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ABSTRACT

FINITE DIFFERENCE BEAM PROPAGATION METHOD

FOR ANALYZING BEND ENHANCED OPTICAL TOUCH

SENSOR

Analysis of waveguides by computational methods is very important and widely

used in optical fiber communications since the power loss due to bending of the optical

fibers decreases the channel capacity of the optical fiber links. These systems require

proper analysis tools to understand the effects of corruption and degradation of the

channel capacity resulting from external disturbances.

Although telecommunication systems tries to analyze the corruption in the opti-

cal waveguides such as power attenuation and channel degregation, optical waveguide

based sensor applications trie to seek ways of using these changes or corruptions for

sensing different properties of the environment. Since optical sensors carry some ad-

vantages as being insensitive to electromagnetic interferance , having long durability

and high precision; they deserve certain attention.

The aim of this thesis is to provide an analysis method for electrical field and

power propagation in waveguides undergoing severe bending by using finite difference

beam propagation methods in three dimensions, where the waveguides are bent severely

so that the considerable amount of power radiation occurs to the outside of the waveg-

uide with the intention of sensing. As an application in this thesis we propose and

analyze a bend enhanced optical touch sensor with the developed three dimensional

finite difference beam propagation methods and validate our analysis and reason on

the operability of this sensor.



v

ÖZET

SONLU FARK IŞIN YAYILIM METODUYLA EĞİMLİ

OPTİK DOKUNMA SENSÖRÜN̈UN ANALİZİ

Fiber optik haberleşme ağlarnda güç kaybı kanalın kapasitesini azalttığı için dalga

kılavuzlarının bilgi işlem metotlarıyla analizi çok önemlidir. Bu sistemler, dışardan

gelen ve kanalın kapasitesini bozan değişkenlerin etkilerini anlamak için uygun analiz

araçlarına ihtiyaç duymaktadır.

Haberleşme sistemleri optik dalga kılavuzlarındaki bozulmann ve güç kaybının

analizini yapmaktadır; diğer yandan, optik dalga klavuzuna dayanan sensör uygula-

maları ise bu bozulmalardan yola çıkarak çevre değişkenlerini algılamaya yarayan uygu-

lamar bulmaya çalışmaktadır. Optik sensörler bereberinde, elektromanyetik müdahalelere

karşı etkisiz olma, uzun ömüre ve yüksek hassasiyete sahip olma gibi çeşitli avantajlar

getirdikleri için belli bir ilgiyi haketmektedir.

Bu tezin amacı, üç boyutta sonlu fark ışık yayılım metodlarını kullanarak, dış or-

tamdan bilgi almak amacyla bükülmüş dalga klavuzlarndaki elektrik ve güç değişimlerini

inceleyecek, bir analiz methodu geliştirmektir. Analiz metodunun bir uygulaması ve

doğrulaması olarak ise eğimli optik dokunma sensörü incelenmiştir.
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1. INTRODUCTION

1.1. Background and Overview

During last few decades we have seen an enormous increase in bandwidth require-

ments for telecom and datacom transmission systems due to the growth of the Internet

and excess data transmission. This in turn, has put enormous demands on the light-

wave transmission systems and the integrated and fiber optic photonic components that

are the foundation of such systems. Conversely, it has been the continual advances in

these components as fibers, lasers, detectors, modulators, switches, wavelength demul-

tiplexing devices (WDM’s), which have enabled systems to meet these ever increasing

demands [1] . These demands require proper analysis and modeling tools to optimize

the applications and analyze theirs operation under different conditions.

Apart being useful from information carrying the optical systems find usage as

sensor applications as well. Several applications have been reported which use the

optical power in the waveguide to sense the environment that the waveguide is inter-

acting with. Bend sensors [2], pressure sensors [3], optical touch sensors [4][5] are some

examples that uses optical sensing techniques. However since the applications and uses

of optical devices for communication systems outnumber its sensor applications, there

is a limited work and analysis for sensor applications.

There are several numerical methods to analyze optical systems. Finite Element

(FE) and Finite Difference (FD) methods are the mostly used ones. All of them have

pros and cons but one can find an optimum method that suits the application being

analyzed.

1.2. Finite Element Method

The Finite Element method [6][7][8], is a powerful numerical technique for the

solution of partial differential equations, and it is widely used in different fields of engi-
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neering. It is based on partitioning the problem space into a mesh of non overlapping

polygonal regions or elements. Triangles and quadrilaterals are two commonly used

types of element. Inside each element the solution to the partial differential equation

is approximated by polynomial functions, usually corefirst or second order polynomi-

als. The approximate solution needs to satisfy certain constraints, which depend on

the particular problem, such as boundary conditions and continuity along the common

edges of the elements. A solution is selected from a set of basis functions that obeys

these conditions.

The power of the finite element method lies in the flexibility in the choice of mesh.

The basic method allows for an enormous variety of meshing strategies. Provided that a

suitable automated procedure can be found to partition the problem domain, structures

of nearly unrestricted geometry can be handled. This is particularly useful for non-

rectangular structures with curved or slanting sections. In addition, it is possible to

control the mesh density in order to make use of smaller elements in areas where the

solution is changing rapidly (such as corners) and larger elements where it is more

uniform. This enables a smaller number of nodes (and therefore less computational

resources) to be used to obtain a given level of accuracy. Adaptive meshing techniques

are available to perform this optimization.

Finite element methods suffer from its complexity and divergence problems. Cer-

tain conditions should be imposed on the mesh in order to prevent unwanted results.

Also after proposing and using an initial mesh profile it is not easy to change the setup

and apply it to a different geometry.

1.3. Finite Difference Method

Finite Difference Methods are widely used to model the optical systems due to

their stability, rather simplicity and accuracy. It can be applied to the scalar, semi

or full vector solution to the Maxwell’s Equations. Several papers are being reported

constantly to perfect their implementation for different applications.
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It represent the original problem in a finite mesh grid and approximates the

derivatives using the mesh grid. It can be used to analyze different structures and

applications so that it is versatile, this is one of the reasons that we have chosen

Finite Difference Methods. The problem can be solved using time domain or frequency

domain techniques with the accuracy being scalable by the user.

Finite Difference Time Domain methods in three dimensions propagate the beam

as a frame after frame collection of vector elements. The electromagnetic equations of

the propagation can be scalar, semi vector or full vector solutions. Most of the work in

finite difference methods differs as being paraxial or wide angle. Paraxial solutions can

not simulate abrupt changes along propagation direction, however wide angle solutions

overcome this problem by making higher order approximation to the derivative along

the propagation direction.

Since the research field is quite active in terms of applications and analysis meth-

ods we see new papers published every year either trying to make the analysis methods

faster, more accurate or to explain their optimization for different applications. In this

thesis we utilize three dimensional finite difference methods for sensing applications,

and give a novel sensor application to demonstrate our analysis as well as application.

