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ABSTRACT 

 

 

COMPARISON OF SINGLE AND MULTI FRAME SUPER 

RESOLUTION RECONSTRUCTION ALGORITHMS WITH 

ANALYTICAL INTERPOLATION METHODS  

 

 

Generating high resolution image (or image sequence) from low resolution image (or 

image sequence) has various applications such as image expansion, printing and 

conversion between different resolution formats. There is a huge amount of study on HR 

image reconstruction problem in the literature. These methods can be broadly divided into 

two main classes: analytical reconstruction techniques and super resolution reconstruction 

techniques. In the former case, reconstruction is established using an interpolation kernel. 

The original LR image is convolved with interpolation kernel to obtain the continuous 

data. Then continuous signal is sampled again according to the desired resolution. On the 

other hand, in SR reconstruction, the idea is to fuse different samples obtained at different 

time instants from the same object by a single camera. SR reconstruction can be posed in 

another way. HR image can be reconstructed by combining different samples obtained at 

the same time instant from the same object by multiple cameras. There should be sub-pixel 

shifts between sampling locations to make the reconstruction possible. 

 

In this M.S. Thesis, subjective and objective comparison of 5 different analytical 

interpolation methods and 2 super resolution image reconstruction methods is given. An 

adaptive filtering approach least mean squares (LMS) filtering and robust super resolution 

are used for super resolution image reconstruction. SR methods are compared with bicubic 

interpolation, wavelet based interpolation, edge adaptive interpolation, interpolation using 

wide sense Markov random fields and interpolation using exponential based kernels. All 

seven methods are tested on different videos and frames. PSNR and SSIM measurements 

are given. Also, subjective tests are conducted on the experimental results. 
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ÖZET 

 

 

TEK VE ÇOK ÇERÇEVELİ SÜPER ÇÖZÜNÜRLÜK 

YÖNTEMLERİYLE ANALİTİK ARADEĞERLEME 

YÖNTEMLERİNİN KARŞILAŞTIRILMASI 

 

 

Düşük çözünürlüklü imge (veya imge dizisi) kullanarak yüksek çözünürlüklü imge 

(veya imge dizisi) elde etmenin imge büyütme, baskı ve değişik çözünürlük biçimleri 

arasında döünüşüm yapmak gibi çeşitli uygulama alanları bulunmaktadır. Literatürde 

konuyla ilgili birçok çalışma mevcuttur. Bu metodlar kabaca iki ana başlık altında 

incelenebilir: analitik inşa teknikleri ve süper çözünürlük inşa teknikleri. İlk kısımdaki 

yöntemlerde, inşa etme işi bir aradeğerleme çekirdeği kullanılarak yapılır. Orjinal düşük 

çözünürlüklü imge ile aradeğerleme çekirdeğinin evrişimi hesaplanarak sürekli imge 

sinyali elde edilir. Daha sonra bu sürekli sinyal istenen yüksek çözünürlüğe göre tekrar 

örneklenerek yüksek çözünürlüklü imge elde edilir. Öte yandan, süper çözünürlüklü inşa 

yönteminde ise ana fikir, aynı nesneden farklı anlarda aynı kamera tarafından alınan 

örneklerin birleştirilmesi sonucu yüksek çözünürlüklü imgenin elde edilmesidir. Başka bir 

şekilde düşünecek olursak, süper çözünürlüklü inşa yöntemi, aynı nesneden aynı anda 

birden fazla kamera tarafından alınan örneklerin birleştirilmesi sonucu yüksek 

çözünürlüklü imgenin elde edilmesidir. İnşa işleminin mümkün olabilmesi için farklı 

örnekler arasında piksel altı kaymalar olmak zorundadır. 

 

Bu yüksek lisans tezinde, 5 farklı analitik ara değerleme yöntemiyle 2 süper 

çözünürlük inşa yönteminin nesnel ve öznel karşılaştırmaları yapılmıştır. Süper çözünürlük 

inşa yöntemi olarak bir çeşit uyarlamalı süzgeçleme yaklaşımı olan en küçük ortalama 

kareler kestirimi yöntemi ve gürbüz süper çözünürlük yöntemleri kullanılmıştır. Bu 

yöntemlerin sonuçları, 2 boyutlu kübik aradeğerleme, dalgacık tabanlı aradeğerleme, ayrıt 

uyarlamalı aradeğerleme, Markov rastgele alanları kullanılarak yapılan aradeğerleme ve   

üstel tabanlı aradeğerleme sonuçlarıyla karşılaştırılmıştır. Bütün yöntemler farklı video ve 



 

 

vi 

imgeler üzerinde test edilmiştir. Sonuçların PSNR ve SSIM ölçümleri yapılmıştır. Ayrıca, 

sonuçlar üzerinde öznel testler yapılmış ve sonuçları değerlendirilmiştir. 
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1 

1.  INTRODUCTION 

 

Digital imaging systems including all from primitive camcorders to scientific 

purpose cameras sample a real world scene by its sensor chip. If we model this system as a 

pinhole camera then the 3D scene is projected onto a 2D plane. The light coming from real 

world scene passes through camera optical system before reaching camera sensor.  

 

During image acquisition process, the projected version of the 3D scene undergoes 

some degradation. What we see at the displays is the degraded version of the original real 

world scene. The limitations of the imaging system corrupts captured image. These 

limitations can be inspected under three category which are blur, aliasing and noise. 

Inefficiency of the optical system and Point Spread Function of sensor chip cause blur. 

Also temporal subsampling of the scene causes motion blur in video sequences. So 

capturing a single frame from a video sequence generally gives poor performance because 

of the blur around boundaries of moving objects.  

 

The sensor chip is a 2D matrix composed of small photosensors called pixels. These 

sensors output data proportional to light amount (number of photons) falling on each of 

them. The image is formed fusing three monochromatic images red, green and blue. In 

ideal case, every pixel is composed of three subpixels for each monochromatic component. 

But in practice this is not the case. To reduce cost, every pixel is designed to measure only 

one color component. A Color Filter Array (CFA) is placed in front of the sensor array. So 

the light falling on each pixel is filtered according to the color pattern on CFA. A well 

known CFA pattern is Bayer pattern, taking its name from its inventor, Dr. Bryce E. Bayer 

of Eastman Kodak. This subsampling in the sensor array causes aliasing in the captured 

image. Finally the noise, which is formed on sensor array or during the transmission of the 

image data, corrupts the captured image. SR image reconstruction methods aim to create 

an HR image using LR image (or images).   
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1.1. Single Frame SR Image Reconstruction 

 

The methods in this group use a database (or look-up-table) to reconstruct plausible 

high frequency components for the resulting HR image. HR image patches corresponding 

to different LR image patches are placed in this database. Database is created via a training 

phase using an independent set of training images. According to one exemplary training 

method [1], first, training images (original HR images) are smoothed and subsampled to 

model the degradation that LR images undergo. Then, degraded LR images are 

interpolated to the original HR image size using a standard analytical interpolation method 

(bilinear, bicubic or a similar method). At this stage, we have the original HR image and 

the corresponding interpolated LR image, namely, we have HR image patches 

corresponding to degraded LR image patches.   

 

All of these matched patches are stored in our database and same procedure is 

repeated for all training images. This means a huge amount of data to store. Principle 

Component Analysis (PCA) can be used for dimensionality reduction. Also, it is known 

that high frequency components have the dominant role in predicting the details of an 

image. Another method to reduce database size is to apply highpass filtering to both 

interpolated LR image and original HR image and to store patches only for these high 

frequency components. Database can be implemented in a tree format to facilitate the 

search.  

 

After creating database, we can construct an HR image from a single LR image by 

first interpolating LR image to the size of HR image and then predicting high frequency 

components using the information recorded in our database. Another issue related to Single 

Frame SR Image Reconstruction method is the spatial consistency of the high frequency 

patches found for neighboring pixels.  The consistency of the neighboring patches should 

be taken into account at the database search process to get plausible high frequency 

components throughout the image.   

 

This training based reconstruction method is modified for the case of multi frame 

(video) applications in [2]. 
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1.2. Multi Frame SR Image Reconstruction 

 

The methods in this group fuse data coming from different LR images of the same 

scene. These LR images are different looks of the same scene and they can be obtained 

from multiple cameras located at different locations or a single camera can be used to grab 

different looks of the scene. There should be relative subpixel shifts between LR images in 

order to use them in SR image reconstruction process. If there are integer pixel shifts, then 

these LR images contain the same information and can not be used for SR reconstruction.    

 
After getting LR images, reconstruction process is established in three stages: 

registration (or motion estimation), interpolation onto an HR grid and image restoration 

[3]. In registration stage, subpixel shifts between LR images are estimated and LR images 

are matched spatially. So, same physical regions at two different LR images correspond to 

same spatial coordinates. These registered images are placed onto a global grid (HR grid). 

After placing onto HR grid, unavailable pixels are interpolated using the data coming from 

all LR images. Last stage is image restoration which is a well studied subfield of image 

processing. At this stage deblurring and denoising is applied to reconstructed HR image. 

Multi frame SR Reconstruction methods can be inspected in two broad classes as 

Frequency Domain Methods and Spatial Domain Methods.   

 
Spatial Domain Methods: 

 

• Interpolation of Non-Uniformly Spaced Samples 

• Simulate and Correct Methods 

• Probabilistic Methods 

o MAP Reconstruction Methods  

o ML Reconstruction Methods   

• Set Theoretic Methods 

o Projection Onto Convex Sets 

o Bounding Ellipsoid Method 

• Adaptive Filtering Methods  

• Tikhonov-Arsenin Regularized Methods  

• Robust Super Resolution  
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Frequency Domain Methods:  

 

• Reconstruction via Alias Removal  

• Recursive Least Squares Techniques  

 

1.3. Outline of the Thesis 

 

In Section 2, super resolution reconstruction methods are covered in detail. Section 3 

gives information about common analytical interpolation methods. In Section 4, image and 

video quality metrics are given. In Section 5, results are given and evaluated. Finally, 

Section 6 is the conclusion part. 
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2. SUPER RESOLUTION RECONSTRUCTION METHODS 

 

 

In this chapter, the theory of most commonly used SR reconstruction methods are 

given in detail. 

 

2.1. Interpolation of Non-Uniformly Spaced Samples 

 

This is the most intuitive method for SR image reconstruction. The aim is to 

reconstruct HR images from degraded LR image sequences. It is basically composed of 

three stages registration (motion estimation), nonuniform interpolation and restoration 

(deblurring and denoising) as shown in the following figure.   

 

 

Figure  2.1. Super resolution stages 

 

  fi is the degraded LR image and g is the reconstructed HR image. In registration 

stage, relative motion between LR images is estimated with subpixel accuracy. The 

accuracy of subpixel motion estimation is a very important factor affecting the 

performance of the SR reconstruction process. After finding relative shifts, LR images are 

placed on a uniform HR grid. Integer pixel shifts do not provide information. In Figure 2.2, 

red squares have integer pixel shifts. On the other hand, blue and yellow squares have 

subpixel shifts. At the end of registration stage, the result is nonuniformly spaced samples 

of registered LR images. 
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Figure  2.2. Subpixel shifts 

 

In interpolation stage, the values of the uniformly spaced samples on the HR grid are 

interpolated using the values of nonuniformly spaced samples.  Various methods exist in 

the literature for nonuniform interpolation. 

