

generate complex systems with large numbers of devices. For example, digital algorithms 

can be easily developed with the use of hardware description languages (HDL) for 

previously determined (in terms of transistor dimensions and gate layouts) logic gates. In 

contrast, much of the design of analog circuits are still hand-crafted by expert circuit 

designers. To also speed up the analog design with high quality solutions, efficient 

methodologies supported by analog CAD programs are needed. CAD tools specifically 

tailored to analog integrated circuit (IC) design can improve the design process in several 

ways. These are as given below: 

 

i. Reducing the design times: With the use of the CAD tools the productivity of 

course increases. Also the time-to-market process gets faster and easier. 

 

ii. Making the design process simpler: With the use of CAD tools, any designer will 

be able to design standard analog circuits. 

 

iii. Improving the probability of correct designs of the first fabrication run: Automating 

the correctness capable design tasks reduces the possibility of making errors. 

 

iv. Reducing production and design cost: Shorter design times and smaller design 

cycle/success ratio (the ratio which defines the successful number of designs in a 

whole design cycle) are obtained. 

 

v. Improving the yield: Some computer-aided methods based on estimating and 

enhancing the manufacturing yield of circuit are also popular. The main goal is 

helping the return backs of the circuit to be faster. 

 

vi. Allowing designs with different fabrication processes: CAD tools can be used to 

design circuits for different technology files of different fabrications.  
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vii. Design reuse: The knowledge held by the design systems can be re-used in order to 

design circuits. This helps designer to spend less time especially on the design of a 

complex system (since there are lots of same circuit blocks) [1]. 

 

Due to all these reasons, analog EDA (electronic design automation) has been a 

challenging topic for today’s electronic systems in the last decades. 

 

Analog EDA industry started with drawing schematics with transistors and layouts. 

However, there are lots of variables in a design cycle which can be automated by CAD 

tools. These can be classified as follows: 

i. Simulation: The first and most important simulation CAD tools is known as SPICE 

and it is used for calculating the time domain (transient analysis) and AC behavior 

(AC analysis) of an electronic circuit. In today’s technology, time efficient 

computer simulations are very important since the number of the transistors are 

increasing for the circuits to be simulated. However, the original simulation 

methods are still useful for small size circuits operating at moderate frequencies. 

The commercialy available simulation techniques are however very diverse with 

frequency domain approaches, discrete time methods and large scale algorithms 

etc. 

 

ii. Modeling: Simulation results are formed by using the models describing the 

behavior of the system. This comes with a need of accurate models. For example, 

models of larger dimensioned transistors and low frequencies are improved for 

deep-submicron technologies or RF applications. Beyond the level of individual 

transistors, various types of models are used for the whole building blocks with 

different trade-offs between accuracy and complexity and written in different 

HDL’s. There are also some algorithms developed to automatically generate good 

models. 

 

iii. Layout: Layout is an important part of the analog design cycle since it determines 

the fabrication properties. There are some tasks used to automate the layout 
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drawing in analog IC’s. The generation of physical structure of individual devices 

(transistors), their placement on the chip and interconnections between transistors 

are some of them. Nowaday’s popular and come tools are the ones extracting the 

layout parasitics and checking the correctness of layouts. 

 

iv. Analysis: Analog designers are generally used to do the calculations by hand 

analysis by using characteristic numbers, tranfer functions etc. However with the 

improvement in IC design, more complex analysis such as yield estimations and 

noise effects started to be analysed. 

 

v. Synthesis: The design cycle of an electronic circuit is based on selecting the 

transistors, sizing them and then using interconnections. Generally, analog designer 

chooses the circuit schematic and then determines the dimensions by executing the 

design plan which is basically translation of the analysis results into a set of 

equations from which the sizes are calculated. Several CAD tools have been 

implemented by using mathematical optimization methods for solving the problem 

of transistor sizing. This is the topic of the thesis work. More recently, efforts have 

been made to enhance the degree of automation of the design process towards the 

level of the actual synthesis of analog and mixed signal systems, which also 

includes the selection of the topology. Sizing problem is solved for elementary 

blocks like op-amps or repetitive structures like filters. 

 

vi. Verification: Since the simulations are using the behavior of the system for a set of 

inputs, verification is used to show the correctness of the system for all input 

conditions. Works on this research area has started to be worked on in last 10 years 

[3]. 

 

The CAD tool realized for the thesis work is based on the synthesis process. The 

goal of the thesis work is finding optimal dimensions for the transistors of an already 

determined topology in order to get the best circuit performance in terms of gain, gain 

bandwidth product, phase margin etc. 
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For the synthesis of the analog circuit, the topology should be chosen. There are 

several methods that can be used to obtain the architecture in the design cycle. Analog 

synthesis tools can be classified into four categories according to their architecture 

selection mechanisms: 

 

i. Selection before or after sizing: Finding optimal values for the optimization 

parameters is not dependent on the selection of the architecture. To choose a 

topology, the designer uses a knowledge-assistant tool or his/her experience.  

 

ii. Selection during sizing: The topology is selected during the execution of the sizing 

algorithm. Options for the topology are stored in a library as entire architectures or 

as different choices for subblocks of a generalized architecture.  

 

iii. Top-down creation: The functionality of the system is described at a higher 

abstraction level (usually with a kind of hardware description language). Following 

steps are used to map this description onto a specific topology. Sizing happens 

either during or after the mapping operation in a constraint transformation step. 

 

iv. Bottom-up generation: The architecture can also be created from a low abstraction 

level. The design usually starts at the circuit level by connecting individual 

transistors with each other in a knowledge-based, systematic or stochastic way. It is 

possible to obtain several new circuit topologies with this class of design 

approaches [4]. 

 

In Figure 1.2. an overview of the analog synthesis tools developed in the last 20 

years has been given. The tools are classified according to their topology selection 

mechanisms which are selection before or after sizing, selection during sizing, top-down 

creation and bottom-up generation as given above. The analog synthesis tool developed for 

the thesis work is a selection before sizing based method. The goal here is first selecting a 

topology and then optimizing the dimension of the transistors by using optimization 

techniques. 
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Figure 1.2. Overview of major analog EDA tools for analog synthesis developed in 

the last 20 years and published in open literature [4] 

 

In most design strategies the topology is selected before and then the sizes are 

changed to obtain the performance values required. If the specifications are not met at the 

end, redesign is done. The design flow is shown in Figure 1.3 and Figure 1.4. 

 

 

Figure 1.3. Schematic representation of the design strategy applying selection of the 

topology before or after sizing [4] 
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Figure 1.4. Example of a typical design flow for a basic analog cell consisting of topology 

selection followed by circuit sizing [5] 

 

The calculation of the performance is satisfied by evaluating a performance function 

(analytical equations, simulation, lookup tables, symbolic analysis or performance models 

etc.). In the thesis work the performance evaluator is SPICE simulations realized by using 

HSpice. In case of multi-objective algorithms, multiple combinations of parameter values 

are returned for a single topology, from which the best one is then selected. Re-design is 

only necessary when none of the dimensioned topologies meets the specifications. For 

specific building blocks, like op amps, the circuit level is usually selected. Sometimes this 

is combined with the physical level, e.g., VCOs or LNAs. On the other hand, the 

behavioral level is more appropriate for larger systems, like PLLs or complete RF systems 

[4]. 

 

So far what has been mentioned is the history of EDA; CAD tools existing for 

analog circuit design, the classification based on the topology selection for analog synthesis 

tools and their design flows. From the design flows given in Figure 1.3, it can be seen that 

the sizing is mainly realized by the optimizer which is an optimization algorithm. There are 

several algorithms used for single or multi objective optimization. The details of 

optimization tools will be given in Chapter 2. For now it should be noted that evolution 

based algorithms are generally used for the analog sizing problem because of their 

following properties: They can be used for both single and multi objective optimization, no 

derivatives of the optimization variables are needed, for any type of problem global 

convergence can be obtained, there is no need for specific design knowledge, and 
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convergence is satisfied after enough iterations. For all these reasons, the thesis work is also 

a multi-objective evolutionary algorithm synthesizer.  

 

Decomposing the objective functions (the functions to be optimized) into several 

numbers of different scalar problems is known to be improving the convergence quality. 

This information has been used as the background information of the thesis work and then 

lots of improvements have been realized. They are basically the generation of weight 

vectors of the objective functions, using differential evolution as a search algorithm, 

implementing a novel replacement mechanism for the selection of the individuals, different 

normalization and decomposition methods, etc. All these concepts will be explained in the 

following chapters. Also the literature shows that there are important advantages of 

optimizing the DC operating points of a transistor instead of W values in order to obtain 

better performance results of the circuit.  

 

As a result, since analog CAD tools are not good enough to satisfy the needs of 

analog design automation, a thesis work on analog synthesis has been realized. The tool 

shows good performance in terms of every criteria of design automation (like convergence 

rate etc.) compared to the other methods realized.  

 

1.2. Outline of the Thesis 

 

The next chapter focuses on different optimization techniques by mentioning their 

advantages and disadvantages. From this classification why Evolutionary Algorithms are 

used for analog synthesis tools is also clarified. Since the optimization of multiple 

performance functions is an important concept for analog synthesis, some works on multi-

objective optimization has also been realized. Later, evolutionary algorithms are explained 

with their components used for optimization. At the end, differential evolution (DE) is 

explained since it will be used as a search engine for the optimization algorithm realized. 

 

In Chapter 3, the metrics used for comparing the test results of different methods 

during the thesis work is given. Also, analog circuits used for optimization (as test cases) 

are introduced with their variables to be optimized. 
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In Chapter 4, the algorithm MOEA/D which has been used as a background work is 

introduced. The idea of using decomposition in evolutionary algorithms is explained and 

the flow chart of the algorithm is given by explaining its advantages and disadvantages. 

 

In Chapter 5, the new algorithm proposed, MOEA/D-DE is given with its flow 

chart. The test results comparing different enhancing methods are also given. A novel 

method for the weight matrix initialization of the objective function is explained and the 

results are compared with the previous technique. Also, different methods of 

decomposition and normalization are performed. A new replacement mechanism and 

implementing DE to the Evolutionary Algorithm is also performed and the comparisons of 

the tests are given. The algorithm developed is used for sizing of an analog circuit. 

 

Chapter 6 includes another novel work based on operating point driven methods. 

The advantages of OPD methods are given and a novel OPD method called OIOPD is 

explained. The proposed method is compared with the existing methods and the results are 

given. Also, some tests on sizing of a complex analog circuit are realized. 

 

The last chapter concludes the thesis work by giving the final conclusions and the 

possible future works. 
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2. OPTIMIZATION METHODS AND EVOLUTIONARY 

ALGORITHMS 

 

 

      This chapter focuses on the different optimization methods and the selection of the 

evolutionary algorithms as the main optimization search algorithm for the analog sizing 

problem. The concept of multi-objective optimization is also given with the definition and 

components of the evolutionary algorithms. The differential evolution which was used in 

the thesis work is also introduced. 

 

2.1.  Optimization Methods 

 

2.1.1. Introduction to Optimization Methods and their Properties 

 

The values of the fitness functions can be changed by altering the variables. Finding 

the optimal values for these variables is known as optimization. For example, for an analog 

IC optimizations, W and L values have to be optimized in order to obtain best 

specifications like gain, power etc. Some methods have been realized to cope with the 

optimization problem. For analog circuit optimization it should be noted that complex 

device models can make the feasibility space of an analog system quite difficult. It should 

be noted that the problem is nonlinear and nonconvex and multiple locally optimal points 

can be faced. Furthermore, lack of analytical expressions for the performance function 

results in the need for time-consuming numerical function evaluations through simulations 

leading to long optimization processes. There are several properties which can characterize 

the different methods for optimizing the parameters of analog and mixed-signal systems: 

 

i. The objective functions to be optimized can be single or multiple. 

 

ii. For both deterministic function or methods based on stochastic variables, the 

individuals are optimized in each iteration and they can result in different solutions. 

 

iii. An optimization algorithm may guarantee that the result of the optimization process 

can reach to the global optimum, whereas others can get stuck in a local optimum. 
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This is one of the most critical properties for the selection of the optimization 

algorithm. 

 

iv. The algorithm may have limitations on the models used to represent the system. For 

example, continuity or convexity are some of these limits. 

 

v. The analog and mixed-signal system optimization can be defined as a mathematical 

problem which doesn’t need introducing any design knowledge about the system. 

Further, some heuristics can be translated into a set of mathematical sizing rules, 

e.g., to guarantee the functionality or robustness of subblocks. 

 

vi. The optimization parameters can be discrete values or continous. When the 

continuous values are used, they may be transformed into discrete values once the 

final solution has been found (e.g., for transistor dimensions), although this 

operation can deteriorate the performance. 

 

vii. An algorithm can theoretically guarantee to converge to the global optimum; 

however, it may be reached only after an infinite number of iterations. This is also 

an important thing to be considered. 

 

viii. The optimization time needed by an algorithm depends on properties, like the 

convergence rate, the complexity of the calculations at each step, the different 

possibilities for choosing a cost function, the population size, optimization 

algorithm, etc. This is one of the most common properties of all optimization 

algorithms [4]. 

 

2.1.2. Classification of the Optimization Methods 

 

All the above properties are related to lots of different optimization methodologies. 

Roughly speaking, six base categories are frequently seen in CAD tools for analog 

synthesis: 
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i. Design knowledge: This optimization method is used in CAD tools by compiling 

complete design plans for each topology and objective or by building an expert 

system which contains general rules. Analog EDA tools often firmly contain design 

knowledge, like boundaries and typical values for parameters, initial rough sizings 

based on simplified models, or module generators or templates for layouts. Explicit 

incorporation of heuristics as mathematical relations is achieved by using the sizing 

rules method. 

 

ii. Local unconstrained optimizers: Defining a scalar function to minimize is the 

method used by the transformation of the sizing problem for analog sizing into 

local unconstraint optimization problem. At low abstraction levels, models and 

specifications for manufacturing or operating tolerances can be considered. The 

scalar function may be referred to as the objective, error performance or cost 

function. To find the optimal value of the cost function, lots of algorithms have 

been developed. Some examples of the methods implemented in analog CAD tools 

are simplex methods, gradient-based methods, Newton-like approaches and trust 

region.  

 

iii. Constrained optimization: Another method is based on considering the analog 

sizing problem as a constrained optimization problem, also known as linear, 

quadratic or nonlinear programming, instead of combining all objectives and 

constraints into one scalar function. Since problems in analog circuit optimization 

are almost always nonlinear, nonlinear programming is used most commonly. 

Several algorithms have been successfully applied for analog designs, like gradient-

based approaches, and SQP for op amps, LNAs, analog filters etc. A global 

optimum is guaranteed with a Geometric Program (GP) which has been used for 

sizing several analog systems, like CMOS opamps, multi-stage amplifiers, on-chip 

inductors etc. The biggest disadvantage of this method is the restriction on the 

modeling strategy, especially if a model has to be derived for each topology by 

hand. Possible solutions consist in fitting the performance function with a 

posynomial model or solving a series of GPs. Of course, this makes the procedure 

go on slower and makes the method less attractive. 
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iv. Greedy stochastic optimization: These algorithms are based on accepting a new set 

of parameters as long as there is improvement. Elementary stochastic optimization 

methods like a random grid search and random step are not feasible for finding 

optimal parameter values for an analog system because of the rather extended 

design space. Instead, they are usually encountered in combination with other 

approaches. A straightforward combination is with the design knowledge, like 

heuristics or information derived during the execution. Also, the gradient used in a 

deterministic approach can be replaced by an estimation based on random 

perturbations resulting in a stochastic approximation approach. A globally optimal 

point is more likely found (not guaranteed) if random pattern searches are 

combined with a population-based approach. 

 

v. Annealing: This method is based on starting from some point in the parameter 

space, and then a new set of parameters is derived by selecting statistically a new 

point in the neighborhood of the old one, or by applying a step of a local optimizer. 

Comparing to the greedy algorithms, up-hill moves have a certain probability to be 

accepted in annealing approaches and as a result the method can escape from the 

risk of the local minima. Consequently, after an infinite number of iterations, the 

global optimum can theoretically be reached. In a practical implementation; 

however, it is likely (although not guaranteed) that after enough iterations, the 

solution is close to the global optimum. The ability to calculate optimal dimensions 

without the need for derivatives makes the basic simulated annealing algorithm an 

attractive choice for optimization in analog CAD tools. Some of the applications 

for analog CAD are the sizing of general analog cells, op amps, VCOs, DS 

modulators and RF receivers, as well as layout generation. 

 

vi. Evolution: A population of individuals is created in these methods where the 

parameters of a creature are collected in its genome represented by a binary string 

(in original genetic algorithms), trees (in genetic programming) or real-valued 

vectors (in evolution strategies). In these methods each individual has a fitness 

value defining the cost function which is used for ranking and selection. During the 

optimization process, new generations are built up by genetic operators. These 

operators are selection, mutation, and recombination or crossover operators. 
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Usually, some adaptations are made to the original algorithms to guarantee 

convergence to the global optimum (e.g., by employing an elitist selection 

mechanism). However, similar to the annealing algorithms, this global optimum 

results only after an infinite number of generations [4]. 

 

The direct use of the function values, without their derivatives, is the thing that 

makes these algorithms able to be used in a wide application area. Analog CAD tools 

based on EAs have been developed to find the optimal parameters of various systems, like 

RF building blocks, voltage references, ADCs, op amps and power amplifiers. 

Evolutionary algorithms can also be employed for multi-objective optimization. The 

fitness then becomes a function of the Pareto dominance of the individuals [4]. 

 

The properties of the six base categories given above are listed in the Table 2.1 

according to their implementation in CAD tools. However, practical implementations can 

be based on a combination of these fundamental methods, e.g., simulated annealing 

followed by a traditional unconstrained algorithm, or a genetic algorithm and  simulated 

annealing method [6]. 

 

Table 2.1. The properties of different optimization techniques [4] 

 

 

From Table 2.1. and from the above explanations of the optimization methods, it 

can be seen that Evolutionary Algorithms have clear advantages on globally converging to 

the result, both single/multi objective optimization and no need for derivatives of the 
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optimization variables. These and other advantages of Evolutionary Algorithms have made 

them useful for complex problems like analog sizing. 

 

2.1.3. Classification of the Multi-objective Optimization 

 

Most optimization problems are multi-objective optimization in which all 

objectives should be taken into account. Since these objectives are usually creating a trade-

off between each other, it is impossible to find a single and best solution which supports all 

of the objectives. Instead, there are a number of “Pareto-optimal” solutions which can be 

explained by the fact that an improvement in an objective can only be satisfied with the 

lose in performance in at least one other objective. This is basically known as a trade-off 

between the objective functions [6]. 

 

Decision maker (DM) mechanism determines the importance of objective 

functions. The preferences may be done either before (a priori), during (progressive), or 

after (a posteriori) the optimization process [6]. 

  

A priori methods are the methods based on doing the preference specification 

before the solution process. These methods aggregates different objectives to one overall 

objective function and optimization result is then obtained with one optimal design. Of 

course, the result is strongly dependent on how the objectives were aggregated. Different 

methods have been developed to support the decision maker mechanism in a priori 

methods and on aggregating the objectives [7]. 

 

Progressive methods are used for the case of a priori methods can not determine the 

the preference information because of the complexity of the problem. Thus, the decision 

maker specifies and adjusts his/her preferences at the same time as he/she is learning more 

about the problem. However, a high effort is expected from the decision maker during the 

overall search process. Consequently, these methods are almost never used [7]. 