1.4. Bend Enhanced Optical Touch Sensor

So far, several touch sensors have been proposed and devised based on the use

of surface acoustic waves, piezoelectric transducers, capacitive device, and resistive

membranes [9]. However, the acoustic approach requires a high driven electrical power

while the piezoelectric and capacitive technologies need to have specially designed

electronic circuit to prevent a high output saturation voltage as well as to suppress the

unwanted electrostatic inductance change. In addition, humidity and fluctuation of the

surrounding temperature are the main factors that limit the life and the performance

of these touch sensor technologies. The resistive membrane based touch sensor also

has short life because of the movement of the membrane that induces a degree of wear

and tear.
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Apart from its counterparts, optical touch sensors carriy a lot of advantages that

promise their more common usage in the future as a human interface device. These

advantages can be summarized as follows:

• They are cheap and can be manufactured easily. Thin plastic optical fibers can

be used and be provided for touch sensing applications

• They do not tear or wear out with time so they are durable and they have long

usage times.

• They need small activation forces; they do not need periodic calibration.

• They are immune to electromagnetic interference.

Figure 1.1. Proposed touch sensor topology

The refractive index of the human skin varies between 1.4 and 1.5 [10], which is

around the refractive index of the PMMA optical fiber waveguides. Since the refractive

index of air is 1, by adjusting the bending radius it is possible to prevent excess power
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radiation into the air, when there is no touch. Besides, in case of a human touch; it

is possible to capture enough power to be detected by the receiver at the end of the

fiber. (see Figure 1.1)

The effect of bending is to allow certain amount of power coupling to the cladding.

When there is no touching, this power should be maintained in the waveguide and in

case of touching it should be coupled to the human skin. This application is also

important for other waveguide sensor applications. The problem of power coupling

between the core and cladding and using the cladding as a controlled power exchange

region is not analyzed in the literature. This thesis aims to analyze this application in

an electromagnetic point of view with finite difference beam propagation methods.
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2. ELECTROMAGNETIC THEORY

In this chapter, a basic electromagnetic theory background that is necessary to

analyze the propagation of light in optical waveguides, is presented. First, Maxwell’s

equations are explained in isotropic and nonhomogeneous media. Then the common

levels of approximation to the solutions of Maxwell’s equations, semi vector and full

vector solutions are derived by explaining the main differences. Paraxial and wide angle

approximations for beam propagation method are explained and the modes of propa-

gation in the waveguides are analyzed. Lastly we explain the conformal transformation

to transform curved regions into straight contours.

2.1. Maxwell’s Equations

In complex notations, the Maxwell equation for nonhomogeneous media is given

as follows [11]:

∇× E = −jωB (2.1)

∇×H = jωD (2.2)

∇ · D = 0 (2.3)
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∇ · H = 0 (2.4)

The vectors E and B are the electric and magnetic field intensities, D and B are the

electric and magnetic flux densities respectively. A time dependence of the form ejwt

is assumed and suppressed from equations hereon. The relationship between angular

frequency ω and the wavelength λ is as follows:

k =
2πc

λ
(2.5)

where c is the speed of light. In isotropic media the following relations hold:

D = ǫE (2.6)

B = µH (2.7)

With the permittivity and permeability values for medium given by:

ǫ = ǫrǫ0 (2.8)
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µ = µrµ0 (2.9)

Here ǫr and µr are the relative permittivity and permeability of the medium and ǫ0

andµ = µrµ0 are the permittivity and permeability of free space respectively. In

isotropic medium the permittivity and permeability values are independent of orien-

tation, but in a nonhomogeneous medium they can be a function of the position. For

example a graded index waveguide is a good example of an isotropic but nonhomoge-

neous medium.

The subject of this thesis covers isotropic and non magnetic (µr=1) materials.

The following definitions of free space wave number k and refractive-index n are used

frequently in this thesis. One should also note that the refractive index of free space

equals to one.

k = ω
√

µ0ǫ0 (2.10)

n =
√

ǫr (2.11)

2.2. Solutions of Maxwell’s Equations

In order to analyze the electromagnetic behavior in optical waveguides Maxwell’s

equations need to be solved by including the fact that the refractive index of the medium

is nonhomogeneous, that is, it depends on the positions in the medium. Throughout
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this thesis the refractive index will be assumed to be a function of position in rect-

angular coordinates as n(x, y, z) and the following geometry will be used to solve the

equations in three dimensions.

Figure 2.1. Geometry used to solve Maxwell’s Equation

Here the propagation is assumed to be in z direction, so that the plane described

by x and y axis, is the transverse plane. In order to obtain the governing equations

for propagation one has to use the two coupled curl equations Eq. (2.1) and Eq. (2.2)

together. By using (2.6), (2.7), (2.11) and noting that µr=1 we obtain:

∇× E = −jωµ0H (2.12)

∇× H = jωn2ǫ0E (2.13)

If we use Eq. (2.12) in Eq. (2.13),
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∇×∇× E− n2k2E = 0 (2.14)

If we use the identity [12],

∇×∇× = ∇(∇·) −∇2 (2.15)

For the electric field we obtain:

∇(∇ · E) −∇2E− n2k2E = 0 (2.16)

By using Et as the electric field in transverse plane, Ez as the electrical field in

propagation direction and using the subscript t for vector Laplacian, divergence and

gradient operators in order to separate the components of transverse and propagation

planes we obtain:

∇t · Et + n2k2Et = ∇t

(

∇t · Et +
∂Ez

∂z

)

(2.17)

If we separate Eq. (2.3) into transverse and propagation components we get,
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∇t · (n2Et) +
∂2n2

∂z2
Ez + n2 ∂Ez

∂z
= 0 (2.18)

If the refractive index profile changes slowly in the propagation direction then we can

assume:

∂2n2

∂z2
Ez ≈ 0 (2.19)

This assumption allows us to approximate the derivative in z direction with transverse

operations as:

∂Ez

∂z
≈ − 1

n2
∇t · (n2Et) (2.20)

If we substitute Eq. (2.20) into Eq. (2.16) we obtain,

∇2Et + n2k2Et = ∇t

(

∇t · Et −
1

n2
∇t · (n2Et)

)

(2.21)

This can be written as:
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∇2Et + n2k2Et = −∇t(∇tlnn
2 · Et) (2.22)

If we open the Eq. (2.22) for components of transverse plane in x and y direction we

obtain:

∇2Ex + n2k2Ex = − ∂

∂x

(

∂n2

∂x
Ex

)

− ∂

∂x

(

∂n2

∂y
Ey

)

(2.23)

∇2Ey + n2k2Ey = − ∂

∂y

(

∂n2

∂x
Ex

)

− ∂

∂y

(

∂n2

∂y
Ey

)

(2.24)

We can write a trial solution for Eq. (2.22) of the form:

Ex = Êxe
−jn0kz (2.25)

where n0 is a reference refractive index and if we make the slowly varying envelope

approximation [13], for the derivatives along propagation direction we get

∂Ex

∂z
=

∂Êx

∂z
e−jn0kz − jn0kÊx (2.26)
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∂2Ex

∂z2
=

∂2Êx

∂z2
e−jn0kz − 2jn0k

∂Êx

∂z
e−jn0kz − n2

0k
2Êxe

−jn0kz (2.27)

In Eq. (2.27) if we assume the change of the first derivative is much bigger than the

second derivative as:

∣

∣

∣

∣

∣

∂2Êx

∂z2

∣

∣

∣

∣

∣

<< 2n0k

∣

∣

∣

∣

∣

∂Êx

∂z

∣

∣

∣

∣

∣

(2.28)

and factoring out the e−jn0kz term hereon in our analysis, for Ex we obtain the paraxial

solution as:

j
∂Êx

∂z
= AxxÊx + AxyÊy (2.29)

Ignoring the second derivative eases the problem and allows us to approximate it

with a first order derivative along z direction and transverse derivatives only. Of course

it brings limitation to the analysis since the change of electric field is limited to change

with only first derivative in the propagation direction. This approximation is known

as paraxial solution. The solutions which take into account the second derivative are

known as the wide angle solutions, for the paraxial case a fast change of electric field

along propagation direction will cause some error.

