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ABSTRACT

INFORMATION THEORETIC CRYPTANALYSIS AND

RELIABLE COMMUNICATIONS UNDER CODEBOOK

MISMATCH

In this thesis, usage of typicality in two different concepts is investigated. In the

first concept, a new approach on cryptanalysis is proposed where the goal is to explore

the fundamental limits of a specific class of attacks against a particular cryptosystem.

As a first step, the approach is applied on ABSG, which is an LFSR-based stream

cipher where irregular decimation techniques are utilized. Consequently, under a set of

mild assumptions, which are common in cryptanalysis, the tight lower bound on the al-

gorithmic complexity of successful exhaustive search type Query-Based Key-Recovery

attacks are derived where the proofs rely on the concept of typicality for single random

variable. In the second concept, we define a new problem, which we called “code-

book mismatch problem”, which is a generalization of the traditional point-to-point to

communication setup. Under independent identically distributed encoder codewords

assumption, it is proven that the operational capacity of the system is equal to the

information capacity of the system, defined as maxp(x) I(U ; Y ).
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ÖZET

BİLGİ KURAMSAL KRİPTOANALİZ VE KOD REHBERİ

UYUMSUZLUĞU DURUMUNDA GÜVENİLİR İLETİŞİM

Bu tezde, tipikalitenin iki farklı kavramda kullanılması incelenmiştir. Birinci

kavramda, amacın hususi bir kriptosisteme karşı, belirli bir saldırı sınıfı içerisindeki

saldırıların karmaşıklıkları üzerindeki temel sınırların keşfedilmesinin olduğu yeni bir

yaklaşım önerilmiştir. Bir ilk adım olarak, yaklaşım düzensiz kısaltma tekniklerini

kullanan, LFSR-tabanlıbir akım şifreleyicisi olan ABSG üzerinde tatbik edilmiştir.

Sonuç olarak, kriptanalizde yaygın olan mutedil kabullenimler altında etraflıarama

türünden sorgu temelli anahtar geri alma saldırılarının sıkı alt limiti çıkarılmıştır.

İspatlar, tek rassal değışken için tipikalite kavramına dayanmaktadır. İkinci kavramda,

yeni bir problem olan, geleneksel tek kullanıcılı iletişim düzeneğinin genellenmiş hali

“kod rehberi uyumsuzluğu problemini” tanımladık. Bağımsız özdeş dağılmış kod ke-

limeleri kabullenimi altında, sistemin operasyonel kapasitesinin maxp(x) I(U ; Y ) olarak

tanımlanan bilgi kapasitesine eşit olduğu gösterilmiştir.
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1. INTRODUCTION

1.1. Qualitative Introduction to AEP

Information theory, introduced by the seminal 1948 paper of Shannon [1], which

states the fundamental performance limits of lossless source coding and the error-free

communication, may be considered one of the most important improvements of the

engineering sciences in the 20th century, since it forms the fundamentals of modern

digital communication. Almost every information theorist agrees that the most impor-

tant concept of information theory is asymptotic equipartition property (AEP) which is

the fundamental crux of the proofs of both the achievability and the (weak) converse

parts of capacity results of source and channel coding [2].

Qualitatively, the concept of information is formalized by the entropy (the choice

of the name is not by accident) concept defined in [1], which is a measure of the un-

certainty included in the event, for which it is defined.1 With these explanations in

mind, the concept of typicality (which will be used interchangeably with the term AEP

throughout the rest of the thesis) may be best summarized by the quote of Thomas

Cover (co-author of the standard textbook [2] of information theory): “Almost all

events are almost equally surprising”. Although this explanation may be counterintu-

itive at first glance for a person who does not study information theory before, taking

into account the asymptotic nature of information theory and recalling law of large

numbers makes the dissemination of the claim easier.

Before stating the AEP rigorously, we first want reader to take a short historical

trip on ancestors of information theory and the evolution of different forms of AEP

theorems.

1Of course, beside this qualitative explanation, there is an axiomatic development of the concept
of entropy [1], which makes the choice of a logarithmic function (such as the entropy defined in the
current way of information theory) a must instead of an unjustified choice, in order to satisfy the
properties like symmetry, normalization, continuity, grouping that should be possessed by a measure
of information.
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The first known attempt to quantify the information is due to Nyquist. In [3] it

is claimed that the transmission rate in a telegraph system is proportional to logarithm

of the number of possible signal levels in a unit interval of transmission. Furthermore,

the question of finding an optimal (in the sense of maximizing the transmission rate)

code instead of Morse code is arisen.

Hartley, in his 1928 paper [4] introduced the formula2 : H = n log s, where s is

the number of possible states to choose from at each transmission, n is the number of

transmissions and H is the “quantitative measure of information” from Hartley’s point

of view.

Note that neither Nyquist nor Hartley did not use the probabilistic nature of the

problem of information transmission. The pioneer of introducing probability into the

problem of information transmission is Wiener [5]. In his work, he introduced the

concept of differential entropy for Gaussian random variables and did not consider the

discrete random variables.

After these unsatisfactory attempts to quantify the information, Shannon for-

malized the concept of information in terms of his entropy definition (cf. Section 1.2)

and stated the concept of typicality in his paper, provided the proof for i.i.d. random

variables case and stated the result for stationary random processes. The generaliza-

tion of the AEP theorem for stationary-ergodic random processes is due to McMillan

(in addition to be the father of the modern name of the theorem, AEP, in information

theory society) stated in [6] and independently to Breiman [7]. As a result, the AEP

theorem is also termed as Shannon-McMillan-Breiman theorem in the literature. More

detailed information regarding the history of information theory and specifically AEP

may be found the excellent survey paper [8].

The importance of the typicality concept in information theory may be summa-

rized by the following way: almost all theorems ever encountered in Shannon thoery3

2Note that this definition is a special case of Shannon’s entropy and the two entities are equal for
uniform distribution

3We refer to the problem of investigating the maximum achievable rates for different problems in
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heavily relies on the concept of typicality in their proofs (both for achievability and

converse parts). Of course, last decades’ hot topic network information theory, which

may be thought of as a generalization of the classical point-to-point communication to

the case of multiple users case, also heavily uses the concept of typicality. For detailed

surveys on network information theory, we refer the interested reader to [9, 10, 11].

To sum up, if one wants to prove a capacity result in an information theory

related problem, then he/she most probably should use a kind of typicality argument.

1.2. Notation

In this chapter, we provide the notation used throughout the thesis. Boldface

letters denote vectors; regular letters with subscripts denote individual elements of

vectors. The vector [a1, a2, . . . , aN ]T is compactly represented by aN . Furthermore,

capital letters represent random variables and lowercase letters denote individual re-

alizations of the corresponding random variable. The sequence of {a1, a2, . . . , aN} is

compactly represented by aN
1 . Given x ∈ {0, 1}, x̄ denotes the binary complement of

x. The abbreviations “i.i.d.”, “p.m.f.” and “w.l.o.g.” are shorthands for the terms

“independent identically distributed”, “probability mass function” and “without loss

of generality”, respectively.

For the discrete random variable X, corresponding p.m.f. is denoted by p(x)

by omitting subscript X, which should be evident from the context. E[·] denotes the

expectation operator.

For discrete random variable X defined on the discrete alphabet X with p.m.f.

p(x),

H(X)
4
= −

∑
x∈X

p(x) log p(x), 4 (1.1)

lossless source coding, lossy source coding (rate-distortion theory) and channel coding as Shannon
theory for single encoder-decoder pair.

4All of the logarithms in the thesis is base 2.
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denotes its entropy.

Binary entropy is defined as H(p)
4
= − p log p− (1− p) log 1− p, for 0 < p < 1.

For discrete random variables X1, X2 defined on X1×X2 with joint p.m.f. p(x1, x2),

H(X1|X2)
4
= −

∑
x1∈X1

∑
x2∈X2

p(x1, x2) log p(x1|x2), (1.2)

H(X1, X2)
4
= −

∑
x1∈X1

∑
x2∈X2

p(x1, x2) log p(x1, x2), (1.3)

I(X1; X2)
4
= −

∑
x1∈X1

∑
x2∈X2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
, (1.4)

denotes the conditional entropy or equivocation of X1 given X2, joint entropy of X1

and X2, and mutual information between X1 and X2, respectively.

Throughout the thesis, we say that “an and bn are equal to the first order in

the exponent” provided that limn→∞ 1
n

log an

bn
= 0, which is denoted by an

.
=bn in our

notation.

1.3. Quantitative Statement of AEP for Independent Random Variables

In this section, we review the concept of typicality (resp. joint typicality) for an

i.i.d. sequence of random variables over a marginal (resp. joint) probability distribution

and give AEP theorem for both cases. For the sake completeness and the beauty of

the proofs, we include the full versions. Both definitions, theorems and proofs in this

chapter are based on the ones given in [2].

We begin with the single random variable case:

Definition 1.3.1 The typical set A
(n)
ε (X) with respect to p(x) is defined as:

A(n)
ε (X)

4
=

{
xn ∈ X n :

∣∣∣∣−
1

n
log p(xn)−H(X)

∣∣∣∣ < ε

}
. (1.5)
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Now we state the AEP for this case:

Theorem 1.3.1 (AEP) Given {Xi}n
i=1, which are i.i.d. with distribution p(x), and

A
(n)
ε (X) is as defined in (1.5), we have:
1.

− 1

n
log p (xn) −→ H(X), in probability. (1.6)

2. Pr
(
A

(n)
ε (X)

)
> 1− ε, for n sufficiently large.

3. |A(n)
ε (X)| ≤ 2n(H(X)+ε).

4. |A(n)
ε (X)| ≥ (1− ε)2(H(X)−ε), for n sufficiently large.

Proof:

1. We have

− 1

n
log p (xn) = − 1

n

n∑
i=1

log p (xi) , (1.7)

−→ −E log p(x), in probability (1.8)

= H(X), (1.9)

where (1.7) follows since functions of i.i.d. random variables are also i.i.d., (1.8)

follows from law of large numbers and (1.9) follows from the definition of entropy.

(1.9) concludes the proof of first item.

2. For any δ > 0, there exists an n0 such that for all n > n0, we have

Pr

[
| − 1

n
log p (xn)−H(X)| < ε

]
> 1− δ, (1.10)

using (1.5) and (1.6) (recall the definition of convergence in probability). Choos-

ing δ = ε concludes the proof of this part.
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3. We have

1 ≥
∑

x∈A
(n)
ε (X)

p (xn) , (1.11)

≥
∑

x∈A
(n)
ε (X)

2−n(H(X)+ε), (1.12)

= 2−n(H(X)+ε)|A(n)
ε (X)|, (1.13)

where (1.12) follows using (1.5). (1.13) concludes the proof of third item.

4. Using the result of second part, we have

1− ε < Pr
(
A(n)

ε (X)
)
, (1.14)

≤
∑

xn∈A
(n)
ε (X)

2−n(H(X)−ε), (1.15)

= 2−n(H(X)−ε)|A(n)
ε (X)|, (1.16)

where (1.15) follows using (1.5). (1.16) states the sought-after result.

Next, we continue with the two random variables case, i.e. joint typicality.

Definition 1.3.2 The jointly typical set with respect to the distribution p(x, y) is de-

fined as:

A(n)
ε (X, Y )

4
=

{
(xn,yn) ∈ X n × Yn : | − 1

n
log p (xn)−H(X)| < ε,

| − 1

n
log p (yn)−H(Y )| < ε, | − 1

n
log p (xn,yn)−H(X, Y )| < ε,

}
, (1.17)

where p (xn,yn)
4
=

∏n
i=1 p(xi, yi).

Theorem 1.3.2 (Joint AEP) Let (xn,yn) be realizations of random variables X,Y

jointly distributed with p (xn,yn) =
∏n

i=1 p(xi, yi). Then, we have
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1. Pr
[
A

(n)
ε (X, Y )

]
> 1− ε, for sufficiently large n.

2. (1− ε)2n(H(X,Y )−ε) ≤ |A(n)
ε (X, Y )| ≤ 2n(H(X,Y )+ε).

3. If
(
X̃n, Ỹn

)
∼ p (x̃n) p (ỹn) such that p (x̃n) = p (xn) and p (ỹn) = p (yn), then

Pr
[(

X̃n, Ỹn
)
∈ A(n)

ε (X,Y )
]
≤ 2−n(I(X;Y )−3ε). (1.18)

Also,

Pr
[(

X̃n, Ỹn
)
∈ A(n)

ε (X, Y )
]
≥ (1− ε)2−n(I(X;Y )+3ε), (1.19)

for sufficiently large n.

Proof:

1. Using similar arguments as in the proof of item (i) of Theorem 1.3.1 (indepen-

dence, weak law of large numbers, convergence in probability), we conclude that

for the given ε > 0, there exists n1, n2, n3 such that for all n > n1, n > n2 and

n > n3 we have

Pr

(
| − 1

n
log p (xn)−H(X)| ≥ ε

)
<

ε

3
, (1.20)

Pr

(
| − 1

n
log p (yn)−H(Y )| ≥ ε

)
<

ε

3
, (1.21)

Pr

(
| − 1

n
log p (xn,yn)−H(X,Y )| ≥ ε

)
<

ε

3
, (1.22)

for sufficiently large n. Choosing n > max(n1, n2, n3), the probability of the union

of the sets in (1.20), (1.21) and (1.22) must be less than ε, which establishes the

result for the first item.

2. For the upper bound, we simply write

1 ≥
∑

xn∈A
(n)
ε (X,Y )

p (xn,yn) , (1.23)

≥ |A(n)
ε (X,Y )|2−n(H(X,Y )+ε), (1.24)
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where (1.24) follows using (1.17).

For the lower bound, we have (using the result of the first item)

1− ε ≤
∑

(xn,yn)∈A
(n)
ε (X,Y )

p (xn,yn) , (1.25)

≤ |A(n)
ε (X, Y )|2−n(H(X,Y )−ε), (1.26)

where (1.26) follows (1.17).

3. We begin with first inequality.

From the statement, we have

Pr
[(

X̃n, Ỹn
)]

=
∑

(xn,yn)∈A
(n)
ε (X,Y )

p (xn) p (yn) , (1.27)

≤ 2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε), (1.28)

= 2−n(I(X;Y )−3ε), (1.29)

where (1.28) follows using (1.17). (1.29) states the first inequality of the third

item.

