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ABSTRACT

SUPER-RESOLUTION SPECTRAL ESTIMATION METHODS FOR
BURIED AND THROUGH-THE-WALL OBJECT DETECTION

Seeing the targets behind and inside visually opaque obstacles such as walls using
microwave signals is considered as a powerful tool for a variety of applications in both

military and commercial paradigms.

The ultimate goal in Through-the-Wall Object Detection (TWOD) and Buried Object
Detection (BOD) systems is to achieve High Range Resolution (HRR). HRR provides the
ability of resolving closely spaced targets in range, improves the accuracy of range

estimates and aids in target recognition and classification.

HRR can be achieved using impulsive waveforms which use extremely narrow
pulses, frequency modulated waveforms which increase the instantaneous bandwidth by
applying frequency modulation to each transmitted pulse, stepped-frequency waveform,

and signal processing techniques.

The range resolution of stepped-frequency and frequency modulated continuous
wave (FMCW) radar systems is limited by the Inverse Fast Fourier Transform (IFFT) and
Fast Fourier Transform (FFT), respectively. FFT provides poor range resolution for data
with a small bandwidth and when the data size is small. On the other hand, it is well known
that parametric spectral estimation methods provide super-resolved range profiles of the

targets compared with FFT for the same frequency bandwidth.

This thesis studies the target detection and range extraction performance of ESPRIT,
Root-MUSIC, Higher Order Yule-Walker, Minimum-Norm, Yule-Walker, and Least-
Squares methods in BOD and TWOD applications using synthetic stepped-frequency and
FMCW radar signals and experimental stepped-frequency radar data.



OZET

SUPER-RESOLUTION SPECTRAL ESTIMATION METHODS FOR
BURIED AND THROUGH-THE-WALL OBJECT DETECTION

Mikrodalga sinyalleri kullanarak duvar gibi saydam olmayan engellerin arkasini ve
igerigini goriintiilemek, askeri ve ticari alanlardaki uygulamalar i¢in kuvvetli bir arag

olarak goriilmektedir.

Duvar Arkast Cisim Tespiti (DACT) ve Gomili Cisim Tespiti (GCT)
sistemlerindeki ana hedef, Yiiksek Menzil Coziiniirliigi (YMC) saglamaktir. YMC, menzil
icerisinde birbirine yakin hedefleri ayirabilme kabiliyetini saglar, menzil kestirimlerinin

dogrulugunu arttirir ve hedef tanima ve siiflandirmaya yardime1 olur.

YMC, cok dar vurum kullanan diirtiin dalgabi¢imi, anlik bant genisligini gonderilen
herbir vuruma frekans kipleme uygulayarak arttiran frekans kipli dalgabi¢imi, adim-

frekans dalgabi¢imi ve sinyal isleme teknikleri kullanilarak elde edilebilir.

Adim frekans ve frekans kipli siirekli dalga (FKSD) radar sistemlerinin menzil
¢Oziiniirlik kabiliyeti Ters Hizli Fourier Doniisiimii (THFT) ve Hizli Fourier Doniisiimi
(HFT) ile siirlidir. HFT, kiigiik bant genisligine sahip veriler i¢in ve veri boyutu kiiciik
oldugunda  diisiik ¢Oziiniirlik saglar. Diger yandan, parametrik spektral kestirim
metodlarinin, aynmi frekans bant genisliginde HFT ile kiyaslandiginda, yiiksek

¢Oziiniiltirliikte menzil profil kestirimi sagladig1 bilinmektedir.

Bu tez caligmasi ile DACT ve GCT uygulamalarinda hedef tanima ve menzil
Oziitlemesi i¢in ESPRIT, Root-MUSIC, Yiiksek Dereceli Yule-Walker, En Kiiciik Norm,
Yule Walker ve En Kiicilik Kareler metodlarinin performanslarini sentetik adim-frekans ve

FKSD radar sinyalleri ve deneysel adim frekans radar verileri kullanarak belirlemektir.
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1. INTRODUCTION

1.1. Motivation

The ability to “see” the targets behind and inside obstacles such as walls, doors, and
other visually opaque materials, using microwave signals is considered as a powerful tool
for a variety of applications in both military and commercial paradigms. Search-and-rescue
workers, counter-terrorism and counter-intelligence agents encounter situations where they
need to detect, locate, and identify building occupants and hidden objects from stand-off
location. Specialized devices using electromagnetic waves can provide significant help in

these applications[1-8].

The ultimate goal in Through-the-Wall Object Detection (TWOD) and Burried
Object Detection (BOD) systems is to achieve high range and cross range resolutions. High
Range Resolution (HRR) capability is one of the key parameters in the radar system design
which provides many advantages. It provides the ability of resolving closely spaced targets
in range, improves the range accuracy, reduces the amount of clutter within the range cell,
reduces multi-path, and aids in target recognition and classification. HRR is also very
useful in detection of targets with low radar cross sections (RCS) embedded in high clutter.

It increases signal-to-clutter ratio (SCR) which makes targets with low RCS visible [9-13].

HRR techniques can be grouped in four main categories: impulsive waveforms,
intrapulse pulse compression techniques, interpulse pulse compression techniques, and

signal processing techniques [9-13].

Impulsive waveforms achieve HRR via extremely narrow pulses (on the order of
nanoseconds). Such a short pulse width can be obtained at very low power levels due to its
stability problems, i.e., wide bandwidth and high power can not be achieved
simultaneously. Also, the large instantaneous bandwidth imposes severe constraints on the

analog to digital conversion process, which in turn degrades some other radar capabilities.



Intrapulse pulse compression techniques increase the instantaneous bandwidth by
applying either frequency or phase modulation to each transmitted signal instead of
decreasing their time duration. Modulation is applied within individual pulses. Advantage
of these techniques over impulsive waveforms is that they increase the bandwidth without
decreasing the power level. Linear Frequency Modulation (LFM) technique is one of

frequency coding techniques.

Stepped-frequency waveform can be viewed as an interpulse modulated pulse
compression waveform in which modulation is applied across the pulses instead of within
individual pulses. The key advantage of the stepped frequency method compared to other
pulse compression techniques is that the HRR is achieved while still maintaining the
instantaneous bandwidth of the receiver narrow, which increases sensitivity and provides

jam-immunity.

The drawbacks of the impulsive waveforms can be eliminated using linear frequency
modulated or stepped-frequency waveforms. However, the range resolution of stepped-
frequency and frequency modulated continuous wave (FMCW) radar systems is limited by
the Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT), respectively.
Although the FFT and IFFT are computationally-efficient, they provide poor range
resolution for data with a small bandwidth and when the data size is small. Moreover, the
range estimates have large bias. On the other hand, it is well known that parametric
spectral estimation methods provide superresolved range profiles of the targets compared
with conventional Fourier transform for the same frequency bandwidth. Of course, the
computational complexity of the parametric methods is much larger than FFT and IFFT,
but the recent developments in the digital signal processors and field programmable gate
arrays makes it possible to implement parametric methods within real time. So, parametric

spectral estimation methods can be viewed as the fourth technique of achieving HRR.

Motivation of this thesis is to investigate the potential use of the parametric spectral
estimation methods for range extraction in frequency modulated continuous wave and
stepped frequency radar systems for buried and through-the-wall object detection.
Synthetic stepped-frequency and FMCW radar signals and experimental stepped-frequency

radar data are used to study the performances of the Yule-Walker, Least-Squares,



Minimum-Norm, Higher-Order Yule-Walker, Root-MUSIC, and ESPRIT methods in BOD
and TWOD applications.

1.2. Outline of the Thesis

The thesis is organized as follows: The most common terms used in the radar
systems and pulse, stepped-frequency and frequency modulated continuous wave radar

priciples are introduced in Chapter 2.

In Chapter 3, non-parametric and parametric spectral estimation methods are

explained.

The performance of non-parametric and parametric spectral estimation methods for

range extraction in stepped-frequency and FMCW radar systems is investigated in Chapter

4.

Chapter 5 investigates the potential use of the parametric spectral estimation methods
for range extraction in BOD and TWOD applications using experimental stepped-

frequency radar data.

Chapter 6 concludes the thesis emphasizing the super-resolving capability of

parametric spectral estimation methods.



2. RADARS

2.1. Radar Basics

Radar is an abbreviation for RAdio Detection And Ranging. Radar systems use
special waveforms and directive antennas to transmit electromagnetic energy into a
specific direction to search for targets. Targets in the search area reflect some of this
energy back to the radar. These returns are then processed by the receiver to extract some

target information, depending on the radar type.

Radars are most often classified by the types of waveforms they use, or by their
functionality. Considering the waveforms, radars can be classified as Continuous Wave
(CW) or Pulse Radars. Continuous Wave radars continuously emit electromagnetic energy
whereas pulse radars transmit a train of pulses. Moreover, CW operation means that the
radar transmits and receives at the same time while pulse radars transmits and receives in
different time slots. Another classification is based on the functionality of the radars, which
includes weather, early warning, over the horizon, ground penetrating, and through the

wall radars where the last two ones are the subject of this thesis [9].

This section will explain the terms that will be frequently used in the following
chapters such as range, down-range resolution, cross-range resolution, high range

resolution, monostatic and bistatic operation and radar cross section.

2.1.1. Range

Radars compute the target range, R, by measuring the time difference, A¢, that is, the
time it takes the radar signal to travel the two-way path between the target and the radar.

The range is given as
R=—- (2.1)

where c is the speed, 3x10° m/sec.



2.1.2. Down-Range Resolution

Down-range resolution, denoted as AR, describes the radars ability to distinguish
targets that are close in down range as distinct objects. The down-range term is used for the
distance in the line-of-sight direction of the radar as shown in figure 2.1. Radars are
designed to operate between a minimum down-range R, , and a maximum down-range
Ryqc. The distance between R, and R,;, is divided into N range bins, each of width AR,

1.€,

AR — max min (22)

Targets separated in down-range less than AR will be evaluated as a single target. So,
down-range resolution is one of the most important design parameter for a radar system.
Several techniques have been developed to improve the down-range resolution which can
be employed both in hardware and software. Radars generally use pulse waveforms for
extracting range. The shorter the pulse, the larger the bandwidth, and the more precise the

range measurement is.

The effect of a short pulse can be obtained with a long pulse whose bandwidth has
been increased by phase or frequency modulation. When passed through a matched filter,
the output is a compressed pulse whose duration is approximately the reciprocal of the
bandwidth of the modulated long pulse. This is called pulse compression and allows the
resolution of a short pulse with the energy of a long pulse. CW waveform with frequency
or phase modulation also can provide accurate range measurement. It is also possible to
measure the range of a single target by comparing the phase difference between two or

more CW frequencies (multi-frequency radar).

The methods explained so far depend on the radar hardware and should be decided
before designing the radar. However, there are also some signal processing techniques that
can be used to improve the down-range resolution without any or with some minor changes
in radar hardware and they will be explained in detail in chapter three, implemented on

synthetic radar return signals in chapter four and on real radar data in chapter five.
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Figure 2.1. Down-Range and Cross-Range directions

2.1.3. Cross-Range Resolution

Cross-range resolution, denoted as AR. and defined similar to downrange resolution,

describes the radars ability to distinguish targets that are close in cross range as distinct
objects. Cross-range direction is used for the direction that is perpendicular to the down-
range as shown in figure 2.1. Cross-range resolution is an important radar parameter,
especially in radar imaging. Radars must have a good cross-range resolution to construct a

two dimensional image of the scene illuminated by the radar.

The resolution in the cross range can only be achieved by varying the illumination
over the field of view. It is necessary to make a set of linearly independent observations in
the cross range direction to improve cross-range resolution. Sweeping the beam of the very
narrow beam of antenna over the field of view is the preferred method. However, it is
sometimes not feasible or possible to design very narrow beam antennas especially in

wideband systems or at low frequencies.

Another method to vary illumination over the field of view is to move the radar taking
data at different locations, and then synthesize an aperture to obtain cross-range resolution.
Also, antenna array can be used to synthesize an aperture in cases where it is not desired or
possible to move the antenna. An array where only one antenna transmits and all other
receive simultaneously is called a real array and the array where only one antenna
transmits and only one antenna receives and this transceiver pair is scanned from end to
end is called synthetic array. Also, some signal processing techniques can be used together
with the methods explained above, such as beamforming and high resolution spectral

estimation methods, to improve the resolution in cross range.



2.1.4. High Range Resolution

High Range Resolution (HRR) capability is one of the key parameters in the radar
system design which provides many advantages. It provides the ability of resolving closely
spaced targets in range, improves the range accuracy, reduces the amount of clutter within
the range cell, reduces multi-path, and aids in target recognition and classification. HRR is
also very useful in detection of targets with low radar cross sections embedded in high
clutter. It increases signal-to-clutter ratio which in turn makes targets with low RCS

visible.

HRR techniques can be grouped in four main categories and they are explained in the

following subsections [9-13].

2.1.4.1. Impulsive Waveforms. This technique achieves HRR via extremely narrow

pulses (on the order of nanoseconds). The bandwidth of the waveform can be increased by
shrinking the pulse width, which degrades the radar sensitivity. Such a short pulse width
can be obtained at very low power levels due to its stability problems, i.e., wide bandwidth
and high power can not be achieved simultaneously. Also, the large instantaneous
bandwidth imposes severe constraints on the analog to digital conversion process, which in

turn degrades some other radar capabilities.

2.1.4.2. Intrapulse Pulse Compression Techniques. These techniques increase the

instantaneous bandwidth by applying either frequency or phase modulation to each
transmitted signal instead of decreasing their time duration. Modulation is applied within
individual pulses. Advantage of these techniques over impulsive waveforms is that they
increase the bandwidth without decreasing the power level. Linear Frequency Modulation
(LFM) technique is one of frequency coding techniques and it will be explained in detail in

section 2.4.



2.1.4.3. Interpulse Pulse Compression Techniques. Stepped frequency waveform can be
viewed as an interpulse modulated pulse compression waveform in which modulation is
applied across the pulses instead of within individual pulses. The key advantage of the
stepped frequency method compared to other pulse compression techniques is that the
range resolution is increased while still maintaining the instantaneous bandwidth of the
receiver narrow, which increases sensitivity. Stepped frequency radar will be explained in

detail in section 2.3.

2.1.4.4. Signal Processing Techniques. Range resolution can also be increased via signal

processing techniques. A number of high resolution techniques have been developed which
provide superior performance than classical methods. These techniques use high-resolution
estimation methods to improve range resolution and they will be explained in detail in

chapter three.

2.1.5. Bistatic and Monostatic Operation

A radar is called bistatic if it uses separate antennas for transmission and reception,
and monostatic if it uses same antenna for transmission and reception. Pulsed radars can
use same antenna for transmission and reception since different time slots are allocated for
transmission and reception [9]. However, in CW operation, since CW radars transmits and
receives at the same time, it is difficult to use same antenna to simultaneously transmit and
receive because of the leakage between transmitter and receiver. Receiver sensitivity is set
by the level of the transmitted signal that directly gets into the receiver. This situation is
similar to that of someone shouting next to you while you are trying to hear someone else
far away from you. Providing sufficient isolation over a wide frequency range is not

possible, so the easiest method is to separate the transmit and receive antennas.



2.1.6. Radar Cross Section

Radar Cross Section (RCS) is defined as the amount of the power scattered from the
target when target is illuminated by RF energy. RCS fluctuates depending on the

frequency, aspect angle and polarization of the RF field.

Let P denote the power density of a wave incident on a target that is is located at a

range R from the radar. The amount of power reflected from the target is

P

ref

=oP (2.3)

where o denotes the RCS. Let P, denote the power of the reflected waves at the

rec

receiving antenna. It follows that

Pref
Po=2 2.4)
= o= 47sz% (2.5)

1

And ensuring that the radar receive antenna is in the far field of the target, RCS is

given as follows:

o= 47k’ Tim T 2.6)
Roo P

Note that, in practice, the RCS is not a target-specific constant. Different targets may
have similar RCS values since RCS fluctuates with aspect angle, frequency and

polarization [9].
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2.2. Pulse Radar

This section covers the block diagram, waveform, phase detector and important
parameters of pulse radars. This chapter will also be used a basis while explaining other

waveforms.

Pulse radars transmit and receive a train of modulated pulses. Range is extracted
directly from the two-way time delay between a transmitted and received pulse. Carrier
frequency (which depends on the design requirements and radar mission), pulse width
(defines the range resolution), modulation (which improves range resolution), and the
pulse repetition frequency (PRF) are the parameters used to characterize the pulse radar [9-
13]. Modulation enhances radar performance. The PRF must be chosen to avoid Doppler
and range ambiguities as well as to maximize the average transmitted power. These
parameters will not be explained in detail since pulse radar is not the main focus in the
thesis. Instead, to construct a basis for the next sections, block diagram, waveform, and

important parameters will be explained briefly.

2.2.1. Block Diagram

Simplified block diagram of pulse radar is shown in figure 2.2. In this configuration,
Coherent Oscillator (COHO) is used as a reference for the Phase Detector (PD). In
transmitter side, COHO output is mixed with Stable Local Oscillator (STALO) output to
produce the signal which will upconvert the baseband pulse to the frequency

Jeono + fsraro - After filtering to eliminate the images and intermodulation products, the

output of the mixer is amplified by the power amplifier, pulse modulated and transmitted.

In receive part, the received signal is downconverted to £, , which is equal to f,,,
by mixing the received signal, which is at frequency f.o,0 + fsro » With STALO. Then,

the intermediate-frequeny (IF) signal is fed to the IF amplifier which has a bandwidth of
inverse of pulse width whose output is IQ demodulated in phase detector using COHO
signal to produce Inphase(I) and Quadrature(Q) signals.
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N
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Figure 2.2. Block diagram of monostatic pulse radar

Bandpass and low pass analog filters in the radar diagram are used to suppress the
unwanted intermodulation products of the mixers. Note that radar system does not add any
phase ambiguity to the radar signal since the COHO and STALO are the Local Oscillators
(LO) of both transmit and receive parts. Phase detector outputs are used to extract the

phase difference between transmitted and received signals.
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2.2.2. Pulse Radar Waveform

Simplified representation of pulse radar waveform is shown in figure 2.3 and 2.4.

Amplitude
A -~
T e
fo Jo fo fo :
lime
>
Figure 2.3. Pulse radar waveform
f Jo Jo
0 1 N-1

l: T > . >|

Figure 2.4. Pulse Radar Waveform

Pulse radar waveform can be written as

=1l cos(2x £, 1) 2.7)
-

s(t)= f Arect(

The Fourier pairs given below will be used to obtain the frequency spectrum of pulse

radar waveform.
F{COS(27ffof)}=%[5(f—fo)+5(f+fo)] (2.8)
Fidrect(l)y = ATSIA 17) (2.9)
T

F{X(t)y(f)}=fX(f')Y(f—f')df' (2.10)



Let
t—nT
T

g(t)= i Arect(

n=—0

)

Using complex exponential Fourier series, g(¢) can be written as

g =Y %Smc(%) exp[f 2; nt )

It follows that the Fourier transform of g(¢) is

G(f)= i %Sinc(ﬁ;r

n=-—o0

n
)5(f—?)

Let
t—nT
T

f(t)zZN: Arect ( )

Then, the Fourier transform of f(¢) is

Nz
2

n=-—00

F(f):ANr(Sinc(ﬂVT)* i Sinc(

T n
T)5(f—?)
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2.11)

(2.12)

(2.13)

(2.14)

(2.15)

The multiplication of F(f) by Cos(27x f,t) shifts the spectrum given above by fj.

Figure 2.5 shows the envelope of the amplitude spectrum of a coherent pulse train of finite

length [9].

—>|Beﬁf |«

........ fo-lz f, fo+l/7

Figure 2.5. Envelope of spectrum of pulse radar waveform
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2.2.3. Signal Flow & Phase Detector

Pulse radars transmit N pulses each of which has same duration and amplitude. Each

pulse is transmitted at the same carrier frequency, f,= fs..0 + fcono -

Let the transmitted pulse signal be

s,(t) = A Cos(2r fiit) (2.16)

If the range of the target to the radar is R, the signal received after a time delay of
2R/c 1s

5,(f) = A4, Cos(2r f,(t—2R/¢)) 2.17)

Mixing the received signal with s, ,(t) = 24, Cos(27x 4, 0t) , We have,

8, () Sg740(t) =24, Ag Cos[27 f,(t —2R/c)] Cos(27 fy0t)
=24, A; Cos[27t (fcopo + fsruo) & —2R/c)] Cos(27 fri0t)

=24, A; Cos{27 feonot + 27 fspuol = [27 (feono + Ssruno) 2R/ €)1}
xCos(27 frp0t)

=4, Ay Cos{27 feonot — 27 (feono + Fsrao) 2R/ )]}
+ A4, Ay Cos{27 feopot + 47 fsruot = 270 (feono + fsruno) 2R/ €)1}

(2.18)

The second component, which is high frequency term is filtered out by a bandpass filter

with center frequency at £, . Therefore, the output of the mixer is

853(0) =4, As Cos{27 feouot — 27 (feono + fsrao) 2R/ )]} (2.19)

Then, 55(1) is mixed with Scono. (t) =24, Cos(27 fropnot) and
Scoro.o(t) = 24 Sin(27 frouot) and then low pass filtered to produce inphase and

quadrature components at the output of phase detector.
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Mixing s,(t) with 5.0, () =24, Cos(27 fouot) » We have,

83(1) Scoro, (1) = 24, Ag A, Cos{27 feopot = (270 (feono + fsrano) 2R/ €)1}
x Cos(27 feopot)

=A, Ag A. Cos[ 27 (f cono + Fsrano) 2R/ ) ]

(2.20)
+ A, Ag A, Cos{ A7 feopot — 27 (feono + fsruro) 2R/ )]}

The second component, which is high frequency term is filtered out by lowpass filter.

=1 =4, 4, A, Cos[27 (feono+ Sfsrao) 2R/ ) ]

I = ACos[27 f,(2R/¢) ] 2.21)

Mixing s,(¢) with scp 0 () = 24 Sin(27 foouot) » we have,

83(8) Scoro,o () =24, Ag A. Cos {27 feopot — 270 (feono + fsruo) 2R/ )]}
x Sin (27 feopot)

=4, Ag A, Sin [ =27 (feono + fsraro) 2R/ ) ]

] (2.22)
+4, Ag A, Sin {47 feouot — 27 (feono + fsrao) 2R/ ¢)]}

The second component, which is high frequency term is filtered out by lowpass filter.

= Q0=4, A; A.Sin [ =27 (feopo + fsrao) 2R/ ) ]
Q =ASin[-2x f,(2R/c) ] (2.23)

2.2.4. Important Parameters

2.2.4.1. Instantaneous Bandwidth. Instantaneous bandwidth of the pulse radar is

approximately equal to inverse of the pulse width.

inst

B,, =— (2.24)
T
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Analog-to-Digital Converter (ADC) sampling rate is determined according to
instantaneous bandwidth and since the pulse radars use very short duration (on the order of
nanoseconds) pulses, they require high sampling rates which degrades the radar

performance.

2.2.4.2. Effective Bandwidth. The effective bandwidth of the pulse radar is given by,

1
By = (2.25)

which is equal to instantaneous bandwidth. Range resolution of the radars is directly
related to effective bandwidth. The larger the value of effective bandwidth, the higher the

range resolution is and the more accurate the range measurement is.

2.2.4.3. Range Resolution. Range resolution is determined from the overall system

bandwidth. Therefore, the range resolution of the pulse radar is

AR=—S - €T (2.26)

2.2.4.4. Maximum Unambiguous Range. Once a pulse is transmitted from the radar,

sufficient length of time must elapse to allow any echo signals to be received before the
next pulse is transmitted. Therefore, the maximum range at which the targets are expected
determines the rate at which the pulses are transmitted. If the pulse repetition frequency is
too high, echo signals from some targets might arrive after the transmission of next pulse.
Such echo signals are called multiple-time-around echo and they appear to be at a much
shorter range than the actual and might cause false alarms if they were not known to be
multiple-time-around echo. The range beyond which the targets are accepted as second-
time-around echo is called maximum unambiguous range [9]. The maximum unambiguous
range of the pulse radar is

R, :% (2.27)
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2.3. Stepped-Frequency Radar

Radars employing stepped-frequency waveform increase the frequency of successive
pulses linearly in discrete steps. Stepped-frequency waveform can be viewed as an
interpulse pulse compression technique in which modulation is applied across the pulses
instead of within individual pulses. High range resolution capability of stepped-frequency
radar is used to solve the difficult problem of detection of low-RCS targets in the presence

of large clutter such as detection of cruise missiles and buried mines.

Stepped-frequency radar has a narrow instantaneous bandwidth (corresponding to
individual pulse) and attains a large effective bandwidth (corresponding to frequency
spread of pulses within a burst). As a result, the hardware requirements become less
stringent. Lower-speed ADCs and slower processors can be used. The receiver bandwidth

would be smaller, resulting in lower noise bandwidth and a higher signal-to-noise ratio.

Stepped-frequency waveform also provides some technical advantages. Being able to
select frequencies gives radar the flexibility to change its range resolution, avoid
transmitting on critical communication frequencies, and optimize its waveform to enhance

the performance of signal processing algorithms.

CW operation also provides the radar some advantages. Since the frequency of the
transmitted signal is known, it is possible to use narrowband detection techniques to
improve signal to noise ratio and improve the ability to reject signals in adjacent bands
(Jam immunity). A sample of transmitted signals is sent to the receiver and used as a phase
reference for the received signal. This allows radar to demodulate the received signal into
inphase and quadrature components without any phase ambiguity and results in a coherent
system which means that from frequency to frequency and sweep to sweep, the received
signals from all of the stationary objects in the range can be added to improve system

signal to noise ratio.

However, these advantages are obtained at the expense of longer operation time. It

would require longer time to transmit, receive, and process of a group of pulses. Actually,
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this could be a limiting factor in real time operation but, thanks to the development in high
speed Direct Digital Synthesis (DDS) and digital receiver technologies, this does not seem

to be a limiting factor any more.

2.3.1. Block Diagram

Stepped-frequency radar waveform consists of a group of N coherent pulses whose

frequencies are increased from pulse to pulse by a fixed frequency incrementAf. The

frequency of the n” pulse of the stepped frequency radar waveform can be written as

fo=Sfo+ndf, n=01.,N-1 (2.28)

where f, = foono+ forao 18 the starting carrier frequency and Af is the frequency step
size, that is, the change in frequency from pulse to pulse. The change in carrier frequency
is achieved by the  Stepped Frequency  Synthesizer = (SFS)  which
produces f, = nAf,n=0,1...N —1. Figure 2.6 shows the block diagram of bistatic stepped-

frequency radar.

On the transmit side, first COHO and SFS frequencies are added in a mixer. The
mixer output is filtered by an appropriate bandpass filter to suppress unwanted
intermodulation products. After suppressing the LO leakage and high order
intermodulation products, the sum of the two frequencies is up converted to RF by mixing
with STALO. The resulting signal, consisting of the sum of the STALO, COHO, and SFS
frequencies, is amplified and transmitted. Thus, the frequency of the n” transmitted pulse

within the burst of N pulses is given by

Ju= Jeono+ fsraro+ NS n=0,1,.,N-1 (2.29)

On the receive side, where the receiver is a three stage receiver, the received signal is
amplified and down-converted to first IF, f,.,, by mixing it with the STALO output, which

is then band limited by a bandpass filter. In the second stage, the first IF signal is further
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Figure 2.6. Block diagram of a bistatic stepped-frequency continuous wave radar
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down converted to second IF, f,.,, by mixing it with the output of the SFS, which is then
band limited by a bandpass filter with center frequency £, - At the last stage, the output

of the second IF filter is down converted to baseband in phase detector. Phase detector
mixes the IF signal with two 90° phase-shifted outputs from COHO, producing inphase
and quadrature outputs which will be used to extract the phase difference between

transmitted and received signals.