 

In the a posteriori methods [8,9,34],  optimization is realized without the decision 

maker articulating any preferences among the objectives. The result of this optimization is 

a set of optimal solutions which give a trade-off between the objectives. The decision 
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maker then has to trade the objectives against each other to select the final design. As a 

result, the optimization is realized before the decision maker clearly indicates his 

preferences. Basic a posteriori methods are the population based approach and the search 

based on Pareto solutions [7]. 

 

In the population based approach the population size, which is given as N, is 

divided into subproblems whose number is given as K. Subproblems are also known as the 

objective functions. Vector Evaluated Genetic Algorithm (VEGA) is an example for this 

type of approach. VEGA method is classified as a criterion selection technique in which 

subpopulations (subproblems) are shuffled together to realize a new population which has 

a size N. At the end crossover and mutation steps are applied to the resulting population 

untill a stopping criterion is satisfied. The disadvantage of VEGA can be told as the best 

chromosome at which the optimum decision for all set of functions is obtained, can be 

rejected as for some from them it is not optimum [7]. 

 

There are a several techniques based on searching the solution space first (for 

Pareto optimal solutions) and presenting them to the DM later. As seen, the advantage is 

that the solutions are independent of the preferences of the DM. The analysis has to be 

performed only once, since the Pareto set would not change as long as the problem remains 

unchanged. However, this method can have a problem about high computational effort. 

Another disadvantage is that the decision maker may have lots of solutions to choose from 

[7]. 

 

      The MOEA/D-DE algorithm that has been implemented during the project is a 

population based method, which is working with the subproblem logic.  

 

2.2.  Evolutionary Algorithms 

 

2.2.1 Introduction to Evolutionary Algorithms  

 

The evolution of nature, Darwinian theroy, has been a start for the evolutionary 

algorithms (EAs). The change of species adaptively by the principle of natural selection, 

which helps those individuals for survival and further evolution that are most suitable to 
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their environmental conditions are all included in these algorithms. The most of the 

applications of evolutionary algorithms are in optimization. To compare with traditional 

optimization techniques, evolutionary algorithms are more robust and can obtain a better 

balance between efficiency and efficacy for many different real-world problems. 

Evolutionary algorithms are usually used to solve the problems which are characterized by 

chance, chaos and nonlinear interactivity which tend to be intractable to traditional 

methods [10]. 

 

The basic definition that can be done for the EA techniques is the population full of 

individuals are getting into a natural selection because of the hard enviromental conditions 

and this results in a rise for the fitness of the population. Lets assume that a quality 

function given has to be maximised, first, a set of candidate solutions can be randomly 

created, i.e., elements of the function’s domain, and apply the quality function as an 

abstract fitness measure which is known as the higher the better. Based on this fitness, 

some of the better candidates are chosen to seed the next generation by applying 

recombination and/or mutation to them. Recombination is an operator applied to two or 

more selected candidates (parents) and creates one or more new candidates (the children). 

Mutation is applied to one candidate and results in one new candidate. Executing 

recombination and mutation leads to a set of new candidates (which is known as the off-

spring) that compete – based on their fitness (and possibly age) – with the old ones for a 

place in the next generation. This process can be iterated  until a candidate with sufficient 

quality (a solution) is found or a previously set computational limit is reached [11]. 

 

There are two components that form the basis of evolutionary systems. 

 

• Variation operators (recombination and mutation): They create the necessary 

diversity and thereby ease the novelty 

• Selection: It is a force to increase the quality 

 

The combination of recombination, mutation and selection generally leads to 

improving fitness values in consecutive populations. It is easy to see such a process as if 
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the evolution is optimising, or at least “approximising”, by approaching optimal values 

closer and closer over its course [11].  

         
It should be noted that many components of an evolutionary process are stochastic. 

During selection, the fitter individuals have a higher chance to be selected than less fit 

ones, but typically the weak individuals still have a chance to become a parent or to 

survive. For recombination of individuals the choice of which pieces will be recombined is 

random. Similarly for mutation, the pieces that will be mutated within a candidate solution, 

and the new pieces replacing them, are chosen randomly. The general scheme of an 

Evolutionary Algorithm as a pseudo-code is as follows: 

 

Figure 2.1. The general scheme of an Evolutionary Algorithm in pseudo-code [11]  

         
Evolutionary Algorithms (EAs) have a features which makes them available for the 

generation and testing of the optimization problems. They are as follows:  

         
• They are population based and process the whole collection of candidate solutions 

simultaneously, 

• EAs generally use recombination to mix information (for diversity aim) of more 

candidate solutions into a new one, 
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• EAs are stochastic [11] . 

         
 The structure of a single population evolutionary algorithm is given in Figure 2.2. 

As seen firstly an initial population is generated randomly and then according to the results 

of the evaluation of the objective function the optimization algorithm alters the design 

variables by using genetic operators. 

 

Figure 2.2. Structure of a single population evolutionary algorithm [12] 

 

For more details of EA (evolutionary algorithms), reference [11] can be checked. 

 

2.2.2 Components of Evolutionary Algorithms  

 

EAs have some components and each of these components must be specified in 

order to define a particular EA. Also, to obtain a running algorithm the initialisation 

procedure and a termination condition must be also defined. The components are as 

follows given below [11]:   

              
Representation: It is basically the definition of the individuals. The first step in 

defining an EA is to link the“real world” to the “EA world”, that is to set up a bridge 

between the original problem context and the problem solving space where evolution will 

take place.  



21 
 

Evaluation Function (Fitness Function): The evaluation function represents the 

requirements to adapt to. It forms the basis for selection, and thereby it facilitates 

improvements. In other words, it defines what improvement means and it represents the 

task to solve in the evolutionary context.  

         
The evaluation function is commonly called the fitness function in evolutionary 

computation (EC). Quite often, the original problem to be solved by an EA is an 

optimization problem. In this case the name objective function is used in the original 

problem context and the evaluation (fitness) function can be identical to, or a simple 

transformation of, the given objective function.  

         
Population: Possible solutions are kept in a population. A population is a set of 

individuals generating the solution set. Population size is an important represantation in the 

optimization algorithms and it means the number of the individuals in a population. In 

some Eas, a population has an additional spatial structure, with a distance measure or a 

neighbourhood relation. In such cases the additional structure has to be defined as well to 

fully specify a population.  

         
Parent Selection Mechanism: The goal of parent selection or mating selection is to 

distinguish among individuals based on their quality, in particular, to let the better 

individuals to become parents of the next generation. An individual is a parent if it has 

been selected to experience variation in order to create the off-spring. Together with the 

survivor selection mechanism, parent selection is responsible for pushing quality 

improvements. In evolutionary computation, parent selection is typically probabilistic. As 

a result, high quality individuals get a higher chance to become parents than those with low 

quality.  

         
Variation Operators: The role of these operators is to create new individuals from 

old ones. As a result they are the generation operators. Variation operators in evolutionary 

computation are divided into two types.  
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Mutation: Mutation, a variation operator, is applied to one genotype and delivers a 

(slightly) modified mutant, the child or its off-spring. A mutation operator is always 

stochastic: its output, the child, depends on the outcomes of a series of random choices. It 

should be noted that an arbitrary unary operator is not necessarily seen as mutation. A 

problem specific heuristic operator acting on one individual could be termed as mutation 

for being unary. However, in general mutation is supposed to cause a random, unbiased 

change. For this reason it might be more appropriate not to call heuristic unary operators 

mutation.  

         
Recombination: A binary variation operator is called recombination or known as 

the crossover. As it can be understood from its name, such an operator gets information 

from two parent genotypes into one or two off-spring genotypes. Similar to mutation, 

recombination is a stochastic operator: the choice of what parts of each parent are 

combined, and the way these parts are combined, depend on random drawings.  The 

principal behind recombination is simple: an off-spring can be produced by mating two 

individuals with different but desirable features. So the off-spring will have both of the 

features of the mating individuals. 

         
Replacement: This is also known as survivor selection mechanism. The aim of 

survivor selection or environmental selection is to distinguish among individuals based on 

their quality. It is similar to parent selection; however it is used in a different stage of the 

evolutionary cycle. Also, the survivor selection is often called replacement or replacement 

strategy.  

         
Initialisation: Initialisation in EAs is based on randomly generating the first 

population. During this work, to make the initialisation fair, compared tests are realized 

with the same seed number for Matlab’s random number generation. In principle, problem 

specific heuristics can be used in this step aiming at an initial population with higher 

fitness. Whether this is worth the extra computational effort or not is very much dependent 

on the application at hand. There are, however, some general observations concerning this 

issue based on the so-called anytime behaviour of EAs.  
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Termination Condition: There are two cases to take into account about the 

termination condition. In case the problem has a well known optimal fitness level, 

probably coming from a known optimum of the given objective function, then reaching 

this level (perhaps only with a given precision > 0) should be used as stopping condition. 

However, there are no guarantees to reach an optimum in Eas because of their stochastic 

nature, as a result this condition might never get satisfied and the algorithm may never 

stop. This requires that this condition is extended with one that certainly stops the 

algorithm. Commonly used options for this purpose are the following: 

• The allowed maximum CPU time; 

• The limit for the number of evaluations of the fitness functions; 

• The limit defining the improvement in the fitness values 

• The population diversity comparing to a given threshold [11].  

         
The termination condition for the project is based on the threshold number of the 

generations. That can also be told to be the number of the iterations for the multi-objective 

optimization algorithm running. 

 

2.2.3. Multi-objective Evolutionary Algorithms  

  

 In recent years, the interest in “evolutionary multi objective optimization” 

(which the solution optimizes all of the objectives) has increased. The problem of these 

methods is that, an ideal solution for all objectives may never be obtained in practical 

applications. Optimal performance (as long as such an optimum exists) according to a 

single objective, often implies unacceptably low performance in one or more of the other 

objective dimensions, creating the need for compromise to be obtained. In their 

applications and nature, evolutionary algorithms explore a set of possible solutions 

simultaneously. This method let the search for an overall set of Pareto optimal solutions, at 

least approximately, in a single run of the algorithm unlike the mathematical programming 

methods. Moreover, these algorithms are less susceptible to problem dependent 
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characteristics, such as the shape of the Pareto front and the mathematical properties of the 

search space since they are so important on mathematical programming techniques [10]. 

The first practical approach for multi objective optimization using evolutionary 

algorithms was the VEEA, vector evaluated evolutionary algorithm. This method includes 

the concept of subpopulation and the implementation of recombination and mutation 

operators on each objective function. None of the other evolutionary algorithms, which try 

to promote multiple solutions, directly use the actual definition of Pareto optimality. The 

Pareto-based fitness assignment is assigning equal probability of reproduction to all non-

dominated individuals in the population. This method assigns rank 1 to the non-dominated 

solutions, and then deletes them from contention, then find a new non-dominated set in the 

rest of the individuals, ranked 2, and so forth until all individuals in the population are 

assigned ranks. Since the high rank individuals have higher fitness values, they have more 

chance to reproduce offspring and be chosen into next generation. After VEEA, a multi-

objective genetic algorithm (MOGA) has been proposed using a slightly different fitness 

evaluation scheme, whereby an individual's rank corresponds to the number of individuals 

in the current population by which it is dominated. Non-dominated individuals are, 

therefore, all assigned the same highest rank, while dominated ones are penalized 

according to the population density in the corresponding region where this individual is 

dominated. Also a similar sorting and fitness assignment procedure has been implemented, 

which is called NSGA, the non-dominated sorting genetic algorithm, but based on 

Goldberg's version of Pareto ranking. Also, niched Pareto genetic algorithm (NPGA) was 

proposed using a tournament selection method based on Pareto dominance as an alternative 

to the deterministic rank-based selection. More recent algorithms are NSGA-II [8], and the 

strength Pareto evolutionary algorithm (SPEA2) algorithm [9].   

 
The general procedure of MOEA is like the one in evolutionary algorithms for 

single-objective optimization [10]. 

         
MOEAs realize the search by maintaining a population of individuals at time t 

which is given as 1( ) { ( ),... ( )}NP t p t p t= . The general procedure is given in Figure 2.3. 
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        Figure 2.3. The General Procedure of MOEA [10] 

 
The use of probabilistic operators is because of generating a new and better 

population ( 1)p t + . This step reproduction. Each ( ) ( )ip t P t∈  represents a potential 

solution to the problem. The initialization and operations are critical for the performance of 

the algorithm. The data structure to represent a solution is usually tailored with the 

consideration of specific problems. Data structure which have been specifically designed 

for real problems mostly reduce the effort in the search process [10]. 

 

2.3. Differential Evolution (DE) 

  

Differential Evolution (DE) is an evolutionary algorithm used in optimization 

problems. There are several variants of the original differential evolution. The one 

described below has been chosen as an example to explain the basics of the DE. The main 

operators controlling the evolutionary process are the reproduction and selection operators 

[10]. 

The algorithm works with the general idea of an evolutionary algorithm. An initial 

population is created by random selection and then evaluated; then the algorithm works in 
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the flow chart of generating offspring, evaluating offspring, and selecting individuals to 

create the next generation. In DE, for every individual in the parent population, the 

following reproduction operator is used to create its offspring [10]:       

 

                                 
1

' . (1 ). . ( )k k
a b

K

i best i i ik
p p p F p pγ γ

=
= + − + −∑                           (2.1)      

 

bestp  is the best individual in the parent population, 'ip  is the offspring that is 

generated , γ  represents greediness of the operator, and K is the number of perturbation 

vectors, F is the scale factor of the perturbation, and k
ai

p  and k
bi

p  are randomly selected 

mutually distinct individual pairs in the parent population. The DE approach is shown 

schematically in Figure 2.4. 

 

 

Figure 2.4. Illustrative example of differential evolution for single objective optimization, 

in a 2-dimensional decision space [10] 

         
The basic idea behind the DE is adapting the search step naturally along the 

evolutionary process in a manner that trades exploitation off against exploration. The scale 

of the perturbation vectors is proportional (roughly) to the extent of the population 

diversity. At the beginning of the evolution, since the individuals are far away from each 

other, the perturbation is large. As the evolutionary process reaches to the final stage, the 

population converges to a small region and the perturbation gets smaller. As a result, the 

adaptive search step benefits the evolution algorithm by performing global search with a 

large perturbation step at the beginning of the evolutionary process and refines the 

population with a small search step at the end [10]. 
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The darker area in Figure 2.4 is for the better fitness values. The thick solid arrow is 

for the differential vector, and dashed arrows represent the perturbation vectors. The 

individual ip  creates its offspring 'ip  after the reproduction operation.  

         
The selection operator in DE compares the fitness values of the parent and 

offspring and chooses the better one as shown in Equation 2.2. 

 

                              

'( ) '( ) ( )

1

( )

( ) ( )t t t

i i it

i t

i

p if p p
p

p otherwise

+
 Φ > Φ 

=  
  

                                (2.2)      

 

For more details about the DE approaches a PhD thesis work on multi-objective 

differential evolution [10] can be checked. 
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3. PERFORMANCE METRICS AND TEST CIRCUITS FOR THE 

ALGORITHMS IMPLEMENTED 

 

 

To compare the results of different methods for multi-objective optimization, some 

performance metrics and some analog circuitry to be sized are needed. The goal here is to 

try different benchmark problems and analog circuits to make the comparison fair and to 

use some metrics fairly comparing the distribution, range and especially dominance quality 

of a Pareto Front with another one. 

 

3.1.  Performance Metrics 

 

The metrics used to compare Pareto Fronts are about the distribution quality, 

dominance and the range of the objective functions. 

 

3.1.1 Schott’s Spacing Metric 

 

Schott  describes the following spacing metric: 

 

 

                                            
2_

1

1
.

1 i

i

n d d
n +

 
− 

−  
∑                                               (3.1)     

   

where ( )1 1 2 2min ( ) ( ) ( ) ( )i j i j

i jd f x f x f x f x= − + −
r r r r

,  , 1...i j n= , 
_

d  is the mean of all 

id  and n Z= . 

         
Schott’s Spacing Metric tries to find how evenly the points are distributed. It is an 

independent metric, induces a complete ordering, and is cardinal. It exhibits neither 

monotony nor relativity, since *Z  may be non-uniform. Used in conjunction with other 

metrics (as it is designed to be) it provides information about the distribution of vectors 

obtained. It has low computational overhead. It can be generalized to more than two 
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dimensions by extending the definition of 
id . Schott’s definition of 

id  does not specify the 

use of normalized distances, which may be problematic [13]. 

 

3.1.2 IGD Metric  

         
The inverted generational distance (IGD) is also used to determine the performance 

of the algorithms. Let *P  be a set of uniformly distributed points in the objective space 

along the PF. Let A be an approximation to the PF, the inverted generational distance from 

*P  to A is defined as:  

 

 

        
**

*

( , )
( , ) v P

d V A
IGD A P

P

∈=
∑

                                             (3.2)      

 

 

where ( , )d V A  is the minimum Euclidean distance between v and the points in A. This 

method has been used as the main performance metric in the CEC09 conference [23]. 

 

3.1.3 Number of Dominated Points 

         
 To find the true pareto (PF) from all possible pareto optimal solutions of lots 

of tests of different methods, first of all, the dominated points from the whole possible PF 

points are found out and then eliminated. So, the points left are used for the true Pareto 

which is also called Pareto Front to use with metrics like IGD in order to compare the 

performance of the methods.  

         
The number of the dominated points for a single test is also a good method 

especially for the dominance quality. If there are lots of dominated points in the objective 

space of a method, then this method can be considered to be easily dominated by the other 

methods. 
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Since m is the number of the objectives in a solution space with n individuals, for a 

PF with lots of solution points on it, for 1:i m=  if ( )i if P∀ >  is true for a minimization 

problem than the related individual of the solution space inquired is dominated. For 

example, if Method1 has 20 individuals dominated comparing to a PF1, Pareto Front, and 

if Method2 has just 3 individuals like that, for fair conditions (like same seed number of 

initialization) it will mean that Method2 is much better in terms of dominance quality. 

 

3.2.  Circuits to be Optimized 

 

In this part two analog circuits used for the optimization during the thesis work are 

presented. For the first part of the thesis work a W/L based method is used and for the tests 

of this method the W and L values of the transistors are the design variables. For the 

second part of the thesis an operating point driven (OPD) based method has been 

implemented. The design variables for this method are the DC voltage and current values 

of the transistors. For the analog circuits optimized these values have been shown in Table 

3.1 and Table 3.2. 

         
For 90nm and 180nm (TSMC) and 250nm (UMC) fabrication models, folded 

cascode and gain boosted amplifier, have been simulated and the dimensions of the 

transistors have been optimized during the project.      

         
The variables are dependent on the algorithm used. If the MOEAD-DE algorithm 

based on the W-L search space is used then (first part of the project) then the variables to 

be optimized are W and L values. If the DC root solving method (OIOPD) is added, then 

the optimization variables are basically V (voltage) and I (current) values of the nodes.  

         
For different technology files (90nm, 180nm, 250nm), the W/L values and the V/I 

values to be optimized are given in Table 3.1. and Table 3.2. respectively. It should be 

noted that the values are for the upper and lower boundaries for the related technology 

parameters. 
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Table 3.1.  W-L Limits for the Optimization Variables 

Technology: 90nm 180nm 250nm 

Wmin 120nm 240nm 360nm 

Wmax 200um 800um 800um 

Lmin 90nm 180nm 250nm 

Lmax 5um 10um 20um 

 

 

Table 3.2. V-I Limits for the Optimization Variables 

Technology: 90nm 180nm 250nm 

Vmin  -0,6V -0,9V -1.25V 

Vmax  0,6V 0,9V 1.25V 

Imin 0,1 mA 0,1 mA 0,1 mA 

Imax 10mA 10mA 10mA 

 

 

3.2.1 Folded Cascode Amplifier 

         
 The folded cascode circuit seen below has been used as the main analog circuit to 

try the sizing algorithm. In the circuit there are 13 transistors and 1 current source whose 

values have to be altered. Because of the design properties (like symmetry), some values 

are equalized to each other.  