Now, we continue with the second inequality

Pr
[(

X̃n, Ỹn
)]

=
∑

(xn,yn)∈A
(n)
ε (X,Y )

p (xn) p (yn) , (1.30)

≥ (1− ε)2n(H(X,Y )−ε)2n(H(X)+ε)2n(H(Y )+ε), (1.31)

= (1− ε)2−n(I(X;Y )+3ε),

where (1.31) using (1.17). Hence the theorem follows.

1.4. Introduction to the Considered Problems

We basically investigated two “nearly-independent” concepts:

(i) First one is related to a cryptographic problem, where we introduce a (to the
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best of our knowledge) novel approach to cryptanalysis. In our approach, the

focus is jointly on a particular cryptosystem and a specific (sufficiently broad)

class of attacks of interest at the same time. Then, under some mild conditions,

the goal is to derive the achievable fundamental performance limit for the attacks

within the considered class of interest against the cryptosystem at hand. The

aforementioned limit should be “achievable”, in the sense that it is necessary

to provide an explicit attack construction of which performance coincides with

the derived limit. Furthermore, the aforementioned limit should also necessarily

be “fundamental”, in the sense that within the considered specific class, there

does not exist any attack of which performance is superior to the derived limit.

The main concept employed in order to achieve this goal is Theorem 1.3.1 (cf.

Chapter 2).

(ii) The other one is the introduction of a new “asymmetric codebook structure”

concept in the classical point-to-point communication setup, of which theoretical

and practical impacts are thoroughly explained in the following discussion, and

as a first step “a memoryless” and “i.i.d.” setup is investigated, for which the

capacity is found where the main concept utilized in order to achieve this goal is

Theorem 1.3.2 (cf. Chapter 3).

We begin our detailed discussion with the first problem mentioned above. Our

proposed approach contrasts with the trend in conventional cryptanalysis, which can

be outlined in two categories. In the first category, the focus is on the construction

of a generic attack, which should be applicable (subject to slight modifications) to

most cryptosystems; common examples include time-memory tradeoff attacks [12, 13],

correlation attacks [14, 15], algebraic attacks [16, 17] and alike. The second category

is conceptually on the opposite side of the spectrum. Here, given a particular cryp-

tosystem, the focus is on the construction of a potentially-specialized attack, which is

“tailored” specifically against the system at hand; hence, the resulting attack is not

applicable to a broader class of cryptosystems in general. Although the approaches

pursued in the aforementioned two attack categories are radically different, it is in-

teresting to note that, for both of them the underlying fundamental goal is the same,

which can be summarized as providing a “design advice” to the cryptosystem designer.
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In practice, the cryptosystem designer is at first expected to test his/her proposed sys-

tem against generic attacks (first category); thus, such attacks serve as a benchmark

for the community of cryptosystem designers. Next, the cryptanalyst tests a proposed

cryptosystem via constructing a cryptosystem-specific attack algorithm (second cate-

gory). Both approaches are proven to be extremely valuable in practice since the first

one provides a “unified approach” to cryptanalysis via providing some generic attack

algorithms and the second one specifically tests the security of the considered cryp-

tosystem and consequently yields its potential weaknesses. On the other hand, both

categories of the conventional approach in cryptanalysis lack to provide fundamental

performance bounds, i.e., the question of “what is the best that can be done?” goes

unanswered. The main reason is that, for the first category, finding out a fundamental

performance bound necessarily requires considering all possible cryptosystems, which

is infeasible in practice; within the second category, providing a fundamental perfor-

mance bound necessarily requires “describing” all possible cryptanalytic propositions

(in a computational sense) and quantifying the resulting performances, which is again

infeasible in practice.

In our proposed approach, we aim to derive “the best possible performance

bound” 5 in a reasonably-confined setup. Intuitively, we “merge” the first and the

second categories of the conventional cryptanalytic approach; we jointly focus on both

a particular cryptosystem and a specific class of attacks, and subsequently aim to ana-

lytically quantify the fundamental, achievable performance bounds, i.e., specifically for

a given cryptosystem, our goal is to find the achievable lower-bound on the complexity

of a proposed class of attacks, under a set of mild assumptions. The main impact of

this approach is that, it aims to provide an advice for the cryptanalyst, instead of the

cryptosystem designer, in contrast with the conventional approach. If this resulting

advice is “positive” (i.e., the fundamental achievable performance bound is of polyno-

mial complexity), then the weakness of the analyzed cryptosystem is guaranteed (which

can also be achieved via pursuing the second category of the conventional cryptana-

lytic approach). However, more interestingly, if the resulting advice is “negative” (i.e.,

5Note that, this approach is analogous to providing both achievability and converse proofs in
classical information-theory problems. This connection will further be clarified throughout the thesis.
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the fundamental achievable performance bound is of exponential complexity), then the

considered class of attacks is guaranteed to be useless, which, in turn, directs a crypt-

analyst to consider different classes of attacks, instead of experimenting with various

attacks from the considered class via a (possibly educated) trial-and-error approach.

Thus, the negative advice case (for which this thesis serves an exemplary purpose)

constitutes the fundamental value of our approach. We believe that our efforts can be

viewed as a contribution towards the goal of enhancing cryptanalytic approaches via

incorporating a structural and procedural methodology.

In order to illustrate our approach, in this thesis we consider a class of Query-

Based Key-Recovery attacks (of which precise definition is given in Section 2.2.2 of

Chapter 2) targeted towards ABSG [18], which is an LFSR(linear feedback shift register)-

based stream cipher that uses irregular decimation techniques. Recall that, within the

class of stream ciphers, the usage of LFSRs is an attractive choice due to the imple-

mentation efficiency and favorable statistical properties of the LFSR output; however,

security of LFSR-based stream ciphers is contingent upon applying additional non-

linearities per the linear nature of LFSR [19]. An approach, which aims to achieve this

task, is to use irregular decimation techniques to the LFSR output [18, 20, 21, 22].

The motivation lying behind the development of this approach is to render most con-

ventional attacks useless (such as algebraic attacks). Shrinking [21] and self-shrinking

generators (SSG) [22] are two important examples of this approach. In particular, in

the literature SSG is well-known to be a very efficient algorithm and it has been shown

to possess favorable security properties [23, 24, 25]. The bit-search generator (BSG)

[20] and its variant ABSG [18] are newer algorithms, which also use irregular decima-

tion techniques. In [26], it has been shown that the efficiency (output rate) of ABSG

is superior to that of SSG and the security level of ABSG is at least the same level

provided by SSG under a broad class of attacks. A detailed analysis of the statistical

properties of ABSG and BSG algorithms has recently been presented in [27]. Since

ABSG has been shown to be a state-of-the-art cryptosystem, in our developments we

focus on it under a reasonable class of attacks and subsequently provide “negative

advices” for the cryptanalyst in various setups of interest.
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Next, we discuss the second problem we are interested in the thesis, namely “re-

liable communication under codebook mismatch” as promised at the beginning of this

section. We first introduce the problem qualitatively in the following way: Consider

the following setup for the error free transmission of information in a point-to-point

(single encoder, single decoder) communication system where the encoder’s and the

decoder’s codebooks are not perfectly matched, in other words they are not precisely

the same as the other. We call this problem as “codebook mismatch problem” and the

choice of the name will be more clear after the explanation provided next. To be more

precise, at the codebook revealing case of traditional point-to-point communication

setup, decoder does not receive the precise codebook of encoder, of which codewords

will be the input to the communication channel, however receives a perturbed, yet sta-

tistically related version of them. We model this relation via a conditional distribution

in a memoryless fashion. Lastly, both communicating parties know the statistical char-

acterization of the encoder’s codebook, the communication channel utilized during the

communication phase and the aforementioned conditional distribution which models

the statistical relation between the mismatched codebooks of the encoder and the de-

coder.6 We defer the in depth definition of the problem to Chapter 3 and continue

with comparing and contrasting the proposed scheme with the existing ones.

First of all, observe that the problem at hand may be thought as a variant of the

classical side information problems of Shannon theory (e.g. [29, 30, 31, 32]) -which is

not exactly the case for codebook mismatch- because of the similar “anti-symmetric”

nature possessed by both the codebook mismatch and the traditional side information

problems. First of all, let differentiate the problem at hand from the ones dealing with

source coding (either lossless or lossy), by definition. Next, for the case of side infor-

mation problems dealing with channel coding, observe that side information is about

the system parameters, and/or the noise corrupting the message, but the codebooks

employed in the system always shared between the parties, in other words either trans-

mitter or receiver is favored by the usage of the provided side information which is not

available to the other party, no matter whether this favorable situation turns out to

6As a result of these known quantities, statistical characterization of the decoder’s codebook is also
known at both sides.
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increase the performance of the system or not. However, for the codebook mismatch

problem at hand, there is not a shared codebook between the two communicating par-

ties, as the name of the problem hints and the system parameters are precisely known

by both the encoder and the decoder. After this much contrast with the vast body of

the side information problems existing in the literature, we go on with the important

and promising features of the codebook mismatch problem from both theoretical and

practical aspects.

From a pure theoretical point of view, codebook mismatch problem is excit-

ing, since it generalizes the classical approach of shared codebooks [1], to mismatched

codebooks, which makes the latter a special case of the former.7 By considering the

fundamental importance of generalizing the existing concepts in mathematical sciences,

such a generalization of Shannon’s setup is an important merit possessed by codebook

mismatch problem. Furthermore, this “antisymmetric phenomenon” may lead to other

interesting problems (like capacity-rate problem mentioned below) which are important

from a both theoretical (since it is very rare to see a new posed problem in Shannon

theory) and practical point of view (of which main motivation is to provide a solution

to a real life obstacle, see the discussion below), hence it is also very promising.

From a practical point of view, the most immediate impact of the codebook mis-

match problem is on the topic of robust signal hashing problem [33], which aims to

find a practical solution to the content tracking with side information problem where

privacy is a major concern, which is an important phenomenon of the internet age,

because with the vast dissemination of digital multimedia content over the internet,

one of the major problems of the modern era is to determine “which signal has ap-

peared where” in a reliable fashion. Consider a content owner who wants to know if

anybody has used his/her signal(s) without getting the proper consent; in this scenario

the content owner would like to keep track of such prohibited appearances. For vari-

ous reasons, standard DRM (digital rights management) strategies fail to achieve this

task since users may apply arbitrary quality-preserving modifications to the original

7Note that two system is equivalent if and only if the conditional probability distribution modelling
the mismatch between the codebooks is a deterministic one-to-one mapping.
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content. Information-hiding (also known as watermarking) [34, 35, 36] has been pro-

posed as a countermeasure; however, one major problem with the watermarking-based

protection mechanisms is that all targeted content need to be pre-processed (in order

to embed content-owner information) before making it publicly available, which makes

it practically useless for the cases where the valuable data has already been made pub-

lic. In contrast with watermarking, “robust signal hashing” is another countermeasure

which seems to bypass the aforementioned fundamental difficulty. In robust signal

hashing, the goal is to extract perceptually-significant data (termed hash value) from

signals, which are ideally approximately-invariant under perceptually-acceptable mod-

ifications. If this task is achieved, the extracted hash signals can potentially be used

(as side information at the receiver side) to reliably decide whether a protected content

has been used. A significant issue, regarding robust signal hashing, is that, given the

hash values, it should be relatively difficult to obtain the original protected content.

This is a valid concern from a privacy viewpoint, because the “content-trackers” (that

utilize hash values) are usually thought to be third parties different from the content

owners. We refer the interested reader to [33, 37, 38] for some practical robust signal

hash algorithms proposed in the literature and [39] for a detection theoretic treatment

of the problem. Therefore, codebook mismatch approach to robust signal hashing prob-

lem constitutes the fundamental limits for a given specific signal hashing algorithm,

which is characterized by the conditional probability distribution employed to yield

decoder’s codebook, where the hash values are the decoder’s codewords in the prob-

lem’s setup. Hence, the aforementioned observation makes the problem at hand the

pioneering work which aims to develop an information theoretic approach to the prob-

lem of robust signal hashing, which is a hot topic in signal processing society. Observe

that instead of carrying out the maximization over the conditional distribution for a

particular distribution on the encoder’s codewords, we are also able to find the asymp-

totically optimum (in the sense of achieving the maximum error free transmission rate)

robust signal hashing scheme; for which codebook mismatch problem constitutes its

backbone. Obviously, robust signal hashing problem is not the only practical scheme

codebook mismatch may be helpful, because of the anti-symmetric nature of it, which

makes the codebook mismatch suitable for the situations where privacy is a concern, in

other words within the class of communication problems where communicating parties
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can not share a common codebook due to the nature of the problem, such as “public

key watermarking” [40, 41, 42, 43] which is another hot topic both in signal processing

and information theory society. The last possible practical scenario, for which the mis-

matched codebooks may be helpful is the situations, where the memory of the decoder

is limited compared to encoder. For this situation, the mismatch between the code-

books, (which is very counter-intuitive from the ‘orthodox-communication engineer”

point of view) may be desirable, since this mismatch can be thought as a lossy-source

coding. Again, by considering the codewords of the encoder’s codebook as the realiza-

tions of the random variables to be compressed; and the corresponding codewords of

the decoder’s codebook as the reconstruction values of these random variables, we can

define a new concept of “capacity-rate function” (an analogue to the rate-distortion

counterpart of the Shannon theory), which constitutes the short term research topic of

us which we aim to precisely state the problem and prove the results in a near future.

Next, we state the main results of the thesis below:

Main Results: Our main results for the problems (which are stated at the

beginning of this section) considered in the thesis are summarized as follows:

(i) For the problem of characterizing optimal attacks against ABSG, (the former of

the aforementioned problems) our contributions, which have been derived under

a set of mild assumptions (specified in Sec. 2.2.1), are as follows:

• We show that breaking ABSG algorithm is equivalent to “guessing” a se-

quence of random variables, which are i.i.d. (independent identically dis-

tributed) with geometric distribution of parameter 1/2 using complexity

theoretic notions (Theorem 2.2.1).

• In order to solve the problem mentioned in the previous item, we formulate

a sufficiently broad class of attacks, termed as “Query-Based Key-Recovery

attacks”, which are quite generic by construction, and hence applicable for

cryptanalysis for a wide range of cryptosystems (Definition 2.2.3).