The derivative operators in Eq. (2.29) are given as:
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AxxÊx =
1

2n0k

{

∂

∂x

[

1

n2

∂

∂x
(n2Êx)

]

+
∂2

∂y2
Êx + (n2 − n2

0)k
2Êx

}

(2.30)

AxyÊy =
1

2n0k

{

∂

∂x

[

1

n2

∂

∂y
(n2Êy)

]

− ∂2

∂x∂y
Êy

}

(2.31)

Similarly for Êy we get:

j
∂Êy

∂z
= AyyÊy + AyxÊx (2.32)

AyyÊy =
1

2n0k

{

∂

∂y

[

1

n2

∂

∂y
(n2Êy)

]

+
∂2

∂x2
Êy + (n2 − n2

0)k
2Êy

}

(2.33)

AyxÊx =
1

2n0k

{

∂

∂y

[

1

n2

∂

∂x
(n2Êx)

]

− ∂2

∂y∂x
Êx

}

(2.34)

The derivation of the magnetic field H is similar. Using two coupled curl Eq.

(2.1) and (2.2) to solve for H results in:

∇×∇× H − n2k2H− 1

n2
∇n2 × (∇× H) = 0 (2.35)
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The transverse components of magnetic field can be approximated by:

∇2Hx + n2k2Hx −
1

n2

∂n2

∂y

(

∂Hx

∂y
− ∂Hy

∂x

)

= 0 (2.36)

∇2Hy + n2k2Hy −
1

n2

∂n2

∂x

(

∂Hy

∂x
− ∂Hx

∂y

)

= 0 (2.37)

By letting Hx = Ĥxe
−jn0kz, and making the slowly varying approximation one more

time as:

∣

∣

∣

∣

∣

∂2Ĥx

∂z2

∣

∣

∣

∣

∣

<< 2n0k

∣

∣

∣

∣

∣

∂Ĥx

∂z

∣

∣

∣

∣

∣

(2.38)

We obtain:

j
∂Ĥx

∂z
= BxxĤx + BxyĤy (2.39)

j
∂Ĥy

∂z
= ByyĤy + ByxĤx (2.40)
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Where we can write the differential operators as follows:

BxxĤx =
1

2n0k

{

∂2

∂x2
Ĥx + (n2 − n2

0)k
2Ĥx + n2

[

∂

∂y

(

1

n2

∂Ĥx

∂y

)]}

(2.41)

ByyĤy =
1

2n0k

{

∂2

∂y2
Ĥy + (n2 − n2

0)k
2Ĥy + n2

[

∂

∂x

(

1

n2

∂Ĥy

∂x

)]}

(2.42)

BxyĤy =
1

2n0k

{

∂2

∂y∂x
Ĥy − n2

[

∂

∂y

(

1

n2

∂Ĥy

∂x

)]}

(2.43)

ByxĤx =
1

2n0k

{

∂2

∂x∂y
Ĥx − n2

[

∂

∂x

(

1

n2

∂Ĥx

∂y

)]}

(2.44)

Equations (2.29), (2.32), (2.39) and (2.40) are the full vector solutions for nonho-

mogeneous media. The coupling between the transverse components of the electrical

and magnetic fields is taken into account in full vector solutions. However, for weakly

guiding waveguides the coupling is usually weak and one can use the semi vector solu-

tions by neglecting the coupling terms as:

j
∂Êx

∂z
= AxxÊx (2.45)
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j
∂Êy

∂z
= AyyÊy (2.46)

j
∂Ĥx

∂z
= BxxĤx (2.47)

j
∂Ĥy

∂z
= ByyĤy (2.48)

In this thesis, semi vector solutions are used; since under sever bending, the

coupling between the transverse components are very weak [14], also due to the iterative

nature of the beam propagation method, computational cost is decreased by utilizing

semi vector solutions.

Frequently in this thesis the power across the cross section is measured for differ-

ent applications and it is computed in accordance with the following formula:

P (z) =
1

4

∫

(E∗

t × Ht + Et ×H∗

t ) (2.49)

where, the integral is computed at the surface of the cross section.
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2.3. Wide Angle Solutions

Paraxial BPM method forces small phase changes along propagation directions

by forcing the second derivative to be smaller than the first derivative along z direction

in Eq. (2.27). Wide angle solution which also takes into account the second deriva-

tive is useful when the waveguide makes abrupt or sudden changes along propagation

direction.

In this thesis paraxial solution is used in simulations since the waveguide geometry

is slowly varying along propagation directions and there are no ramps or discontinuities

during propagation. But for the sake of completeness wide angle solution is presented

and can be summarized as follows.

After making the slowly varying envelope approximation as in Eq. (2.27), but

without ignoring the second derivative we obtain:

∂2Êx

∂z2
− 2jn0k

∂Êx

∂z
− AxxÊx = 0 (2.50)

We can rearrange this equation as [15],

(

∂Êx

∂z
+ jk(Z

′ − 1)Êx

)(

∂Êx

∂z
− jk(Z

′

+ 1)Êx

)

(2.51)

Where, Z
′

=
√

Z + 1 and Z = Axx/k
2 . The first and second term of Eq.

(2.51) represents the wave propagation in forward and backward direction in z direction

respectively. If one is interested in forward propagation only, which is usually the case
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for beam propagation, the wide angle solutions can be derived as:

∂Êx

∂z
= −jk(Z

′ − 1)Êx (2.52)

There is no explicit solution of Eq. (2.52) because of the square root term. The

general approach to overcome this problem is to approximate the square root term

with polynomials. Most famous approximation is known as Pade approximation where

it is defined as [16],

√
Z + 1 − 1 ≈ Nm(Axx)

Dm(Axx)
(2.53)

where Nm and Dm are polynomials in Axx of order m and n for the numerator

and the denominator, respectively. Some Pade approximants that are used in BPM

methods are as follows [16]:

Pade(1, 0) :
N1

D0
=

Axx

2
(2.54)

Pade(1, 1) :
N1

D1
=

Axx

2

1 + Axx

4

(2.55)
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Pade(1, 1) :
N1

D1
=

Axx

2
+ A2

xx

4

1 + 3Axx

4
+ A2

xx

16

(2.56)

2.4. Modes of Propagation

In order to understand the modal structure in the waveguide, we can simplify the

analysis and think the problem in two dimensions where we assume an infinite slab in

y direction so that electric field amplitude Ey is constant in y direction so that it is

only a function of x and z; where z is the propagation direction. The refractive index

distribution of the infinite slab can be shown in Figure 2.2. One can assume TE or TM

mode of propagation for two dimensional cases. Here we analyze the TE mode where

there is an infinite electrical field Ey in y direction.