 

Saito, Komatsu and Aizawa [4], [5], [6] proposed an interpolation method based on 

Landweber algorithm [7]. They used multiple LR cameras to reconstruct high resolution 

images. In registration stage, they used block matching technique to estimate relative shifts 

between LR images. Input images are interpolated N times, blocks of magnified images are 

compared and displacement of blocks are estimated with 1/N subpixel accuracy. After 

registration, they used iterative Landweber algorithm in the interpolation stage to calculate 

uniformly spaced sample values from nonuniformly spaced samples. If the continuous 

image function gc is approximated as a bandlimited signal and represented with its 

uniformly spaced samples as g, then its nonuniformly spaced samples f are related to its 

uniformly spaced samples g through the equation. 

 

 f Ag=  (2.1) 

 

Here A is a linear matrix operator representing nonuniform sampling process and blur 

caused by image acquisition system. Next step is to estimate uniformly spaced samples g. 

Since the size of A matrix is proportional to the number of samples, calculating Moore-



 

 

7 

Penrose pseudo inverse is a very computationally expensive operation. Instead, Landweber 

algorithm can be used. According to Landweber algorithm, g at iteration (t+1) is related to 

g at iteration (t) through the relation  

 

 )( )()()1( ttt
AgfTgg −+=+  (2.2) 

 

where operator T is a mapping from the space F of nonuniformly spaced samples to space 

G of uniformly spaced samples. As the operator T, Saito, Komatsu and Aizawa used 

adjoint operator A*. They also used a parameter α to control the process. Also g(0) can be 

chosen arbitrarily. 

 

 )( )(*)()1( ttt
AgfAgg −+=+ α  (2.3) 

 
 

 
 

(a) 
 

T  
(b) 

 

 
(c) 

Figure  2.3. Pixel apertures 

 

The achievable passband of a CCD imager depends on the impulse response of the 

pixel aperture. The aperture effect limits the performance of the imaging system. Figure 

2.3-a shows a single aperture (single pixel). Assuming a square pixel aperture, its spectrum 
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is simply a sinc function. Figure 2.3-b shows a 1D array of pixels in the case of 100% 

aperture ratio. The sampling interval is T so our sampling frequency is 1/T. Sinc functions 

overlap on frequency domain so the bandwidth of the input signal should be limited under 

1/2T (half of the sampling frequency). This result is consistent with well known Nyquist 

theorem.  

   

If we use two CCD imagers to capture the same scene, we can increase the 

performance of our system. Two CCD imagers are placed in a special geometric 

arrangement so that their sampling arrays overlap as shown in Figure 2.3-c. One imager 

samples the scene as shown by black lines and the other samples the scene by red lines. So 

we increase our sampling frequency to 2/T and no degradation occurs for frequencies 

under 1/T. This means we can increase the performance of the system to the limitation set 

by single pixel aperture. 

 

In [4], [5] Saito, Komatsu and Aizawa used multiple cameras with the same pixel 

apertures to construct HR images. When using cameras with the same pixel aperture, the 

resolution improvement depends on the geometric configuration of the scene and the 

cameras. The cameras should be coplanar and 2D image plane should be perpendicular to 

their optical axes. In [8] Saito, Komatsu and Aizawa proposed using multiple cameras with 

different pixel apertures in image acquisition process. In the case of different apertures, 

pixel of one imager does not fully overlap with the pixel of another imager (refer to Figure 

2.4). This way, pixel of each imager samples extra information without a special geometric 

configuration of the scene. The problem of this method is different aliasing artifacts of 

each imager. Since, aliasing depends on pixel aperture of each camera, different pixel 

apertures mean different aliasing effects for each camera. This problem reduces the system 

performance on registration stage.  

 

To remedy this problem an alternately iterative method is proposed. In this method, 

registration and reconstruction stages are handled together. First, an improved resolution 

image is created using LR images. Then, registration procedure is repeated taking 

improved resolution image as reference. This time, relative shifts between LR images and 

improved resolution image are estimated. This way, the robustness of the registration stage 
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is increased because reference improved resolution image contains most of the information 

coming from all LR images. 

 

 

Figure  2.4. Different Pixel Apertures 

 

In [9] and [10], Nakazawa, T. Saito, T. Sekimori, and K. Aizawa used a temporal 

integration method to increase spatial resolution using a sequence of images. It is an 

application oriented approach. The images are captured using a low resolution camera 

moving along a track. A surveillant determines a ROI on observed low quality image. Then 

temporal integration algorithm combines the information coming from low quality images 

to improve the resolution inside the ROI. The method mainly consists of two stages: 

motion estimation and nonuniform interpolation.  

 

For motion estimation they proposed a special algorithm named as quadrilateral 

motion estimation. In quadrilateral motion estimation, first the ROI is divided into 

quadrilateral patches as shown in Figure 2.5. The method describes image motion as the 

deformation of these patches from one frame to another (refer to Figure 2.6). The 

deformation can be modeled using perspective projection. Note that affine transformation 

has six degrees of freedom and is not enough in this case. We can model only triangle to 

triangle deformations using affine transformation. To model quadrilateral to quadrilateral 

deformation, we need eight degrees of freedom which means perspective projection. After 

finding the parameters of perspective projection, we can estimate the motion of each pixel 

inside quadrilateral patches. 
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In order to estimate projection parameters, the grid points on HR grid are moved in 

small amounts on horizontal and vertical directions. MSE is estimated between reference 

ROI and the ROI under consideration after each movement. The movement minimizing 

MSE determines the correct position of grid point in successive frames (refer to Figure 

2.7).  

 

 

Figure  2.5. ROI covered with quadrilaterals 

 

 

Figure  2.6. Deformation of quadrilaterals 
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Figure  2.7. Quadrilateral patches and deformation 

 

After registration, next step is to make interpolation using nonuniformly spaced 

samples. An HR grid is determined inside the undeformed ROI. Each luminance value (p3) 

on this HR grid is estimated as weighted average of nonuniformly spaced pixel values (p1 

and p2) around HR pixel. Figure 2.8 illustrates this operation. Nonuniformly spaced pixels 

used in weighted averaging are within a chess-board distance of one HR pixel.  

 

 

Figure  2.8. Nonuniform interpolation 

 

After this operation, some pixel values remain undecided. An iterative approach is 

used to find undecided pixel values. The equation of the method is given below 
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gm,n is the intensity value of a HR pixel at (m,n) position and t is iteration number. This 

formula is used iteratively until convergence. ω is used to control the rate of convergence. 

 

Keren, Peleg and Brada [11] used a temporal averaging method to obtain uniformly 

spaced HR samples. As the first step, LR images are registered and placed onto an HR 

grid.  Each sample in these LR images (size of NxN) has an area of dxd. On HR image 

(size of MNxMN), determine an area of d/Mxd/M around each unknown sample and call 

this area as q. All LR images are on top of each other on HR grid. Assume that you push a 

needle through the center of q. This needle will pierce a sample area in each LR image. 

Call these samples corresponding to pierced areas as pk. Averaging all pk values we get the 

value of HR sample at the center of q. As a result of averaging process, the result is a 

blurred version of the original image. Deblurring or high-pass filtering can be applied to 

enhance high frequency details.  

 

2.2. Simulate and Correct Methods 

 

In simulate and correct methods, first an initial estimate of HR image is produced. 

Then a transform modeling the imaging process is applied to this estimate and LR images 

are obtained. These LR images are compared with original LR images. The error is then 

used to modify initial HR estimate and this operation continuous iteratively. 

 

In [12] and [13], Shah and Zakhor proposed a multiframe resolution enhancement 

technique. The method consists of three stages. First, registration is performed and a 

motion vector is found for each pixel in LR images relative to the reference LR image. 

They proposed to use 5 LR images {k-2, k-1, k, k+1, k+2} and used kth image as the 

reference. In registration stage they used Modified Block Matching Algorithm (MBMA). 

In MBMA, a candidate set of motion vectors is found for each pixel using MSE as the 

comparison criterion. For each pixel, the motion vectors close to the best motion vector 

(lowest MSE) less than a predetermined threshold are accepted as candidate vectors. The 

reason to use a set of candidate motion vectors instead of one is to increase the motion 
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estimation accuracy. According to empirical results, due to aliasing and blurring, true 

motion vector can sometimes have higher error than best motion vector in terms of MSE.  

 

After registration, the resulting motion vectors are used to combine LR images into 

an initial HR estimate. Since we have more than one motion vector for each pixel, several 

situations can arise. If a single LR pixel is mapped to an HR pixel, then the value of this 

HR pixel becomes the value of the LR pixel. If multiple LR pixels are mapped to an HR 

pixel, then the pixel with motion vector of lowest MSE is selected. This way, most of the 

pixels on HR grid are found. The values of the remaining holes are found using iterative 

Landweber algorithm. First, the imaging process is simulated on the initial estimate of HR 

image using motion information for different LR images. The resulting LR images are then 

compared with original LR images. Then, the error is used to modify initial estimate of HR 

image. This process continues iteratively until convergence.  

   

 )( )(*)()1( ttt
AgfAgg −+=+ α  (2.5) 

 

Above equation describes the process for each LR image. In this case, f is the original LR 

image. g(t) is the estimate of HR image at iteration t. Imaging is simulated on g(t). The error 

between the original LR image and simulated LR image is projected to the space of g using 

A
*. This error is added to g(t). At each iteration, Ag

(t) gets closer to y. 

 

In [14], Irani and Peleg assumed only global translational and global rotational 

motion to describe motion from frame to frame. The imaging process is modeled by  

 

 )),()),(((),( yxyxghQnmf kckk η+=  (2.6) 

 

where  fk is the kth observed digitized LR image, gc is the original continuous HR image, h 

is the blurring operator and ηk is additive noise term for kth observed image. Qk samples 

and quantizes the blurred and noisy version of HR input image. It also includes the effect 

of image warping due to motion. (x,y) is the center of the receptive field of the detector 

whose output is fk(m,n). (x,y) and (m,n) are related to each other as shown below: 

 

 kykxx nTmTtx θθ sincos −+=  (2.7) 
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 kykxy nTmTty θθ cossin ++=  (2.8) 

 

where Tx and Ty are the sampling periods, tx and ty are translation parameters and θk is the 

rotation angle of the kth observed image. If we use above motion parameters, we can write 

a relationship between two consecutive frames f1 and f2 as: 

 

 )sincos,sincos(),( 12 yx txytyxfyxf +++−= θθθθ  (2.9) 

 

Irani and Peleg found motion parameters by solving this equation. Detailed 

derivation can be found in [14]. The method to find motion parameters is used iteratively 

to increase the accuracy of motion parameters. First, initial estimates of motion parameters 

are found. Then image f2 is warped thorough image f1. Motion parameters are calculated 

again and added to initial estimates. Accuracy of the motion parameters increases at every 

iteration. 

 

Knowing motion parameters, the imaging process can be simulated on HR estimate 

and the resulting LR images can be compared to observed LR images. Denote original 

discrete HR image as g, HR pixel as ph and LR pixel as pl. First, an initial estimate g(0) of 

HR image is computed. After applying imaging process to g(0)  we get simulated LR 

images fk
(0) as shown below: 

 

 ( ) ( )
1( ) ( ) ( )

h

t t

l h h pl

p

f p g p h p z= −∑  (2.10) 

 

where zpl represents the center of receptive field of LR pixel pl. The value of the LR pixel pl 

is calculated by weighted averaging of the HR pixels in its receptive field. The weight of 

HR pixels increases as the HR pixel location approaches to zpl. Here h1 is a smoothing 

kernel. Convolving HR image estimate g(t) with h1 we get the simulated LR image f(t). After 

finding simulated LR images, g(t) is updated using the error between simulated LR images 

and observed LR images.   
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where Lk is the set of LR pixels that are influenced by ph (ph is in the receptive fields of all 

LR pixels in Lk). The effect of h2 is to weight the contribution of the error terms. In this 

way, the weight of the error coming from a LR pixel is high if the center of receptive field 

of that LR pixel gets closer to ph. h2 can be set equal to h1 or another filter can be used. C is 

normalization constant. Weighted averaging the error terms coming from different 

neighbor pixels decreases additive noise strength. In order to handle multiplicative noise, 

median filtering can be applied to difference image (fk-fk
(t)) before averaging the errors. 

