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Prof. Hakan Erdoğan, for their valuable ideas and encouraging interest in my studies

from the very beginning of my graduate education. I also would like to thank Prof.

Bülent Sankur for his outside help and support, and for broadening my horizons with

his enlightening knowledge as well as his intellectual point of view.

My valuable thanks go to all my past and present colleagues at BUSIM for their

friendship, for sharing my troubles during the preparation of this thesis, and for turning

the lab into a warm environment with their presence.
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ABSTRACT

EFFECTS OF DATA DURATION, MODEL SIZE AND

SESSION VARIABILITY ON SPEAKER VERIFICATION

PERFORMANCE

Speaker verification is one of the most challenging branches of biometric authen-

tication. Covering a wide spectrum from security services to law enforcement, speaker

verification systems are employed in phone banking, forensic audio analysis and access

control applications. An important observation is that verification accuracies depend

vastly on the amount of data and get easily affected by acoustic variations. This

study investigates the effects of data duration, model size and session variability on

text-independent speaker verification performance.

We implement GMM/UBM and SVM supervector classifiers to represent speaker

characteristics and compare their results for various training and testing durations as

well as model complexities. The influence of speaker adaptation methods and kernel

function selection over the verification accuracy is examined. A minority oversampling

scheme is utilized in order to avoid the issue of class imbalance in SVMs. We also

explore how session variability acts on error rates and resort to Nuisance Attribute

Projection method for reducing acoustic mismatches between the training and test

samples. Working on the CSLU Speaker Recognition Dataset, we present a comparative

evaluation of speaker verification systems with limited and extensive data conditions.
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ÖZET

VERİ SÜRESİ, MODEL BÜYÜKLÜĞÜ VE OTURUM

DEĞİŞKENLİĞİNİN KONUŞMACI DOĞRULAMA

BAŞARIMINA ETKİSİ

Konuşmacı doğrulama, biyometrik kimlik denetiminin en zorlayıcı dallarından

biridir. Güvenlik sistemlerinden yasal yürütüme kadar geniş bir yelpazede değerlendiri-

len konuşmacı doğrulama yöntemleri; telefon bankacılığı, adli ses çözümleme ve erişim

kontrolü gibi alanlarda kullanılmaktadır. Bu uygulamalarda doğrulama başarımının

veri miktarına önemli ölçüde bağlı olduğu ve ses kayıtlarındaki akustik değişimlerden

kolayca etkilenebildiği gözlenmiştir. Bu çalışmada veri süresinin, model büyüklüğünün

ve oturumlar arası değişkenliğin metinden bağımsız konuşmacı doğrulama başarımına

etkisi incelenmektedir.

Konuşmacı karakteristiğini tanımlamada Gauss Karışım Modeli/Genel Arkaplan

Modeli (GKM/GAM) ve buradan elde edilen süpervektörler ile oluşturulan Destek

Vektör Makinaları (DVM) kullanılmış, değişken eğitim ve sınama uzunluklarına ve

model karmaşıklıklarına göre sonuçlar karşılaştırılmıştır. Konuşmacı uyarlama yöntem-

lerinin ve çekirdek fonksiyonu seçiminin doğrulama başarımı üzerindeki etkisi araştırıl-

mıştır. DVM’deki sınıf dengesizliğini gidermek için bir azınlık üst örnekleme yaklaşımı

değerlendirilmiştir. Eğitim ve sınama örnekleri arasındaki uyumsuzluktan kaynaklanan

oturumlar arası değişkenliğin hata oranlarını artırmasını önlemek amacıyla Sıkıntı

Öznitelik İzdüşümü yöntemine başvurulmuştur. CSLU Konuşmacı Doğrulama Veri

Kümesi üzerinde, gerek sınırlı gerekse kapsamlı veri durumları için konuşmacı doğrulama

sistemlerinin karşılaştırılmalı değerlendirmesi sunulmaktadır.
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1. INTRODUCTION

Person authentication has recently been a research area of increasing interest

with the need for automatic access control in today’s security and safety systems.

Technological developments in audio and visual microelectronic devices, data storage

environments and high-speed computing have further increased the demand for com-

mercial and practical identification and authentication applications.

Conventional authentication methods are based on either something the person

has (such as ID cards and badges), or something the person knows (such as passwords

and PINs). However, such items can potentially be stolen, forged or deciphered. Fur-

thermore, there is the risk of losing and forgetting. Biometric authentication methods

try to overcome these risks by identifying the person by a unique characteristic of

his/her own, instead of what he/she knows or possesses [1].

Biometric features are attributes which define the person’s physiological char-

acteristics or behavioral aspects. Physiological characteristics include the face, fin-

gerprint, palm geometry, iris/retina patterns, and DNA of the individual; whereas

behavioral aspects contain the signature, keystroke and gait (walking style). Voice

(speech) is a valuable biometric which combines physiological and behavioral traits, as

it is an outcome of both the person’s vocal tract shape and his/her speaking style.

Unlike retina/iris or fingerprint scans which people may find bothering to pro-

vide, speech is a convenient and natural form of input. This specialty makes it one

of the most compelling biometrics [2]. Since it does not require any additional equip-

ment other than a microphone, it is also a cost-effective solution. These two properties

further emphasize the importance of speech in remote (telephone-based or online) au-

thentication applications.

Besides these advantages, speech also shows a challenging nature for several rea-

sons: First, the characteristics of voice get affected by physical changes like aging,
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illness, fatigue and stress. Second, microphone and transmission conditions, together

with background noise might modify speech signals quite easily [3]. Finally, speaker

recognition methods have vulnerability to voice transformation and mimicry [4].

Systems which use speech as a biometric measure cover a wide spectrum, from

authentication applications to law enforcement. In telephone banking and e-commerce,

voice can be used as a verifier to access customer accounts or as an indicator of a

conscious transaction. Speaker identification can be used for indexing broadcast news

programs or annotating recorded meetings, so that it becomes possible to spot the time

intervals between which a particular speaker is speaking [5]. Speech biometrics has also

an important role in forensic science, by providing a mathematical measure to identify

or verify the individual under investigation, by analyzing audio recordings [6]. Last but

not least, speaker verification allows an easy and uninterrupted way for access control

to facilities and objects, and can often be consistently combined with other biometric

features (multimodal authentication) to provide a higher level of security.

The performance of speaker verification methods greatly depends upon three main

factors: Data duration, model complexity and acoustic conditions of the recordings.

One of the most important factors is the amount of speech used to enroll the speakers

to the system, a process which is called “training”. The longer the duration of training

data, the higher the verification performance. A similar rule also applies to testing, the

stage of deciding upon an identity. Large amounts of speech data may be available in

forensic and broadcast indexing applications. However, for a realistic security system

access scenario, especially the testing duration (the time the speaker has to spend to get

access) should be kept as short as possible. The technique chosen towards the solution

of the problem, and the model size is also an important issue. Generally, more complex

models are needed to get a similar performance with increasing amounts of data. One

other big challenge is what is called the “intersession (or, session) variability”, i.e., the

acoustic mismatch between recordings of the training and testing sessions.

This study focuses on text-independent speaker verification and aims to investi-

gate the performance of several methods with variable data durations, model complexi-
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ties and acoustic conditions. The strengths and weaknesses of two modeling techniques,

GMM/UBM and SVM, are examined. Considering the broad range of applications, ex-

periments are performed both with limited data and extensive data conditions, taking

also into account the corresponding model complexities. The effect of session vari-

ability and channel degradation on verification accuracy is reviewed by working on a

multisession telephone speech database. We comment on the optimal selection and

combination of system parameters, and construction of the training setup to obtain

the highest performance under fixed test conditions.

The thesis is organized as follows: In Section 2, a brief introduction and a his-

torical background on speaker verification is presented. Section 3 describes theoretical

details of the application. In Section 4, we introduce our implementation and baseline

experimental results, and touch upon some important issues. Behavior, and techniques

to enhance the performance of the system with limited and extensive data conditions

are emphasized in Section 5 and Section 6, respectively. Finally, a summary of the

study, future directions and concluding remarks are given in Section 7.
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2. SPEAKER VERIFICATION

2.1. Introduction to Speaker Recognition

Speaker recognition is the process of automatically recognizing the speaking per-

son from a recording, using the characteristic information included in speech. There

are two subproblems in speaker recognition: (i) Speaker identification, which involves

determining the identity of a given speech segment; (ii) Speaker verification, which

deals with deciding whether the speech belongs to a claimed identity. The former is

a 1:N classification problem, whereas the latter gives a 1/0 decision. Having this bi-

nary nature, speaker verification is also called “speaker authentication”, or “speaker

detection”.

2.2. Classification of Speaker Recognition Systems

Speaker recognition systems are classified in terms of several criteria. Based

on whether test utterances are allowed to come from any unknown identity, speaker

identification can be divided into closed or open set types. In closed set identification,

the computer is sure that the test utterance belongs to one of the speakers (classes)

it is trained with, therefore forces the system to decide on an identity. Open set

identification adds “none of the above” option to the decision, so that the computer

may reject to assign the utterance to any of the speakers, by comparing the decision

score to a predefined threshold. Speaker verification systems, by definition, are open

set setups.

Speaker recognition systems can also be classified according to whether the tran-

scription of speech is known: In text-dependent recognition, the system knows before-

hand what the speaker is going to say (i.e., the password). Since speech signal carries

information on not only the speaking style of the speaker but also the utterance itself,

text-dependent recognition achieves the highest performance. On the other hand, it is

easy to deceive a text-dependent recognition system by recording the target speaker’s
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voice in advance and playing it back. To overcome this problem of cheating, text-

prompted speaker recognition systems are developed, which instantaneously generates

(or selects) a random word or sequence of numbers and asks the user to repeat it in

a short amount of time. Finally in text-independent recognition what is being said is

not known. Therefore it offers a more flexible system as well as a more challenging

problem.

2.3. History and Literature Review

The history of speaker recognition dates back to 1970s. Since then, recognition

systems have evolved in terms of both model complexity and widespread usability.

Type of recordings has also grown from small databases having clean, controlled speech

to large, realistic ones recorded in uncontrolled environments.

The earliest verification applications used pattern matching approaches such as

dynamic time warping (DTW), vector quantization (VQ) and nearest neighbors (NN).

With the increased use of GMMs in 1990s, it became possible to build probabilis-

tic methods for text-independent speaker recognition. Meanwhile, HMMs took over

the title of the leading text-dependent recognition method, by encoding the temporal

evolution and statistical variation of the features in the probabilistic framework [2, 7].

Inspired by the pioneer study by Reynolds and Rose in 1995 [8], GMMs continue

to be the most widely utilized modeling method for text-independent speaker verifica-

tion. Many of the publications either use GMMs as a baseline reference to compare

other classifiers to, or try to enhance its performance by the techniques they propose.