         
During the W-L optimization of the folded cascode amplifier there are 11 values to 

be optimized. W1, W3, W5, W8, W10, L1, L3, L5, L8, L10 and ib. The ib value has been 

searched in a range 0,5uA to 2,5mA. The W and L values are searched in the range 

according to Table 3.1. The choice of values is dependent on the technology restrictions 

(for the minimum values) and also experimental (for the maximum values). 
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Figure 3.1. The Folded Cascode Amplifier 

 

Table 3.3.  W/L components to be optimized 

Transistor Width Length 

m1A W1 L1 

m2A W1 L1 

m3A W3 L3 

m4A W3 L3 

m5A W5 L5 

m6A W5 L5 

m7A W5 L5 

m8A W8 L8 

m9A W8 L8 

m10A W10 L10 

m11A W10 L10 

mbnA W3/1.1 L3 

mbpA W5 L5 
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OIOPD method, based on optimizing the DC variables have 7 voltage and 3 current 

values to be optimized as seen below. Since this method is based on the guessing W 

process (that will be explained on the related part of the thesis) L values also have to be 

optimized. So there are 5 different transistor length values also (they were given before). 

As a result, a total of 15 variables need to be altered to find the best Pareto Optimal 

solutions. The DC values need to be altered are given in Figure 3.2. 

 

Figure 3.2. V/I variables for the Folded Cascode Amplifier 

 

3.2.2 Gain Boosted Amplifier:  

         
The gain boosted amplifier circuit given in Figure 3.3 has been used as the main 

analog circuit to try the sizing algorithm. In the circuit there are 39 transistors and 4 

capacitors whose values have to be altered. Since the N amplifier and P amplifier wil be 

used 2 times then the number of the transistors to be optimized decrease to 25 and number 

of the capacitors decrease to 2. Also because of the design properties (like symmetry), 

some values are equated to each other.  

         
During the optimization of the gain boosted amplifier, there are 38 values (18 W, 

18 L, 2 C) to be optimized.  
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Figure 3.3. The Gain Boosted Amplifier 

 

Table 3.4. The W/L values to be optimized for the Main Block of the Gain Boosted 

Amplifier 

 
Transistor Width Length 

Main Block:     

m1a fw1a fl1a 

m1b fw1a fl1b 

m2 fw2 fl2 

m3a fw3a fl3a 

m3b fw3a fl3a 

m4a fw4a fl4a 

m4b fw4a fl4a 

m5a fw5a fl5a 

m5b fw5a fl5a 

m6a fw6a fl6a 

m6b fw6a fl6a 
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Table 3.5. The W/L values to be optimized for the P-Amplifier of the Gain Boosted 

Amplifier 

 
P-Amplifier: W L 

m1 sw1 sl1 

m2 sw1 sl1 

m3 sw3 sl3 

m5 sw5 sl5 

m6 sw6 sl6 

m8 sw8 sl8 

m10 sw10 sl10 

 

Table 3.6. The W/L values to be optimized for the N-Amplifier of the Gain Boosted 

Amplifier 

 
N-Amplifier: W L 

m1 tw1 tl1 

m2 tw1 tl1 

m3 tw3 tl3 

m5 tw5 tl5 

m6 tw6 tl6 

m8 tw8 tl8 

m10 tw10 tl10 

 

 

The capacitor value has been searched in the 0,5pF to 20pF range. The W and L 

values have been searched in the range according to Table 3.1.  

         
OIOPD method, based on optimizing the DC variables for the gain boosted 

amplifier has 16 voltage and 10 current values to be optimized. Again L values are also 

supposed to be altered. There are 18 different transistor length values also (they were given 

before). When 2 capacitor values to be altered are added, a total number of optimization 
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variables is found to be 46. The DC values of the gain boosted amplifier which need to be 

altered are as given in Figure 3.4. 

 
Figure 3.4. The V/I variables for the Gain Boosted Amplifier 

  

The constraint handling has also been implemented during the evaluation of some 

of the folded cascode tests. The HSpice output, .sp file, gives dm values which refer to the 

saturation conditions of the transistors. If a transistor is not in saturation, these dm values 

for the related transistors are added to the performance values of the optimization 

algorithm, so the algorithm tries to find some new solutions which will lead to a transistor 

in saturation, since the goal of minimization is not satisfied. As a result, handling 

constraints is satisfied by using the dm values given by the simulation output file of the 

HSpice. For the OIOPD method the generation of the V and I values are already being 
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determined with the saturation conditions, so there is no need for extra saturation constraint 

handling.  

         
Another trick on the performance value evaluation mechanism has been used for 

the failed values of the HSpice output. If the HSpice simulator fails to find a result, the 

code generates a feedback value 1000, which is a high cost value, to the main algorithm. 

Since the algorithm works on the minimization problem, then this solution is chosen as a 

bad result and is not used. 
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4. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM WITH 

DECOMPOSITION (MOEA/D) 

 

 

4.1.  Definition of MOP 

 

A multi-objective optimization problem (MOP) can be given as follows: 

 

 

                     maximize ( )1( ) ( ),..., ( )
T

m
F x f x f x=  subject to x∈Ω                             (4.1)      

  

Ω  is the decision (design variable) space while : mF RΩ →  consists of m real-valued 

objective functions and mR  is the objective space. The reachable objective set is defined as 

the set { ( ) }F x x ∈Ω  [14].  

Ω  is described by Equation 4.2 if all the objectives are continuous and nx R∈ ; 

 

 

{ ( ) 0, 1,..., }n

j
x R h x j mΩ = ∈ ≤ =               (4.2) 

 

 

j
h  here are continous functions, (4.1) is called a continuous MOP. Very often, since the 

objectives in (4.1) contradict each other, no point in Ω  maximizes all the objectives 

simultaneously. They have to be balanced. The best tradeoffs among the objectives can be 

defined in terms of Pareto optimality [14]. 

         

Let , m
u v R∈ , it is said to dominate v if and only if i iu v≤  for every {1,..., }i m∈  

and 
j j

u v>  for at least one index {1,..., }j m∈ . A point *x ∈Ω  is Pareto optimal to (4.1) as 

long as there is no point x ∈Ω  which satisfies F(x) dominates F(x*). F(x*) is then called a 

Pareto optimal vector. In other words, any improvement in a Pareto optimal point in one 

objective must lead to deterioration in at least one other objective, which is the trade-off 
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concept. Pareto set (PS) is known as the set of all pareto optimal points, and the set of all 

the pareto optimal objective vectors is the Pareto front (PF) [14]. 

     
4.2. The Concept of Decomposition 

 

 In this part, implementation of the decomposition method on Evolutionary 

Algorithms has been introduced. Different techniques for decomposition of the multi-

objective problems are also tested and compared to each other. 

 

4.2.1 Implementation of Decomposition on Evolutionary Algorithms 

 

Analog sizing problem is a pareto based problem, a MOP, whose objective function 

is a function of all the 'if s  , which are the performance values like gain etc, and this 

objective function could be an optimal solution of a scalar optimization problem. That 

means PF approximation can be decomposed into a number of scalar objective 

optimization subproblems. There are several methods for constructing aggregation 

functions, 'if s , the most popular ones are the weighted sum approach and Tchebycheff 

approach. Boundary intersection methods have also got lots of attention recently [14].  

         
Most of the MOEA’s do not use the concept of decomposition. Instead of 

associating each individual solution with any scalar optimization problem, these algorithms 

consider a MOP as a whole. In a scalar objective optimization problem, all the solutions 

can be compared based on their objective function values and the task of a scalar objective 

evolutionary algorithm (EA) is often to find one single optimal solution. In MOPs, 

however, domination does not define a complete ordering among the solutions in the 

objective space and MOEAs aim at producing a number of Pareto optimal solutions as 

diverse as possible for representing the whole PF. As a result, conventional selection 

operators, which were designed for scalar optimization, can not be directly used in 

nondecomposition MOEAs. If there is a fitness assignment scheme for assigning an 

individual solution a relative fitness value to reflect its utility for selection, then scalar 

optimization EAs can be extended for dealing with MOPs, although other techniques such 

as mating restriction, diversity maintaining etc. Some properties of MOPs, and external 
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populations may also be needed for increasing the performances of these extended 

algorithms. Because of that, fitness assignment has been a major issue in current MOEA 

research. Popular fitness assignment strategies include alternating objectives-based fitness 

assignment such as the vector evaluation genetic algorithm (VEGA), and domination-

based fitness assignment such as Pareto archived evolutionary strategy (PAES), non-

dominated sorting genetic algorithm (NSGA-II [8]) and strength Pareto evolutionary 

algorithm (SPEA-II [9])  [14].  

         
4.2.2 Different Decomposition Methods:  

 

There are several approaches for converting the problem of approximation of the 

PF into a number of scalar optimization problems. In the MOEA/D algorithm proposed 3 

of these decomposition methods are offered. These methods are Weighted-Sum Approach, 

Tchebycheff Approach and Boundary Intersection Approach. Detailed information about 

these methods will be given in Chapter 5.  

         
The three approaches above can be used to decompose the approximation of the PF 

into a number of scalar optimization problems. A reasonably large number of evenly 

distributed weight vectors usually leads to a set of Pareto optimal vectors, which may not 

be evenly spread but could approximate the PF very well. There are many other 

decomposition approaches in the literature that could also be used in our algorithm 

framework. Since the major purpose is to study the feasibility and efficiency of the 

algorithm framework, only  the above three decomposition approaches are used [14].  

     
4.3. MOEA/D Algorithm 

 

 This algorithm has been used as the background work for the enhanced MOEA/D-

DE Algorithm proposed. Background work MOEA/D can be checked from the reference 

number 14. In the following pages, the flow-chart of the algorithm with the details of the 

optimization method can be found. On 4.3.2, the features of the MOEA/D algorithm are 

given. 
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4.3.1 The Framework of the MOEA/D Algorithm 
 
 

MOEA/D is in a need of decomposing the MOP under consideration. There are 

several methods that can be used for this. Tchebycheff approach is used for the following 

descriptions. When the other decomposition methods are used it is very easy to modify the 

following MOEA/D [14]. 

         

Let 1,..., Nλ λ  is a set of even spread weight vectors and z* is the reference point for 

the objective functions. The problem of approximation of the PF of (4.1) can be 

decomposed into scalar optimization subproblems, with number N,  by using the 

Tchebycheff approach. The objective function of the thk  subproblem is: 

 

                            ( )
1

, * max{ ( ) *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= −                                  (4.3)     

 

for 1( ,..., )k k k T

m
λ λ λ= . In a single run, the algorithm optimizes (minimizes in this case) all 

these objective functions simultaneously. 

         

Note that te
g  is continuous in λ , and that optimal solution of ( ), *te i

g x zλ   should 

be close to that of ( ), *te k
g x zλ  if iλ  and kλ  are close to each other. This is the 

neighborhood concept. So, any information about these te
g ’s with weight vectors close to 

iλ  should be helpful for optimizing ( ), *te i
g x zλ . This is the basic behind MOEA/D [14].  

         
In MOEA/D, the neighborhood of weight vector iλ  is defined as its several closest 

weight vectors in 1{ ,..., }Nλ λ . The neighborhood of the thi  subproblem consists of all the 

subproblems with the weight vectors from the neighborhood of iλ . The best solution of 

any subproblem is composing the population. Only the current solutions to its neighboring 

subproblems are used for optimizing a subproblem in MOEA/D. MOEA/D with the 

Tchebycheff approach includes the following features at each generation. 

         



42 
 

• A population with size N whose components are 1,..., N
x x ∈Ω  since ix  is the 

current solution to the subproblem i ; 

• Since iz  is the best value found for the objective if ,   1( ,..., )T

m
z z z= . 

• 1,..., N
FV FV , iFV  is the fitness value for ix , i.e., ( )i i

FV F x=  for all 1,..., ;i N=  

• Storing the non-dominated individuals to an extra population which is also known 

as  EP, external population. The algorithm works as follows:  

         
Inputs are: 

• MOP as given in Equation 4.1; 

• The number of subproblems; 

• Stopping criteria; 

• N spread of weight vectors 1,..., Nλ λ   which has been generated uniformly; 

• The neighborhood number of each weight vector, T.  

         
Output:  External Population (EP) 

         
First of all, an initialization step exists. In this step, the external population is set to 

zero. Later, the Euclidean distances between weight vectors are calculated in order to find 

the T closest weight vectors to each weight vector and the neighborhood 1( ) { ,..., }TB i i i=  is set 

for the T closest weight vectors iλ .  After that, an initial population, which is the set of 

solutions, is randomly generated and the objective functions are evaluated for these 

solution individuals. The minimum and maximum values of 1( ,..., )T

m
z z z=  for each 

objective function is set to infinite and minus infinite.  

 Secondly, the algorithm starts a loop of N turns to realize the updates. First of all 

the randomly selected two indexes of B(i) are used to generate a new solution by using the 

genetic operators. Later an improvement is applied on the solution. The improved, new 

solution is used to calculate the objective functions in order to update the z values. Later if   
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( ) ( )' , ,te j te j j
g y z g x zλ λ≤

 
 is satisfied (y’ is the new solution), the solution set and the 

fitness values are updated. After that, EP is updated by removing all the dominated vectors 

by ( ')F y  and including ( ')F y  to the external population if no vectors in EP can 

dominated ( ')F y . 

         
At the last step if the stopping condition is satisfied (it may be max number of 

iterations) the algorithm stops and outputs the EP. Otherwise the update loop goes on.  

         
During the initialization ( )B i  is determined by the closest T vectors of iλ . The 

closest weight vectors are found out by the Euclidean distance formula. As a result the 

index i will be the first index of ( )B i . The following T-1 indexes are determined by the 

Euclidean distance to thi  vector and if an index  j  is a member of ( )B i  then it can be told 

that j is a neighbor of i [14].  

         
As mentioned before, an initial population is randomly generated and then the 

reference points of the optimization functions are updated. With this information, the 

update loop starts. From the ( )B i  neighborhoods kx  and lx  are used to generate a new 

solution and if the solution is better than the parents, then it is copied into the all the 

neighbors of the related sub-problem. Different indexes have different neighbors, so the 

information is varied in a parallel (fast) and effective way. The fitness values are also used 

to update the reference points. When the stopping criteria (which is the maximum number 

of iterations) is met, then the algorithm stops and outputs the obtained population as a 

Pareto Set and Pareto Front [14].  

 

4.3.2 The Features of the MOEA/D 

         
 The proposed work for the thesis is an enhanced version of the multiobjective 

evolutionary algorithm based on decomposition (MOEA/D) [14]. The goal of the 

MOEA/D is decomposing the multi-objective optimization problem into N scalar problems 

which are the subproblems and then solving these subproblems (scalar aggregation 

function) simultaneously. The solution is satisfied by evolving the indiviuals of the 
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population. At each generation (iteration in terms of mathematical programming) and for 

each subproblem the population is composed of the best solution found so far. The 

neighborhood relations among these subproblems are defined based on the distances 

between their aggregation coefficient vectors which can be calculated with Euclidean 

distance. The optimal solutions of two neighboring subproblems should be very similar. 

Each subproblem is optimized in MOEA/D by using information from its neighboring 

subproblems. The following features belong to MOEA/D:  

         
• This algorithm is a good method for including decomposition technique into 

multi-objective optimization problem solving. With the help of this method the 

decomposition based methods are expanded from mathematical programming to 

evolutionary algorithms.  

         
• The MOEA based methods try to solve the MOP directly so it can get harder to 

solve the issues like fitness assigment, diversity maintenance etc. However, by introducing 

decomposition into MOEA, the optimization is satisfied for N scalar optimization problems 

and this makes things easier to handle in the framework of MOEA/D.  

         
• Comparing to popular methods like NSGA-II and MOGLS, MOEA/D has lower 

computational complexity at each generation. Also, it has been proven that MOEA/D 

outperforms, in terms of solution quality, MOGLS on 0–1 multiobjective knapsack (for 

more information, check [3]) test instances when both algorithms use the same 

decomposition approach. MOEA/D with the Tchebycheff decomposition approach 

performs similarly to NSGA-II on a set of continuous MOP test instances for 2 objective 

cases. For 3 objective cases MOEA/D is fairly better than NSGA-II. This criteria has been 

used during the thesis work by comparing NSGA-II with novel methods implemented on 

Enhanced MOEA/D-DE. MOEA/D using a small population is able to produce a small 

number of very evenly distributed solutions.  

         
• For large range of objective function values, normalization can be realized on 

MOEA/D [14].  
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4.4. Discussions on MOEA/D 

 

There are several subjects to consider about the MOEA/D algorithm in order to 

understand its quality. The use of finite number of sub problems is an important issue. Also 

the satisfaction of the diversity is critical in order to find the global result. The 

neighborhood concept and the complexity of the algorithm compared to other algorithms 

has to be considered. Details of this part can be checked from [14]. Since the thesis work is 

based on the flowchart of MOEA/D, all of the discussions given below is also about the 

MOEA/D-DE algorithm proposed for the thesis work.  

         
I. Why a finite number of subproblems are used in MOEA/D?  

         
The weight vector used in MOEA/D is a previously selected N sized one. MOEA/D 

spends about the same amount of effort on each of the N objective functions, while 

MOGLS (a method used for comparison in this work; for more detailed information see 

[4]) randomly generates a weight vector at each iteration, which aims to optimize all the 

possible aggregation functions. What a decision maker needs is taht a finite number of 

evenly/fairly distributed Pareto optimal solutions; optimizing a finite number of selected 

scalar optimization subproblems. Since the computational resource is always limited, 

optimizing all the possible aggregation functions would not be very practical, and also that 

may waste some computational effort. 

         
II. How is the diversity maintained in MOEA/D?  

         
A multi-objective evolutionary algorithm needs to satisfy diversity in its population 

for producing a set of representative solutions. The MOEAs which do not use 

decomposition, like NSGA-II (for detailed information see [2]) and SPEA-II (for detailed 

information see [5]), use crowding distances among the solutions in their selection to 

maintain diversity, but it is not always easy to generate a uniform distribution of pareto 

optimal objective vectors in such algorithms. As mentioned several times, a MOP is 

decomposed into a number of scalar optimization subproblems in MOEA/D. Different 

solutions in the current population are related to different subproblems. The “diversity” 
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among these subproblems will of course create the diversity in the population. As long as 

the decomposition method and the weight vectors are properly/uniformly chosen, and thus 

the optimal solutions to the resultant subproblems are evenly distributed along the PF, this 

algorithm will have a good chance of producing a uniform distribution of pareto solutions 

if it can optimize all these subproblems well.  

         
III. Role of neighborhood size T in MOEA/D and mating restriction:  

         
As mentioned before, T is known as the size of the neighborhood in a population of 

N individuals. Only current solutions to the closest neighbors of a subproblem are used for 

being optimized in MOEA/D. In other words, two solutions have a chance to mate just 

when they are for two neighboring subproblems. This is known as mating restriction. 