 

2.3. MAP and ML Reconstruction Methods 

 

The SR image reconstruction problem is treated in a statistical framework. In ML 

estimation, likelihood of HR estimate with respect to observed LR image (or images) is 

maximized. The block diagram of the process is illustrated in Figure 2.9. A priori 

information about HR estimate is incorporated in MAP estimation. We can say that ML 

estimate is also a MAP estimate with a flat prior for the HR image. 

 

 

Figure  2.9. Block diagram for MAP and ML estimation of HR image 
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Schultz and Stevenson [15], [16] proposed a Bayesian approach for noiseless and 

noisy images. First the image acquisition process is modeled. Let gc(x,y,t) be the 

continuous HR image. Then f is the digitized version of gc. 

 

 ( )
1 ( 1) ( 1)
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, ( , , )

w m w n

c
wm wn

f m n g x y t dxdydt
+ +

= ∫ ∫ ∫  (2.12) 

 

Here f(m,n) is the pixel value at the (m,n) position where m=0,….,N1-1 and n=0,….N2-1. w 

is the side length of the square pixel aperture. Simply a local neighborhood is integrated to 

determine the value of the pixel at the corresponding position of the grid. If we want a 

higher resolution image then we should use a finer grid during image acquisition. 
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Here, k=0,….,qN1-1 and l=0,…,qN2-1. In this case, side length of pixel aperture decreased 

to w/q and g has dimension qN1xqN2. Then the relation between low resolution image f and 

high resolution image g is   
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f is the blurred version of g according to this model. If f and g are written in 

lexicographical notation, the relationship can be interpreted in another way. 

 

 Dgf =  (2.15) 

 

Here f is N1N2x1, g is q2N1N2x1 and D is N1N2x q2N1N2. If noise is included in the model, 

the equation becomes  

 

 η+= Dgf  (2.16) 

 

A maximum a posteriori (MAP) technique is proposed to obtain g from f.  
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 )|(maxargˆ fgLg
g

=  (2.17) 

 

L(g|f) is the log-likelihood function (since log function is monotonically increasing, the 

parameters maximizing log-likelihood function also maximizes likelihood function). Using 

Bayes’ formula    
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=
 (2.18) 

 

Third term on the right can be ignored in the optimization because it is not a function of g. 

Then MAP estimate becomes  
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Here the densities P(f|g) and P(g) should be identified to find the estimate. For noiseless 

images  
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And for noisy images, 

 

 DgfPgfP −== ηη |)()|(  (2.21) 

 

If we model the noise as additive white Gaussian noise then, 
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where σ2 is noise variance. Finally image is modeled as a Markov Random Field with 

Gibbs density function.  
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Using these densities our estimate for noiseless case becomes  
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and for noisy case 
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In order to obtain a global minimum, Huber function (a convex function) is used in 

the definition of Vc. Huber function ρ, as illustrated in Figure 2.10, is quadratic below a 

threshold, and linear above the threshold.  
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Figure  2.10. Huber function with threshold T 
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Using Huber function Vc becomes 
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Using derivative approximations for the discrete case, we can define dk,l as  
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This set of dk,l and Huber function protects strong discontinuities while blurring weak 

details. 

 

The g image minimizing our estimate is found using gradient projection algorithm 

(constrained optimization) for the noiseless case and gradient descent algorithm 

(unconstrained optimization) for the noisy case [15]. 

 

In [17], [18] and [19], Schultz and Stevenson modified the single frame method 

described in [15] and [16] to include temporal information coming from neighboring 

images. In multiframe case, the only difference is that the decimation matrix also 

compensates for the motion between LR frames.  

  

In [20], Bouman and Sauer used generalized Gaussian Markov random field 

(GGMRF) to model the image prior and noise. Gaussian prior generally gives a smooth 

image (blurry edges), because the edges are penalized with the square of the edge 

magnitude. A better model should permit discontinuities. So the tails of the distribution 

should be longer than Gaussian distribution. The generalized Gaussian distribution (GGD) 

is a good choice, because using a shape parameter, tail length of the distribution can be 

controlled. The imaging process is modeled as  
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 η+= Agf  (2.29) 

 

where η is the noise vector. Elements of η are i.i.d.. The distribution of η can be modeled 

using generalized Gaussian distribution 
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where Γ is gamma function and q is the shape parameter. If q=2, then distribution is 

Gaussian.  If it is 1, then distribution is Laplacian. As q decreases from 2, the distribution 

becomes more heavy-tailed.  

 

In [21], Hardie, Barnard and Armstrong estimated an HR image from a sequence of 

LR images using MAP estimation. An imager is assumed to be mounted on a vehicle or an 

aircraft. The movement of the vehicle provides a jitter and subpixel motion occurs between 

successive LR images. This subpixel motion is exploited during SR image reconstruction. 

In [21], only global translational motion is taken into account but it is said that the 

algorithm is applicable for a more general scenario. The HR image prior and noise are 

modeled as Gauss-Markov random fields. 

 

In [22] and [23], Elad and Feuer incorporated the methods used for single image 

restoration to the more complex problem of super-resolution image reconstruction. ML 

method to restore one image from a single degraded image is generalized to the problem of 

single image restoration from several measured images.  

 

The first step is the formulation of the problem. There are N measured low 

resolution, degraded images fk at hand (k=1,…,N).  Each image has different size MkxMk. 

Our aim is to create a super-resolution image g with dimension LxL , fusing the information 

of measured images. Each measured image is produced applying warping, blurring and 

decimation to the high resolution image g. Also, the measured images are degraded with 

additive noise. Noise distribution will be modeled as Gaussian.  For the sake of generality, 

it is assumed that different warping, blur, noise and decimation are applied to each 

measured image. This model can be expressed analytically as shown below: 
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 kkkkk gFCDf η+=  for Nk ≤≤1  (2.31) 

 

 In this configuration, high resolution image g and low resolution measured images fk 

are shown in lexicographical notation. Fk represents geometric warping and has a size of 

L2x L2. Ck is the linear space-variant blur matrix of size L2x L2. Dk is the decimation matrix 

of size 22 xLM k . Finally ηk represents additive zero mean Gaussian noise. All these matrices 

are assumed to be known. Writing the above equation for all measured images and 

expressing the result using matrix notation we get: 
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 NHg +=Φ  (2.33) 

 

where kkkk FCDH =  and the autocorrelation matrix of Gaussian random vector N is 1−W . 

Block diagram of the model is shown in Figure 2.11.  

 

 

Figure  2.11. Block diagram of the system 

 



 

 

22 

According to ML estimation, high resolution image can be found by maximizing the 

conditional probability density function of the measurements given the ideal image, 

)|( gP Φ .  
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To minimize the expression on the right side, we can take the derivative with respect to g 

and equate to zero. The result is  

 

 Φ= WHgWHH T

ML

T ˆ  (2.35) 

 

Locally adaptive regularization can also be included in the equation. Using a Laplacian 

operator S and a weighting matrix V, we get 
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2.4. Projection onto Convex Sets 

 

Brief review of POCS method is given in [24]. Mathematically, POCS is the 

operation of finding a point which lies in a convex set and is nearest to another point 

generally not lying in the set. If we denote the image to be reconstructed as g, then every 

known property of g constrains g to lie in some convex set. For m properties of g, there are 

m convex sets. And the reconstruction problem is to find a point at the intersection of these 

convex sets. 

 

In [25], Tekalp, Ozkan and Sezan proposed a POCS method incorporating the 

observation noise. Let fi(m,n) denote the sample of the ith low resolution image at (m,n) 

coordinates.  
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Size of fi is MxM . gc(x,y) denotes original continuous scene. tx and ty are the displacements 

of fi with respect to reference frame in x and y directions, respectively. T is sampling 

period. h(x,y) is the PSF of the sensor, ηi(x,y) is additive noise component for ith  frame 

and ∗∗  denotes 2D convolution. If continuous scene is sampled at a denser grid (with a 

sampling period smaller than T), then resulting high resolution image g and low resolution 

images fi have a relationship as expressed below 
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High resolution image g(k,l) has a size of NxN and hi is the PSF for the ith  frame. 

Following convex constraint is defined for each pixel of low resolution images 
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where 0 , 1,m n M≤ ≤ − 21, ,i L= …  and 
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In this degradation model, observation noise is included, but aperture time is 

assumed to be zero. So, the effect of motion blur is neglected. The projection operator is 

given as. 
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 In [26], Patti, Sezan and Tekalp proposed a POCS method to account for aliasing, 

sensor blur, motion blur and observation noise. In this new degradation model, motion blur 

due to sensor aperture time is modeled at the beginning. Same convex constraints are used 

in the high resolution image reconstruction process.   
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In [27], the work in [25] and [26] is extended to include an arbitrary spatio-temporal 

sampling lattice. Same observation model is used except that sampling stage is modified to 

handle arbitrary sampling lattices. POCS constraints given in [25] and [26] are used in 

reconstruction stage. Detailed version of the work in [25], [26] and [27] are given in [28] 

by Patti, Sezan and Tekalp.  

 

2.5. Bounding Ellipsoid Method 

 

In [29], Tom and Katsaggelos used a POCS method to reconstruct the HR estimate of 

the image using some neighbor images from the video sequence. They modeled the 

imaging process as described below.   

 

Let gk denote the kth lexicographically ordered high resolution frame of the sequence 

and fk denote the degraded version of gk. The low resolution frame can be obtained from its 

high resolution counterpart using a transformation matrix  

 

 k

kk

k gAf ),(=  (2.42) 

 

A
(k,k) simulates the smoothing and decimation operations. A low resolution frame is of size 

NxN and a high resolution frame is of size PNxPN, where P is an integer. Then, A(k,k) is 

N2x(PN)2. For the neighbor images, the effect of motion should be taken into account.  
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The operator A(k,k-i) compensates motion from gk to gk-i and makes averaging and 

decimation. The effect of motion can be expressed explicitly as 

 

 ),(),(),( ikkikikikk CAA −−−− =  (2.44) 
 

Here A(k-i,k-i) is responsible for smoothing and decimation. C(k,k-i) is the motion 

compensation operator from frame k to frame k-i. C is defined as 

 

 ( ) ( ) ( )),(),( ikk

kk

ikk

ik ggCg
−−

− +== drrr  (2.45) 



 

 

25 

where ),( ikk −d is the displacement vector field (DVF) between frames k-i and k.   

 

Using these relations, a high resolution image gk can be reconstructed from 

(M1+M2+1) low resolution images using an iterative algorithm. 
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where the residual term ri,k is  
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λ is the regularization parameter, t denotes iteration number, Q is a high pass filter. The 

contribution of each low resolution frame is adjusted using βi parameter. βi is inversely 

proportional to amount of error ε in motion estimation which is given by  

 

 ( ) ( )),( ikk

ikk gg −
− +−= drrε  (2.48) 

 

2.6. Tikhonov Arsenin Regularization 

 

In [30], Hong, Kang and Katsaggelos proposed an iterative regularized algorithm to 

increase the resolution of a video sequence. gi and fi denote the HR image and 

corresponding LR image respectively. gi and fi have the same size.  