• Within the class of attacks mentioned in the previous item, we concen-

trate on a practically-meaningful subset of them (termed “Exhaustive-Search
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Type Query-Based Key-Recovery attacks”) (Sec. 2.3); we derive a funda-

mental lower bound on the complexity of any successful attack in this sub-

set (Theorem 2.3.2); this lower bound is proven to be achievable to the first

order in the exponent (Theorem 2.3.1).

(ii) For the problem of reliable communication under codebook mismatch (a new

posed problem, which is an important property itself, since such a new problem

definition in Shannon theory is very rare), the second aforementioned problem, we

deal with a special case, named as discrete memoryless i.i.d. codebook mismatched

channel and derived following results:

• We find the maximum error free rate that can be asymptotically achieved for

the communication system at hand. In other words, we find the operational

capacity of the “codebook-mismatch problem” and state it as Theorem 3.2.1.

• We evaluate the information capacity (which turns out to be the opera-

tional capacity due to Theorem 3.2.1) of a specific discrete memoryless i.i.d.

codebook mismatched channel, where both communication and mismatch

channels are binary symmetric channels (BSC) by employing a new (to the

best of our knowledge) concept of “circular Markovianity” (cf. Section 3.2.3)

which is both elegant from a pure mathematical point of view and promising

to be valuable in different problems of information theory, such as network

information theory.

1.5. Organization of the Thesis

Chapter 2 devoted to the first problem considered in the thesis. In Section 2.1, we

provide the relevant background material about ABSG algorithm under the considera-

tion. Section 2.2 provides the assumptions we have employed throughout the chapter,

the problem formulation and the definition of “Query-Based Key-Recovery” (QuBaR)

attacks. In Section 2.3, we derive the tight (to the first order in the exponent) lower

bound on the complexity of exhaustive-search type QuBaR attacks. Chapter 3 is about

codebook mismatch problem. In Section 3.1 we rigorously state the problem considered

in the chapter. In Section 3.2, we state the main result of the chapter of which forward

statement’s proof is given in Section 3.2.1 and converse statement’s proof is given in
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Section 3.2.2. Section 3.2.3, which illustrates the concept of codebook mismatch on

a specific example concludes both the section and the chapter. Thesis ends with the

concluding remarks stated in Chapter 4.
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2. INFORMATION THEORETIC CRYPTANALYSIS

2.1. Background

Throughout this section, we use the notation that was introduced in [27] for the

ABSG related concepts.

Definition 2.1.1 Given an infinite length binary sequence x = {xn}∞n=1 which is an

input to the ABSG algorithm, we define

• y , A (x), where the sequence y represents the internal state of the ABSG algo-

rithm and yi ∈ {∅, 0, 1}, 1 ≤ i < ∞. The action of algorithm A is defined via

the recursive mapping M:

yi = M(yi−1, xi), 1 ≤ i < ∞, (2.1)

with the initial condition y0 = ∅. The mapping M is defined in Table 2.1 .

Table 2.1. Transition Table of algorithm A
yi−1\xi 0 1

∅ 0 1

0 ∅ 0

1 1 ∅

• z , B (y), where the sequence z represents the output of the ABSG algorithm,

such that the action of the algorithm B is given as follows:

zj =





yi−1, if yi = ∅ and yi−2 = ∅,

ȳi−1, if yi = ∅ and yi−2 6= ∅,
(2.2)

where j ≤ i and i, j ∈ Z+.
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From Definition 2.1.1, we clearly deduce that the ABSG algorithm produces an

output bit (zj denoting the j-th output bit) if and only if the value of the corresponding

internal state variable (yi denoting the value of the internal state variable at time i)

is ∅. The fact that yi 6= ∅ for all i is the reason of the mismatch between the input

sequence indices (which are the same as the indices of the internal state variables) and

the output sequence indices.

2.2. Problem Setup and Formulation

2.2.1. Assumptions and Preliminaries

Throughout this chapter, we consider the type of attacks, in which retrieving L

(where L is the degree of the feedback polynomial of the generating LFSR) linear equa-

tions in terms of xM
1 is aimed. This type of attacks correspond to key recovery attacks

to ABSG (assuming that the feedback polynomial of LFSR is known to the attacker,

which is a common assumption in cryptanalysis). In particular, within the class of

key recovery attacks, we concentrate on query-based key recovery attacks (abbreviated

as “QuBaR attacks” in the rest of the chapter); QuBaR attacks shall be defined

formally in Sec. 2.2.2. The following assumptions are made in this attack model:

A1: The length-M input sequence xM
1 is assumed to be a realization of an i.i.d.

Bernoulli process with parameter 1/2.

A2: The length-N output sequence zN
1 is assumed to be given to the attacker, where

N, M ∈ Z+ (note that, this implies we necessarily have M > N ≥ 1 due to

Definiton 2.1.1).

A3: Explicit knowledge of the feedback polynomial of the generating LFSR is not

used.

A4: The degree of the feedback polynomial of the generating LFSR, i.e., L, is suffi-

ciently large.

Note that assumption A3 will be further clarified after we describe QuBaR attack

model precisely. Further, from now on we denote the input sequence as XM
1 and the
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corresponding internal state sequence as YM
1 due to the stochastic nature of the input

and hence the internal state sequences. Next, we continue with the following definitions.

Definition 2.2.1 The symbol Hi denotes the index of the i-th ∅ in YM
1 , for 0 ≤ i ≤ N .

Note that, since we have Y0 = ∅ with probability 1 by convention, we also use

H0 = 0 with probability 1 as the initial condition for {Hi}.

Definition 2.2.2 We define Qi
4
= Hi −Hi−1 − 2, for 1 ≤ i ≤ N .

Remark 2.2.1 For each Qi (regardless of its particular realization), the ABSG al-

gorithm generates an output bit zi. Thus, the number of output bits in the ABSG

algorithm is precisely equal to the number of corresponding {Qi}.

Next, we state the following result regarding the distribution of {Qi}, which will be

heavily used throughout the rest of the chapter.

Lemma 2.2.1 Under assumptions A1 and A2, the random variables {Qi} are i.i.d.

with geometric p.m.f. of parameter 1/2:

p (qi)
4
= Pr

[
Qi = qi|zN

1

]
= (1/2)qi+1 , for qi ∈ N, 1 ≤ i ≤ N. (2.3)

Proof: See Appendix A.
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2.2.2. Problem Formulation

In this section, we provide an analytical formulation of the problem considered in

this chapter. As the first step, we show that, under assumptions A1, A2, A3, and A4,

all key recovery attacks to ABSG are equivalent to recovering the exact realizations of

QN
1 , stated in Theorem 2.2.18 :

Theorem 2.2.1 Under the assumptions A1, A2, A3 and A4, the following three com-

putational problems are equivalent in the sense of probabilistic polynomial time re-

ducibility [44]:

1. Retrieving any L independent linear equations in terms of XM
1 .

2. Retrieving any L consecutive bits from XM
1 .

3. Correctly guessing Qθ+i−1
i for any positive integers i and θ such that

θ+i−1∑
j=i

(qj + 2) ≥ L, (2.4)

is satisfied.

Proof: See Appendix B.

Next, we introduce the model for the query type attacks, namely QuBaR attacks,

which are considered throughout the chapter. Qualitatively, a QuBaR attack consists

of repeating the following procedure: For a cryptosystem that has a secret, generate a

“guess”, which aims to guess the secret itself, and subsequently “checks” whether the

guess is equal to the secret or not; if the guess is equal to the secret, then terminate the

procedure, else continue with another guess. The maximum number of guesses proposed

in this procedure are limited by the complexity of the QuBaR attack, which is provided

as an input parameter to the attack algorithm. Note that, if the task at hand is to guess

i.i.d. random variables (which is the case for the third problem of Theorem 2.2.1), the

8For the random variable Qi, its realization is denoted by qi.
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QuBaR attack model is intuitively obviously reasonable. Furthermore, recall that most

of the cryptanalysis against symmetric key cryptography may be modeled in this way

(e.g., time-memory attacks, correlation attacks, algebraic attacks and alike). Next, we

formally present the general form of QuBaR attack algorithms.

Definition 2.2.3 Assuming the existence of a “check algorithm” T (G) for a “guess”

G (the output of T (G) is 1 if and only if the guess G is equal to the secret), a QuBaR

attack algorithm, of complexity C, executes the following steps:

Table 2.2. QuBaR Attack Algorithm

For k = 1 to C

1. Generate a guess Gk.

2. Compute T (Gk).

3. If T (Gk) = 1, then terminate and output the secret

given by Gk.

end

Next, we introduce the particular “guess” structure (together with the accompa-

nying relevant definitions) which aims to find Qθ+i−1
i so as to solve the third compu-

tational problem of Theorem 2.2.1.

Definition 2.2.4 An ABSG-guess is a triplet defined as G
4
= {i, θ,qθ+i−1

i }, such that

2θ + β ≥ L, where β
4
=

∑θ−1
j=0 qi+j, i ≥ 1 and i + θ − 1 ≤ N .

The Bernoulli random variable, T (Gk), indicates the success probability of guess

Gk and is heavily used throughout the rest of the chapter, where Gk
4
=

(
ik, θk,q

θk+ik−1
ik

)
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is the ABSG-guess of a QuBaR attack (against ABSG) at step k. Note that, at each

step k, the “guessed” values qθk+ik−1
ik

themselves depend on k, which is not explicitly

stated (unless otherwise specified) for the sake of notational convenience; this should

be self-understood from the context.

Remark 2.2.2 Note that, the probability of having a successful QuBaR attack after

precisely K steps is equal to Pr [T (G1) = 0, T (G2) = 0, . . . T (GK−1) = 0, T (GK) = 1]

which is not equal to Pr (T (GK) = 1) (the latter being equal to the marginal success-

ful guess probability at step K). Moreover, neither of these expressions is the success

probability of any QuBaR attack with a specified complexity, which will formally be de-

fined in (2.7). Observe that our formulation allows the usage of potentially correlated

guesses {Gk} which aims to make the approach as generic as possible.

Corollary 2.2.1 Per Lemma 2.2.1 and Definition 2.2.4, we have

Pr [T (Gk) = 1] = Pr
[
Qik+θk−1

ik
= qik+θk−1

ik
| zN

1

]
=

ik+θk−1∏
j=ik

(
1

2

)qj+1

=

(
1

2

)βk+θk

,

(2.5)

where βk
4
=

∑θk−1
j=0 qik+j.

The following corollary, which is a direct consequence of Theorem 2.2.1, is one of

the key results of the chapter.

Corollary 2.2.2 All QuBaR-type attacks against ABSG are probabilistic polynomial

time reducible to the QuBaR algorithm (defined in Definition 2.2.3) which uses ABSG-

guesses defined in Definition 2.2.4 and aims to find Qθ+i−1
i satisfying (2.4) for any

i, θ ∈ Z+.

Definition 2.2.5 From now on, we call an arbitrary “ABSG-Guess”, G, simply as
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“guess”. Further, for the sake of notational convenience, we use

A = {Gk}C(A)
k=1 (2.6)

for any attack algorithm A mentioned in Corollary 2.2.2, where C (A) denotes the

(algorithmic) complexity of A (i.e., number of guesses applied within A). Accordingly,

the success probability of any A is given by

Prsucc (A)
4
= Pr

[
∨C(A)

k=1 T (Gk) = 1
]

= 1− Pr
[
∧C(A)

k=1 T (Gk) = 0
]
. (2.7)

Hence, as far as QuBaR attacks against ABSG are concerned, w.l.o.g., in this

chapter we focus on the ones specified in Corollary 2.2.2, which aim to solve the third

computational problem of Theorem 2.2.1. In particular, in the rest of the chapter, we

explore the fundamental limits of the aforementioned QuBaR attacks (denoted by A)

under various setups of interest.

Remark 2.2.3

(i) Measure of QuBaR Complexity in Terms of L: At the first glance, it may look

reasonable to evaluate the complexity of a QuBaR attack in terms of the length of

its input, which is N since the input is zN
1 . Note that, this is a common practice

in complexity theory. However, when we confine the setup as the application of a

QuBaR attack to the ABSG algorithm (prior to which there exists a LFSR whose

length-L initial state is unknown), then it would be more reasonable to evaluate

the complexity of a QuBaR attack in terms of L for this case (since we eventually

aim to find L consecutive bits of XM
1 ; see Theorem 2.2.1). This is precisely the

approach we pursue in this chapter, i.e., the analysis of the resulting QuBaR

attack complexity is given as a function of L.

(ii) Time Complexity Lower Bound for QuBaR: As far as the complexity analysis of

QuBaR attacks against ABSG are concerned, in our developments we treat C (A)
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as the time complexity (of an algorithm A) and carry out the analysis accordingly.

In other words, the complexities of guess and check algorithms are not explicitly

taken into account in the analysis. The reason is that the quantity C (A) con-

stitutes the fundamental complexity of any QuBaR attack against ABSG, since

in practice complexities of both guess and check algorithms may be considered as

poly(L) complexity (cf. item (v) in this remark). Next, observe that C (A) is in-

deed a lower bound on the time complexity of any QuBaR attack9 . In particular,

in the following sections, using information theoretic arguments we derive lower

bounds on C (A) (for different setups of interest) and subsequently prove that these

bounds are achievable to the first order in the exponent. This amounts to showing

that these bounds are tight and indeed optimal, i.e., exponentially tight minima

in the sense of time complexity.

(iii) Data Complexity Upper Bound for QuBaR: As far as the data complexity in the

QuBaR attack analysis is concerned, consider the following arguments: Using

Definition 2.2.4 and denoting the relevant parameters of the k-th ABSG-guess

Gk =
(
ik, θk,q

θk+ik−1
ik

)
by

(
θk, βk =

∑θk−1
j=0 qik+j

)
, we observe that at each iter-

ation step k, a “meaningful” ABSG-guess operates in the range of 2θk + βk =

poly (L) (due to the “valid guess” constraint of 2θk + βk ≥ L for each guess Gk);

otherwise, e.g., given a QuBaR attack for which 2θk + βk = exp (L), a “better”

attack can obviously be found with high probability (via omitting some {Qj} in the

guess-based search)10 . Since, for each k, the value of θk is equal to the number

of “guessed” output bits (per Remark 2.2.1), we see that the number of “guessed”

output bits is poly (L). Thus, the overall data complexity of a successful QuBaR

attack algorithm A against ABSG is at most C (A) ·poly (L). As we mentioned in

item (ii) above, we will show that at optimality C (A) is exp (L). Hence, poly (L)

vanishes to the first order in the exponent, which implies that C (A) is also a tight

(to the first order in the exponent) upper bound on data complexity at optimality.