2.3.2. Stepped-Frequency Radar Waveform

The frequency of the n” pulse of the stepped frequency radar waveform was given as

Jo=Fo+ndf, n=01..N-1 (2.30)

where f, = foono + fsrao - Pictorial representation of stepped-frequency waveform is

shown in figures 2.7 and 2.8. Each pulse has duration of 7 seconds. Group of N pulses is
called as burst. The burst time, i.c., the time corresponding to transmission of N pulses, is

called as coherent processing interval (CPI) [10].
Note that the frequency is constant within each pulse. So, its instantaneous bandwidth

is approximately equal to the inverse of pulse width and since pulses do not have short

time duration, instantaneous bandwidth of the radar is narrow.

Amplitude
A

Jo fo+Af fo+20f fo+(N=DAS

time

T e
.«

Figure 2.7. Stepped-frequency radar waveform
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fot A fo+t (N=DAf
T
NT >

Figure 2.8. Stepped-frequency radar waveform
Stepped-frequency radar achieves high range resolution by processing N pulses, each

of which has narrow instantaneous bandwidths, in a CPI, instead of using wideband, short

duration pulses as in pulse radar.

Stepped-frequency waveform can be written as

s(t)= ZArect (

n=0

jCos(27zf t) (2.31)

Frequency spectrum of stepped-frequency waveform can be obtained using the
Fourier transform pairs given in section 2.2.2. A pictorial representation of the envelope of
the spectrum of stepped-frequency radar pulses is shown in figure 2.9. Note that pulses
have different carrier frequencies, low instantaneous bandwidths, and large effective

bandwidth.

eff

fo fitdf f() +(N I— DAf Frequency

Figure 2.9. Envelope of spectrum of stepped-frequency waveform
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2.3.3. Signal Flow & Phase Detector

Let the transmitted signal be
s, (t) = A Cos(2rx f, t)

= A Cos[27 ( fcono + Fsraro T A )] (2.32)

If the range of the target to the radar is R, the signal received after a time delay of

2R/c 1s
sp(t) = A4, Cos[27 ( feono + fsruro T 1A (1=2R/c)]
= A, Cos[ 27 fropot + 27 foruot + 2 nAf ¢t

=270 (feono + Jsrao +RAN)2R/ )] (2.33)

Mixing the received signal with s, ,(¢) = 24, Cos(27x f4,,0t) yields

Sp(t) Sspa0() =2 A5A, Cos[27 ( feono + fsruo TR ) —2R/ )] Cos(27 fory0t)
= AgA, Cos[27 feopot + 22 n A 1= 27 ( feono + fsrao TR AN N2R/ €)]

+ AgA, Cos[27 fropot + A7 [0t + 2nnf't

=27 (fcono + SFsrao +nAF)2R/ )] (2.34)

The second component, which is high frequency term is filtered out by a bandpass filter.

Therefore, the first IF signal is

S (8) =AgA, Cos[27 fropot + 22 nAt =27 ( frono + fsturo TRA)2R/ ¢) ] (2.35)

Then, s,,(¢) is mixed with SFS output, s,(¢) = 24, Cos(2rnAf't), i.e.,

S (1) Sgps (1) = 2Ageg Ag A, CoS[ 27 fronot + 2xnAf t =271 (fy +nAf)(2R/c)] Cos(2m nAf't)
=AgAgA, Cos[ 27 fropot — 27 (fy +nAf)2R/c)]
+ Ay AgA, Cos[ 27 fropot + 4nnAft —2x(f,+nAf)(2R/c)]
(2.36)
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The second component, which is high frequency term is filtered out by a bandpass filter.

Therefore, the second intermediate frequency signal is

Sy = AggAgA, Cos[ 27T fropot — 27 (fy +nAf)2R/ c)] (2.37)

Then, S (1) is mixed with Scono.s (8) =24, Cos(27 frouot) and
Scoro.o(t) =24, Sin(27 fopuot) and then low pass filtered to produce inphase and

quadrature components at the output of phase detector.

Mixing s,.,(t) with 5.0, (1) = 24, Cos(27 fropet) yields

S (£) Scono,1 () = 2455454, Ac Cos[ 27 feopot — 272 (foy +nAf)2R/¢)] Cos(27 fropot)
= AgyAgA, A Cos[- 27 (f,+nAf)(2R/c) ]

+ Ay AgA, Ar Cos{Ar foopot — 27 (f, +nAf)(2R/c)] } (2.38)

The second component, which is high frequency term is filtered out by lowpass filter.

I = Ay A A, A, Cos[-27(f, +nAf)(2R/c) ]

I = ACos[-27 (f, +nAf) QR/¢) ] (2.39)

Mixing s,.,(¢) With s.p0 o (6) =24, Sin(27 feopet) yields

S0 (0) Scomop(t) = 2AgsAgA, Ar Cos[ 27 fropot — 27 (fo +nA)2R/ )] Sin(27 frouot)
= AggAgA, A. Sin[ =27 (f, +nAf)(2R/c) ]

+ Agg AgA, A Sin{4rx fronot — 27 (fy +nAf)(2R/c)] } (2.40)

The second component, which is high frequency term is filtered out by lowpass filter.
Q= Ay AgA, A Sin[ 2z (f, +nAf)(2R/c) ]

O = A Sin[-27 (f,+nAf) QR/¢) ] (2.41)



24

Therefore, the output of IQ phase detector can be written as

S =Ae ' (2.42)
where
@, =2n(f, +nAf)2TR (2.43)
and it can be expanded as
¢, =2r f, % + 27 nAf% (2.44)

The first term represents a constant phase shift which is not any of practical
significance. It is the second component that provides the desired range resolution which
represents the phase shift due to the frequency rate of change multiplied by round-trip
delay time [10]. This is also called as induced phase shift.

2.3.4. Important Parameters

2.3.4.1. Instantaneous Bandwidth. Instantaneous bandwidth of the stepped-frequency

waveform is the same as the pulse radar waveform and approximately equal to inverse of

the pulse width.

inst

== (2.45)
T

Note that the pulse width that is used in stepped frequency radar is much larger than
that is used in pulse radar. Therefore, the instantaneous bandwidth of stepped frequency

waveform is much smaller which enables the ADCs with low sampling rates to be used.

2.3.4.2. Effective Bandwidth. The effective bandwidth of the stepped frequency

waveform is given by,

B, =NAf (2.46)
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Since the range resolution of the radars is proportional to effective bandwidth, stepped
frequency waveform provides high range resolution while keeping the instantaneous

bandwidth small.

2.3.4.3. Range Resolution. Output of IQ phase detector was shown to be

6 =27 1,28 L om s R (2.47)
C C

The second term in this expression, which is called as induced phase shift, can be

written as

Gy =27 nAfz—R = 27z£2—Rn (2.48)
c c
The rate at which the phase changes is called induced frequency shift and given by
Af 2R
Sod = A 2R (2.49)
T c
Rewriting R in terms of f,,
cT
R=——1F 2.50
2 Af -f;nd ( )
Taking the differential of both sides, we have,
cT
AR = —— Af, 2.51
2 Af f;nd ( )

The above equation expresses the range resolution in terms of frequency resolution.

Since the frequency resolution obtained from DFT is

1
A = —— 2.52
f;nd NT ( )
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From equations (2.50) and (2.51), the range resolution is obtained as

_ C ¢
ANAf 2B,

(2.53)

Stepped frequency waveform increases the range resolution since it subdivides the

conventional range bin into smaller parts [10].

2.34.4. Maximum Unambiguous Range. Stepped-Frequency radar employing DFT

achieves range resolution by the Fourier transform of the N samples from N pulses from a
range bin. Fourier transform divides the maximum unambiguous range into N equal parts.
Therefore, maximum unambiguous range of stepped frequency waveform is given as
follows,

R,=N.AR=—"
2Af

(2.54)

Stepped-frequency radar can not measure absolute ranges to individual scatterers.
Any target within a range which is a multiple of unambiguous range will be folded into
range profile causing range ambiguity [9]. For instance, if Af is 10 MHz, the unambiguous
range is 15 meters and the targets at ranges 5 ( R, —10), 20(2R,, —10) and 35(3R, —10)
meters will be observed at the same location in the HRR profile. This range fold-over
problem is similar to the fold-over problem that occurs when FFT is used to estimate the

frequency spectrum [9]. For example, if the sampling rate is 1 kHz, a sine-wave tone at

1200 Hz and 200 Hz will be observed at the same bin in the spectrum.

In order to avoid the range fold-over, Af" and 7 must be chosen such that

c .
Afﬁﬁ ,1.€, ESRU (255)

where E is the maximum target extent (maximum range the radar will detect targets) in

meters. Also, note that the ratio of range bin to the maximum unambiguous range is
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cr/2_er/2 _
R, c¢/2Af

T Af (2.56)
Therefore, 7 Af plays an important role in the stepped frequency waveform design,

and three cases for 7 Af will be explained in detail in next section.

2.3.5. Signal Processing

As explained in section 2.2.1., the output of the second IF stage is down converted to
baseband in phase detector. Phase detector mixes the IF signal with two 90° phase-shifted
outputs from COHO, producing Inphase(I) and Quadrature(Q) outputs which will be used
in signal processing to extract the HRR profile. When the radar transmits a pulse, the phase
detector output is sampled, digitized, and stored. Samples from the / and Q channels form a
complex sample consisting of real and imaginary components, i.e., A=/ + jQO . The typical
sampling rate is one complex sample per pulse width. Each complex sample is termed a
range bin, as it represents the signal from a range window of length ¢z/2 where 1 is the
pulse width. The phase detector output for all range bins of interest due to all N pulses in a

burst is collected prior to performing any processing [10].

Complex samples from N frequency-stepped pulses are processed by taking their
DFT, and these DFT coefficients represent resolution of range R, into N subdivisions,
each of width ¢/2NAf . The equation

¢ ct/2 _R,
INAf Navf N

(2.57)

implies that the range bin of c7/2is resolved in NzAf parts with range resolution of

¢/2NAS [10].

As explained in the last section, 7 Af plays an important role in the stepped frequency

waveform design and these are the three cases for 7 Af [10]:
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2.3.5.1. Case-1. In this case the original range bin is equal to the unambiguous range

window R, . The range bin of width c¢7/2 is resolved into N parts with an effective range

resolution of ¢z/2 N . This case can be used to detect stationary targets or rotating targets
with no translational motion but it is unacceptable for detecting moving targets since the
target and the clutter coexist in the range cell and there is no clutter-free space for moving

targets. This case is shown in figure 2.10.

ct/2N
— -

Y =

- ct/2

Figure 2.10. Case-1: 7Af=1

2.3.5.1. Case-2. In this case, the range bin accommodates only a fraction of unambiguous

range window. The range resolution,cz/2 Nz Af', is worse than the first case; however,

there is a clutter free space available for detecting moving targets. This case is shown in

figure 2.11.

ct/2NtAf
<_

- ct/2 ———» R,

Figure 2.11. Case-2: 7Af <1

2.3.5.2. Case-3. In this case, the range bin is larger than the unambiguous range window,

and, the range profile is aliased and fold-over will occur. Therefore, this case should be

avoided.
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After eliminating the range fold-over problem by choosing appropriate values for Af

and 7, we have N complex samples from N frequency-stepped pulses that can be used for

range extraction.
From equation (2.48), we have

AR,

g = 270 nAf£=27z
c c

(2.58)

The second term, which is the multiplication of the rate of change of frequency Af/T
with the round-trip time 2R/c, represents a shift in frequency during the round-trip time.

Thus, the range (or the round-trip time) is converted into a frequency shift (which is
analogous to conversion of range to frequency in linear frequency-modulated CW radar as
explained in section 2.4). Therefore, it is possible to resolve and measure the range by
resolving the frequency, which can be done by taking the DFT of the received signal from
N frequency-stepped pulses [10]. Since the range is measured by taking the DFT, the range
measurement will have the same limitations as the frequency measurement by DFT. Thus,
the range resolution AR is dependent on the frequency resolution. In order to improve the
range resolution, high resolution spectral estimators which provide superior performance
than DFT in frequency estimation can be used. High resolution spectral estimators will be
explained in detail in chapter three and they will be tested using synthetic stepped-
frequency radar returns in chapter four and using real stepped-frequency radar returns in

chapter five.
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2.4. Frequency Modulated Continuous Wave (FMCW) Radar

Frequency modulated waveform is a widely used pulse-compression technique to
achieve wide operating bandwidths. Among the modulation techniques, Linear Frequency
Modulation (LFM) is the most commonly used one. LFM pulses are also called as chirp
pulses. In the LFM, the frequency is swept linearly across the pulse width, either upward
(up-chirp) or downward (down-chirp). Another way of sweeping the frequency is using
two chirp signals, one having up, and the other down, called triangular LFM. Frequency
variation of up-chirp and triangular LFM can be seen in figures 2.12 and 2.13, respectively,

and figure 2.14 shows the time variation of up-chirp LFM.

Frequency
Ub
Jr(0)
B
7, e
g Jx ()
_>| ¢ |<_ Time>
- T >

Figure 2.12. Frequency variation of up-chirp LFM waveform

Frequency
iy
Jr(®)
5 /,
A
\fR (1)
Y
_>| 3 |<_ Time
- T > >

Figure 2.13. Frequency variation of triangular LFM waveform
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Figure 2.14. Up-chirp LFM waveform

2.4.1. Block Diagram

As explained in section 2.3., the frequencies of the pulses of the stepped-frequency
radar are increased from pulse to pulse by a fixed frequency increment Af by the stepped
frequency synthesizer (SFS). In FMCW radar, the frequency is swept linearly across the
pulse width by a Sweep Frequency Generator (SFG). Block diagram of the bistatic FMCW

radar is shown in figure 2.15.

On the transmit side, first STALO and SFG frequencies are added in a mixer. SFG
output provides the frequency sweep in the FMCW waveform and STALO is used to
upconvert the sweep waveform to RF. SFG output is a sweep signal where the frequency

changes between f, and f, . The mixer output is filtered by an appropriate bandpass

filter to suppress undesired intermodulation products. The resulting signal, consisting of
the sum of the STALO and SFG frequencies, is amplified and transmitted. Note that a

sample of the transmitted signal is fed through the receive part via coupler.

On the receive side, received signal is first band limited by a bandpass filter and then
amplified by a Low Noise Amplifier. The output of the LNA is compared with the
transmitted signal in the mixer. The output of the mixer is low pass filtered to eliminate
images and intermodulation products. The output of the low pass filter is called the IF or

beat signal.
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Figure 2.15. Block diagram of a bistatic FMCW radar

2.4.2. Waveform
In this section, first, Frequency Modulation (FM) will be explained in order to make
it easier to understand the LFM waveform, then, the time domain representation and

spectrum of LFM waveform will be explained in detail.

2.4.2.1. Frequency Modulation. Let 8, denote the angle of the modulated carrier which is

a function of the message signal. Thus, the angle modulated signal can be expressed as

s(t) = Cos[6,(1)] (2.59)

where the amplitude of the carrier is assumed to be unity.
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The average frequency over an interval from ¢ to ¢ + At is given by,

_G,@+A) - 6,(1)
27 At

Sai (2.60)

Thus, the instantaneous frequency of the angle modulated signal can be written as

follows:

Si@®) =lim,, _, f,
— limmﬁo{ei(t—kAt) — ez(t)i|

27w At

_ 14

- 2.61
27 dt ( )

Frequency modulation is a form of angle modulation in which the instantaneous

frequency is varied linearly with the message signal, as shown by,
fi@®) = fo+k, m() (2.62)

where f; represents the frequency of the unmodulated carrier and k, represents the

frequency sensitivity of the modulator. So, the instantaneous frequency can be expressed as

1 dé. ’
(t)=——L 6 =2 (1) dt
f=5-"t = 0 ﬁlf,()

=27zj.[f0 +k, m(t)1dt

=27 fyt + 27k, j m(t)dt (2.63)
0

Therefore, the time domain representation of the frequency modulated signal is
t
s(t) = Cos [ 27 fyt + 2k, [m(t)dt] (2.64)
0

In the rest of this chapter, &, is assumed to be unity.
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24.2.2. Linear Frequency Modulation. In up-chirp LFM waveform, instantaneous

frequency is increased linearly with the message signal where the message signal is

m(t) = at (2.65)
where
a=B/T (2.66)

and B represents the bandwidth, and T represents the pulse width.

So, the transmitted up-chirp LFM signal can be written as, in time domain,

s;(t) =Cos [ 27 f,t + Zﬁjm(t)dt]

t
= Cos[2r f,t +27zjatdt]
0

2

= Cos[2x [yt + 27r(a%)]

2

— 0@ =27(f1 + a%) (2.67)

Thus, the instantaneous frequency is
f@)=f, +at (2.68)

Transmitted up-chirp LFM signal can be expressed in complex notation by
s, (f)=rect (%) exp[jZﬂ'(fOt—i-%atz)]
—rect (%) exp(j et Yexp( 27 fit)

=s(t) exp(j27 [, 1) (2.69)

where

s() = rect (%) exp(j w i) (2.70)
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The spectrum of the transmitted signal is determined from the envelope of s(z). Since

the multiplication of s(#) with exp( j 27 f,t) shifts the spectrum of s(?) by f,, it is enough
to find the spectrum of s(z) [9] .

S(w) = Ts(t) e M

= J. rect (%) exp(jrat®)exp(—jwt)dt

7

= j exp(j27wlt2 )exp(—jwt)dt (2.71)
1 2

Let

a'=2ra =27 B/T (2.72)

changing the integration variable as

ﬂ=\/g(t—%J ; dﬂ:@dz :dtz\/%dﬁ (2.73)

we have
S(w)=\Pexp( 5T end ap
o A
=Fexp<‘fw, ){j oo yap - T e )dﬁ}
a 2a 0 0
(2.74)
where

_ | E (T _w_ S
P = a'[Z a'j 2 (1 B/2J (273)



Remembering the Freshnel Integrals, S(x) and C(x), defined by

2
TX

2

B
C(B) = | Cos(——)dx

2
X )dx
2

B
S(p) = | Sin(

The spectrum of s(z) can be written as follows:

P 2 P 2
| ] CosEyax s | sin (F-yx
Sow) = |5 exp(—E) | ’ ' ’
a' 20" =B 7z'x2 -B 7rx2
~ [ Cosc : yax — j [ Sin( )
:\/Z, exp(—L) {C(B)+ 1 S(B) ~C(-B)—j S(-B)}
a 2a

Fresnel Integrals can be approximated by

C(x);%%sm(”fz) . B>>1
S(x);%+$Cos(ﬁ§2) . B>>1
So,
C(_ﬂl) = _C(/Bl)
S(=4)=-S(B)

Therefore, S(w) can be written as

_ jW2

oo teycl jlsp)+se)l

Replacing «a'=27a, we have

2
w

—J
dra

S(w) = ;—a expCL) {[e(By)+C(B) 1+ JIS(B)+5(B) 1}
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Figure 2.16 shows a typical plot of amplitude spectrum of LFM waveform [9].

LFM amplitude spectrum

1 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Narmaliz ed frequency

Figure 2.16. Amplitude spectrum of LFM waveform

2.4.3. Signal Flow & Signal Processing

For the up-chirp waveform, the instantaneous frequency of the transmitted signal can

be written as

f(0)=f,+at (2.85)

where a=B/T . The transmitted signal travels to the target at distance R and returns after

a time delay 7 where 7=2R/c.
The instantaneous frequency of the received signal can be written as

Sr@O=fy+a(t-1) (2.86)
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The beat frequency can be written as follows:

B 2R

Sy =tr—Jr = ar = (2.87)
C

So, the range to the target is

r=ST)s (2.88)
2B

The main task for finding the range is estimating the beat frequency, or frequencies if
multiple targets are present, and distinguishing different beat frequencies that are close to
each other. Classical methods employ Fourier Transform to find the beat frequencies. In
section three, high resolution methods for estimating the beat frequency will be presented
and they will be implemented and tested using synthetic FMCW radar returns and their

performances will be compared in chapter four.
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3. SPECTRAL ESTIMATION METHODS

Spectral estimation can be defined as estimating the distribution of total power over
frequency bins of a finite-length record of a second-order stationary random process, i.e.
finding the density of power in narrow spectral bands. Spectral estimation methods find
application in many diverse fields such as speech processing, electromagnetics,

communications, economics, medicine, meteorology, astronomy, radar and sonar systems.

There are two approaches in spectral analysis: non-parametric and parametric
methods. Non-parametric methods makes no assumption on data and uses basic definitions
of Power Spectral Density (PSD) while parametric methods postulate some models for the
data and find the parameters in the model. Parametric methods outperform the non-
parametric methods if data satisfies the assumed model, i.e. model postulated on data is
appropriate, otherwise, non-parametric methods provide better spectral estimates than
parametric methods. In cases where a priori knowledge about the signal is available, it may
be better to use parametric methods to obtain better spectral estimates even when it is not

easy or feasible to obtain large data set.

This chapter will cover both the parametric and non-parametric methods and explain
their advantages and disadvantages. Then, the methods explained in this chapter will be
implemented and tested using synthetic stepped-frequency and FMCW radar returns in

chapter four and experimental stepped-frequency radar data in chapter five.

This chapter is organized as follows: section 3.1 covers the basic concepts that will
be frequently used in following sections, non-parametric methods are explained section
3.2, section 3.3 covers parametric methods for rational spectra and parametric methods for

line spectra are explained in section 3.4.

This chapter is an improved summary of the first four chapters of [14]. Many proofs
are added and the topics are associated with BOD and TWOD. Detailed information about

the topics in this chapter can be obtained from [14].
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3.1. Introduction
3.1.1. Energy Spectral Density

Let {x(n);nzO,il,i2,... }denote a deterministic discrete time data sequence which
is obtained by sampling a continuous time signal. Assume x(n) is a finite energy signal,

1.e.,

i|x(n)|2 <o (3.1)

n=—00

Discrete Time Fourier Transform (DTFT) of {x(n) } is defined as

00

X(w)= D x(n)e™ (3.2)

n=—00

and the corresponding Inverse Discrete Time Fourier Transform (IDFT) is
1 T jwn
x(n)=—o j X (w)e™ dw (3.3)
27

Energy Spectral Density, S(w), which represents the distribution of energy of the

deterministic discrete time data sequence over frequencies is defined as follows

sw= Y pkye™ (3.4)

k =—-©

where p(k) is autocorrelation of the finite energy sequence x(n) which is defined by

0

plk) = x(n)x"(n—k) (3.5)

n = -0

Note that Fourier Transform is exists only for finite energy signals.
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Let the discrete time signal { x(n);n=0,i-1,i-2,...} denote a sequence of random

variables with zero mean, i.e.

E{x(n)}:O

(3.6)

where F {0} denotes the expectation operator (which finds the average of samples in x(n) ).

The autocovariance sequence (ACS) of x(n) is defined as

r(k) = E{x(n)x*(n—k)}

(3.7)

where “denotes the complex conjugate operator. Equation (3.6) and (3.7) imply that x(n)

is a White Sense Stationary (WSS) sequence.

ACS has the following useful properties :

r(k)=r"(=k)
and
r(0)>|r(k)| Vi

Let
Xm:[x(n—l) x(n=-2) --- x(n—m)]

The covariance matrix of x(n) is defined as
R, =E{X"X,}

x'(n—1)

x'(n—2)

=F [x(n -1) x(n-2)

X (n—m)

x(n— m)]

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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7(0) A Q) e m=1)]
r(1) r(0) ri(m-2)
= R,=| r(2) ' : (3.13)
: : r (1)
r(m=1) r(m=2) - r(l) r(0)

where (.) " denotes the hermitian (complex conjugate transpose) operator.
3.1.3. First definition of Power Spectral Density

Power Spectral Density (PSD) is defined as the DTFT of the covariance sequence:

o

gw)= D r(k)e™ (3.14)

= —00

which is similar to the ESD definition for the deterministic discrete time sequence. Also,

from the inverse transform, we have,

r(k) = i [ dowyedw (3.15)

Note that E{|x(n)|2}:r(0)zzif d(w)dw. Since @(w)d(w)/2x is the
ﬂ-—zz

infinitesimal power in the (w—dw/2,w+ dw/2)band and the total power in the signal can
be calculated by integrating these infinitesimal contributions over(—rz,7), @¢(w) given by

(3.14) can be named as power spectral density.
3.1.4. Second definition of Power Spectral Density

The second definition of the PSD is given by

N

Z x(n)e ™

n=1

. 1
v =lim, E{ﬁ

} (3.16)
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This definition is equivalent to first one under the assumption

. 1
lim, .~ > |kl =0 (3.17)
k=-N

which means {7(k) } decays sufficiently fast.

3.2. Non-Parametric Methods

Two common nonparametric spectral estimators are correlogram and periodogram
which are derived directly from the first and second definition of PSD. Periodogram and
correlogram can provide high resolution spectral estimate if the data length is sufficiently
large. It is observed that the variance of these estimators is high and does not decrease as
the data length increases, which make these estimators poor spectral estimators. Blackman-
Tukey, Barlett, and Welch are some popular spectral estimators that will be explained in

this chapter which has lower variance at the cost of reduced resolution.
3.2.1. Periodogram

Periodogram relies on the second definition of the PSD. Dropping the expectation

and truncating the infinite sum in the second definition of the PSD for{x(n);n=1,2,...,N }
where {x(l)- -~ x(N) } are the samples of a discrete time WSS random process, periodogram

spectral estimate is defined as follows:

2
N

z x(n)e ™"

n=1

x 1
Pp(w) = N (3.18)

3.2.2. Correlogram

Correlogram relies on the first definition of the PSD. For {x(n);n=1,..,N} where

{x(l)-.-x(N)} are the samples of a discrete time WSS random process, correlogram is

defined as
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N-1

de(w) = Y. #k)e ™ (3.19)

k =—(N-1)

where 7(k) denotes the estimate of the autocovariance sequence. 7(k)can be obtained in

two standard ways:

3.2.2.1. Unbiased ACS Estimator.

N
PV (k) = b x(n)x*(n—k)  for 0<k<N-1 (3.20)
N_k n =k+l

7Y (k) is called as unbiased ACS estimator since E {fU(k) }=r(k) ,1.e.,

B(i ) = Z Efxx (k) = ) =)

3.2.2.2. Biased ACS Estimator.

;?”(k):% i x(m)x"(n—k) for 0<k<N-1 (3.21)

n =k+l1

7" (k) is called as biased ACS estimator since £ {f”(k) }¢ rk) ,ie.,

E{# (k) }:% ﬁ: E{x(n)x*(n—k)}:% i k) = Y=

Sample covariances with negative lags are obtained via the property of the

autocovariance function

A—k)=7'(k) for k=0, N-1 (3.22)
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Let &g (w) denote the correlogram estimate when unbiased ACS estimate is used in

(3.19).

An interesting property which is worth to note is that

Bp(w) = L (w) (3.23)

i.e., periodogram spectral estimate coincides with correlogram spectral estimate if biased

ACS estimate is used in (3.19).

In order to prove the above claim consider an Linear Time Invariant (LTI) system

with a transfer function

h(n) = Lx(n) (3.24)

VN

where {x(l),x(Z),---x(N )} are the realizations of a random process for which we would

like to find the spectral estimate ¢?X(w) .

e(n) — ¥ h(n)=Lx(n: — > y(n)

JN

e(n)is chosen as white discrete time random process with unit variance, i.e, 7,(k) = J,,

and ¢, (w) =1, Vw, where,

0, k=0
S0=1 . (3.25)
’ 1, elsewhere

So, we have,
¥(n) = h(n) * x(n)
= ¢,(w) =g, |[HW)| = [HW)
where

Hw) =Y h(n)e ™

= O =] Sxme [ =g,om

= ¢, (W) = g (W) (3.26)
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Calculating the ACS of the output y(n) for k>0

=N

Sy (m) E{en—1) ¢ (1—k —m)).