 

 iii Dgf η+=  (2.49) 

 

D is a spatially invariant PSF and models the smoothing effect on image acquisition 

system. ηi is the additive noise component. The problem is to estimate sequence of gi given 

a sequence of fi. Since the frames of a video sequence are temporally correlated, motion 

information will be used in the reconstruction process. Using motion compensation 

operator Ui,j, two frames of the sequence are related as shown below 
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Considering one observation for m frames of the original HR video sequence  
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Then, considering m observation, the HR estimate can be found by minimizing following 

regularized objective function 

 

 ( ) ( ) 2 2

1 1
i i

m m

i i i i iA B
i i

M g M g f H g C gα
= =

 = = − +
 ∑ ∑  (2.54) 

 

where 

 

 ,1 ,2 ,, , ,i i i i mC C C C =  …  (2.55) 

 

Ci,j is a matrix representing a high-pass filter and αi is the regularization parameter for the 

ith frame. Ai and Bi are weighting matrices. Gradient of M(g) is computed and equated to 

zero to find g that is minimizing M(g).  
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where 
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Then estimate of g can be found iteratively by using the expression below 
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where gt is the estimate at the iteration t. 

 

2.7. Robust Super Resolution Reconstruction 

 

In [31], Patanavijit and Jitapunkul proposed a robust SR algorithm. Their error 

function included two terms, one is for fidelity and the other is for regularization. Using 

single frame observation  

 

 ( ) ( )ΓError ρ DHg f λψ g= − +  (2.59) 

 

where D and H are decimation and blur matrices, respectively. Lorentzian norms are 

defined as  
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 (2.60)  

 

The g minimizing the error term is the estimate of the original HR image.  

 

 ( ) ( ){ }arg min Γ
g

g ρ DHg f λψ g= − +  (2.61) 

 

The solution can be found using steepest descent method 
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where 
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To find the fidelity term, the imaging process is simulated on SR estimate. Then, the 

difference between simulation result and the observation is found. This difference is 

modulated using Lorentzian norm ρ . Patanavijit and Jitapunkul used Lorentzian Laplacian 
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regularization to increase the robustness against noise. Assuming a smooth prior, a 

highpass filter (Laplacian in this case) is applied to SR estimate and the result is modulated 

using Lorentzian norm ψ .  

 

2.8. Adaptive Filtering (LMS) Method 

 

In [33], [34], [35], [36] and [37] LMS filtering method is applied for SR 

reconstruction. In [33], Elad and Feuer proposed a super-resolution reconstruction 

algorithm for continuous image sequences. Let original image sequence be related to 

degraded image sequence via the relationship 

 

 ( ) ( ) ( ) ( ) ( )kttgktFktDHktf cc ,, η+−=−  (2.64) 

 

where {fc(t)}t≥0 is degraded continuous image sequence of size MxM and {gc(t)}t≥0 is the  

ideal continuous image sequence of size LxL where L≥M and 0 ≤ k ≤∞. D, H(t-k) and F(t,k) 

denotes decimation, LSTV blur and backward geometric warp operator respectively. F is 

applied on gc(t) to match the degraded image fc(t-k). η(t,k) is the additive Gaussian noise 

with autocorrelation matrix W-1
(t,k). All these matrices are assumed to be known in [33]. 

Then, Least Square error is defined as   
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Ideal image sequence minimizing above error term can be found using iterative 

techniques. Applying LMS algorithm [32] to the problem 
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where F┴(t,1) is the forward geometric warp operator. F┴(t,1) is the pseudo-inverse of 

F(t,1). The estimate of the ideal image sequence is updated at each iteration using steepest 

descent rule. 
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2.9. Reconstruction via Alias Removal 

 

 In this method [38], an HR image is reconstructed using the shifts (translational 

offsets on a subpixel level) between LR images. Only global motion is assumed between 

the images. A gradient based shift estimator is used for image registration purpose. 

 

 The gradient method is based on Taylor series expansion. Using Taylor series 

expansion, a smooth function f(x) can be estimated at point x as (deleting the higher order 

terms) 

 

 )()()()( afaxafxf ′−+≅  (2.67) 

 

where a is close to x. If f(x), f(a) and f’(a) are known, then (x-a) can be found. Using 2D 

discrete coordinates for digital images 
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(m-m0) and (n-n0) represents the shifts. These shifts are denoted as tx and ty. After 

calculating the gradients for each pixel, the method of least squares can be used to solve 

for the shifts. Least squares error can be expressed as  
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where M and N are the total number of samples in x and y directions respectively. Taking 

the gradient of the error expression and equating the result to zero, we get 

 



 

 

30 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )
















∂

∂
−

∂

∂
−

=



































∂

∂

∂

∂

∂

∂

∂

∂

∂

∂









∂

∂

∑∑

∑∑

∑∑∑∑

∑∑∑∑

M

m

N

n

M

m

N

n

y

x

M

m

N

n

M

m

N

n

M

m

N

n

M

m

N

n

n

nmf
nmfnmf

m

nmf
nmfnmf

t

t

n

nmf

n

nmf

m

nmf

n

nmf

m

nmf

m

nmf

00
00

00
00

2

000000

0000

2

00

,
,,

,
,,

*
,,,

,,,

 

  (2.70) 
 

From this system of equations, the shifts can be found easily. The gradients can be 

estimated using various methods such as Sobel and Prewitt. Also, using a low pass filter 

before gradient calculation can significantly improve the results of shift estimator.  

 

 After shift estimation, an alias free spectrum can be estimated from a set of aliased 

spectra.  

 

 

Figure  2.12. Aliased spectrum as a summation of unaliased spectra 

 

 In Figure 2.12, dashed line represents aliased spectrum and the triangles represents 

the spectrum of the original HR signal. The frequency unit is radians per second. Repeated 

spectra occur as the result of sampling of continuous signal. According to [38], if we know 

the bandlimit of the HR image, then unaliased spectra of the HR signal can be recovered 

using multiple signals (images in our case).  
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 The reconstruction method is based on the shifting property of Fourier transform. Let 

Gc(u,v) denote the CFT of the HR version of the reference image. Then the CFT of 

temporally neighboring images are related to CFT of the reference image through the 

relation below: 

 

 ( ) ( ) ( )vuGevuG c

vtutj

ck

yx ,,
2 += π

 (2.71) 

 

Here Gck(u,v) is the CFT of the kth image, u and v are the continuous frequency variables 

and tx, ty are the shift variables along x and y directions respectively. Motion between 

images is modeled as global motion. From the well known shift property of Fourier 

transform, shift in time domain corresponds to multiplication with a complex exponential 

in frequency domain. 

 

Since, we are dealing with digital images, above equation should be discretized. DFT 

simply means the sampled version of DTFT and DTFT is the sum of the repeated aliases of 

CFT. Using this fact 
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for m = 0,1…M-1 and n = 0,1…N-1. Here Fk(m,n) is the DFT of the kth LR image (note 

the discrete indices). Also, Tx and Ty are the sampling periods and ωx and ωy are sampling 

frequencies in x and y directions respectively. 

 

As stated before, multiple images are used to find the unaliased spectra. To find the 

number of images, the criteria is  

 

 ( ), 0 for and
c x x y y

G u v u L v L= > >ω ω  (2.73) 

 

This means one input LR image is used for each overlapping spectra. Then, infinite 

summations in the equation reduces to 
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Note that this equation can also be written in matrix form.  

 

 mn mn mnF φ G=  (2.75) 

 

In this equation, Fmn contains the DFT values of each LR image at discrete frequency point 

(m,n). The matrix mnφ  contains the phase shift information (due to global motion) for each 

signal. Finally, Gmn includes the DFT values of HR reference image (samples of Gck(u,v)). 

Finding Gmn for each (m,n) location, we get the DFT of HR image. Taking inverse DFT, 

we can find unalised HR image.   

 

Note that, mnφ  has a dimension of px4LxLy. p is the number of LR frames at hand and 

4LxLy is the number of samples taken from Gck(u,v). In the ideal case, p=4LxLy and φmn is a 

square matrix. So, solution can be found by simply matrix inversion. If φmn is not square, 

then a pseudo-inverse or least square solution can be obtained.  

 

2.10. Recursive Least Squares 

 

In [39] and [40], the idea is the same with [38]. But, Kim and Su also included the 

effect of additive noise and blur. Figure 2.13 shows the overall structure of the problem of 

HR image reconstruction from blurred noisy LR images. 
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Figure  2.13. Block diagram of HR reconstruction system. 

 

As the first step, blur is applied to undegraded original image. Let Gc(u,v) denote the 

CFT of the HR version (undegraded) of the image. Then the CFT of temporally 

neighboring images are related to CFT of the undegraded image through the relation 

below:    
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 (2.76) 

 

Here Gck(u,v) is the CFT of the kth image, u and v are the frequency variables and tx, ty are 

the shift variables along x and y directions respectively. Hk(u,v) is the blur operator for kth 

image. Then, motion between LR images is modeled as global motion. Time shift 

corresponds to multiplication with a complex exponential in frequency domain. The DFT 

of kth LR image can be written as 
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for m = 0,1…M-1 and n = 0,1…N-1. Here Fk(m,n) is the DFT of the kth LR image (note 

the discrete indices). Also, Tx and Ty are the sampling periods and ωx and ωy are sampling 

frequencies in x and y directions respectively. Lx and Ly are found from  

 

 ( ), 0 for andc x x y yG u v u L v L= > >ω ω  (2.78) 
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In matrix form, 

 

 mnmnmn GφF =  (2.79) 

 

Including the effect of additive noise, the equation can be rewritten as 

 

 mnmnmnmn NGφZ +=  (2.80) 

 

In this equation, Zmn contains the DFT values of each LR image at discrete frequency point 

(m,n). The matrix φmn contains the phase shift information (due to global motion) and 

effect of blur for each signal. Nmn contains the DFT values of the noise components. 

Finally, Gmn includes the DFT values of HR reference image (samples of Gck(u,v)). Finding 

Gmn for each (m,n) location, we get the DFT of HR image. Taking inverse DFT, we can 

find unalised HR image.    

  

If A=φmn, g=Gmn, b=Zmn, then equation 2.80 can be written as Ag=b. A is known to 

be highly ill-conditioned [40]. So the pseudo-inverse solution, g=(ATA)-1ATb, is not 

accurate enough. For HR reconstruction, a regularized recursive total least squares method 

can be used. Tikhonov regularization is incorporated to obtain a stable and more accurate 

solution. In [39] and [40], the proposed objective function is 

 

 ( ) 22
cgbAggR −+−= λ  (2.81) 

 

The solution minimizing R(x) is  

 

 ( ) ( )cbAIAAg
TT λλ ++=
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 (2.82) 

 

where λ is a regularization parameter. At first estimation c=0. If number of frames p is 

greater than 4LxLy, the regularized least square solution for (p+1)-th estimate is obtained 

by setting c(p+1)=Gmn(p). So iterative reconstruction formula is  
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3. IMAGE INTERPOLATION METHODS 

 

 

In this chapter, seven interpolation methods are covered. These methods are cubic 

convolution, cubic B-spline interpolation, Lanczos interpolation, wavelet based image 

interpolation, edge adaptive interpolation, interpolation using MRF and interpolation using 

exponential based interpolation functions.  