(iv) Algorithmic Complexity Lower Bound for QuBaR: In parts (ii) and (iii) above,

9Note that this bound is tight to the first order in the exponent for the case when C (A) is exp(L)
(which is the case at optimality) and both guess and check algorithms are poly(L) (which is the case
in practice), which justifies taking C (A) as the time complexity.

10We will soon show that at optimality, the data complexity of an individual guess within the
QuBaR attack algorithm is O (L) which justifies this argument.



26

we stress that for an optimal QuBaR attack algorithm A against ABSG, C (A)

forms a lower (resp. upper) bound on the time (resp. data) complexity of A.

Following the general convention in cryptanalysis, we use the term “algorithmic

complexity” as the maximum of time complexity and data complexity. At optimal-

ity, we have following cases: a) Time complexity is greater than data complexity,

which implies that C (A) is a lower bound on algorithmic complexity. b) Time

complexity is equal to data complexity, C (A) is the algorithmic complexity. c)

Data complexity is greater than time complexity, which constitutes the contradic-

tion of C (A) > C (A), hence impossible.

Therefore, we conclude that at optimality, C (A) forms a lower bound on the

algorithmic complexity. Thus, throughout the rest of the chapter, we focus on

C (A) and develop arguments on its value at asymptotic optimality for large L.

Further, we will show that at optimality the value of C (A) is achieved to the first

order in the exponent.

(v) Practical Implementation Approaches to QuBaR Algorithms: As far as practical

attacks are concerned, existence of a polynomial-time guess generation algorithm

is obvious. Furthermore, a polynomial-time check algorithm, which corresponds

to the procedure of initiating a LFSR (whose feedback polynomial is assumed to be

known) with the corresponding “guessed and retrieved” L consecutive bits of XM
1 ,

generating sufficiently many output bits and comparing them with the original

output bits, constitutes a practical approach.

(vi) Relationship Of QuBaR Attacks With State-Of-The-Art Attack Algorithms: We

see that QuBaR attacks are analogous to “first type of attacks” described in [26],

which “aim to exploit possible weaknesses of compression component introduced

by ABSG”. However, note that, QuBaR attacks do not use explicit knowledge of

the feedback polynomial of the generating LFSR, (recall the structure of algorithm

T ) which is a direct consequence of the assumption A3.
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2.3. Optimum Exhaustive-Search Type QuBaR Attacks Against ABSG

In this section, we deal with “exhaustive-search” type QuBaR attacks which

are formally defined in Definition 2.3.1. Qualitatively, given the output sequence

zN
1 , an exhaustive-search type QuBaR attack aims to correctly identify θ-many {Qi}

(equivalently at least L consecutive bits of XM
1 per Theorem 2.2.1) beginning from an

arbitrarily-chosen, fixed index, subject to constraint (2.4) 11 . Since the attacker is con-

fined to initiate the guesses beginning from a fixed index for exhaustive-search attacks,

in practice this can be thought to be equivalent to a scenario where the attacker uses

only a single portion of the observed output sequence zN
1 .

First theorem of this section, namely Theorem 2.3.1, proves the existence of an

exhaustive-search type QuBaR attack with success probability of 1− ε (for any ε > 0)

with algorithmic complexity 22L/3 (in particular, with time complexity 22L/3 and data

complexity L/3) under the assumptions mentioned in Section 2.2.1. The second theo-

rem of this section, namely Theorem 2.3.2, proves that the algorithmic complexity of

the best (in the sense of C) exhaustive-search type QuBaR algorithm under the assump-

tions A1, A2, A3, A4 is lower-bounded by 22L/3 (to the first order in the exponent).

Hence, as a result of these two theorems, we show that the overall algorithmic com-

plexity of the best exhaustive-search attack against ABSG has complexity 22L/3 to the

first order in the exponent (argued in Corollary 2.3.1). Note that, in [26] Gouget et. al.

mention the existence of an exhaustive-search attack (under i.i.d. Bernoulli 1/2 input

assumption) of complexity O (
22L/3

)
without providing the details of the attack. Our

main novelty in this section is that, we provide a rigorous proof about the existence of

such an attack (Theorem 2.3.1, which is analogous to the “achievability”-type proofs

in traditional lossless source coding) and further show that this is the best (to the

first order in the exponent) in the sense of algorithmic complexity under some certain

assumptions, specifically within the class of exhaustive-search QuBaR attacks (Theo-

rem 2.3.2, which is analogous to the “converse”-type proofs in traditional lossless source

coding). As a result, the developments in this section can be considered to be analogous

11In contrast with exhaustive-search attacks, a generalized version, where we focus on identifying
θ-many {Qi}, possibly beginning from arbitrarily-chosen, multiple indices, which constitutes the topic
of Section V of [28], which is not included in the thesis, since it does not use the concept of typicality.
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to those of source coding by Shannon [1]; see Remark 2.3.3 for a further discussion on

this subject. Theorem 2.3.3 concludes the section, which characterizes some necessary

conditions of the optimal exhaustive-search type QuBaR attacks against ABSG.

We begin our developments with the formal definition of exhaustive-search type

QuBaR attacks.

Definition 2.3.1 The class of exhaustive-search type QuBaR attacks against ABSG

are defined as

SE 4
= {AE = {Gk}C(AE)

k=1 : ∀k, ik = 1}, (2.8)

where each k-th guess Gk =
(
ik, θk,q

θk+ik−1
ik

)
is subject to (2.4) (see Definition 2.2.4).

Remark 2.3.1 Exhaustive-search type attacks constitute an important class of attacks

in cryptanalysis. They essentially determine the “effective size” of the key space of any

cipher. In case of ABSG, as we mentioned at the beginning of this section, since the

exhaustive-search type QuBaR attack uses a single portion of the output sequence, they

form a basic choice for practical cryptanalysis via QuBaR attacks in situations where

a limited amount (poly (L)) of output data are available to the attacker.

Thus, at each k-th step, via guess Gk an exhaustive-search type QuBaR attack

aims to correctly identify θk-many {Qi} subject to (2.4) beginning from a fixed index ik,

equivalently at least L consecutive bits of XM
1 beginning from the index i′k (in general

i′k 6= ik due to the “decimation” nature of ABSG). As we specified in Definition 2.3.1,

in our developments w.l.o.g. we use ik = 1 (which in turn implies having i′k = 1 as

well).

Theorem 2.3.1 (Achievability - Exhaustive-Search) Under the assumptions A1, A2,

A3, A4, mentioned in Section 2.2.1, there exists an exhaustive-search type QuBaR at-
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tack algorithm AE
ach,opt against ABSG with C (

AE
ach,opt

)
= 22L/3 such that Prsucc

(
AE

ach,opt

)
>

1− ε, for any ε > 0. Further, Cave

(
AE

ach,opt

)
= 1

2

(
22L/3 + 1

)
where Cave

(
AE

ach,opt

)
is the

expected complexity of AE
ach,opt over the probability distribution induced by q.

Proof: See Appendix C.

Remark 2.3.2 An inspection of the proof of Theorem 2.3.1 reveals that (as promised

in Remark 2.2.3) the overall data complexity of the proposed attack algorithm AE
ach,opt is

L/3 which certainly implies that each guess is of data complexity O (L). Furthermore,

the overall time complexity of AE
ach,opt is O (

22L/3
)

assuming that the contribution of

the generation of each guess is poly (L) (which is reasonable in practice). Note that,

the time and data complexity of the proposed attack AE
ach,opt used in the proof of Theo-

rem 2.3.1 coincides with the one mentioned in [26].

Next, we prove the converse counterpart of Theorem 2.3.1, namely derive a lower

bound on the algorithmic complexity of any exhaustive-search type QuBaR attack with

an inequality constraint on the success probability.

Theorem 2.3.2 (Converse - Exhaustive-Search) Under the assumptions A1, A2, A3,

A4, and for any AE ∈ SE with Prsucc

(
AE

)
> 1

2
, we necessarily have C (

AE
)

>

CE
min

4
= 22L/3

(
1
2
− 6

L

)
.

Proof: See Appendix D.

Corollary 2.3.1 After some straightforward algebra, it can be shown that

C (
AE

ach,opt

) .
=Cave

(
AE

ach,opt

) .
=CE

min (2.9)

in L. Thus, Theorems 2.3.1 and 2.3.2 show that, under the assumptions mentioned

in Section 2.2.1, the tight lower bound (to the first order in the exponent) on the
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algorithmic complexity of any exhaustive-search type QuBaR attack against ABSG is

22L/3.

Following remark provides the promised discussion at the beginning of the section,

which interprets the relationship between the result proved in this section (namely,

Theorems 2.3.1 and 2.3.2) and the traditional lossless source coding of information

theory.

Remark 2.3.3 Observe that for the exhaustive-search setup, the problem is “somewhat

dual” of the lossless source coding problem. Intuitively, the concept of cryptographic

compression (which is also termed as “decimation” in this chapter) aims to produce

a sequence of random variables, such that the sequence is as long as possible with the

highest entropy possible so as to render cryptographic attacks useless as much as possible

(which amounts to making the decimation operation “non-invertible” in practice). On

the other hand, in lossless source coding, the goal is to produce an output sequence

which is as short as possible while maintaining “exact invertibility” (which amounts to

“lossless” decoding). Hence, it is not surprising that, from the cryptanalyst’s point of

view, usage of concepts from lossless source coding may be valuable. To be more precise,

the cryptanalyst aims to identify a set of highly-probable sequences (each of which is a

collection of i.i.d. random variables from a known distribution), of which cardinality is

as small as possible, thereby maximizing the chances of a successful guess with the least

number of trials. As a result, the usage of the concept of typicality fits naturally within

this framework. In particular, typicality is the essence of the proof of the converse

theorem (Theorem 2.3.2), which states a fundamental lower bound on the complexity of

all possible exhaustive-search type QuBaR attacks. The outcome of “converse” states

a negative result (which is unknown for the case of stream ciphers to the best of our

knowledge) within a reasonable attack class in cryptanalysis by construction. This

observation contributes to a significant portion of our long-term goal, which includes

construction of a unified approach to cryptanalysis of stream ciphers. In particular, our

future research includes focusing on specific cryptosystems and quantifying fundamental

bounds on the performance of attacks (within a pre-specified reasonable class) against
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these systems.

Following theorem characterizes some important necessary conditions for an op-

timal exhaustive-search type QuBaR attack against ABSG, subject to an equality con-

straint on the success probability. Thus, these results are important in practice since

they provide some guidelines in construction of optimal or near-optimal exhaustive-

search type QuBaR attacks.

Theorem 2.3.3 Given an optimal (in the sense of minimizing C (
AE

opt

)
subject to an

equality constraint on the success probability) exhaustive-search type QuBaR attack (de-

noted by AE
opt) against ABSG, we have the following necessary conditions:

(i) The corresponding guesses are prefix-free.

(ii) The corresponding “success events” {T (Gi) = 1}C(AE
opt)

i=1 are disjoint.

(iii) We have

Prsucc

(
AE

opt

)
= Pr

(
∨C(AE

opt)
k=1 [T (Gk) = 1]

)
=

C(AE
opt)∑

k=1

Pr (T (Gk) = 1) . (2.10)

(iv) The corresponding “success events” {T (Gi) = 1}C(AE
opt)

i=1 satisfy

(i > j) =⇒ [Pr (T (Gi) = 1) ≤ Pr (T (Gj) = 1)] , (2.11)

for any i 6= j, such that, i, j ∈ {
1, . . . , C (

AE
opt

)}
.

Proof: See Appendix E.
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3. RELIABLE COMMUNICATION UNDER CODEBOOK

MISMATCH

In this chapter, our major concern is determining the maximum (asymptotically)

error-free rate for a communication system, for which the encoder’s and decoder’s

codebooks are not the same one.

To be more precise, prior to the beginning of the communication between two

communicating parties, encoder generates its codebook. Then, at the “codebook re-

vealing phase” of the classical Shannon theory, decoder receives only a “perturbed”,

yet correlated version of the encoder’s original codebook12 , of which codewords will be

input to the “communication channel” at the communication phase, and the statistical

dependence between the two codebooks is assumed to be known at both encoder and

decoder side in addition to the statistical characterization of the encoder’s codebook at

the decoder side. After the encoding step of the communication phase, encoder trans-

mits the corresponding codeword over the communication channel and at the decoding

step, decoder uses its perturbed codebook in order to perform detection in addition to

the knowledge of the statistical characterization of the communication channel, statis-

tical characterization of the perturbation of its codebook with the encoder’s codebook

and the statistical characterization of the encoder’s codebook.

3.1. Problem Statement

After the qualitative explanation provided above, we state the precise definition

of the communication system to be investigated. The aforementioned communication

system consists of two parts: discrete-memoryless codebook mismatched channel (cf.

Definition 3.1.1) and
(
2nR, n

)
mismatched code (cf. Definition 3.1.2).

Definition 3.1.1 A discrete memoryless codebook mismatched channel,

12We concentrate on the special case of i.i.d. codewords case in Section 3.2.2 and derive the capacity
result
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(X , p(y|x),Y , p(u|x),U) consists of three finite sets X ,Y ,U and two independent col-

lections of probability mass functions p(y|x) and p(u|x) defined over Y×X and U ×X ,

respectively. Note that p(y|x) is the so-called communication channel (which is assumed

to be known by both the encoder and the decoder), of which output is received by the de-

coder at the communication phase and p(u|x) the so-called “mismatch channel” which

models the stochastic dependence between the codewords of the encoder’s and decoder’s

codebooks.13

Definition 3.1.2 A
(
2nR, n

)
mismatched code for the channel (X , p(y|x),Y , p(u|x),U)

consists of the following:

(i) A message set, W 4
=

{
1, . . . , 2nR

}
.