Figure 2.2. Refractive index distribution in infinite slab waveguide

If we analyze the scalar wave equation,

∇2Ey + n2k2Ey = 0 (2.57)

In order to solve Eq. (2.57) we make a trial solution in the form of:
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Ey(x, z) = Ey(x)e−jn0kz (2.58)

Here n0 represents a reference refractive index. Plugging this solution into Eq (2.58)

we obtain:

∂2Ey

∂x2
+ (n2k2 − n2

0k
2)Ey = 0 (2.59)

The choice for n0 depends on the position. For x < 0 and x > d we choose n = nclad

otherwise, we choose n = ncore.

We can summarize the modal structure with two different cases:

a) If n0 > n then, the transverse wave equation will have a general solution with

a real exponential form:

Ey(x) = E0e
±

√
n2

0k2−n2k2x (2.60)

Where E0 is the electric field amplitude at x = 0. To be physically reasonable the

negatively decaying solution is chosen for the electrical field. This solution describes

the evanescent field in the waveguide where the reference refractive index is greater

than the refractive index of the medium.
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b) If n0 < n then, the solution has an oscillatory form as:

Ey(x) = e±j
√

n2k2−n2
0k2x (2.61)

In order to summarize the solutions in different regions it is important to describe

eigenvalue of the mode as:

β = n0k (2.62)

The choice of β changes the structure of the electrical field amplitude in transverse

and propagation plane. Waveguides are built with ncore > nclad so that there are modes

that are oscillating in core and exponentially decaying in the cladding of the waveguides.

For any mode in order to have a physical solution, the necessary condition for reference

refractive index is:

nclad < n0 < ncore (2.63)

2.5. Conformal Transformations

In this thesis the bends in the waveguides are analyzed by using conformal trans-

formations that is introduced by Mordehai et al. [17]. Conformal transformations

are extensively used in image processing for mapping nonlinear geometries. The aim
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of conformal transformations is to change the coordinate system which contains non-

linear boundaries, by a new coordinate system which can be represented by straight

contours. Here a brief explanation of the theory is presented and then we show that

how the transformation on the coordinate plane changes the wave equation and how

can we physically interpret the transformation.

Let us analyze the conformal transformations for two dimensional scalar wave

equation:

(∇2
x,z + n2(x, z)k2)Ey = 0 (2.64)

where the waveguide is assumed to be infinite in the y direction as in previous sec-

tion. If we express the transformation for the new coordinate system with complex

representation:

a = u + jv = f(b) = f(x + jz) (2.65)

Here f is an analytical function [18], that maps the original plane (x+jz) to a new

plane (u + jv). Expanding with the aid of the Cauchy Riemann relations [Appendix

B] where,

∂u

∂x
=

∂v

∂z
(2.66)
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∂v

∂x
= −∂u

∂z
(2.67)

we can express the wave equation in the new coordinate plane as:

(∇2
x,z +

∣

∣

∣

∣

∣

db

da

∣

∣

∣

∣

∣

n2(u(x, z), v(x, z))k2)Ey = 0 (2.68)

Where
∣

∣

∣

db
da

∣

∣

∣ is the Jacobian determinant given as:

∣

∣

∣

∣

∣

db

da

∣

∣

∣

∣

∣

=
1

(∂u/∂x)2 + (∂v/∂y)2
(2.69)

In Figure 2.3 ρ is the distance from the center of the bend. As an example let us

consider the above index profile under the transformation:

a = R2ln
b

R2
(2.70)

This transformation maps original plane that is described in terms of x and z to

a new plane that is represented by u being the distance from the center of the bend

and v being the distance travel along the bend. This transformation gives:
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Figure 2.3. Coordinate mapping with conformal transformations

∣

∣

∣

∣

∣

db

da

∣

∣

∣

∣

∣

= exp(u/R2) (2.71)

Equation (2.71) modifies the refractive index of the original plane as in Eq. (2.68)

Figure 2.4. Effect of conformal transformation in refractive index

In physical terms, the refractive index increases as we move away from the center

of the bend. Since the refractive index can not exceed the maximum in the waveguide

the outermost point of the bend should have the index of the core. The effect of

the bend is to shift the electrical field in to the bend direction where the refractive
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index increases. By applying conformal transformations one can analyze the curved

boundaries in an unbent refractive index profile where the propagation is analyzed

along the cross section of the fiber.
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3. FINITE DIFFERENCE BEAM PROPAGATION

METHOD

3.1. Finite Difference Approximations for Derivatives

Modeling dielectric waveguides with a step index profile is a common require-

ment in the design of optical devices. The interfaces between the regions of constant

refractive index may generally be curved, as in a circular optical fiber, but are often

composed of planar sections which themselves can either lie in an oblique direction rel-

ative to the coordinate planes or can be parallel to them, as in rectangular waveguides.

Early attempts at the finite difference modeling of such structures focused mainly on

the single component scalar approximation as in Eq. (2.57), which has the advantage

of simplicity and computational efficiency but produces relatively accurate results only

for very small index contrasts. The semi vector approximation is an advance on the

scalar approximation, retaining the single component assumption, but with different

interface conditions for each polarization and hence a small computational penalty due

to the asymmetry of the resulting matrix.

The finite difference solution of the full vector two component formulations de-

rived from the complete set of Maxwell’s equations (equations (2.29) and (2.32)) is

computationally more difficult than the single component approximations (equations

(2.45) and(2.46)).

Finite difference method as its name implies carries the original problem in a

discrete computational space shown as in Figure 3.1. The derivative operations are

approximated by finite difference approximations. After computing the transverse

derivatives, a new frame is found starting from an initial frame. Hence, the propagation

is represented as frame after frame collection of electric and magnetic fields amplitudes.

The heart of the finite difference method is to approximate the derivative opera-

tors in a finite mesh. Here the finite difference approach for the semi vector equations
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Figure 3.1. Finite difference computational space in three dimensions

are analyzed, other equations can be approximated in a similar way.

In order to represents the field elements we expand the notation of the last chapter

and use subscripts to display the mesh points such as nm,n. However since electric field

intensities have subscripts representing the orientation, we add superscripts to show

the mesh points.For example E(5,1)
x represents the element of electric field intensity in

x direction sitting at the mesh as shown in Figure 3.1.

The most important term for the cause of truncation error is the first one in Eq.