 

3.1. Cubic Convolution 

 
If there is a sampled function f(m,n), then its continuous counterpart fc(x,y) can be 

reconstructed using a suitable interpolation kernel. In [41] and [42], 1D kernel for cubic 

convolution is derived. 2D interpolation can be accomplished applying 1D interpolation on 

horizontal and vertical directions successively.  For equally spaced data, fc(x,y) can be 

written as  

 
 ( ) ( ) ( ) ( )∑∑ −−=

m n
c nymxnmfyxf φφ,,  (3.1) 

 

In this expression, ϕ() is the 1D interpolation kernel, (m,n)’s are the interpolation nodes 

and f(m,n) is the value of f at these nodes. In [41], the cubic convolution kernel is given as: 
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After finding fc(x,y), this continuous image is resampled again at the desired resolution to 

obtain the HR image (refer to Figure 3.1).  

 

 

Figure  3.1. Interpolating an HR image from an LR image 
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Figure  3.2. Different interpolation kernels (a) Nearest neighbor (b) Linear interpolation (c) 

Cubic B-spline (d) Cubic convolution (eq. 3.2) 

 

 

Figure  3.3. Amplitude spectra of interpolation kernels, red for nearest neighbor, blue for 

cubic and green for linear interpolation kernels  

 

As can be seen from Figure 3.3, the spectrum of cubic convolution is closer to the 

spectrum of ideal filter. Here red, blue and green curves are the FFT magnitudes of nearest 

neighbor, cubic and linear interpolation kernels, respectively.    
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3.2. Cubic B-Spline Interpolation 

 

B-splines can also be a good choice for image interpolation [43]. First and second 

order B-splines corresponds to nearest neighbor and linear interpolation kernels.  

 

 

Figure  3.4. B-spline functions 

 

Cubic B-spline kernel is depicted in Figure 3.4 and is given as 
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3.3. Lanczos Interpolation 

 

Lanczos interpolation is a frequently used interpolation method in graphics 

applications. Lanczos kernel is obtained by windowing the sinc function with another sinc 

function. The kernel shown in Figure 3.5-c is obtained by windowing the sinc in Figure 

3.5-a with the sinc function in Figure 3.5-b. The two lobed kernel is defined in [44] as  
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 (a) (b) 

 
(c) 

Figure  3.5. (a) sinc(x), (b) sinc(x/2), (c) sinc(x)sinc(x/2) 

 

3.4. Wavelet Based Image Interpolation 

 

In [47], Temizel and Vlachos discussed image interpolation problem in wavelet 

transform domain. They assumed that LR image at hand is the lowpass filtered and 

decimated subband of the HR image. A trivial approach is to fill the HR subbands with 

zero value and taking inverse wavelet transform. A better method is cyclespinning. Since 

decimated wavelet transform is shift-invariant, quantization of the coefficients or inexact 

computation of high frequency coefficients cause ringing and similar artifacts around the 

discontinuities at the resultant image. In [47], it is said that cyclespinning is very useful in 

suppressing these artifacts. 
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First, an HR estimate g is generated by assigning zero value to the unknown high 

frequency subbands and taking inverse wavelet transform. Then, a number of LR images fi 

are generated from g by applying shift to g in different directions and discarding high 

frequency components in wavelet domain. Zero value is assigned to high frequency 

components of fi images and inverse wavelet transform is applied to get corresponding 

high resolution gi images. Final result is obtained by aligning and averaging gi images.  

 

In [48], Temizel and Vlachos proposed another wavelet based image interpolation 

method. As denoted above, one of the most useful properties of wavelet transform is 

persistency which means, wavelet coefficients tend to propagate from lower resolution to 

higher resolution scales. However, this property is not valid for coefficient signs, [48].  

 

g

HR image Subbands

LL0

(LR Image)
HL0

Unknown

LH0

Unknown

HH0

Omitted

DWT

IDWT

 

Figure  3.6. Original image and its sub-bands 

 

g(z1,z2), L(z1) and H(z1) denote the HR image we want to estimate, high pass filter and low 

pass filter, respectively (refer to Figure 3.6). 

 

 ( ) ( ) ( ) ( )0 1 2 2 1 1 2, ( 2) ,col rowLL z z L z L z g z z= ↓  (3.5) 

 

and 

 

 ( ) ( ) ( ) ( )0 1 2 2 1 1 2, ( 2) ,col rowHL z z L z H z g z z= ↓  (3.6) 

 

where LL0 and HL0 are the low and high frequency subbands of g. (↓ 2) denotes decimation 

by a factor of 2. Using this framework, LR input image is the LL0 subband of the HR 
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image g we want to estimate. Then, we can approximate the high frequency subband of g 

as  

 

 ( ) ( ) ( )0 1 2 1 0 1 2, ,rowHL z z H z LL z z′ =  (3.7) 

 

( ) ( ) ( )1 1 2 1 1 1 2, ,
row

HL z z H z LL z z′ =( ) ( ) ( )0 1 2 1 0 1 2, ,
row

HL z z H z LL z z′ =

 

Figure  3.7. Image interpolation in wavelet domain 

 

HL0 will be found using 0LH ′  and the correlation coefficients between HL0 and 0LH ′ . 

To find the correlation between HL0 and 0LH ′ , we go one scale further in wavelet domain 

(refer to Figure 3.7)  
 

 ( ) ( ) ( ) ( )1 1 2 2 1 0 1 2, ,col rowLL z z L z L z LL z z=  (3.8) 

 

 ( ) ( ) ( ) ( )1 1 2 2 1 0 1 2, ,col rowHL z z L z H z LL z z=  (3.9) 
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and 
 
 ( ) ( ) ( )1 1 2 1 1 1 2, ,rowHL z z H z LL z z′ =  (3.10) 

 

The correlation coefficients between the components of HL1 and 1LH ′ are computed using 

linear least squares estimation. The wavelet coefficient at (m,n) position of HL1 and the  

wavelet coefficients at (m-1,n), (m,n), (m+1,n) and (m+2,n) positions of 1LH ′  are used in 

estimation process. As can be understood from the coefficients above, horizontal 

correlation is taken into account while estimating vertical subband component (vertical 

correlation is taken into account while estimating horizontal subband component).  If we 

denote the wavelet coefficient at (m,n) position of HL1 as ym,n  and the  wavelet coefficients 

at (m-1,n), (m,n), (m+1,n) and (m+2,n) positions of 1LH ′  as xm-1,n, xm,n, xm+1,n  and xm+2,n  

 

 , 0 1 1, 2 , 3 1, 4 2,m n m n m n m n m n
y c c x c x c x c x− + += + + + +  (3.11) 

 

If we write this equation for every pixel in the neighborhood of (m,n) and solve the system 

of equations, we get correlation coefficients c0, c1, c2, c3 and c4. These correlation 

coefficients are then used to estimate HL0 using 0LH ′ . Same procedure is repeated for LH0. 

HH0 subbband is omitted in [48]. Finally, inverse wavelet transform is applied and the 

result is the interpolated HR image. 
 

3.5. Edge Adaptive Image Interpolation 

 

In [49], Mori, Kameyama, Ohmiya, Lee and Toraichi proposed an edge-adaptive 

interpolation method where interpolation kernel rotates according to the direction of the 

gradient. For an image of MxN pixels, the interpolation formula is given as  

 

 ( ) ( ) ( )
1 1

0 0

, , ,
M N

c

m n

f x y f m n x m y n
− −

= =

= − −∑∑ ψ  (3.12) 

 

In this expression, (m,n)’s are the interpolation nodes, f(m,n) is the value of f at these nodes 

and ( )yx,ψ  is 2D interpolation kernel which can be bicubic, bilinear and has a finite 

support.  
 

 ( ), 0 for orx y x c y cψ = > >  (3.13) 
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 Rewriting the interpolation formula 

 

 ( ) ( ) ( ) ( )( )
( )( )1 1

, , ,
c c

c

m c n c

f x y f x m y n x x m y y n
=− − =− −

= + + − − − −              ∑ ∑ ψ  (3.14) 

 

Note that interpolation kernel can be implemented in a separable manner which is the 

cause of jaggy artifacts around edges.  

 

 ( ) ( ) ( )yxyx φφψ =,  (3.15) 

 

In [49], the proposed kernel is given as (refer to Figure 3.8) 

 

 ( )
( ) ( )

( )

1

,
1

x y kx k

x y y
x y k

k

 − ≤
′ =   

− > 
 

φ φ
ψ

φ φ
 (3.16) 

 

where 

 

 ( ) ( ),
y x x y

k h h g grad u h g h h h= = ⊥ =  (3.17) 

 

And new interpolation formula is 
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( ) ( )( ) ( )
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( ) ( ) ( )( )
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1 1

1 1
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  (3.18) 
 

 
( )( ) ( )
( )( ) ( )

1
and

1
f

k i x x y y k
l l l l

k j y y x x k

 − − + − ≤      
= = −    

− − + − >       

 (3.19) 
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Figure  3.8. Edge with k<1 

 

In Figure 3.8, blue square 0 0( , )x y  is the point to be calculated. The equation of the 

line passing over blue square 0 0( )y k x x y= − + . Yellow square is 0 0( , )x y       . The 

length of the green line is l   . And the length of the yellow line is 
f

l .  
 

In [50], Carrato, Ramponi and Marsi assumed that imaging process has two stages as 

low-pass filtering and decimation. The low-pass filtering operation modifies the values of 

the pixels near the edges proportional to the distance between pixels and the edge. So, an 

analysis of the values of the low resolution pixels gives an idea about the sub-pixel 

position of the edge.  One dimensional case is illustrated in Figure 3.9.  

 

 

Figure  3.9. One possible position for the edge to be reconstructed: a, b, c, d are LR pixels 

and m is HR pixel 
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Using the proposed method [50], 

 

 ( )1m b cµ µ= + −  (3.20) 

 

 
( )

( ) ( )( )
2

2 2

1

2

k c d

k a b c d
µ

− +
=

− + − +
 (3.21) 

 

k is an input parameter. If k=0, then method works as linear interpolation. As k increases, 

edge sensitivity increases. When edge is in midway between b and c, a-b=c-d and 

m=(b+c)/2. When edge is closer to c, then a-b<c-d and m takes a value closer to b. 

 

Two dimensional case is illustrated on Figure 3.10. First P1 and P2 pixels are 

interpolated using 1D interpolation kernels in the horizontal (red) and vertical (blue) 

directions respectively. Then pixel P3 is calculated using interpolation kernels in the 

horizontal and vertical directions separately. The mean value of the two results is assigned 

as the final value of P3 pixel.  

 

 

Figure  3.10. Two dimensional case in edge adaptive interpolation 
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3.6. Image Interpolation Using Wide Sense Markov Random Fields 

 

In [51], Nemirovsky and Porat proposed a new texture interpolation method based on 

wide sense Markov random fields. Markov random fields are well-suited for representing 

the spatial correlation of most images. In this model, image texture is composed of two 

orthogonal components: a purely indeterministic component and a deterministic 

component. The purely indeterministic component is modeled as a two dimensional auto-

regressive process and the deterministic component is expressed as a sum of sinusoids.  

 

To find the deterministic part (refer to Figure 3.11), first, DFT and periodogram of 

the LR image is computed. The peaks of the periodogram are found and a frequency 

domain filter is generated whose value is 1 at the peaks and 0 at other points. DFT is 

filtered with this mask. Zero padding the filtered DFT and applying inverse DFT we get 

deterministic component of HR image. 