B0 = Epny -k }= 33

Since e(n) is white, i.e.,

Ele(n—1)e'(n—k—m) |=5(k +m—1)

where
1, m=I[l—-k
ok+m—-1)= )
0, otherwise
we have,
1 1= m=N
ry(k)— W Z h(Dh*(m) S(k+m—1)
I=1 m=1
1 N
= — hh'(l -k
N Zk: (DR (1K)
1 N

= D x(D)x"(I-k)

I=k+1
B o (k) (biased ACS estimator ) for k=0,1,2,---N—1
0 for k>N

= ¢, (W)=¢L(w)
= Bp(W) = Po(w)

3.2.3. Properties of Periodogram

This section covers the analysis of the statistical properties of periodogram and
shows that the periodogram is a poor PSD estimator. Since the bias and variance are two
important measures to characterize the quality of an estimator, we will derive expressions
for the bias of periodogram in section 3.2.3.1 and variance of peridogram in section

3.23.2.



47

3.2.3.1. Bias Analysis of Periodogram

Standard bias ACS estimate given by the expression
N

7 (k) z% Z x(n)x"(n—k) for 0<k<N-1 (3.27)

n =k+l

will be used in the following derivations. Note that the negative lags will be calculated

using the following property of covariance function given by (3.8)

P(=k) = (k) , k=0,.,N-1

So, the periodogram estimate is given by (using the previous proof)

N-1

d(w) = > (ke ™ (3.28)
k =—(N-1)
Therefore, we have,
E{gw))= Y Ef()le ™ (3.29)
k=—(N-1)

For the positive lags, i.e., for k>0, we have

N

E{# (k) }:% > E{x(n)x'(n-k) |

n=k+l1

=% ﬁ r(k)

n=k+1

_ N-k

r(k)

=<1—§)r(k) (3.30)

For the negative lags, i.e., for k<0, we have
E{F ()} = E{(F" (k) (3.31)
Replacing k'=—k , we have

E{F"(k)} = E{(F" (k') } (3.32)



Il
-

=

E{F*(k)} =E{ (x(n)x*(n—k'))*}

E{x"(n) x(n—k") |

M= =M= =] -

= =2|~ =|—

N+k
N

k
=1+ R(K)

=(

) R(k)

Combining (3.30) and (3.33), we have,

]

E{f”(k)}z(l—ﬁ)r(k), (N =1)<k<(N -1)

Combining (3.29) and (3.34), we have,

Elg )= 3 (b'%jr(k)efwk

k=—(N-1)
Define
1—m —(N-D<ZkZ(N-1)
Wp (k) = N ’
0, otherwise

where wy (k) is called as the Bartlett window and it is shown in figure 3.1.

wg (k)
1 )

Y
-

D) N-1

Figure 3.1. Bartlett window
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(3.33)

(3.34)

(3.35)

(3.36)



Inserting (3.36) in (3.34), we get,
= E{#(k) |= wy(k)r(k)

So, (3.35) can be rewritten as

+00

Elgy(w)j= Y [wy(k)r(k)]e ™

k = -0

= DTFT { w,(k)r(k) }

=§Wwwm
T

where
2
| sin(ﬂ)
Ww)=—| — 2

N| . w
SIn(—
(2)

and is called as Fejer Kernel and it is shown in figure 3.2.

Fejer Kernel

Fejer Kernel in dB

@
=]

[
o

S g

0 1
w

Figure 3.2. Normalized Fejer Kernel for N=35
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(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

It can be shown that 3-dB width of the main lobe of W,(w) is approximately 27 /N

in radians and //N in hertz. Note that W (w)has a large main lobe, especially for small

values of N, which will cause estimated spectrum to be smoothed (which is called

smearing ). Two tones separated in frequency by less than //N will yield a broad peak
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instead of two separate peaks. So, I/N is the resolution limit of the periodogram. Our goal
in the next sections will be finding some spectrum estimators which would provide better

spectral resolution than periodogram with the same number of data.
3.2.3.2. Variance Analysis of Periodogram

Asymptotic variance of the periodogram PSD estimate will be derived to show that
the poor statistical accuracy of periodogram. For the derivations in this section, first some

basic concepts will be explained and then the variance of periodogram will be derived.

If {e(n)} is a complex white noise sequence, it satisfies
E[e(n)e (m)]= 025,”" (3.42)
E[e(n)e(m)]=0 (3.43)

where o is the variance of e(n).

Equation (3.42) can be rewritten as,
E{[Re(e(n))+ jIm(e(n)][Re (e(m)) - jIm(e(m))] }
= E{[Re(e(n))Re(e(m)) +Im(e(n)) Im(e(m))]

+ j[Im(e(m))Re (e(n)) + Re(e(m)) Im (e(n)) ]}

=06, (3.44)

So, we have,
E[Re(e(n))Re(e(m)) + Im(e(n))Im(e(m))] = O'Zé'njm (3.45)
E[Im(e(n))Re(e(m))+ Im(e(m))Re(e(n))]=0 (3.46)

Equation (3.43) can be rewritten as,

Ele(n)e(m)]=E {[Re(e(n)) + jIm(e(n))][Re(e(m)) + jIm(e(n))]}
=E[Re(e(n))Re(e(m)) —Im(e(n)) Im(e(m))]
+j E[Re(e(m))Im(e(n)) + Re(e(n)) Im(e(m))]
=0 (3.47)
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So, we have,
E[Re(e(n))Re(e(m))—Im(e(n))Im(e(m))]=0 (3.48)
E[Re(e(n))Im(e(m))+Re(e(m))Im(e(n))]=0 (3.49)

Combining (3.45) and (3.48), we have,

2

E[Re(e(n))Re (e(m))] = %5” (3.50)

E[Im(e(n))Im(e(m))] = %25,”" (3.51)

Combining (3.45) and (3.48), we have,

E[Re(e(n))Im(e(m))]=0 (3.52)

E[Re(e(m))Im(e(n))]=0 (3.53)

Asymptotic variance of periodogram estimate in the case of Gaussian complex white

noise is given as

lim, ., E{ [ng (w)— 9, (Wl)][(}f (w,)— ¢, (Wz)]}= { f)sz m), w=w,

Wl * W2
(3.54)

We begin proof by expanding the expression on the left hand side of equation (3.54)

lim,_,,, E{[47 (%)~ 4, (w)1[8 ()~ ¢, (w))] |
=lim,,, E{§7 w)d? (w)+4, ()4, (w,)

—4, (w)lim,_, E¢? (w,)
— ¢, (w)lim,_,, Eg (w)) (3.55)
Note that
g, (w)limy  EG (w,) — ¢, (w,) (3.56)

é, (w)lim,_, E4” (w) — 4,.(w) (3.57)



So, we have,

limy . E{[¢” (m)— . (w114 (wy)— g (w)]
—tim,_, E|g? m) 8 00,)]-4. ()4, (1)
_ { ¢v2 W), w=w,

0, W, £ W,

Hence, in order to prove (3.54) we need to show

2¢XZ(W1) s W =W,

P(W)P.(wy) , w #w,

limy,_,, E[&f(w1>¢f(wz)]={

Since
. 1| P
320 =~ x(mye
N|T
=— x(n)x (m)ye’™" ™"
N n=1 m=1
we have

N

E [&f) (W) 97 (w,) ]= #ZZZZE [e(n) 3" (m) xhe) 2" ()]0 &m0

n=1 m=1 k=1 [=1
Using the property given for the jointly Gaussian complex random variables

E[ABCD] = E[AB] E[CD]+E[AC]E[BD]+E[AD]E[BC]
—2 E[A] E[B] E[C] E[D]

the expression in the summation in equation (3.61) can be written as

E [(x(n)x"(m) x(k)x"(1)] = E [x(n)x (m)]E[x(k)x ()]
+E [x(n)x(k) L ELx(m) x(D)]
+ E[x(n) x () |E[x" (m) x(k)
— 2E[x(m)] E[x(k)] E[x"(m)] E[x"(])]
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(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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Using (3.42) and (3.43), we have
E[(x(n)x"(m) x(k)x"()] =08, ,6,,+0°5,,6,., (3.64)

Using (3.64), equation (3.61) can be written as

4 4
A A e _ . _ O' O' . _ . _
E[¢f(W1)¢xp(Wz)]:(ze Jwi (n m)|n:me Jw, (k l)j_ﬁﬁze Jwi(n m>e Jwy (k=n) (3.65)
n,k

n,k
0-4 2 0-4 i (W k
:FN _,_FZZ(e—/(wl—Wz)n) (e/(wl—Wz) ) (3.66)
n k
4 lN 2
=o'+ e/ (3.67)
n=1
2
04 sin((wl Wz)N)
—ot+ ( Ew) (3.68)
N7 sin™ 2)‘
Since
lim, ,, o = (3.69)
sin x
we have
. (w=wy))N
lim, = (3.70)
sin((wl - Wz)) ‘ < constant
2
So, equation (3.68) can be written as
64
lim]v_m O'4+FN2 , W, =W,
lim,, . E[§00) 8 (w,)] = 4 (3.71)
. 4 O constant
llIIlN_)DO o +T s, W EW,

4

_j2et, wi=w, (3.72)
o', wEwW,



54

Equation (3.72) is the proof of (3.59), hence the proof for the asymptotic variance of

periodogram estimate is complete.

The expression given for the asymptotic variance of periodogram estimate means that
even when N goes to infinity, variance does not die off and this is the main problem of
periodogram spectral estimator. Several refined periodogram-based and window-based
non-parametric spectral estimators have been developed to overcome the high statistical

variability of the periodogram and they are presented in the following sections.
3.2.4. Blackman-Tukey Method

The poor statistical quality of the peridogram can be explained as arising from the

poor accuracy of 7(k) in ¢3C(w) for extreme lags and the large number of covariance
estimation errors that are cumulatively summed up in gzc(w). Both of the effects can be

reduced by truncating the sum in the definition of gzc (w). Following this idea leads to the

Blackman-Tukey spectral estimator is, which is given by,

M-1

Gor(W) = Y. w(k)i(k)e ™ (3.73)

k=—(M-1)
where {w(k)} is an even function, i.e., w(k) = w(—k), w(0)=1,w(k) =0 for |k|> M, and
w(k) decays decays smoothly to zero with k, and M<N. Since w(k) weights the sample

ACS, it is called as the lag window.

Writing the Blackman-Tukey spectral estimator as a DTFT, we get,

b0 = S [wik) (k) e (3.74)

k =—o0
Since the DTFT of the product of two sequences is equal to the convolution of their

respective DTFTs,

Bor () = G O0) #W () = [ §o(9) W= ) dp (3.75)
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So, high statistical variability of the periodogram is eliminated by windowing the
sample ACS by an appropriate window. However, smoothing the spectral estimate by

windowing decreases the resolution. The smaller the M, the narrower the {w(k)}, the wider

the W (w), the smaller the variance and the lower the resolution. The results established by

the analysis of gngT(w) show that the resolution of Blackman-Tukey spectral estimator is
on the order of 1/M , whereas it variance is on the order of M/N . As can be seen, there is

trade-off between resolution and variance and this should be considered while choosing the

window length.
Common Window Examples :

The expressions for the common windows can be seen in the table 3.1. These

windows satisfy w(k) = w(—k) ,w(0) =1, and w(k) =0 for |[k| > M .

Table 3.1. Expressions of common windows

Window Name | Defining expression
Rectangular w(k)=1
Bartlett M k|
w(k)=—1"1
M

e

amming Ww(k)=0.54 +0.46 Cos(— %)

M1

T

anning Ww(k)=0.5+0.5 Cos("=Xy

M

Black

ackman Ww(k)=0.42+0.5 Cos(—=X)+0.08 Cos(-2ZE

M1 M1
Blackman- w(k) = 0.35875-0.48829 Cos(-2ZX)
Harris M -1
+0.14128Cos(EK ) _0.01168 Cos(FE
M1 M1
Flat-top (k) = 1-1.93Cos(ZZK) 1120 Cos (27K
M M
—0388Cos(Ey 40,322 Cos 7K
M M
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Parzen 2
k
) 1—L for os|k|sM
M/2 M/2 4
w(k) = i T P
21—t for X <<
M/2 4 2
Bohman
AR A
wk)=|1- 7] Cos| 7] +;Sm7r 1]
2 2 2
Tuk
e L 0< k< %(14—0{)
w(k) = k—%(l+a) M
0.5 1+Cos| 7—2——— ||,  Z(+a)<k<M
M(-a) 2
for some «, where 0<a <1 and « denotes the ratio of taper.
Bartlett- k k
w(k)=0.62-0.48| ———0.5|+0.38 Cos 27[( —O.SJ
Hanning M -1 M -1

The following figures shows the time domain and frequency domain responses of the

windows listed in table 3.1.

Time domain ( Bartlett Window )
I I I I I I
| | | | | |
L i B 7 4 i i
| | | | |
| | | | | |
08— ——4————— - - -\ - - - ——— — + — —~
| | | | | [as)
g | | | | | | =2
| | | | | o)
2 06 TN T o
ol | | | | | | 2
S | | | | | c
{001 ) I . [=))
< | | | | | | ©
| | | | | 2
| | | | | |
0.2 — - L A A N
| | | | |
| | | | | |
0 | | | | | I -
20 40 60 80 100 120 0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9
Samples Normalized Frequency

Figure 3.3. Time and frequency domain response of Bartlett window
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Frequency Domain (Hamming Window)

Time Domain (Hamming Window)

apnj|dwy

Normalized Frequency

Samples

Figure 3.4. Time and frequency domain response of Hamming Window

Frequency Domain (Hanning Window)

Time Domain (Hanning Window)

apnyjdwy

Normalized Frequency

120

40 60 80
Samples

20

Figure 3.5. Time and frequency domain response of Hanning Window

Time Domain ( Blackman Window)

apnyjdwy

20

Normalized Frequency

Samples

Figure 3.6. Time and frequency domain response of Blackman Window
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Frequency Domain (Blackman-Harris Window)

Time Domain (Blackman-Harris Window)

apnjiidwy

Normalized Frequency
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Figure 3.7. Time and frequency domain response of Blackman-Harris Window

Frequency Domain ( Flat-Top Window )

Time Domain ( Flat-Top Window )

apnjiidwy

Normalized Frequency
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Figure 3.8. Time and frequency domain response of Flat-top Window

Frequency Domain ( Parzen Window)
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Figure 3.9. Time and frequency domain response of Parzen Window
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Frequency Domain ( Bohman Window )

Time Domain ( Bohman Window )
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Figure 3.10. Time and frequency domain response of Bohman Window

Frequency Domain ( Tukey Window )

Time Domain ( Tukey Window )
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Figure 3.11. Time and frequency domain response of Tukey Windows

0,0.25,0.5,0.75 and 1
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Frequency Domain ( Bartlett-Hanning Window )

Time Domain (Bartlett-Hanning Window)

Normalized Frequency

apnyduwy
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Figure 3.12. Time and frequency domain response of Bartlett-Hanning Window
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3.2.5. Bartlett Method

The idea of the Bartlett method is to reduce the variance of the periodogram by
splitting up the N observations into L = N/M groups, each group with length M, and then

average the periodograms obtained from each group.

Divide {xl ....... XN} into L non-overlapping groups as
Groupl Group2 Group L
/—/%
(X eeeeneX ) (X geeeeeesXgpg ) evverveeveneens (X Mg eeeee X))
%{—/
xl(n) xz(n) XL(n)
A CON () # (w)

Bartlett Method can be summarized as follows: First, we define each group as

X,(n)=x[(i-1D)M +n]

1<i<L
(3.76)
1<n<M
N=LM
Then, the periodogram estimate of each group is defined as
. 1 |& P
¢’ (W) =—> (x,(n))e " (3.77)
M n=1
Bartlett Method computes the spectral estimate by
. 1 <& n
Ba(w) = —2 ¢ (W) (3.78)
i=1

Bartlett method reduces the variance by a factor L. However, since the Bartlett

method uses data segments of length M, the resolution is on the order of 1/M , where it

was originally 1/N , thus leading a reduction in the resolution by a factor L. So, the same
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trade-off in Blackman-Tukey method between resolution and variance exists also in

Bartlett method.

It may be interesting to relate the Bartlett method to the Blackman-Tukey method.
Remembering the periodogram definition, the periodogram estimate of each group is

defined as

Fon= Y Gk e ™ (3.79)

k=—(M~-1)

where 7 ’(k) is the biased ACS estimate of each group and calculated as follows:

k>0 = 7°(k) =$le x(n)x (n—k) (3.80)
k<0 = 7#°k)=[F"(-k)]" (3.81)

The Bartlett spectral estimate can be written as

A L ~
G0 = > 4w (3.82)
L
i=1
1 L M-1 )
=—=> > Fllke™ (3.83)
L3 k=—(M-1)
M-l 1 L )
= > =D k) e™ (3.84)
k="t1-n LT
75(k)
So, the Bartlet spectral estimate is given as
R Mo -
Bm= D Fyk)e” (3.85)
k=—(M-1)

From equations (3.73) and (3.85), we see that Bartlett spectral estimate looks like

Blackman-Tukey spectral estimate with rectangular window.

Note that, Bartlett method uses fewer samples to form the ACS estimate, so, the

variance of the Bartlett spectral estimate is higher than that of Blackman-Tukey method.
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3.2.6. Welch Method

Welch method is similar Bartlett method with the following differences: Blocks are

allowed to overlap and each block is windowed prior to computation of periodogram.

Welch method can be summarized as follows: First, we define the overlapping
groups as

x;(m)=x[(j—DK +n], I1<n<M |1<;<S (3.86)

Let v(n) denote the window coefficients. Then, the windowed periodogram corresponding
to x,(n) is given as

2

n 1 —jwn
3,00) =213 () (x, (m)e” (3.87)
where P denotes the window power,i.e.,

Piﬁ‘Z(u(m))z‘ (3.88)

Welch method computes the spectral estimate by averaging the windowed periodograms,

1.e.,

¢3W<w)=§zq3j(w) (3.89)

Note that (j-1)K in (3.86) is the starting point of the j* group. If K=M, groups do
not overlap, and we get a similar grouping used in Bartlett method. The recommended

value for K in the Welch method is K=M /2 in which 50% overlap is obtained.

Note that the overlapping the blocks increases the number of periodograms to be
averaged and, hence, decreases the variance. Windowing provides control over the
resolution/variance properties of the PSD estimate and decreases the correlation between

the blocks, which leads to decraese in the variance.
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It may be interesting to relate the Bartlett method to the Blackman-Tukey method.

8, (w) = %Z@(W) (3.90)
= #MZZZ v(n) v (m) x,(n) x,(m) e/ ™" (3.91)
Y Y ) ' m) EZ@@)) & (m))}e—f“""") (3.9
7y (n—m) |
= i m+(z:n_l)u(n) v (m) 7. (n—m)e "™ (3.93)
n=1 m=1—(m-n)
Let k=n—-m
- LS S umve-nrm e (394
n=1 k=—(m-1)

So, the Welch spectral estimate can be written as

1 M-1

8, (w) = 5 {— (n) v'( —k)} 7 (k) e (3.95)
w k__%;_l) WP v(n) v (n F e

As can be seen from equations (3.73) and (3.95), we see that Welch spectral

estimator is an approximate of Blackman-Tukey spectral estimator.
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3.3. Parametric Methods for Rational Spectra

3.3.1. Introduction

The difference between the non-parametric methods explained in section 3.2 and the
parametric methods that will be explained in this section is that non-parametric methods
impose no assumption on the signal whereas the parametric methods postulate a model for
the data estimates the parameters in the assumed model. It has been shown that, in cases
where a priori knowledge about the signal is available, parametric methods achieve better

spectral estimates than non-parametric methods do.

Non-parametric methods are good spectral estimators if the data size, N, is
sufficiently large. However, if the data size is small they can not provide high resolution
spectral estimates. So, the question that will be answered in this and next section is how
can we obtain a good estimate of spectrum if N is not large enough? Persimony principle
states that better estimates can be obtained with fewer samples by using appropriate data
models. So, the goal is finding good models for the signal. The procedure for the

parametric methods can be summarized as follows :

Observe samples

{x(0)-+x(N) }

Otfx()-x(N)j | PSD
Estimation using

0 = O {x(1)---x(N)}]

Estimate
Parameters

A 4

Assume a model
for PSD U

=P(w)

= o .
b0 =p0n0)

Figure 3.13. Procedure for parametric methods

Only the class of continuous spectra will be considered in this section. Discrete

spectra will be considered in section 3.4.
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Let f(x) be a continuous function on the interval [a,b]. Weierstrass Approximation

Theorem asserts that for any ¢>0, there exists a polynomial

P (x)=c,+c, x+c, X+ +c, x" (3.96)
for which

| f(x) - P,(x)| <& Vx €[ a,b] (3.97)

Weierstrass Approximation Theorem implicitly asserts that any PSD can be

approximated by a rational PSD which is of the form

p(w) = —t—r (3.98)
Z ﬁk e—_/wk
k=-p
where
o, =0y (3.99)
Bi=B (3.100)

Since ¢(w)=0 , the expression above can be factored as

2
B(w
P(w) = ‘ﬁ o’ (3.101)
where
Aw) =1+ae™” +~-+ape_”’w (3.102)
B(w)=1+be” +---+b e’ (3.103)

Then, the rational PSD can be considered as filtering the white noise with zero mean
and variance o’ by a filter whose transfer function is B(w)/ A(w). Therefore, the problem

of estimating the PSD turns out to be estimating A(n) .

h(n)

e(n) | |, )




where
_ _Bw)
H(w)=DTFT{h(n)} = A0w)
= ¢.(w) =|HW)|* 4,(w)
and

@, (w) =0’ , Vw

Consider the difference equation of the form:
P q
x(n)+z a, x(n—k) = Z b e(n—1)
k=1 =0

where {e(n)} is white with

r.(k) =076,

Applying Z transform to both sides

X(z) + X(z)i a,z" = E(z)i bz

where

X(z) = Z x(n)z™"
E(z) = z e(n)z™"

Y
X()= L E(2) = E;E() (a,=1)
I

= X(2)A(z) = E(z)B(z2)
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(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

A signal satisfying X (z) A(z) = E(z) B(z) is called autoregressive moving average signal

with order (p,q), i.e., ARMA(p,q). 1If A(z)=1, i.e., p=0, then x(n) is called moving

average signal with order ¢, i.e., MA(q) ; x(n) is called autoregressive signal if ¢ = 0 with

order p, 1.e., AR(p).
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Then, we will investigate the covariance structure of ARMA(p,q) process. Consider

the difference equation of the form:
x(n)+zp: a,x(n—i)= Zq: b,e(n— j) (by=1) (3.114)
i-1 j=0
where {e(n)} is white with R, (k) = o’ S, .
Multiplying both side of equation (3.114) by x"(n — k) and taking expectation yields
E{x*(n—k)[x(nni ax(n—i)l} = E{x'(n— k) [Z be(n— )1}
i= =

E{ x*(n—k)x(n)}-i-i a, E{x(n—i)x"(n—k)} = Zq: b, E{e(n— j)x (n—k)}

r(k)+i a r(k—i)= Zq: b, E{e(n— j)x (n—k)}
Remembering

x(n) = i h(m)e(n —m)

Ete(n—))x'(n—k)} = 3 1'(m) E{e(n— j)e'(n—k —m)}

m =0

> h'(m)old,,,, .assumeh,=1and h(n)=0 for n <0
m =0

=Gl h(j-k)
- r(k)+f a, r(k—i):afzq: b (j—k) (3.115)

h'(j—k)=0 forj<k and 0<j<gq

= h'(j-k)=0 V] if k>q (3.116)

Combining (3.115) and (3.116), we get,

= r(k)+i a,r(k—=i)=0 fork>q (3.117)
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3.3.2. Autoregressive Signals
When the B-polynomial in equation (3.101) is equal to unity for all frequencies, we
come up with a special class of ARMA signals. AR model is used to model spectra with
narrow peaks by placing zeros of the A-polynomial in (3.101) close to the unit circle. So,

AR signals are also called as all-pole signals.

Rewriting the difference equation in (3.114) for AR signals yields

x(n)—i-i a, x(n—k) =e(n) (3.118)
x(n) =e(n) — i a, x(n—k) (3.119)
x(n) =e(n) —a,x(n—-1) —a,x(n-2)— ... —a,x(n—p) (3.120)

Equation (3.120) means that it is possible to obtain x(n) from the past samples of

x(n), that is why AR model is also called autoregressive model.

Two methods, Yule-Walker (YW) method and Least-Squares (LS) method, will be

explained in detail for autoregressive spectral estimation.

3.3.2.1. Yule — Walker Method. From the covariance structure of ARMA(p,q) process, we

have
)4 q
riy+ > a rtk=i)=0. b, 1" (j—k)
i=1 j=0
For AR(p) process and for k£ =0 ,we have
)4 0
= r0)+ ), a r(-)=0.) bh'(j)= 0o’ (3.121)
i=1 j =0

Also, we know that

r(k)—i-i a r(k=i)=0 fork>gq (3.122)
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Combining (3.121) and (3.122) and writing for £=0,1,2, --- p in matrix notation

yields
r0) ) - r-p) ][ 1] [o?
r(1)  r(0) rp+D|ja| |0
2 =) || ]
r(p) ... r() r(0) a, 0

These equations are called the Yule-Walker or Normal equations. Let

r@©@ r=D - r(=p) a,
Ap” _ r(:l) r(0) . r(—;:)+1) , . a:2
r(p) ... r() r(0) a,
and
r@0  r(=1) - r(=p+l r(0) (1)
4 - r(1) r(0) : _ r(1)  r(0)
P : r(-1) :
Fp-1) - ) FO) Fp=1) ()

Note that the 4, matrix is Hermitian ( 4, = A;’ ) and Toeplitz.

(3.123)
(3.124)
r(p-1)
r (1)
r(0)
(3.125)

An important property of A, matrix that will be useful is that it is positive semi-

definite (p.s.d.) for all p. In order to prove this property, first, note that if the matrix A, is

p.s.d., then, x” A,x>0 Vxe QF x#0 where QF denotes the complex field with

dimension p.
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Define

x'(n—=1)
X, = X (n-2) and B, =X, %" (3.126)
X (n—-p)
= B,(i,)) = x (n—D)x(n—j)
= E{B,(i,))} = E{x"(n=i)x(n—j)} = r(i—j) =r"(j~i)

=>E{B,}=A,

Multiplying 4, matrix with y" from left and with y from right yields

y'A,y= y"E{B,} y
= y"E{x, X} y
= E{(y"X, )X, »)}

=E{|X,y*}20 (3.127)

Equation (3.127) is valid for any ye Q" , if y # 0. Hence the proof.

The important result is that, for AR signals, 4, (autocovariance) matrix is positive

semi-definite, i.e., 4,2 0.

Another important fact will be useful is that if a matrix is positive definite then it is

non-singular. This property can be shown by proof by contradiction.

Suppose there exists x#0 where Ax=0 = x”Ax=0. However, we know

that x” Ax>0. This is a contradiction and the proof is complete.
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Next we will consider how to solve Yule-Walker equations. First solve for
a,

a
a= :2 . Omitting the first row of (3.123), we obtain,

a,
r(1) r0)  r(=1) - r=p+D][a] [0
A0 Al | R (3.128)
r(p) r(p.—l) r(p-2) r(.O) a, 6
& y,+A4,a=0 (3.129)
If 4, is invertable,
a=-A'y, (3.130)

Note that A4, is not invertable for any {#(k); k£ =0,1,2,---, p} .