Another successful classifier, SVM, has shown dominance on state-of-the-art methods

since 2000.

The studies in [8] and [9] investigate the influence of GMM model size on system

performance. In [10], Liu et al. suggest that for GMM/UBM, using only top 1 mixture

for calculating the likelihood ratio yields comparable results with traditional score

calculation. Dehak and Chollet [11] reformulate the GMM likelihood score in terms of
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Kullback-Leibler (KL) divergence. Building their GMM baseline system on the ALIZE

toolkit [12], Fauve et al. suggest a way to select an optimal MFCC feature dimension.

A variety of input features have been proposed for SVM-based speaker verifica-

tion. Older approaches use directly the acoustic vectors as inputs to the SVM space

[13]. In [14], log-likelihoods obtained in the GMM/UBM decision are used as a two-

dimensional feature vector. A similar approach is named “speaker location” in [15]. An

interesting idea to represent variable length utterances in an SVM setup is the GMM

supervector approach, which uses stacked means of mixture components and can be

thought as a mapping from a variable length utterance to a high fixed dimensional

vector [16].

In order to allow the discriminant classifier to observe a sequence of data, several

feature and kernel methods have been proposed. For example, Wan and Renals [17]

use the Fisher kernel to map an arbitrary length sequence to a fixed length feature

vector. Moreno and Ho propose a new SVM methodology that uses a kernel based

on the KL divergence between generative models (GMMs) and that nearly halves the

equal error rate of that obtained by using the Fisher kernel [18]. By applying the

method on a more challenging dataset, [11] affirms its promising improvement, on the

contrary to Louradour and Daoudi [19], who argue that this method cannot create

robust results when the test sequences have short duration. Campbell et al. [20]

propose a Global Linear Discriminant Sequence (GLDS) kernel, which is simply based

on an explicit mapping of each sequence to a single vector in a feature space, using

polynomial expansions [21]. The GMM supervector approach is also used with a variety

of kernels, such as the GMM supervector linear kernel [16, 22, 23, 24], GMM L2 inner

product kernel [22], and the nonlinear kernel [11, 23]. In a latest study by Dehak et

al. [25], the effect of combining three kernel matrices with linear weights to form an

optimal kernel is investigated.

Many methods have been proposed to compensate for acoustic mismatch between

training and testing data, namely, score (speaker and session) variability. These can

be broadly classified into three groups as feature-based, score-based and model-based



7

compensation methods.

Feature-based methods include cepstral mean subtraction (CMS), variance nor-

malization and feature mapping. These have the advantage that they can be applied

to any speaker modeling technique [26].

Score-based normalization covers techniques to normalize the decision scores by

using some pseudo-impostor data. T-Norm, H-Norm, Z-Norm are some examples to

score normalization. Test Normalization (T-Norm) by Auckenthaler et al. [27] has

been adopted by many of the references cited and also exploited in this study.

[28] mentions two methods to obtain T-Normed SVM output scores. For each T-

Normed speaker, a binary SVM is trained with either the speaker against a background

speaker corpus, or a background speaker against other samples of background. It has

been shown that it is better to have no normalization than to apply the former T-Norm

method, and that the latter method performs slightly better than baseline.

[29] applies a variant of T-Norm which uses speaker-dependent cohort speakers

and call the strategy “adaptive T-Norm” (AT-Norm). [11] and [23] present another

normalization technique, effective in non linear kernel systems called Model Normal-

ization (M-Norm).

Two model-based channel compensation methods have been quite popularly used

with SVM classifiers: Nuisance Attribute Projection (NAP) and Factor Analysis (FA).

First proposed by [30], NAP aims to remove the dimensions which are irrelevant (which

correspond to the channel component) from the SVM input space. This idea is further

extended in [26]. FA, introduced by Kenny [31] and Vogt [32] decomposes the feature

vector into a speaker-session-independent component, a speaker-dependent component

and a session-dependent component. Vogt and Sridharan in [32] observe that at least

10 seconds of speech is required to estimate the session factors sufficiently. In a GMM

supervector setup, NAP aims to remove the channel subspace by projection, whereas

for FA, an iterative method is used to estimate the latent variables which are then
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subtracted from the GMM supervector [16, 33]. The study by Fauve et al. [24] contains

comparative results of NAP and FA applied on the same dataset and propose an

alternative approach called Symmetrical Factor Analysis (SFA). Having thought that

applying NAP in SVMs with nonlinear kernels would incur expensive computational

costs in higher dimensional space, [34] proposes a way to apply NAP for nonlinear

kernels by using kernel PCA. The Within-Class Covariance Normalization (WCCN)

technique, which inversely weights the contribution of each direction based on their

extent of variability, has been applied in combination with NAP in [15].

A great deal of studies concentrate on fusing GMM and SVM classifier outputs.

In [28], two methods have been used for this purpose. The first one uses the linear

combination, where T-Normed output scores are linearly combined with an appropriate

weight factor. The second approach uses a single-layer perceptron neural network to

fuse the scores. With equal T-Norm fusion weights, linear fusion behaves exactly as

perceptron, and decreases EER by 2%. Linear logistic regression is another popular

method for combining different scores [35]. [25] compares its kernel-level combination

results with score-level fusion, using the naive Bayes and an optimal linear formulation

having weights determined by logistic regression.

There are also studies to obtain more meaningful output scores. For example, in

[14], the log-likelihood ratio has been changed with a linear regression model to obtain

an optimal decision score. The parameters of the model are learned using the SVM

classifier.

Another popular topic in speaker verification is to use higher level features which

provide additional information on the speaking style of the speaker, especially where

a significant amount of data is present. These include lexical features (differences

of speakers’ personal lexicon), phonetic features (personal variations in pronunciation

and tendency to vocalize a variety of phones in similar ways), prosodic features (inter-

personal variations in pitch and volume patterns) and durational features (variations

present in the rate with which individuals produce different phones). In [36], it is shown

that although acoustic features by far outperform any of the higher level verification



9

strategy, the fusion of all methods achieve EER relative improvements of between 28%

and 48%. Ferrer et al. [37] use phone n-grams, word n-grams and some prosodic fea-

tures and combine their scores with the ones from cepstral GMM, cepstral SVM and

MLLR transform [38] SVM systems. [39] demonstrates N-best combination results for

these systems.

Some of the papers focus on methods to enhance verification performance for sys-

tems with limited training and/or testing data. For example in [40], kernel eigenspace-

based MLLR (KEMLLR) adaptation approach is proposed and compared with MAP,

MLLR, and RSW. It is shown that KEMLLR adaptation outperforms for very short

utterances (2-4 seconds), and results are similar with MLLR for the 8-seconds case. Xie

et al. [41] apply short-time Gaussianization and kurtosis normalization on the GMMs,

with a 10sec train/10sec test setup, however only achieve a slight improvement on the

EER. Kwon and Narayanan propose a robust speaker identification method for very

short test durations (<2 sec), which involves splitting and retraining GMM speaker

models as overlapped and non-overlapped regions based on the training classification

errors. [42] attempts to find a minimum duration of speech required to make a con-

fident verification decision at a specific threshold. Vogt et al., who experimented FA

modeling for short utterances, report that although error rates benefit from speaker

factor dimensionality reduction, channel compensation is not an appropriate choice for

training data below 20 seconds [43]. Another interesting study [44] tries to decrease the

EER by finding an optimal energy threshold parameter and vector dimension which

keeps a reasonable number of frames in short recordings.

The yearly Speaker Recognition Evaluation (SRE) Campaigns by NIST have be-

come the main events which motivate speaker recognition research. It provides a joint

platform for contributors to collaborate on the subject and compare their algorithms by

setting a common database and evaluation setup. With the latest change in 2008, the

applicants compete in 13 distinct and separate tests (categories), each of which involves

one of six training conditions and one of four test conditions. The core test, which in-

cludes short2/short3 train/test conditions (formerly called 1conv/1conv) is mandatory.

The training and test data contains one two-channel telephone conversation of approx-
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imately five minutes total duration, or a microphone recorded conversational segment

of approximately three minutes [45]. The amount of speech for each target speaker

is about 2-2,5 minutes for each recording. The effect of training data is investigated

in 3conv/short3 and 8conv/short3 tasks, which has 3 and 8 such recordings, respec-

tively. Another task with increasing popularity is the 10sec/10sec task, where speaker

training and testing are done over only 10 seconds of speech. Performance comparison

of techniques are evaluated using the minimum decision cost function, which will be

presented in Section 3.4.3.
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3. THEORETICAL BACKGROUND

3.1. Definition of a Speaker Verification System

Briefly, a speaker verification system extracts parameters from the input speech

signal to represent vocal characteristics of the speaker and compares these to that of

the claimed speaker’s. If the similarity is above a threshold, the system accepts the

speaker; if not, it decides on having received an illegal access attempt.

As every pattern recognition system, speaker verification consists of three main

steps: Feature extraction, modeling and testing. The block diagram of a verification

task is depicted in Figure 3.1. The following sections discuss the details of each of these

three blocks.

3.2. Feature Extraction

The first step in speaker verification is feature extraction, which includes rep-

resentation of signals with a reduced set of mathematical entities. The properties of

each observed interval of a speech signal (utterance) is represented by a feature vector

in a multidimensional space. A good feature set is desired to exhibit high speaker

discrimination power, high interspeaker variability and low intraspeaker variability [7].

Figure 3.1. Block diagram of a speaker verification system
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Several feature sets have been proposed to represent these properties, such as Lin-

ear Prediction Coefficients (LPC), log-area ratios, reflection coefficients, and MPEG-7

Normalized Audio Spectrum Envelope (NASE) features [46]. By far the most com-

mon feature set used in speaker recognition experiments is the Mel-Frequency Cepstral

Coefficients (MFCC), which will also be adopted in this study.

3.2.1. MFCC Features

The reason why MFCCs are so widely used both in speech recognition and in

speaker recognition is that the Mel-scale, in which the features are represented, ap-

proximates the human auditory perception mechanism with its logarithmically spaced

filters. MFCCs are computed briefly as follows:

First, the speech waveform is preemphasized by a first order filter, to remove some

articulatory effects and raise the energy of higher frequency regions. Then, Short Time

Fourier Transform (STFT) is applied on small overlapping segments of the signal, to

obtain a frequency scale representation. These frequencies are nonlinearly transformed

into the Mel-scale, which has some number of (typically between 18-24) triangular filters

with different center frequencies and bandwidths. Finally, Discrete Cosine Transform

(DCT) is applied on the logarithmic energy of each frequency subband to obtain the

cepstral coefficients.

The ∆MFC and ∆∆MFC coefficients may additionally be computed on the first-

and second-order differences of MFCCs to symbolize the spectral dynamics of speech.