Setting of T is an important subject.  If this value is too small, two solutions ( kx  and lx ) 

chosen for undergoing genetic operators may be very similar (close to each other) since 

they are for very similar subproblems, as a result, the solution generated could be very 

close to their parents. As a result, the algorithm loses the ability to explore new areas in the 

search space. On the other hand, a too large T can make the chosen two solutions poor for 

the subproblem under consideration, and so a too large T can also make their offspring 

poor. Finally, the benefiting ability of the algorithm gets weaker. It should also be noted 

that a too large T will increase the computational overhead of updating the neighboring 

solutions.  

         
IV. Comparison of computational complexity of the MOEA/D and NSGA-II:  

         
In MOEA/D, the major computational expenses are in the update steps. In these 

steps MOEA/D generates N trial solutions, like NSGA-II does at each generation. Note 

that updating the reference points perform O(m) comparisons and assignments, and 

updating the neighboring solutions need O(mT)  basic operations since its major costs are 

to compute the values of te
g for T solutions since the computation of one such a value 

requires O(m)  basic operations. As a result, if both MOEA/D and NSGA-II use the same 

population size, at each generation, the ratio of their computational complexities will be: 
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Since T is smaller than N, the MOEA/D algorithm has lower computational 

complexity than NSGA-II at each generation [14]. 
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5. ENHANCED MOEA/D-DE ALGORITHM PROPOSED 

 

 

5.1.Introduction to MOEA/D-DE  

 

 In this Part an introduction to the Enhanced MOEA/D-DE Algorithm will be given 

where [14] has been used as a background work. Also, the enhancements realized to make 

it more powerful and able to solve the analog sizing problem will be introduced [15]. 

 

5.1.1. The Background Work and Introduction to MOEA/D-DE 

             

In the first part of the project, a multiobjective evolutionary algorithm based on 

decomposition (MOEA/D) [14] with its extended version by using differential evolution 

(DE) as the main search engine (MOEA/D-DE) has been proposed. This method 

outperform several widely used multiobjective evolutionary algorithms. MOEA/D-DE 

decomposes a multiobjective problem into a number of scalar optimization sub-problems 

with a neighborhood structure and optimizes them simultaneously to approximate the 

Pareto-optimal set. In this work, additional to MOEA/D lots of mechanisms are 

investigated to enhance the performance of MOEA/D-DE. Firstly, the MOEA/D algorithm 

code has been simplified to improve the performance in terms of software quality. Later 

on, a novel method for generating the weight vectors has been proposed and it has been 

observed that it enhances the overall quality of the Pareto Fronts. After that, different 

normalization methods for the objective functions have been implemented and the best 

solution has been determined. Later on different decomposition methods have been 

performed to find the best one. For the reproduction of the new individuals, a new 

replacement mechanism is proposed to call for a balance between the diversity of the 

population and the employment of good information from neighbors. Secondly, DE search 

algorithm has been added instead of polynomial mutation of the MOEA/D and the scaling 

factor in DE is randomized to enhance the search ability. Comparisons are carried out with 

MOEA/D-DE on ten benchmark problems, showing that the proposed method exhibits 

significant improvements. Finally, the enhanced MOEA/D-DE is applied to a real world 

problem, the sizing of a folded-cascode amplifier with four performance objectives.  



49 
 

         
Many real-world optimization applications involve several conflicting objectives. 

According to different goals and requirements in the decision-making process, 

multiobjective optimization techniques can be roughly classified into two categories: (1) a 

priori methods: a decision maker specifies their preferences on these objectives and so 

transform the multiobjective problem into a single objective one by using aggregation 

methods, and (2) a posteriori methods: they produce a number of well representative 

optimal trade-off candidate solutions for a decision-maker to check. These had been 

mentioned on Chapter 2. A Pareto optimal solution is a candidate solution for achieving 

the best trade-off. There can be many, even infinite Pareto optimal solutions to a 

multiobjective optimization problem (MOP). The set of all the Pareto optimal solutions is 

called the Pareto set (PS) and its image in the objective space is the Pareto front (PF). Most 

multiobjective optimization evolutionary algorithms (MOEA) aim at finding a reasonable 

number of solutions to approximate the PF. This means that MOEA’s are members of a 

posteriori methods. This had been mentioned before. Most MOEAs compare solutions 

based on dominance. However, domination can not provide a full ranking among all the 

solutions. Therefore, these MOEAs need some other techniques for ranking solutions (e.g. 

crowding distances, fitness sharing, niching). Among these algorithms, non-dominated 

sorting genetic algorithm II (NSGA-II) [8] and strength Pareto evolutionary algorithm 2 

(SPEA2) [9] have received much attention in real world applications. However, it is shown 

that these methods cannot always provide good results, especially when the MOP is 

complicated.  

         
Recently, a new MOEA framework, multiobjective evolutionary algorithm based 

on decomposition (MOEA/D) [14], was proposed. It decomposes a MOP into a set of 

scalar optimization sub-problems with neighborhood relations. The neighborhood relations 

are defined by the distances between their aggregation coefficient vectors. In this way, the 

fitness assignment is the same as single objective optimization, and the diversity is 

maintained by the diverse search directions determined by the uniformly distributed weight 

vectors. The first version of MOEA/D uses simulated binary crossover (SBX) and 

polynomial mutation as the search engines. 
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5.1.2. Enhancing the Algorithm Quality? 

             

 Several studies have been carried out to enhance the performance of the MOEA/D 

framework. These can be classified as below:  

             

I. Improving the algorithm in terms of software speed:  

             

First of all the software code (Matlab) of the MOEA/D has been simplified to 

prevent some extra computational work. Later, the overall algorithm has been transformed 

into script files instead of functions to make them work faster and to be able to follow the 

parameters easily. Another work in this topic was deleting the structs which slows down 

the algorithm and writing the parameters seperately. During this phase, the speed of the 

software code has been increased and nothing related to algorithm improvement has been 

realized. After these updates, comparing the speeds of the old version MOEA/D code and 

new MOEA/D code is as given in Table 5.1. 

             

Table 5.1. The Comparison of the Algorithm Speed Before and After Software 

Enhancement 

First Version MOEA/D code 0,41 sec 

Updated MOEA/D code 0,26 sec 

 

 

These are the average time of 100 optimizations of a 2 objective benchmark 

problem. As seen the speed of the algorithm has been increased by %36 as compared to the 

first version.  

             

II. A novel method generating the weight vectors:  

            

Initialization of the weights has the utmost importance in order to have a reasonable 

solution range. By assigning well spread weights to each objective makes the solution 

space spanning both extreme points. Otherwise the solution might get stuck around a 

limited region. A new method has been proposed for generating the weight vectors. This 

method is a composition of an orthogonal array based method and a LUT. The novel 
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method increases the dominance and distribution quality of the MOEA/D. Detailed 

information about this work can be found in Part 5.2.1.  

             

III. Finding the best Normalization Method:  

             

For the decomposition based MOEA methods, fair optimization of each objective is 

an important issue. If the range of a fitness value (the result of an objective function) is 

smaller than the others, the optimization probability of that function gets smaller. As a 

result all of the objective functions have to be equalized to the same range, which is [0 1], 

for the normalization case. This will make the optimization of different functions fair. 

Different normalization methods have been performed and compared to see the best one. 

Detailed information about this work is given in Part 5.2.2 

             

IV. Finding the best Decomposition Method:  

             

When the objective is an aggregation of all the 'if s  , it is known that a Pareto 

optimal solution to a MOP, under mild conditions, could be an optimal solution of a scalar 

optimization problem. As a result, PF approximation can be decomposed into a number of 

scalar objective optimization subproblems. There are several methods for constructing 

aggregation functions, and the most popular ones among them include the weighted sum 

approach and Tchebycheff approach. Recently, the boundary intersection methods have 

also attracted a lot of attention [14]. All of these three methods recommended by the 

MOEA/D authors have been performed and compared to each other in order to find the 

best method. More information about the methods and the tests done can be found in Part 

5.2.3.  

             

V. Enhancing the search ability:  

             

To enhance the search ability of the MOEA/D, a DE search algorithm has been 

added instead of the mutation method of the MOEA/D. Also the scaling factor in the DE 

mutation has been randomized to achieve this. In the proposed algorithm, a new version 

using the mutation (DE/best/1/bin [5]) in differential evolution (DE) as the main search 
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engine was proposed and shown to outperform MOEA/D and NSGA-II, especially for 

complex problems. Detailed information is given in Part 5.2.4.  

             

VI. A new replacement mechanism:  

             

Another work to enhance the quality of the MOEA/D is on the population 

replacement. The goal is to call for a balance between information sharing and diversity 

maintenance. In the proposed method, when the number of parent solutions that can be 

replaced by a high quality child solution exceeds the maximum number, the parent 

solutions are ranked and those that are closer to the child solution are firstly replaced. This 

novel method increases the quality of the dominance and distribution of the Pareto Set. 

More details can be found in Part 5.2.5.  

             

After all these improvements on MOEA/D framework, a novel method called 

Enhanced MOEA/D-DE is obtained. This algorithm is quite powerful in terms of the 

solution dominance, distribution quality, convergence speed and the range of the objective 

functions on the Pareto Front. 

 

5.2.The Enhancements Realized  

 

 In this Section, the enhancements realized for improving the MOEA/D Algorithm 

will be discussed. They were mentioned in Section 5.1; however this time they will be 

explained in detail and with the tests using folded cascode amplifier and several 

benchmark problems. 

 

5.2.1. A Novel Method for the Generation of the Weight Vectors 

             

All of the decomposition methods used for MOEA optimization algorithm which 

are weighted sum approach, Tchebycheff approach and boundary intersection (BI) 

approach use a weight vector set N

m
λ  where m is the number of the objective functions and 

N is the number of the subproblems. Basically it can be told that weight vectors are used as 

a method of decomposition of different subroblems into a single subproblem. Let 
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1( ,..., )T

m
λ λ λ=  be a weight vector, for 0iλ ≥  and m be the number of the objective functions, 

1
1

m

ii
λ

=
=∑  should be satisfied for each individiual of the population to set the weight 

matrix.  

         
With weight matrix, each objective function to be optimized will have a different 

weight value which will make it easy or hard to be optimized compared to other objective 

functions for the related individual of the whole Pareto front. For example in a MOP with 2 

objective functions to be minimized, in the final Pareto front which has N individuals there 

will be N weight vectors which include 2 weight matrix values whose sum is equal to 1. As 

seen below for the left side of the Pareto set, objective function 2 will be minimized like a 

single objective optimization case since the weight vector 1λ  is just taking care of the 

second objective function. Nλ  will be working with the same logic to minimize objective 

function 1. An internal weight vector like 2 [0.1,0.9]λ =  will be helping the MOEA to 

minimize both of the objective functions. However, for the fair conditions of the trade-off 

of these objective functions, objective function 2 will have more chance to be minimized 

since its weight value is higher.  

         

 

Figure 5.1. The Effects of the Weight Matrix on Fitness Functions 

         
As seen above, evenly distributed weight matrix will let the Pareto front to be 

evenly distributed and will let the limit conditions of the Pareto set (like smallest obj 

function 1 value or obj function 2 value for the figure) to have a higher range. Good Pareto 

optimal solutions can be obtained by weight vectors and if the weight vectors are altered, 

the Pareto optimal results will also change.  
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As mentioned above, initialization of the weights has the utmost importance in 

order to have a reasonable solution range. By assigning well spread weights to each 

objective, the solution space extends to the both extreme points. Otherwise the solution 

might get stuck around a limited region.  

         
In the previous work used as a background work [14], the weight matrix is just 

assigned for 2 objective optimization problem. The weight matrix initialization logic is very 

simple. For N individuals, the weight matrix is in the form of 

[1 ( 1) / ( 1), ( 1) / ( 1)]a
a N a Nλ = − − − − −  where a is the number individual which can vary 

between 1 and N, the population size.  

         

                                      

1

2

3

1

[1,0]

[1 1/ ( 1),1/ ( 1)]

[1 2 / ( 1),2 / ( 1)]

.

.

[1 ( 2) / ( 1), ( 2) / ( 1)]

[0,1]

N

N

N N

N N

N N N N

λ

λ

λ

λ

λ

−

=

= − − −

= − − −

= − − − − −

=

                     (5.1) 

 
Since this is the best distribution which can be obtained for the case of two 

objective functions, this weight matrix initialization method has been used in the algorithm 

proposed for two objective function cases.  

         
For more than two objectives  there are several ways for creating the weights. First 

of all, the orthogonal genetic algorithm offered in [16] is implemented.  It has been proved 

that the orthogonal design is optimal for additive model and quadratic model, and the 

selected combinations are good representatives for all the possible combinations. This 

method proposes to create weight matrices by randomly distributing the possible 

candidates. The basic algorithm of the method includes a selection of the levels which will 

lead to the weight values and number of the factors which mean the number of the 

objective functions. In the following Figure 5.2 it is shown a 4
9 (3 )L  orthogonal array with 

3 levels and 4 factors.  
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Figure 5.2. Orthogonal Array Example with Different Factors and Combinations 

[16] 

         
The level number means how good the related objective function will be optimized. 

For a combination, lets say with level values 2,1,2,3 of the four factors, the weight vector 

will be 0.25, 0.125, 0.25, 0.375 (since the sum should be equal to 1) which is the ratio of 

each weight to the overall weight. This is kind of a normalization of the levels to the 

weight vector form.  

         
The basic idea behind the orthogonal array is selecting a level limit and distributing 

these levels between objective functions with a method which decreases the number of the 

overall possibilities. In Figure 5.2 the combinations are decreased to 9, which means with a 

level of 3 and 4 objective functions, a solution is offered with 9 weight vectors, making the 

population size. Increasing the level number to 10 will increase that population size to 100 

and it will create a larger search space and better distribution.  

         
As mentioned above, by applying orthogonality to an array, the total number of 

combinations can be decreased to an acceptable number. For example, in Figure 5.2 above, 

9 points are used instead of all 81 possibilities. The orthogonality of an array means that 1) 

for the factor in any column, every level occurs the same number of times; 2) for the two 
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factors in any two columns, every combination of two levels occurs the same number of 

times; and 3) the selected combinations are uniformly distributed over the whole space of 

all the possible combinations [16].  

         
Figure 5.3 below shows the decrease in the number of all possibilities to an 

acceptable number of possibilities. The orthogonal array tries to generate fairly distributed 

vectors in the whole space. 

 

Figure 5.3. Orthogonality of the Orthogonal Array 3
4 (2 )L  where 4 Refers to Final 

Number  of the Vectors, 2 Refers to Number of the Levels and 3 is for the Number 

of the Sub-problems [16] 

         
However, this random process does not concern the trade-offs very well. In other 

words, by unfair distribution, some significant objectives might be overlooked and its 

search space might be limited. For example, in Figure 5.3, for the first objective function 

the highest weight values will be obtained at 7th  and 8th  combination which are 
3

0.33
9

= . 

This is not enough for the optimization range of the first function since the avarage weight 

value it has is already 0.25. Thus, even if the number of the levels is increased, it is clear 

that the limit conditions of the Pareto optimal solutions will get stuck due to the weak 

weight matrix initialization.  
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In order to avoid this situation, the weights for more than two objectives problems 

are initialized manually as a look-up table by concerning both fair distribution of the 

weights and the three rules mentioned for orthogonal array which leads to good 

distribution.  

         
The weight initialization part of the final algorithm first checks the number of the 

objectives. If there are just two objectives, the previously mentioned weights matrix is 

exploited. In other cases , the manually initialized weight matrices which support up to 

seven objectives are called. If it is more than seven objectives, the rest are created by the 

orthogonal array method. Also the look-up table is prepared for up to 150 population size. 

For more than 150 population size the rest of the weight matrix is filled with an orthogonal 

array initialization. As a result the final version of the weight initialization may be a 

combination of a look-up table and orthogonal array implentation.  

         
The four objective case is illustrated below for a population size of 20. While 

creating this matrix manually, some points are taken into account. First, the importance of 

the objectives are equally distributed. Each objective must be dominant over others once as 

seen at first 4 rows of the matrix. Then this dominance is shared equally by making them 

same like the 5th row. The rest of the rows are written by changing the importance level of 

the objectives by making sure that almost every possible value is assigned. 

         
As a result the algorithm for initalizing the weight matrix works as follows:  

         
First check the number of the objective functions, if it is equal to 2, then use the 

method given in Equation 5.1. If the number of the objectives are more than 3 then first 

load the LUT for the related number of the objectives. This LUT stores a data till 150 

population size. If the population size is x which is less than 150, then the first x lines of 

the LUT are used. If the population size is more than 150, first of all the whole LUT is 

used, and the remaining lines are generated by the orthogonal array method.         

         
Illustrative Example :  



58 
 

Table 5.2. An Example for a 4 Objective Weight Matrix Initialization 

Obj1 Obj2 Obj3 Obj4 

1,00 0,00 0,00 0,00 

0,00 1,00 0,00 0,00 

0,00 0,00 1,00 0,00 

0,00 0,00 0,00 1,00 

0,25 0,25 0,25 0,25 

0,70 0,10 0,10 0,10 

0,10 0,70 0,10 0,10 

0,10 0,10 0,70 0,10 

0,10 0,10 0,10 0,70 

0,30 0,30 0,30 0,10 

0,10 0,30 0,30 0,30 

0,30 0,10 0,30 0,30 

0,30 0,30 0,10 0,30 

0,40 0,40 0,10 0,10 

0,40 0,10 0,40 0,10 

0,40 0,10 0,10 0,40 

0,10 0,40 0,10 0,40 

0,10 0,40 0,40 0,10 

0,10 0,10 0,40 0,40 

0,30 0,30 0,20 0,20 

 

 The results comparing the orthogonal method with the proposed method for 10 

different tests of global and local normalization methods are as given in Table 5.3. The 

comparison metric is the IGD value. It can be seen that the proposed method is much better 

than the orthogonal array method. 

 

Table 5.3. Comparisons between the Orthogonal Array Method and the Proposed Method 

Method Normalization Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10 
 

Average 

Orthogonal Global 0.3022 0.3094 0.2049 0.3629 0.2542 0.4101 0.3742 0.3068 0.3548 0.3310 0.3211 

Proposed Global 0.1483 0.1504 0.1439 0.2103 0.1394 0.1663 0.1236 0.1971 0.1343 0.1373 0.1551 

Orthogonal Local 0.0328 0.0349 0.0413 0.0411 0.0367 0.0458 0.0395 0.0464 0.0335 0.0416 0.0394 

Proposed Local 0.0285 0.0357 0.0324 0.0351 0.0282 0.0376 0.0276 0.0550 0.0311 0.0362 0.0347 
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For a four objective analog sizing problem of folded cascode amplifier, some of the 

comparisons of two objectives are given in Figure 5.4. and Figure 5.5.  

 

Figure 5.4. Comparison of Two Weight Matrix Initialization Methods for 4 objective 

Analog Sizing Problem, Geometric Projections of the Gain and GainBandwith Objective 

Functions 

 

Figure 5.5. Comparison of Two Weight Matrix Initialization Methods for 4 objective 

Analog Sizing Problem, Geometric Projections of the Phase Margin and Area Objective 

Functions 
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As seen from the Figure 5.4 and Figure 5.5, the results with LUT based method 

dominates the ones with orthogonal array method since all of the objective functions have 

been optimized much better, like higher gain value reached for the same gain-bandwidth 

product etc.  

         
Also the basic goal of the new method which is increasing the range of the 

objectives is also satisfied. The ranges of the objective functions for the figures above are 

given in Table 5.4.  