An important property to ensure the invertibility of the A4, matrix is that if

{r(k); k=0,1,2,--- p} are found via biased ACS estimator, then,

rO) =D e F(=p+D FO) ) e F(p-D)
A1) #(0) : RO :
L =D || R
rp=1) - 1)  F0) Fp=1) - 1 70
(3.131)

matrix is positive definite for any p and the solution is unique.

In order to prove this claim, remember the biased ACS estimator given by

fb(k)=% ZN: x(m)x"(n—-k)y, O0<k<N-1

n=k+l
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where negative lags for the ACS estimate are computed via the property

A-k)y=7"Gk), k=01, N-1

Define
[ x() 0 0 0 - 0 |
x(2) x(1) 0 0 . 0
x(3) x(2) x(1) 0 “ee 0 (p-1) rows
x(p-1) x(p-2) x(p-3) x(p-4) - 0
P x(p)  x(p=1) x(p-2) x(p-=3) - x() (3.132)
x(p+l)  x(p)  x(p-D x(p-2) - x(2)
x(N) x(N-1) : N rows
0 x(N) :
: : x(N-1)
|0 - x(N) |
Notice that
NA =X"X (3.133)

and the columns of X are arranged as

(i—1)rows

X(@i,:) =

N rows (3.134)

(p—i)rows
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Note that

o Dl =]

N—(i- ) N
N<X (i, )X () = = n=(i=j)+
=7(i—J) i>]

(% > x(n)x*(n—(j—i))sz(j—i) i<j

n=(j—i)+l
(3.135)

Also, notice that
rank(X)=p if {x(1),..., x(N)}#0
and

X" X is positive definite.

So, the null space of X and X" X is empty, i.e.,
N(X) = N(X"X) = {0}
So,

X" X is invertable

Hence,

A » is invertable.

Yule-Walker method can be summarized as follows: First, find the biased ACS
estimate, {7(k); k=0,1,2,--- p}. Then, solve for a = —21;1 ¥, - Then compute the noise

power as

Finally, the spectral estimate is computed via

2
O-e

A(w)

P(w) =

2
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3.3.2.2. Least — Squares Method. If x(n) is an autoregressive process of order p, then we

have

x(n)+zp: a, x(n—k) =e(n)

Interpreting e(n) as the prediction error, the problem of estimating the AR

coefficients turns out to be a simple minimization problem where the cost function is

2

C(x) = i|e(n)|2: i x(n)+i a, x(n—k) (3.136)
V) | [a @ -D o x-p) ]
| [ran || @ mph s 5137
x(N,) x(N,=1) - x(N,-p) a,
=|x+Xa | (3.138)

The vector that minimizes C(x) is

a,=—(X"X)"'(Xx) (3.139)

where, for N,=1, N,=N+p ,and

x(1) ] 0 0 e 0
x(2) x(1) 0
: P : g . : P
x(p) x(p-D) x(p-2) - 0
x(p+1) x(p)  x(p=1) - x(1)
| X2+ N-p-1 x| ¥2*D x(2) N-po
x(N) x(N-1) X(N-=-2) -+ x(N-p)
0 X(N) x(N-1) - X(N-p+])
O | O AW R,
L 0] |0 0 0 x(N)

(3.140)
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There are some common choices for N; and N, The methods will be given briefly

and the details will be skipped.

Autocorrelation method assumes that data prior to x(7) and x(N) are to be zero and

N;=1 and N,=N+p .

Covariance LS method assumes that N;=p+/ and N,=N. Only the data that is
explicitly available is used, no assumption about data outside the observed data segment.

This choice removes the first and last p rows from X and x.

Pre-windowing method assumes that x(n)=0 for n<0 and use data up to x(), so,

N1:] and NgzN

Post-window method begins with N;=p+1 and assumes that data after N are equal to

Z€10.

Although LS Method is more accurate than YW method, it may be unstable whereas
Yule-Walker method has been guaranteed to be stable for medium or small N. For large N,
the difference between Yule-Walker and LS autoregressive coefficient estimates are quiet

small.

3.3.3. Moving Average Signals

There is a limited interest in MA signals since MA model is appropriate to model
spectrum which has sharp nulls and broad peaks which is rarely encountered in
engineering and MA parameter estimation is a nonlinear parameter estimation problem.
Since MA model will not be an useful tool for our application where we will observe

narrow peaks, MA model will not be explained.
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3.3.4. ARMA Signals

Neither AR (all-pole) nor MA(all-zero) model can model the spectra with sharp
peaks and deep nulls. ARMA (pole-zero) model is an useful tool to model such spectra.
Although there exists no reliable and statistically accurate algorithms, modified Yule-

Walker and two-stage least squares are the mostly used ARMA spectral estimators.

3.3.4.1. Modified Yule-Walker Method. This method is a two stage procedure where in

the first stage, AR coefficients are obtained using equation (3.117) and in the second stage
MA coefficients are computed using the AR coefficients computed in the first stage and

ACS estimates.

Our goal in the first stage is to estimate the AR coefficients. A procedure similar to

the solution YW equations will be followed in this stage.

From equation (3.117), we have

r(k)+zp: a rtk=i)=0 fork>gq

Rewriting (3.117) in matrix form for k =q+1,9+2,---,g+ M gives

r(q+1) r(q) oor(g-p+D || 1 0
r(q:+2) r(q:+1) r(q—:p+2) 6? _ ? (3.141)
r(g+M) r(p+M-1) --- r(g—p+M)||a, 0
Rewriting (3.141) yields
r(q) r(g—=1) or(@g-p+l) || 4 r(g+1)
r(q:+ D r(:q) r(q - :p +2) a:z _ | (g + 2) (3.142)

r(g+M-1) r(p+M-=-2) - r(g—p+M)||a r(g+ M)



77

These equations are called Modified Yule Walker equations if M=p and over-
determined modified Yule Walker equations if M>p. Replacing {r(k)}!’s by the estimates

yields
(q) Hg=1) - Fg-p+)) ||a (g +1)
(g +1) 7(q) v Hlgmpt2) (14| | 7(g+2) (3.143)
FMg+M-1) H(p+M-2) - Fg-p+M)]|a, Flg+M)
This system of p equations with p unknowns can be solved via
7(q) Hg=1) - FHg-p+D || & (g +1)
: g +1) 7(q) o Hg-p+2) || 4 7q+2)
MM (g, .a ) : : . : T :
FMg+M-1) H(p+M-=2) - Fg-p+M)]|a, g+ M)
(3.144)
min , ., [Ra +f” (3.145)
where the last equation can be solved via least squares method, i.e.,
i, =—(R'R)(R?) (3.146)

It has been shown that the statistical accuracy of the AR coefficient estimates are
good if the condition number of the matrix R in (3.144) is small. So, M should be selected
s0 as to make R matrix reasonably well conditioned. In the case of narrowband signals,
for slowly decaying covariance sequences, the columns of the R matrix are nearly linearly

dependent. Hence, the condition number R is quite high, so, in such a case, M should be

increased in order to lower the condition number to a reasonable level.
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Our goal in the second stage is to estimate the MA coefficients. The AR coefficients

computed in the first stage will be used in this stage.

From the ARMA model, we have,

x(n) = j 8 e(n) < x(n) A(z) = e(n) B(z)

and for the MA signal, (A(w)=1), we have,

pOw) = ‘B O o2 _lgifio’ = 3 e (3.147)
A(w) i
where
B, = E{[B(2)e(m)][B(z)e(n—k)]'} (3.148)
= E{[A(z)x(m)][A(z)x(n—k)]'} (3.149)
ii aja:E{x(n—j)x*(n—k—i)} (3.150)
=ii a;a; rtk+i—j) , k=0,..,q (3.151)

Replacing theoretical AR and ACS values with estimates yields

J
ZZ Ja Fk+i—j), k=0,..q (3.152)
j=0i=0
where
Bo=p, . k=-l.,q (3.153)

So, the ARMA spectrum estimate is

q A
Z ﬁk e—_/wk

pw) =" (3.154)

2

Note that the numerator in (3.154) is not guaranteed to be positive for all w values, so

this approach may lead to negative ARMA spectral estimates.
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3.3.4.2. Two-Stage Least-Squares Method. Recall the ARMA(p,q) model given in (3.107)

x(n)+iaix(n—i)zzq:bje(n—j) (a,=b,=1)

Our goal is to find the {q,};_, and {b,}/_ , hence the PSD. In the first stage, we

assume that we are given e(n) and solve for AR and MA coefficients and in the second

stage we find a reliable estimate of e(n).

Rewriting (3.107) in matrix notation yields

x(n) +[x(n-1),...,x(n—p)|—e(n-1),...,—e(n—q) ]

Rewriting (3.155)for n=L +1,..., N for some L >max(p,q) gives

2+ 720 =e
where
[ x(L)  x(L-1) - x(L-p+1)| —e(L) —e(L)
x(L+1) x(L) o x(L=p+2)|—e(L+1) —e(l)
7 - x(L+2) x(L+1) - x(L-p+3)|—e(L+2) —e(l)
| X(N-1) x(N-2) xX(N-p) | —e(L) —e(Ll)
[ X(L+1)] Ce(L+1) ]
x(L+2) e(L+2)
x(L+3) e(L+3)
= : , e = : . 0=

| x(N) | | e(N) |

= e(n)

—e(L)]
—e(L)
~e(L)

—e(L) ]

(3.155)

(3.156)

(3.157)

(3.158)



Assuming we know {e(n)}, (3.156) can be solved as

0,5 =—(2"2)"(Z 2)

However, {e(n)} are not known. They will be estimated as follows:

Recall the ARMA(p,q) model

B(2)

R

E(z)
where
P ) g .
A()=) az" and B(z)=) bz
i=0 i=0

So, we have,

A(2)

E(z)=——=X(2)=C(2)X(z) < e(n)=C(z)x(n)

B(2)

Assuming the ARMA model is minimum phase, C(z) can be written as

C)=l+a,z" +a,z " +.....

80

(3.159)

(3.160)

where {¢,}can be obtained using YW or LS method from AR models. However, AR

models can be solved via YW or LS only for finite orders, so we need to truncate the order

to some constant K. Solving the truncated AR model via YW or LS method gives the e(n)

which can be used in the first stage two estimate the AR and MA coefficients.

The spectral estimate is guaranteed to be positive for all frequencies, by construction.

Because of the truncation of the AR model, the two-stage LS estimate is biased. The bias

can be decrased by choosing K sufficiently large; however, K should not be too large with

respect to NV, otherwise, the accuracy of the 6 will decrease.
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3.4. Parametric Methods for Line Spectra
3.4.1. Introduction

Parametric (model-based) methods considered in this section are primarily used for
estimation of the parameters of sinusoidal signals observed in an additive white noise.
Eigen analysis is used for partitioning the eigenvectors and eigenvalues, of the covariance
matrix of a noisy signal, into two subspaces: noise and signal subspace. This

decomposition forms the basis of the methods considered in this section.

In radar applications, we frequently encounter nearly sinusoidal components. So, a

method that can model the spectra with sinusoids in noise will be valuable.

Let,
y(n)=x(n)+en) , n=0,1,.,N (3.161)

and let x(n) be the noise-free complex valued sinusoidal signal, i.e.,
)4 )4 )
x(n)=> x, ()= a /") (3.162)
k=1 k=1

where p is the number of sinusoidal signals and {¢,},{w,},{¢,} are the amplitudes,

angular frequencies and phases, respectively.

We make the following assumptions for the data model in (3.162)

1) a,>0; w,e[-r,7] . Otherwise, model ambiguity may come up since

aexplj(wn+@ )] =—a,explj(wn+ @, +7)]
2) @,'s are independent random variables with uniform distribution between
—rmandr.
3) {e(n)}is complex-valued circular white noise with power o’ i.e.,

E{e(n)e(m)} =0
E{e(n)e’ (m)} =0, c’, Y n,m
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3.4.1.1. Covariance Function & PSD.  Our goal is to find expressions for r, (k)

and ¢, (w) for the signal model

Ym)=x(n)+ e(n) where x(m)=> x(m)= 3 a &)

)4
k=1 k=1

Several useful corollaries and their proofs will be given before proceeding with the

details of the line spectral methods. First one and the mostly used corollary is given as

follows:
E{e’? /") = O (3.163)

Following equations describe the proof of this claim.

if k=1, E{e/"e’"} =1 (3.164)
if k1, E{e’” e’} =E{e/"E{e’"} (3.165)
where
E{e/” )= J‘ej“idu = 11 et = L(ej”—e_"'”):LZjSin(iz') =0
o T an 27 27

= E{ejtﬂk e—j(/}z} — 5}(’]

Another corollary that will often be used is given as follows:

E{x,(mx.(n—k)} =a’e™ s, (3.166)

s
The proof of this claim is shown by directly replacing the expressions of the signals, i.e.,
E{x,(n)x/(n—k)} = E{a, e’ """ g /"oy
=a,q, e T Lol g7y
= ai e’ e‘/w"(n_k)épjr (if p=r)
=a, et 5,,
Finally, the expression of ACS of the noisy signal is given as

1) =By (-0} = Y aexp(wh) + 076, (3.167)
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Notice that the proof of this claim uses the second corollary.

r, (k) =E{y(n)y"(n—k)}

= E{[ (ixs(n)) +e(n)] [(ixr*(n—k))+e*(n—k)]}

Mm

= 33 B =03+ Y B ) ¢ (=) §

r=1

Il
—_

s

+ Zp; E{x, (n—k)e(n)} + E{e(n)e(n—k)}
Since Efe(n)}=0 ande(n)isindepedent of x(n)
r (k) = Ep:i E{x,(n)x, (n—k)} + 0+0+6, ;07
Using (3.166), we get, .

P p
ry (k) = Z Z avz eXp(j va) é‘s,r + 5]{,0 Gez

s=1 r=1

P
r, (k) = z a; exp(jwhk)+ S0 o,
s=1

From the definition of PSD,

¢,(w) = DTFT {r, (k)}

p
= DTFT{ z alexp(jwhk)+ 6, 00}

s=1

)4
=27) ald(w-w,) +o; (3.168)

s=1

The PSD in (3.168) is depicted in figure 3.14. Noise floor is equal to noise power
o’and the magnitude of the impulses is 27za;, where k=1,..., p. Because of its

appearance, the PSD in (3.168) is called a discrete or line spectra.
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P(w)
A
2ra;
s 4 270
2ra,
A
A )
G@
« >
-7 0w w, w,

Figure 3.14. PSD of complex sinusoidal signals in noise

Our goal is to estimate the parameters {w,}, {a,}, {¢,}, o in the signal model. It
should be noted that the parameter that should be primarily concentrated on is the
frequencies of the sinusoids since the estimation of other parameters knowing frequencies

is a simple linear regression problem, i.e.,

Define
B =’ (3.169)
Therefore, (3.161) can be rewritten as
P
y(n)=Y Be™"+e(n), n=0l..,N (3.170)
k=1

Rewriting (3.170) in matrix notation yields

y(D) e e o B e(l)

2 2w, 2wy J2w, e(2
N LI L
y(N) eijl eijz . ejNW‘” ﬂp e(N)

(3.171)

Note that if S, is known,, (> 0)and ¢, can be readily found by
o, = mag(f,) (3.172)

@, =arg(f,) (3.173)
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Solving the minimization problem

y(D) e e || B
2 J2w J2w, . Jj2wp
min , 5, Ye coc e [fz (3.174)
Y] e e B,
by LS metod gives
Bis=(AA)"' Ay (3.175)

3.4.1.2. Models of Sinusoidal Signals in Noise. Frequency estimation methods

represented in this section rely on two different models for the noisy sinusoidal signal y(n).

The first model, ARMA model, is a very special form. All its poles and zeros are
located on the unit circle. Also, its AR and MA parts are identical. For the noisy sinusoidal

signal model in (3.161), the ARMA model is given as

A(z) y(n)=A(z)e(n) (3.176)
where
A(z):ﬁ(l —e™z™h) (3.177)

The second equality follows from the fact that

A(z)x(n)=0 (3.178)
Since

(1-e™z " x, (n)=0 (3.179)
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Hence, (1-e™z') is an annihilating filter for the k" component of x(n).

A(z)x(n)=0 follows from the fact that any filter that has zeros at frequencies {wk} is an

annihilating filter for x(n) and the PSD of x(n) has p spectral lines located at {wk}f oy

The second method is the covariance model. In order to explain the model, define

the a(w) vector and A matrix as

aw)=[1e™™ e ... e/ (mxl) (3.180)

A =[a(w) a(w,) ... a(w,)] (mxp) (3.181)

The Vandermonde matrix A4 has the following rank property :

rank(A)=p if m2pand w,zw, for i#j (3.182)

This claim can be easily proved by contradiction. It is sufficient to show that first p

rows are linearly independent, or, 4 is non-singular, i.e., it is invertable. Suppose A4 is not

non-singular, i.e., there exists some FeQ”, where Q" represents m- dimensional field,

such that,

pA=0 and =0 (3.183)
where

ﬂ:[ﬂo IBI ﬁz ﬂp—l] (3.184)
Define

z,=e™, i=0l,..,p-1 (3.185)

So, the multiplication of £ with any column of A can be written as

Py(z) =P+ zi+t+ f, 207 =0 (3.186)



87

Note that the polynomial P, (z;) has p distinct non-zero roots. However, P;(z,) is a

polynomial of order (p-I) and it can have at most (p-/) non-zero roots. So, this is a

contradiction, and hence the proof.

Define

s = YUY | = azmyeEm)

where

X(n) =[x,(n) x,(n) x,(m)]'

en)=[en) en-1) e(mn-m+1]"

The covariance matrix of y(n) can be computed as

R=E{3(n) ¥ (n)}
=E{[AX(n) + eM)][AX(n) + e(n)]'}
—E{[AZ(n) + e[ X' (W) A" + & (n)]}

=E{[AX(n) X' (n) A" + AX(n)e" (n) +e(n) X (n) A" + e(n)e"(n)}
— 7 _—

P 0 0 oI

=APA +o°l

where

(3.187)

(3.188)

(3.189)

(3.190)
(3.191)
(3.192)
(3.193)

(3.194)

(3.195)

As will be shown in the following sections, the eigenstructure of R contains complete

information on the frequencies {w, }.
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3.4.2. Higher Order Yule Walker Method

Higher Order Yule-Walker method is derived from the ARMA model of sinusoidal
signal. If the polynomial A(z) in ARMA model is multiplied by A(z) with degree L-p ,
then the higher order ARMA model for the sinusoidal data is given by

y(n)+b y(n—=1)+...+b, y(n—L) =e(n)+be(n—-1) +...+b, e(n—L) (3.196)

= B(z)y(n) = B(z)e(n) (3.197)
where
B(z)=1+ ZL: b z™" = A(z) A(z) (3.198)

Rewriting (3.196) in matrix notation yields
1
[v(n) y(n-1) ... y(n—1L)] . =e(n)+...+b, e(n—L) (3.199)

Multiplying (3.199) with [y*(n ~L-1) ...y (n—L— m)]T and taking the expectation leads

to

r*H:o (3.200)

where

r=E : ') - yn-1) (3.201)
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Equation (3.200) can also be written as

r(L) - r(L+1)
: . |b=- : (3.202)
r(L+m-1) --- r(m) r(L+m)

The equation (3.202) is similar to the Yule-Walker system of equations encountered
in AR signals, so, this set of equations associated with the noisy sinusoidal signal model is

said to form a HOYW system.

Replacing the theoretical covariances by the the sample covariances yields
F(L) w7 (D) F(L+1)

: KPR I S (3.203)
F(L+m-=1) - r(m) r(L+m)

I

Define YW as the mxL covariance matrix in HOYW system and similarly ¥ as the

approximate covariance matrix in (3.203), i.e.,

r(L) ()
Y= : R (3.204)
r(L+m—-1) - r(m)
and
F(L) - (D)
P = : RV (3.205)
r(L+m-=1) - r(m)
It can be shown that
rank(W)=p for Lim=>p (3.2006)

On the other hand, the matrix ¥ has full rank ( almost surely)

rank(¥) = min(m, L) (3.207)
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owing to the random errors in {f(k)}. Hence, the linear system (3.203) is expected to be

ill-conditioned. So, any LS method that estimates the b directly form (3.203) has very poor

accuracy. A priori rank information can be used to overcome this difficulty.
Let
. z, 0]y,
W —USV*=[U Uz]{ ’ }{ ’}}p (3.208)

1 *
—~ 0 2,||V, | L-p

m-=p

denote the Singular Value Decomposition (SVD) of ¥ . In (3.208), U is an m x m unitary

matrix, V is an LxL unitary matrix and 2 is and mxL diagonal matrix.

Since ¥ is close to a rank-p matrix, 2, should be close to zero. Hence, the best (in

the Frobenius-norm sense) rank-p approximation of ¥ is given by
Y,=U2V, (3.209)

So, the rank-truncated HOYW system of equations is

r(L+1)
Y,b=- : (3.210)
F(L+m)
The pseudoinverse of 4 18 given as
v =v,Z'U, (3.211)
So, the Least Squares solution for the b is
F(L+1)
b=-V,2'U, : (3.212)

r(L+m)
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Note that the accuracy in the frequency estimates increases as L and M increases and

Y,=% for L=p or m=p.

Then, form the polynomial,
L ~
B(z)=1+) b z* (3.213)
k =1

Frequency estimates can be obtained as the angular positions of the p roots of B(z)

that are nearest to the unit circle.

3.4.3. MUSIC

MUItiple Slgnal Classification (MUSIC) method is derived from the covariance
model, R= AP A" +c°I , with m>p. The covariance matrix of the noisy signal can be

written as the sum of the covariance matrices of signal and noise as

R=APA +5°1I

=R,+R, (3.214)

Let 4,24, >....2 4, denote the eigenvalues of R, arranged in non-decreasing order,
and let {s,,...,sp} be the orthogonal eigenvectors associated with {ﬂl,...,lp} and

{ FL A p} denote the orthogonal eigenvectors associated with {/1 A, } Since

-
rank(AP A )=p (3.215)

AP A has p strictly positive eigenvalues, and the remaining (m-p) eigenvalues all

being equal to zero, 4,,, =...= 4, =0. Now, consider the eigenvalue decomposition of

the p x p covariance matrix R, where
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P

Ry =D As.si (3.216)
k=1

Since the covariance matrix of the noisy signal is sum of the covariance matrices of signal

and noise, the covariance matrix of the noisy signal can be expressed as

P m
R = z (A4 +c?)s, s + 0o’ z g. gl (3.217)
k=1

k=p+1

Using equation (3.217), the eigenvectors and the eigenvalues of the covariance matrix of

the noisy signal can be partitioned into two disjoint subsets.

A
A +0o’
A, +0o’
AL+o’
A +0o’
Ay =4, = =1, =0’
| | | ..... | .
Signal Eigenvalues Noise Eigenvalues

Figure 3.15. Decomposition of the eigenvalues of a noisy signal into
signal and noise eigenvalues

The set of eigenvectors {s,,..., S p} associated with the p largest eigenvalues span the
signal subspace and the eigenvectors { Zrrr 8 p} associated with the remaining (m-p)

eigenvalues span the noise subspace.

Let
S=[s,8,..5,] (mxp) (3.218)

and

G=[g, & -8n,] (mx(m-p) (3.219)
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Note that

RG=G =0’G =APA'G + o’ G (3.220)

where the last equality implies that APA°G=0. Since the AP is full rank,

AG=0 (3.221)

which means that the columns {g, } of G belong to the null space of A" , i.e.,

g, eN(A) (3.222)

Since the rank(A)=p, the dimension of null space of A'is (m-p) which is also the
dimension of range space of G. From this observation and the fact that 4°G =0, it follows

that

R(G) = N(A") (3.223)

which means that the the columns {gk}of G span both R(G) and N(4'). Since S and G

are orthogonal, by definition,

$°G=0 (3.224)

So, we also have R(G)=N(S"); hence, N(S")=N(A"). Since R(4) and R(S) are

orthogonal complements to N(S") and N(4"), we get,

R(S)=R(A) (3.225)
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The subspaces R(S) and R(G) are called the signal subspace and noise subspace,

respectively.

From the result A°G =0, it can be concluded that the frequency values {wk }le are the

only solutions of the equation
a (WGG a(w)=0 Vm>p (3.226)

MUSIC algorithm can be summarized as follows: First, compute the sample

covariance matrix estimate by

N

D Ty (n) (3.227)

n=m

R=

and the find its eigendecomposition. Let S and G denote the matrices, constructed from
the the eigenvectors {§,,...,§p} and {g,,...,grm_p} of R, defined similarly to § and G.

Then, frequency estimates can be determined as the locations of the p highest peaks of the

function

1
a’(w) G é*a(w) ’

wel-7,7] (3.228)

It can be shown that the accuracy of the MUSIC frequency estimates increases with
increasing m. However, the computational complexity also increases with m. If

computational complexity is not a problem, m may be chosen as large as possible, but not

to close to N, in order to allow a reliable estimation of R. However, if m takes large
values, spurious frequency estimates may occur. Several modified MUSIC methods have

been developed to overcome this problem but they will not be explained in this study.
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3.4.4. Root-MUSIC

Root-MUSIC method facilitates the same ideas with MUSIC and differs only in the
second step of the MUSIC algoritm. The main advantage of Root-MUSIC over MUSIC is

its lower computational complexity.

Root-MUSIC algorithm can be summarized as follows: First compute the sample

covariance matrix estimate by

N

D ¥ (n) (3.229)

n=m

R=

and the find its eigendecomposition. Let S and G denote the matrices, constructed from
the the eigenvectors {§,,...,§p} and {g,,...,grm_p} of R, defined similarly to § and G.

Then, frequency estimates can be determined as the the angular positions of the p roots of

the equation

a"(zN)GG a(z) =0 (3.230)
which are located nearest to the unit circle.

3.4.5. Min-Norm Method

Minimum norm method uses only one vector from the range space of G to achieve

some computational saving without sacrificing too much accuracy.

Let

H (3.231)
g

be the vector in R(é) with the minimum Euclidean norm.
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Spectral Min-Norm method finds the frequency estimates as the locations of the p

highest peaks in the pseudospectrum

(3.232)

Root Min-Norm method estimates the frequencies can be as the angular positions of

the p roots of the polynomial
1
a’ (z_l)[l (3.233)
4

that are closest to the unit circle.

The procedure of finding the vector [I g]" is described as follows:

Partition the matrix S as

N 1
§=|%] (3.234)
S [tm—1
Since [I g]” €R(G), it must satisfy
Al 1
S [A} =0 (3.235)
g
which can be rewritten as
S g=—a (3.236)
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The minimum-norm solution to (3.236) is

g=-5(88)"a (3.237)

S + aa (3.238)
and also that one eigenvalue of I—aa’is equal to 1—||a||2and the remaining (p-1)

eigenvalues of T—aa are equal to one. Hence, the inverse in equation (3.237) exists if

and only if
e =1 (3.239)

If this condition is not satisfied, there will be no vector of the form [I g]”in R(G).