The energy coefficient is usually discarded to increase robustness against varying chan-

nel and recording conditions. The way preprocessing is applied on the speech signal

and the number of coefficients affect speaker recognition performance to some extent.

The effects of such changes can be observed in studies [3, 35, 47, 48].
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3.3. Modeling

In the second step, extracted features are used to build representative models

for each speaker. This corresponds to algorithmically defining the possible categories

(classes) of the experiment. Two types of classifiers are preferred for this purpose: Gen-

erative and discriminative. Generative classifiers try to find a compact representation

of class-dependent features, while discriminative classifiers tend to find the separating

boundary between them. In the following subsections, we give details on the most pop-

ular classifier types applied to speaker verification: Gaussian Mixture Models (GMM)

and Support Vector Machines (SVM).

3.3.1. Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a composition of multidimensional Gaus-

sian distributions. The selection of Gaussians is motivated by the fact that the weights

of individual components can be interpreted to reflect speaker dependent characteris-

tics of some broader general acoustic vocal tract configuration, and that the mixture

density is shown to provide a smooth approximation to the underlying distribution [3].

A Gaussian mixture consists of a weighted sum of K (D-dimensional) compo-

nents, each of which is represented by a mean vector (µ) and a covariance matrix

(Σ):

λk = (µk,Σk) (3.1)

x being the feature vector (MFCC vector in our case), the probability that it is

generated by the k-th component of the mixture (the likelihood) is formulated as:

p(x|λk) =
1

(2π)D/2|Σk|1/2
exp

{
−1

2
(x− µk)T Σ−1

k (x− µk)

}
(3.2)
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The likelihood of x under the mixture model is then:

p(x|λ) =
K∑

k=1

ωk p(x|λk) (3.3)

where λ = {λk}Kk=1 and the mixture weights (ω = {ωk}Kk=1, ωk ≥ 0) satisfy
∑K

k=1 ωk = 1

Diagonal covariance matrices are preferred over full covariance matrices, as they are

computationally more efficient (no full matrix inversions are required). They are also

easier to estimate, and this makes systems which use diagonal covariance outperform

the ones with full covariance [6].

Parameters of the mixture model are estimated using the Expectation-Maximization

(EM) algorithm. EM is an iterative algorithm with a goal to estimate an updated model

λ′ based on the initial model λ, such that p(x|λ′) ≥ p(x|λ).

3.3.2. UBM

For a closed-set classification problem such as speaker identification, GMM pos-

terior probabilities of each class (probabilities of observing the i-th speaker given the

feature vector, p(λsi |x)) can be consistently compared with each other, to find the most

likely speaker who would have created the given acoustic vector sequence. For the ver-

ification case, on the other hand, we need a reference model to which speaker models

will be compared. This can either be a speaker-specific model in which we gather data

of speakers whose speech are known to be similar to the target speaker (called the

Cohort Model), or a single general model, which each speaker model is tested against

(called the Universal Background Model).

UBM is a general speaker model which is constructed using a large amount of

pooled speech data. The mixture size of UBM is determined according to the amount

of speech available and the number of speakers. Besides providing a common basis for

consistent evaluation of posterior probabilities, UBM also acts as a common root to all

speaker GMMs. This subject is discussed in the following subsection.
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3.3.3. Adaptation

To build up each speaker model, a single GMM can be trained using the speaker’s

training recordings. However, data sparsity may occur in this representation, especially

if few enrollment data are available: The number of acoustic vectors are not adequate

to “fill in” each mixture component, so that some of the weights in GMM become

zero. It is common practice to derive the speaker models by adapting the parameters

of the well-trained UBM, which is composed using more data. This approach is called

GMM/UBM, and is shown to perform better than independently trained speaker mod-

eling [49]. The most popular adaptation methods are Maximum-a-posteriori (MAP)

Adaptation, and Maximum-Likelihood Linear Regression (MLLR) Adaptation.

3.3.3.1. MAP. Maximum-a-posteriori adaptation is based on the Bayesian estimation

of model parameters, using an approach similar to the EM algorithm. The speaker

models are derived by adapting the UBM using the speaker’s training data and the

obtained model parameters [49, 50].

The first step of the adaptation process is calculating sufficient statistics of the

speaker’s data. First, we match the speaker’s training vectors X = x1, . . . ,xT to

mixture components of the UBM, by computing

p(k|xt) =
ωkpk(xt)∑K

k=1 ωkpk(xt)
(3.4)

We then use this probabilistic alignment to calculate the weight, mean and variance

parameters,

nk =
T∑

t=1

p(k|xt)

Ek[x] =
1

nk

T∑
t=1

xt p(k|xt) (3.5)

Ek[x2] =
1

nk

T∑
t=1

x2
t p(k|xt)
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where nk is the number of speaker samples that correspond to UBM’s k-th mixture com-

ponent, and Ek[x] and Ek[x2] represent first and second order moments, respectively.

In the second step, these parameters are linearly combined with the UBM’s statistics

via an adaptation coefficient, αk. This coefficient controls the balance between the

weight of speaker and background models over the adapted final model parameters for

each mixture component k and is defined as,

αk =
nk

nk + τ
, (3.6)

where τ is a chosen relevance factor [51]. The adapted parameters are calculated using

the equations

ω̂k =
[
αk
nk

T
+ (1− αk)ωk

]
γ

µ̂k = αkEk[x] + (1− αk)µk (3.7)

σ̂2
k = αkEk[x2] + (1− αk)(σ2

k + µ2
k)− µ̂2

k

In speaker verification experiments, usually only the means are adapted; covari-

ance matrices and weights are directly transferred from the UBM.

As can be seen from Equation 3.6, if a mixture component has a low probabilistic

count of adaptation data, then αk → 0, which increases the emphasis of the well-

trained UBM model parameters over the final values. For mixture components of high

probabilistic counts, on the other hand, α→ 1, and the system trusts more on the new

observation parameters. The relevance factor τ controls how much new data should be

observed before the new parameters take over the old ones. Selection of a larger τ leads

to models identical to the UBM whereas a smaller τ discards the effect of adaptation

[49].

The main limitation of MAP adaptation is that the estimation accuracy depends

on the amount of adaptation data. Besides, MAP requires an accurate initial prior
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guess, which is often difficult to obtain. It is also reported that when a large number

of free parameters need to be adapted, the process can be very slow [52].

3.3.3.2. MLLR. MLLR constructs speaker models by updating the UBM means with

an appropriate linear transformation [53, 54]. The parameters of this transformation

are calculated by linear regression. If A is the regression matrix and b is an additive

bias vector, the adapted mean vector of the k-th mixture component becomes,

µ̂k = Aµk + b (3.8)

Higher order statistics are not adapted, as the main differences between speakers are

assumed to be characterized by the means.

MLLR is a very effective method for rapid adaptation, since the transformation

parameters can be estimated from a relatively small amount of data. When the amount

of adaptation data is limited, it offers better overall performance. When the amount

of adaptation data increases, MAP becomes more accurate because we can modify all

the model parameters with MAP training [52]. This characteristic can also be used to

alleviate the problem with MAP: First MAP is used to adapt model parameters, then

MLLR is applied to transform (smooth) the adapted parameters [55].

3.3.4. Support Vector Machines

A Support Vector Machine (SVM) is a binary linear classifier, which aims to find

a separating hyperplane that maximizes the margin between the nearest samples of

two classes. Geometrically this amounts to locating the separating hyperplane in a

perpendicular direction, midway along the shortest line separating the convex hulls

of these classes. The samples inside and on the borders of this margin are called the

support vectors.

Consider the binary classification problem depicted in Figure 3.2. Assume that
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Figure 3.2. An example SVM setup

the decision hyperplane is expressed by the formula,

f(x) = x ·w + b = 0 (3.9)

where w is its normal; and that all training data satisfy,

(xi ·w + b) yi ≥ 1 ∀i = 1, . . . , N (3.10)

where yi’s denote the class labels, i.e., yi ∈ {−1, 1}.

The data points xi which yield equality in the formula above are said to be on

the marginal hyperplanes. Maximizing the distance between marginal hyperplanes is

equivalent to minimizing the objective function

E = ||w||2 . (3.11)

This constrained optimization problem is solved by introducing Lagrange multipliers
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αi ≥ 0 in the Lagrangian

L(w, b, α) =
1

2
||w||2 −

N∑
i=1

αi (yi (xi ·w + b)− 1), (3.12)

where L(w, b, α) is simultaneously minimized with respect to w and b and maximized

with respect to αi. Solving this optimization problem leads to the decision boundary:

f(x) = x ·w + b =
N∑

i=1

yi αi(x · xi) + b = 0 (3.13)

If the data are not linearly separable, the objective function is reformulated by

introducing slack variables ξi, which allow some samples to violate the margin con-

straints. The problem which Equations 3.10 and 3.11 denote then becomes:

E =
1

2
||w||2 + C

N∑
i=1

L(ξi)

subject to (xi ·w + b) ≥ 1− ξi ∀i = 1, . . . , N (3.14)

Here, L(·) is a distance metric (generally the L1- or L2-norm) and C is a user-defined

penalty (cost) parameter to penalize violations of the safety margin. A larger C leads

to a narrower margin, thus fewer SVs. It is also possible to extend this model by

introducing class-dependent costs, especially if it is more severe to misclassify one class

against the other.

SVMs can as well be adapted to create nonlinear boundaries between classes, by

the help of the “kernel trick”: Linearly non-separable data points in the input space

are mapped by a nonlinear function φ(x) to a higher (possibly infinite) dimensional

feature space, in which they are linearly separable. The decision boundary (Equation

3.13) is then expressed as:

f(x) = φ(x) ·w + b =
N∑

i=1

yi αiK(x,xi) + b = 0, (3.15)
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where the kernel K(·, ·) supports the Mercer condition and can be written as an inner

product of the transformed data points:

K(x,y) = φ(x) · φ(y) (3.16)

3.3.5. GMM Supervector Approach

There are several ways to create input features for SVMs. Older approaches

include training SVMs directly on the acoustic vectors [13], or using GMM/UBM clas-

sifier output scores (likelihood ratios) as sample vectors [14]. To use a whole utterance

as a feature vector, we need some kind of a transformation which processes the vector

sequence to output a single vector of constant dimension, so that different utterances

can be represented by different samples in the SVM space. To achieve this, the method

by Campbell et al. [20] uses Generalized Linear Discriminant Sequence (GLDS) kernel

which utilizes polynomial expansions.