 

Table 5.4. The Ranges of the Objective Functions with 2 Different Methods of 

Weight Matrix Initialization 

 LUT based Ort. Array based 

GAIN 0,211 - 91,001 3,0879 - 75,197 

GBW 0,0588 - 318,12 0,267 - 292,85 

PM 25,518 - 167,41 70,005 - 134,4 

AREA 5,5275 - 64,145 7,845 - 57,757 

 
         

As seen above all limit values (min or max) for all of the objective functions are 

better for the new method.  

         
The novel method described is basically using an hand-made LUT data which 

especially shows the effects of the extreme points (for the goal of single objective 

optimization) on the weight vectors. However such a LUT should be implemented with 

respect to some sampling methods from the literature. A good example for such a sampling 

technique is known as Latin Hypercube Sampling (LHS).  

         
Latin Hypercube sampling, LHS, is an option which is now available for most 

simple risk analysis simulation software programs. It uses a technique known as “stratified 

sampling without replacement” [35]. The probability distribution is divided into n intervals 

of equal probability, where n is the number of samples that are to be performed on the 

model. As the simulation runs, each of the n intervals is sampled once.  
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The advantage of the LHS is that, it generates a set of samples that more precisely 

reflect the shape of a sampled distribution than pure random (Monte Carlo) samples. The 

general effect is that, the mean of a set of simulation results more quickly approaches the 

“true” value, particularly for models that are simply subtracting or adding a number of 

variables.   

         
Extreme values of the weight vectors of the objective functions for the Latin 

Hypercube Sampling and Orthogonal Array is given in Table 5.5. 

 

Table 5.5. Extreme values of the weight vectors for Latin Hypercube Sampling and 

Orthogonal Array Method 

Method  / Number of 

Objectives Max.Weight of Obj1 Max.Weight of Obj2 Max.Weight of Obj3 Max.Weight of Obj4 Max.Weight of Obj5 

Latin Hypercube - 3 objectives 0,7579 0,7983 0,7663     

Latin Hypercube - 4 objectives 0,6242 0,6775 0,7228 0,7179   

Orthogonal Array - 4 objectives 0,6667 0,5833 0,5625 0,6429   

Latin Hypercube - 5 objectives 0,4267 0,4649 0,5774 0,4749 0,4875 

Orthogonal Array - 5 objectives 0,4615 0,4545 0,5263 0,5625 0,4545 

 

Weight vectors generated for 3 objective case with Latin Hypercube Sampling and 

Orthogonal Array are given in Figure 5.6 and Figure 5.7. 

 

 

Figure 5.6. Latin Hypercube Sampling Weight Matrix for 3 objectives 
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Figure 5.7. Orthogonal Array Weight Matrix for 3 objectives 

 

As a result, a novel method for generating the weight matrix has been proposed. 

This method uses the combination of a LUT and an Orthogonal Array based method. The 

test results show the effects of the new method on the dominance, distribution quality and 

range of the objectives on PFs are better than the methods which already exist.  

 

The weight values for the first and second objectives are distributed as given in 

Figure 5.8, Figure 5.9 and Figure 5.10 for all three methods. 

 

 

Figure 5.8. Latin Hypercube Sampling for the first two objectives 
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Figure 5.9. Hand-made LUT for the first two objectives 

 

 

Figure 5.10. Orthogonal Array Method for the first two objectives 

 

 

5.2.2. Finding the Best Normalization Method 

             

For the decomposition methods of the MOEA-D, the  function to be minimized is 

linearly dependent on the values of the objective functions. For example, in the case of 

Tchebycheff Approach, it is as follows:  
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     minimize ( )
1

, * max{ ( ) *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= −  subject to x∈Ω                    (5.2)   

 

where  Ω   is  the  decision  space  which is  also known as the population of Pareto 

optimal points, ( )1* *,..., *
T

m
z z z=  is the reference point since ( )* max ( )i iz f x x= ∈Ω  for 

each 1,...,i m=  

         
As seen, the scalar optimization function is directly dependent on the minimum 

values (z) obtained in the population and also the objective function values. Let’s assume 

that for an analog sizing problem, the objective function gain changes in the range of 0-100 

dB and power changes in the range of 0.1-10 mW. An average value of gain which is 50 

will be having a value of 50 for ( ) *i if x z−  function form. Here it was assumed that the 

objective function was turned into a minimization problem (by multiplying the function 

values with a minus) case, so z value will be -100 dB and if  will be -50 dB. For the power 

calculation, 5 mW is an average value of if  and for 0.1z = ,  ( ) * 4.9i if x z− =  will be 

obtained. For the fair weight values, between these two objectives the minimization 

possibility of the gain will be much higher than the power. Even if the power has a weight 

value of 0.9 and gain will have 0.1 the minimization will be focusing on the gain. In 

conclusion, different ranges and limit values of different objective functions will be 

creating an unfair minimization enviroment.  

         
To avoid this problem, the objective functions are supposed to be scaled into the 

same range, for example [0,1], which is also known as normalization. This normalization 

has been implemented on the fitness values of the analog sizing problem. A general 

function of the normalization of if  is as given in Equation 5.3.  

                                              
*

*
i i i

nad

i i

f z
f

z z

−
=

−
    (5.3) 

         
nad

i
z   is used for the nadir points for the related objective and i

f  is for the updated 

objective function values.  
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According to *z  values chosen, the normalization methods can be generalized into 

two main groups which are global and local normalization.  

         
I. Global Normalization:  

         
For the selection of the new objective functions which will be scaled to [0,1] range, 

the *z  reference values can be chosen prior to algorithm run. For this case a single 

objective optimization algorithm, MSOEA [17] was run to find the limit values of the 

objective functions to be used for the analog sizing problem. For the 7 objectives of the 

analog sizing of folded cascode amplifier the extreme values found by MSOEA with 100 

population size, 1000 iterations and chosen values for the global normalization method are 

as given in Table 5.6 below. 

 

Table 5.6. Limit Values of the Objective Functions 

 Max obtained Min obtained Max used Min used 

Gain 110 -44 120 0 

Gain Bandwidth 460 -7,55 380 0 

Phase Margin 172 7 180 0 

Output Swing 7,8 0,025 2,5 0 

Slew Rate 324 -61 324 0 

Power 6,9 -1,2 6,9 0 

Area 109 0,038 110 0 

 
 

In the multi-objective optimization trials with local or global normalization (with 

tens of different extreme values tried),  it was found out that normalization becomes fairer 

with the values selected above. For example, for a multi-objective optimization problem 

even a GBW value is set to 460 MHz, it never goes over 380 MHz. It was also 

experimented that setting the minimum values to 0 is not only logical but also much better 

in terms of global normalization based MOEA-D. A method for this reason has been 
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realized as evolving new individuals for the negative evalulation results of objective 

functions. This is kind of a direct way of constraint using.  

 
II. Local Normalization:  

 

Another method for the normalization is that, the *z  reference values can be 

chosen during the algorithm run. It is also same for the nadir (worst case) points. This can 

be satisfied by updating the extreme values obtained by the  simulation results (which are 

the objective function evaluation values). This update can be realized after a generation or 

inside a generation. According to that, local normalization can be classified into two sub 

groups. The first one is called “local so far normalization” which updates the extreme 

values after each generation and uses the updated value for the next generations. If it is 

updated again, a new value will be used for the following generations. Another method 

called “local normalization in current population” was also performed. In this method the 

z* reference values and nadir points are updated and used inside the current population. 

For the new generation the extreme values are starting with ±∞  and being updated for the 

first evaluation of objective functions. These updated values are used until they are updated 

again inside the current population till the next generation starts.  

         
First, global normalization and “local so far normalization” were compared in terms 

of dominance and distribution quality. Later on local normalization methods were 

compared with each other. For the more realistic test of each method and for better 

comparison, 10 tests were run with each having 150 population size, 60 niches and 150 

iterations. Each method uses MOEA-D algorithm to optimize four analog objectives which 

are gain, gain bandwidth product, phase margin and area of the folded cascode amplifier. 

Later on, a true Pareto front (a final pareto front with non-dominated points) was obtained 

by these 30 tests (10 for each method) so IGD values and number of dominated points have 

been calculated. The results are as follows:  

 

Table 5.7. Average IGD Values for Global and Local Normalization 

  Global Norm. Local Norm. 

Average IGD 0,3211 0,0394 
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Table 5.8. Number of Non-dominated Points for Global and Local Normalization 

(max 10*150 = 1500) Global Norm. Local Norm. 

Non-Dominated 
Points 367 1239 

 
 

The comparison of methods by the projection of the objectives on 2D space are as 

shown in Figure 5.11, Figure 5.12 and Figure 5.13. 

 

Figure 5.11. Gain-GBW objectives for 4-objective Optimization with Local and Global 

Normalization Methods 

 

Figure 5.12. GBW-Area objectives for 4-objective Optimization with Local and Global 

Normalization Methods 
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Figure 5.13. Phase Margin-Area objectives for 4-objective Optimization with Local and 

Global Normalization Methods 

         
As seen from the three figures above, local normalization generally dominates the 

results of global normalization. The goal is to maximize the phase margin, gain, gbw and 

minimize the area objectives. Also the ranges of the Pareto optimal results differ a lot from 

local to global normalization. Local normalization is much better in terms of range and 

thus distribution quality.  

         
Since the “local so far normalization” yielded much better results than the global 

normalization, a further method based on “local normalization in current population” was 

also implemented. In this method the ideal points (minimum fitness values) and the 

maximum points of the objective functions are updated inside the population. In other 

words, the reference points of the scalar optimization function starts from infinite values 

and update themselves on each generation.  

         
Figure 5.14, Figure 5.15 and Figure 5.16 show the comparisons between two 

methods of the local normalization. It can be easily told that “local normalization in current 

population” is not even comparable with “local so far normalization” for distribution 

quality, range and dominance quality.  
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Figure 5.14. Gain-Phase Margin objectives for 4-objective Optimization with 2 different 

Local Normalization Methods  

 

 

Figure 5.15. GBW-Area objectives for 4-objective Optimization with 2 different Local 

Normalization Methods  
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Figure 5.16. Gain-Phase Margin objectives for 4-objective Optimization with 2 different 

Local Normalization Methods  

         
As a result, normalization is an important subject for fair optimization of the 

objective functions in such a decomposition based algorithm. Different methods were 

implemented and compared to each other to see the effects on the Pareto front about the 

solution’s distribution quality, range and dominance quality. The local normalization based 

on the update of extreme values for all generations, performed better than the other 

methods and that was proved by a large number of tests.  

 

5.2.3. Finding the Best Decomposition Mehod 

             

There are several approaches for converting the problem of approximation of the 

PF into a number of scalar optimization problems. In the MOEA-D algorithm [14],  3 

different ways of decomposition methods has been mentioned.  

         
I. Weighted Sum Approach:  

         
A convex combination of the different objectives is considered. If 1( ,..., )T

M
λ λ λ=  



71 
 

is a weight vector, i.e., 0iλ ≥  for all 1,...,i m=  and 
1

1
m

i

i

λ
=

=∑ . As a result, the optimal 

solution to the following scalar optimization problem is as given in Equation 5.5. 

         
 
 

 
 

            maximize ( )
1

. ( )
m

ws

i i

i

g x f xλ λ
=

=∑   subject to x∈Ω                    (5.5)  

         

( )ws
g x λ

 
 is used to mention that λ  is a coefficient vector in this objective function, since 

x are the design variables to be optimized. To generate a set of different Pareto optimal 

vectors, different weight vectors λ  in the above scalar optimization problem can be used 

[14].  

         
The biggest disadvantage of the approach is that the optimization function g  will 

focus on optimizing the if  with highest value. There is no minimum/maximum reference 

for the optimization algorithm to converge so lots of efforts have not been shown for this 

approach.  

         
II. Tchebycheff Approach:  

         
In this approach, the scalar optimization problem is as given in Equation 5.6:  

         

         minimize ( )
1

, * max{ ( ) *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= −  subject to x∈Ω                 (5.6) 

         

here Ω  is again the decision space, ( )1* *,..., *
T

m
z z z=  is the reference point since 

( )* max ( )i iz f x x= ∈Ω  for each 1,...,i m= .  For each Pareto optimal point x* there exists 

a weight vector λ  such that x* is the optimal solution of  te
g . Consequently, one is able to 

obtain different Pareto optimal solutions by changing the weight vector. One weakness 

with this approach is that its aggregation function is not smooth for a continuous MOP. 

However, it can be used in the EA framework proposed since the algorithm does not need 

to compute the derivative of the aggregation function [14].  
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III. Boundary Intersection (BI) Approach:  

         
Several recent MOP decomposition methods such as Normal-Boundary Intersection 

Method and Normalized Normal Constraint Method [18] can be classified as the BI 

approaches. They were designed for a continuous MOP. The PF of a continuous MOP is 

part of the most top right boundary of its attainable objective set under some conditions. 

Geometrically, these BI approaches aim to find intersection points of the most top 

boundary and a set of lines. If these lines are evenly distributed, it can expected that the 

resultant intersection points provide a good approximation to the whole PF. These 

approaches are able to deal with nonconcave PFs. In this work, a set of lines emanating 

from the reference point are used. As a result, the following scalar optimization subp 

roblem is considered [14]:  

         

minimize ( ), *bi
g x z dλ =  

      subject to * ( ) .z F x d λ− =                 (5.7) 

x∈Ω  

 
As shown in Figure 5.17, the constraint * ( ) .z F x d λ− =  guarantees that ( )F x  is 

always in line L , the line with direction λ  and passing through *z . The goal is to push 

( )F x  as high as possible so that it reaches the boundary of the attainable objective set. One 

of the drawbacks of the above approach is that it has to handle the equality constraint. To 

cope with the constraint handling problem, using a penalty factor can be considered as a 

good method. 

         
One of the drawbacks of the above approach is that it has to handle the equality 

constraint. Using a penalty method to deal with the constraint is a good method for it. It is 

given in Equation 5.8. 
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Figure 5.17: Illustration of boundary intersection approach [14] 

         

     minimize ( ) 1 2, *bi
g x z d dλ θ= +  

           subject to x∈Ω  where;         (5.8) 

1

( * ( )) .T
z F x

d
λ

λ

−
=   and  2 1( ) ( * .d F x z d λ= − −  

 

0θ >  is a previously set penalty parameter. If y  is the projection of ( )F x  on the 

line L , as shown in Figure 5.18, 1d  will be the distance between *z  and y . 2d  is the 

distance between  ( )F x  and L . If θ  is set appropriately, the solutions to (5.7) and (5.8) 

should be very close. Hereafter, this method is called the penalty-based boundary 

intersection (PBI) approach [14].  

         
The advantages of the PBI approach (or general BI approaches) comparing to the 

Tchebycheff approach are as follows:  

         
• In the case of more than two objectives, let both the PBI approach and the 

Tchebycheff approach use the same set of evenly distributed weight vectors, the 

resultant optimal solutions in the PBI should be much more uniformly distributed 
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than those obtained by the Tchebycheff approach, particularly when the number of 

weight vectors is not large. 

         

• If x  dominates y , it is still possible that ( ) ( ), * , *te te
g x z g y zλ λ= , while it is 

rare for bip
g  and other BI aggregation functions [14].  

         

 

Figure 5.18. Illustration of penalty-based boundary intersection approach [14] 

         
However, these benefits of course have a price which is that, one has to set the 

value of the penalty factor. It is well-known that a too large or too small penalty factor will 

even decrease the quality of the method [14]. It has also been experimented that best 

penalty factor is problem dependent. 

         
The above approaches can be used to decompose the approximation of the PF into a 

number of scalar optimization problems. A reasonably large number of evenly distributed 

weight vectors usually leads to a set of Pareto optimal vectors, which may not be evenly 

spread but could approximate the PF very well [14].  
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There are also other decomposition approaches in the literature which can be used 

in EA algorithms. Since the main goal is to study the feasibility and efficiency of the 

algorithm framework  the above three decomposition approaches were considered [14].  

         
For the reasons given above, Weighted-Sum approach has not even been performed 

and compared with the other methods. However, lots of effort have been shown on the 

qualities of Tchebycheff approach and Penalty-Based Boundary Intersection Point 

approach.  

         
The tests have been realized with two objectives of folded cascode analog 

amplifier, 100 population size, 40 niche and 100 generations. Tchebycheff approach has 

been implemented with both local and global normalization. The results of TE 

(Tchebycheff Approach) and PBI  (Penalty-Based Boundary Intersection Point Approach) 

have also been compared with NSGAII algorithm.  

         
Schotts metric has been used to compare the quality of the pareto front obtained by 

different theta (θ ) penalty parameters. The θ  values have been searched in a space of 0-

10. For the gain-gbw trade-off  the best θ  has been found to be 3,2. In Figure 5.19, the 

good result range of theta for gain-gbw 2 objective problem has been shown. 

 

Figure 5.19. Theta Optimization Tests for Gain-GBW Problem 
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For 3, 2θ =  the PBI decomposition method has been implemented. The algorithm 

has also been run for TE approach with local and global normalization. NSGAII has also 

been performed. To make the comparison fair same number of population size and 

generations has been chosen. Moreover, to equalise the initial values of the individuals 

seed numbers of the random number generator has been set to a same value. The results are 

as seen below: 

 

Figure 5.20. Comparisons of PBI with different TE methods for Gain-GBW Pareto 

Front 

         
Figure 5.20 shows that the TE method with local normalization performs the best in 

terms of dominance and range of the pareto optimal solutions. TE with global 

normalization performs as good as NSGAII method; however PBI method has a smaller 

range than the other ones, also the distribution quality it has seems to be worse than the 

other methods.  

         
Same trials have been realized on gbw-area trade-off. 4, 4θ =  seems to be the best 

option for this two objective optimization problem. It should be noted that best theta value 

is changing from problem to problem which means extra computational effort needs in 

order to alter and find the best theta for each problem. 
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Figure 5.21. Theta Optimization Tests for GBW-Area Problem 

         
PBI approach with 4, 4θ =  has again been compared with TE approach and 

NSGAII algorithm. The results show that TE method performs almost as good as NSGAII. 

For the PBI approach with the best theta value obtained the dominance seems to best but 

not far away from other methods. The critical point is that, PBI method has a small range 

in the pareto front also with a bad distribution. 

 

Figure 5.22. Comparisons of PBI with different TE methods for GBW-Area Pareto 

Front 

         



78 
 

Some decomposition methods which convert a Pareto Front to scalar optimization 

problems have been performed and compared in terms of distribution quality, range of the 

objective functions and dominance.  

         
Weighted-Sum approach is not recommended for the optimization problems with 

very different ranged objective functions (For example, phase margin can vary between 0 

to 180 degrees since power can just change from 0 to 6,9 mW).  PBI approach has the 

disadvantage of obtaining a penalty factor which changes for every optimization problem. 

It is hard to obtain this value. Also, it has been observed that, the range and distribution of 

the functions to be optimized are not as good as other methods. TE approach seems like the 

best method for MOEA-D algorithm. It has no range, distribution or dominance problem, 

and no parameters need to be tuned prior to run.  

         
As a result Tchebycheff approach has been chosen for the decomposition method of 

the main algorithm implemented.  

 

5.2.4. Enhancing the Search Ability with the Use of DE 

             

DE is without doubt, a very powerful search engine for single objective 

optimization. But when it comes to multiobjective problems, it seems to converge very fast 

to the vicinity of the true PF, but somtimes it may have some problems to actually reach it. 

What has been studied so far shows that for F scaling values between 0.5 and 1 is more 

close to overcome this problem [19].  