(2.30) and (2.33) and it can be approximated using a graded index approximation as

shown in Figure 3.2, which we can explain as follows:

∂
∂x

[

1
n2

∂
∂x

(n2E(m,n)
x )

]

≈

1
n2

(m+1/2,y)

∂n2E(m,n)

x

dx
|(m+1/2,n) − 1

n2
(m−1/2,y)

∂n2E(m,n)

x

dx
|(m−1/2,n)

dx
(3.1)
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Figure 3.2. Graded index approximation to step index profile

Where,

1
n2

(m+1/2,y)

∂n2E(m,n)

x

dx
|(m+1/2,n) ≈

2

n2
(m+1,y) + n2

(m,y)

n2
(m+1/2,n)E

(m+1,n)
x − n2

(m,n)E
(m,n)
x

dx
(3.2)

and

1
n2

(m−1/2,y)

∂n2E(m,n)

x

dx
|(m−1/2,n) ≈

2

n2
(m−1,y) + n2

(m,y)

n2
(m,n)E

(m,n)
x − n2

(m−1,n)E
(m−1,n)
x

dx
(3.3)

The same approach can be applied to the first term of equation (2.34)
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∂
∂y

[

1
n2

∂
∂y

(n2E(m,n)
y )

]

≈

1
n2

(m+1/2,y)

∂n2E(m,n)

y

dy
|(m+1/2,n) − 1

n2
(m−1/2,y)

∂n2E(m,n)

y

dy
|(m−1/2,n)

dy
(3.4)

Where,

1
n2

(m+1/2,y)

∂n2E(m,n)

y

dy
|(m+1/2,n) ≈

2

n2
(m+1,y) + n2

(m,y)

n2
(m+1/2,n)E

(m+1,n)
y − n2

(m,n)E
(m,n)
y

dy
(3.5)

and

1
n2

(m−1/2,y)

∂n2E(m,n)

y

dy
|(m−1/2,n) ≈

2

n2
(m−1,y) + n2

(m,y)

n2
(m,n)E

(m,n)
y − n2

(m−1,n)E
(m−1,n)
y

dy
(3.6)

The second derivative with respect to x and y can be approximated by using a central

differencing scheme given as:

∂2E(m,n)
x

∂y2
≈ ∂

∂y

(

E(m,n+1/2)
x − E(m,n−1/2)

x

dy

)

(3.7)

and
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∂E(m,n+1/2)
x

∂y
≈ E(m,n+1)

x −E(m,n)
x

dy
(3.8)

∂E(m,n−1/2)
x

∂y
≈ E(m,n)

x −E(m,n−1)
x

dy
(3.9)

resulting in

∂2E(m,n)
x

∂y2
≈ E(m,n+1)

x −2E(m,n)
x + E(m,n−1)

x

dy2
(3.10)

In order to make the computation easy, we can define the transmission and re-

flection coefficients for the electric field amplitudes in mesh grid at points as [20],

T(m±1,n) =
2n2

(m±1,n)

n2
(m±1,n) + n2

(m,n)

(3.11)

R(m±1,n) = T(m±1,n) − 1 (3.12)

T(m,n±1) =
2n2

(m,n±1)

n2
(m,n±1) + n2

(m,n)

(3.13)
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R(m,n±1) = T(m,n±1) − 1 (3.14)

If we use the above coefficients for finite difference equations, we can approximate

Eq. (2.30) and (2.33) as follows:

AxxE
(m,n)
x ≈ (

T(m+1,n)E
(m+1,n)

x −(2−R(m+1,n)−R(m−1,n)+T(m+1,n))E
(m,n)

x

dx2 +

E(m,n+1)
x − 2E(m,n+1)

x + E(m,n−1)
x

dy2
+ (n2

m,n + n0
2
m,n)k2E(m,n)

x ) (3.15)

and

AyyE
(m,n)
y ≈ (

T(m,n+1)E
(m,n+1)

y −(2−R(m,n+1)−R(m,n−1)+T(m,n+1))E
(m,n)

y

dy2 +

E(m+1,n)
y − 2E(m+1,n)

y + E(m−1,n)
y

dx2
+ (n2

m,n + n0
2
m,n)k2E(m,n)

x ) (3.16)

Same procedure can be applied to equation to magnetic field propagation op-

erator in Eq. (2.41). After deriving the transverse derivatives, the derivative in the

propagation direction needs to be written in finite difference form to complete the

analysis. We can take the derivative in propagation direction as follows:

j
(E(m,n,l+dz)

x − (E(m,n,l)
x )

dz
= ((1 − α)E(m,n,l+dz)

x Axx − αE(m,n,l)
x Axx) (3.17)

where α controls the stability of the derivation. As explained in [24], the case where α
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equals to gives the Crank Nicholson scheme. For this scheme the resultant equations

is,

(1 +
jdzAxx

2
E(m,n,l+dz)

x ) = (1 − jdzAxx

2
E(m,n,l)

x ) (3.18)

For Crank Nicholson scheme each frame is multiplied with:

p =
1 − jdzAxx

2

1 + jdzAxx

2

(3.19)

WhereAxx is computed from the current transverse plane. The magnitude of p can

be easily shown to be one, implying that the Crank Nicholson scheme is unconditionally

stable. the phase of p on the other hand depends on the step size dz and the propagation

matrix Axx. Finally we can summarize the semi vector solutions as follows.

(1 +
jdzAxx

2
E(m,n,l+dz)

x ) = (1 − jdzAxx

2
E(m,n,l)

x ) (3.20)

(1 +
jdzAyy

2
E(m,n,l+dz)

y ) = (1 − jdzAyy

2
E(m,n,l)

y ) (3.21)
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Figure 3.3. Matrix scanning procedure

3.2. Implementation

Three dimensional implementation of the finite difference beam propagation method

depends on iterative matrix operation. The propagation matrix Axx and Axx should

be constructed before starting iterations. The initial electrical field should be given as

a vector in order to make calculation at each node of the mesh grid. As a result, the

matrix representing the initial electrical field needs to be scanned column by column

to construct a vector for iteration.

For an M by N mesh grid the resultant vector has MN elements, thus the prop-

agation matrix Axx and Axx becomes MN by MN . This makes the beam propagation

method computationally expensive. However propagation matrix become sparse since

they have nonzero elements only around the main diagonal of the matrix. As the prop-

agation matrix are sparse, the iteration can be solved by using explicit methods such

as biconjugate gradient method [21]. This eliminates the need for LU factorization and

relaxes the algorithm. After solving for the electric fields, the magnetic fields can be

calculated by using curl equations in the Maxwell’s equations. This provides a faster
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but less accurate result. A better result is to derive the finite difference operators for

magnetic field as well. After obtaining electric and magnetic fields, the power across

the cross section of the waveguide can be calculated in accordance with equation (2.49).

An important remark we want to make is that making finite difference scheme faster

or providing a better accuracy are active fields of research. Some attempts tries to

approximate the transverse derivative with non iterative methods, such as split step

methods [22][23]. These methods are recently reported and shown to provide faster

simulation times.

3.3. Mode Solving With Imaginary Distance Method

As explained in the previous chapter, there are different modes that are propa-

gating in the waveguide. The total light propagation is the sum of all guided modes.

In order to analyze the propagation along waveguide, one has to obtain the initial elec-

trical or magnetic field and propagation constant of that mode. Imaginary distance

method is a powerful method to obtain the modes that are guided in the waveguide

and in this thesis initial field amplitudes are obtained by utilizing this method. Here

a brief explanation of the imaginary distance mode solving method and a two dimen-

sional example are presented. For detail analysis one should consult the original work

[24].