Lately, the most popular feature extraction method for speaker verification in

an SVM setup is called the GMM supervector approach, proposed by Campbell et

al. [16]. The procedure is as follows: Consider again the UBM presented in Section

3.3.2. Acoustic features are first extracted from a given utterance. GMM training is

performed by MAP adaptation of the means of the UBM model. The GMM supervector

is then constructed by appending the adapted means of each mixture component in

a single high dimensional vector. For instance, for a UBM model of K mixtures and

D dimensions, the GMM supervector is of size KD × 1. This process is illustrated in

Figure 3.3.

3.3.6. SVM Design Issues

Two more choices need to be made before constructing the SVM classifier for the

speaker verification experiment. The first one is selecting an appropriate kernel, and

the second, deciding on the type of the classifier. In some cases the samples of one
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Figure 3.3. Determination of GMM supervector

class may be smaller in number than the other one’s. In such a case, data balancing

could also be applied before training the SVM. The following subsections expand on

these issues.

3.3.6.1. Kernel Type. Comparing Equations 3.13 and 3.15, we see that the inner prod-

uct of two vectors,

K(x,y) = 〈x,y〉 = x · y (3.17)

is in fact the simplest kernel type, which is called the linear kernel. Two other kernels

extensively used in pattern recognition applications are the Radial Basis Function

(RBF) kernel (also called the Gaussian kernel [56], or the non linear kernel [23, 25])

which is defined by

K(x,y) = exp

{
−||x− y||2

2σ2

}
(3.18)

and the polynomial kernel which is formulated as

K(x,y) =
(
x · y + 1

)p
. (3.19)

The σ and p in these equations denote the influence area parameter of the basis function

and degree of the polynomial, respectively. Another kernel worth mentioning is the

GMM supervector linear kernel, introduced by Campbell et al. [16, 22]. This type of

kernel calculates a distance between two supervectors ma and mb, derived from the
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corresponding GMMs λa and λb, based on the Kullback-Leibler (KL) divergence:

KL(λa||λb) =

∫
Rn

λa(x) log

(
λa(x)

λb(x)

)
dx (3.20)

Since the KL divergence does not satisfy Mercer condition, an approximation is con-

sidered. An upper bound to Equation 3.20 is

KL(λa||λb) ≤
K∑

k=1

ωk KL
(
N (·,ma

k,Σk)||N (·,mb
k,Σk)

)
(3.21)

If we assume Σks to be diagonal, the approximation in Equation 3.21 simplifies to

d(ma
k,m

b
k) =

1

2

K∑
k=1

D∑
d=1

ωk

(
ma

kd −mb
kd

σkd

)2

(3.22)

Considering Equations 3.20 and 3.21, we conclude that if the distance between the

supervectors is small, the corresponding divergence is small. Using this symmetric

distance notation, the kernel function is expressed as:

K(ma
k,m

b
k) =

K∑
k=1

ωk(ma
k)T Σ−1

k mb
k

=
K∑

k=1

(√
ωkΣ

− 1
2

k ma
k

)T (√
ωkΣ

− 1
2

k mb
k

)
(3.23)

3.3.6.2. Classifier Type. There are two basic strategies for generating multi-class SVMs.

In One-Against-One (OAO) type SVMs, pairwise binary classifiers are constructed for

each couple of C classes. Therefore, the number of classifiers is C(C − 1)/2. Usually,

classification is done according to the majority voting principle [57].

OAO type SVMs are the typical choice for speaker identification applications

[58]. For speaker verification, the other strategy, namely the One-Against-All (OAA)

SVMs are used. In OAA SVMs, a single classifier is constructed for each class, which

makes up a total of C classifiers. Each of these setups use samples of a target class as
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the positive examples against a collection of negative examples. For general pattern

recognition applications, this collection includes all samples from the other (C − 1)

classes (hence also called the One-Against-Rest setup). In speaker verification, the

preference is to use a set of common background samples instead of other classes,

which can be named as the One-Against-Background setup. We adopt the latter type

in our experiments.

3.3.6.3. SVMs with Imbalanced Data. One of the major drawbacks of SVM classifiers

is that their success is limited when the number of examples in one class is very small

than the other. This issue is called “class imbalance” and the positive and negative

examples are denoted as minority and majority classes, respectively. Application ar-

eas such as medical diagnosis and credit card fraud detection have highly imbalanced

datasets with a very small number of positive instances which are hard, but impor-

tant to classify correctly [59]. This is also the case for One-Against-Background SVMs

applied to speaker verification, where the number of background samples heavily out-

number the speaker’s training samples. Several methods have been proposed to cope

with class imbalance. A comprehensive background on reasons and possible solutions

can be found in [59] and [60]. We mention two of these techniques here.

In an imbalanced data case, to reduce the overwhelming errors of misclassifying

the majority class, the optimal hyperplane will inevitably be skewed to the minority; so

that on the extreme case, SVM learns to classify everything as negative [61]. To prevent

this, the cost associated with the positive samples could be increased [62]. Yuan et

al. report that for linearly separable data, tuning the costs has little effect, while for

the linearly non-separable case it changes the position of the separating hyperplane

considerably [61].

Another group of approaches tries to solve the class imbalance problem by over-

sampling the minority class, or undersampling the majority class [60]. Akbani et al.

show that although undersampling the majority class improves SVM performance, it

should not be preferred due to the inherent loss of valuable information in this pro-
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cess [59]. On the other hand, oversampling is also believed to be an undesired way of

duplicating data, as it introduces an unnatural bias in favor of the minority class [60].

An intelligent method to oversample the positive class is the Synthetic Minority

Oversampling Technique (SMOTE), proposed by Chawla et al. In this technique,

nearest neighbors of each positive instance are identified and the new positive examples

are generated randomly in between the sample and its neighbors [63]. We investigate

the effect of SMOTE in Section 6.5.

3.4. Testing and Evaluation

To assess and compare the performance of speaker verification systems, we need

some output scores and evaluation metrics built upon these. The first two subsections

present how the output scores are obtained in GMM and SVM setups, respectively.

The subsection that follows explains how these scores are used to compare verification

systems.

3.4.1. GMM/UBM Scoring

A speaker verification experiment with a GMM/UBM setup can be viewed as a

hypothesis testing problem, where we have to decide whether a given utterance X is

spoken by the speaker S, whom it claims to be. Let us define here the two hypotheses

as:

H1 : X belongs to speaker S

H0 : X does not belong to speaker S / X is an impostor attempt

Here, H1 is represented by the claimed speaker model λS and H0 is represented by the

universal background model λUBM . This idea is illustrated in Figure 3.4 with a single

Gaussian model for a one dimensional distribution.
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Figure 3.4. Hypothesis testing for verification

The optimal decision in this setup is defined by the likelihood ratio test, formu-

lated as:

Λ(X) =
p(X|λS)

p(X|λUBM)

H1

≷
H0

τ (3.24)

For our GMM case, this function is expressed as a product of sequence vector

probabilities:

p(X|λ) =
∏

t

p(xt|λ) (3.25)

In practice, to prevent numerical underflow, log-sum is used instead of product opera-

tion, which converts Equations 3.24 and 3.25 respectively into,

log Λ(X) = log p(X|λS)− log p(X|λUBM)
H1

≷
H0

τ ′ , and, (3.26)

log p(X|λ) =
∑

t

log p(xt|λ) . (3.27)

The likelihood score, dependent on the decision threshold τ (or τ ′), is used as the

decision metric on whether to accept the utterance as a successful client attempt.
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3.4.2. SVM Scoring

The usual decision metric of an SVM classifier is the decision function value f(x)

of Equation 3.15. The sign of f(x) determines the class of which x is assigned to,

and the value itself shows how close the test sample is to the decision boundary. For

One-Against-All type SVMs, a method to convert these decision function values into

real probabilities has been proposed by Platt [64] and later improved by Lin and Weng

[65]. The conversion is formulated as

p(y = 1|f ∗(x)) =
1

1 + exp(Af ∗(x) +B)
(3.28)

where A and B are estimated by minimizing the negative log-likelihood function using

the training data and their deterministic maximal margin classifier decision values,

f ∗(x).

3.4.3. Evaluation Metrics

The final verification decision on whether an utterance belongs to the claimed

identity is given by comparing the output score (whether the likelihood ratio as in

section 3.4.1 or the function value or probability in section 3.4.2) to a threshold τ .

Two types of errors may occur in this decision: Misses (false rejections) and false

alarms (false acceptances). A miss happens when a valid identity claim is rejected,

whereas a false alarm occurs when an impostor attempt is accepted.

The tradeoff between false alarm and miss rates, shown by PFA and PM respec-

tively, depend on the threshold (see Figure 3.4). By changing this value, it is possible

to move over different operating points ( (PFA, PM) pairs ) of the system. The plot

which shows all possible operating points of a system is called the Receiver Operating

Characteristic (ROC) curve (Figure 3.5).

The selection of the operating point depends on security requirements of the

verification task. A highly secure system would prompt the user to provide another
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Figure 3.5. A typical ROC curve

test sample before making a decision, to avoid false alarms. On the other hand, some

applications may set the decision threshold too low especially if misses cannot be

tolerated. To compare different verification systems, a traditional measure is the Equal

Error Rate (EER), the operating point where PFA equals PM . In speech applications

it is also found helpful to use a variant of the ROC curves, plotted on a normal deviate

scale. This type of plots is called Detection Error Tradeoff (DET) curve. DET curves

produce plots close to linear and thus help better distinguish performances of different

systems [66]. Figure 3.6 depicts an example of a DET curve.

Figure 3.6. A typical DET curve [67]

Another measure to compare systems is the minimum detection cost function
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(minDCF) value, visible in Figure 3.6. The detection cost function (CDet), the offi-

cial performance measure of NIST Speaker Recognition Evaluation Campaigns, is a

weighted sum of miss and false alarm probabilities:

CDet = CM PM Ptarget + CFA PFA (1− Ptarget) (3.29)

Here, CM and CFA are relative costs attributed to miss and false alarms, and Ptarget

is the a priori probability of the specified target speaker. In NIST SRE tasks, these

parameters are set as,

CM CFA Ptarget

10 1 0.01

The CDet value is further normalized by the best cost that could be obtained

without processing the input data (either setting PM = 1 or PFA = 1) to get a more

intuitive score at that specific operating point (CNormDet). The minDCF value is defined

as the minimum of all possible CNormDet scores [45].

3.4.4. Normalization Techniques

For a speaker verification system which uses clean speech with a single session

and fixed recording conditions, the scores obtained from decision making process is

consistent. However, for a system having multiple recording environments and changing

constraints, which is most likely the case for a realistic application, these scores are

observed to have high variability between trials and thus are not very reliable.

Various reasons account for score variability. One of these reasons is the acoustic

mismatch between training and test data. Acoustic mismatch can occur as a result

of changes in the speaker’s voice: The speaker may be in a different emotional state

(happy, sad, angry, etc.) so that the acoustic properties of the speech signal change.