         
DE mutation used, DE/best/1/bin [20], is as follows:  

         
' 1 2( ) ( ( ) ( ))i r r

y x t F x t x t= + −                          (5.9) 

         
where the indices 1r  and 2r  are randomly chosen and mutually different, and also 

different from the current index i.  (0,1]F ∈  is the scaling factor that controls the 

amplification of the differential variation 1 2( ) ( )r r
x t x t− .   
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An extended version of the DE mutation above has also been performed and 

compared with the other DE mutation method. This mutation equation uses the best 

solution as an extra parameter:  

         
' 1 2( ) ( ( ) ( )) ( ( ) ( ))i i r r

best
y x t F x t x t F x t x t= + − + −              (5.10)   

  

Besides two different equations given, also a novel method randomizing the scaling 

factor (instead of setting it to a value between 0 and 1) has been used. In this work, a 

Gaussian distributed random scaling factor with mean value µ and variance σ has been 

used.  

         
   , ( , )

i k
F norm µ σ=  , 1,..,i N=  and 1,..,k n=                           (5.11) 

         
For each variable in the search space, scaling factor ,i kF  of each differential 

variation 1 2( ) ( )r r
x t x t−  is different. 

^

F  is continously and randomly generated in each 

iteration.  So Equation 5.9 can be rewritten as:  

         

   
^

' 1 2( ) ( ( ) ( ))i r r
y x t F x t x t= + −                                        (5.12) 

 

Two different equations and two different scaling factor (F) determinations result in 

four different variations for the tests. In these tests, the parameter δ (it is the parameter 

which determines the probability that parent solutions are  selected from the neighborhood) 

is set to 0,9. A 5th  test with δ=1, which means parent solutions will always be selected 

from the neighborhood, has also been performed. At last, the tests with the polynomial 

mutation, which has been used in the first version MOEAD [14], has also been performed. 

All these six type of methods, which have been mentioned above, are as given below in 

Table 5.9.   

 



80 
 

Table 5.9. Different Techniques to Find the Best DE Method 

  

Equation for 

Mutation 

Scaling factor 

selection δ 

DE1 Equation 1 F=0.5 1 

DE2.1 Equation 1 F=0.5 0.9 

DE2.2 Equation 1 F=norm (µ,σ) 0.9 

DE3.1 Equation 2 F=0.5 0.9 

DE3.2 Equation 2 F=norm (µ,σ) 0.9 

Polynomial Mutation - - - 

 
 
         

For the test conditions 50popsize = , the maximum number of solutions replaced by 

a child solution 0.1*rn niche=  and 20niche = , 30 tests were performed to generate the 

true PF for the test problem. 10 tests of each method (DE1, DE2.1 etc.) has been run for 

100 iterations. For the same number of iterations, population size and probablity of 

polynomial mutation and with a SBX distribution index set to 20, NSGAII was also run for 

the same test problem.  

         
The benchmark test problem is an extended version of MOP-C3/Viennet4  [21]  

problem. The original version is for 3 objectives and with similar rules a 4th  objective 

function has been added. 

                  

1 2 3 4

2 2

1

2 2

2

2 2

3

2 2

4

( ( , ), ( , ), ( , ), ( , ))

( 2) ( 1)
( , ) 3,

2 13

( 3) (2 )
( , ) 13,

175 17

(3 2 4) ( 1)
( , ) 15,

8 27

( 3) ( 2)
( , ) 5

16 8

F f x y f x y f x y f x y

x y
f x y

x y y x
f x y

x y x y
f x y

y x x y
f x y

=

− +
= + +

+ − −
= + −

− + − +
= + +

− − − +
= + +

                               (5.13)                

                                         

The performance metric IGD has been used to compare the methods. The results for 

10 tests are given in Table 5.10.  
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Table 5.10. IGD Values of Different DE tests for a 3-objective Benchmark Problem 

  Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10   Average 

Poly. 

Mut. 0.0028 0.0017 0.0021 0.0034 0.0045 0.0022 0.0038 0.0031 0.0025 0.0024   0.0029 

DE1 0.0017 0.0018 0.0029 0.0013 0.0029 0.0020 0.0017 0.0039 0.0015 0.0017   0.0021 

DE2.1 0.0017 0.0018 0.0016 0.0024 0.0017 0.0017 0.0014 0.0014 0.0015 0.0015   0.0017 

DE2.2 0.0017 0.0018 0.0012 0.0020 0.0018 0.0021 0.0013 0.0017 0.0014 0.0017 (best) 0.0016 

DE3.1 0.0018 0.0011 0.0036 0.0017 0.0011 0.0021 0.0022 0.0016 0.0016 0.0020   0.0019 

DE3.2 0.0018 0.0012 0.0031 0.0020 0.0017 0.0019 0.0018 0.0017 0.0015 0.0017   0.0018 

NSGAII 0.0053 0.0122 0.0089 0.0035 0.0089 0.0056 0.0081 0.0068 0.0070 0.0095   0.0076 

 
 
         

From the results, it can be seen that, DE mutation enhanced the search ability 

comparing to the polynomial mutation which was used in the first version of MOEAD 

[14].  Also, including a δ parameter (the probability that parent solutions are  selected from 

the neighborhood) with a value of 0,9 resulted much better than the case with δ=1. NSGAII 

has easily been beaten by any of the MOEAD-DE  methods. For the selection of the DE 

mutation equation, the first equation (Equation 1) seems to be working than the second one 

(Equation 2).   

         
 According to the test results, DE2.2 has been chosen. The reason for that choice 

is that it has the best IGD value. This method is using Equation 5.9 for the DE mutation 

and it is also randomizing the scaling factor method. The true PF obtained by DE2.2 has 

1427 points which means just 73 (since 50*30 = 1500) points have been dominated by all 

other methods (For all 30 tests per method). This is a quite good point to note, especially in 

terms of the dominance quality of the optimization algorithm. The projection of the true PF 

obtained by DE2.2 on the 2-D space is as given in Figure 5.23. The Pareto Set points are 

the points from the True Pareto of the related method (The non-dominated points among 

all of the tests) 
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Figure.5.23. Pareto Front’s 2-D projections obtained by DE2.2 for the test problem 

         
 Most important comparison is on the scaling factors, since it is a novel method 

proposed. The results show that, the method randomizing the scaling factor performs better 

than the one setting the scaling factor to a constant value. Figure 5.24 shows the effect of 

randomizing F.  It can be seen that a cloud of potential points centered around the mutant 

vector could be generated. 

 

Figure 5.24. Illustration of Mutant vectors obtained by the random-scale operator 
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The random amplification induces two advantages: (1) The algorithm has a lower 

probability of providing premature solutions because of the reasonable diversity; (2) The 

vicinity of the mutant vector is investigated by the randomized amplification of the 

differential variation 1 2( ) ( )r r
x t x t− . Even when stagnation appears, a new trial vector has 

fair chances of pointing at an even better location on the multimodal functional surface.  

         
As a result DE mutation enchances the search quality for the multi-objective 

optimization. For the mutation function DE/best/1/bin [20] has been used. Also a novel 

method based on randomizing the scaling factor has been tried and successfull results have 

been obtained.  

 

5.2.5. A New Replacement Mechanism 

             

Besides DE mutation, to enhance the performance of the MOEA/D-DE framework, 

another work on population replacement has been realized. The goal here is to call for a 

balance between information sharing and diversity maintenance. In the method proposed, 

when the number of parent solutions that can be replaced by a high quality child solution 

exceeds the maximum number, the parent solutions are ranked and those that are closer to 

the child solution are replaced first.  

         
Previous method for the reproduction was based on the replacement of each index 

of the neighborhood in the population. It was basically as follows:  

         

For each index ( )j B i∈ , if ( ) ( )' , ,te j te j j
g y z g x zλ λ≤  then set 'j

x y=        (5.14)  

         
In the proposed method the replacement is realized under some conditions, instead 

of replacing the whole neighborhood. The new replacement mechanism first calculates 

( ),j
g y zλ  and ( ),j j

g x zλ  for each j  in P . 

  Secondly, 0c =  is selected. In case ( ) ( ), ,j j j
g y z g x zλ λ≤  , this c parameter is 

increased by one ( 1c c= + ) in order to control the number of the replaced solutions. 
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            Thirdly, the comparison of c with 
rn  is realized. If 

rc n≤  is true for each j  with 

( ) ( ), ,j j j
g y z g x zλ λ≤  , all the improved solutions (the children) are replaced ( j

x y= ) 

with the old ones. If rc n> , for each j  with  ( ) ( ), ,j j j
g y z g x zλ λ≤ , then euclidean 

distances between ( )f y  and ( )j
f x  are calculated and and ranked. After the ranking, rn  

solutions with the smallest distances are chosen for the replacement.  

         
In MOEAs, the replacement mechanism is intended to improve the quality (in terms 

of domination) of the population and maintain the diversity. Although in decomposition-

based methods, search in different directions according to different weight vectors can 

“naturally” help the diversity, diversity maintenance is also affected by the replacement 

mechanism. A high quality child solution may replace most of the current solutions to its 

neighboring sub-problems. Consequently, diversity decreases significantly. In MOEA/D 

[14], the maximum number of solutions that can be replaced by a child solution is the size 

of the neighborhood, T, whose disadvantage is shown in [22]. MOEA/D-DE improves the 

replacement mechanism by adding a bound rn , which is much smaller than T. A high 

quality child solution can replace rn  current solutions at most, which helps the diversity 

maintenance.  

         
However, setting the value of rn  is not a trivial problem. rn  controls the balance of 

information sharing and diversity maintenance. If 
rn  is large, the information of a good 

solution can be shared by more current solutions, but the risk of diversity reduction is 

higher. In contrast, if rn  is small, the information can be shared by less solutions, but the 

diversity is maintained.  

         
An empirical rule is proposed by setting T = 0.1N , rn  = 0.01N , and the rn  current 

solutions which will be replaced by a high quality child solution are randomly chosen if the 

bound is exceeded. Generally, this rule is reasonable. Nevertheless, both conditions, c (the 

number of current solutions with ( ) ( ), ,j j j
g y z g x zλ λ≤  much smaller than 0.01N and c 

much larger than 0.01N may appear in the evolution process. When c is much larger than 
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0.01N , randomly selecting 0.01N  individuals to be replaced may not always be a good 

solution.  

         
            It can be seen that rn  is approximately 10% of T, that is, for one segment with 10 

points that can be replaced by a high quality child solution, only one of them can be 

updated. Such rn   is small to share the good information. On the other hand, rn  cannot be 

larger to keep the diversity. Hence, selecting which points should be replaced in order to 

make the sharing more effectively is a significant problem. It can be argued that in the 

objective space, points that are near to the newly generated high quality child solution can 

be benefit more compared with the ones that have longer distance from it if the 

replacement is performed. The reason is that for neighbors which have similar fitness 

landscapes, their optimal solutions should be close to each other in the decision space. This 

is the principle of MOEA/D which can be seen as “neighbor’s neighbor”. In Figure 5.25, 

the bottom point with a coordinate (1,1) is the high quality child solution, and can replace 

all of the 6 points with ‘*’ symbol. If only one can be selected, then the two points in the 

circle will benefit more than the other 4 points if the schema of the bottom point is used. 

 

Figure 5.25. Illustration of the replacement mechanism 

         
Therefore, the mechanism is that when a high quality child solution, which has the 

ability to replace most of the current solutions in T, appears, instead of randomly choosing 

rn  current solutions, their distances are ranked to the high quality child solution in the 

objective space and the rn  solutions are replaces with the smallest distances. 
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Table 5.11. Effects of different 
rn  values on performed DE techniques 

  Test 1 Test 2 Test 3 Test 4   Ave. IGD 

DE1             

nr=0.05*niche 0.0060 0.0061 0.0058 0.0064   0.0061 

nr=0.10*niche 0.0051 0.0055 0.0055 0.0059   0.0055 

nr=0.15*niche 0.0068 0.0080 0.0059 0.0064   0.0068 

nr=0.20*niche 0.0078 0.0060 0.0058 0.0067   0.0066 

          Average: 0.0063 

DE2.1             

nr=0.05*niche 0.0062 0.0066 0.0043 0.0056   0.0057 

nr=0.10*niche 0.0058 0.0066 0.0047 0.0064   0.0059 

nr=0.15*niche 0.0059 0.0052 0.0050 0.0061   0.0056 

nr=0.20*niche 0.0076 0.0068 0.0045 0.0054   0.0061 

          Average: 0.0058 

DE2.2             

nr=0.05*niche 0.0048 0.0045 0.0056 0.0056   0.0051 

nr=0.10*niche 0.0043 0.0050 0.0070 0.0057   0.0055 

nr=0.15*niche 0.0064 0.0064 0.0050 0.0042   0.0055 

nr=0.20*niche 0.0046 0.0057 0.0053 0.0046   0.0050 

          Average: 0.0053 

DE3.1             

nr=0.05*niche 0.0072 0.0042 0.0060 0.0053   0.0057 

nr=0.10*niche 0.0097 0.0054 0.0059 0.0062   0.0068 

nr=0.15*niche 0.0033 0.0048 0.0056 0.0109   0.0062 

nr=0.20*niche 0.0052 0.0057 0.0063 0.0056   0.0057 

          Average: 0.0061 

DE3.2             

nr=0.05*niche 0.0052 0.0061 0.0051 0.0050   0.0054 

nr=0.10*niche 0.0061 0.0040 0.0046 0.0047   0.0049 

nr=0.15*niche 0.0054 0.0078 0.0043 0.0055   0.0057 

nr=0.20*niche 0.0055 0.0047 0.0061 0.0046   0.0052 

          Average: 0.0053 

              

NSGAII 0.0253 0.0234 0.0221 0.0237   0.0236 
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The critical parameter for the quality of the proposed replacement method is clearly 

the value of rn . To see the behavior of the change in rn  and to be able to see more tests on 

DE methods tried, the extended version of MOP-C3/Viennet4  [21]  benchmark problem 

has been run again with different seed numbers (setting seed number makes the 

Comparisons fair by equalising the random numbers generated) than previous ones. 10 test 

optimizations were done for each DE method and different rn  to create the true PF’s. 4 

tests for each conditions were run to compare the results. The results are shown above in 

Table 5.11.    

      

As it can be seen from the tests, DE2.2 looks like having the best results. DE3.2 can 

compete with DE2.2. The results are compatable with the previous tests and they show that 

NSGAII has been beaten very easily again.  

         
About different rn  values, it looks like there is no big difference. Sometimes a 

small value of rn  can give good results and sometimes a large value. For the DE methods 

performed 0.05*rn niche= , 0.15*rn niche=  and 0.20*rn niche=  has the best results just 

for 1 methods. However 0.10*rn niche=  is the best result for 2 cases.  

         
As a result 0.10*rn niche=  and DE2.2 methods have been chosen as the main 

parameters and mutation methods. The following tests are using DE2.2 mutation as the 

search engine and 0.10*rn niche=  parameter.  

         
            So far, it as been mentioned that, DE is a good method to enhance the search ability 

comparing to the previous mutation. Also with an emprical method, 0.10*rn niche=  has 

been decided. To see the effects of randomizing F scaling factor and adding new 

replacement rules, MOEA/D-DE (OD) which is using DE2.1 mutation (F has already been 

set to 0.5, no new replacement methods), MOEA/D-DE with new replacement rules (RD), 

MOEA/D-DE with stochastic scaling factor (FD) and MOEA/D-DE with both new 

replacement rules and stochastic scaling factor (FRD) have been compared. The test 

problem instances are UF1 to UF10 in CEC 2009 competition (2-3 objectives) [23] and a 
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real world problem, sizing of  folded-cascode amplifier (4 objectives) are performed on the 

test problem instances UF1 to UF10 in CEC 2009 competition (2-3 objectives) [23] and a 

real world problem, sizing of folded-cascode amplifier (4 objectives). The performance 

metric is again IGD.  

         
The test problems include benchmark problems and a four objective analog sizing 

problem. The benchmark problems are UF1 to UF10 in [23]. The multiobjective analog 

sizing is optimization of a folded-cascode amplifier, where the DC gain, GBW, phase 

margin and power are the 4 objectives. In the analog sizing problem, there is no analytical 

formulation of the optimization goals. They are based on the SPICE simulation. There are 

11 design variables, 5 of which For UF1 to UF10 in [23], the number of decision variables 

is 30. For the analog sizing problem, the number of design variables is 11. The number of 

sub-problems (population size), N, is 300 for 2 objective problems, 500 for three objective 

problems and 148 for the analog sizing problem (though 4 objectives, considering the 

computational effort, N is reduced to 148) . T is set to 0.1N, 0.01*rn N= , δ is set to 0.9. In 

DE operators, CR is set to 1, F is a Gaussian distributed vector with a mean of 0.5 and a 

variance of 0.15. In GA operators, η and mp  are the same as MOEA/D-DE. For 

benchmark problems, the algorithm stops after 1000 generations for 2 objective problems, 

and 1200 generations for 3 objective problems. For the analog sizing problem, the 

algorithm stops after 200 iterations.  

 

Table 5.12. The IGD statistics based on the average of 20 runs of different methods 

based on the New Replacement Method and DE 

Tests FRD FD RD OD 

UF1 0.0096 0.0064 0.0025 0.0027 

UF2 0.0084 0.0072 0.0094 0.0098 

UF3 0.0472 0.0311 0.0093 0.0105 

UF4 0.0592 0.0788 0.0881 0.0858 

UF5 0.5577 0.7650 0.8476 0.9247 

UF6 0.1795 0.2726 0.2381 0.2665 

UF7 0.0056 0.0063 0.0054 0.0032 

UF8 0.0660 0.0611 0.0569 0.0562 

UF9 0.1304 0.1299 0.1170 0.1501 

UF10 0.4035 0.4370 0.4119 0.4781 

Analog 9.4572 9.5344 9.5199 9.6079 
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               For UF1 to UF10 in [23], the set P* ∈ PF is available (P* is the true Pareto Front 

to converge). For the analog sizing problem, 30 runs are first performed using each 

method, whose results are combined to approximate the P* the True PF. Table 5.11 shows 

the mean values of IGD results for each problem in 20 runs. 

 

Here are some observations of the results. For each problem, the different methods  

are ranked according to the IGD values and Table 5.13 and Table 5.14 are obtained.  

 

Table 5.13. Ranking of the IGD values of different methods based on the New 

Replacement Method and DE          

Tests FRD FD RD OD 

UF1 Rank 4 Rank 3 Rank 1 Rank 2 

UF2 Rank 2 Rank 1 Rank 3 Rank 4 

UF3 Rank 4 Rank 3 Rank 1 Rank 2 

UF4 Rank 1 Rank 2 Rank 4 Rank 3 

UF5 Rank 1 Rank 2 Rank 3 Rank 4 

UF6 Rank 1 Rank 4 Rank 2 Rank 3 

UF7 Rank 3 Rank 4 Rank 2 Rank 1 

UF8 Rank 4 Rank 3 Rank 2 Rank 1 

UF9 Rank 3 Rank 2 Rank 1 Rank 4 

UF10 Rank 1 Rank 3 Rank 2 Rank 4 

Analog Rank 1 Rank 2 Rank 3 Rank 4 

 

Table 5.14. Statistics of the ranking of different methods based on the New Replacement 

Method and DE              

Methods Rank 1 Rank 2 Rank 3 Rank 4 

FRD 5 1 2 3 

FD 1 4 4 2 

RD 3 4 3 1 

OD 2 2 2 5 

 

         
            It can be seen that the improvement of the new replacement mechanism is obvious. 