We can start with equation (2.45)

∂Ex

∂z
= −jAxxEx (3.22)

The solution of the above equation takes the form
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Ex(x, y, z) = e−jzAxxEx(x, y, 0) (3.23)

To solve the modes in the waveguide, starting from an arbitrary input field, the waveg-

uide is assumed to be uniform in z direction so that the input field can be represented

by the summation of the eigenmodes in the structure as:

Ex(x, y, 0) =
∞
∑

m=0

amExm(x, y) (3.24)

where the summation includes both the guided modes and the radiation modes. The

eigenvalue λm and the eigenvector Axx of Exm(x, y) satisfy,

AxxExm(x, y) = λmExm(x, y) (3.25)

The relation between eigenvalue λm and the propagation constant of mode m which is

denoted by βm satisfy:

λm = βm − n0k (3.26)

where n0 is the reference refractive index and k is the wave number in free space. By



37

applying Taylor series expansion and using Eq. (3.25) we can write Eq. (3.26) as:

Ex(x, y, z) =
∞
∑

m=0

ame−jλmzExm(x, y) (3.27)

If the field propagates along imaginary axis implying z = jτ , Eq. (3.30) becomes:

Ex(x, y, τ) =
∞
∑

m=0

ameλmzτExm(x, y) (3.28)

If we choose n0 equals β0/k, then λ0 = 0 and all other eigenvalues are negative

implying that,

lim
τ→∞

Ex(x, y, τ) =
∞
∑

m=0

a0Exm(x, y) (3.29)

This means all the higher order modes exponentially decay as the field propagates,

except the fundamental mode, which remains unchanged. Thus, after propagating a

certain distance, the fundamental mode will become dominant, and all the higher order

modes will relatively die out. The algorithm can be used with finite difference beam

propagation method where the propagation axis is made imaginary. Same procedure

can be used to find the higher order modes of propagation. A detailed discussion can

be found in [24].

As an example the fundematel TE mode is calculated using the finite difference
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Figure 3.4. Fundamental mode emerging from an arbitrary initial field

method for a waveguide having the following parameters:

Core refractive index: 1.49

Cladding refractive index =1.403

Numerical aperture =0.5

Core width =15 um

Cladding width= 5 um

Wavelength =1 um

The step sizes are dx = 0.1 um dz = 0.02 um

3.4. Boundary Conditions

Boundary condition algorithms are very important in finite difference beam prop-

agation method. This arises from the truncation error caused by finite mesh grid. If

we think in the light of Eq. (3.11), we see that if the point lies in the left boundary one
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can not calculate the transmission and reflection coefficients from the neighbor points,

since this is the last point on the mesh grid. In this thesis two algorithms for boundary

conditions are discussed, namely Transparent Boundary Conditions (TBC) and Per-

fectly Matching Layers (PML). Transparent boundary conditions tries to approximate

the field density at the boundary by analyzing the field behavior behind the boundary

whereas the perfectly matching layer tries to add an absorbing layer along the edges

so that the boundaries result in no reflection and the mesh grid seem to have extended

to infinity.

3.4.1. Transparent Boundary Conditions

Transparent boundary conditions are first introduced by R. Hadley in 1992 [25].

It provides an easy solution to manipulate the edges without introducing he truncation

error. Let us consider a two dimensional problem to analyze the algorithm.

Figure 3.5. TBC algorithm

Here a phase front impinges on the right boundary. Because of the energy con-

servation between successive frames in finite difference approach [25], for the points at
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the edge of the grid, following relationship holds:

E(M,n)
x

E(M−1,n)
x

=
E(M,n+1)

x

E(M−1,n+1)
x

= ejkxdx (3.30)

The above derivation may be applied in a nearly identical manner to the left

boundary. The main problem is to determine the kx value for the boundary. The

proposed solution is to observe the change around the boundary by calculating an

initial kx. Then using this value we calculate,

v =
dz

dx

kx
√

k2 − k2
x

(3.31)

where v gives us a measure of how fast the phase front impinges on the boundary.

This value is rounded to the nearest integer and the next point at the boundary is

approximated as:

E(M,n+1)
x =

E(M−v,n)
x

E(M−v−1,n)
x

E(M−1,n+1)
x (3.32)

Initial kx value can be easily found, if there is a priori information about the ge-

ometry of the problem. However, for problems where phase fronts are making different

incident angles with boundaries, calculating initial kx is difficult

Since, in practice the phase incident angle is not known, one has to analyze many
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points inside the boundary and approximate the phase incident angle and . On the

other hand due to the simplicity of TBC algorithm, it is commonly used in applications

when there is less radiation to the outside from the boundary or the incident angles

on the boundaries can be approximated. For analyzing waveguides with considerable

radiation and complex geometries a more powerful boundary method is needed and

Transparent Boundary Conditions prove to be inadequate.

3.4.2. Perfectly Matching Layers

Perfectly matched layers method approaches to the boundary conditions problem

at a different way. Berenger showed that [24], utilizing a buffer absorbing layer called

perfectly matching layer, it is possible to capture and dissipate all the radiation into

the absorbing layer. As a result, the truncation error caused by the boundaries in the

finite difference scheme is solved since the boundaries are viewed to have extended to

infinity.

Figure 3.6. PML approach a) physical space b) finite computational space

When a wave enters the absorbing layer, it is attenuated by the absorption and

decays exponentially; even if it reflects off the boundary of the computational space,

the returning wave after one round trip through the absorbing layer is exponentially

tiny. The problem with this approach is that, whenever you have a transition from one

material to another, waves generally reflect, and the transition from non absorbing to



42

absorbing material is no exception, so instead of having reflections from the grid bound-

ary, we now have reflections from the absorber boundary. However, Berenger showed

that a special absorbing medium could be constructed so that waves do not reflect at

the interface. Although PML was originally derived for the Maxwell’s equations, the

same ideas are immediately applicable to other wave equations.

The main theory behind the perfectly matching layers is complex coordinate

stretching. It can be explained by a simple example:

If we consider the function E = ejkx, where k = 2πλ and evaluate this function

for positive x, we see that the function is oscillatory if x is real. However if we modify

x and force it to have an imaginary part after 3 wavelength, the resultant function

does not changes for points before 3 wavelength; yet it exponentially decays with the

imaginary part of x.

The power comes from the analytical continuity [18] of the function E = ejkx. It

does not matter if it is evaluated as real or imaginary x, the function will be continuous

as long as x is continuous. The region where x has imaginary part acts as a dissipative

medium for the function. However, this artificial medium does not cause any reflections

and does not alter the field behavior outside the absorbing region.

The following example is nothing but complex coordinate transformations for

certain regions of interest. Perfectly matching layers resemble the idea of imaginary

distance propagation for mode solving, since it takes the advantage of the continuity of

the equations and exponentially decaying nature of wave solutions under propagation

over complex axis. In order to apply this idea, we can analyze Maxwell equations in a

new space transformed from the original space with the transformation,

x̂(x) = x + jf(x) (3.33)
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Where f function tells us how we deform the contour along x. The derivative with

respect to x is calculated as:

∂x̂

∂x
= 1 + j

∂f(x)

∂x
(3.34)

The derivation made by Berenger uses [24],

∂f(x)

∂x
=

σ(x)

ω
(3.35)

Where σ(x) is the conductivity of the medium and it is zero in the region of interest

and nonzero in the perfectly matching layer. In physical terms, the conductivity asso-

ciated with perfectly matching layers makes these regions dissipative so that the field

exponentially decays. This transforms the derivative in the Maxwell’s equations as:

∂f(x)

∂x
→ 1

1 + j σx(x)
ω

∂

∂x
(3.36)

The phase velocity is used in order to provide equal attenuation for waves having

different wavelengths, as can be seen from the original function evaluated with new

transformation:
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ejkx̂ = ejkxe
k
ω

∫

σx(x)dx (3.37)

Here the attenuation is independent of wavelength since equal to the inverse of the

speed of light.