Health status is another important issue; vocal tract characteristics are altered when

the person is sick. Aging effects are important too, especially in children and teenagers.
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Apart from voice characteristics, changes in recording environment also create acoustic

mismatch: Noise is an important obstacle against making correct decisions, and varia-

tions in recording device and transmission environment are considered to be one of the

greatest problems of speaker verification. Finally, the phonetic content, the duration,

and the quality of the speaker models are among the other reasons for score variability.

All these reasons may change between different speakers of the same session (called

speaker variability), or between recording sessions of the same speaker (called session

variability).

Several score normalization techniques are proposed to compensate for mismatches

by reducing the variance of overall score distribution. These techniques intend to calcu-

late a mean (µ) and a standard deviation parameter (σ) over a pseudo-impostor score

distribution, and normalize the original scores by,

Λ̃(X) =
Λ(X)− µ

σ
(3.30)

where µ and σ can denote parameters for different speakers or test utterances. A com-

prehensive summary of these methods can be found in [6]. Two mostly used methods

will be presented here: Z-Norm and T-Norm.

3.4.4.1. Z-Norm. A primitive score normalization technique, derived from the study

by Li and Porter [68] is the zero normalization (Z-Norm). Each speaker model (λsi)

is tested against a set of held-out pseudo-impostor utterances, {XI}. A mean (µsi)

and standard deviation parameter (σsi) are estimated from the distribution of these

decision scores, {p(XI |λsi)}. These parameters are then used to normalize the original

scores, as formulated in Equation 3.31. Determination of parameters can be performed

offline before the actual testing phase.

Λ̃si(X) =
Λsi(X)− µsi

σsi
(3.31)
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3.4.4.2. T-Norm. One of the most widely used normalization schemes is test normal-

ization (T-Norm), proposed by Auckenthaler et al. [27]. Instead of the pseudo-impostor

test data in Z-Norm, T-Norm uses a set of pseudo-impostor models ({λI}), which the

original test data will be tested against. Therefore, normalization parameters are com-

puted for each test utterance over a collection of pseudo-impostor scores, {p(X|λI)},

and normalization is applied as,

Λ̃(X) =
Λ(X)− µI

σI
(3.32)

Since the same test utterance is used during both the testing and parameter estimation,

T-Norm also avoids a possible acoustic mismatch of test data, observed in Z-Norm. The

drawback of T-Norm is that normalization parameters cannot be computed beforehand

[6].

3.4.5. Nuisance Attribute Projection

Nuisance Attribute Projection (NAP) is one of the popular methods to mitigate

the problem of channel variability, which is the acoustic mismatch when a speaker is

enrolled on one type of channel and is tested on one another. The basic idea of NAP is

to remove dimensions from the SVM space that represent the channel effects (“nuisance

attributes”), thus allowing only speaker variability [26]. This is achieved by projecting

out a subspace from the original space using an appropriate projection matrix P .

The details of this method are as follows [24]: Let msi
hj

denote the supervector (or

some other expansion form) of the ith speaker (si) at the jth session (hj). Also assume

that we have S speakers, and H sessions. First, a session-averaged supervector (m̄si)

is calculated for each speaker. This value is then removed from all the corresponding

examples to obtain their mean-shifted versions

m̃si
hj

= msi
hj
− m̄si (3.33)
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The matrix

M = [m̃s1
h1
· · · m̃s1

hH
· · · m̃sS

h1
· · · m̃sS

hH
] (3.34)

represents all the intersession variations from the average speaker positions and has a

size of E ×N . We assume that a subspace of dimension K < N , where the variations

are the greatest, represent the space spanned by channel characteristics. We therefore

calculate the K eigenvectors with the highest eigenvalues of the covariance matrix

C = MMT . The resulting eigenvectors form a base to the reduced channel subspace

R of size E ×K. The projection operation for any supervector mx is then defined as,

P (mx) = (I−RRT )mx (3.35)

Finally, the modified supervectors to be used in the SVM framework are formulated

as,

m̂x = mx −R(RT mx) (3.36)

NAP has been a favorite technique to remove channel effects in NIST evaluations,

along with its counterpart, Factor Analysis. For the experiments which use a single

training example, it is not possible to calculate the channel variation matrix over the

training data. In such case, NAP subspace is computed on a held-out development set.

NAP is successfully applied to the SVM setup with linear kernels. However, for

nonlinear kernels, solving the eigenvalue problem in the high dimensional space brings

with numerical difficulties in matrix calculations. To overcome this problem, kernel

PCA is used instead of PCA [30].
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3.4.6. Fusion Techniques

The idea behind fusion is to combine inputs or outputs of two different decision

systems to finally arrive at a more powerful classification (or verification) decision. For

speaker verification, fusion can be done either at the feature level, or at the score level.

Feature fusion is the method where a combination of different features are fed

into the same classifier. For instance, MFCC and LPCC features may be combined

in a GMM/UBM network. Another setup would be the fusion of MAP- and MLLR-

adapted supervectors in an SVM setting. This approach is applied in this study and

will be presented in Section 5.2.

Over the score fusion techniques, the most widely used ones are linear fusion

[33], linear logistic regression [35, 69], and neural networks with single- and multi-layer

perceptrons [28, 36]. One important issue to take into account is that the fused scores

must share a similar range, i.e., they must be normalized. Speaker verification systems

usually apply T-Norm for this purpose.

Linear fusion involves calculating a weighted sum of the scores of different decision

systems, so that the fusion score becomes,

sf = β1s1 + β2s2 + . . .+ βNsN (3.37)

Many of the studies which use linear fusion prefer choosing equal weights for normalized

GMM and SVM scores [15, 25, 28].

For the linear logistic regression fusion, the weights β1, . . . , βN are determined by

minimizing the logistic function [70]:

f(z) =
1

1 + e−z
(3.38)

where z = β0 + β1s1 + β2s2 + . . .+ βNsN and β0 is an offset factor.
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4. BASELINE EXPERIMENTS

4.1. Dataset

The CSLU Speaker Recognition Corpus (version 1.1), collected by OGI and pub-

lished by LDC, has been used for the evaluation. The dataset consists of telephone

speech of 91 speakers, recorded in 12 sessions for over a two-year period. Utterances

contain answers to short questions, repetition of words, numbers and phrases, and a

short duration of spontaneous speech. For each session there exists about 100 utter-

ances for a total duration of around 4 minutes. 44 male and 47 female speakers have

participated in the collection [71].

4.2. Partitioning of Data, Training and Testing Setups

We selected 90 speakers (44 male, 46 female) and divided into three groups:

UBM, user, and background sets. The UBM subset contains utterances of 20 speakers.

The background subset is constituted of another group of 20 speakers, which provide

samples of the SVM reference class (background class) and the impostors (cheaters

who would like to get illegal access to the system by claiming a false identity). These

two subsets contain equal number of male and female speakers. Finally, the last 50

speakers are labeled as the actual (registered) users for this experiment.

The UBM model is trained with all 12 sessions of its 20 speakers. Session numbers

are labeled 1 through c. In the user and background subsets, the first 6 sessions (1-6)

are reserved for training purposes, while the other 6 (7-c) are kept for testing.

To investigate the effects of the amount of data on speaker verification perfor-

mance, several training and testing durations, which will be called “protocols” from

now on, are experimented throughout the thesis. Both for GMM/UBM and SVM se-

tups, we have three main protocols: 4min/4min, 1min/1min and 10sec/10sec. For the

4min/4min case, the GMM speaker models are trained using utterances from a single
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session, while for 1min/1min and 10sec/10sec cases, training is done over a single utter-

ance (or a collection of shorter utterances) which has the indicated total duration. As

for the SVM setup, each such session (or collection) corresponds to a training sample

supervector.

Testing is likewise done over these three different durations using all data in the

last six sessions (7-c). The testing scenario is defined as follows: The test set consists of

samples from both registered users and impostors. In the first four sessions (7-a), user-

subset tests (access requests to the system) have a true claimed speaker id (valid/legal

access). For the last two sessions (b-c) of this group, claimed ids are randomly assigned,

which symbolizes invalid/illegal attempts. In addition, the impostor part contains

speech from 20 speakers not enrolled to the system. To equalize the number of total

valid and invalid attempts, 5 test sessions (out of 6) are used for the impostor testing.

Table 4.1 summarizes the distribution of training and test data over sessions.

Table 4.1. Distribution training/test subsets over sessions (v:valid, i:invalid attempt)

Subset
Session Label

1 2 3 4 5 6 7 8 9 a b c

UBM Train x x x x x x x x x x x x

Background Train x x x x x x

Impostor Test x x x x x

User Train x x x x x x

User Test v v v v i i

4.3. Platform and Tools

The GMM/UBM setup is implemented using The BioSecure Reference System

BECARS/HTK. This system includes three open-source software packages: HTK [72]

for feature extraction, UNIANAL [73] for pitch, energy determination and voice activity

detection, and BECARS [51] for GMM modeling and scoring [74]. The System is

originally organized to work with the BioSecure Reference Database, which is the
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speech part of the BANCA Database [75]. Codes and scripts are modified in order to

comply with the CSLU Dataset.

LIBSVM library is selected for SVM implementation, as it enables the usage of

a user-defined kernel and can provide probabilistic score outputs [76].

4.4. Feature Extraction for GMM/UBM

We use MFCCs as acoustic features to represent speaker characteristics. Speech

signal is segmented with 20ms Hamming window by 10ms frame shifts. 16 MFC coeffi-

cients are extracted from each frame and the energy parameter is calculated. ∆-MFCCs

and ∆-energy are appended to this vector. To determine the frames corresponding to

speech portions of the signal, voice activity detection is applied by bi-Gaussian mod-

eling of the energy component. Next, the cepstral vectors are normalized so that they

have zero mean and unit variance. Finally, the energy coefficient of the vectors is

discarded and the frames corresponding to silence are deleted. In the end, we have a

33-dimensional vector for each selected frame.

4.5. GMM/UBM Baseline

To investigate speaker verification performance of GMM/UBM classifiers with

respect to changing model sizes under different data durations, we constructed UBM

models with three different number of mixture components: GMM16 (with 16 com-

ponents), GMM64 (with 64 components) and GMM256 (with 256 components). As

stated in Section 4.1, 12 sessions of 20 speakers are used for this composition, which

amounts to about 960 minutes of speech. GMM speaker models are adapted from these

UBMs, using the entire set of utterances (for 4min/4min), or a collection of utterances

(for 1min/1min and 10sec/10sec) from the first session. The MAP adaptation rele-

vance factor is chosen as 14 (Section 5.1 presents verification performance results due

to changes in this value and the adaptation method). We follow the common usage

of only adapting the means and leaving the covariance and weights intact. Table 4.2

presents the EER and minDCF values for three different protocols with respect to
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GMM sizes (number of components).