 

LR Image Compute DFT

Suppres small 

variations in DFT, 

preserve high peaks

Apply zero-padding

to  DFT

Apply IDFT

Deterministic Part of

HR Image

Suppres high peaks

DFT, preserve small 

variations

Apply zero-padding

Apply IDFT

Indeterministic Part of

LR Image

Find the values of zeros

Indeterministic Part of

HR Image
Sum determistic and 

indeterministic parts of 

HR image

HR Image

Find local correlation 

coefficients in Ind. Part 

of LR image

 

 Figure  3.11. Computation of deterministic and indeterministic parts of HR image  
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To obtain the indeterministic part of the LR image (refer to Figure 3.11), the DFT of 

LR image is filtered with the negative version of the filter described above. Indeterministic 

part of the LR image is computed by applying inverse DFT to the filtered DFT. After zero 

padding the indeterministic part of the LR image, the holes are filled as described below. 

 

For a discrete random field f, the linear least square estimate of f(m,n) can be found 

as the linear combination of the values in the causal neighborhood of (m,n).  

 

 ( ) ( )
( )

∑
∈−−

−−=

nmXjnim
ji

ji jnimfcnmf

,,
,

, ,,ˆ  (3.22) 

 

where the coefficients are found by minimizing the following error.  

 

 ( ) ( ){ }2

,
ˆ, ,m ne E f m n f m n = −   (3.23) 

 

In [51], 3 nearest neighbors are used.  

 

 ( ) ( ) ( ){ }0,1,1,1,1,0=D  (3.24) 

 

 ( ) ( )∑
∈

−−=
Dji

ji jnimfcnmf
),(

, ,,ˆ  (3.25) 

 

There remain 3 equations for three unknown coefficients after some derivation. 

 

 ( ) ( ) ( ) ( )0,11,11,00,0 1,01,10,1 −=−++ ffffffff RRcRcRc  (3.26) 

  

 ( ) ( ) ( ) ( )1,10,10,01,0 1,01,10,1 −=−++ ffffffff RRcRcRc  (3.27) 

  

 ( ) ( ) ( ) ( )1,00,00,11,1 1,01,10,1 −=++− ffffffff RRcRcRc  (3.28) 

 

where  

 

 ( ) ( ) ( ){ }βαβα ++= nmfnmfER
ff

,,,  (3.29) 
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is the autocorrelation matrix of the random field f(m,n). These three coefficients give the 

relation between the pixels of LR image. The relation between the pixels of HR image is 

obtained from these coefficients as described in [51]. After finding deterministic and 

indeterministic parts of HR image, these two are summed to find the final HR image. 

 

3.7. Exponential Based Interpolation Functions 

 

In [52], Kirshner and Porat discussed interpolation problem in Sobolev space 

framework. Sobolev spaces consist of smooth functions and they can be used to 

approximate a continuous finite energy signal. The sampling process is interpreted as an 

orthogonal projection. In [52], third order reproducing kernel ( )ts,ϕ  is used for 

interpolation purpose.  

 

 ( ) ( )2
33

16

1
, tstsets

ts −+−+= −−ϕ  (3.30) 

 

Let P be the orthogonal projection (sampling operator)  

 

 ( ) bcGPx 1−=τ  (3.31) 

 

where τ is the interpolation coordinate, ( )τPx  is the interpolated value, c vector consists of 

N neighboring pixels in the neighborhood of τ, b vector has a size of N and consists of the 

samples of reproducing kernel 
 

 ( )nn tb ,τϕ=  (3.32) 

 

where tn is a sample coordinate and Nn ,,1…= . G is NxN  Gram matrix and is given by 

 

 ( ) ( )nm ttnmG ,, ϕ=  (3.33) 

 

In [52], N is 11. c vector is depicted in Figure 3.12. Yellow pixel is at τ coordinate, red 

pixels are the neighbor pixels. For 2D signal, seperability property can be used. 

Interpolation is accomplished in two stages, first row wise than column wise.  



 

 

48 

 

Figure  3.12.  The interpolation coordinate (yellow one) and neighbor pixels (red ones) 
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4. IMAGE AND VIDEO QUALITY ASSESMENT 

METHODS 

 

 

4.1. Peak Signal to Noise Ratio (PSNR) 

 

PSNR is computed by dividing the possible peak power of the signal by MSE. Let x 

and y be the original and distorted images respectively.   

 

 ∑ ∑
−

=

−

=
−=

1

0

1

0

2
),(),(

1 M
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N

n

nmynmx
MN

MSE  (4.1) 

 

Here M and N are the height and width of the images.  

 

 
( )







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



 −
=

MSE
PSNR

W 2

10

12
log10  (4.2) 

 

W is the number of bits to represent each pixel (for a gray level image). PSNR is expressed 

in log. dB scale. 

 

PSNR is largely used in image and video processing literature because of its 

mathematical tractability. However, PSNR generally does not correlate with the 

preferences of the human visual system, [56]. In [53], it is said that PSNR is a reliable 

metric in video coding applications.    

 

4.2. Universal Image Quality Index 

 

In [54], Wang and Bovik proposed a metric that models the combination of three 

types of distortion, loss of correlation, luminance distortion and contrast distortion. Let x 

and y be the original and corrupted images respectively. Then, quality metric, Q is  

 

 
( ) ( ) ( )2 22 2
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σ σ
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 (4.3) 
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where N is the number of samples in each image. Q can be written as a product of three 

components  

 

 
( ) ( )2 2 2 2

22xy x y

x y x y

x y
Q

x y

σ σ σ

σ σ σ σ
=

++
 (4.7) 

 

The first component is the correlation coefficient between x and y, the second 

component measures how close the mean luminance values of x and y, and third 

component measures the similarity of the contrast values of x and y.   

 

For image quality assessment, this metric is computed locally for each pixel using a 

local neighborhood. Then, Q metric for the image is obtained by averaging the values 

calculated for each pixel.  

 

 ∑
=

=
N

i

iQ
N

Q
1

1
 (4.8) 

 

Qi is the value for ith pixel and Q is the value for the whole image. 

 

4.3. Single Scale Structural Similarity 

 

In [55], a structural similarity measure is introduced to model the structural 

adaptivity of human visual system. Let x and y be two images we want to compare. xµ  is 

the mean of x and is used as an approximation to the luminance of x. 2
xσ  is the variance of 

x and is used as an approximation to contrast of x. xyσ is the covariance of x and y and is a 
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measure of the structural similarity between x and y. In [55], the luminance, contrast and 

structural comparison measures are given as 
 

 ( )
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 (4.9) 
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 (4.11) 

 

where  

 

 ( )2

1 01.0 LC =           ( )2

2 03.0 LC =           223 CC =  (4.12) 

 

L is the number of bits to represent a pixel in a gray level image. Finally, single scale 

structural similarity measure is given as 

 

 ( )[ ] ( )[ ] ( )[ ]γβα
yxsyxcyxlyxSSIM ,,,),( =  (4.13) 

 

α , β  and γ are used to adjust the relative importance of each component. If we take  

 

 1=== γβα  (4.14) 

 

and 

 

 021 == CC  (4.15) 

 

then, SSIM is equivalent to universal image quality index given in [54]. C1 and C2 

components on the denominators make SSIM more stable. As in universal image quality 

index, SSIM is also calculated locally and overall image quality value is found by 

averaging all local values. 
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4.4. Multi Scale Structural Similarity 

 

Image perception depends on three factors, sampling density of the image signal, 

observer’s visual system, the distance between the observer and image plane [56]. Single 

scale SSIM method defined above is only suitable for a specific setting. A multiscale SSIM 

method is proposed in [56] to remedy the inefficiency of single scale method.   

 

In the multiscale method, the two input images x and y are lowpass filtered and 

decimated by 2 at each scale. Original images are at Scale 1 and highest scale is Scale M. 

The luminance comparison is computed at the last scale. The contrast and structure 

comparison is made at every scale. The overall expression for multiscale SSIM is given as 

 

 ( ) ( )[ ] ( )[ ] ( )[ ]∏
=

=
M

j

jjM
jjM yxsyxcyxlyxSSIM

1

,,,, γβα  (4.16) 

 

4.5. Structural Similarity for Video 

 

The quality assessment of video is accomplished in three stages: local region level, 

frame level and sequence level, [57]. Block diagram of the process is given in Figure 4.1. 

First, the sequence is transformed into YCbCr color space. Local assessment is done as in 

the single scale SSIM case described before. But in this case, local quality metric is not 

computed for every pixel. Instead some sampling locations are determined and local 

quality metric is computed only in these locations using 8x8 square neighborhoods. 

Number of sampling locations is denoted as Rs. Local quality metric is computed on Y, Cb 

and Cr channels separately and then combined into a single metric.  

 

 Cr

ijCr

Cb

ijCb

Y

ijYij SSIMWSSIMWSSIMWSSIM ++=  (4.17) 

 

where Y

ijSSIM  denotes the local quality metric of the jth sampling location on the ith 

frame. Also, WY is the weight of Y channel. In [57], these weights are taken as  
 

 1.01.08.0 === CrCbY WWW  (4.18) 

 

Then, the local quality values are combined to get a frame level quality value. 
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where Qi denotes the quality value for the ith frame and ijω is the weight for the jth 

window in the ith frame.  

 

Finally, the sequence level quality value is calculated  
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where F is the number of frames in the video and Wi is the weight for the ith frame. In [57], 

it is assumed that dark regions do not attract attention so they should be assigned smaller 

weights.  
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Here µx is the mean value of sampling window on Y channel and is used as an estimate of 

local luminance.   

 

Also, it is denoted [57] that this algorithm does not perform well when large global 

motion occurs. Therefore, frame weight decreases as the amount of global motion 

increases. Block-based motion estimation is used to find motion vector for each sampling 

window. Then, motion level of the ith frame is estimated as  
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s
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j ij

i
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Rm
M

s∑ == 1  (4.22) 

 

where mij is the motion vector length for the jth sampling window of the ith frame. KM is a 

normalization constant and is used as 16 in [57]. The weighting of frame is computed using 

motion level as 
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Figure  4.1. Computation of video SSIM value 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 

 

 

5.1. Objective Quality Assessment  

 

PSNR and SSIM metrics were used to evaluate the results quantitatively. Three 

different video sequences: susie, table tennis and calendar sequences were used. These 

sequences were chosen according to their texture, smooth area and motion content. Each 

video sequence consists of 250 frames of 704x480 pixels. First step, the original sequences 

were decimated by a factor of two in the horizontal and vertical directions to obtain the LR 

video material. The decimated sequences consisted of 250 frames of 352x240 pixels. Then 

these three decimated sequences are resized to their original resolution (704x480) by seven 

different methods (refer to Figure 5.1), namely 1) robust super resolution, 2) LMS method, 

3) bicubic interpolation, 4) wavelet based interpolation, 5) edge adaptive interpolation, 6) 

interpolation using wide sense Markov random fields and 7) interpolation using 

exponential based kernels as described in sections 2.7, 2.8, 3.1, 3.4, 3.5, 3.6 and 3.7, 

respectively.  

 

 

Figure  5.1. Implemented SR algorithms and interpolation methods 
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At this point, we have seven different results for each decimated video sequence. 