(ii) An encoding function, f : W → X n yielding the encoder‘s codewords {xn (w)}2nR

w=1,

which constitutes the encoder’s codebook, C ∈ X 2nR×n, which is defined as

C 4
= [xn(w)].

(iii) A decoding function, g : Yn →W ∪{0}, which is the rule that assigns a decision

(including a null (0) decision, too) to every received sequence.

Note that, although it is not explicitly stated in the definition of the decoder function,

decoder side only (in addition to the knowledge of the statistics of the communication

and mismatch channels and the encoder’s codebook) uses the so-called “decoder’s code-

book” (which is created prior to the communication phase, with the help of mismatch

channel), C̃ ∈ U2nR×n, which is defined as C̃ 4
= [un(w)], where ui(w) is the mismatch

channel output corresponding to xi(w), for all i ∈ {1, . . . , n}, w ∈ {
1, . . . , 2nR

}
.

Remark 3.1.1

(i) First of all, note that there is a one-to-one correspondence between messages W
and {xn(w)}2nR

w=1 at the encoder side, which is characterized by f(·) defined in

13In fact, we use the term “channel” with a slight abuse of notation for this case, because there is no
shared codebook between two sides for this “channel” (cf. item (iii)) of Remark 3.1.1), however our
purpose is to stress the probabilistic nature of this structure and (except the “no-shared-codebook”
point) its essentially same nature with the communication channel.
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item (ii) of Definition 3.1.2. Furthermore, a similar one-to-one correspondence

between W and {un(W )}2nR

w=1 exists at the decoder side.

(ii) We restate the following fact again: (because it will be crucial in proof of the con-

verse theorem) The generation of the encoder’s codebook, C, and the construction

of the decoder’s codebook, C̃ via mismatch channel p(u|x) occurs prior to sending

the codeword xn(w) corresponding to the message w ∈ W.

(iii) Note there is not a shared codebook between two parties for the mismatch channel,

in other words decoder only observes output of this channel without knowledge of

any additional information, except the statistical characterization of the channel.

(iv) Observe that, since communication and mismatch channels are independent, we

conclude that U ↔ X ↔ Y forms a Markov chain, i.e.

p(u, x, y) = p(x)p(u|x)p(y|x). (3.1)

The block diagram representation of the communication system described above

(which we call discrete codebook mismatched channel) is given in Figure 3.1 below.

W ∈W ( )f ⋅ ( )n Wx ( | )p y x

1

( ) ( ) ( | ),  s.t. ( | ) ( | )
n

n
n n n n n n

i i
i

p p p p p u x
=

= =∑ ∏
x

u x u x u x

nY ( )g ⋅
^

{0}W ∈ UW
[ ( )]n W= xC ~

[ ( )]n W= u
�C 

Figure 3.1. The Block Diagram Representation of the Discrete Codebook

Mismatched Channel.

3.2. Discrete-Memoryless Codebook Mismatched Channel, I.I.D. Case

In this section, we deal with the communication system defined in Section 3.1

under the following assumption: the codewords of encoder’s codebook, C, are i.i.d.

random variables with any arbitrary distribution p(x). Under this assumption, we

call the system as the discrete memoryless i.i.d. codebook mismatched channel. Our

fundamental result is Theorem 3.2.1. Section 3.2.1 contains achievability result, while

Section 3.2.2 is devoted to the converse of Theorem 3.2.1. Section 3.2 concludes with
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the evaluation of the capacity of a special case, for which both communication and

mismatch channels are binary symmetric channels, which is the topic of Section 3.2.3.

Before proceeding further, we define the information capacity of the discrete mem-

oryless i.i.d. codebook mismatched channel, which will be shown to be the operational

capacity of the system:

Definition 3.2.1 For any given p(y|x) defined on Y×X and p(u|x) defined on U×X ,

information capacity of the discrete codebook mismatched channel, under the assump-

tion of i.i.d. codewords is defined as

C
4
= max

p(x)
I(U ; Y ), (3.2)

where p(u, y)
4
=

∑
x p(x)p(y|x)p(u|x) (cf. (3.1)).

The main result of this section is the following theorem:

Theorem 3.2.1 (Mismatched Channel Coding Theorem) For a discrete memoryless

i.i.d. codebook mismatched channel, all rates below capacity C are achievable. Specifi-

cally, for every rate R < C, there exists a sequence of
(
2nR, n

)
mismatched codes with

maximum probability of error goes to 0 for sufficiently large n.

Conversely, any sequence of
(
2nR, n

)
mismatched codes with asymptotically van-

ishing maximum error probability should necessarily satisfy R ≤ C.

Before proceeding further, we state following lemmata which will be helpful in

both achievability and converse theorems.
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Lemma 3.2.1 Given p(x) =
∏n

i=1 p(xi), we have

p (xn|un) =
n∏

i=1

p(xi|ui), (3.3)

where p(x|u)
4
= p(x)p(u|x)P

x p(x)p(u|x)
.

Proof: See Appendix F.

Lemma 3.2.2 Given p(x) =
∏n

i=1 p(xi), we have

p (yn|un) =
n∏

i=1

p(yi|ui), (3.4)

where p(y|u)
4
=
P

x p(x)p(y|x)p(u|x)P
x p(x)p(u|x)

.

Proof: See Appendix G.

Lemma 3.2.3

Pr
(
C̃
)

=
n∏

i=1

2nR∏
w=1

p(ui(w)), (3.5)

where p(u)
4
=

∑
x p(x)p(u|x).

Proof: See Appendix H.

3.2.1. Achievability

The main result of this section is the following theorem.
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Theorem 3.2.2 (Achievability) For every rate R < C, there exists a sequence of

(2nR, n) mismatched codes with maximum probability of error goes to zero for suffi-

ciently large n.

Proof: We use standard random coding arguments.

Encoding:

(i) Generation of Codebooks: Fix p(x) and reveal to both sides. Generate the en-

coder codebook C 4
= [xi(w)], such that xi(w) are i.i.d. realizations of X of which

distribution is p(x) for all i ∈ {1, . . . , n}, w ∈ W . Constitute the decoder’s code-

book, C̃ 4
= [ui(w)], via mismatch channel, such that as if each xi(w) is input to

p(u|x), and ui(w) is the output of the mismatch channel.

(ii) Choose a message uniformly from W , i.e. Pr (W = w) = 1
2nR for all w ∈ W .

Suppose w ∈ W is the message chosen; then xn(w) is transmitted over communi-

cation channel p(y|x) resulting in yn, such that p(yn) =
∏n

i=1 p(yi|xi(w)) (recall

the memoryless property of the communication channel).

Decoding:

(i) Decide the unique Ŵ ∈ W , such that
(
un(Ŵ ),yn

)
∈ A

(n)
ε (U, Y ), where A

(n)
ε (U, Y )

is the ε-typical set defined on p(u, y), which is defined in the statement of the

theorem. Note that since xn(w)’s are i.i.d. {ui(w), yi}n
i=1 pairs are independent

from each other where yn is the communication channel output corresponding to

the message w ∈ W .

If such a Ŵ ∈ W is not unique or does not exist, then declare g(yn) = 0. Error

event is defined in the following way:

E 4
=

{
Ŵ 6= W

}
. (3.6)

Analysis of Probability of Error:

Now, we state following definitions, which will be used throughout the chapter.
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We begin with the conditional probability of error, λi, is defined as:

λi
4
= Pr (g (yn) 6= i|un = un(i)) =

∑
yn

p (yn|un(i)) 1(g(yn)6=i), (3.7)

where 1(·) is the standard indicator function.

Next, the maximal probability of error, λ(n), is defined as:

λ(n) 4= max
i∈W

λi. (3.8)

Last, the average probability of error, P
(n)
e , is defined as:

P (n)
e

4
=

1

2nR

2nR∑
i=1

λi, (3.9)

Next, we define the ε-typical set A
(n)
ε (U, Y ) (from now on A

(n)
ε for the sake of

simplicity) defined on i.i.d. (recall Lemma 3.2.1 and 3.2.2) (un,yn) with p (un,yn) =
∏n

i=1 p(ui, yi):

A(n)
ε

4
=

{
(un,yn) : | − 1

n
log p (un)−H(U)| < ε, | − 1

n
log p (yn)−H(Y )| < ε,

| − 1

n
log p (un,yn)−H(U, Y )| < ε

}
.(3.10)

Next, using the uniform distribution assumption on W , we have

P (n)
e = Pr (W 6= g (yn)) . (3.11)
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Recalling (3.6) and using (3.11) we have following average probability of error averaged

over all possible decoder codebooks14 :

P (n)
e = Pr (E) , (3.12)

=
∑

C̃
Pr

(
C̃
)

P (n)
e

(
C̃
)

, (3.13)

=
1

2nR

2nR∑
w=1

∑

C̃
Pr

(
C̃
)

λw

(
C̃
)

, (3.14)

=
∑

C̃
Pr

(
C̃
)

λ1

(
C̃
)

, (3.15)

= Pr (E|W = 1) , (3.16)

where (3.15) follows since decoder’s codebook generation is symmetric, which is guar-

anteed by Lemma 3.2.3.

Next, we define following events:

Ei
4
=

{
(un(i),yn) ∈ A(n)

ε

}
, (3.17)

for i ∈ {
1, . . . , 2nR

}
, where yn is the output of the communication channel when W = 1

is the case.

Using (3.16) and (3.17) we have:

Pr (E|W = 1) = Pr


Ec

1 ∪
2nR⋃
j=2

Ej|W = 1


 , (3.18)

≤ Pr (Ec
1|W = 1) +

2nR∑
j=2

Pr (Ej|W = 1) . (3.19)

14Recall that since the marginal probability of C̃ is the result of averaging the joint distribution of
C and C̃ over C, (cf. Lemma 3.2.3) we equivalently average out the conditional probability of error
expression over the two codebooks of the system, since the probability space of C̃ is jointly induced
by the mismatch channel and the probability space of X.
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Next, we bound the probabilities in (3.19):

Pr (Ec
1 |W = 1) ≤ ε, (3.20)

Pr (Ej|W = 1) ≤ 2−n(I(U ;Y )−3ε), (3.21)

for any ε > 0 and sufficiently large n, where (3.20) follows since Pr
(
A

(n)
ε

)
> 1− ε (cf.

Theorem 1.3.2) and (3.21) follows since un(i) and un(1) are independent for i 6= 1 (cf.

Lemma 3.2.3), hence using the joint-typicality result (cf. Theorem 1.3.2).

Using (3.20) and (3.21) in (3.19) yields,

Pr (E|W = 1) ≤ ε +
2nR∑
j=2

2−n(I(U ;Y )−3ε), (3.22)

= ε + 2nR2−n(I(U ;Y )−3ε), (3.23)

= ε + 2−n(I(U ;Y )−R−3ε), (3.24)

≤ 2ε, (3.25)

for any ε > 0 and sufficiently large n, where (3.25) follows since I(U ; Y ) − R > 3ε

(recall the statement of the theorem). This concludes that P
(n)
e ≤ 2ε for any ε > 0 for

sufficiently large n. Further, applying the standard procedure for finding a
(
2nR, n

)
-

codes with λ(n) ≤ 4ε (cf. [2] pp. 203–204) given a code with P
(n)
e ≤ 2ε, for the case of

(
2nR, n

)
mismatched code, we conclude the proof, since ε > 0 may be arbitrarily small

for sufficiently large n.

3.2.2. Converse

In this section, we provide the converse of Theorem 3.2.1, which is stated below:

Theorem 3.2.3 (Converse) For any
(
2nR, n

)
codes with i.i.d. xi(w) with P

(n)
e → 0,

we have R < C.
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Proof: First of all, observe that since the maximal probability of error is greater

than its average counter part, to prove the statement in the theorem concludes the

converse statement of Theorem 3.2.1.

Next, since the decoder uses only C̃ (in other words has only access to {un(i)}2nR

i=1 )

in order to make its decision upon receiving Yn we conclude that U ↔ W ↔ Y ↔
Ŵ . Furthermore, note that there is a one-to-one correspondence between W and

{un(i)}2nR

i=1 , which is the “encoding function from the decoder’s side” and hence implies

that W ↔ U ↔ Y ↔ Ŵ also forms a Markov chain.

Remark 3.2.1

(i) To state the fact that “W ↔ U ↔ Y ↔ Ŵ forms a Markov chain” (which is the

most crucial part of the converse) from another way, note that decoder estimates

W ∈ W (the actual transmitted message) using Yn, which is the situation in the

original point-to-point communication, so far. The difference for the mismatched

codebook case under investigation (as apparent from the name) arises due to the

“mismatched codebook” of the decoder, C̃ = {un(i)}2nR

i=1 , which is the only codeword

set available at decoder side and has the aforementioned one-to-one relation with

message set (cf. Remark 3.1.1). Combining these facts altogether yields the

Markov chain structure between W ↔ U ↔ Y ↔ Ŵ .

(ii) Note that the aforementioned fact also has an intuitive (yet not so rigorous) ex-

planation: from the decoder side, the only channel between encoder and decoder

is p(yn|un) with the shared (an hypothetical channel, depends on the choice of

p(x)) codebooks C̃ at both encoder and decoder, since there’s a one-to-one rela-

tion between w,xn(w),un(w)), recalling the formation of the decoder’s codebook.

Therefore, although the encoder sends xn(w) using the original communication

channel (p(y|x)), the effective situation from the decoder side is the encoder sends

un(w) using the hypothetical channel p(yn|un). The channel p(yn|un) is known

at decoder’s side (since both p(x), p(y|x) and p(u|x) is known); therefore, the

problem transforms to the classical point-to-point communication variant.
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(iii) The meaning of the hypothetical channel p(yn|un) mentioned in item (ii) above

can be explained as follows: since the received yn is due to xn(w) through the

channel p(y|x), and the corresponding un(w) is due to xn(w)b; hence the depen-

dence of yn to un(w) is over xn(w); therefore decoder in some sense “finds out”

xn(w) first (through the usage of p(xn|un)) (which can be calculated, since p(x)

and p(u|x) is available at the decoder), and then decides on Ŵ using p(y|x) and

the “found out” xn(w) mentioned above.