The PML approach seems perfect as it is easy to apply. It does not need special

care for implementation and it can be applied to different propagation schemes with no

modification. Along with its advantages the PML approach carry some disadvantages.

We can summarize the limitations of the PML as follow:

a) Discretization and numerical reflections:

PML is only reflectionless when solving the exact wave equations. As soon as

we discretize the problem (whether for finite difference or finite element methods),

we are only solving an approximate wave equation and the analytical perfection of

PML is no longer valid. PML is still an absorbing material that is, the waves that

propagate within it are still attenuated, even discrete waves. The boundary between

the PML and the regular medium is no longer reflectionless, but the reflections are

small because the discretization is hopefully a good approximation for the exact wave

equation. Reflections can be made arbitrarily small as long as the medium is slowly

varying. In practice the conductivity starts slowly to increase from zero to a maximum

at the boundary as quadratic or cubic functions. This way the reflections at the

beginning of PML region and at the boundaries can be made very small.

b) Angle dependent absorption:

The field amplitude decrease more as it propagates in the PML region. For

waves that are parallel or making small angles with the PML region the decay is low.

However, in a three dimensional problem, if the geometry is not very complex, these
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waves will hopefully hit on another PML region without changing the field of interest,

and they will eventually decay.
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4. Bend Enhanced Optical Touch Sensor Analysis

The power loss calculation formulas in the literature [26][27][28][29][30], address

the power attenuation under slight bends only and they assume an infinite cladding

so that no power couples back from the cladding in to the core. However, sensor

applications treats the cladding as a power exchange layer, where certain amount of

power is coupled to the cladding for getting information from the medium that the

cladding interacts. Our aim in the following simulations is to analyze the amount of

power that is coupled to the cladding, radiated to the outside of the waveguide with

and without any contact medium and analyze the touch sensing capabilities of the

bend enhanced optical touch sensor.

We have constructed a three dimensional finite difference beam propagation

method using paraxial, semi vector solutions. The bending simulations are performed

for a waveguide having 30 um core and 40 um total diameter. The numerical aperture

of the fiber is chosen to be 0.5, which is the case for most of the plastic optical fibers,

and its core and cladding refractive indeces are 1.49 and 1.403 respectively. The wave-

length of the beam is chosen to be 950 nm. The finite difference scheme is applied

with step sizes of dx = 0.2 um dy = 0.2 um, dz = 0.2 um. First the step size along

propagation is chosen to be 0.1 um but making it 0.2 um did not affect he stability

and accuracy of the program. The mesh grid for the transverse plane is chosen to be

30 um by 30 um. This means at each frame the electric and magnetic field vectors are

represented by 300 by 300 matrices and the propagation matrix Axx and Ayy in Eq.

(3.23) and Eq. (3.24) become 90000 by 90000.

We should note that the dimensions chosen for the simulations are not practical

since the smallest waveguides that are used today have 50 um core diameter. Since

we have performed several simulations for different setups, the simulation times and

the amount of obtained data become huge. However for an optimum design a detailed

simulation can be performed to analyze a real optical fiber geometry. Here our intention

is to show the effect of bending and coupling on a theoretical small scale setup.
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At the edges of the mesh grid we have applied a PML region having a quadratic

form:

σ(x, y) = σmax(
xdist

pmllength
+

ydist

pmllength
)2 (4.1)

where, σ is the conductivity of the PML region, σmax is the maximum conductivity

being 0.1 (mho/m) , pmllength is chosen to be 5 um and xdist and ydist are the

distance from the boundary for the x and y dimensions respectively.

4.1. Mode Solving

We have applied the imaginary distance method as explained in Chapter 3 in or-

der to solve for the fundamental mode in the waveguide. Since the beam propagation

method is computationally expensive, throughout our simulation, we have used fun-

damental mode only. As explained in [17] when an optical waveguide is bent severely,

the higher order modes decays faster than the lower order modes; however, one can

build sensors utilizing the lower order modes. Our aim is to analyze the power of the

fundamental mode and show its change for different setups. In a similar way one can

derive the higher order modes and make a more detailed analysis.

We have started from an arbitrary electrical field and propagated the beam along

the waveguide. We have observed that initial field has converged to the fundamental

mode for a reference refractive index n0 = 1.49 after propagation the field for 800 um.

For all bending simulations the fundamental mode of the electrical fields Ex and

Ex are propagated, then the corresponding magnetic fields are calculated from the

electrical fields by using Eq. (2.1). Then we have calculated the power in the cross

section of the fiber using Eq. (2.49). The PML regions have successfully absorbed the

outgoing radiation for different bending setup.
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4.2. Constant Bending

We have propagated the beam under constant bending for different bend radii

and observed the beam for the simulated radius. Then we have analyzed the power

loss, the amount of power coupled to the cladding and the power confined in the core.

At the end of each simulation we have given our results in tabular form and made

comments. Figure 4.1 shows the geometry that is used in our simulations:

Figure 4.1. Geometry used in the simulations

We have analyzed the normalized power change in the core and cladding across the

cross section of the waveguide as a function of theta (plane angle of the cross section)

for 4 different bend radii with the intention of finding the effects of power coupling

in the layers of the waveguide. We have also observed the stability of finite difference

scheme and Perfectly Matching Layers. Even under severe bending conditions we have

observed that the radiated power is easily absorbed in the PML region with negligible

reflections from the boundaries.

As can be seen from Figure 4.2 the effect of bending causes the power to oscillate

between core and cladding in the waveguide and it exponentially approaches a limit.

However the first half turn in the waveguide can be used as a sensor since a considerable
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Figure 4.2. Normalized power in the core across the cross section for different bend

radii

amount of power is transferred to the cladding.
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Figure 4.3. Normalized power in the cladding across the cross section for different

bend radii

We observed that the peak power in the cladding makes a maximum for 100 um
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and 120 um bend radii and it becomes less whether we increase or decrease the bend

radius.

Table 4.1. Constant bending simulation results

Bending Radius (um)

80 100 120 140

Peak Power in the cladding 0.563 0.602 0.626 0.590

Power in the core after one half turn 0.582 0.760 0.742 0.768

Power in the cladding after one half turn 0.314 0.191 0.219 0.208

Power loss after one half turn 0.104 0.051 0.039 0.024

Table 4.1 gives the results for bending simulations. As we can see the amount

of power loss increases as we decrease the bending radius. These plots will become

important when we analyze the behavior of the waveguide with a contact medium on

the cladding

4.3. Touching The Bent Waveguide

Having analyzed the change of power in the waveguide under different bending

conditions, we now show the effect of touching the bent waveguide that is bringing a

contact medium next to the cladding. Again we make our analysis for one half turn

only. During our simulations we have simulated the human skin with a medium having

refractive index of 1.4, 1.45 and 1.5. This medium is brought in close contact with the

bent waveguide and allowed to continuously touch the surface of the waveguide at one

point only.