Under the condition ||az||2 # 1, since

I1=S'S +aa (3.240)

= S'S=I-aa (3.241)

= (§'S) ' =(I-aa’)" (3.242)

= (§'S)'la=U-aa)"'a (3.243)

= (§'8)'la=—2 (3.244)
(1=a]"

Using (3.244) and (3.237), ¢ can be computed by

= a

s—> (3.245)
(1= e

i=-

which expresses g as a function of elements of S.
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Min-Norm method achieves the MUSIC’s performance at a reduced computational

cost. Moreover, there is empirical evidence that the use of minimum-norm vector in
R(é) in the form of [1 g]T decreases the risk of spurious frequency estimates, as

compared to MUSIC.
3.4.6. ESPRIT

In the covariance model, a(w) vector and 4 matrix was given as

aw)=[le™ e .. e/ " (mx1) (3.246)
A =[a(w) a(w,) ... a(w,)] (mxp) (3.247)
Define
A,=[1,,0]14 (m-Dxp ,ie., first (m—1) rows of 4 (3.248)
A,=[01, ,]JA (m-Dxp ,ie.,last (m—1)rows of 4 (3.249)

where I, , is the identity matrix of dimension (m—1)x(m—1) and the matrices

[Z, ,0]and [0 1, , ] are of dimension (m —1)xm . It can be verified that

m—1

A,=A,D (3.250)
where
e*./wl 0
D= - (3.251)
0 e M

1S a unitary matrix, so the transformation in (3.250) is a rotation. ESPRIT ( Estimation of
Signal Parameters via Rotational Invariance Techniques) relies on the rotational

transformation.
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Let

A2l 22> A=A, ==, =0 (3.252)

denote the eigenvalues of R and {s,,s,,...,s,} denote the corresponding signal

eigenvectors.
Define
S=[s,8,.5,] (mxp) (3.253)
and
A 0
A= (3.254)
0 4,
So, we have,
RS =854 (3.255)

Rewriting (3.255) yields
RS = (APA +5°1)S
RS = APA'S +5°1 S
APA'S +c’IS =S A
APA'S =S (A-c1)
APA'S =S A
S=(APA"S)A™’
S=A(PA'SA™") (3.256)

where

~ |
[

(3.257)
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Similarly, define

S, =[1,,0]S (3.258)
S,=[01,,]S (3.259)
From (3.256), we have
§=4C (3.260)
where
C=PASA" (3.261)

Note that .§ and A have full column rank, hence, C must be non-singular. Similar to

(3.250), we can conclude that

S,=A4,C (3.262)
=(4,D)C (3.263)
=5,C'DC (3.264)
=S, 0 (3.265)
where
p=C"'DC (3.266)

As proven in the covariance model, the Vandermonde matrix 4 has full rank which

implies that the matrices 4, and A4, have full column rank. Also note that §, and §, also

have full column rank. So, the matrix ¢ is given uniquely by the equation

p=(5;8)"S,S, (3.267)

which expresses ¢ as a function of some quantities that can be estimated from the

available samples.

The matrices ¢ and D , where ¢ = C'D C and C is any nonsingular matrix, have

the same eigenvalues. (¢ is said to be related to D by a similarity transformation.)
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The proof of the previous claim can easily be shown considering the equation
lp—al| =|c™ (D-anC|=|c"|D-u1| C|=0
which is is equivalent to

|D-2I|=0

which implies that ¢ and D have same eigenvalues.

ESPRIT uses the previous claim to find the frequency estimates. Since D is given as

D=diag {exp(—jw,)...exp(—jw,) }, finding the eigenvalues of ¢ (which are also the

eigenvalues of D ) will give us the frequency estimates, i.e., frequency estimates

{w, }7_ can be obtained as —arg(v,) where {v, }”_, are the eigenvalues of the matrix ¢.

The two ways of obtaining ¢ by solving the linear system of equations

S,p=S, (3.268)

are Least Squares(LS) and Total Least Squares(TLS) methods and computing the

frequency estimates using LS and TLS are explained in the following subsections.

3.4.6.1. LS ESPRIT Solution. Algorithm of the solution of the ESPRIT method by Least

Squares method can be summarized as follows :

i.  Compute the sample covariance matrix

A 1 ul ~ ~%
R=—23 53 () (3.269)
ii. Compute the eigendecomposition of R

iii. Estimate the number of sinusoids in the noisy signal (find p ).



1v.

vi.

Vii.

Construct the § matrix from the eigenvectors and obtain the S , and S 5

matrices

Solve the linear system of equations
$,9 =5,
by LS method, i.e., compute ¢ by
6=(5,8,)"5,8,
Compute the eigendecomposition of ¢.

Compute the frequency estimates as

A

Wk :_arg(vk) ° k:1’27-'-,p5

where {vk},f=1 are the eigenvalues of ¢.
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(3.270)

(3.271)

(3.272)

3.4.6.2. TLS ESPRIT Solution. Algorithm of the solution of the ESPRIT method by Total

Least Squares method can be summarized as follows :

il

1il.

1v.

V.

Compute the sample covariance matrix using (3.269).

Compute the eigendecomposition of R

Estimate the number of sinusoids in the noisy signal (find p ).
Construct the S matrix from the eigenvectors and obtain the S , and S p

matrices.

Compute the eigendecomposition

Partition the E matrix into p x p submatrices as

E=|:E11 E12:|
E21 E22

(3.273)

(3.274)
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vii. Compute the eigenvalues of the matrix ¥, where
Y=-E,E, (3.275)
viii. Compute the frequency estimates as

w,=—arg(y,) k=12,..p (3.276)

where {;/k}f=1 are the eigenvalues of ¥ .

It has been empirically observed that TLS-ESPRIT solution can achieve better finite-
sample accuracy than LS-ESPRIT.

ESPRIT has a similar statistical accuracy to that of HOYW, MUSIC, Root-MUSIC
and Min-Norm. However, in most cases, ESPRIT can provide more accurate frequency
estimates than these methods can and it has no problem with spurious frequency estimates.
Moreover, ESPRIT has lower computational complexity. All these considerations make the

ESPRIT as the first choice in any frequency estimation application.
3.4.7. Smoothing Process

The previously described methods derive their frequency estimates utilizing the
eigenstructure of the sample covariance matrix. In radar applications, since the reflection
coefficients of the targets have constant values and do not change from measurement to
measurement, the signals are coherent. Since the eigenanalysis-based methods do not work
properly when the signals are coherent, a decorrelation process is required to eliminate

problems encountered with coherent signals.

Consider the application of the eigenanalysis-based methods for finding the high
range resolution profile of the stepped frequency radar. As shown in figure 3.16, the
received signal is divided L overlapping subarrays each of with length M. Note that using

smoothing techniques decreases the effective bandwith from (f,_,—f,)to (f,,_,— /)
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which, in turn decreases the resolution. In spite of this disadvantage, eigenanalysis-based

methods employing smoothing process can achieve much better performance than

conventional FFT techniques.

Yn-
Ym- -
yz//’—\\M ! yN72//
P \\Q}M s
Y- ~ VM -7
7 ~ - ///
Yo, 7 -
So S Ss S S S Sn-2 Suo
| Vi |
— 5 ——
—
l y. I

Figure 3.16. Subarray Arrangement
The vector ¥, representing the k" subarray, where k =1,2,...,L, can be written as

y, =AD" x + ¢, (3.277)

where e, denotes the vector of additive white gaussian noise at the k" subarray and, and D

denotes the p x p diagonal matrix expressed as

D = {exp(—j27 Af 7)), exp(=j27m Af 7,) , ... ,exp(—j2n Af 7 ,)} (3.278)

where Af is the sampling frequency separation and 7 is the two way time delay.
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The covariance matrix of the & subarray is given by

R, =¥, ¥, (3.279)
=(AD""x) (AD" " x) (3.280)
=AD" Vxx (D" "Y' 4 +0°I (3.281)

3.4.7.1. Spatial Smoothing Process (SSP). This method uses the R, as the covariance

matrix where R, 1s the sample mean of the subarray covariance matrices [15], i.e

1 L
Rogr = 2 Z A (3.282)

3.4.7.2. Modified Spatial Smoothing Process (MSSP). This method uses the uses R, p

as the covariance matrix [16], where,

1 & .
R, = —L Z (R, +JR,J) (3.283)
and
0 1
J= (3.284)
1 0

is the so called reversal matrix.

It should be noted that, in both techniques, there exists a trade-off when choosing L
and M. If M is increased, effective bandwidth and resolution increases but decorrelation
performance decreases. If L is increased, decorrelation performance increases but effective
bandwidth and resolution decreases. Therefore, M and L should be chosen depending on
the application. Both of these techniques will be implemented in chapter four and five and

their performance will be compared.
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3.4.8. Model Order Estimation

One of the key steps in the parametric methods is the accurate and consistent
estimation of the number of signals, the so called model order. In radar applications, our
goal is to estimate the number of high energy scattering centers. Among the model order
estimation methods in the literature, Akaike information criterion (AIC) [17] and minimum
description length (MDL) [18] are the frequently used methods. Since it has been shown
that MDL outperforms AIC, especially for noisy signals [18], MDL will be used as model

order estimation tool in this study.

3.4.8.1. Minimum Description Length Principle. Due to the random errors in the

covariance matrix estimate, R , its eigenvalues will be perturbed and from their true values
and the true multiplicity of the minimum eigenvalue may not be evident. MDL is a popular
approach for model order estimation. It determines the underlying eigenvalue multiplicity

to determine number of signals. The estimate of number of signals p is given by the value

of k for which the following MDL function is minimized :

1 P-k

MDL(k) = (P— k)N log] —L=K= +§(2P—k+1) (3.285)

)

where P is the upper bound for the model order, N is the number of observations, /:Li are

~
o

v

the eigenvaues of covariance matrix. The estimated model order is computed via

p = arg ke{min _I}MDL(k) (3.286)

0,1,..,P
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4. RESOLVING CAPABILITY of SUPER-RESOLUTION
METHODS : SIMULATION STUDY

4.1. Introduction

It was noted that HRR provides the ability of resolving closely spaced targets in
range, improves the range accuracy, reduces the amount of clutter within the range cell,
reduces multi-path, and aids in target recognition and classification. HRR is very helpful
in detection of targets with low radar cross sections embedded in high clutter. It increases
signal-to-clutter ratio which, in turn, makes targets with low RCS visible. Therefore, it is
crucial to enhance the range resolution. However, in practice, the frequency bandwidth of a
radar is limited by several factors, and the range profiles obtained by IFFT often result in a

limited range resolution.

This chapter investigates the resolving capability of super-resolution spectral
estimation methods explained in chapter three using synthetic radar returns of stepped-
frequency and linear frequency modulated continuous wave radars explained in chapter
two. First, signal models for returns form targets for the stepped-frequency and linear
frequency modulated continuous wave radars are given. Secondly, super-resolution
spectral estimation methods explained in detail in chapter three are implemented on
synthetic signals. Finally, the results are compared. In this chapter, “super-resolving
capability” is used as the super-resolution spectral estimation methods’ ability to find the

target ranges and distinguish the two closely separated targets.

4.2. Stepped-Frequency Radar Signal Model

As explained in detail in section 2.3.3., the frequency of the n” pulse of the stepped-

frequency radar is given as

f,=f,+nAf, n=01..N-1 (4.1)



108

where f, = feono+ fsraro - SO, the transmitted signal can be expressed as

s;(t) =4 Cos2r f,¢t)

= A Cos[27 ( feono + fsrao +nAF)1] 4.2)

Assuming a point scatterer at range R, the received signal after a two-way time delay

of 2R/c is given as

sp(t)y=A4,Cos[2x f, (t—2R/c)] (4.3)

After down-conversion, quadrature demodulation and low-pass filtering, in-phase

and quadrature signals at the output of phase detector are given as (see section 2.3.3. for

details )
I(n) = A, Cos[2x (f,+nAf) (2R/c) ] 4.4)
Q)= A4, Sin [-27 (f,+nAf) (2R/c) ] 4.5)
where
n=0,1,...,N -1 (4.6)

and N represents the total number of steps in the stepped-frequency waveform, and 4,

depends on frequency, RCS of target, antenna gain and range attenuation. For the sake of

simplicity, 4 will be assumed to be independent of frequency and A4 will be used instead
of A, . Therefore, the received signal from a point scatterer at range R in complex notation

is
SR(n)=Aexp{—27z(f0+nAf)(£j} 4.7)
c

Now, assume d targets located at ranges R,,R,,...R, . So, the total received signal can

be expressed as
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d 2R
se(m) =Y 4, exp{—Zﬂ(fO+nAf)(T"j} (4.8)

and the in-phase and quadrature voltages at the output of phase detector are given as

I(n) = Zd: A, Cos[2x (fy+nAf) (2R, /c)] (4.9)

k =1

O(n) =Zd: A, Sin[-27 (f,+nAf) (2R, /c) ] (4.10)

for n=0,1,...,.N —1.

Equations (4.9) and (4.10) are used to generate the synthetic signals representing

stepped-frequency radar returns from d targets located at ranges R, R,,...R, .

Super-resolution spectral estimation methods are normally used to estimate the power
spectral density from the time-domain observations, i.e, they are transformations from
time-domain to frequency-domain. However, in stepped-frequency radar application, they
will be used to estimate range profile from frequency-domain data, i.e., they will be used

as a transformation from frequency-domain to spatial-domain.

The aim of this chapter is to show that high resolution spectral estimators explained
in chapter three can achieve better down-range resolution than IFFT. In order to compare
the performance of high resolution spectral estimators and IFFT, synthetic stepped-
frequency radar returns from several targets will be generated using (4.9) and (4.10), white
Gaussian distributed noise will be added to returnsignal to obtain different SNR ratio, and

the noisy return signals will be processed by all the spectral estimation methods.
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For the following simulations, the parameters of the stepped-frequency waveform

and the signal processing algorithms will be given in the tables for each case. Except the

parameters given in the tables, f, will be set to 1 GHz although it has any importance

since we have assumed that the magnitude of the scatterers are independent of frequency.

4.3.1. Yule-Walker Method vs. IFFT

Table 4.1. Parameters for simulation shown in figure 4.1

N | A | AR Target Ranges (R, ) & RCSs (4,) SNR
256 10 5.86 2m 3m S5m 6 m 7m 11 m 50
MHz | cm 100 100 100 100 100 100
Yule-Walker vs. IFFT
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Down-Ranae Relative Distance (meters)

Figure 4.1. Comparison of Yule-Walker method and IFFT

Figure 4.1 show that Yule-Walker method provides narrower peaks at the target

locations than IFFT. Also note that Yule-Walker range profile has higher signal-to-clutter
ratio (SCR) than IFFT range profile.

Table 4.2. Parameters for simulation shown in figure 4.2

N Af AR Target Ranges (R, ) & RCSs (4,) SNR
256 | 10 586 | 2m 3m 5m 6m 7m 11 m 10
MHz | cm 100 100 100 100 100 100
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Figure 4.2. Comparison of Yule-Walker method and IFFT
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Figure 4.2 shows that Yule-Walker method provides much sharper peaks at the target

locations even in the low SNR case than IFFT and its range profile has higher SCR than

range profile obtained via IFFT.

Table 4.3. Parameters for simulation shown in figure 4.3

N | A AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 11.72 2m 22m 24m 6 m 10 m 40
MHz cm 100 100 100 100 100

Yule-Walker vs. IFFT

Down-Range Profile (dB )

— IFFT
— Yule-Walker ||

Down-Range Relative Distance (meters)

Figure 4.3. Comparison of Yule-Walker method and IFFT

Figure 4.3 illustrates that Yule-Walker method can resolve closely separated targets,

however, IFFT can not. Yule-Walker range profile has three separate peaks at 2, 2.2, and

2.4 meters and three closely spaced targets can be distinguished but IFFT range profile has

one broad peak, thus, it can not resolve the three closely spaced targets. Note that the range

resolution obtained via the IFFT is 11.72 cm and the distance between the closely spaced
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targets is 20 cm, however, because of the smearing problem of periodogram explained in

section 3.2.3.1, IFFT could not resolve the targets with separation higher than its

resolution.
Table 4.4. Parameters for simulation shown in figure 4.4
N | & | AR Target Ranges (R, ) & RCSs (4,) SNR
128 [ 10 11.72 2m 22m 24m 6 m 10 m 10
MHz cm 100 100 100 100 100

Yule-Walker vs. IFFT

Down-Range Profile ( dB )

— IFFT
— Yule-Walker ||

Down-Range Relative Distance (meters)

Figure 4.4. Comparison of Yule-Walker method and IFFT

Yule-Walker method outperforms the IFFT in terms of range resolution and accuracy

even in low SNR case as shown in figure 4.4. Yule-Walker can resolve closely spaced

targets even low SNR case.

4.3.2. Least Squares Method vs. IFFT

Table 4.5. Parameters for simulation shown in figure 4.5

N Af AR Target Ranges (R, ) & RCSs (4,) SNR
256 | 10 586 | 2m 3m 5m 6m 7m 11 m 50
MHz cm | 100 100 100 100 100 100
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Figure 4.5. Comparison of least-squares method and IFFT
Table 4.6. Parameters for simulation shown in figure 4.6
N | A | AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 11.72 | 2m 3m Sm 6 m 7m I1m 10
MHz cm | 100 100 100 100 100 100

Least-Squares vs. IFFT

Down-Range Profile (dB )

— IFFT
—— Least-Squares

Down-Range Relative Distance (meters)

Figure 4.6. Comparison of least-squares method and IFFT

Figures 4.5 and 4.6, LS method provides sharper peaks at the target locations even in

low SNR case. Also, note that range profile obtained from the LS method has lower

variance, which improves the image quality when it is used in radar imaging.

Table 4.7. Parameters for simulation shown in figure 4.7

Af AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 11.72 2m 2.2 m 24 m 6 m 10 m 50
MHz cm 100 100 100 100 100
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Figure 4.7. Comparison of least-squares method and IFFT
Table 4.8. Parameters for simulation shown in figure 4.8
N Af AR Target Ranges (R, ) & RCSs (4,) SNR
128 [ 10 11.72 2m 22m 24 m 6 m 10 m 20
MHz cm 100 100 100 100 100

Least-Squares vs. IFFT

Down-Range Profile (dB )

— IFFT
—— Least-Squares ||

Down-Range Relative Distance (meters)

Figure 4.8. Comparison of least-squares method and IFFT

Figures 4.7 and 4.8 shows the performance of LS method to resolve closely separated

targets both in high and low SNR case. When the SNR is high, LS can resolve three

closely separated targets whereas IFFT can not. When the SNR is lower, LS can resolve

two of the three targets.

Figures in this section show that LS method achieves better range resolution than

IFFT. LS range profile has low variance, and it higher SCR and these advantages can be

utilized in radar imaging, target identification and classification.
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The previous sections showed that AR modeling is a good model to find the range
profile of stepped-frequency radar. Same simulations have been carried out for ARMA
model using modified Yule-Walker and two-stage least-squares methods explained in
section 3.3.4.1 and 3.3.4.2, respectively, however, they did not provide stable and reliable
range profiles. It has been observed that the choice of over-determination, M, in modified
Yule-Walker method and the choice of AR model order truncation, K, in two-stage least-
squares method and the choice of AR and MA model orders in both methods greatly affect
the estimated range profile. Actually, this is not an unexpected situation since the ARMA
model that is used to model spectra with narrow peaks and deep nulls is not appropriate for
the stepped-frequency radar return signals where we only have narrow peaks. So, the
simulation results of the modified Yule-Walker and two-stage least-squares methods will

not be presented.

Sections 4.3.1 and 4.3.2 have provided the comparison of IFFT with parametric
methods for rational spectra that are explained in section 3.3. Following sections present
the results of the implementation of parametric methods for line spectra explained in
section 3.4 and the comparison of each method with IFFT is presented.

4.3.3. Higher-Order Yule-Walker Method vs. IFFT

Table 4.9. Parameters for simulation shown in figure 4.9

N | A | M| L | AR Target Ranges (R, ) & RCSs (4,) SNR
128 10 | 50 | 50 [11.72{05m | 15m |28m |45m |57m |72m | 50
MHz cm 100 100 100 | 100 | 100 100

HOYW vs. IFFT
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Figure 4.9. Comparison of HOYW method and IFFT
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Table 4.10. Estimated HOYW ranges (in meters) in simulation shown in figure 4.9

0.4962

1.4999

2.8028

4.5017

5.7003

7.1989

Table 4.11. Parameters for simulation shown in figure 4.10

N | A | M| L | AR Target Ranges (R, ) & RCSs (4,) SNR
1281 10 | 50 | 50 |11.72|105m | 1.5m |28m |[45m | 5.7m [ 72m | 1
MHz cm 100 100 100 100 100 100
HOYW vs. IFFT
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Figure 4.10. Comparison of HOYW method and IFFT

Table 4.12. Estimated HOYW ranges (in meters) in simulation shown in figure 4.10
0.5324

1.4972

2.8146

4.5059

5.7041

7

1776

Figures 4.9 and 4.10 illustrates that HOYW method can detect the ranges of the

targets very accurately even in the very low SNR case.

Table 4.13. Parameters for simulation shown in figure 4.11

N | Af | M| L AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 | 50 [{11.72|14m | 145 [15m| 4m [41m|[42m | 50
MHz cm 100 100 100 100 100 100
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Figure 4.11. Comparison of HOYW method and IFFT

Table 4.14. Estimated HOYW ranges (in meters) in simulation shown in figure 4.11

1.3125

0.8401

4.7251 3.9303

4.1046

4.2724

Table 4.15. Parameters for simulation shown in figure 4.12

N | Af | M| L AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 | 50 {11.72|14m | 145 [15m| 4m [41m|[42m | 20

MHz cm 100 100 100 100 100 100

HOYW vs. IFFT
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3 | o l

% Of--1-f1--------- I R e

8.

-

a

Down-Range Relative Distance (meters)

Figure 4.12. Comparison of HOYW method and IFFT

Table 4.16. Estimated HOYW ranges (in meters) in simulation shown in figure 4.12

0.8420

4.7272

5.0403 3.9296 4.1117

4.2746
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Figures 4.11 and 4.12 show that, for the chosen M and L values, HOYW method may
result in false alarms. Following figures show the effect of choice of M and L in the
performance of HOYW method. Note that HOYW can resolve the last three closely spaced
targets that can not be resolved by IFFT.

Table 4.17. Parameters for simulation shown in figure 4.13

N | A | M| L | AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 40 | 40 [ 11.72|14m | 145 |15m| 4m [41m|42m | 50
MHz cm 100 100 100 100 100 100
HOYW vs. IFFT

Down-Range Profile (dB )

Down-Range Relative Distance (meters)

Figure 4.13. Comparison of HOYW method and IFFT

Table 4.18. Estimated HOYW ranges (in meters) in simulation shown in figure 4.13
1.3181 1.4480 1.5788 3.9296 4.0993 4.2704

Table 4.19. Parameters for simulation shown in figure 4.14

N | & | M| L | AR Target Ranges (R, ) & RCSs (4,) SNR

128 10 | 40 | 40 |11.72 | 14m | 145 |I1Sm| 4m |41m|[42m | 20
MHz cm 100 100 100 100 100 100
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HOYW vs. IFFT
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Figure 4.14. Comparison of HOYW method and IFFT
Table 4.20. Estimated HOY W ranges (in meters) in simulation shown in figure 4.14
1.3195 1.4525 1.5831 3.9321 4.0983 4.2680

Figures 4.13 and 4.14 show that when M and L are chosen as 40, and keeping the

radar parameters and targets’ ranges and RCS values same, HOYW can resolve all the

targets and estimates the target ranges even in low SNR case. This illustrates the sensitivity

of HOYW method to the choice of M and L.

Table 4.21. Parameters for simulation shown in figure 4.15

N | & | M| L | AR Target Ranges (R,) & RCSs (4,) SNR
128 10 | S0 | 50 [11.72{14m | 145 [I15m| 4m |[41m|42m| 50
MHz cm | 1000 1 1000 | 1000 1 1
HOYW vs. IFFT
20
Q _
g. _
g (T
g e L L .
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Figure 4.15. Comparison of HOYW method and IFFT
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Table 4.22. Estimated HOYW ranges (in meters) in simulation shown in figure 4.15
1.3195

1.4424

1.5795

3.8882

3.9935

4.0988

Table 4.23. Parameters for simulation shown in figure 4.16

N | & | M| L | AR Target Ranges (R,) & RCSs (4,) SNR
128 | 10 50 | 50 |11.72|14m | 145 [15m| 4m |[41lm|42m| 50
MHz cm | 1000 | 100 | 1000 | 1000 1 1
HOYW vs. IFFT

Down-Range Profile (dB )

Down-Range Relative Distance (meters)

Figure 4.16. Comparison of HOYW method and IFFT

Table 4.24. Estimated HOYW ranges (in meters) in simulation shown in figure 4.16

1.3266

3.3817

1.4424

3.8926

3.9975

4.1008

In figures 4.15 and 4.16, only the RCS value of the second targets is changed.

Although the second target is expected to be detected when it has higher RCS value, the

simulations yield the opposite result. It can be concluded that HOYW method is very

sensitive not only to M and L values but also to the target locations and RCS values. Note

that using 40 as M and L values provided correct range estimates. On the other hand, also

note that HOYW can resolve the last three targets whereas IFFT can not, i.e., HOYW

method provides better range resolution than IFFT. So, a combined technique that uses

HOYW method together with IFFT can achieve better range resolution and lower false

alarms.
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Table 4.25. Parameters for simulation shown in figure 4.17
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N | Af | M |[MSSP| AR Target Ranges (R, ) & RCSs (4,) SNR
1281 10 20 NO (11.72|05m |15m|28m (45m |[5.7m|72m | 50
MHz cm | 100 | 100 | 100 | 100 | 100 | 100
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Figure 4.17. Comparison of Root-MUSIC method and IFFT

Table 4.26. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.17

0.5053

1.4975

2.8012

4.4982 5.6564 7.1974

Table 4.27. Parameters for simulation shown in figure 4.18

N | Af | M |[MSSP| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 20 NO |11.72|05m |15m |2.8m |45m |5.7m | 7.2 m 7
MHz cm | 100 100 100 100 100 100

Down-Range Profile (dB )

— IFFT
—— Root-MUSIC

Down-Range Relative Distance (meters)

Figure 4.18. Comparison of Root-MUSIC method and IFFT
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Table 4.28. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.18

0.4799

1.5046

2.7977

4.4865

5.7152

7.1857

Figures 4.17 and 4.18 shows that Root-MUSIC method can detect the ranges of the

targets very accurately even in the very low SNR case.

Table 4.29. Parameters for simulation shown in figure 4.19

Af | M |MSSP| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 20 NO |11.72|14m | 145 |15m| 4m |41m|42m | 50
MHz cm 100 100 100 100 100 100
Root-MUSIC vs. IFFT
20 T
| | —FFT
e M-—""""""" A A o —— Root-MUSIC |
3 | |
;_é : |
s
Z-

Down-Range Relative Distance (meters)

Figure 4.19. Comparison of Root-MUSIC method and IFFT

Table 4.30. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.19

1.3136

1.4499

1.5866

3.9199

6.4950

4.2876

Table 4.31. Parameters for simulation shown in figure 4.20

N | Af | M |[MSSP| AR Target Ranges (R, ) & RCSs (4,) SNR
128 |1 10 20 | YES |11.72 | 14m | 145 [15m| 4m |[4]1m|42m | 50
MHz cm 100 100 100 100 100 100
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Figure 4.20. Comparison of Root-MUSIC method and IFFT

Table 4.32. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.20

1.3105 1.4486 1.5865

3.9151

4.1023

4.2866

As can be seen from figures 4.19 and 4.20, using modified spatial smoothing

technique improves the accuracy of range estimates. Note that Root-MUSIC method

achieves much better range resolution than IFFT. Also note that Root-MUSIC can resolve

very closely spaced targets where the distance between the targets are less than the range

resolution of the IFFT.