Table 4.2. EER and minDCF values for the baseline GMM/UBM experiments

GMM/UBM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

4min/4min 15.95 0.0895 14.28 0.0770 12.50 0.0720

1min/1min 20.37 0.0984 21.49 0.0933 31.61 0.0862

10sec/10sec 31.21 0.0993 43.26 0.0988 48.35 0.0986

It can be seen from Table 4.2 that the EER and minDCF values decrease as

we increase the training duration, which implies that speaker characteristics can be

better modeled by using larger amounts of data. It also suggests that there exists an

optimal mixture size for a given protocol. For 4min/4min, GMM256 best models the

acoustic variability, whereas in 1min/1min and 10sec/10sec, the amount of data is not

sufficient to be represented by such higher-order mixtures. It is surprising to see that,

independent of the fluctuations in EER, there is a stable decrease in minDCF values

with increasing model size.

Figure 4.1 shows the DET curves of 4min/4min and 10sec/10sec protocols for

three model sizes. Superior performance of 4min/4min with respect to 10sec/10sec

can be observed. Another notable point is the dominance of GMM16 on modeling the

10sec/10sec case.

4.6. SVM Baseline

We repeat the experiments using an equivalent setup on the SVM classifier with a

supervector approach. The MAP-adapted GMM models of the GMM/UBM implemen-

tation are used to create the supervectors. Since each mean vector is 33-dimensional,

we have 33×16, 33×64 and 33×256 dimensional vectors for our three main protocols.
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Figure 4.1. GMM/UBM baseline experiments DET curve

For each speaker, we construct a one-against-background SVM classifier, where

the speaker class (positive class) is represented by a single supervector, against a col-

lection of background (negative class) supervectors. Since we have 20 speakers in our

background subset and use 6 training sessions for each, the number of background

supervectors is 20×6×(number of collections). We use the inner product linear kernel

K(x,y) = 〈x,y〉 and set the cost (penalty) value as C = 1 in the baseline evaluation.

The decision function value f(x) in Section 3.15 is employed as the verification score.

Table 4.3 shows performance metrics of the baseline SVM experiments for all nine pro-

tocol and model size combinations.

The results verify the superiority of the overall classification performance of SVM

over that of the GMM/UBM. Again, as the training/testing duration is increased, er-

ror rates and minDCF values tend to decrease. Unlike the GMM/UBM case, for

4min/4min and 1min/1min protocols we also observe significant performance improve-

ment with increasing model sizes, since a better separating hyperplane can be found
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Table 4.3. EER and minDCF values for the baseline SVM experiments

SVM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

4min/4min 15.53 0.0625 8.04 0.0435 6.00 0.0190

1min/1min 28.35 0.0837 19.72 0.0711 18.26 0.0590

10sec/10sec 36.92 0.0957 36.30 0.0930 37.60 0.0928

in those higher-dimensional spaces. Similar behavior cannot be observed with the

10sec/10sec protocol, though. The reason of this might be twofold: First, one single

supervector adapted from only 10 seconds of speech may not be able to exhibit an ad-

equate representation of speaker’s vocal characteristics. Second, with the 10sec/10sec

protocol, the number of background samples becomes so large that they may overdom-

inate the feature space, even when the dimensionality is increased. Figure 4.2 depicts

SVM baseline verification performance of the 4min/4min and 10sec/10sec protocols.

Figure 4.2. SVM baseline experiments DET curve
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4.7. GMM/UBM - SVM Fusion

We applied score-level fusion on the GMM/UBM and SVM baseline tests using

two strategies: Linear fusion combines the outputs of two systems with an equal weight

(β = 0.5) and logistic linear fusion selects the best β parameters by optimizing over

the test set.

Table 4.4. Linear Fusion of Baseline Experiments

Linear Fusion

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

4min/4min 16.18 0.0895 14.06 0.0770 12.50 0.0715

1min/1min 20.01 0.0976 21.36 0.0933 31.26 0.0863

10sec/10sec 31.01 0.0992 42.59 0.0987 47.54 0.0986

Table 4.5. Logistic Linear Fusion of Baseline Experiments

Logistic Linear Fusion

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

4min/4min 13.36 0.0605 8.76 0.0430 5.50 0.0195

1min/1min 21.48 0.0831 19.47 0.0708 18.71 0.0611

10sec/10sec 32.42 0.0962 36.35 0.0933 36.94 0.0935

Tables 4.4 and 4.5 contain the results of fusion strategies. Comparing these

results with the ones of the individual experiments, we can deduct that logistic fusion

favors the SVM classifier’s outputs, and that linear fusion is better when GMM/UBM

error rates are lower than SVM’s. Nevertheless, the obtained results are mixed and

unconvincing. We have also tried applying T-Norm on both systems before fusion, but

(probably because of the lack of impostor training data), the effect of normalization

worsened the performance of both classifiers. Thus, we do not present the numerical

details of this experiment.
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Figure 4.3. LLR Fusion DET curves for 4min/4min GMM256 and 10sec/10sec

GMM16

Figure 4.3 illustrates the behavior of logistic linear fusion in comparison with

corresponding GMM and SVM performances, for two sample protocols. It is possible

to see that, in accordance with the EER results, LLR curve follows SVM closely in

4min/4min, whereas in 10sec/10sec it positions itself near the GMM/UBM, although

not being able to surpass it.

4.8. Experiments with Constant Test Duration

Although they reflect the influence of data amount on verification accuracy, re-

sults given for different protocols in Tables 4.2 and 4.3 are not directly comparable, as

they are not tested over the same utterance durations. To see how the GMM/UBM

and SVM systems behave on common test conditions, we set the test data duration to

10 seconds and repeat the experiments. Tables 4.6 and 4.7 show recomputed EER and

minDCF values.

Comparing the two tables, we conclude that for a given short-duration test file,



41

Table 4.6. Baseline GMM/UBM experiments with constant test duration

GMM/UBM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

4min/10sec 19.49 0.0995 18.02 0.0938 20.03 0.0876

1min/10sec 21.17 0.0994 24.85 0.0991 34.95 0.0948

10sec/10sec 31.21 0.0993 43.26 0.0988 48.35 0.0986

Table 4.7. Baseline SVM experiments with constant test duration

SVM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

4min/10sec 38.48 0.0977 36.65 0.0924 35.48 0.0925

1min/10sec 36.98 0.0969 31.09 0.0905 36.62 0.0874

10sec/10sec 36.92 0.0957 36.30 0.0930 37.60 0.0928

the GMM/UBM classifier has taken the lead from SVM in verification rates. The

protocol that is most affected by test-duration change is the 4min case as expected,

with a 7.5% accuracy loss in the worst case (GMM256). It should also be noted

that GMM64 performs better than GMM256, contrary to GMM/UBM baseline. This

implies that although more complex models might be better for modeling a given

amount of training data, the verification performance may decrease if these models are

used to test utterances of shorter durations.

SVM accuracy seems to be very much dependent on the test duration, too. For

GMM16, EERs of three protocols are so close that it is both cost-effective and beneficial

for one to use a training data of 10 seconds instead of 4 minutes for this particular

situation. Figure 4.4 shows comparative DET curves of 4min/4min and 4min/10sec

for both classifiers.

In Figure 4.4, as well as the other DET curves, an inconsistent structure is ob-

served: The curves with 10sec test condition are almost linear, whereas the 4min test

curves look piecewise and wavy. This phenomenon is believed to arise from test sample
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Figure 4.4. 4min/4min vs. 4min/10sec DET curves for GMM and SVM

imbalance. Since the total duration of test sessions are divided into smaller pieces of

indicated durations, for the 4min case we have fewer test data and thus fewer samples

to represent the miss and false alarms, which makes these curves seem unstable.

4.9. A Note on Session Variability

Having 12 sessions collected over a 2-year period, CSLU database is one of the

most challenging ones in terms of session variability. We conducted a small experiment

in order to find a measure on the degree of acoustic mismatch between sessions.

We use the GMM/UBM classifier setup, with 2 minutes of training data per

speaker, taken from the first session. The “within-session” test group contains record-

ings of the other half (2 minutes) of the same session, while the “between-session”

group has the same number of data from another session (session 7). Corresponding

EER and minDCF values are as follows:
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Table 4.8. Effect of Session Variability

GMM/UBM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

within-session 12.33 0.0561 10.67 0.0547 12.80 0.0518

between-session 19.51 0.0832 22.76 0.0841 33.02 0.0875

The results in the table suggest that session variability affects both the EER and

minDCF rates greatly, and its effects are more pronounced with higher mixture sizes.

Section 6.4 specifically deals with the problem of reducing session variability effects for

SVM classifiers.
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5. EXPERIMENTS WITH LIMITED DATA

Verification results presented in Chapter 4 suggest that for moderately large

amount of data (4min/4min), even the baseline performances of the classifiers are

in somewhat acceptable error limits. However, for the 10sec/10sec protocol, the lowest

EER we can achieve is 31.21%, which is far beyond the region of practical usage. In

this chapter, we limit ourselves to the 10sec/10sec GMM16 case, to investigate deeply

the methods that can be applied to increase the verification performance when working

with limited data. The reader should be informed that most of these methods show

a similar or better influence when applied to protocols other than this hypothetical

worst case.

5.1. Changing the Adaptation Parameter and Type

Theoretical background on speaker adaptation methods were given in Section

3.3.3 and the following subsections. With these experiments, we aim to understand how

changing the adaptation factor (τ) of MAP would affect the verification performance.

We selected three adaptation factor values: τ = 14 is the default value, which was also

used in the baseline experiments. When τ = 0, α = 1 according to Equation 3.6 and so

the speaker model means are not adapted, they are constructed independently using

only that speaker’s training data. To represent the other extreme case α → 0, we set

τ = 105 (Here, the mean values of each speaker were found out to differ after the third

decimal digit). We also experimented MLLR adaptation instead of MAP, based on the

fact that MLLR adaptation works better in adapting when the amount of training data

is limited. Table 5.1 contains EER and minDCF values and Figure 5.1 demonstrates

the DET curves of these experiments.

The first thing to be observed in Table 5.1 is that MLLR adaptation provides

the lowest error rates, as expected. The drop in error rates is more distinct for the

GMM/UBM classifier, by over 5%. For the SVM, using the default adaptation factor

yields the best results in MAP, whereas for GMM/UBM, better values can be obtained
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Table 5.1. Adaptation Changes for the 10sec/10sec protocol and GMM16 model

MAP MLLR

τ = 0 (α = 1) τ = 14 (Default) τ = 105 (α→ 0)

EER minDCF EER minDCF EER minDCF EER minDCF

GMM/UBM 30.22 0.0970 31.21 0.0993 28.03 0.0992 26.00 0.0991

SVM 37.53 0.0991 36.92 0.0957 40.80 0.0991 35.59 0.0987

by making the speaker models close to each other (i.e., α → 0). We had already

observed in baseline experiments that GMM/UBM provides lower error rates than

SVM for the 10sec/10sec protocol. This behavior does not change when we alter the

adaptation parameters, although in some cases, lower minDCF may be encountered.