Then, PSNR and SSIM metrics were computed between processed sequences and original 

HR sequences. PSNR and SSIM values of each sequence for all methods are given in 

Table 5.1 and Table 5.2, respectively. PSNR value for each video sequence was found by 

averaging MSE values of all frames in sequence and then taking log of the average MSE 

and multiplying by 10. The first cell in the first row of Table 5.1 is the PSNR value of 

sequence 1 for LMS method and was found to be 34.6 dB. The outcome of this procedure 

for sequence 2 and sequence 3 take place in the 2nd and 3rd cells. The fourth cell in the first 

row of Table 5.1 is the average video PSNR value and is found by averaging MSE values 

of three video sequences and then taking log of the average MSE and multiplying by 10. 

The fifth cell in each row of Table 5.1 gives the rank of the corresponding method. The 

average value taking place in the fourth cell is used to determine their rank. Accordingly, 

the robust SR is the highest ranking method.  

 

SSIM value for each sequence was found by using the method described in Section 

4.5. The first cell in the first row of Table 5.2 is the SSIM value of sequence 1 for LMS 

method and was found to be 0.91. Similarly cells 2 and 3 contain the results for the 

sequence 2 and sequence 3. As SSIM value increases towards 1, the similarity between the 

original input and the processed output increases.  

 

The fourth cell in the first row of Table 5.2 is the average of the SSIM values. The 

fifth cell in each row of Table 5.2 gives the rank of the respective method. The average 

value in the fourth cell is used to determine their rank. Robust SR is the most successful 

method also according to the SSIM measure. PSNR and SSIM values for each frame of 

three video sequences are given in Figure 5.2 and Figure 5.3, respectively. 

 

Quantitative analysis was also conducted for frame stills. 100th and 200th frames were 

captured from each original sequence, as well as from the corresponding decimated-and-

resized sequences of each method. 100th frames of the original video sequences are shown 

in Figure 5.4. PSNR and SSIM metrics between original and the resultant frame stills are 

given in Table 5.3 and Table 5.4, respectively. SSIM value for each frame was computed 

using the method described in Section 4.3.  
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Table 5.1. PSNR values of all methods for three different video sequences 

  Seq. 1 Seq. 2 Seq. 3 
Average 

PSNR 
Rank 

LMS 34.6 25.2 22.0 24,9 2 

Bicubic 35.5 26.1 21.5 24,9 2 

Edge 
Adaptive 

34.5 24.7 20.5 23,7 4 

Wavelet 
Interpolation 

34.1 23.9 19.6 22,9 5 

MRF 
Prediction 

32.7 25.5 21.2 24,4 3 

Exponential 35.5 26.2 21.5 24,9 2 

Robust SR 35.2 28.5 23.5 26,9 1 

 

Table 5.2. SSIM values of all methods for three different video sequences 

  Seq. 1 Seq. 2 Seq. 3 
Average 

SSIM 
Rank 

LMS 0.91 0.84 0.81 0.85 2 

Bicubic 0.92 0.86 0.77 0.85 2 

Edge 
Adaptive 

0.90 0.82 0.72 0.81 3 

Wavelet 
Interpolation 

0.88 0.77 0.65 0.77 4 

MRF 
Prediction 

0.83 0.77 0.71 0.77 4 

Exponential 0.91 0.86 0.77 0.85 2 

Robust SR 0.89 0.87 0.82 0.86 1 
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The first cell in the first row of Table 5.3 gives the PSNR value of frame 1 for LMS 

method and was found to be 35.5 dB. The seventh cell in the first row of Table 5.3 is the 

average PSNR value and is found using the same methodology described in average video 

PSNR calculation. The eighth cell in each row of Table 5.3 gives the rank of the 

corresponding method. Average PSNR value in the seventh cell is used to determine this 

rank. According to average PSNR values, robust SR is found to be the most successful 

method.  

 

Similarly, the first cell in the first row of Table 5.4 gives the SSIM value of frame 1 

for LMS method and was found to be 0.92. The seventh cell in the first row of Table 5.4 is 

the average of the SSIM values of the six frames in a row-wise manner. The eighth cell in 

each row of Table 5.4 gives the rank of the corresponding method. Average value in the 

seventh cell is used to determine rank. According to average SSIM values, LMS method 

and robust SR are the most successful methods.  

 

Error images for the 100th frames of video sequences 1, 2 and 3 are given in Figure 

5.5, Figure 5.6 and Figure 5.7, respectively. The error images were found by subtracting 

the processed image from the original image, taking the absolute value of the result and 

scaling by 10. Notice that the error images of robust SR method have the weakest 

magnitude in all three cases. This result is consistent with our PSNR and SSIM 

measurements.   
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Frame PSNR values of Seq. 1
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Frame PSNR values of Seq. 3
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Figure  5.2. PSNR values of each frame in sequences 1, 2 and 3 for all methods 
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Frame SSIM values of Seq. 1
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Frame SSIM values of Seq. 3
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Figure  5.3. SSIM values of each frame in sequences 1, 2 and 3 for all methods 
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Figure  5.4. 100th frames of the 1st, 2nd and 3rd video sequences, respectively 
 



 

 

62 

Table 5.3. PSNR values of all methods for six different frame stills 

  

100th 
Frame 

of 
Seq. 1 

200th 
Frame 

of 
Seq. 1 

100th 
Frame 

of 
Seq. 2 

200th 
Frame 

of 
Seq. 2 

100th 
Frame 

of 
Seq. 3 

200th 
Frame 

of 
Seq. 3 

Average 
PSNR 

Rank 

LMS 35.5 34.1 24.8 27.2 22.3 21.2 24,9 4 

Bicubic 36.5 35.2 26.1 26.4 21.5 21.5 24,9 4 

Edge 
Adaptive 

35.3 34.2 24.8 25.0 20.4 20.6 23,8 5 

Wavelet 
Interpolation 

34.8 33.6 23.9 24.3 19.5 19.8 23,0 6 

MRF 
Prediction 

33.1 32.4 25.6 25.7 21.2 21.2 25,7 3 

Exponential 36.5 35.2 26.3 26.6 21.5 24.5 25,8 2 

Robust SR 36.1 35.0 28.3 29.2 23.4 23.3 26,8 1 

 

Table 5.4. SSIM values of all methods for six different frame stills 

  

100th 
Frame 

of 
Seq. 1 

200th 
Frame 

of 
Seq. 1 

100th 
Frame 

of 
Seq. 2 

200th 
Frame 

of 
Seq. 2 

100th 
Frame 

of 
Seq. 3 

200th 
Frame 

of 
Seq. 3 

Average 
SSIM 

Rank 

LMS 0.92 0.88 0.83 0.89 0.83 0.78 0.86 1. 

Bicubic 0.93 0.89 0.85 0.89 0.77 0.77 0.85 2. 

Edge 
Adaptive 

0.92 0.87 0.81 0.86 0.73 0.73 0.82 3. 

Wavelet 
Interpolation 

0.9 0.85 0.76 0.82 0.66 0.67 0.78 4. 

MRF 
Prediction 

0.84 0.8 0.77 0.79 0.72 0.71 0.77 5. 

Exponential 0.93 0.89 0.86 0.89 0.78 0.78 0.85 2. 

Robust SR 0.91 0.87 0.86 0.88 0.83 0.83 0.86 1. 

 



 

 

63 

 

100th frame of 1st video 

 

Bicubic interpolation 

 

Edge adaptive 

 

Interpolation using exp. based functions 

 

Interpolation using MRF 

 

Robust SR 

 

LMS 

 

Wavelet based interpolation 

Figure  5.5. Error images of all methods for 100th frame of 1st video 
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100th frame of 2nd video 

 

Bicubic interpolation 

 

Edge adaptive 

 

Interpolation using exp. based functions 

 

Interpolation using MRF 

 

Robust SR 

 

LMS 

 

Wavelet based interpolation 

Figure  5.6. Error images of all methods for 100th frame of 2nd video 
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100th frame of 3rd video 

 

Bicubic interpolation 

 

Edge adaptive 

 

Interpolation using exp. based functions 

 

Interpolation using MRF 

 

Robust SR 

 

LMS 
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Figure  5.7. Error images of all methods for 100th frame of 3rd video 
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5.2. Experimental Setup  

 

Subjectively perceived quality of the video sequences and frame stills produced by 

five different methods (LMS method, bicubic interpolation, wavelet based interpolation, 

edge adaptive interpolation, interpolation using wide sense Markov random fields) were 

tested as part of a psychovisual study using human observers. A total of 28 people took 

part in the experiment. Subjects had normal or corrected-to-normal vision. The ages of the 

subjects were in between 22 and 30. A typical experimental session on one subject lasted 

approximately forty five minutes. The experiments were performed in a dim room using a 

1280x720 pixel resolution LCD display with 60 Hz refresh rate from a viewing distance of 

30 cm.   

 

The results were evaluated using “Two Alternative Forced Choice (2AFC)” 

paradigm which is illustrated in Figure 5.8. In 2AFC, the subject is presented with two 

alternatives and is asked to choose the better one in subjective video quality. The decision 

at the end of each comparison is 1 or 0. In a “method A vs. method B” comparison, if A 

wins, then the decision is 1, otherwise 0. There was no time pressure on the subjects and 

they could toggle back and forth between test pairs as much as they wanted.  

 

In subjective tests, the decimated video sequences are resized to their original 

resolution (704x480) by five different methods. The subjects were prosecuted with six 

versions of each sequence, the original and the processed ones with five algorithms. The 

same method was also applied to frame stills. Thus the subjects had to evaluate 

comparatively 10 pairs (the number of 2-combination of 5 is 10) for each sequence and for 

each frame. The comparisons of 3 sequences result in 30 2AFC marks and the comparisons 

of 6 frames result in 60 2AFC marks. The results of these 90 comparisons are written to 

Excel sheets. The Excel sheet used in the experiment is shown in Figure 5.8. Notice that 

there are 10 decision boxes. One excel sheet is used for each video sequence and each 

frame still.  
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Method A Method B

Subject chooses better one 

(Each decision is a 1 or 0) 

 

Figure  5.8. 2AFC test and the decisions on Excel sheet 
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Figure  5.9. Structure of the preference vector 

 

5.3. Results  

 

5.3.1. Outlier Subjects 

 

As the first step, preference vectors are created for each subject by concatenating 

his/her decisions for all 90 comparisons (i.e. 2AFC binary vectors). The structure of the 

preference vector is shown in Figure 5.9. The preference vector is composed of 30 video 

sequence votes and 60 frame still votes. There are decision intervals for each sequence and 

or each frame. These intervals include 10 bits and each bit is the decision of a “method A 

vs. method B” comparison. There were 28 preference vectors since the subject population 

was 28. Then, the mean of the preference vectors was found and was rounded to 0 or 1. 

After this, Hamming distance between each preference vector and the mean vector could 

be computed. The histogram of Hamming distances for 28 preference vectors is given in 

Figure 5.10.  

 

We wanted to screen the data for outlier preference vectors using Hamming distance. 

Block diagram of outlier detection stage is given in Figure 5.11. If the Hamming distance 

of a preference vector from the group mean is outside the interquartile range, this means 

the preference vector is an outlier. In interquartile range method, Hamming distances of all 

vectors are sorted in an ascending order. First quartile Q1, second quartile Q2 (median) and 
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third quartile Q3 are found. Using quartile values, interquartile range (IQR) is computed 

using formula below 

 

 13 QQIQR −=  (5.1) 

 

Finally, a preference vector is decreed as an outlier if its Hamming distance is outside the 

range 

 

 [ ]IQRkQIQRkQ .,. 31 +−  (5.2) 

 

where k=1.5 in our experiments. The result of data screening revealed that only 1 

participant (with Hamming distance of 29) was qualified as an outlier.  