Table 4.33. Parameters for simulation shown in figure 4.21

N | AYf | M |[MSSP| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 20| NO [11.72|14m | 145 |I15S5m| 4m [41lm |[42m | 50
MHz cm | 1000 1 1000 | 1000 1 1
Root-MUSIC vs. IFFT
20
— IFFT
—— Root-MUSIC
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Figure 4.21. Comparison of Root-MUSIC method and IFFT




124

Table 4.34. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.21
1.2931 7.1122 1.6018 3.8801 3.9992 4.1202

Table 4.35. Parameters for simulation shown in figure 4.22

N | AYf | M |MSSP| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 20 | YES |11.72|14m | 145 |15m| 4m |41m|42m | 50
MHz cm 1000 1 1000 | 1000 1 1

Root-MUSIC vs. IFFT

— IFFT
,,,,,,, —— Root-MUSIC H
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|
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Figure 4.22. Comparison of Root-MUSIC method and IFFT

Table 4.36. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.22
1.2962 1.4515 1.6071 3.8866 4.0041 4.1257

Figures 4.21 and 4.22 show that MSSP technique improves the accuracy of Root-
MUSIC range estimates and decreases the number of false alarms. Note that in all cases,
Root-MUSIC achieves much better range-resolution than IFFT. It has been observed that a
method that combines Root-MUSIC and IFFT can increase the range resolution and

decrease the false alarms.




4.3.5. Minimum-Norm Method vs. IFFT

Table 4.37. Parameters for simulation shown in figure 4.23

125

N | A | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 11721 05m | I1.5m | 28m [ 45m | 5.7m | 72m | 50
MHz cm 100 100 100 100 100 100
Minimum-Norm vs. IFFT
10 T
i l I — IFFT
_ 0,4“)“,,#,,,4“‘ ,,,,,, 11 R | R i — Min-Norm |
B ol I i
I
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60 s 15

Down-Range Relative Distance (meters)

Figure 4.23. Comparison of Min-Norm method and IFFT

Table 4.38. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.23

0.5011 1.5001

2.7984 4.5023

5.6992

7.1986

Table 4.39. Parameters for simulation shown in figure 4.24

Af

M | AR

Target Ranges (R, ) & RCSs (4,)

SNR

128

10

MHz cm

50 [ 11.72

0.5m
100

I.5m | 2.8 m
100 100

4.5m
100

5.7m
100

7.2 m 1

100

N
o

Minimum-Norm vs. IFFT

Down-Range Profile (dB )

o
—
1

-
o
T
|

\ [
10 - H T -

— IFFT
—— Min-Norm ||

Figure 4.24. Comparison of Min-Norm method and IFFT

Down-Range Relative Distance (meters)
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Table 4.40. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.24

0.4990

1.4897

2.7680

4.4663

5.7009

7.1941

Figures 4.23 and 4.24 illustrates that Minimum-Norm method can find the ranges of

the targets very accurately even in the very low SNR case.

Table 4.41. Parameters for simulation shown in figure 4.25

Af | M | AR Target Ranges (R, ) & RCSs (4,) SNR
1281 10 50 (11.72114m | 145 | 15m | 4m |[41m | 42m | 50
MHz cm 100 100 100 100 100 100
Minimum-Norm vs. IFFT
= | | — IFFT
L A B S —— Min-Norm ||
@ | ! .
5. |
5.
8 -

Down-Range Relative Distance (meters)

Figure 4.25. Comparison of Min-Norm method and IFFT

Table 4.42. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.25

1.3190

1.4585

1.5956

3.9300

4.1026

4.2714

Table 4.43. Parameters for simulation shown in figure 4.26

Af M | AR Target Ranges (R, ) & RCSs (4,) SNR
128 10 50 (11.7214m | 145 | 15m | 4m |[41m | 42m | 20
MHz cm 100 100 100 100 100 100
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Figure 4.26. Comparison of Min-Norm method and IFFT
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Table 4.44. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.26

1.3145 1.4511 1.5854 3.9352 4.1381 4.2756

From figures 4.25 and 4.26, it can be concluded that Minimum-Norm can detect the

closely separated targets accurately even in low SNR case. Note that IFFT results have

one broad peak for the first three very closely separated targets and two peaks for the

second closely separated three targets whereas Minimum-Norm can resolve all the closely

separated targets very accurately even in low SNR case.

Table 4.45. Parameters for simulation shown in figure 4.27

N | A | M | AR Target Ranges (R, ) & RCSs (4,) SNR
128 10 50 (11.7214m | 145 | 15m | 4m |[41m | 42m | 50
MHz cm 1000 1 1000 | 1000 1 1

Minimum-Norm vs. IFFT

Down-Ranae Relative Distance (meters)

Figure 4.27. Comparison of Min-Norm method and IFFT
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Table 4.46. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.27

1.3093

3.3798

1.5928

3.8890

4.0095

4.1298

Table 4.47. Parameters for simulation shown in figure 4.28

o

Down-Range Profile (dB )
3

Af | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 (11.72 ) 14m | 145 [ 15m | 4m [41lm |42m | 20
MHz cm 1000 1 1000 | 1000 1 1
Minimum-Norm vs. IFFT
20 T T
y ! ! IFFT
oL ww\ I Min-Norm

Down-Range Relative Distance (meters)

Figure 4.28. Comparison of Min-Norm method and IFFT

Table 4.48. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.28

1.3103

4.6356

1.5900

3.9002

4.0205

4.1465

As can be seen from the figures 4.27 and 4.28, Minimum-Norm method can detect

the closely separated targets which have very different RCS values accurately even in low

SNR case. However, note that Minimum-Norm method gives wrong estimate for the

second target in both SNR values. It can be concluded that the range resolution of

Minimum-Norm method is better than IFFT but when the targets that have very different

RCS values are very close to each other, Minimum-Norm method may give false alarms.

In order to reduce false alarms, IFFT and Minimum norm method can be used together.

In the next case, modified spatial smoothing processing technique will be

implemented to reduce the false alarms for the same radar and target parameters.



Table 4.49. Parameters for simulation shown in figure 4.29
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Figure 4.29. Comparison of Min-Norm method and IFFT
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Table 4.50. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.29

1.3100

1.4503 1.5916 3.8932 4.0110

4.1286

Table 4.51. Parameters for simulation shown in figure 4.30

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 10 50 | 11721 14m | 145 | 15m| 4m | 41m |42m | 20
MHz cm 1000 1 1000 | 1000 1 1
Minimum-Norm vs. IFFT
% ‘ ‘ IFFT

__ 10 A | R || :77777777777777777777: 77777777 Min-Norm |{

@ -

. *

& 0/

:

% 30

O 40

I3}
<)
o

Down-Range Relative Distance (meters)

Figure 4.30. Comparison of Min-Norm method and IFFT

Table 4.52. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.30

1.3183

1.4658

1.5956

3.8837

3.9988

4.1170
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As can be seen from figures 4.29 and 4.30, applying modified spatial smoothing
processing technique eliminates the false alarms. So, Minimum-Norm method, when

implemented together with MSSP, can provide high range resolution and reliable range

estimates.

4.3.6. LS-ESPRIT vs. IFFT

Table 4.53. Parameters for simulation shown in figure 4.31

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 [11.72]05m | 15m | 28m | 45m | 57m | 72m | 50
MHz cm 100 100 100 100 100 100

LS-ESPRIT vs. IFFT
10
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Figure 4.31. Comparison of LS-ESPRIT method and IFFT

Table 4.54. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.31
0.5023 1.5008 2.7985 4.5021 5.6987 7.1966

Table 4.55. Parameters for simulation shown in figure 4.32

N | A | M| AR Target Ranges (R, ) & RCSs (4,) SNR

128 | 10 50 | 11721 05m | I1.5m | 28m | 45m | 5.7m | 7.2m 1
MHz cm 100 100 100 100 100 100
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Down-Range Profile (dB )
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Figure 4.32. Comparison of LS-ESPRIT method and IFFT

Table 4.56. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.32

0.4990

1.4897

2.7680

4.4663

5.7009

7.1941

Figures 4.31 and 4.32 shows that LS-ESPRIT method provides very accurate range

estimates even for very low SNR values.

Table 4.57. Parameters for simulation shown in figure 4.33

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 [11.72 ] 14m | 145 | 15m | 4m |[41lm |42m | 50
MHz cm 100 100 100 100 100 100
LS-ESPRIT vs. IFFT
20 T T
! ! — IFFT

PR B """ AT A —— LS-ESPRIT ||

% 0 ‘ # s“‘x‘ | |

5. |

2.

£ .

a

Down-Range Relative Distance (meters)

Figure 4.33. Comparison of LS-ESPRIT method and IFFT

Table 4.58. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.33

1.3177

1.4540

1.5899

3.9347

4.0995

4.2655




Table 4.59. Parameters for simulation shown in figure 4.34
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N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 10 50 (11.7214m | 145 | 15m | 4m |[41m | 42m | 20
MHz cm 100 100 100 100 100 100
LS-ESPRIT vs. IFFT
20 T T
| | — IFFT
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) [ | |

% 0 LIl : I

E -10 :

S 20

D‘g I

§ -30}-|

2 40

&
<)

Down-Range Relative Distance (meters)

Figure 4.34. Comparison of LS-ESPRIT method and IFFT

Table 4.60. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.34

1.3192

1.4578

1.5950

3.9327

4.1007

4.2674

From figures 4.33 and 4.34, it can be concluded that TLS-ESPRIT can detect the

closely separated targets accurately even in low SNR case. Note that IFFT results have

one broad peak for the first three very closely separated targets and two peaks for the

second closely separated three targets whereas TLS-ESPRIT can resolve all the closely

separated targets very accurately even in low SNR case.

Table 4.61. Parameters for simulation shown in figure 4.35

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 (11.7214m | 145 | 15m | 4m |[41m | 42m | 50
MHz cm 1000 1 1000 | 1000 1 1
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Figure 4.35. Comparison of LS-ESPRIT method and IFFT
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Table 4.62. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.35

1.3085

1.4490

1.5910

3.8895

4.0083

4.1290

Table 4.63. Parameters for simulation shown in figure 4.36

Down-Range Profile (dB )

N ——

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 |11.72 | 14m | 145 [ I15S5Sm | 4m [41m |42m | 20
MHz cm 1000 | 1000 | 1000 1 1
LS-ESPRIT vs. IFFT
—IFFT
,,,,,,,,,,,,,,,,,,,,,,,,,, —— LS-ESPRIT |

Down-Range Relative Distance (meters)

Figure 4.36. Comparison of LS-ESPRIT method and IFFT

Table 4.64. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.36

1.3066

1.4416

1.5887

3.9334

4.0586

4.2515

From figures 4.35 and 4.36, it can be seen that LS-ESPRIT can detect the closely

separated targets which have very different radar cross sections very accurately even in
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low SNR case. Note that IFFT results have one broad peak for the last three targets that
have RCS values of 1000, 1, and 1 and two peaks for the first three targets that have RCS
values of 1000, 1, and 1000. Note that this case is a similar to the scenario where the there
is a small hidden object just beneath the wall or a small buried object with small RCS just
under the surface. LS-ESPRIT can resolve closely separated targets with very different

RCS values, however, because of smearing, I[FFT can not resolve them.

4.3.7. TLS-ESPRIT vs. IFFT

Table 4.65. Parameters for simulation shown in figure 4.37

N | Af M | AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 |11.72105m | 1.5m | 28m [ 45m | 5.7m | 72m | 50
MHz cm 100 100 100 100 100 100
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Figure 4.37. Comparison of TLS-ESPRIT method and IFFT

Table 4.66. Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.37
0.5026 1.5009 2.7985 4.5021 5.6986 7.1966

Table 4.67. Parameters for simulation shown in figure 4.38

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR

128 | 10 50 [11.72105m |15m [28m |[45m [57m |7.2m 1
MHz cm | 100 100 100 100 100 100
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Figure 4.38. Comparison of TLS-ESPRIT method and IFFT
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Table 4.68. Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.38

0.4736

1.5009

2.7954

4.5085

5.7801

7.2303

From figures 4.37 and 4.38, it can be seen that TLS-ESPRIT can detect the ranges of

the targets very accurately even in the very low SNR case.

Table 4.69. Parameters for simulation shown in figure 4.39

N | A | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 1172 14m | 145 [ I15Sm | 4m |[41m |42m | 50
MHz cm 100 100 100 100 100 100
TLS-ESPRIT vs. IFFT
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Figure 4.39. Comparison of TLS-ESPRIT method and IFFT
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Table 4.70. Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.39

1.3179

1.4540

1.5897

3.9349

4.1002

4.2657




Table 4.71. Parameters for simulation shown in figure 4.40
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-N | Af M | AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 [11.72 1.4 m | 1.45 I.5m [4m 41m [42m | 20
MHz cm | 100 100 100 100 100 100
TLS-ESPRIT vs. IFFT
20 T T
w w — IFFT
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Figure 4.40. Comparison of TLS-ESPRIT method and IFFT

Table 4.72. Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.40

1.3248

1.4622

1.5960

3.9390

4.1437

4.2628

From figures 4.39 and 4.40, it can be concluded that TLS-ESPRIT can detect the

closely separated targets accurately even in low SNR case. Note that IFFT results have

one broad peak for the first three very closely separated targets and two peaks for the

second closely separated three targets whereas TLS-ESPRIT can resolve all the closely

separated targets very accurately even in low SNR case.

Table 4.73. Parameters for simulation shown in figure 4.41

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 (11.72 |14 m |1.45 I.5m |4m 41m [42m 50
MHz cm | 1000 |1 1000 [ 1000 |1 1
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Figure 4.41. Comparison of TLS-ESPRIT method and IFFT
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Table 4.74. Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.41

1.3087

1.4493

1.5910

3.8895

4.0083

4.1290

Table 4.75. Parameters for simulation shown in figure 4.42

N | & | M| AR Target Ranges (R, ) & RCSs (4,) SNR
128 | 10 50 | 11.72 | 1.4m | 1.45 I.5m [4m 41m [42m | 20
MHz cm | 1000 |1 1000 [ 1000 |1 1
TLS-ESPRIT vs. IFFT
| —FFT
,,,,,,,,,,,,,,,,,,, Lo .| — TLsESPRIT |
g |
;é_; R |
i
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-500
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Figure 4.42. Comparison of TLS-ESPRIT method and IFFT

Table 4.76. Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.42

1.3072

1.4417

1.5877

3.7594

3.9616

4.0818

From figures 4.41 and 4.42, it can be concluded that TLS-ESPRIT can detect the

closely separated targets which have very different radar cross sections very accurately
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even in low SNR case. Note that IFFT results have one broad peak for the last three targets
that have RCS values of 1000, 1, and 1 and two peaks for the first three targets that have
RCS values of 1000, 1, and 1000. TLS-ESPRIT can resolve closely separated targets with
very different RCS values, however, because of smearing, IFFT can not resolve them.

4.4. Linear Frequency Modulated Continuous Wave Radar Signal Model

As explained in section 2.4.2., the transmitted up-chirp LFM signal can be expressed

in complex notation by

5,(1)= rect (%) exp[j27z(fot+%at2)] 4.11)

:exp[j27r(fot+%at2)] , 0<t<T (4.12)

where a=B/T and f, is the chirp start frequency. Assuming a point scatterer at range R,

the received signal can be written as
. 1
sR(t)=Aexp{]27r[f0(t—z')+5a(t—r)2]} (4.13)

where 4 depends on target RCS, antenna gain, and range attenuation, and two way time

delay 7 is given as
T=—vo (4.14)

As explained in detail in block diagram of FMCW radar, the received signal is mixed
with a replica of the transmitted signal and then low-pass filtered. The output of low-pass

filter can be written as

s,(t) = Aexp[27 f,t +2nartt—rar’] (4.15)
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Substituting 7=2R/c and arranging the terms yield

so(t):Aexp{[4”§RJt+§(2%—2ﬂ?RJ} (4.16)
C C C

Now, assume d targets located at ranges R,,R,,...R, . So, the total received signal can

be expressed as

SR(I)=Zd: 4, eXp{jZﬂ-[fO(t_Tk)+%a(t_rk)2]} (4.17)

Therefore, the total signal at the output of the low-pass filter is

5,(f) = i A, exp{[4ﬂ-BRkjt + 2R, (2;zf0—2”BTRk J} (4.18)

cT c c

This expression will be used to generate the synthetic signals representing FMCW

radar returns from d targets located at ranges R, R,,...R, .

In section 2.4.3., it was shown that

r=SLl (4.19)
2B

which means that the range is proportional to the beat frequency. Therefore, proper
sampling of the low-pass filter output and finding the peaks in the spectrum gives us the
target ranges. The methods explained in chapter three will be used to find the spectrum of

the output of the low-pass filter, and the ranges, with high resolution.
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4.5. Comparison of Periodogram and High-Resolution Spectral Estimators for

Linear Frequency Modulated Continuous Wave Radar
For the following simulations, the parameters of the linear frequency modulated
continuous radar waveform, target ranges and radar cross sections, and the signal

processing methods will be given in the tables for each case.

4.5.1. Yule-Walker Method vs. Periodogram

Table 4.77. Parameters for simulation shown in figure 4.43

N | BW T AR Target Ranges (R, ) (meters) & RCSs (4,) SNR
600 1.5 10 10 2 3 5 7 10 11 50
GHz mSec cm 100 100 100 100 100 100

Yule-Walker vs. Periodogram

Down-Range Profile (dB )

Down-Range Distance (meters)

Figure 4.43. Comparison of Yule-Walker method and periodogram

Figure 4.43 shows that Yule-Walker method provides narrower peaks at the target
locations. Also note that Yule-Walker range profile has higher signal-to-clutter ratio (SCR)

than the range profile obtained via periodogram.

Table 4.78. Parameters for simulation shown in figure 4.44

N | BW T AR Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 1.5 10 10 2 3 5 7 10 11 1
GHz | mSec cm 100 100 100 100 100 100




Yule-Walker vs. Periodogram
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Figure 4.44. Comparison of Yule-Walker method and periodogram
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Figure 4.44 shows that Yule-Walker method provides much sharper peaks at the

target locations even in the very low SNR case than periodogram and its range profile has

higher SCR than range profile obtained via periodogram.

Table 4.79. Parameters for simulation shown in figure 4.45

N | BW T AR Target Ranges (R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 50
GHz | mSec cm 100 100 100 100 100 100

Yule-Walker vs. Periodogram

3
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Down-Range Distance (meters)

Figure 4.45. Comparison of Yule-Walker method and periodogram
Table 4.80. Parameters for simulation shown in figure 4.46
N BW T AR Target Ranges (R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 1

GHz | mSec cm 100 100 100 100 100 100
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Figure 4.46. Comparison of Yule-Walker method and periodogram
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Figures 4.45 and 4.46 show that Yule-Walker method provides much sharper peaks

at the target locations even when the SNR is very low and the targets are close to each

other and its range profile has higher SCR than range profile obtained via periodogram.

Table 4.81. Parameters for simulation shown in figure 4.47

N | BW T AR Target Ranges (R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 50
GHz | mSec cm 100 10 100 10 100 100

Yule-Walker vs. Periodogram
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Figure 4.47. Comparison of Yule-Walker method and periodogram
Table 4.82. Parameters for simulation shown in figure 4.48
N | BW T AR Target Ranges (R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 5

GHz | mSec cm 100 10 100 10 100 100
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Yule-Walker vs. Periodogram

Down-Range Profile (dB )

Down-Range Distance (meters)

Figure 4.48. Comparison of Yule-Walker method and periodogram

Figures 4.47 and 4.48 show that neither Yule-Walker method nor periodogram can
resolve the close targets with very different RCS values. However, note that Yule-Walker
method provides much sharper peaks at the target locations even when the SNR is very

low and the targets are close to each other and its range profile has higher SCR than range

profile obtained via periodogram.
4.5.2. Least-Squares Method vs. Periodogram

Table 4.83. Parameters for simulation shown in figure 4.49

N | BW T AR Target Ranges ( R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 3 5 7 10 11 50
GHz | mSec cm 100 100 100 100 100 100

Least-Squares vs. Periodogram

[N]
o

N
o

Down-Range Profile (dB )

-30

Down-Range Distance (meters)

Figure 4.49. Comparison of least-squares method and periodogram



Table 4.84. Parameters for simulation shown in figure 4.50
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BW

T

AR Target Ranges (R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 3 5 7 10 11 1
GHz | mSec cm 100 100 100 100 100 100

Least-Squares vs. Periodogram

Down-Range Profile (dB )

Down-Range Distance (meters)

Figure 4.50. Comparison of least-squares method and periodogram

Figures 4.49 and 4.50 show that least-squares method provides much sharper peaks at

the target locations even in the very low SNR case than periodogram and its range profile

has higher SCR than range profile obtained via periodogram.

Table 4.85. Parameters for simulation shown in figure 4.51

N BW T AR Target Ranges (R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 50
GHz | mSec cm 100 100 100 100 100 100
Least-Squares vs. Periodogram
A I - R
: \“b } —— Least-Squares
£ .
é }
=
a

Down-Range Distance (meters)

Figure 4.51. Comparison of least-squares method and periodogram



Table 4.86. Parameters for simulation shown in figure 4.52
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BW T AR Target Ranges ( R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 5
GHz | mSec cm 100 100 100 100 100 100

Down-Range Profile (dB )
o

Least-Squares vs. Periodogram

20

10

-10

-20

Down-Range Distance (meters)

Figure 4.52. Comparison of least-squares method and periodogram

Figures 4.51 and 4.52 show that Yule-Walker method provides much sharper peaks

at the target locations even when the SNR is very low and the targets are close to each

other and its range profile has higher SCR than range profile obtained via periodogram.

Table 4.87. Parameters for simulation shown in figure 4.53

N | BW T AR Target Ranges (R, ) (meters) & RCSs (4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 50
GHz | mSec cm 100 10 100 10 100 100

Down-Range Profile (dB )

Least-Squares vs. Periodogram

Down-Range Distance (meters)

Figure 4.53. Comparison of least-squares method and periodogram
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N BW T AR Target Ranges ( R, ) (meters) & RCSs ( 4,) SNR
600 1.5 10 10 2 2.1 7 7.2 10 11 15
GHz | mSec cm 100 10 100 10 100 100

Down-Range Profile ( dB

Least-Squares vs. Periodogram

Down-Range Distance (meters)

Figure 4.54. Comparison of least-squares method and periodogram

Figures 4.53 and 4.54 show that least-squares method can provide much better range

profiles than periodogram. Note that least-squares method can resolve the close targets

with very different RCS values and provide much sharper peaks at the target locations even

when the SNR is low and the targets are close to each other and its range profile has higher

SCR than range profile obtained via periodogram.

4.5.3. Higher-Order Yule-Walker Method vs. Periodogram

Table 4.89. Parameters for simulation shown in figure 4.55

N |BW | T | M| L | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR
600 | 1.5 10 [50 (50| 10 2 3 5 7 10 11 50
GHz | mSec cm | 100 100 100 100 100 100




N
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HOYW Method vs. Periodogram
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Down-Range Profile (dB )
o (%))
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Figure 4.55. Comparison of HOYW method and periodogram
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Table 4.90. Estimated HOYW ranges (in meters) in simulation shown in figure 4.55

2.0034

3.0050

5.0084

7.0116

10.0168

11.0183

Table 4.91. Parameters for simulation shown in figure 4.56

BW

T

M| L | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 [50 (50| 10 2 3 5 7 10 11 1
GHz | mSec cm | 100 100 100 100 100 100

HOYW Method vs. Periodogram

[ N
o [5))

-
&

Down-Range Profile ( dB )
o =

o

'
a

Down-Range Distance (meters)

Figure 4.56. Comparison of HOYW method and periodogram

Table 4.92. Estimated HOYW ranges (in meters) in simulation shown in figure 4.56

2.0049

3.0030

5.0065

7.0098

10.0212

11.0230

Figures 4.55 and 4.56 show that HOYW method can find the target ranges very

accurately even when the SNR is very low.



Table 4.93. Parameters for simulation shown in figure 4.57
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N | BW T | M| L | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR
600 | 1.5 10 | 50|50 10 2 2.1 7 7.2 10 11 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120

HOYW Method vs. Periodogram
I } 7777777777777777777 4\ 77777777 —— Periodogram
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Figure 4.57. Comparison of HOYW method and periodogram

Down-Range Distance (meters)

Table 4.94. Estimated HOYW ranges (in meters) in simulation shown in figure 4.57

2.0021

2.1046

7.0115 7.2122

10.0168

11.0182

Table 4.95. Parameters for simulation shown in figure 4.58

BW T

M| L | AR

Target Ranges (R, ) (meters) & RCSs (4,)

SNR

600

10
mSec

50150 10

cm

2 2.1 7
120 | 120 | 120

7.2
120

10
120

11
120

Down-Range Profile ( dB )

20

a

HOYW Method vs. Periodogram

Figure 4.58. Comparison of HOYW method and periodogram

Down-Range Distance (meters)
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Table 4.96. Estimated HOYW ranges (in meters) in simulation shown in figure 4.58

2.

0185 2.0986

7.0142 7.2093

10.0152

11.0186

Figures 4.57 and 4.58 show that HOYW method can find the target ranges very

accurately even when the targets are close to each other and the SNR is very low.

Table 4.97. Parameters for simulation shown in figure 4.59

N | BW T | M| L | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR
600 | 1.5 10 (5050 10 2 2.001 7 7.01 10 10.1 50
GHz | mSec cm | 120 120 120 120 120 120

HOYW Method vs. Periodogram
R o e
g 200~ e e .
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Figure 4.59. Comparison of HOYW method and periodogram

Table 4.98. Estimated HOYW ranges (in meters) in simulation shown in figure 4.59

2.0003 2.0049 7.0046 7.0248 10.0165 10.1172
Table 4.99. Parameters for simulation shown in figure 4.60
N |BW | T | M | L | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 | 10 | 150 [ 150 | 10 2 2.01 7 7.05 | 10 | 10.1 | 10
GHz | mS cm | 120 | 120 | 120 | 120 | 120 | 120




Down-Range Profile (dB )

HOYW Method vs. IFFT

Figure 4.60. Comparison of HOYW method and periodogram

Down-Range Distance (meters)
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Table 4.100. Estimated HOY W ranges (in meters) in simulation shown in figure 4.60

2.0000

2.0130

7.0166

7.0666

10.0145

10.1183

Figures 4.59 and 4.60 show that HOYW method can provide much better range

resolution than periodogram. Note that the range resolution of the periodogram method is

10 cm which means that periodogram method can not distinguish targets that are separated

less than 0.1 meter. Tables 4.97 and 4.98 show that HOYW method can resolve targets

even when the distance between targets is 0.001 meter where SNR is 50 and tables 4.99

and 4.100 show that HOYW method can resolve targets even when the distance between

targets is 0.01 meter where SNR is 10. Also note that the range accuracy of HOYW

method is better than periodogram.

Table 4.101. Parameters for simulation shown in figure 4.61

N |BW | T | M | L | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 | 10 | 150 [ 150 | 10 2 2.005 7 7.01 10 10.5 | 50
GHz | mS cm | 120 10 120 10 120 10
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Figure 4.61. Comparison of HOYW method and periodogram

Table 4.102. Estimated HOYW ranges (in meters) in simulation shown in figure 4.61

2.0024

2.0046

7.0099 7.0139

10.0118

10.0325

Table 4.103. Parameters for simulation shown in figure 4.62

N |BW | T

M

L

AR

Target Ranges (R, ) (meters) & RCSs ( 4,)

SNR

600 1.5 | 10
GHz | mS

150

150

10 2
cm

2.005 | 7
120 10 120

7.01
10

10 | 10.5 | 10
120 10

HOYW Method vs. Periodogram

Down-Range Profile ( dB )
= - N N
o [} o o o (6]

'
a

Down-Range Distance (meters)

Figure 4.62. Comparison of HOYW method and periodogram

Table 4.104. Estimated HOYW ranges (in meters) in simulation shown in figure 4.62

2.0020

2.0468

7.0050 7.0297

10.0144

10.0597

Figures 4.61 and 4.62 show that HOYW method can provide much better range

resolution even when the targets that have very different RCS values are so close.