In 7 cases out of 11, the RD (MOEA/D-DE with new replacement) method ranks 1 or 2, 

FRD (RD plus random scaling factor) method has 6 cases with rank 1 or 2, FD (MOEA/D-
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DE with random-scale F) have 5 cases with rank 1 or 2 and the original MOEA/D-DE has 

4 cases. If only considering the rank 1 column, it can be seen that RD and FRD have more 

distinct advantages. If only adding a random scaling factor, slight improvements have been 

observed in high rank region (rank 1 or 2). But it is obvious that the FD method ranks 3 in 

4 cases and ranks 4 in 2 case, while the original MOEA/D-DE (OD) ranks 3 in 2 cases, and 

ranks 4 in 5 cases. When the two mechanisms are combined together, it can be seen that 

FRD have 5 cases with rank 1, which has distinct advantage compared with other methods. 

On the other hand, it has 3 cases with rank 4. Therefore, it can be concluded as FRD is a 

method which can obtain very good result, and RD method is more stable.  

         
Best results (which are the tests with the smallest IGD values from all tests) of 

some of the benchmark problems for FRD method are as seen in Figure 5.26. The Pareto 

Fronts for all benchmark problems have been plotted. 

         
            NSGA-II is also implemented for the analog sizing problem using the same 

population size, η and mp . The distribution index in SBX is set to 20. The average IGD 

value is 15.8656, which is much larger than MOEA/D-based methods. 

 

Figure 5.26. PF for some of the benchmark problems with smallest IGD by FRD method 
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5.3. Enhanced MOEA/D-DE Algorithm  

 

 In this Section, the Enhanced MOEA/D-DE Algorithm will be given with the 

Multi-objective Optimization Problem (MOP) definition and with the flow chart of the 

algorithm.    

 

5.3.1. MOP for the MOEA/D-DE 

             

            A multiobjective optimization problem can be stated as follows:  

         
     1min{ ( ),..., ( )},mf x f x x∈Ω                            (5.16)  

         
where 1( ,..., )nx x x=  is the decision variable vector and ( )if x  are the objective functions. 

Ω is the decision space. A solution x is said to dominate solution y if and only if 

( ) ( )i if x f y≤   for every i ∈{1,...,m}  and  ( ) ( )j jf x f y<  for at least one index j ∈{1,...,m}. 

A point  x*∈Ω is Pareto optimal to (1) if there is no point x∈Ω such that f (x) dominates f 

(x*).  f (x*) is Pareto-optimal objective vector. The set of all the Pareto-optimal points is 

called the Pareto Set (PS). The set of all the Pareto-optimal objective vectors is called the 

Pareto Front (PF).  

 

5.3.2. The Working Principles of the Algorithm 

 

            For the Tchebycheff approach, the scalar function is as follows:  

         

    ( )
1

, * max{ ( ) *}te

i i i
i m

g x z f x zλ λ
≤ ≤

= −           (5.17)  

         

where ( )1,.., mλ λ λ=  is a weight vector and 
1

1
m

ii
λ

=
=∑ . Ω is the solution space and 

1* ( *,..., *)mz z z=  is the reference point. If N is reasonably large and 1,... Nλ λ  are properly 
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selected, the optimal solutions to those scalar functions will provide a good approximation 

to the PS/PF. The major components in MOEA/D are its neighborhood concept, and its 

population replacement mechanism. The enhanced MOEA/D-DE, proposed works as 

follows:  

         
           Inputs are:  

         
i. A MOP 

ii. A stopping criterion 

iii. N: the number of sub-problems 

iv. T: the neighborhood size 

v. δ : the probability that parent solutions are selected from the neighborhood 

vi. 
rn  : the maximum number of solutions replaced by a child solution 

vii. CR: crossover rate in DE 

viii. µ,σ : the mean and variance of the scaling factor 
^

F  in the DE mutation 

ix. mp  : the probability to perform polynomial mutation 

x.  λ : weight vector  

         
            Outputs are: 

         
i. Approximation to the PF 

ii. Approximation to the PS  

         
First of all, an initialization step exists. In this step, the external population is set to 

zero. Later, the Euclidean distances between weight vectors are calculated in order to find 

the T closest weight vectors to each weight vector and the neighborhood 1( ) { ,..., }TB i i i=  is set 
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for the T closest weight vectors iλ .  After that, an initial population, which is the set of 

solutions, is randomly generated and the objective functions are evaluated for these 

solution individuals. The minimum and maximum values of 1( ,..., )T

mz z z=  for each 

objective function evaluated before.  

         
 Secondly, the algorithm starts a loop of N turns to realize the updates. First of all 

the neighborhood set is selected with respect to the δ value. Later on, randomly selected 

two indexes of B(i) are used to generate a new solution by using the genetic operators. 

Here, the DE mutation is used as the main search engine. Later an improvement is applied 

on the solution. If the solution is out of boundary then it is regenerated. The improved, new 

solution is used to calculate the objective functions in order to update the z values. Later, 

with respect to rn  if   ( ) ( )' , ,te j te j j
g y z g x zλ λ≤

 
 is satisfied (y’ is the new solution), the 

solution set and the fitness values are updated. It should be noted that if the number of the 

solutions to be replaced exceeds the rn , then rn  number of solutions are ranked and the 

parents with the smallest Euclidean distance to the solutions are updated. 

       
At the last step if the stopping condition is satisfied (it may be max number of 

iterations) the algorithm stops and outputs the EP. Otherwise the update loop goes on.  

         
The general framework of the proposed MOEA/D-DE method works as given in 

Figure 5.27. 

         

 

Figure 5.27. The framework of the MOEA/D-DE Optimization Algorithm 
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5.3.3. Conclusions 

         
First of all, W and L values for the selected topology are randomly generated. 

These values are simulated by using HSPICE A. 2007-2009 simulator. The outputs are the 

evaluated performance values of the analog circuit. Because of the general behavior of the 

algorithm, all of the objectives are supposed to be minimized. This is satisfied by using a 

minus sign for the fitness values which are expected be maximized. For example, the 

“area” is a function to be minimized, so it’s value is directly used as obtained from HSpice; 

however, the function “gain” has to be maximixed so the return value of the HSpice is 

multiplied by -1 and the problem turns into a minimization problem. According to that 

fitness values as mentioned before the algorithm generates new W, L values to enhance the 

performance of the circuit. This is done by the search algorithm of the MOAE/D-DE which 

was coded on MATLAB. New W, L values are then simulated on HSpice and new fitness 

functions are obtained. According to these fitness values, the algorithm generates new W, 

L values and so on. This loop goes until the set value for the generation (iteration) number 

is reached. The parameters (variables) to be optimized are not only supposed to be W or L, 

they can also be capacitor values (C), inductor values (L), or current source values (ib), etc. 

All the runs were realized on a Pentium Dual Core CPU - T4300 @ 2.10 GHz. 
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6. ON-LINE INTERPOLATION OPERATING POINT DRIVEN 

METHOD 

 

 

     There are two methods for chosing the variables of optimization in analog design 

automation. First one is direct optimization of the dimensions, W and L. The second  type 

of methods are based on optimizing the DC values of the nodes (voltages) and the branches 

(currents) in an analog circuit. These algorithms have DC root solving mechanisms. DC 

root solving is basically guessing the W of the transistors by using DC optimization 

variables. This is the only way to evaluate the analog circuit and let the optimization go on. 

A novel method for DC root solving has been proposed, and the results show that proposed 

method is much more sufficient than the methods in the literature in terms of accuracy, 

speed, use of memory etc. 

 

6.1 Introduction to OPD Based Methods 

 

           In recent years, analog design automation methodologies receive much attention in 

both literature and industrial applications. Besides the development of the cell-level analog 

sizing methods, yield-aware sizing, parasitic-aware sizing and hierarchical synthesis 

methods are developing in a high speed. On the other hand, fundamental analog sizing 

(cell-level optimization for analog ICs in nominal condition) remains a key problem. The 

reasons are that: (1) analog sizing methods considering other factors, e.g. hierarchical, also 

rely on fundamental cell-level optimization; (2) many advanced analog sizing methods 

need a good starting point generated by fundamental cell-level optimization. This work 

focuses on fundamental analog cell sizing.  

         
 Fundamental analog cell sizing methods can be classified to two main categories: 

width and length (W/L)-based methods [17,24,25] and operating-point driven (OPD)-based 

methods [26-28]. The former method uses the width and length as the design variables and 

considers the analog sizing as a constrained optimization problem. The latter method, 

however, uses operating point as the design variables and the device dimensions (W) are 

determined out of it. OPD-based method is used much less than width and length-based 
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method in recent literatures. However, it has been reported that OPD-based methods have 

advantages [26-28], which can be summarized as follows. Firstly, it highly relieves the 

convergence problem of electrical simulators, as a DC consistent solution cannot be found 

for some W/L in the search space and these W/L are difficult to be pruned beforehand [26]. 

Secondly, device operating constraints (e.g. 0gsv > , transistor in the saturation region) [29] 

are self-contained in the generation of the candidate solutions in the OPD-based methods, 

which can ensure the devices to operate in the intended region. These constraints are 

obvious to the designer, but not to the optimization algorithm. For W/L-based methods, 

explicitly measurements and enforcements need to be added, which increase the number of 

constraints and make the optimization problem more difficult [28]. Thirdly, the design 

variable W often has a large range in W/L-based method, which adds high pressure to the 

search algorithm, especially when the circuit is complex. On the other hand, W is 

calculated from device biases (voltages, currents) in OPD-based methods, which decreases 

the search space in another way (The search area for a W may change from less than 1um 

to hundreds of micrometers.  DC points of the circuit have lower range to search. For 

example a voltage value in a 0,25um technology can change from 0 to 2.5 Volts which 

means it is easier to converge to the optimal value). Fourthly, OPD-based methods allow 

the designer to reason in terms of voltages and currents and relieve him from the burden of 

determining device sizes [26].  

         
OPD-based methods have such advantages, but why they seldom appear in recent 

literatures? An important reason is that with the scaling down of devices, the models are 

becoming more and more complex. This makes the available DC root solving algorithms 

and the look-up-table-based methods face significant challenges on accuracy, efficiency 

and memory requirements. Also obtaining W by solving equations loose their accuracy, 

which leads to the difficulty to compute an acceptable W by L and device biases. For look-

up-table (LUT) methods, the trade-off between accuracy, look-up time (the time to find the 

corresponding data in the LUT) and memory consumption is important. The experiments 

in the following parts of the work show that a LUT with acceptable accuracy need a large 

amount of data, which consumes long look-up time and large memory.  
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To address these problems, a new OPD method, called on-line interpolation 

operating-point driven (OIOPD), is proposed. In OIOPD, the width of a transistor is 

computed by the interpolation of the width-current curve with a determined set of length 

and voltage biases. The two min min( , )W I  and  max max( , )W I .  minW  and maxW  are the two 

extreme allowed values of W for a technology) are first simulated on-line, then the request 

W is computed by SPLINE interpolation. OIOPD has 10 times improvement on accuracy, 

300-1100 times improvement on efficiency compared with the available methods. In 

addition, OIOPD need not to tune the parameters, e.g. the size of the LUT, number of 

neurons in NN. Also there is no need for a memory.  

 

6.2 OPD Methods 

 

6.2.1. Review of the OPD Methods 

 

            Figure 6.1 shows the flow of the OPD method in analog sizing. In each iteration, 

for each transistor of each candidate design, the input is the length and device biases. As 

shown by Equation 6.1, the W is computed by { }, , , ,DS ds gs bsL I V V V . 

 

                      ( )*, , , , 0DS DS ds gs bsI I V V V W L− =         (6.1)  

  
where W is the independent variable and the drain source current is a function of the drain-

source, gate-source, bulk-source DC voltages, W and the L. The estimated W for all the 

transistors are collected and SPICE simulation using the L and the estimated W is done to 

obtain the performance of the candidate solution. The performances are sent to the 

optimization algorithm to start the next iteration.  

         
It can be seen that the DC root solving is a critical problem in this flow. Whether 

the W can be computed with an acceptable accuracy determines the successfulness of the 

OPD-based analog sizing. The methods to obtain W from Equation 6.1 can be classified to 

three main categories. 
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Figure 6.1. OPD based analog sizing 

         
              The first kind of method is to find W by directly solving Equation 6.1 [26,27]. 

First-order models can be computed easily, since an explicit equation for W exists. But it is 

too inaccurate. Hence, high-order models are necessary. Reference [26] suggests using the 

first-order solution as the starting point and then using SPICE-in the-loop method to solve 

the equation. It also suggests scaling the variables to linearize strongly non-linear 

functions, which transforms Equation 6.1 to Equation 6.2.  

         

                                                 ( )*log log log , log , log 0DS DSI I V W L− =                    (6.2)  

         
              Because of using SPICE simulation in the equation (no analytical form), using 

iteration methods to solve the equation are appropriate. Newton-Raphson method [31] and 

Golden Section Search method [32] are tried to solve (6.2) and found that a good W is 

difficult to be obtain. The test results are given at the following parts.  

         
              Another method to obtain W is regression. First, a set of training data are 

generated, and a regression model is constructed to predict W by the inputs 

, , , ,DS ds gs bsL I V V V . Neural network (NN) [30] is often considered as a powerful regressor. 

However, in the experiments realized, it was found that NN is difficult to achieve high 

accuracy and generality at the same time.  

         
   LUT is another kind of method to find W [33]. Many points are sampled in the 

{ }, , , ,DS ds gs bsL I V V V  space and stored in an LUT. When using LUT to find W, a hierarchical 
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look-up method is used [28]. For example, the method first finds the nearest left and right 

points of the given dsV  and two candidate dsV  are selected. In the LUT, there exist some 

points with these two dsV . The algorithm again finds the nearest left and right points of the 

given 
gsV  in the points with the two candidate dsV . This process continues until the problem 

becomes a one-dimensional interpolation problem, e.g. the last variable is 
DSI . The 

interpolation is realized by left and right side options of these 3 voltage values and the L. 

For all these 16 options drain-source current value is obtained and at last interpolation 

method is used to obtain the W. According to the experiments, it was found that the LUT 

method has relatively high accuracy when a large amount of samplings are used. But it 

costs a long look-up time and huge memory.  

 
6.2.2. OIOPD Method 

 

From the review of the above, three methods using modern technologies, LUT is 

better than the other two methods. It can be seen that interpolation is an effective way. In 

the LUT method, there need 4 approximations before a one-dimensional interpolation. This 

process looses accuracy since all of the approximations already have their own errors. To 

prevent this, LUT need to include a large number of samples, which cause longer look-up 

time and more memory. On the other hand, for each operating point, the 

{ }, , , ,DS ds gs bsL I V V V  are determined. Therefore, selecting one variable to do the one-

dimensional interpolation with W under the condition of the fixed other 4 variables (need 

on-line simulations) can enhance the accuracy. The reason is that by on-line simulation 

method, the other 4 variables are accurate (%100 accuracy), not by approximation. 

 

 

Figure 6.2. W Guessing Procedure for OIOPD Method 
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In OIOPD, 
DSI  is selected as the variable to do the interpolation with W, using the 

determined { }, , ,ds gs bsL V V V . First different samples of W are used in the technology 

allowed range to generate the corresponding DSI . Then, the estimated W can be 

interpolated using the given
DSI . Another advantage of on-line simulation (a single NMOS 

and PMOS transistor is simulated for the given , , ,ds gs bsL V V V  values and for the limit values 

of W) is that the memory requirement problem is solved. The key problem is the necessary 

number of samples to achieve an accurate estimation and the comparison between the time 

spent to generate the samples and the look-up time in the LUT method.  

 

Figure 6.3. Typical case of W-
DSI  curve 

         
            Figure 6.3 shows two typical cases of the curve in a 0.25um technology. It can be 

seen that the linearity between W and DSI  is strong in most part. For W smaller than 10um 

, the linearity decreases a little. Because of the generally strong linearity, it is reasonable to 

use few samples. The results of using 200 samples, 50 samples and 2 samples (the 

maximum and minimum width in a technology) have been compared. Some typical results 

are shown in Table 6.1. The tested W are uniformly distributed in the allowed range of 

each technology. From Table 6.1, it can be seen that the result of using 2 samples is 

comparable to, or even better than that of using 200 samples when the width is large than 

10um. The reason is that the linearity is stronger in a global range compared with in a local 

range, as shown by Figure 6.3. This is also an important reason to describe why directly 

solving Equation 6.2 to obtain W often cannot receive good results. For the transistors with 
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width smaller than 10um, using 2 samples have larger error. Using 50 samples or 200 

samples all have good accuracy, and the result of using 200 samples is only a little better 

than using 50 samples, but it costs 4 times of the simulations.  

 

Table 6.1. Typical errors with different number of samples for OIOPD Method 

technology region W 200 samples 50 samples 2 samples 

250nm Saturation >10um 1.90% 1.91% 0.88% 

250nm Saturation <10um 0.41% 0.44% 6.31% 

250nm Linear >10um 2.13% 2.13% 1.86% 

180nm Saturation >10um 2.84% 2.83% 1.71% 

180nm Linear >10um 1.50% 1.52% 0.99% 

180nm Linear <10um 0.77% 0.77% 6.45% 

90nm Saturation >10um 1.81% 1.84% 1.86% 

90nm Saturation <10um 0.05% 0.06% 4.32% 

90nm Linear >10um 0.24% 0.26% 0.08% 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 shows the errors of using 200, 50 and 2 samples from 0.6um to 50um 

under typical device biases and L in a 0.25um technology. 

 

Figure 6.4. Errors for different number of samples for OIOPD Method 
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            According to the experimental results, the OIOPD method uses the following rules 

to set the number of samples: (1) First uses the maximum and minimum W as the samples. 

(2) If the estimated transistor width is smaller than 10 um uses randomly distributed 50 

samples within the minimum allowed W and 10um. On the other hand, it can be seen from 

Figure 6.4 that even when the width is smaller than 10um the error is within 10% in most 

cases. It will be shown on the experiment results. Hence, it is also reasonable to use 2 

samples for all the transistors.   

         
According to experiments, it was found that SPLINE interpolation [33] performs 

better than linear and cubic interpolation. Hence, OIOPD use SPLINE interpolation.  

 
6.2.3. Selection of the LUT for OPD Method 

 

There exists a trade-off between the accuracy, the look-up time and the memory 

requirement for different sizes of LUT. To make a fair comparison, a good LUT is 

necessary to be selected. The example below shows the selection of the LUT for a 0,18um 

technology, and the selection of 90nm technology is done in the same way. The accuracy, 

look-up time for each transistor and memory requirement of 3 LUT are shown in Table 

6.2. LUT 1 uses uniformly distributed 54 points within the range of W of the technology 

(0,24um to 800um). LUT 2 uses 104 points of W, and LUT 3 uses 206 points of W. L has a 

range of 0,18um to 10um,  , ,ds gs bsV V V  have a range of 0 to 1,8 Volts. LUT1 has 810,000 

points, LUT2 has 1,560,000 points and LUT3 has 3,090,000 points. In the test process, 278 

test points are selected, 40% of which are in the linear region, 60% of which are in the 

saturation region, and they are uniformly distributed. The experiments are run on a PC with 

Xeon processor and 8GB RAM memory in Linux system.  