 

 

Figure  5.10. Histogram of Hamming distances for 28 preference vectors 
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13 QQIQR −=

[ ]IQRkQIQRkQ .,. 31 +−

 

Figure  5.11. Block diagram of outlier detection stage 

 

5.3.2. Computation of Subjective Scores 

 

After getting rid of the outlier preference vector, there remain 27 preference vectors. 

These vectors contain binary digits and each binary digit is the decision of a “method A vs. 

method B” comparison. For the sake of clarity, we had better convert these bits into 

decimal scores. Figure 5.12 shows the computation of preference scores for video 

sequences and frame stills.  

 

Subjective video sequence scores and subjective frame still scores were computed 

separately. Recall that each preference vector can be divided into two parts as sequence 

decisions and frame decisions. Sequence decisions were used to compute subjective 

sequence scores and frame decisions were used to compute frame scores. In a “method A 

vs. method B” comparison, we count how many times A wins in sequence decisions (or 

frame decisions) to find the subjective sequence score (or subjective frame score) of A for 

that comparison. Then the score is normalized between 0 and 100.  
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The preference scores for video sequences and frame stills are shown in Table 5.5 

and Table 5.6, respectively. For example, the second cell in the first row of Table 5.5 

indicates that LMS method is preferred over the bicubic 75.3% percent of the time, while 

the third cell indicates that it is overwhelmingly preferred over the edge-adaptive method, 

and so on.  If we sum and average these scores row-wise, we get the total and average 

preference scores of a method over all its competitors. The rank orders of the methods for 

video sequences and frame stills are given in the rightmost columns of Table 5.5 and Table 

5.6, respectively.  

 

 

Figure  5.12. Computation of preference scores for video and still frames 
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Table 5.5. Rank and subjective score of each method for video sequences 

 LMS Bicubic 
Edge 

Adapt. 
Wavelet 
Interp. 

MRF 
Pre. 

Total 
Score 

Average 
Score 

Rank 

LMS   75.3 96.3 87.7 98.8 358 89.5 1 

Bicubic 24.7   92.6 67.9 92.6 277.8 69.4 2 

Edge 
Adapt. 

3.7 7.4   11.1 58.0 80.2 20.1 4 

Wavelet 
Interp. 

12.3 32.1 88.9   91.4 224.7 56.2 3 

MRF 
Pre. 

1.2 7.4 42.0 8.6 
 

59.3 14.8 5 

 

Table 5.6. Rank and subjective score of each method for frame stills 

 LMS Bicubic 
Edge 

Adapt. 
Wavelet 
Interp. 

MRF 
Pre. 

Total 
Score 

Average 
Score 

Rank 

LMS   97.5 96.3 90.1 98.8 382.7 95.7 1 

Bicubic 2.5   85.2 46.3 88.9 222.8 55.7 3 

Edge 
Adapt. 

3.7 14.8   19.1 56.2 93.8 23.5 4 

Wavelet 
Interp. 

9.9 53.7 80.9   85.8 230.2 57.6 2 

MRF 
Pre. 

1.2 11.1 43.8 14.2 
 

70.4 17.6 5 
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5.3.3. Comparison of Subjective Video and Subjective Frame Still Scores 

 
First, we address the question as to whether one can asses HR quality alternatively 

with frame stills and video sequences and whether their scores are in agreement. 

Conversely, are there any objectionable defects that become evident only in video but that 

is not observable in frame still? Spearman’s rank correlation coefficients were computed 

between the subjective decisions in frame still and video cases.  

 

Spearman’s rank correlation coefficient is a measure of correlation between two data 

vectors. Let each vector have n elements. The elements of two vectors are sorted in an 

ascending order by the first vector. The rank of each element is determined. This results in 

two rank vectors. MSE between these two rank vectors is computed. Finally, Spearman’s 

rank correlation coefficient between two vectors is determined using the formula below 

 

 
( )2

6
1

1

MSE

n n
ρ = −

−
 (5.3) 

 

Figure 5.13 shows the block diagram illustrating the computation of Spearman’s rank 

correlation coefficients between subjective sequence scores and subjective frame still 

scores. Recall that in the decision interval of each sequence and each frame, there is one bit 

related to “method A vs. method B” comparison. Combining these bits columnwise as 

shown in Figure 5.13, we get 3 vectors in sequence case and 6 vectors in frame case. Then, 

3 sequence vectors are averaged and the resultant vector represents the decisions related to 

“method A vs. method B” comparison in sequence case.  Also, 6 sequence vectors are 

averaged and the resultant vector represents the decisions related to “method A vs. method 

B” comparison in still frame case. The average sequence and the average still frame 

vectors are used to compute Spearman’s rank correlation coefficient between subjective 

sequence scores and subjective still frame scores for “method A vs. method B” 

comparison. The coefficients for each comparison are given in Table 5.7. If correlation 

coefficient is 1, then the decisions for that comparison are perfectly correlated in frame still 

and video cases. According to Table 5.7, we can say that video and frame decisions are 

highly correlated. 
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Figure  5.13. Computation of Spearman’s rank correlation coefficients between subjective 

video and subjective frame stills 

 

Table 5.7. Spearman’s rank correlation coefficients between subjective video scores and 

subjective frame scores for each comparison  

 LMS Bicubic 
Edge 
Adap. 

Wavelet MRF Pre.  

LMS   1.0 1.0 1.0 1.0 

Bicubic 1.0   0.9994 0.5452 1.0 

Edge 
Adap. 

1.0 0.9994   0.6624 0.4835 

Wavelet 1.0 0.5452 0.6624   0.6197 

MRF Pre. 1.0 1.0 0.4835 0.6197   
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The least coefficient belongs to “edge adaptive – MRF prediction” comparison. In this 

comparison, the decision changes between frame still and video cases.   

 

5.3.4. Comparison of Subjective and Objective Scores 

 
In this section, we intend to investigate the degree of agreement between subjective 

preferences and objective measurements. Spearman’s rank correlation coefficients for 

“subjective scores – PSNR measurements” and “subjective scores – SSIM measurements” 

were computed. Details of the procedure are illustrated in Figure 5.14. As in Section 5.3.1, 

the preference vectors were averaged and the elements of the average vector were rounded 

to 0 or 1. In order to reduce the objective measure comparisons to a binary vector, we used 

the following strategy: if A method has a higher PSNR value than B method (for a frame 

still or video), then the decision is 1 otherwise 0. SSIM vector is created using the same 

methodology. At this point, there is one 90 element binary vector for PSNR measurements, 

SSIM measurements and subjective scores. These three vectors were used while computing 

Spearman’s rank correlation coefficients between subjective scores and objective 

measurements.   

 

Using all decisions for all methods, the Spearman’s rank correlation coefficient in 

“subjective scores – PSNR measurements” case is 0.8676 and the coefficient in “subjective 

scores – SSIM measurements” case is 0.8875. This means, using all decisions, the 

correlation in “subjective scores – SSIM measurements” case and the correlation in 

“subjective scores – PSNR measurements” case are nearly the same.  

 

While computing correlation coefficient for a single comparison, the related parts of 

the three vectors (subvectors) were extracted and used.  Subvector extraction process is 

shown in Figure 5.15. There is one bit related to “method A vs. method B” comparison in 

the decision interval of each video and each frame. Combining these bits in each 

preference vector in a rowwise manner, we get the related subvector for that comparison. 

One subvector is extracted for each comparison from PSNR, SSIM and mean preference 

vectors. Then these three subvectors are used to determine the correlation coefficients for 

that comparison. Method to method comparisons are given in Table 5.8 and Table 5.9.   
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Figure  5.14. Computation of Spearman’s rank correlation coefficients between subjective 

scores and objective measurements 
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Figure  5.15. Extraction of subvectors for each “method A vs. method B” comparison 

 

As can be understood from method to method comparisons, the correlation in 

“subjective scores – SSIM measurements” is almost always is equal to 1 which means 

perfect correlation between subjective scores and SSIM measurements. Also, the 

correlation in “subjective scores – SSIM measurements” is always equal to or higher than 

the correlation in “subjective scores – PSNR measurements”. We can conclude that SSIM 

measurements are highly correlated with the decisions of human visual system and SSIM 

models the human visual system better than PSNR do.  

 

One exceptional case is “LMS – Bicubic” comparison. The least correlation 

coefficient in both tables belong to “LMS – Bicubic” comparison. The result of bicubic 

method resembles the original input. So, bicubic method gets high objective measurements 

(PSNR and SSIM results).  On the other hand, the result of the LMS method is better than 

the original inputs, because of the fact that LMS is a multi-frame method and LR samples 

coming from neighboring frames increases the quality of the SR estimate. For this reason, 

LMS gets high subjective scores.      
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Table 5.8. Spearman’s rank correlation coefficients between subjective scores and PSNR 

measurements 

      LMS Bicubic 
Edge 
Adap. 

Wavelet MRF Pre.  

LMS   0.3 0.75 1.0 0.6667 

Bicubic 0.3   1.0 1.0 1.0 

Edge 
Adap. 

0.75 1.0   1.0 0.9 

Wavelet 1.0 1.0 1.0   0.8667 

MRF Pre. 0.6667 1.0 0.9 0.8667   

 

Table 5.9. Spearman’s rank correlation coefficients between subjective scores and SSIM 

measurements 

 LMS Bicubic 
Edge 
Adap. 

Wavelet MRF Pre.  

LMS   -0.15 1.0 1.0 1.0 

Bicubic -0.15   1.0 1.0 1.0 

Edge 
Adap. 

1.0 1.0   1.0 1.0 

Wavelet 1.0 1.0 1.0   0.8667 

MRF Pre. 1.0 1.0 1.0 0.8667   
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6. CONCLUSION 

 

 

In this work, a literature survey about different SR reconstruction methods is given in 

section 2. Spatial domain and frequency domain SR reconstruction methods are covered in 

detail. Some well known analytical interpolation methods are given in section 3. Two SR 

algorithms (robust SR and LMS method) were compared with 5 analytical interpolation 

methods (bicubic interpolation, wavelet based interpolation, edge adaptive interpolation, 

interpolation using wide sense Markov random fields and interpolation using exponential 

based kernels). The results of these seven methods were evaluated using the metrics 

described in section 4. According to PSNR values, robust SR is the most successful 

method for sequences (Table 5.1) and for frames (Table 5.3). On the other hand, SSIM 

calculations revealed that robust SR is the most successful method for sequences (Table 

5.2), robust SR and LMS methods are the most successful methods for frames (Table 5.4). 

 

Also, the results of five methods (LMS method, bicubic interpolation, wavelet based 

interpolation, edge adaptive interpolation, interpolation using wide sense Markov random 

fields) were compared subjectively using a group of subjects. According to subjective 

scores, LMS method is better than all the interpolation methods for both sequence and 

frame cases (refer to Table 5.7 and Table 5.8). The correlation between the subjective and 

objective evaluation results was inspected in section 5.3.3. We can say that subjective 

decisions are highly correlated with objective measurements. Using all decisions for all 

methods, the Spearman’s rank correlation coefficient between subjective scores and SSIM 

measurements are nearly equal to the correlation between subjective scores and PSNR 

measurements.  But in method vs. method comparisons, SSIM models human visual 

system better than PSNR do. 
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