Figure 5.1. Effect of adaptation method for 10sec/10sec GMM16

5.2. Feature and Score Level Fusion

Considering the healing power of fusion strategies, we wonder if score-level fusion

of MAP(default) and MLLR adapted systems would yield better results. Since SVM

supervector classifier uses adaptation outputs as their input features, we also had the

chance to combine MAP- and MLLR-adapted means in a single extended supervector,
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Table 5.2. Score- and feature-level MAP(default)-MLLR fusion for limited data

GMM/UBM-Score SVM-Score SVM-Feature

EER minDCF EER minDCF EER minDCF

Linear 27.57 0.0992 34.28 0.0967
34.65 0.0970

LLR 25.09 0.0992 34.41 0.0965

thus applying feature-level fusion. No scaling or normalization were applied in these

experiments. We present the results of these three operations for linear and logistic

linear regression fusion strategies in the following table.

It can be seen that only a little improvement can be achieved by combining MAP

and MLLR features in the SVM setting, and the return is not higher than the one

obtained by score fusion. In terms of combining different adaptation methods, the

lowest EER we can get is a 3.5% relative change by GMM/UBM score fusion over the

MLLR-only results.

5.3. Changing the Kernel

We now try to see the influence of kernel type on limited data SVM verification

accuracy. All SVM experiments explained so far have used the linear kernel. For this

section we apply the types presented in section 3.3.6.1, namely the RBF kernel, poly-

nomial kernel, and superlinear kernel. For the RBF kernel, σ is chosen as
√

(KD/2)

where KD denotes the dimensionality of the supervector. For the polynomial ker-

nel, we select the degree as p = 3. We note the results for both default MAP- and

MLLR-adapted features for the 10sec/10sec protocol and GMM16.

Table 5.3 points out that the effect of kernel change applies differently for MAP

and MLLR supervectors. Superlinear kernel, for instance, decreases the EER by 1%

for the MLLR case, while increasing it slightly for MAP. Another observation is that

applying a nonlinear function to map data to a higher dimensional space may not be

an appropriate choice for this single-positive-example setup, as the results of RBF and

polynomial kernels suggest. Figure 5.2 depicts the DET curves of these experiments.
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Table 5.3. Changing the kernel type for 10sec/10sec GMM16

Kernel Type

Linear RBF Polynomial SuperLinear

EER minDCF EER minDCF EER minDCF EER minDCF

MAP 36.92 0.0957 37.63 0.0960 39.71 0.0957 37.21 0.0962

MLLR 35.59 0.0987 35.47 0.0993 38.92 0.0984 34.57 0.0988

Figure 5.2. Effect of SVM kernel type on 10sec/10sec GMM16

5.4. Summary

This chapter deals with a challenging verification case, where training data is

scarce (only one sample of 10 seconds) and test duration is short (10 seconds). The

GMM/UBM classifier has a considerable superiority over the SVM. The gap between

EERs is further widened if we use MLLR adaptation instead of MAP, a fact well known

in theory. Combining MAP and MLLR adapted GMM/UBM scores under the LLR

fusion leads to slightly increased verification accuracy. Other operations on the SVM

setting, such as feature-level fusion and kernel function selection enhance results to

some extent, but still does not reach the performance expressed by the GMM/UBM.
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6. EXPERIMENTS WITH EXTENSIVE DATA

In contrast to the experiments in Chapter 5, we now investigate the practical

lower error bounds of the speaker verification system, by using all six sessions for

training, which corresponds to a duration of around 24 minutes per speaker.

6.1. GMM/UBM and SVM Behavior

GMM/UBM experiments were applied similarly to the baseline setup, which was

presented in Section 4.5. For the SVM case, instead of using one single example for

each speaker (positive class), we now use multiple supervectors, derived by dividing

the training data into collections of 4 minutes, 1 minute and 10 seconds, respectively.

Background supervectors are accordingly formed from the relevant data subset. For

instance, for the 4min case we have 6 speaker supervectors against 120 background

supervectors, whereas for 10sec, we have 144 positive samples against 2880 negatives.

Testing is performed as usual, over our three main protocols. This time, probability

output score is used for the SVM decision, instead of the customary f(x) value. Table

6.1 and Table 6.2 show EER and minDCF values of these experiments.

Table 6.1. EER and minDCF values for extensive data GMM/UBM experiments

GMM/UBM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(24min)/4min 11.59 0.0770 9.40 0.0610 6.71 0.0490

(24min)/1min 15.59 0.0914 11.73 0.0806 8.52 0.0600

(24min)/10sec 17.36 0.0984 14.27 0.0888 10.29 0.0758

Table 6.1 expresses the importance of testing duration over the verification per-

formance. As the duration increases, the GMM/UBM classifier can make a better

decision on whether the speech belongs to the ID it claims. We observe a relative EER

decrease of up to 17.8% for a 6-times increase in duration (10sec → 1min), and about
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Figure 6.1. GMM/UBM extensive data experiments DET curve

35% decrease for a 24-times increase (10sec → 4min). The choice of whether requiring

4-times more data for an additional relative 50% decrease in error obviously depends on

data availability, desired error tolerance and rapid decision expectancy for that specific

application. We also note that these values are not the best naive verification rates

to be achieved with 24 minutes of training data. It is very likely that higher order

models (such as GMM512) would lead to more successful outcomes for each of these

three testing durations.

Table 6.2. EER and minDCF values for extensive data SVM experiments

SVM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(4minx6)/4min 7.10 0.0260 2.53 0.0090 2.50 0.0025

(1minx24)/1min 8.46 0.0362 4.80 0.0255 4.61 0.0249

(10secx144)/10sec 12.69 0.0592 10.82 0.0473 8.10 0.0394
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Rows of Table 6.2 can be viewed as improved versions of the rows of Table 4.3,

having training durations extended to 24 minutes. Comparing the results, we conclude

that adding five more positive class samples for the 4 minute test case drops the EER

from 6.00% to 2.50%. For the (10secx144)/10sec case, the downfall is more dramatic:

from 37.60% to 8.10%. It can also be seen that increase in model size (and hence the

SVM space dimensionality) increases performance for each of the three protocols, an

occasion not observed for the 10sec/10sec case of Table 4.3.

Figure 6.2. SVM extensive data experiments DET curve

A comparison of GMM/UBM and SVM accuracies for the best (24min/4min

GMM256) and worst (24min/10sec GMM16) protocols is demonstrated in Figure 6.3.

It is interesting to see that for 10sec case, although the EER of SVM is considerably

lower than that of the GMM/UBM, one should select the GMM/UBM setup if it is

desired to work in the low miss probability region (below 5%).
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Figure 6.3. Comparison of GMM/UBM and SVM for extensive data

6.2. Probabilistic vs. Traditional Output Scores for SVM

We have stated that we chose the probabilistic output type for SVM experiments

with extensive data, instead of the discriminating function value. Table 6.3 shows

how the evaluation metrics would become if the same experiments in Table 6.2 were

calculated using the f(x) values.

As it can be seen, for the (1minx24)/1min and (10secx144)/10sec protocols, using

the probability output generally yields lower error rates and minDCF values. The

reason can be explained as follows: In these cases, the total duration is divided into

smaller pieces, so we have more training samples for the same amount of 24 minutes.

Since parameters of the function p(y = 1|f ∗(x)) in Equation 3.28 are determined by

optimizing over the training samples, we can get more accurate estimates, which in

turn decreases the error rates.
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Table 6.3. Using f(x) for extensive data SVM experiments

SVM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(4minx6)/4min 7.04 0.0245 2.53 0.0110 1.67 0.0025

(1minx24)/1min 8.73 0.0378 5.03 0.0265 4.66 0.0270

(10secx144)/10sec 13.08 0.0588 10.70 0.0478 8.13 0.0403

Figure 6.4. SVM output score comparison

6.3. Changing the Kernel

In Section 5.3 we commented on how applying different kernels would change the

performance of SVMs. This time we repeat these experiments for the extensive data

case, with three selected protocols and GMM sizes, shown in Table 6.4.

The results in the table seem mixed and rather confusing. Together they reveal

the idea that changing kernel type acts on the verification accuracy unconformably for

different protocols and adaptation types. For instance, the curative effect of superlin-

ear kernel is visible in MAP-adapted (4minx6)/4min GMM16 and (10secx144)/10sec

GMM16 cases, where an opposite behavior is observed for their MLLR-adapted ver-
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Table 6.4. Changing the kernel type for extensive data

Kernel Type

Linear RBF Polynomial SuperLinear

EER minDCF EER minDCF EER minDCF EER minDCF

MAP

(4minx6)/4min GMM16 7.10 0.0260 7.29 0.0285 9.30 0.0290 6.69 0.0240

(4minx6)/4min GMM256 2.50 0.0025 2.50 0.0025 2.02 0.0040 2.53 0.0070

(10secx144)/10sec GMM16 12.69 0.0592 12.38 0.0606 12.67 0.0631 12.03 0.0574

MLLR

(4minx6)/4min GMM16 4.18 0.0140 5.54 0.0190 7.64 0.0255 6.51 0.0205

(4minx6)/4min GMM256 2.02 0.0090 3.00 0.0135 3.93 0.0130 2.50 0.0080

(10secx144)/10sec GMM16 13.65 0.0628 12.91 0.0583 12.22 0.0607 11.84 0.0547

sions. RBF kernel shows its power in the (10secx144)/10sec GMM16 protocol for both

adaptation types, whereas polynomial kernel exhibits the largest relative change by a

20% reduction in EER for the MAP-adapted (4minx6)/4min GMM256 setup.

6.4. Nuisance Attribute Projection

We have shown in Section 4.9 that session variability is one of the main reasons

for low verification accuracy. To decrease channel variability effects, we apply the NAP

method following the guidelines presented in Section 3.4.5.

The intersession variation matrix M of Equation 3.34 is computed using the train-

ing data. For each utterance, the corresponding low rank matrix R is used to project

out the channel subspace. The dimensionality of the channel subspace is selected as

K = 40. This value was seen to yield the lowest EER, after some preliminary tests.

Table 6.5 shows NAP-applied SVM extensive results.