Further, recalling (3.4) we know that p(y|u) is memoryless. Keeping this facts in

mind, we continue with following arguments:

nR = H(W ), (3.26)

= I(Ŵ ; W ) + H(W |Ŵ ), (3.27)

≤ I(Un;Yn) +
(
1 + nRP (n)

e

)
, (3.28)

= H (Yn)−
n∑

i=1

H (Yi|Ui) +
(
1 + nRP (n)

e

)
, (3.29)

≤ (
1 + nRP (n)

e

)
+

n∑
i=1

(H(Yi)−H(Yi|Ui)) , (3.30)

=
(
1 + nRP (n)

e

)
+

n∑
i=1

I(Ui; Yi), (3.31)

where (3.26) follows since W is uniformly distributed over W , (3.28) follows using

Fano’s inequality [2], (3.29) follows using (3.4), (3.30) follows since
∑n

i=1 H(Yi) ≤
H (Yn) and (3.31) follows using definition of mutual information.

Next, we aim to upper bound the second term of the RHS of (3.31)

I(U ; Y ) =
∑
u,y

p(u, y) log
p(y|u)

p(y)
(3.32)

=
∑
u,y

∑
x

p(x)p(u|x)p(y|x) log

P
x p(x)p(y|x)p(u|x)P

x p(x)p(u|x)∑
x p(x)p(y|x)

, (3.33)
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where (3.33) follows using (3.1). Note that the only variable of (3.33) is p(x), hence

we conclude that

I(Ui; Yi) ≤ max
p(x)

I(U ; Y ) = C, for all (Ui, Yi) pairs. (3.34)

Using (3.34) in (3.31), we have

R ≤ 1

n
+ RP (n)

e + C, (3.35)

≤ ε + C, (3.36)

for any ε > 0 and sufficiently large n, where (3.36) follows since P n
e → 0 (cf. recall the

statement of the theorem) and 1/n ≤ ε for sufficiently large n. Hence (3.36) implies

R < C, which is the desired result.

3.2.3. Binary Symmetric Communication and Mismatch Channel Case

In this section, we consider a specific example of the discrete codebook mis-

matched channel with i.i.d. codewords, which is shown in Figure 3.1. To be more

precise, we consider the case for which X = Y = U = {0, 1}, both communication and

codebook channels are binary symmetric channels with crossover probabilities p1 and

p2, respectively, i.e.

Y
4
= X ⊕ Z1, (3.37)

where Pr (Z1 = 1) = p1 and Pr (Z1 = 0) = 1− p1 and similarly

U
4
= X ⊕ Z2, (3.38)

where Pr (Z2 = 1) = p2 and Pr (Z2 = 0) = 1− p2, where ⊕ denotes addition modulo 2

and w.l.o.g. we assume that p1, p2 < 1/2.
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Theorem 3.2.4 For the BSC case of the discrete codebook mismatched channel with

i.i.d. codewords, the capacity is given by

C = 1−H(p1 + p2(1− 2p1)), (3.39)

where capacity is only achieved for the case of Bernoulli 1/2 distributed X, i.e.

Pr (X = 1) = Pr (X = 0) = 1/2.

Proof: First of all, we define the auxiliary random variable V in the following

way:

V
4
= X ⊕ Z1 ⊕ Z2. (3.40)

Next, we prove following lemma:

Lemma 3.2.4 U ↔ V ↔ Y forms a Markov chain, i.e.

p(u, y|v) = p(u|v)p(y|v). (3.41)

Proof: First of all, observe that we have U = V ⊕Z1 and Y = V ⊕Z2 (cf. (3.37)

and (3.38))

Pr (U = u|V = v) = Pr (Z1 = u⊕ v) , (3.42)

Pr (Y = y|V = v) = Pr (Z2 = y ⊕ v) , (3.43)

for all u, v, y ∈ {0, 1}.
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Furthermore, we also have

Pr (U = u, Y = y|V = v) = Pr (Z1 = u⊕ v, Z2 = y ⊕ v) , (3.44)

= Pr (Z1 = u⊕ v) Pr (Z2 = y ⊕ v) , (3.45)

for all u, v, y ∈ {0, 1}, where (3.44) follows using (3.37) and (3.38) and (3.45) follows

since Z1 and Z2 are independent. Combining (3.42), (3.43) and (3.45) we conclude

that p(u, y|v) = p(u|v)p(y|v), which is the sought-after result.

Next, observe that from the definition of auxiliary random variable V (cf. (3.40))

we have X ↔ U ↔ V forms a Markov chain, i.e.

p(x, v|u) = p(x|u)p(v|u), (3.46)

and X ↔ Y ↔ V forms a Markov chain, i.e.

p(x, v|y) = p(x|y)p(v|y). (3.47)

Furthermore, combining (3.1) and (3.41) yields following “circular Markov chain” struc-

ture between X, Y, V, U which helps to visualize the situation at hand better and is the

first of its kind, to the best of our knowledge.

U

X

V

Y  
Figure 3.2. The circular Markov chain structure of random variables X, Y, V, U

defined for the binary symmetric communication and mismatch channels of

Section 3.2.3.
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Now, let’s evaluate the following expression from two different way using the

chain rule for mutual information:

I(U, Y ; V ) = I(V ; U) + I(V ; Y |U), (3.48)

= I(V ; Y ) + I(V ; U |Y ). (3.49)

Next, define A
4
= I(U ; Y )− I(U ; V |Y ) and B

4
= I(V ; Y )− I(V ; Y |U). Using the defini-

tion of mutual information, we have

A = H(U)−H(U |Y )−H(U |Y ) + H(U |V, Y ), (3.50)

= I(U ; Y )− I(U ; Y |V ), (3.51)

= I(U ; Y ), (3.52)

where (3.52) follows since U ↔ V ↔ Y forms a Markov chain (cf. (3.41)).

Further, again using definition of mutual information, we have

B = H(V )−H(V |Y )−H(V |U) + H(V |U, Y ), (3.53)

= H(V ) + H(V |U, Y )−H(p1)−H(p2), (3.54)

where (3.54) follows using (3.37), (3.38) and (3.40).

Now, we should find a way to evaluate H(V |U, Y ). Keeping this goal in mind,

we continue with following development.

Using chain rule for entropy, we have

H(X,U, Y, V ) = H(U, Y |X, V ) + H(X, V ), (3.55)

= H(X, V |U, Y ) + H(U, Y ), (3.56)

Next, we continue with evaluating individual terms in (3.55) and (3.56).
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H(U, Y |X,V ) = H(U |X, V ) + H(Y |X,V ), (3.57)

H(X,V ) = H(V |X) + H(X), (3.58)

where (3.57) (resp.(3.58) ) follows using (3.46) (chain rule for joint entropy).

Further, we have

H(X, V |U, Y ) = H(X|U, Y ) + H(V |U, Y ), (3.59)

= H(X, U, Y )−H(U, Y ) + H(V |U, Y ), (3.60)

= H(U, Y |X) + H(X)−H(U, Y ) + H(V |U, Y ), (3.61)

= H(U |X) + H(Y |X) + H(X)−H(U, Y ) + H(V |U, Y ), (3.62)

where (3.59) follows using (3.47), (3.60) and (3.61) follows using chain rule for entropy,

(3.62) follows using (3.1).

Now, it is time to sum up things. Using (3.57) and (3.58) in (3.55), using (3.62)

in (3.56) and equating these two expressions yields:

H(V |U, Y ) = H(U |X, V ) + H(Y |X, V ) + H(V |X)−H(U |X)−H(Y |X),(3.63)

= H(U |X, V ) + H(Y |X, V ) + H(V |X)−H(p1)−H(p2), (3.64)

where (3.64) follows using (3.37) and (3.38).

Now, we evaluate the remaining terms in (3.64). First of all, observe that we

have (using definition of auxiliary random variable V )

p(v = k|x = k) = 1− p1 − p2 + 2p1p2, (3.65)

p(v = k|x = k̄) = p1 + +p2 − 2p1p2. (3.66)
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Using this result in H(V |X) expression yields:

H(V |X) = H(p1 + p2 − 2p1p2). (3.67)

Next, we deal with first and second equations of the RHS of (3.64)

H(U |X,V ) = H(X,U, V )−H(X, V ), (3.68)

= H(X,V |U) + H(U)−H(X, V ), (3.69)

= H(X|U) + H(V |U) + H(U)−H(V |X)−H(X), (3.70)

= H(X,U) + H(V |U)−H(V |X)−H(X), (3.71)

= H(U |X) + H(V |U)−H(V |X), (3.72)

= H(p2) + H(p1)−H(p1 + p2 − 2p1p2), (3.73)

where (3.68) and (3.69) follows using chain rule for entropy, (3.70) follows using (3.46),

(3.71) and (3.72) follows using chain rule for entropy, (3.73) using (3.37), (3.38) and

(3.67).

Similarly,

H(Y |X, V ) = H(X, Y, V )−H(X, V ), (3.74)

= H(X, V |Y ) + H(Y )−H(X,V ), (3.75)

= H(X|Y ) + H(V |Y ) + H(U)−H(V |X)−H(X), (3.76)

= H(X, Y ) + H(V |Y )−H(V |X)−H(X), (3.77)

= H(Y |X) + H(V |Y )−H(V |X), (3.78)

= H(p1) + H(p2)−H(p1 + p2 − 2p1p2), (3.79)

where (3.74) and (3.75) follows using chain rule for entropy, (3.76) follows using (3.47),

(3.77) and (3.78) follows using chain rule for entropy, (3.79) using (3.37), (3.38) and

(3.67).
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Finally, using (3.67), (3.73) and (3.79) in (3.64) yields:

H(V |U, Y ) = H(p1) + H(p2)−H(p1 + p2 − 2p1p2), (3.80)

Now, plugging (3.80) in (3.49) yields:

I(U ; Y ) = H(V )−H(p1 + p2 − 2p1p2), (3.81)

≤ 1−H(p1 + p2(1− 2p1)), (3.82)

where equality in equation (3.82) is achieved if and only if V is Bernoulli 1/2, which is

the case if and only if X is Bernoulli 1/2. This concludes the proof of theorem.

Remark 3.2.2 Note that for 0 < p2, p1 < 1/2, we have

p1 < p1 + p2(1− 2p1) < (1− p1), (3.83)

where the LHS of (3.83) follows since 1− 2p1 > 0 and the RHS of (3.83) follows since

[p1 + p2(1− 2p1) < (1− p1)] ⇔ [2p1(1− p2) < (1− p2)] , (3.84)

⇔ [1/2 > p1] . (3.85)

Now, since binary entropy function is monotonic increasing (resp. decreasing)

for 0 ≤ p ≤ 1/2 (resp. 1/2 ≤ p ≤ 1) and is further symmetric around p = 1/2,

we conclude that the capacity of BSC case of codebook mismatch setup (cf. (3.39)) is

strictly less than the “original Shannon type” counterpart (which is a special case of

the setup at hand with p2 = 0) for 0 < p2, p1 < 1/2. To be more precise, we have

1−H(p1 + p2(1− 2p1)) < 1−H(p1), (3.86)
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for 0 < p2, p1 < 1/2.

Furthermore, observe that for p2 = 0 case, 1−H(p1 + p2(1− 2p1)) = 1−H(p1),

which is the capacity of the case of “perfectly matched codebooks”. Moreover, for p2 =

1/2 case, 1−H(p1 + p2(1− 2p1)) = 1−H(1/2) = 0 regardless of the value of p1 which

is also obvious, since this case corresponds to “perfectly mismatched codebooks”, which

implies that it is not possible to transmit any information, since decoder does not have

a meaningful codebook.
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4. CONCLUSIONS

In this thesis, our main approach is to investigate the usage of typicality in two

different contexts.

In the first one, we introduce a novel approach to cryptanalysis. We aim to

explore fundamental performance limits within a specified class of attacks of interest,

targeted towards breaking a particular cryptosystem. As a first step, we illustrate

our approach via considering the class of “Query-Based Key-Recovery” (QuBaR) at-

tacks against ABSG, which is an LFSR-based stream cipher constructed via irregular

decimation techniques. In order to achieve this task, we rely on the following assump-

tions (which are quite common in conventional cryptanalysis): The input sequence to

ABSG is assumed to be an independent identically distributed Bernoulli process with

probability 1/2; the attacker has access to the output sequence of ABSG; an explicit

knowledge of the generating LFSR’s feedback polynomial is not used; and the degree

of the feedback polynomial (denoted by L) of the generating LFSR is sufficiently large.

Using these assumptions, we show that breaking ABSG is equivalent to determine the

exact realizations of a sequence of random variables, which are proven to be inde-

pendent identically distributed with geometric distribution of parameter 1/2. Next,

we investigate a setup of interest, in which we concentrate on the “Exhaustive-Search

Type QuBaR” attacks (which form a subset of general-case QuBaR attacks, such that

the starting index of all guesses in any element of this set is constrained to be equal to

unity). Here, using the typicality notion, we prove that the tight lower bound (to the

first order in the exponent) on the algorithmic complexity of any successful Exhaustive-

Search Type QuBaR attack is 22L/3. Our result can be viewed as a “negative advice”

to the cryptanalyst (contrary to the conventional trend in cryptanalysis, where the

general goal is to deduce a “negative design advice” to the cryptosystem designer) in

terms of QuBaR attacks against ABSG under the aforementioned assumptions.

In the second one, we introduced the new concept of reliable communication under

codebook mismatch of which novel, anti-symmetric nature is very exciting from both
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theoretical and practical point of view. For this problem and under the assumption

of i.i.d. encoder codewords, we show the operational capacity of the system is equal

to the information capacity of the system, which is given as maxp(x) I(U ; Y ). We

illustrate the concept by considering the special case where both communication and

mismatch channels are binary symmetric channels with crossover probabilities p1 and

p2, respectively. In order to find the information capacity, we employ a circular markov

chain structure, which deserves to be mentioned here, because of its interesting nature.
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APPENDIX A: PROOF OF LEMMA 2.2.1

First, note that each output bit Zi = zi (for 1 ≤ i ≤ N) is produced by a block of

input bits from the input sequence XM
1 . In order to identify the i-th input block that

generates Zi (for 1 ≤ i ≤ N), we define

Ai
4
= 1 +

i−1∑
j=1

[Qj + 2] = Hi−1 −H0 + 1 = Hi−1 + 1, (I-1)

Bi
4
=

i∑
j=1

[Qj + 2] = Hi −H0 = Hi, (I-2)

where we used H0 = 0 as the initial condition. Hence, we note that the input block

XBi
Ai

produces the i-th output bit Zi = zi which is given per assumption A2. Further,

from the definition of the algorithm B (see Definition 2.1.1), we have

Pr (XAi+1 = zi |Zi = zi) = 1. (I-3)

Next, note that the statement of the lemma is equivalent to

Pr
(
QN

1 = qN
1 |ZN

1 = zN
1

)
=

N∏
i=1

[
Pr

(
Qi = qi |ZN

1 = zN
1

)]
=

N∏
i=1

(
1

2

)qi+1

. (I-4)

Thus, it is necessary and sufficient to show (I-4) to prove Lemma 2.2.1. In order to

show (I-4), we use proof by induction.