After making the touch simulations for contact medium having different refractive

indeces, we have seen that changing the refractive index of the contact medium between

1.4 and 1.5, did not affect the power loss considerably. So we have used a refractive

index of 1.4 for the contact medium to model the touching on the waveguide.
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Figure 4.4. Normalized power in the waveguide cross section for different bend radii,

in case of touching
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Figure 4.5. Normalized power change at the cross section of the waveguide for

different bend radii, in case of touching

As can be seen from the results at all cases the power decreases considerably

meaning the waveguide can detect the presence of touching even if the contact point
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Table 4.2. Touch sensing simulation results

Bending Radius (um)

80 100 120 140

Power change with touching 0.540 0.587 0.559 0.505

Power in the core after one half turn 0.169 0.30 0.311 0.351

Power in the cladding after one half turn 0.187 0.064 0.091 0.097

Power loss after one half turn 0.664 0.636 0.598 0.552

is very small.

4.4. Results

As can be seen from the above tables and plots, for all cases the touching of the

waveguide can be detected by monitoring the power change at the cross section of the

waveguide. For the analyzed refractive index profile we observe that the optimum bend

radius that causes the maximum power change in the waveguide with the touching is

around 100 um. Since for this case the amount of power coupled to the cladding is

maximum.

One important result is the peak power we can achieve in the bent waveguide

when there is no touching. The amount of peak power in the cladding gives us the

sensing capabilities of the waveguide. As we have seen from the plots, peak power in

cladding is reached for 100 um and 120 um cases and for these bend radii the amount of

detectable power change is also maximum. We reason that the amount of peak power

that can be coupled into the cladding changes with different bend radii. However

there is an optimum point where it reaches a maximum and for this bend radius the

touch sensing capability is maximum as well. We can summarize the results of our

simulations as follows:

• We have showed the correct operation of our three dimensional finite difference

beam propagation method that adopts conformal transformations to analyze the
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curved boundaries of the waveguides.

• Perfectly matching layer boundary conditions showed negligible amount of power

reflection from the boundaries even in the case of considerable amount of power

radiation from the finite difference mesh. This can be clearly observed from the

plots. For example even for the case of 80 um bending, almost 66 percent of the

power in the waveguide is radiated to the outside without any reflections.

• As an application we have demonstrated a novel touch sensor approach and ob-

served that it has a good touch sensing capability. We have shown that under

considerable bending the presence of human touch decreases the amount of power

in the waveguide and this power change can be used as a touch sensor

• Generally, for sensor applications we have shown that the amount of peak power

that can be transferred to the cladding during one half turn gives a measure of

the sensing capability of the waveguide.

For our proposed touch sensor, we can summarize its advantages and its possible

use as follows:

• Bend enhanced optical touch sensor is immune to electromagnetic interference

because the sensing occurs in optical frequencies.

• It requires small activation forces since only a tipping on the surface becomes

enough for sensing.

• Since the sensor does not contain any moving parts it is highly durable.

• The sensor can be made transparent by properly processing the waveguide and it

can be used together with display systems as well. Since the infrared light beam

is propagating in the waveguide the sensing will not be observed by the human

eye.
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• By utilizing the analyzed half turn bend enhanced touch sensors in a grid where

each grid having one half bend as a sensitive point, it can be used as a two

dimensional touch sensor.
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5. CONCLUSIONS

We have explained the methodology of the finite difference beam propagation

methods to analyze bending and coupling losses in a plastic optical fiber waveguide.

The curved geometries are simulated with Conformal Transformations so that the re-

fractive index distribution is modified rather than its orientation. Our analysis method

has been proved to be functional even in the case of a considerable radiation to the

outside of the waveguide and unwanted reflections from the wall are shown to be elimi-

nated by the perfectly matching layers. One drawback of our analysis method is being

paraxial. By using a higher order Pade approximation it can analyze complex ge-

ometries,for example, abrupt changes in the propagation direction, rib waveguides and

arrayed waveguide gratings. Since for the simulation of bend enhanced touch sensor it

was not needed, we leave its implementation as a future work.

As for the bend enhanced touch sensor, we have demonstrated the characteristic

of power oscillation between core and cladding for different bend radii. We have shown

that the cladding can allow power coupling in order to sense the presence of a human

touch. Our simulation results showed that the ratio of the peak power that can be

coupled to the cladding gives a measure for the sensing capabilities of the waveguide.

We have analyzed different bend radii and showed there is an optimum bend radius

for the waveguide during one half turn where it can efficiently detect the presence of a

contact to the cladding.
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APPENDIX A: FORMULAS USED IN THE THESIS

Gradient, of scalar function f(x, y, z) represents a vector field given by:

∇f = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
) (A.1)

Divergence, of a continuously differentiable vector field F = Fxi+ Fyj+ Fzk is a scalar

field given by:

∇ · F =
∂Fx

∂x
+

∂Fy

∂y
,
∂Fz

∂z
(A.2)

Laplacian in Euclidean space is defined as the divergence of gradient of a vector field

given f(x, y, z) as:

∆f =
∂2f

∂x2
+

∂2f

∂y2
,
∂2f

∂z2
(A.3)

Vector Laplacian of a vector field F = Fxi + Fyj + Fzk in Euclidean Space is given by:

∆2f = (δFx, δFy, δFz) (A.4)
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APPENDIX B: DERIVATION OF CAUCHY RIEMANN

EQUATIONS

If we let:

a = u + jv = f(b) = x + jz (B.1)

where,

b = x + jz (B.2)

we can take the derivative as:

db = dx + jdz (B.3)

the elements of the original plane can be expresses in terms of the complex variable b

as:

x =
b + b̄

2
(B.4)
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Where b̄ is the complex conjugate of b similarly,

z =
b + b̄

2j
(B.5)

We can take the derivatives as:

∂x

∂b
=

1

2
(B.6)

∂z

∂b
=

1

j2
(B.7)

The derivative of the coordinate transformation function f with respect to com-

plex variable b can be written in terms of coordinate axis x and z and the function f

as:

∂f

∂b
=

∂f

∂x

∂f

∂b
+

∂f

∂z

∂f

∂b
(B.8)

By using Eq. (B.6) and (B.7) in Eq. (B.8) we obtain:
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∂f

∂b
=

1

2
(
∂f

∂x
− j

∂f

∂z
) (B.9)

We can express Eq. (B.9) in terms of u and v as:

∂f

∂b
=

1

2

[

(
∂u

∂x
+ j

∂v

∂x
) − j(

∂u

∂z
+ j

∂v

∂z
)

]

(B.10)

Along real x axis we have ∂f∂z = 0,

∂f

∂b
=

1

2
(
∂u

∂x
+ j

∂v

∂x
) (B.11)

Along imaginary x axis we have ∂f∂x = 0,

∂f

∂b
=

1

2
(−j

∂u

∂z
+

∂v

∂z
) (B.12)

If f is complex differential above two equations must be equal so:

∂u

∂x
=

∂v

∂z
,
∂v

∂x
= −∂u

∂z
(B.13)
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