When compared with Table 6.2, we can conclude that NAP has a considerable

effect on removing the channel/session variability phenomena. The improvement in

accuracy is most pronounced in the (4minx6)/4min GMM256 protocol, with a 250%

relative reduction in EER with only a slight increase in minDCF. However, it is observed

that applying NAP does not heal the system for the (10secx144)/10sec case. This

observation is consistent with [44], where NAP is applied on the 10s10s condition of

NIST evaluations. Figure 6.5 depicts the DET curves of these experiments.
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Table 6.5. EER and minDCF values after NAP on extensive data SVM experiments

SVM NAP

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(4minx6)/4min 6.37 0.0160 2.26 0.0065 1.00 0.0030

(1minx24)/1min 7.76 0.0349 4.77 0.0235 4.04 0.0204

(10secx144)/10sec 14.98 0.0637 11.74 0.0510 8.94 0.0411

Figure 6.5. NAP performance (K = 40)

6.5. Minority Oversampling

As explained in Section 3.3.6.3, the SVM setups we use suffer from data imbal-

ance. We utilize the SMOTE algorithm and generate samples from the minority class,

to hopefully enlarge the minority class region by creating more positive support vectors.

The number of neighbors in this algorithm is selected as n = 3 and the oversampling

rate is chosen as 20, since for each one-against-background SVM, we train samples

from one speaker against a collection of 20 background speakers. Table 6.6 displays

outcomes of the SMOTE implementation.
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Table 6.6. EER and minDCF values after SMOTE on extensive data SVM

experiments

SVM SMOTE

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(4minx6)/4min 8.07 0.0240 2.68 0.0110 1.25 0.0035

(1minx24)/1min 10.83 0.0383 5.34 0.0282 4.61 0.0249

(10secx144)/10sec 12.69 0.0592 10.75 0.0477 8.10 0.0394

Comparing Table 6.6 with Table 6.2, we see that SMOTE can improve error rates

only when the dimensionality of space (GMM256), or the number of minority samples

(10sec) is high. For the opposite case, the artificial support vectors introduced by

applying the algorithm seem to degrade the naturalness of the decision boundary, which

results in high EER. There is also a probability that the newly introduced samples may

not contribute to shaping the boundary, as in the case of (1minx24)/1min GMM256

and (10secx144)/10sec GMM16. Two SMOTE trials can be viewed in Figure 6.6.

Figure 6.6. SMOTE performance
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6.6. Extensive Data with Constant Training Partitioning

Results placed in the rows of Table 6.2 provide a consistent evaluation of our

three baseline protocols being adapted to 24min case. However, these numbers do

not imply how verification performance changes when test duration is altered, because

the way training duration (24 minutes) is distributed among the supervectors is not

the same. To better comment on how test durations affect SVM decisions, we fix the

training data partitioning to (4minx6) case and repeat the experiments with changing

test conditions. We present the results in Table 6.7.

Table 6.7. EER and minDCF values for extensive data SVM experiments with

constant training partitioning

SVM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(4minx6)/4min 7.10 0.0260 2.53 0.0090 2.50 0.0025

(4minx6)/1min 17.44 0.0711 12.15 0.0527 11.61 0.0546

(4minx6)/10sec 31.30 0.0985 30.34 0.0965 32.59 0.0988

A fair interpretation of Table 6.7 can be made by contrasting it to Table 6.1.

An interesting relation is revealed: Although SVM creates the best results for 4min

test case, GMM/UBM classifier starts to outperform SVM as the test duration is

decreased. This dominance is more evident with increasing model sizes. For instance,

in 10sec condition with GMM256, there is over 3-times improvement for the EER, and

a relative decrease of 25% for the minDCF. In Figure 6.7, GMM/UBM and SVM DET

curves are shown for 4min GMM256 and 10sec GMM16 cases.

6.7. Extensive Data with Constant Test Duration

Contrary to Section 6.6, we now try to find out how this flexible nature of SVM

training would be compared under a fixed constant test duration of 10 seconds. EER

and minDCF values of these trials are presented in Table 6.8.
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Figure 6.7. Comparison of GMM/UBM and SVM over constant training data

partitioning

Values in Table 6.8 suggest another intriguing idea: If the testing duration is

limited and fixed, it is better to train the SVM by dividing the training data into

smaller segments which has an equivalent duration to that of the test recordings, than

to use longer segments. The reason might be that supervectors composed of equal

durations (10sec, in our case), hold an equivalent range of information, although it

might not be the best way to represent the speaker’s vocal characteristics. Dividing

into smaller chunks also makes the supervectors large in quantity, so that the minority

Table 6.8. EER and minDCF values for extensive data SVM experiments with

constant test duration of 10 seconds

SVM

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

(4minx6)/10sec 31.30 0.0985 30.34 0.0965 32.59 0.0988

(1minx24)/10sec 18.11 0.0766 16.20 0.0723 21.55 0.0900

(10secx144)/10sec 12.69 0.0592 10.82 0.0473 8.10 0.0394
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class could be better represented. Figure 6.8 compares GMM256 models for changing

training partitions.

Figure 6.8. Comparison of training data partitions under 10sec constant test duration

6.8. Summary

This chapter investigates the case where large amount of data is available for

training. SVM provides results superior to GMM/UBM for each of the three main

protocols. Lower EERs can be obtained if probability scores are used for decision,

instead of the discriminative function values. Experiments reveal that the kernel which

yields the lowest error rates depends on the setup and methods used. Applying NAP

has the greatest improvement on verification performance, except when working with

the 10sec case. Oversampling with SMOTE may lead to higher accuracies, depending

on the distribution of new samples in the feature space.

Regardless of the amount of training data, verifying an identity based on as short

an utterance as possible is an important task in speaker verification. Comparing all

tests conducted so far with 10 seconds of test duration would help us gain more insight
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on the short duration testing problem. Table 6.9 combines the results of relevant tests

from Tables 4.6, 4.7, 6.1 and 6.8.

Table 6.9. Verification performance comparison for all 10sec tests

GMM16 GMM64 GMM256

EER minDCF EER minDCF EER minDCF

GMM/UBM

24min/10sec 17.36 0.0984 14.27 0.0888 10.29 0.0758

4min/10sec 19.49 0.0995 18.02 0.0938 20.03 0.0876

1min/10sec 21.17 0.0994 24.85 0.0991 34.95 0.0948

10sec/10sec 31.21 0.0993 43.26 0.0988 48.35 0.0986

SVM

(10secx144)/10sec 12.69 0.0592 10.82 0.0473 8.10 0.0394

(1minx24)/10sec 18.11 0.0766 16.20 0.0723 21.55 0.0900

(4minx6)/10sec 31.30 0.0985 30.34 0.0965 32.59 0.0988

4min/10sec 38.48 0.0977 36.65 0.0924 35.48 0.0925

1min/10sec 36.98 0.0969 31.09 0.0905 36.62 0.0874

10sec/10sec 36.92 0.0957 36.30 0.0930 37.60 0.0928

Comparing the extended data GMM/UBM verification performance with those

of the baseline experiments, we conclude that when the training data is increased for

a factor of 6 (4 minutes to 24 minutes), we obtain a relative decrease of up to 50%

in EER. Similarly for the SVM setup, adding new samples to the supervector space

helps: The decrease in the error rate is about 5% by adding 5 more samples for the

4min training, whereas it reaches 28% when we add 143 more samples in the 10sec

case.
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7. CONCLUSION

In this study, we aimed at text-independent speaker verification problem and

investigated the performance of GMM/UBM and SVM supervector classifiers under

changing data amounts and model complexities. The experiments are repeated for

three training/testing data durations (4min, 1min, 10sec), and three GMM mixture

component sizes (16, 64, 256). We tried to understand the practicality of the verifica-

tion system by observing both the theoretical limits of accuracy in an extended data

application, and the worst case scenario in a limited data case. Besides altering data

quantity, we also performed tests to see how the system would react to changes in

model setup parameters by modifying the adaptation method and kernel type. Finally,

we checked if session variability compensation and artificial data generation techniques

help decrease the error rates.

Based on the obtained results, the following conclusions can be drawn:

• Support vector machine is a successful classifier that outperforms GMM/UBM

in both limited and extensive data verification cases where the training and test

samples are generated using the same recording durations. If testing durations

are shorter than training, however, GMM/UBM may yield lower error rates.

• GMM supervector is an appropriate representation of speaker characteristics in

SVM work space. It combines the generalization abilities of GMMs with the

discriminative representation capabilities of SVMs.

• The type of adaptation affects verification performance of both GMM/UBM and

SVM classifiers. MLLR adaptation works better if training data is limited, as in

our 10sec case. Relevance factor of MAP adaptation also influences error rates,

but their influence is not similar for the two classifiers.

• The choice of an appropriate kernel function is another important decision in

constructing the SVMs. The effect of kernel on the verification accuracy varies

according to sample size, model complexity, and adaptation type. Inherent pa-

rameters of the kernel should be optimized to obtain the best results.
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• Session variability is one of the most challenging issues against obtaining robust

verification performance. Nuisance attribute projection (NAP) is an effective

method on mitigating influence of variability. However, it needs multiple training

sessions to estimate potential channel changes, and is not successfully applied for

short duration data conditions.

• Although oversampling the minority class with SMOTE is a reasonable method

to prevent the class imbalance problem, it may act positively or negatively on the

results, as it is hard to predict whether the artificially generated samples would

contribute to create a better decision boundary in the high dimensional space.

The number of user and impostor test attempts has been found to be a crucial

factor in computing the evaluation metrics. For instance, since SVM baseline experi-

ments use only a single training example for the speaker class, the resulting decision

boundary eventually favors the majority class; in other words, it tends to classify all

test samples as impostor attempts. Therefore, it can be deducted that an increase in

the number of impostor tests would mean lower error rates for this type of a classifier.

In our experiments, we tried to equalize the number of legal and illegal attempts to

the system.

This issue also presents the importance of setting a common usage scenario, when

comparing two speaker verification systems. The Speaker Recognition Evaluations by

NIST thus constitutes a valuable framework for institutions to compare their algorithms

and collaborate on the subject.

The accuracies for cases where lots of training data are involved allow verifica-

tion systems to be used in practical applications such as broadcast news and meeting

annotations, and forensic decision making. However, the results for 10sec case reveal

that there is still much to do to enhance speaker verification performance of limited

data systems.

In light of these findings, this study can be extended towards obtaining a speaker

verification system for limited data and short duration testing applications. Meth-
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ods that increase robustness of the system against session variations should be ex-

plored. Further channel variability reduction, automatized parameter selection and

fusion methods could be investigated for this purpose. Measuring the sensitivity of the

system to voice transformation attacks is also an issue of interest. An ultimate ob-

jective would be integrate this setup into a multimodal authentication system, which

not only combines the outputs of different modalities, but also uses the relationships

among these to finally arrive at a more accurate decision.
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