• Step 1: We would like to show

Pr
(
Q1 = q1 |ZN

1 = zN
1

)
=

(
1

2

)q1+1

. (I-5)
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Since the value of Q1 depends only on the first output bit, we have

Pr
(
Q1 = q1 |ZN

1 = zN
1

)
= Pr (Q1 = q1 |Z1 = z1) . (I-6)

Next,

Pr (Q1 = 0 |Z1 = z1) = Pr (X1 = z1, X2 = z1 |Z1 = z1) , (I-7)

= Pr (X1 = z1 |Z1 = z1) , (I-8)

=
1

2
, (I-9)

where (I-7) follows from the definition of the mapping M(·, ·) (Table 2.1), (I-8)

follows from (I-3), (I-9) follows from assumption A1. Also, for q1 > 0,

Pr (Q1 = q1 |Z1 = z1)

= Pr (X1 = z̄1, X2 = z1, . . . , Xq1+1 = z1, Xq1+2 = z̄1 |Z1 = z1) , (I-10)

= Pr (X1 = z̄1, X3 = z1, . . . , Xq1+1 = z1, Xq1+2 = z̄1 |Z1 = z1) , (I-11)

=

(
1

2

)q1+1

(I-12)

where (I-10) follows from the definition of the mapping M (Table 2.1), (I-11)

follows from (I-3), (I-12) follows from assumption A1. Combining (I-9) and (I-

12), we get (I-5).

• Step 2: We assume that

Pr
(
Qn−1

1 = qn−1
1 |ZN

1 = zN
1

)
=

n−1∏
i=1

[
Pr

(
Qi = qi |ZN

1 = zN
1

)]
=

n−1∏
i=1

(
1

2

)qi+1

.

(I-13)

• Step 3: Given (I-13) we want to show that

Pr
(
Qn

1 = qn
1 |ZN

1 = zN
1

)
=

n∏
i=1

[
Pr

(
Qi = qi |ZN

1 = zN
1

)]
=

n∏
i=1

(
1

2

)qi+1

. (I-14)
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Note that, given (I-13), (I-14) is equivalent to

Pr
(
Qn = qn |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)
= Pr

(
Qn = qn |ZN

1 = zN
1

)
=

(
1

2

)qn+1

,

(I-15)

using Bayes rule. Now,

Pr
(
Qn = 0 |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)

= Pr
(
XAn = zn, XAn+1 = XBn = zn |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)
, (I-16)

= Pr
(
XAn = zn |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)
, (I-17)

= Pr
(
XAn = zn |ZN

1 = zN
1

)
= Pr

(
Qn = 0 |ZN

1 = zN
1

)
, (I-18)

= Pr (XAn = zn |Zn = zn) =
1

2
(I-19)

where (I-16) follows from the definition of the mapping M(·, ·) (Table 2.1), (I-17)

follows from (I-3), (I-18) and (I-19) follow from assumption A1 15 . On the other

hand, for qn > 0, we have

Pr
(
Qn = qn |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)

= Pr
(
XAn = z̄n, XAn+1 = zn, . . . , XBn = z̄n |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)
,(I-20)

= Pr
(
XAn = z̄n, XAn+2 = zn, . . . , XBn = z̄n |Qn−1

1 = qn−1
1 ,ZN

1 = zN
1

)
,(I-21)

= Pr
(
XAn = z̄n, XAn+2 = zn, . . . , XBn = z̄n |ZN

1 = zN
1

)
, (I-22)

= Pr (XAn = z̄n, XAn+2 = zn, . . . , XBn = z̄n |Zn = zn) =

(
1

2

)qn+1

, (I-23)

where (I-20) follows from the definition of the mapping M(·, ·) (Table 2.1), (I-21)

follows from (I-3), (I-22) and (I-23) follow from assumption A1 (see the discussion

in the footnote). Combining (I-18), (I-19), (I-22), (I-23), we get (I-15), and

equivalently (I-14), which completes the proof.

15Since X is an i.i.d. Bernoulli 1/2 process, the value of Pr (XAn = zn |Zn = zn) is independent of
the particular value of An and that is why it is equal to 1/2.
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APPENDIX B: PROOF OF THEOREM 2.2.1

The equivalence of the first and second problems is shown in [26]. In order to

prove the theorem, we proceed with proving the equivalence of the second and third

problems.

First, we show that the third problem reduces to the second problem in poly (L)

time: Since we know zN
1 and Qθ+i−1

i per assumption, we construct L consecutive bits

of XM
1 via using Definition 2.1.1 in the following way. We are given Qi+θ−1

i = qi+θ−1
i

such that (2.4) holds. Then, we apply the following algorithm:

1. For each j = i, i + 1, . . . , θ + i− 1 do:

(a) If qj = 0, generate Bj = {zj, zj}.
(b) If qj > 0, generate Bj =

{
z̄j, z

qj

j , z̄j

}

2. Concatenate {Bj}θ+i−1
j=i thereby forming the desired X = x sequence.

Note that, the condition (2.4) ensures that the resulting X = x sequence

{Bi, Bi+1, . . . , Bθ+i−1} is of length at least L. Furthermore, from the definition of the

ABSG algorithm, the resulting X = x sequence is unique and necessarily the correct

one. Obviously, this algorithm runs in poly (L) time, which completes the proof for

this case.

Next, we proceed with showing that the second problem can be reduced to the

third problem via an algorithm in probabilistic polynomial time. First, note the fol-

lowing Lemma.

Lemma II-1 Under the assumptions A1, A2, A3, and A4, for any n ∈ Z+, we have

Pr
[
∧poly(L)

l=0 Yn+l 6= ∅
]
≤ ε, (II-1)

for any ε > 0 for L sufficiently large.



57

Proof: First, under the given assumptions, we note the following fundamental results

from [27]:

• For any n ∈ Z+,

Pr (Yn = ∅) =
1

3
+

2

3

(
−1

2

)n

. (II-2)

• {Yn} form a Markovian process with memory-1:

Pr
(
Yn|Yn−1

1 = yn−1
1

)
= Pr (Yn|Yn−1 = yn−1) , (II-3)

for any n ∈ Z+.

• For any n ∈ Z+,

Pr (Yn 6= ∅|Yn−1 6= ∅) =
1

2
. (II-4)

Hence, for any ε > 0 we have

Pr
[
∧poly(L)

l=0 Yn+l 6= ∅
]

= Pr (Yn 6= ∅)

poly(L)∏

l=1

Pr
(
Yn+l 6= ∅| ∧l−1

k=0 Yn+k 6= ∅
)
,(II-5)

= Pr (Yn 6= ∅)

poly(L)∏

l=1

Pr (Yn+l 6= ∅|Yn+l−1 6= ∅) , (II-6)

=

[
2

3
− 2

3

(
−1

2

)n]
·
(

1

2

)poly(L)−1

, (II-7)

≤ ε (II-8)

where (II-5) follows from Bayes rule, (II-6) follows from (II-3), (II-7) follows from (II-2)

and (II-4), (II-8) follows from the fact that the first term in (II-7) is constant in L and

the second term is exponentially decaying in L whence ε can be made arbitrarily small

for sufficiently large L.
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Now, since Yn ∈ {0, 1,∅} (i.e., there are constant possibilities for Yn), without

loss of generality, we assume that Yn is known. Since we are also given Xn+L
n+1 for some

n ∈ Z+, this also means we know Yn+L
n (via successively applying M (Yn+l−1, Xn+l)

for l = 1, 2, . . . , L). Next, consider the following situations:

1. Yn = Yn+L = ∅:

In this case, w.l.o.g. we choose hi−1 = n for some i. Next, let K denote the num-

ber of ∅’s within the sequence Yn+L
n (which is necessarily ≥ 2 per assumption)

and assign θ = K − 1. Next, let hi+j−2 denote the index of the j-th ∅ within the

sequence Yn+L
n , where 1 ≤ j ≤ K = θ + 1 (implying hi+K−2 = hi+θ−1 = n + L).

Accordingly, assign qj = hj − hj−1 − 2 for all j ∈ {i, i + 1, . . . , i + θ − 1}. Note

that, all these {hj} (equivalently {qj}) are known since Yn+L
n is known. Conse-

quently, this means we have identified Qi+θ−1
i = qi+θ−1

i such that

θ+i−1∑
j=i

(qj + 2) =
θ+i−1∑

j=i

(hj − hj−1) = hθ+i−1 − hi = L, (II-9)

satisfying the constraint (2.4). Further, note that the operations performed within

this procedure constitute an algorithm, which is in deterministic polynomial time

(implying it is also in probabilistic polynomial time).

2. Yn = ∅ and Yn+L 6= ∅:

In this case, since Yn+L 6= ∅, we aim to identify some Yn+L+L′ = ∅ for L′ > 0

with high probability in polynomial time. To achieve this task, we consider the

sequence {Yn+L+k} for k > 0. Now, note that as we increment k, after poly (L)

steps we necessarily need to come across a∅ with high probability (the probability

of not coming across a ∅ is exponentially small in L per Lemma II-1). Thus, we

have Yn = Yn+L′′ = ∅ where L′′ = L + L′ > L. Next, applying algorithmic steps

analogous to the ones in Situation 1 (i.e., beginning from Yn = Yn+L′′ = ∅), we

identify Qi+θ−1
i = qi+θ−1

i such that

θ+i−1∑
j=i

(qj + 2) =
θ+i−1∑

j=i

(hj − hj−1) = hθ+i−1 − hi = L′′ > L, (II-10)
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satisfying the constraint (2.4). Further, note that the operations performed within

this procedure constitute an algorithm, which is in probabilistic polynomial time.

3. Yn 6= ∅ and Yn+L = ∅:

Our overall goal is to identify (via using an algorithm, which is in probabilistic

polynomial time) Yn+L = Yn+L′′′ = ∅ such that L′′′ − L > L. In that case, we

would be able to apply algorithmic steps analogous to the ones in Situation 1

(i.e., beginning from Yn+L = Yn+L′′′ = ∅) and identify Qi+θ−1
i = qi+θ−1

i such that

θ+i−1∑
j=i

(qj + 2) =
θ+i−1∑

j=i

(hj − hj−1) = hθ+i−1 − hi = L′′′ − L > L, (II-11)

satisfying the constraint (2.4). Next, we show that, beginning from Yn+L, we are

able to find some Yn+L′′′ = ∅ such that L′′′ > 2L via a probabilistic polynomial

time algorithm. To see this, first consider the sequence {Yn+L+k} for k > 0

(as we did in Situation 2). Following Lemma II-1 and using similar arguments

to Situation 2, we see that as we increment k by poly (L), we necessarily come

across a ∅ with high probability. Next, we apply this step L/2 times; at each

step, we increment k by poly (L) and at each step, we see a ∅ with probability

1 − ε where ε is exponentially small in L per Lemma II-1. Thus, as a result of

incrementing k by a total of L
2
·poly (L) (which is again poly (L)), we observe L/2

∅’s with sufficiently high probability, which makes this procedure an algorithm in

probabilistic polynomial time. On the other hand, observing L/2 ∅’s guarantee

us to identify some L′′′ such that L′′′ > 2L since the gap between two ∅’s is at

least 2 due to the definition of the ABSG algorithm. As a result, we see that

we can identify Yn+L′′′ = ∅ such that L′′′ − L > L via an algorithm which is in

probabilistic polynomial time, which was our initial goal.

4. Yn 6= ∅ and Yn+L 6= ∅:

This is straightforward via applying an approach analogous to the Situation 3

above. Again, we begin from Yn+L, consider the sequence Yn+L+k for k > 0,

increment k in blocks of length poly (L); the only difference is that this time we

use L
2

+ 1 blocks (each of which is poly (L)) instead of L
2
. As a result, we are

guaranteed to identify Yn+L′′′′ = Yn+L′′′′′ = ∅ such that L′′′′′ − L′′′′ > L via an



60

algorithm which is in probabilistic polynomial time; the rest is obvious.

Thus, the proof of the (probabilistic polynomial time) reduction of the second problem

to the third one is completed. Hence the proof of Theorem 2.2.1.
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APPENDIX C: PROOF OF THEOREM 2.3.1

For the sake of clarity, throughout this section we use the notation

Gk

(
ik, θk,

(
qθk+ik−1

ik

)
k

)
(instead of Gk

(
ik, θk,q

θk+ik−1
ik

)
) to denote a particular guess

Gk.

Choosing n
4
= L/3, first we define the typical set (cf. (1.5)) A

(n)
ε with respect to

p (q) (given by (2.3)):

A(n)
ε

4
=

{
qn

1 :

∣∣∣∣−
1

n
log p (qn

1 )−H (Q)

∣∣∣∣ ≤ ε

}
, (III-1)

where (using logarithm with base-2)

H (Q) = −
∞∑

q=0

p (q) log p (q) = 2.

At this point, we also restate the two fundamental results regarding typical sets which

are given in Theorem 1.3.1:

(1− ε) 2n(H(Q)−ε) ≤
∣∣A(n)

ε

∣∣ ≤ 2n(H(Q)+ε), (III-2)

Pr
(
qn

1 ∈ A(n)
ε

)
> 1− ε, (III-3)

for any ε > 0, for sufficiently large n.

Next, we propose the following construction for the attack AE
ach,opt:

1. Index all qn
1 ∈ A

(n)
ε and accordingly let (qn

1 )k denote the k-th element where

k ∈
{

1, 2, . . . ,
∣∣∣A(n)

ε

∣∣∣
}

. Let qi,k denote the i-th element of (qn
1 )k for i ∈ {1, 2, . . . , n}.