4.5.4. Root-MUSIC vs. Periodogram

Table 4.105. Parameters for simulation shown in figure 4.63
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N | BW | T | M | MSSP | AR | Target Ranges( R, )(meters) & RCSs(4,) | SNR
600 | 1.5 | 10 | 50 NO 10 2 3 5 7 10 11 50
GHz | mS cm 120 120 | 120 | 120 | 120 | 120

Down-Range Profile (dB )

N
o

Root-MUSIC Method vs. Periodogram

N
S

o

=

o

=)

&

Down-Range Distance (meters)

Figure 4.63. Comparison of Root-MUSIC method and periodogram

Table 4.106. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.63

2.0040

3.

0050

5.0084

7.0117

10

.0167 11.0184

Table 4.107. Parameters for simulation shown in figure 4.64

N | BW | T | M | MSSP | AR | Target Ranges(R, )(meters) & RCSs(4,) | SNR
600 1.5 | 10 | 50 NO 10 2 3 5 7 10 11 7
GHz | mS cm 120 120 | 120 | 120 | 120 | 120

Root-MUSIC Method vs. Periodogram
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Figure 4.64. Comparison of Root-MUSIC method and periodogram
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Table 4.108. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.64

2.0061

3.0063

5.0090

7.0124

10.0173

11.0049

Figures 4.63 and 4.64 show that Root-MUSIC method can find the target ranges very

accurately even when the SNR is very low.

Table 4.109. Parameters for simulation shown in figure 4.65

N | BW | T | M | MSSP | AR | Target Ranges(R, )(meters) & RCSs(4,) | SNR
600 | 1.5 | 10 | 50 NO 10 2 2.01 7 17.05| 10 11 50
GHz | mS cm 120 120 | 120 | 120 | 120 | 120

Root-MUSIC Method vs. Periodogram

)

Down-Range Profile ( dB

Down-Range Distance (meters)

Figure 4.65. Comparison of Root-MUSIC method and periodogram

Table 4.110. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.65
10.0167

2.0039

2.0119

7.0117

7.0619

11.0183

Figures 4.65 shows that Root-MUSIC method can find the target ranges very

accurately when SNR is high. Note that Root-MUSIC method can resolve the targets that

are separated by 1 cm where the range resolution that can be achieved via periodogram is

10 cm and the periodogram range profile has one broad peak instead of two narrow peaks

for the first and second two targets.

Table 4.111. Parameters for simulation shown in figure 4.66

N | BW | T | M | MSSP | AR | Target Ranges(R, )(meters) & RCSs(4,) | SNR
600 | 1.5 | 10 | 50 NO 10 2 2.05 7 7.1 10 11 10
GHz | mS cm 120 120 | 120 | 120 | 120 | 120
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Figure 4.66. Comparison of Root-MUSIC method and periodogram
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Table 4.112. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.66

2.

0133

12.4266

7.0139

7.1155

10.0157

11.0192

As can be seen from figure 4.66, Root-MUSIC method can yield false alarms when

the SNR is low and the targets are too close.

Table 4.113. Parameters for simulation shown in figure 4.67

BW

T

M | MSSP

AR

Target Ranges( R, )(meters) & RCSs( 4, )

SNR

600 | L5

GHz

10
mS

50 | YES

10 2
cm 120

2.05
120

7
120

7.1
120

10
120

11
120

10

Root-MUSIC Method vs. Periodogram

25

20

15

10

Down-Range Profile ( dB )
o 401

-10

Down-Range Distance (meters)

Figure 4.67. Comparison of Root-MUSIC method and periodogram

Table 4.114. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.67

1.9909

2.0451

7.0108

7.1115

10.0176

11.0190
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Figure 4.67 and table 4.114 show that the false alarm ratio of the Root-MUSIC
method can be decreased using spatial smoothing techniques. Note that Root-MUSIC
method implemented together with spatial smoothing techniques can achieve much better

range resolution and very accurate range estimates than periodogram even when the SNR

is low.

Table 4.115. Parameters for simulation shown in figure 4.68

N | BW | T | M | MSSP | AR | Target Ranges(R, )(meters) & RCSs(4,) | SNR
600 | 1.5 | 10 | 50 | YES 10 2 2.05 7 7.1 | 10 11 50
GHz | mS cm 120 10 | 120 | 10 [ 120 ] 120

Root-MUSIC Method vs. Periodogram

N
(5,

Down-Range Profile ( dB )
o 3 & 8

o

|
a

Down-Range Distance (meters)

Figure 4.68. Comparison of Root-MUSIC method and periodogram

Table 4.116. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.68
2.0034 2.0544 7.0117 7.1117 10.0167 | 11.0184

Table 4.117. Parameters for simulation shown in figure 4.68

N |BW | T | M | MSSP | AR | Target Ranges(R, )(meters) & RCSs(4,) | SNR
600 1.5 | 10 | 50 | YES | 10 2 2.05 7 7.1 | 10 11 10
GHz | mS cm 120 10 [ 120 | 10 | 120 | 120
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- N N N
o (%)) o (&)

Down-Range Profile (dB )
o 4401

-10

Down-Range Distance (meters)

Figure 4.69. Comparison of Root-MUSIC method and periodogram
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Table 4.118. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.68
1.9927 2.0763

7.0324 7.1427

10.0138

11.0201

Figures 4.68 and 4.69 show that Root-MUSIC method implemented together with

spatial smoothing techniques can resolve targets that are close to each other and have very

different RCS values.

4.5.5. Minimum-Norm Method vs. Periodogram

Table 4.119. Parameters for simulation shown in figure 4.70

N |BW | T M | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 50 | 10 2 3 5 7 10 11 50
GHz | mSec cm | 120 120 120 120 120 120

Minimum-Norm Method vs. Periodogram

2hF——— = —— - o - - o - —-—-—-—= S

)

Down-Range Profile ( dB

Down-Range Distance (meters)

Figure 4.70. Comparison of Minimum-Norm method and periodogram
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Table 4.120. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.70

2.0033

3.0050

5.0084

7.0117

10.0167

11.0184

Table 4.121. Parameters for simulation shown in figure 4.71

N |BW | T M | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR
600 | 1.5 10 50 | 10 2 3 5 7 10 11 5
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120

Minimum-Norm Method vs. Periodogram
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Figure 4.71. Comparison of Minimum-Norm method and periodogram

Table 4.122. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.71

2.0056

3.0074

5.0094

7.0129

10.0194

11.0167

Figures 4.70 and 4.71 show that Minimum-Norm method can find the target ranges

very accurately even when the SNR is very low.

Table 4.123. Parameters for simulation shown in figure 4.72

N | BW T M | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | 10 2 2.005 7 7.01 10 10.1 50
GHz | mSec cm | 120 120 120 120 120 120
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Minimum-Norm Method vs. Periodogram
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Figure 4.72. Comparison of Minimum-Norm method and periodogram

Table 4.124. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.72

2.0027 2.0075 7.0115 7.0216 10.0167 10.1168

Figure 4.72 shows that Minimum-Norm method can resolve the targets with 5 mm
separation whereas periodogram can barely resolve targets with 10 cm separation. So, it is
obvious that Minimum-Norm method provides much better range resolution than

periodogram.

Table 4.125. Parameters for simulation shown in figure 4.73

N |BW | T | M | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR

600 | 1.5 10 | 100 | 10 2 2.02 7 7.03 10 10.1 | 10
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 [ 120

Minimum-Norm Method vs. Periodogram
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Figure 4.73. Comparison of Minimum-Norm method and periodogram
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Table 4.126. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.73

2.0001

2.0265

7.0168

7.0537

10.0169

10.1160

Figure 4.73 shows that Minimum-Norm method can provide much better range

resolution and much more accurate range estimates than periodogram even when the SNR

is very low.
Table 4.127. Parameters for simulation shown in figure 4.74
N |BW | T M | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | 10 2 2.01 7 7.02 10 10.1 | 50
GHz | mSec cm | 120 10 120 10 120 10

Minimum-Norm Method vs. Periodogram

Down-Range Profile (dB )

Down-Range Distance (meters)

Figure 4.74. Comparison of Minimum-Norm method and periodogram

Table 4.128. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.74

2.0032

2.0184

7.0116

7.0322

10.0167

10.1168

Table 4.129. Parameters for simulation shown in figure 4.75

N |BW | T M | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR
600 | 1.5 10 100 | 10 2 2.08 7 7.01 10 10.5 10
GHz | mSec cm | 120 10 120 10 120 10
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Figure 4.75. Comparison of Minimum-Norm method and periodogram
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Table 4.130. Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.75
2.0035 2.0987

7.0116 7.1022

10.0166

10.5241

Figures 4.74 and 4.75 show that Minimum-Norm method can resolve close targets

that have very different RCS values. Note that Minimum-Norm method could resolve the

first two targets with separation 8 cm whereas periodogram could not resolve the last two

targets with separation 50 cm.

4.5.6. LS-ESPRIT vs. Periodogram

Table 4.131. Parameters for simulation shown in figure 4.76

N | BW T M | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | 10 2 3 5 7 10 11 50
GHz | mSec cm | 120 120 120 120 120 120
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Figure 4.76. Comparison of LS-ESPRIT method and periodogram
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Table 4.132. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.76

2.0033

3.0050

5.0083

7.0117

10.

0167

11.0184

Table 4.133. Parameters for simulation shown in figure 4.77

N |BW | T M | AR | Target Ranges (R,) (meters) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | 10 2 3 5 7 10 11 1
GHz | mSec cm | 120 120 120 120 120 120

LS-ESPRIT vs. Periodogram
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Figure 4.77. Comparison of LS-ESPRIT method and periodogram

Table 4.134. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.77

2.0033

3.0050

5.0083

7.0117

10.0167

11.0184

Figures 4.76 and 4.77 show that LS-ESPRIT method can find the target ranges very

accurately even when the SNR is very low.

Table 4.135. Parameters for simulation shown in figure 4.78

N |BW | T M | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 100 | 10 2 2.005 7 7.01 10 | 10.05| 50
GHz | mSec cm | 120 120 120 120 120 120
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Figure 4.78. Comparison of LS-ESPRIT method and periodogram

Table 4.136. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.78

2.0047

2.0105

7.0123

7.0204

10.0167

10.0668

Table 4.137. Parameters for simulation shown in figure 4.79

N | BW T M | AR | Target Ranges (R, ) (meters) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | 10 2 2.02 7 7.05 | 10 | 105 | 10
GHz | mSec cm | 120 120 120 120 120 120
LS-ESPRIT vs. Periodogram
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Figure 4.79. Comparison of LS-ESPRIT method and periodogram

Table 4.138. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.79

1.9998

2.0253 7.0134

7.0608

10.0165

10.0665

Figures 4.78 and 4.79 show that LS-ESPRIT method can find the target ranges very

accurately even when the SNR is very low and the targets are very close. Note that

periodogram can resolve any close pairs.



Table 4.139. Parameters for simulation shown in figure 4.80
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N |BW | T M | MSSP | AR | Target Ranges (R, ) (m) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | NO 10 2 (2002 7 |[7.01] 10 [10.05| 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120
LS-ESPRIT vs. Periodogram
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Figure 4.80. Comparison of LS-ESPRIT method and periodogram

Table 4.140. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.80

2.0033

2.0052

7.0114

7.0156

10.0167

10.0668

Table 4.141. Parameters for simulation shown in figure 4.81

N |BW | T | M |MSSP| AR | Target Ranges (R,) (m) & RCSs (4,) | SNR
600 | 1.5 10 {100 | YES | 10 2 12002 7 |7.01| 10 |10.05| 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120
LS-ESPRIT vs. Periodogram
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Figure 4.81. Comparison of LS-ESPRIT method and periodogram

Table 4.142. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.81

2.0033

2.0052

7.0114

7.0156

10.0167

10.0668
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Figures 4.80 and 4.81 show that spatial smoothing techniques increases the accuracy
of the LS-ESPRIT method. Note that the false alarms are eliminated by modified spatial

smoothing processing.

Table 4.143. Parameters for simulation shown in figure 4.82

N |BW | T | M |MSSP| AR | Target Ranges (R, ) (m) & RCSs (4,) | SNR

600 | 1.5 10 [ 100 | YES | 10 2 (201 7 |7.02| 10 |10.05] 50
GHz | mSec cm | 120 | 10 [ 120 | 10 | 120 | 10
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Figure 4.82. Comparison of LS-ESPRIT method and periodogram

Table 4.144. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.82
2.0033 2.0131 7.0116 7.0325 10.0167 10.0668

Table 4.145. Parameters for simulation shown in figure 4.83

N |BW | T | M |MSSP| AR | Target Ranges (R,) (m) & RCSs (4,) | SNR

600 | 1.5 10 {100 | YES | 10 2 (207 7 (7.08] 10 | 10.1 | 10
GHz | mSec cm | 120 | 10 [ 120 | 10 | 120 | 10
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Figure 4.83. Comparison of LS-ESPRIT method and periodogram
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Table 4.146. Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.83

2.0031

2.0646

7.0125 7.0866

10.0163

10.1176

Figures 4.82 and 4.83 show that LS-ESPRIT can resolve the close targets with very
different RCS values even when the SNR is low.

4.5.7. TLS-ESPRIT vs. Periodogram

Table 4.147. Parameters for simulation shown in figure 4.84

N |BW | T M | MSSP | AR | Target Ranges (R,) (m) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | NO 10 2 3 5 7 10 11 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120

TLS-ESPRIT vs. Periodogram
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Figure 4.84. Comparison of TLS-ESPRIT method and periodogram
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Table 4.148. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.84

2.0033

3.0050

5.0084

7.0117

10.0167

11.0184

Table 4.149. Parameters for simulation shown in figure 4.85

N |BW | T | M |MSSP| AR | Target Ranges (R,) (m) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | NO 10 2 3 5 7 10 11 1
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120

TLS-ESPRIT vs. Periodogram
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Figure 4.85. Comparison of TLS-ESPRIT method and periodogram

Table 4.150. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.85

2.0018

3.0053

5.0120

7.0108

10.0159

11.0174

Figures 4.84 and 4.85 show that TLS-ESPRIT method can find the target ranges very

accurately even when the SNR is very low.

Table 4.151. Parameters for simulation shown in figure 4.86

N |BW | T | M |MSSP| AR | Target Ranges (R, ) (m) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | NO 10 2 12003 7 |7.01] 10 [10.1 | 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120
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Figure 4.86. Comparison of TLS-ESPRIT method and periodogram
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Table 4.152. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.86

2.0018

3.0053

5.0120

7.0108

10.0159 11.0174

Table 4.153. Parameters for simulation shown in figure 4.87

N |BW | T M | MSSP | AR | Target Ranges (R,) (m) & RCSs (4,) | SNR
600 | 1.5 10 | 100 | NO 10 2 (2015 7 7.02 | 10 | 10.1 10
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120

TLS-ESPRIT vs. Periodogram
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Figure 4.87. Comparison of TLS-ESPRIT method and periodogram

Table 4.154. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.87

2.0068

2.0487

7.0063

7.0356

10.0167 10.1168

Figures 4.86 and 4.87 show that TLS-ESPRIT method can find the target ranges very

accurately even when the SNR is very low and the targets are so close to each other. Note

that in both case TLS-ESPRIT method provides much better range estimates than



168

periodogram. Also, it is observed that TLS-ESPRIT method can resolve closer targets than

LS-ESPRIT method. LS-ESPRIT method could resolve targets with separation 5 mm when

SNR is 50 and 2 cm when SNR is 10 whereas TLS-ESPRIT method can resolve targets

with separation 3 mm when SNR is 50 and 1.5 cm when SNR is 10.

Table 4.155. Parameters for simulation shown in figure 4.88

Down-Range Relative Distance (meters)

Figure 4.88. Comparison of TLS-ESPRIT method and periodogram

N |BW | T M | MSSP | AR | Target Ranges (R,) (m) & RCSs (4,) | SNR
600 | 1.5 10 {100 NO | 10 | 2 [2.003| 7 |7.01| 10 [ 10.1 | 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120
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Table 4.156. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.88

2.0043

14.3711

6.9950

7.0133

10.0167

10.1169

Table 4.157. Parameters for simulation shown in figure 4.89

N |BW | T M | MSSP | AR | Target Ranges (R, ) (m) & RCSs (4,) | SNR
600 | 1.5 10 [ 100 | YES | 10 2 12002 7 |7.003]| 10 | 10.1 | 50
GHz | mSec cm | 120 | 120 | 120 | 120 | 120 | 120
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TLS-ESPRIT vs. Periodogram
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Figure 4.89. Comparison of TLS-ESPRIT method and periodogram

Table 4.158. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.89
2.0016 2.0047 7.0118 7.0145 10.0167 10.1169

Figures 4.88 and 4.89 show that spatial smoothing techniques increases the accuracy
of the TLS-ESPRIT method. Note that the false alarms are eliminated by modified spatial

smoothing processing.

Table 4.159. Parameters for simulation shown in figure 4.90

N |BW | T M | MSSP | AR | Target Ranges (R, ) (m) & RCSs (4,) | SNR

600 | 1.5 10 | 100 | YES | 10 [ 2 |2.005| 7 |7.01| 10 [10.05| 50
GHz | mSec cm | 120 ] 10 | 120 ] 10 | 120 ] 10
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Figure 4.90. Comparison of TLS-ESPRIT method and periodogram

Table 4.160. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.90
2.0032 2.0066 7.0117 7.0227 10.0167 10.1168




Table 4.161. Parameters for simulation shown in figure 4.91
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N |BW | T | M |MSSP| AR | Target Ranges (R,) (m) & RCSs (4,) | SNR
600 | 1.5 10 {100 | YES | 10 2 1206 7 |7.07] 10 [10.05] 10
GHz | mSec cm [ 120 | 10 | 120 | 10 | 120 10
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Figure 4.91. Comparison of TLS-ESPRIT method and periodogram

Table 4.162. Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.91

2.0030 2.0439 7.0119 7.0669

10.0161

10.1463

Figures 4.90 and 4.91 show that TLS-ESPRIT can resolve the close targets with very

different RCS values even when the SNR is low. Note that TLS-ESPRIT can resolve closer

targets compared with LS-ESPRIT.
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5. RESOLVING CAPABILITY of SUPER-RESOLUTION
METHODS : EXPERIMENTAL STUDY

This chapter investigates the resolving capability of super-resolution spectral
estimation methods explained in chapter three using experimental stepped-frequency radar
data for buried and through-the-wall object detection. First, the experimental setup will be
explained. Then, the resolving capability of super-resolution spectral estimation methods

will be tested using different sets of experimental data.

5.1. Experimental Setup

Field experiments have been performed at the laboratory of National Institute of
Electronics and Cryptology using HP-8753 vector network analyzer. This vector network
analyzer works as an SFCW radar. Top and front views of the experimental field are
shown in figures 5.1 and 5.2, respectively. The wall is realized using a pool filled with

ordinary soil.

- 5

Figure 5.1. Top view of experimental field
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30 10

Figure 5.2. Front view of experimental field
Four metallic plates whose dimensions are given in table 5.1 are used as targets.

Table 5.1. Dimensions of the targets

Target Width (cm) | Length (cm)
M 34 100
A 59
B 59
C 59

Two co-axial cables with length 2 meters are used to connect the network analyzer
ports to antennas. The antennas used in the experiments are double ridged waveguide horn

antennas which operate in 1-18 GHz frequency band. Two-port calibration was performed

at the co-axial cable ends before the tests.
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In order to investigate the effect of frequency band of operation and bandwidth of
stepped frequency radar waveform on signal processing algorithms, test were performed at
different bandwidths and frequencies. Table 5.2 shows the bandwidths used in the tests and

corresponding frequency bands.

Table 5.2. Bandwidths and frequency bands used in the experiments

Bandwidth Frequency Band
500 MHz 1-1.5GHz
750 MHz 1-1.75 GHz

1 GHz 1-2GHz
1.5 GHz 1-2.5GHz
2 GHz 1-3GHz
2.5 GHz 1-3.5GHz
3 GHz 1 -4 GHz

Different number of points which corresponds to the number of steps in the stepped-
frequency radar waveform were used to collect data during the tests. HP-8753 network
analyzer provides 26, 51, 101, 201, 401, 801, 1601 as options for the number of points.
Since increasing the number of steps in the stepped-frequency radar waveform increases
the un-ambiguous range if the bandwidth is kept constant and the walls of the test field are

covered with absorbers, only 26, 51, 101, and 201 points were used during the tests.

Since stepped-frequency radar uses continuous waveforms, in order to reduce the
leakage from transmitter to receiver, bistatic operation was chosen for radar and s,
parameter data are collected using network analyzer. In order to automate the data
collection process, a simple software was developed in LabWindows/CVI. The software
controls the network analyzer and stores the s,, data for each bandwidth, target, and target
position using HP-IB bus. The graphical user interface(GUI) of the program is shown in
figure 5.3. The user can select the s-parameter, number of points and frequency bandwidth
(or start and stop frequencies) via the GUI. The “MEASURE” button takes measurement
according to selected parameters, “SAVE--DATA” button saves the s-parameter data in a
text file and “SAVE--SCREEN” button saves the current screen. The graphs in the GUI
shows the in-phase and quadrature data in linear scale and the magnitude of the spectrum

in logarithmic scale.
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Figure 5.3. GUI of the program used for automated data collection

Frequency band of operation is an important parameter for the stepped frequency
radar. It is known that the attenuation constant of the radio frequency signals increases as
the frequency increases. We also know that the range resolution of the stepped-frequency
radar increases with bandwidth. So, we should find a region in the spectrum where we
minimize the attenuation and maximize the bandwidth. As can be seen from figure 5.3, the
magnitude of the inphase and quadrature signals decreases drastically after 3 GHz and
drops to zero about 4 GHz. Also, since the antennas used in the experiments operates in 1-
18 GHz frequency band, the magnitude of the inphase and quadrature signals decreases
also below 1 GHz because of antenna. So, the tests are performed in the frequency band of
1-4 GHz. Also, many tests were performed using another network analyzer up to 18 GHz,

however, because of the reasons explained above, they did not provide satisfactory results.
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5.2. Super-resolution Spectral Estimators for Through-the-Wall
Object Detection

In order to investigate the performance of super-resolution spectral estimators for
through-the-wall object detection, different sets of experimental data have been taken using
network analyzer. Targets and their position are changed during experiments. Tests are
numerated according to the targets used in the experiments and their locations. Targets
used in each case and their corresponding locations are shown in tables 5.3 and 5.4. Figure

5.4 shows the locations of the targets in the experimental setup.

Table 5.3. Targets and their locations in TWOD experiments

Case Target Location
0 - -
1 M 1
2 M 2
3 M 5
4 A 1
5 A 2
6 A 3
7 A 4
8 A 5
9 B 1

10 B 2
11 B 3
12 B 4
13 B 5
14 C 1
15 C 2
16 C 3
17 C 4
18 C 5

Data collected in cases 1-18 shown in table 5.3 will be used to test the accuracy of
super-resolution spectral estimation methods explained in chapter three. In case-0, there is

any target in the field and this case corresponds to the background measurement.
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Table 5.4. Targets and their locations in TWOD experiments

Case Target-1 Location-1 Target-2 Location-2
19 5 1
20
21
22
23
24
25
26
27
28
29
30

> RIRIRIRIRIR
G| o oo o oo o oo
QOO W |W W | |T | (||
W N — [ [ W [N [— W

Data collected in cases 19-30 shown in table 5.4 will be used to test the resolving
capability of super-resolution spectral estimation methods. In case-19, target-M is at

location-5 and target-A is at location-1.

FHEEE

Figure 5.4. Target locations in the TWOD experiments

Following sections will investigate the performance of super-resolution spectral
estimators in TWOD application and compare their performance with classically used

periodogram method.



5.2.1. Comparison of Yule-Walker Method and Periodogram for TWOD
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Several simulations were carried out to investigate the performance of AR modeling

using Yule-Walker method for TWOD application. Note that the parameters of the

stepped-

frequency radar waveform (bandwidth and number of points) and the case

numbers are shown in the figures.

Down-Range Profile (dB )

Figure 5

Down-Range Profile (dB )

-100

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
-20

| Case-0, Periodogram
Yo ) S A

|

| —— Case-0, Yule-Walker
T T

Down-Range Relative Distance (meters)

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)

.5. Comparison of Yule-Walker method and periodogram for TWOD (Case-0)
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Figure 5.6. Comparison of Yule-Walker method and periodogram for TWOD (Case-1)

Figure 5.6 shows that Yule-Walker method provides narrower peak at the target

location. Also note that the Signal-to-Clutter Ratio (SCR) of the Yule-Walker range profile

is higher than the SCR of the periodogram range profile.
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Figure 5.7. Comparison of Yule-Walker method and periodogram for TWOD (Case-2)
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Figure 5.8. Comparison of Yule-Walker method and periodogram for TWOD (Case-3)

Note that both methods find the target location accurately. However, it is obvious that

Yule-Walker range profile is better than periodogram range profile.
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Figure 5.9. Comparison of Yule-Walker method and periodogram for TWOD (Case-15)
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Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201
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Figure 5.10. Comparison of Yule-Walker method and periodogram for TWOD (Case-17)

Figures 5.9 and 5.10 show that Yule-Walker method provides much better range

profiles than periodogram method even when the target has small RCS value. In figure

5.10, Yule-Walker range profile has a small but sharp peak at target location; however,

periodogram range profile has several broad peaks around target location and the target is

not resolved.
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Figure 5.11. Comparison of Yule-Walker method and periodogram for TWOD (Case-20)

In case-20, target-M is in location-5 and target-B is in location-2, and as can be seen

from the figure 5.11, Yule-Walker method can resolve them better than periodogram. Note

that Yule-Walker method range profile has sharper peaks at target locations. Second

highest peak in figure 5.11 corresponds to target-M and the peak on left of it corresponds

to the target-B.



5.2.2. Comparison of Least-Squares Method and Periodogram for TWOD
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Figure 5.12. Comparison of Least-Squares method and periodogram for TWOD (Case-2)
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Figure 5.13. Comparison of Least-Squares method and periodogram for TWOD (Case-6)
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Figure 5.14. Comparison of Least-Squares method and periodogram for TWOD (Case-12)
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Figures 5.12-14 show that Least-Squares method provides better range profiles than
periodogram method even for the small targets. Note that Least-Squares range profiles

have sharper peaks at target locations and higher SCR.

Least-Squares Method vs. Periodogram ( BW=3000 MHz, N=201)

—— Case-20, Periodogram
—— Case-20, Least-Squares | |

Down-Range Profile (dB )

Down-Range Relative Distance (meters)

Figure 5.15. Comparison of Least-Squares method and periodogram for TWOD (Case-20)

In case-20, target-M is in location-5 and target-B is in location-2, and as can be seen
from figure 5.15, Yule-Walker method can resolve them better than periodogram. Note
that Yule-Walker method range profile has sharper peaks at target locations. Second

highest peak in figure 5.11 corresponds to target-M and the peak on left of it corresponds
to the target-B.