 

Table 6.2. Different LUT for 0,18um technology 

Look-up Tables Error Look-Up Time Memory 

LUT1 31% 0.62 sec 55.6 MB 

LUT2 23% 1.19 sec 108.4 MB 

LUT3 20% 2.24 sec 205.4 MB 
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It can be seen that LUT 1 (the sparsest table) has the fastest speed to find the data in 

the LUT but with the lowest accuracy. LUT 2 spends longer time, but renders a remarkable 

improvement (8%) by doubling the points in the LUT. Although LUT 3 provides the best 

accuracy, it consumes twice the time of LUT 2 and the improvement in accuracy is not 

impressive (only 3%) compared with LUT 2. Note that the look-up time for one transistor 

is not long to each LUT. But in the analog sizing, thousand times of this estimation are 

necessary, so the look-up time is an important factor. Hence, LUT 2 is chosen to compare 

with OIOPD.  

 
6.2.4. Comparisons of OIOPD with Different Methods 

 

Table 6.3 shows the comparisons of the Golden Section Search method, NN, LUT 

and OIOPD. Traditional DC root solving methods include gradient-based ones and direct 

search ones (using no gradients). A typical method of gradient-based equation solving 

method is Newton-Raphson method. According to experiments, Newton-Raphson method 

always causes SPICE unconvergence problem and cannot give a result. Hence, Table 6.3 

only includes the solution of Golden Section Search method. NN is selected in the same 

way as LUT. Tens of NN with different training data (at least 8000 training data has been 

used for each network) have been compared, different number of neurons and different 

training methods. However, their performances are all not good. Table 6.3 shows the best 

result obtained from these NNs. 

 

Table 6.3. Comparisons of different method in a 0,18um technology 

Methods Error Look-Up Time Memory 

Golden Section 872% 4.39 sec X 

NN 143% 0.30 sec 5 KB 

LUT 23% 1.19 sec 108.4 MB 

OIOPD 2.23% 0.003 sec X 

 

 
 From Table 6.3, it can be seen that the accuracy of Golden Section Search and 

NN are far from anticipation. OIOPD has 10 times improvement on accuracy compared 
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with LUT and 400 times improvement on efficiency. In addition, no extra memory is 

needed. Comparison of LUT and OIOPD in a 90nm technology is shown in Table 6.4.  

 

Table 6.4. Comparison of LUT and OIOPD in a 90nm technology         

Methods Error Look-Up Time Memory 

LUT 23% 2.32 sec 475.6 MB 

OIOPD 1.92% 0.0021 sec X 

 

 
From Table 6.4, it can be seen that OIOPD has approximately 12 times 

improvement on accuracy and 1100 times improvement on efficiency.  

 
6.2.5. Comparisons of OIOPD with Extreme Cases of LUT 

 

           Since the best method competing with the proposed OIOPD method is LUT’s, To 

see the most accurate cases of LUT method than LUT 2, more extreme (in terms of 

sampling points, so the memory) table options were used. Since the step sizes for  

, ,ds gs bsV V V  are equal to 20, step size of L is equal to 50 and W is equal to 200 and 800 for 2 

different tests. The errors on W for 0,25nm folded cascode example test points are: 

  

Table 6.5. W errors of 11 transistors for the LUT with 200/800 samples of W         

W deviations: M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 max ave 

W=200 7,5287 7,529 5,833 5,833 5,833 0,985 0,985 10,61 10,61 13,73 13,73 13,73 7,564 

W=800 6,5774 6,577 5,241 5,241 5,241 0,761 0,761 8,463 8,463 11,49 11,49 11,49 6,3923 

 
 
           The second LUT above has 32,000,000 samples to find W. Since the accuracy 

reached up to the quality of % 6,39 more tests on LUT have been tried. In Table 6.6 below 

there are 3 different extremely large LUTs. Memory issue is given on Table 6.7. 
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Table 6.6. Different options for the large LUTs 

Method Step Num Step Num Step Num Step Num Step Num 

Option A L=50 Vgs=30 Vgs=30 Vgs=30 W=200 

Option B L=80 Vgs=40 Vds=40 Vds=40 W=200 

Option C L=100 Vgs=80 Vbs=80 Vbs=80 W=200 

OIOPD fixed fixed fixed fixed W=2 or W=50 

 

         
Table 6.7. Memory needed by 3 LUTs A,B and C 

 for generating every file seperately overwriting the unneeded table files Just the needed data 

Method 
memory needed during data 

generation 
memory needed during data 

generation 
memory needed for 

data store 

Option A 125,8 Gbyte 8,16 Gbyte 6,12 Gbyte 

Option B 473,6 Gbyte 30,72 Gbyte 23,04 Gbyte 

Option C 4, 736 Tbyte 307,2 Gbyte 230,4 Gbyte 

OIOPD 0 bit - online simulation  0 bit - online simulation 

 

         
            For 3 options of LUT and for the proposed method, the time issue related to the 

data acquisition for interpolation (for LUT it means reading and interpolating the data from 

that tree structure, for proposed method it means online simulation of single transistor) and 

the time consumed by the whole W guess process for both of the methods is as follows:  

         
Table 6.8. Interpolation time for the 3 LUTs A,B and C 

  Pentium Dual Core CPU-T4300@ 2.10GHz Pentium Dual Core CPU-T4300@ 2.10GHz 

      

  For entire Circuit (Folded Cascode) For entire Circuit (Folded Cascode) 

Method Look-up time overall time of W guessing (with interpolation) 

Option A 0.35 sec * number of transistor = 3.85 sec. 0.39 sec * number of transistor = 4.29 sec. 

Option B 0.35 sec * number of transistor = 3.85 sec. 0.39 sec * number of transistor = 4.29 sec. 

Option C 0.35 sec * number of transistor = 3.85 sec. 0.39 sec * number of transistor = 4.29 sec. 

OIOPD 0.42 sec.  0.48 sec. 
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             The accuracy results for these 3 different LUT and proposed method are as 

follows:  

         
Table 6.9. W errors for the 3 LUTs A,B and C         

W errors (%) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 max ave 

Option A 14,017 14,017 3,328 3,328 3,328 29,548 29,55 0,601 0,601 12,037 12,037 29,5482 11,127 

Option B 7,4182 7,4182 0,135 0,135 0,135 11,08 11,08 2,903 2,903 0,278 0,278 11,0795 3,9786 

Option C 6,4175 6,4175 0,242 0,242 0,242 5,946 5,946 3,837 3,837 2,1884 2,1884 6,4175 3,4094 

OIOPD 1,9015 1,9015 0,1 0,1 0,1 1,8088 1,809 3,111 3,111 2,1355 2,1355 3,1114 1,6559 

 

         
            As seen from all the extreme LUTs, there is a huge need for the memory to store 

the tables. For an accurate LUT the need for the table is around hundreds of Gbytes. Also 

the look-up time in order to obtain the W value even for a single transistor is a lot larger 

than OIOPD for the LUTs performed. Finally the best W value convergence obtained by a 

LUT method is more than % 3,4 (for the average of the whole circuit) since it is less than 

% 1,7 for the OIOPD method.  

         
            It can be seen from Tables 6.10 and Table 6.11 that for all 3 different technology 

files (90nm, 180nm, 250nm) the errors on W guessing of the LUT methods is larger than 

% 6. This looks like an acceptable error; however, the problems including a large memory, 

long look-up time etc. still exist. Also the results show that W errors of all 11 transistors 

for OIOPD method is less than % 3,12 for the folded cascode amplifier example and again 

less than % 2,37 for the shown transistors of the gain boosted amplifier. Also the results 

show that for the gain boosted amplifier average error on W for the transistors is less than 

% 0,5 for any technology. This shows how powerfull the OIOPD is to converge to the real 

W values.  

         
            Errors on the W change the performance values of the circuits (fitness values). As a 

result, during the optimization flow, the objective functions with high error can occur if the 
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error on W is large. This will result in that, the optimization algorithm works less accurate 

while generating new individuals by using genetic operators. The performance value (gain, 

phase margin etc.) error comparison for the W’s generated by the methods have also been 

tested for the gain boosted amplifier.  

         
           For the Folded Cascode Amplifier:  

         
Table 6.10. W errors for the folded cascode amplifier with the best LUT and OIOPD 

Method 

 OIOPD OIOPD OIOPD LUT LUT LUT 

W errors 90nm 180nm 250nm 90nm 180nm 250nm 

(%) 1,8099 2,8429 1,9015 1,7148 28,8545 7,5286 

 1,8099 2,8429 1,9015 1,7148 28,8545 7,5286 

 0,1719 0,5017 0,1 8,1508 5,3437 5,8329 

 0,1719 0,5017 0,1 8,1508 5,3437 5,8329 

11 transistors 0,1719 0,5017 0,1 8,1508 5,3437 5,8329 

 0,0968 0,2113 1,8088 21,9032 2,4734 0,9851 

 0,0968 0,2113 1,8088 21,9032 2,4734 0,9851 

 1,196 0,2251 3,1114 9,1056 3,2113 10,61 

 1,196 0,2251 3,1114 9,1056 3,2113 10,61 

 0,2487 1,5038 2,1355 2,4815 8,0672 13,728 

 0,2487 1,5038 2,1355 2,4815 8,0672 13,728 

average 0,656227 1,006482 1,655855 8,623873 9,203991 7,563827 

max 1,8099 2,8429 3,1114 21,9032 28,8545 13,728 

 

         
For the Gain Boosted Amplifier, the results are as given on Table 6.11 which can 

be seen below: 
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Table 6.11. W errors for the gain boosted amplifier with the best LUT and OIOPD Method 

 OIOPD OIOPD OIOPD LUT LUT LUT 

W errors 90nm 180nm 250nm 90nm 180nm 250nm 

(%) 0,0514 0,2987 0,0401 7,5701 7,3771 16,1057 

 0,0514 0,2987 0,0949 7,5701 7,3771 1,0395 

 0,0952 0,0015 0,0949 45,0067 0,7006 1,0395 

 0,05 0,0015 0,108 23,0833 0,7006 14,6427 

10 transistors 0,05 0,0452 0,108 23,0833 16,8199 14,6427 

 0 0,0452 0,0187 127,1 16,8199 12,028 

 0 1,6871 0,0187 127,1 2,4083 12,028 

 0,0108 1,6871 0,0517 93,9189 2,4083 2,931 

 0,0447 0,0228 0,0064 86,7337 0,8648 13,6703 

 0 0,1683 2,3609 11,6032 8,8335 17,8758 

average 0,03535 0,42561 0,29023 55,2769 6,43101 10,60032 

max 0,0952 1,6871 2,3609 127,1 16,8199 17,8758 

       

 OIOPD OIOPD OIOPD LUT LUT LUT 

Performance 90nm 180nm 250nm 90nm 180nm 250nm 

errors 0,0087 0,142 0,0426 25,8735 6,0212 1,1837 

(%) 0,0125 0,2907 0,0333 1,2912 22,5079 9,2834 

 0,0511 0,0418 0,0333 13,5786 7,412 7,5435 

 0,1522 0,2704 0,02 45,9572 49,531 2,6891 

 0,0114 0,1546 0,0056 28,2165 7,4226 1,7755 

 0,0539 0,1895 0,0093 10,6972 8,9543 4,8323 

10 objectives 0,0295 0,0112 0 5,9866 2,9612 3,1823 

 0,026 0,3114 0,0198 26,1336 0,9043 3,7862 

 0 0 0,0545 0,0469 11,9212 11,6996 

 0,0316 0,4187 0,1963 63,451 6,9753 8,4953 

average 0,03769 0,18303 0,04147 22,1232 12,4611 5,44709 

max 0,1522 0,4187 0,1963 63,451 49,531 11,6996 
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           To mention again, the results show that, OIOPD is much powerfull even than a 

large LUT. Also it can be seen that large deviations on W result in the large errors on the 

performance values of the circuit (it goes up to % 63 for the LUT for 90nm) which 

inconveniences the work of the optimization algorithm.  

         
      From the results, it is also proven that for the technology scaling down, an old 

method (LUT) has more problems about the DC root solving. However the proposed 

method OIOPD does not suffer from the scale down of the technology and works perfect 

even for 90nm. This is an extra advantage of the proposed method.  

 

6.3 Single-objective Optimization Tests for Gain-Boosted Amplifier 

 

 An example of using OIOPD to size complex analog circuit is provided. This 

example is very complex and needs more than 800 iterations. Because it is shown that the 

LUT method is much better than the traditional DC root solving methods and the 

regression-based methods, OIOPD is compared with a selected LUT . The gain-boosted 

which was given in the previous parts of the work has been optimized by the OIOPD and 

LUT-based analog sizing method. This circuit has 23 constraints (including those 

necessary to ensure the proper operating region for all transistors). 0.25um CMOS 

technology with 2.5V power supply s used. The transistor lengths are allowed to vary 

between the minimum value allowed by the technological process, 0.25um, up to 10um. 

The transistor widths are changed between the minimum technology value, 0.6um, up to 

700um. The capacitor values could change from 100fF to 20pF. The design specifications 

are DC gain>135dB, GBW>180MHz, phase margin>70, gain margin<1, output 

swing>3.5V.  All transistors should work in the saturation region. The optimization goal is 

the power consumption. For the search algorithm MSOEA [17] has been chosen since the 

optimization is a single optimization case and since it is easy to implement DC Driven 

methods on. 

 

 The population size is chosen as 80, the DE step size F is 0.8, the crossover 

probability CR is 0.8, δ is 0.2, OT is 0.9, and η in SBX is 10 [3].  Because of the influences 

of random numbers in evolutionary computation algorithms, 5 times are run for each 
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method and the average results are shown in Table 6.12. The experiments are run on a PC 

with Xeon processor and 8GB RAM memory in Linux system. 

 

Table 6.12. Results of the OIOPD and LUT method on MSOEA Optimizer 

Look-up Tables Objective Function Constraint Satisfaction CPU Time 

OIOPD 6.51 mW 23/23 4654.5 sec 

LUT 9.20 mW 21.4/23 1.31 e+6 sec 

 

 
 From Table 6.12, it can be seen that the OIOPD method has better objective 

function values and satisfy all the 23 constraints in all the 5 runs. By LUT method, only 2 

runs satisfy all the constraints. This is because the OIOPD method can provide more 

accurate estimations of W. The CPU time of OIOPD is also much smaller than that of 

using LUT. In order to get higher accuracy, the LUT need to include sufficient samples, 

and this increase the look up time, which is much longer than the time of simulations of 2 

extreme points. Because this example needs a large number of iterations, it can be seen that 

the time cost of the LUT method is impractical, but the OIOPD method also performs well 

(according to experiments, normally for a less complex circuit, the time cost of the LUT 

method is long but practical).  

 

6.4 Multi-objective Optimization Tests for Gain-Boosted Amplifier 

 

 The novel OIOPD based method has been implemented on the Enhanced 

MOEA/D-DE Algorithm, which was represented in Chapter 5, in order to see the 

enhancements in the results. As mentioned before, OIOPD is a very fast and accurate 

model to guess the W from DC points of the circuit. With this way the DC variables are 

used as the optimization variables which are easier to be optimized. This has lots of 

reasons which have been mentioned before but most importantly, again, it should be noted 

that a W can vary from 0,24um to 800um, since a voltage value can change from 0 Volts to 

1,8 Volts for a 0,18um technology. This will lead to a faster convergence to the ideal 

Pareto Front.  
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 The OIOPD based MOEA/D-DE has been compared with the original one for 2 

objective optimization cases of gain boosted amplifier. The optimization functions have 

been chosen as phase margin-gm for the first test, gain-power for the second test and gain-

phase margin for the third test. All of the runs have been realized for 100 iterations, 100 

population size and 40 niche. Other parameters and the seed number of the random number 

generator are equalized to make it a fair comparison.  

 

It should be noted that the reason for the small ranges of some of the objective 

functions are because small number of iterations. It was experimented that an optimization 

whose results will be used for a real design should have at least 300 iterations (this is an 

approximation for the global optimum points) for 2 objective optimization. However 100 

iterations for 2 objective are good enough for the comparison cases. The results for 2 

objective optimization of gain boosted amplifier with OIOPD based MOEA/D-DE and 

with Original MOEA/D-DE are as follows: 

 

 

 
Figure 6.5. Phase Margin – Gm Optimization of Gain-boosted Amplifier with OIOPD 

based MOEA/D-DE and Original MOEA/D-DE 
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Figure 6.6. Gain – Power Optimization of Gain-boosted Amplifier with OIOPD based 

MOEA/D-DE and Original MOEA/D-DE 

 

 

 
Figure 6.7. Gain – Phase Margin Optimization of Gain-boosted Amplifier with OIOPD 

based MOEA/D-DE and Original MOEA/D-DE 
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 The results of the optimization show that OIOPD based DC root solving method 

implementation on MOEA/D-DE has increased the dominance quality and the solution 

ranges of the Pareto Fronts, which can be obtained by the original MOEA/D-DE. 
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7. CONCLUSIONS AND FUTURE WORK 

 

 

Since there are several numbers of well designed CAD  tools for digital design, this 

number is so limited for the analog CAD tools. It is clear that analog circuit design will 

always remain so important due to the fact that the nature we live in is analog. Increasing 

needs of complex analog designs, especially for the integrations on System on Chips 

(SoCs),  are coming up with the needs of good analog CAD tools. One of the most 

important automation methods of analog EDA is the sizing optimization of the analog 

circuits. 

 

 During the thesis, several optimization methods have been discussed and it was 

mentioned that the Evolutionary Algorithms are used so often for analog sizing problem, 

because of their several advantages. A background work based on the decomposition of the 

whole problem into different scalar problems has been chosen and several enchancements 

have been realized to improve that algorithm. First of all some software enchancements 

have been realized to make it work faster. Later some new methods have been proposed in 

order to increase the quality of the convergence, dominance and distribution on Pareto 

Fronts etc. All these works leaded us to a new method called Enhanced MOEA/D-DE. 

 

 There are two choices for the selection of the optimization variables for analog 

sizing problem. The transistor dimensions can be directly optimized, or the DC operating 

points of the transistors can be optimized. The optimization with second type of variables 

are called OPD based methods. In these methods the critical point is finding the proper W 

from the DC points with a high accuracy. This will let the algorithm evaluate the circuit by 

using a SPICE simulator. In the second part of the project a DC root solving algorithm has 

been proposed. The novel method can guess W from the DC points in a fast and highly 

accurate way. This method has been compared with other OPD methods and it was seen 

that the results for the novel method OIOPD are much better. This novel method has been 

implemented on the Enhanced MOEA/D-DE to see the improvements. The results are 

given on Chapter 6. It can be seen that the proposed method enchanced the quality of the 

MOEA/D-DE algorithm proposed on Chapter 5. As a result the last version of the analog 

sizing optimization algorithm is the OIOPD based Enhanced MOEA/D-DE.  
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 There are several works to be done in order to increase the quality of the algorithm 

and to make it more user friendly. First of all, the ranges of the objective functions on the 

Pareto Fronts can be more fair. For example, as it can be seen from Figure 6.6, the power 

objective is changing in a small range. To fix that problem some further works should be 

done on the normalization of the objective functions.  

 

 Also, an adaptive method for the determination of the iteration numbers is 

something to work on. A method like comparing the previous pareto front (what previous 

means here is the previous iteration’s PF) with the present one and checking the 

improvement in a systematic way can be used to achieve that.  

 

 More future works can also be performed in order to improve the quality of the 

optimization algorithm.  

 

 Finally, all considered, it can be said that the OIOPD based Enhanced MOEA/D-

DE Algorithm is an effective algorithm for optimizing the dimensions of the transistors on 

analog circuits. The results of the implemented methods building up the overall algorithm 

have been compared with the other works from the literature and sometimes slight, 

sometimes significant improvements have been obtained.   
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