5.2.3. Comparison of Line Spectra Methods and Periodogram for TWOD

This section covers the performance analysis of line spectral estimators explained in
detail in section 3.4 in TWOD application. The parameters of the stepped-frequency radar
and the target locations are given in the figures. Data collected for the case given in figure
is processed using the line spectral estimators and the corresponding range estimates are
given in tables below the corresponding figures. In tables, the columns named as “Target-
i” represents the range estimates for the i” target and the column named as “Difference”

represents the distance between the range estimates of the targets.
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Figure 5.16. Comparison of line spectral estimators and periodogram for TWOD (Case-1)

Table 5.5. Range estimates of line spectral estimators (Case-1)

Case-1 Target-1 Target-2 Difference
HOYW Method 24144 2.9659 0.5515
Min-Norm Method 24158 2.9669 0.5511
LS-ESPRIT 24157 2.9665 0.5508
TLS-ESPRIT 24157 2.9665 0.5508
Root-MUSIC Method 24181 2.9705 0.5524
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Figure 5.17. Comparison of Line spectral estimators and periodogram for TWOD (Case-2)

Table 5.6. Range estimates of line spectral estimators (Case-2)

Difference
Case-2 Target-1 Target-2 Difference | (incase-1) | Displacement
HOYW Method 2.4160 3.0907 0.6747 0.5515 0.1232
Min-Norm Method 24151 3.0946 0.6795 0.5511 0.1284
LS-ESPRIT 2.4147 3.0950 0.6803 0.5513 0.1290
TLS-ESPRIT 24147 3.0950 0.6803 0.5513 0.1290
Root-MUSIC 24162 3.0920 0.6758 0.5524 0.1234
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Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.18. Comparison of line spectral estimators and periodogram for TWOD (Case-3)

Table 5.7. Range estimates of line spectral estimators (Case-3)

Difference
Case-3 Target-1 Target-2 Difference | (incase-1) | Displacement
HOYW Method 2.4144 3.3123 0.8979 0.5515 0.3464
Min-Norm Method 2.4150 3.3101 0.8951 0.5511 0.3440
LS-ESPRIT 2.4146 3.3105 0.8959 0.5513 0.3446
TLS-ESPRIT 2.4145 3.3105 0.8960 0.5513 0.3447
Root-MUSIC 2.4167 3.3165 0.8998 0.5524 0.3474

Figures 5.16-18 and tables 5.5-7 show that all the line spectral estimators can find the

target ranges and they provide very similar range estimates.
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Figure 5.19. Comparison of line spectral estimators and periodogram for TWOD (Case-4)
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Case-4 Target-1 Target-2 Difference
HOYW Method 2.4130 2.9508 0.5378
Min-Norm Method 24137 2.9276 0.5139
LS-ESPRIT 2.4145 2.9109 0.4964
TLS-ESPRIT 2.4145 2.9109 0.4964
Root-MUSIC 24152 2.9720 0.5568

In case-4, target-A is at location-1. Since the highest peak in the spectrum

corresponds to the front side of the wall and the distance between front side of the wall and

the location-1, which corresponds to the back side of the wall, is 34 cm, it is obvious that

ESPRIT solutions provide the most accurate range estimates.

Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.20. Comparison of line spectral estimators and periodogram for TWOD (Case-5)

Table 5.9. Range estimates of line spectral estimators (Case-5)

Difference
Case-5 Target-1 Target-2 Difference (case-4) Displacement
HOYW Method 2.4170 3.0874 0.6704 0.5378 0.1326
Min-Norm Method 2.4145 3.0724 0.6579 0.5139 0.1440
LS-ESPRIT 24141 3.0633 0.6492 0.4964 0.1528
TLS-ESPRIT 2.4140 3.0634 0.6494 0.4964 0.1530
Root-MUSIC 2.4157 3.0850 0.6693 0.5568 0.1125

In case-5, the actual difference between the front side of the wall and the location-2 is

50 cm. Table 5.9 shows that ESPRIT solutions provide the most accurate range estimates

even for the smaller target. Also note that ESPRIT solutions find the displacement of

target-2 between case-4 and case-5, which is 16 cm, very accurately.
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Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.21. Comparison of line spectral estimators and periodogram for TWOD (Case-6)

Table 5.10. Range estimates of line spectral estimators (Case-6)

Case-6 Difference
Target-1 Target-2 Difference | (incase-5) | Displacement
HOYW Method 2.4124 3.1915 0.7791 0.6704 0.1087
Min-Norm Method 2.4186 3.1569 0.7383 0.6579 0.0804
LS-ESPRIT 2.4190 3.1532 0.7342 0.6492 0.0850
TLS-ESPRIT 2.4190 3.1532 0.7342 0.6494 0.0848
Root-MUSIC 2.4172 3.1135 0.6963 0.6693 0.0270

Figure 5.21 and table 5.10 shows that all line spectral estimators can find the target
ranges whereas it is not possible to determine the number of targets and the positions form
the periodogram range profile. We can conclude that line spectral estimators outperform
periodogram method even for small targets. Also note that the ESPRIT solutions and Min-
Norm method find the displacement of target-2 between case-5 and case-6, which is 8 cm,

very accurately.

Line Spectral Methods vs. Periodogram ( BW=500 MHz, N=26)
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Figure 5.22. Comparison of line spectral estimators and periodogram for TWOD (Case-1)
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Table 5.11. Range estimates of line spectral estimators (Case-1)

Case-1 (Small BW,N) Target-1 Target-2 Difference
HOYW Method 2.3302 3.0878 0.7576
Min-Norm Method 2.5638 3.0674 0.5036
LS-ESPRIT 2.5827 3.0577 0.4750
TLS-ESPRIT 2.5826 3.0579 0.4753
Root-MUSIC 2.5590 3.1341 0.5751

Figure 5.22 and table 5.11 shows the range profile and range estimates, respectively,
for the data with 26 points and 500 MHz stepped-frequency radar bandwidth. It is not
possible to determine the number of targets and the target positions from the periodogram

range profile.

For 500 MHz stepped-frequency radar bandwidth, periodogram method has 30 cm
range resolution which is too high for TWOD application. However, note that even when
the number of points and the bandwidth is very small, line spectral estimators can find the
target ranges. This means that using line spectral estimators as radar signal processing tool
instead of periodogram relaxes the constraints on stepped-frequency radar waveform. First,
less number of steps in the stepped-frequency radar waveform will be required to achieve
desired range resolution which decreases the operation time and complexity. Secondly,
bandwidth of stepped-frequency radar waveform can be decreased which in turn decreases

the cost of the system and improves the performance.
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Figure 5.23. Comparison of line spectral estimators and periodogram for TWOD (Case-2)
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Table 5.12. Range estimates of line spectral estimators (Case-2)

Difference
Case-2 (Small BW,N) | Target-1 Target-2 Difference | (in case-1) Displacement
HOYW Method 2.3805 3.2335 0.8530 0.7576 0.0954
Min-Norm Method 2.5147 3.1654 0.6507 0.5036 0.1471
LS-ESPRIT 2.5149 3.1618 0.6469 0.4750 0.1719
TLS-ESPRIT 2.5149 3.1618 0.6469 0.4753 0.1716
Root-MUSIC 2.4603 3.2468 0.7865 0.5751 0.2114

Figure 5.23 and table 5.12 show that line spectral estimators can find the target

ranges even for very small bandwidth and number of points whereas periodogram can

provide any information about the targets. Also note that the most accurate estimate of the

displacement of target-2 between case-1 and case-2, which is 16 cm, and the distance

between target-1 and target-2 in case-2 are provided by ESPRIT solutions.
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Figure 5.24. Comparison of line spectral estimators and periodogram for TWOD (Case-3)

Table 5.13. Range estimates of line spectral estimators (Case-3)

Case-3 (Small BW,N) Target-1 Target-2 Difference
HOYW Method 2.4936 3.4029 0.9093
Min-Norm Method 2.5157 3.3909 0.8752
LS-ESPRIT 2.5550 3.3919 0.8369
TLS-ESPRIT 2.5546 3.3923 0.8377
Root-MUSIC 2.5296 3.4173 0.8877

Table 5.13 shows that the ESPRIT solutions provide the best estimate of the distance

between target-1 and target-2 in case 3.
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Periodogram ( BW=500 MHz, N=26 )
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Figure 5.25. Comparison of line spectral estimators and periodogram for TWOD (Case-19)

Table 5.14. Range estimates of line spectral estimators (Case-19)

Difference | Difference | Difference

Case-19 (Small BW,N) | Target-1 | Target-2 | Target-3 | (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 2.3784 | 3.1131 | 3.5176 0.7347 1.1392 0.4045
Min-Norm Method 2.3976 | 3.1135 | 3.5133 0.7159 1.1157 0.3998
LS-ESPRIT 24078 | 3.1049 | 3.499 0.6971 1.0912 0.3941
TLS-ESPRIT 2.4075 | 3.1048 | 3.4994 0.6973 1.0919 0.3946
Root-MUSIC 2.3975 | 3.1219 | 3.523 0.7244 1.1255 0.4011

In case-19, target-M is at location-5 and target-A is at location-1. Note that it is not

possible to detect the presence of three targets from the periodogram range profile shown

in figure 5.25 while line spectral estimators provide consistent range estimates for three

targets.
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Figure 5.26. Comparison of line spectral estimators and periodogram for TWOD (Case-20)
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Table 5.15. Range estimates of line spectral estimators (Case-20)

Difference
Case-20 Target- | Target- | Target- | Difference | (Betw. 1&2
(Small BW, N) 1 2 3 (Betw. in case 19- | Displacement
1&2) small)

HOYW Method 2.3529 | 3.0586 | 3.4974 0.7057 0.7347 -0.0290
Min-Norm Method | 2.3746 | 3.2087 | 3.6518 0.8341 0.7159 0.1182
LS-ESPRIT 2.3769 | 3.2028 | 3.6407 0.8259 0.6971 0.1288
TLS-ESPRIT 2.3765 | 3.2017 | 3.6404 0.8252 0.6973 0.1279
Root-MUSIC 2.3861 | 3.2793 | 3.721 0.8932 0.7244 0.1688

It is not possible to detect the presence of three targets also from the periodogram
range profile shown in figure 5.26 while line spectral estimators provide consistent range

estimates for three target.

So, from figures 5.22-26, we can conclude that line spectral estimators achieve much
better range resolution than periodogram even when the number of points and the

bandwidth of the stepped-frequency radar waveform are small.

Furthermore, from figures 5.16-26 and tables 5.5-15, we can conclude that ESPRIT

provides better range estimates among the line spectral estimators for TWOD application.

5.3. Super-resolution Spectral Estimators for Buried

Object Detection

In order to investigate the performance of super-resolution spectral estimators for
buried object detection, different sets of experimental data have been taken using network
analyzer. Targets and their position are changed during experiments. Tests are numerated
according to the targets used in the experiments and their locations. Targets used in each
case and their corresponding locations are shown in tables 5.16 and 5.17. Figure 5.27

shows the locations of the targets in the experimental setup.
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Table 5.16. Targets and their locations in BOD experiments

Case Target Location
1 A 1
2 A 2
3 A 3
4 A 4
5 B 1
6 B 2
7 B 3
8 B 4
9 C 1

10 C 2
11 C 3
12 C 4

Table 5.17. Targets and their locations in BOD experiments

Case Target-1 | Location -1 | Target -2 | Location -2
13 A 4 A 1
14 A 4 A 2
15 A 4 A 3
16 A 4 B 1
17 A 4 B 2
18 A 4 B 3
19 A 4 C 1
20 A 4 C 2
21 A 4 C 3
22 B 4 B 1
23 B 4 B 2
24 B 4 B 3
25 B 4 C 1
26 B 4 C 2
27 B 4 C 3

Data collected in cases 1-12 shown in table 5.16 will be used to test the accuracy of
super-resolution spectral estimation methods explained in chapter three. Similar to
through-the-wall experiments, case-0 represents the scenario where there is any target in

the field and this case corresponds to the background measurement.
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Data collected in cases 13-27 shown in table 5.17 will be used to test the resolving

capability of super-resolution spectral estimation methods.

Loc-4 : I » 33 cm

Loc-3 : » 22 cm

Loc-2 : I » 11 cm

Loc-1: I » 0 cm

Figure 5.27. Target locations in the BOD experiments

Following sections will investigate the performance of super-resolution spectral
estimators in TWOD application and compare their performance with classically used

periodogram method.

5.3.1.Comparison of Yule-Walker Method and Periodogram for BOD

Several simulations were carried out to investigate the performance of AR modeling
using Yule-Walker method for BOD application. Note that the parameters of the stepped-
frequency radar waveform (bandwidth and number of points) and the case numbers are

shown in the figures.

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.28. Comparison of Yule-Walker method and periodogram for BOD (Case-2)
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Figure 5.29. Comparison of Yule-Walker method and periodogram for BOD (Case-3)
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Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.30. Comparison of Yule-Walker method and periodogram for BOD (Case-4)

Figures 5.28-30 show that Yule-Walker method provides narrower peaks at target

locations. Also note that the Signal-to-Clutter Ratio (SCR) of the Yule-Walker range

profile is higher than the SCR of the periodogram range profile.

Down-Range Profile (dB )

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.31. Comparison of Yule-Walker method and periodogram for BOD (Case-11)
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Figure 5.31 shows that Yule-Walker method provides much better range profile than
periodogram method even when the target has small RCS value. Note that range profiles in

figures 5.31 and 5.28 have peaks at the same locations with different magnitudes because

of the difference in the RCS values of the targets.

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.32. Comparison of Yule-Walker method and periodogram for BOD (Case-17)

The locations of the highest three peaks in both range profiles shown in figure 5.32
corresponds to the target positions where the highest peak represents the front side of the
wall, the second highest peak represents the target-B and the third highest peak represents
the target-A which is beneath the back side of the wall. Note that Yule-Walker method

provides sharper peaks at the target locations.

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.33. Comparison of Yule-Walker method and periodogram for BOD (Case-18)
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The difference between case-17 and case-18 is that the location of target-B is
changed from location two to three and this is obvious from figures 5.32 and 5.33. It is

obvious that Yule-Walker method provides better range profiles than periodogram.

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.34. Comparison of Yule-Walker method and periodogram for BOD (Case-21)

The difference between case-18 and case-21 is that the target-B in case-18 is changed
with target-C which has smaller RCS value and we expect to see smaller peak for target-C.
However, it is interesting to note that the peak which represents target-C in figure 5.34 has
larger peak value than the peak which represents target-C in figure 5.33. Note that Yule-

Walker provides better range profile also for case-21.

Yule-Walker Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.35. Comparison of Yule-Walker method and periodogram for BOD (Case-27)

Figure 5.35 shows that Yule-Walker provides better range profiles even when the

close targets have small RCS values.
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5.3.2. Comparison of Least-Squares Method and Periodogram for BOD

Least-Squares Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.36. Comparison of Least-Squares method and periodogram for BOD (Case-2)
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Figure 5.37. Comparison of Least-Squares method and periodogram for BOD (Case-3)

Least-Squares Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.38. Comparison of Least-Squares method and periodogram for BOD (Case-4)
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Figures 5.36-38 show that Least-Squares method provides better range profiles than

periodogram method even for the small targets. Note that Least-Squares range profiles

have sharper peaks at target locations and higher SCR.

Least-Squares Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.39. Comparison of Least-Squares method and periodogram for BOD (Case-11)

Figure 5.39 shows that Least-Squares method provides better range profiles than

periodogram method even for the targets with small RCS values.

Least-Squares Method vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.40. Comparison of Least-Squares method and periodogram for BOD (Case-17)

Figure 5.40 shows that Least-Squares method provides sharper peaks at target

locations.

Moreover, after comparative analysis of Yule-Walker and LS methods, it has been

observed that Yule-Walker method provides better and more reliable range profiles than

LS method for BOD application.
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5.3.3. Comparison of Line Spectra Methods and Periodogram for BOD

This section covers the performance analysis of line spectral estimators explained in
detail in section 3.4 in BOD application. The parameters of the stepped-frequency radar
and the target locations are given in the figures. Data collected for the case given in figure
is processed using the line spectral estimators and the corresponding range estimates are
given in tables below the corresponding figures.

Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.41. Comparison of line spectral estimators and periodogram for BOD (Case-2)

Table 5.18. Range estimates of line spectral estimators (Case-2)

Case-2 Target-1 Target-2 Difference
HOYW Method 24102 2.5701 0.1599
Min-Norm Method 2.4089 2.5598 0.1509
LS-ESPRIT 2.4109 2.555 0.1441
TLS-ESPRIT 2.4109 2.555 0.1441
Root-MUSIC 24111 2.5752 0.1641

Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.42. Comparison of line spectral estimators and periodogram for BOD (Case-3)
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Table 5.19. Range estimates of line spectral estimators (Case-3)

Case-3 Target-1 Target-2 | Difference
HOYW Method 2.4166 2.7526 0.3360
Min-Norm Method 2.4158 2.7464 0.3306
LS-ESPRIT 2.4152 2.7456 0.3304
TLS-ESPRIT 24152 2.7456 0.3304
Root-MUSIC 24191 2.7689 0.3498

Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.43. Comparison of line spectral estimators and periodogram for BOD (Case-4)

Table 5.20. Range estimates of line spectral estimators (Case-4)

Case-4 Target-1 Target-2 Difference
HOYW Method 24153 2.8759 0.4606
Min-Norm Method 24162 2.8778 0.4616
LS-ESPRIT 24161 2.8751 0.4590
TLS-ESPRIT 24161 2.8751 0.4590
Root-MUSIC 24151 2.8664 0.4513

Figures 5.41-43 and tables 5.18-20 show that all the line spectral estimation methods

find the ranges of the targets. Note that ESPRIT solutions provide the most accurate range

estimates.
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Figure 5.44. Comparison of line spectral estimators and periodogram for BOD (Case-2)

Table 5.21. Range estimates of line spectral estimators (Case-2)

Case-2 (Small BW, N) Target-1 Target-2 Difference
HOYW Method 2.3032 2.6068 0.3036
Min-Norm Method 2.2831 2.624 0.3409
LS-ESPRIT 2.2885 2.6106 0.3221
TLS-ESPRIT 2.2881 2.611 0.3229
Root-MUSIC 2.2686 2.5989 0.3303

Line Spectral Methods vs. Periodogram ( BW=500 MHz, N=26)
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Figure 5.45. Comparison of line spectral estimators and periodogram for BOD (Case-3)

Table 5.22. Range estimates of line spectral estimators (Case-3)

Case-3 (Small BW,N) Target-1 Target-2 Difference
HOYW Method 2.4208 2.8902 0.4694
Min-Norm Method 2.389 2.8739 0.4849
LS-ESPRIT 2.3973 2.8485 0.4512
TLS-ESPRIT 2.397 2.8487 0.4517
Root-MUSIC 24011 2.8917 0.4906




Line Spectral Methods vs. Periodogram ( BW=500 MHz, N=26)

Down-Range Profile (dB )

Case-0, Periodogram

—— Case-4, Periodogram |

= Case-4, TLS-ESPRIT
|

Down-Range Relative Distance (meters)

200

Figure 5.46. Comparison of line spectral estimators and periodogram for BOD (Case-3)

Table 5.23. Range estimates of line spectral estimators (Case-4)

Case-4 (Small BW, N) Target-1 Target-2 Difference
HOYW Method 2.394 3.0151 0.6211
Min-Norm Method 2.3825 3.0372 0.6547
LS-ESPRIT 2.3905 3.0133 0.6228
TLS-ESPRIT 2.3904 3.0134 0.6230
Root-MUSIC 2.3754 3.0341 0.6587

Figures 5.44-46 and tables 5.21-23 show the range profile and range estimates,

respectively, for the data with 26 points and 500 MHz stepped-frequency radar bandwidth.

It is not possible to determine the number of targets and the target positions from the

periodogram range profile. However, note that even when the number of points and the

bandwidth is very small, line spectral estimators can find the target ranges.

The advantages explained in TWOD application are also valid in BOD application,

i.e, less number of steps in the stepped-frequency radar waveform will be required to

achieve desired range resolution which decreases the operation time and complexity, and

smaller bandwidths can be used to achieve desired range resolution which in turn decreases

the cost of the system and improves the performance.

Even for smaller bandwidth and number of points, ESPRIT has provided the most

accurate range estimates among the line spectral estimators. Note that the ESPRIT range

estimates have the minimum range estimation error in all cases.
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Figure 5.47. Comparison of line spectral estimators and periodogram for BOD (Case-17)

Table 5.24. Range estimates of line spectral estimators (Case-17)

Difference Difference Difference

Case-17 Target-1 | Target-2 | Target-3 (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 2.3759 2.4436 2.5971 0.0677 0.2212 0.1535
Min-Norm Method | 2.3858 2.4608 2.6122 0.0750 0.2264 0.1514
LS-ESPRIT 2.3897 2.467 2.6182 0.0773 0.2285 0.1512
TLS-ESPRIT 2.3897 2.467 2.6183 0.0773 0.2286 0.1513
Root-MUSIC 2.4108 2.6217 3.0682 0.2109 0.6574 0.4465

In case-17, target-A is at location-4 and target-B is at location-2. As can be seen from

table 5.24 and figure 5.47, most of the line spectral estimators resolve the closely placed

targets; however, periodogram method does not provide enough resolution to resolve them.

Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.48. Comparison of line spectral estimators and periodogram for BOD (Case-18)
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Table 5.25. Range estimates of line spectral estimators (Case-18)

Difference Difference | Difference
Case-18 Target-1 Target-2 Target-3 | (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 24141 2.7147 3.0532 0.3006 0.6391 0.3385
Min-Norm Method | 2.4134 2.718 2.9634 0.3046 0.5500 0.2454
LS-ESPRIT 24148 2.7114 2.9202 0.2966 0.5054 0.2088
TLS-ESPRIT 24148 2.7114 2.9203 0.2966 0.5055 0.2089
Root-MUSIC 2.4099 2.7109 3.0216 0.3010 0.6117 0.3107

Line Spectral Methods vs. Periodogram ( BW=500 MHz, N=26)
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Figure 5.49. Comparison of line spectral estimators and periodogram for BOD (Case-17)

Table 5.26. Range estimates of line spectral estimators (Case-17)

Difference Difference | Difference
Case-17 (Small BW, N) | Target-1 | Target-2 | Target-3 | (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 2.2538 2.56 3.0459 0.3062 0.7921 0.4859
Min-Norm Method 2.2257 2.5369 3.2225 0.3112 0.9968 0.6856
LS-ESPRIT 2.2317 2.5383 3.2146 0.3066 0.9829 0.6763
TLS-ESPRIT 2.2317 2.5383 3.2147 0.3066 0.9830 0.6764
Root-MUSIC 2.2317 2.5448 3.2326 0.3131 1.0009 0.6878

Line Spectral Methods vs. Periodogram ( BW=500 MHz, N=26)

Case-0, Periodogram
—— Case-18, Periodogram
—— Case-18, TLS-ESPRIT ||

Down-Range Profile (dB )

Down-Range Relative Distance (meters)

Figure 5.50. Comparison of line spectral estimators and periodogram for BOD (Case-18)
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Table 5.27. Range estimates of line spectral estimators (Case-18)

Difference Difference | Difference
Case-18 (Small BW, N) | Target-1 | Target-2 | Target-3 | (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 2.2867 2.611 3.127 0.3243 0.8403 0.516
Min-Norm Method 2.3608 2.7318 3.0852 0.3710 0.7244 0.3534
LS-ESPRIT 2.3852 2.7636 3.0555 0.3784 0.6703 0.2919
TLS-ESPRIT 2.3843 2.7637 3.0563 0.3794 0.6720 0.2926
Root-MUSIC 2.2491 2.5844 3.2298 0.3353 0.9807 0.6454

Figures 5.47-50 and tables 5.24-27 show that periodogram method provides very

poor range profiles and can not resolve closely separated targets when the number of points

and bandwidth are very small whereas line spectral estimators resolve the closely separated

targets even when the number of points and bandwidth are very small.

Line Spectral Methods vs. Periodogram ( BW=3000 MHz, N=201)
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Figure 5.51. Comparison of line spectral estimators and periodogram for BOD (Case-21)

Table 5.28. Range estimates of line spectral estimators (Case-21)

Difference Difference Difference
Case-21 Target-1 | Target-2 | Target-3 | (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 24141 2.7189 3.0754 0.3048 0.6613 0.3565
Min-Norm Method |  2.4131 2.7199 2.9416 0.3068 0.5285 0.2217
LS-ESPRIT 2.4144 2.7086 2.9084 0.2942 0.4940 0.1998
TLS-ESPRIT 2.4144 2.7085 2.9085 0.2941 0.4941 0.2
Root-MUSIC 2.409 2.7077 2.9989 0.2987 0.5899 0.2912
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Line Spectral Methods vs. Periodogram ( BW=500 MHz, N=26)
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Figure 5.52. Comparison of line spectral estimators and periodogram for BOD (Case-21)

Table 5.29. Range estimates of line spectral estimators (Case-21)

Difference Difference | Difference
Case-21 (Small BW, N) | Target-1 | Target-2 | Target-3 | (Betw. 1&2) | (Betw. 1&3) | (Betw. 2&3)
HOYW Method 2.2898 2.603 3.1338 0.3132 0.8440 0.5308
Min-Norm Method 2.3764 2.836 3.0887 0.4596 0.7123 0.2527
LS-ESPRIT 2.3833 2.8399 3.0296 0.4566 0.6463 0.1897
TLS-ESPRIT 2.3827 2.8391 3.031 0.4564 0.6483 0.1919
Root-MUSIC 2.256 2.6213 3.2135 0.3653 0.9575 0.5922

Figures 5.51 and 5.52 and tables 5.28 and 5.29 show that line spectral estimators
resolve the closely separated targets even when the number of points and bandwidth are

very small and the difference between the RCS values of the targets increases.

From the figures and tables in this section, it can be concluded that line spectral
estimators provide consistent and high resolution range estimates even when the number of
points and bandwidth are very small and the targets have different RCS values. These
experiments show that using line spectral estimators as range estimator tool in BOD
applications provides important advantages. Since less number of steps will be required to
achieve desired range resolution, processing time will decrease. Moreover, since smaller
bandwidth will be sufficient, cost of the stepped-frequency radar system will decrease and
it will be possible to use narrowband components in the radar system which in turn

improve the performance.



205

6. CONCLUSIONS

This study has explored the target detection and range extraction performance of
parametric and non-parametric methods in through-the-wall and buried object detection
applications using synthetic stepped-frequency and FMCW radar signals and experimental
stepped-frequency radar data. Range estimates of the parametric methods are compared

with non-parametric methods.

The synthetic and experimental data are processed via ESPRIT, Root-MUSIC,
Higher Order Yule-Walker, Minimum-Norm, Yule-Walker, and Least-Squares methods
and their performance are compared with the conventional periodogram. The results show
that all the parametric methods provide much better range profiles than non-parametric

methods.

When Yule-Walker and Least-Squares methods are compared with periodogram, it is
observed that they provide much narrower peaks at the target locations and their range
profiles have higher signal-to-clutter ratio. The simulations and experimental results show
that Yule-Walker and Least-Squares methods can resolve the targets that are closer than

the resolution limit imposed by FFT processing.

When ESPRIT, Root-MUSIC, Higher Order Yule-Walker and Minimum-Norm
methods are compared with periodogram, it can be concluded that all the line spectral
estimators provide much better range resolution than periodogram even when the SNR is

low, the data size is small, targets are too close and targets have very different RCS values.

Experimental and simulative resolution studies showed that ESPRIT can distinguish
close targets with better resolution than the other methods. Also, it is worth to note that
total least squares solution of ESPRIT provided better range estimates than least squares
solution. The worst resolution capability and the range estimates were demonstrated by

Root-MUSIC. Also, Min-Norm method outperformed the HOYW method.

Also, the performance of spatial smoothing techniques was analyzed using synthetic

and experimental data and it is observed that modified spatial smoothing processing
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performs better than spatial smoothing processing. Also, line spectral estimators’ range
estimates had large bias when any decorrelation process was performed. These
observations show that the radar data should be preprocessed by spatial smoothing
techniques in order to decorrelate the individual signals and improve the accuracy of the

range estimates.

To sum up, experimental and simulative results show that using parametric spectral
estimators as radar signal processing tool relaxes the constraints on stepped-frequency
radar waveform. First, less number of steps in the stepped-frequency radar waveform will
be required to achieve desired range resolution, which decreases the operation time and
system complexity. Secondly, bandwidth of stepped-frequency radar waveform can be
decreased which in turn decreases the cost of the system and improves the performance.
For future work, these algorithms can be implemented in digital signal processors or field

programmable gate arrays and portable stepped-frequency radar can be implemented.
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