2. At each k-th step of the QuBaR attack, choose Gk =
(
ik = 1, θk = n = L

3
, (qn

1 )k

)
;

k ∈
{

1, 2, . . . ,
∣∣∣A(n)

ε

∣∣∣
}

.
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Note that, this attack qualifies as a “QuBaR attack against ABSG” only if all of

the aforementioned guesses satisfy the constraint (2.4). To see that this is satisfied for

arbitrarily small ε, we observe (noting that βk =
∑n

i=1 qi,k)

∣∣∣∣−
1

n
log p ((qn

1 )k)−H (Q)

∣∣∣∣ =

∣∣∣∣
(

1 +
βk

θk

)
− 2

∣∣∣∣ ≤ ε, (III-4)

where the equality follows from (2.3), the definition of βk and using θk = n, the

inequality follows from (III-1). Furthermore, using θk = n = L/3, after straightforward

algebra (III-4) can be shown to be equivalent to

L
(
1− ε

3

)
≤ 2θk + βk ≤ L

(
1 +

ε

3

)
. (III-5)

Since we can choose ε arbitrarily small, the aforementioned attack qualifies as a QuBaR

attack against ABSG as ε → 0.

Next, (III-3) implies that for large n (equivalently for large L) Prsucc

(
AE

ach,opt

)
=

Pr
(
qn

1 ∈ A
(n)
ε

)
can be made arbitrarily close to 1 since we can choose ε arbitrarily

small. Thus, Prsucc

(
AE

ach,opt

) → 1 as L → ∞ and ε → 0. Furthermore, for large L

the algorithmic complexity is at most
∣∣∣A(n)

ε

∣∣∣ which can be made arbitrarily close to

22L/3 per (III-2) since n = L/3, H (Q) = 2 and we can choose ε arbitrarily small.

Thus, the algorithmic complexity is at most 22L/3 as L → ∞, ε → 0. Recalling that

for sufficiently small ε, all elements of A
(n)
ε are equiprobable (since βk ∈ N, θk ∈ Z+)

with 2−(θk+βk)
∣∣
θk=βk=L/3

, we immediately see that the expected algorithmic complexity

is 1
2

(
22L/3 + 1

)
. Note that in the proposed attack, ik = 1 and θk = n = L/3 for all k

which implies that the corresponding data complexity is L/3.
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APPENDIX D: PROOF OF THEOREM 2.3.2

First of all, since L is sufficiently large (per assumption A4), we assume w.l.o.g. L

is divisible by 6. Our fundamental goal is to characterize the algorithmic complexity of

the optimal attacks subject to a lower bound on the success probability of the attack.

Thus, we aim to analytically identify

AE
opt

4
= arg min

AE∈SE
p

C (
AE

)
, (IV-1)

where

SE
p

4
=

{
AE : AE ∈ SE and Pr

(
∨C(AE)

k=1 [T (Gk) = 1]

)
>

1

2

}
⊆ SE, (IV-2)

i.e., SE
p is a “probabilistically-constrained” subset of SE for which the success proba-

bility is strictly bounded away from 1/2. In our terminology, we denote the quantity

of Pr
(
∨C(A)

k=1 [T (Gk) = 1]
)

as the success probability of algorithm A. Our problem is to

characterize

CE
min

4
= C (

AE
opt

)
, (IV-3)

in particular, we aim to achieve this goal via quantifying a lower bound on it.

Our proof approach can be summarized as follows: Since it is not a straightfor-

ward task to solve the optimization problem (IV-1), we proceed with a simpler problem.

We define a set S̃E
p , such that SE

p ⊆ S̃E
p ⊆ SE, and accordingly proceed with minimiz-

ing C (
AE

)
over all AE ∈ S̃E

p . The set S̃E
p is defined in such a way that carrying out

the aforementioned optimization problem is more tractable over this set. At the last

step, we conclude the proof via deriving a lower bound on the minimum algorithmic

complexity over S̃E
p , which also forms a lower bound on CE

min since SE
p ⊆ S̃E

p .
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We proceed with defining the set

S̃E
p

4
=





AE : AE ∈ SE and

C(AE)∑

k=1

Pr (T (Gk) = 1) >
1

2





. (IV-4)

In our terminology, we denote the quantity of
∑C(A)

k=1 Pr (T (Gk) = 1) as the cumulative

success probability of algorithm A. Note that, success probability is always upper-

bounded by cumulative success probability for any algorithm A; i.e., we have

Pr
(
∨C(A)

k=1 [T (Gk) = 1]
)
≤

C(A)∑

k=1

Pr (T (Gk) = 1) , (IV-5)

due to the union bound, which implies SE
p ⊆ S̃E

p ⊆ SE. Next, we define the optimiza-

tion problem (which is “alternate” to (IV-1))

ÃE
opt

4
= arg min

AE∈S̃E
p

C (
AE

)
, (IV-6)

and accordingly

C̃E
min

4
= C

(
ÃE

opt

)
. (IV-7)

In order to quantify the solution of (IV-6), for the sake of convenience we define

G (θ, α)
4
=

{
qθ

1 : ∀i, qi ≥ 0, θ ∈ Z+, α ∈ N,

θ∑
i=1

qi = β = L− 2θ + α

}
, (IV-8)

for any given θ ∈ Z+ and α ∈ N. Observe that {G (θ, α)} are clearly disjoint for

different pairs of {(θ, α)}. Further, note that, by construction, q ∈ G (θ, α) for some

θ ∈ Z+, α ∈ N implies (2.4) since 2θ + β = L + α ≥ L; thus, any guess G =
(
1, θ,qθ

1

)

where qθ
1 ∈ G (θ, α) for some θ ∈ Z+, α ∈ N is a valid ABSG-guess. Furthermore,

any valid guess G necessarily corresponds to a q ∈ G (θ, α) for some unique pair (θ, α).
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Next, using (2.5) observe that

p
(
qθ

1

)
= 2−(θ+β)

∣∣
β=L−2θ+α

= 2−(L−θ+α), (IV-9)

for any qθ
1 ∈ G (θ, α); i.e., given a pair (θ, α), all elements of G (θ, α) are equally likely

with probability 2−(L−θ+α).

Going back to (IV-6), since we are trying to achieve a cumulative success proba-

bility strictly greater than 1/2 using elements from disjoint sets {G (θ, α)}, the optimal

strategy is clearly to use the sorted elements qθ
1 ∈ G (θ, α) with respect to their success

probabilities, specified in (IV-9) 16 . Thus, algorithmically the optimal solution consists

of trying the guess with largest marginal success probability first, and then the most

probable guess in the remaining ones, and so on.

Next, we aim to characterize the aforementioned sorting process and analyze

the minimum number of elements needed to achieve a cumulative success probability

strictly greater than 1/2. Since all elements of G (θ, α) are equally likely (cf. (IV-9)),

the problem of sorting individual sequences reduces to the problem of sorting the sets

{G (θ, α)} in non-increasing order with respect to (IV-9). The total number of elements

in these sorted sets of {G (θ, α)} such that the total probability exceeds 1/2 amounts

to the sought result C̃E
min. As a result, we should solve the following sorting problem:

Sorting Problem I: Sort over (θ, α), with respect to the cost function L−θ+α,

in non-decreasing order, such that

(θ, α) ∈ SE,F
4
=

{
(θ, α) : θ ∈ Z+, α ∈ N, β = L− 2θ + α ≥ 0

}
. (IV-10)

Since this sorting needs to be done over (θ, α), our next task is to characterize the

feasible set SE,F over which the sorting will be carried out.

16This problem is trivially equivalent to the problem of obtaining a pre-specified amount of cake
with minimum number of slices, where the slice sizes are fixed, but not necessarily uniform.
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First of all, notice that from the definition of G (θ, α) (cf. (IV-8)), we have

2θ − α ≤ L, (IV-11)

since β = L− 2θ + α ≥ 0. Next, we define

B
4
= L− θ + α, (IV-12)

as our cost function in the aforementioned Sorting Problem I. Note that, for any

q ∈ G (θ, α), Pr (Q = q) = 2−(θ+β) = 2−B; i.e., for any guess G (i, θ,q), its success

probability is equal to 2−B where B is computed via (IV-12) using the corresponding

θ and α. This means that, for any given guess G (·), its marginal success probability,

Pr (T (G) = 1) is directly determined by the corresponding value of B.

Next, our goal is to find an alternate re-parameterized expression for (IV-10) in

terms of B and L since B is our cost function in Sorting Problem I. Now, using (IV-12)

in (IV-11) and noting that α ∈ N yields

α ∈ {0, 1, . . . , 2B − L} . (IV-13)

which also implies that B ≥ L/2 since α ≥ 0. As a side result, this accordingly implies

the following upper bound on the marginal success probability of any valid guess:

Pr [T (G (i, θ,q)) = 1] = 2−B
∣∣
B=θ+β

≤ 2−L/2, (IV-14)

for any G (i, θ,q) ∈ G (θ, α) and for some α ∈ N.

Next, per (IV-12), each value of α uniquely determines θ in terms of B via

θ = L−B + α. (IV-15)
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Using (IV-15) in (IV-13), we have

θ ∈ {L−B, L−B + 1, . . . , B} , (IV-16)

which also implies that B ≤ L− 1 since θ ≥ 1. Combining these observations, we find

out the following equivalent expression to (IV-10):

(θ, α) ∈ SE,F =
L−1⋃

B=L
2

{(L−B, 0) , (L−B + 1, 1) , . . . , (B − 1, 2B − L− 1) , (B, 2B − L)} ,

(IV-17)

where we effectively did a re-parameterization using B. Note that, this re-parameterization

allows us to see that, given a fixed B, all {G (θ, α)} such that

(θ, α) ∈ {(L−B, 0) , (L−B + 1, 1) , . . . , (B − 1, 2B − L− 1) , (B, 2B − L)} ,

(IV-18)

are equivalent to each other in terms of their success probabilities, 2−B. Using this

observation and (IV-17), we conclude that Sorting Problem I is equivalent to to the

following one:

Sorting Problem II: Sort over (B,α) with respect to B in non-decreasing order,

such that

(B, α) ∈ {(B, α) : α ∈ {0, 1, . . . , 2B − L}, B ∈ {L/2, . . . , L− 1}} . (IV-19)

Note that, the corresponding values of θ in (IV-19) are given by (IV-15).

Following is one of the solutions to Sorting Problem II:

{(B, α)} = {(L/2, 0) , (L/2 + 1, 0) , (L/2 + 1, 1) , (L/2 + 1, 2) , . . . , (L− 1, L− 2)} .

(IV-20)
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Note that all solutions to Sorting Problem II are equivalent to each other in terms of

the resulting complexity. In particular, for a given B, we follow the strategy of varying

α in increasing order, beginning from 0, ending in 2B − L as illustrated in (IV-20).

Next, we concentrate on the range of L/2 ≤ B < 2L/3 and analyze the corre-

sponding cumulative success probability (denoted by P1) of the aforementioned strategy

(cf. (IV-20)), i.e.,

P1
4
=

2L
3
−1∑

B=L
2

2B−L∑
α=0

Pr
(G (θ, α)|θ=L−B+α

)
. (IV-21)

Next, we derive an upper bound on P1 which will be used in the subsequent computa-

tions.

Lemma IV-1 The cumulative success probability in the range of L/2 ≤ B < 2L/3

(i.e., P1) is upper-bounded by

P1 ≤
2L
3
−1∑

θ=L
3
+1

θ−L
3
−1∑

α=0

Pr (G (θ, α)) . (IV-22)

Proof: From (IV-21), we see that P1 is defined in the (B,α) space (where B =

L− θ + α), over the set

Λ
4
=

{
(B, α) :

L

2
≤ B ≤ 2L

3
− 1, 0 ≤ α ≤ 2B − L

}
, (IV-23)

i.e., P1 =
∑

(B,α)∈Λ Pr (G (θ, α))|θ=L−B+α. Next, we proceed with deriving a set Λ̃. The

purpose of using this set is to transform the summation indexes to corresponding (θ, α)

for each (B, α) ∈ Λ̃. Now we show that Λ̃ is a superset of Λ.This is done in four steps.
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1. First, recall that

α ≥ 0. (IV-24)

2. Second, observe that

[
B ≤ 2L

3
− 1

]
=⇒

[
L− θ + α ≤ 2L

3
− 1

]
(IV-25)

=⇒
[
α ≤ θ − L

3
− 1

]
(IV-26)

3. Third, note that (IV-26) is equivalent to

θ ≥ L

3
+ α + 1 (IV-27)

Using (IV-24) in (IV-27) implies

θ ≥ L

3
+ 1 (IV-28)

4. Fourth, using B ≤ 2L
3
− 1 in α ≤ 2B − L (cf. (IV-23)) implies

α ≤ L

3
− 2. (IV-29)

Also, using (IV-12) we have

[α ≤ 2B − L = L− 2θ + 2α] =⇒
[
θ ≤ L

2
+

α

2

]
. (IV-30)

Using (IV-29) in (IV-30) yields

θ ≤ 2L

3
− 1. (IV-31)
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Now, defining

Λ̃
4
=

{
(B, α) : corresponding (θ, α) satisfies

L

3
+ 1 ≤ θ ≤ 2L

3
− 1, 0 ≤ α ≤ θ − L

3
− 1

}
,

(IV-32)

and using (IV-24), (IV-26), (IV-28), (IV-31), we conclude that Λ ⊆ Λ̃, which implies

(IV-22).

Next, we proceed with providing an upper bound on the right hand side of

(IV-22), which will be shown to be O (L−1), i.e., diminishing in L, the length of the

generator polynomial of the LFSR17 . In order to achieve this task, we heavily use the

concept of “typical set” (cf. (III-1)). Note that, using (IV-9) and H(Q) = 2, (III-1)

can be shown to be equivalent to

A(θ)
ε =

{
qθ

1 : 1− ε ≤ β

θ
≤ 1 + ε

}
. (IV-33)

In the following lemma, we show that all guesses {G (θ, α)} included in the summa-

tion of the right hand side of (IV-22) are necessarily “atypical” (i.e., belong to the

complement of the corresponding typical set).

Lemma IV-2 For any θ ∈ Z+, such that θ > L/3, and for all α ∈ N, such that

0 ≤ α ≤ θ− L
3
, we have G (θ, α) ⊆ [A

(θ)
ε ](c) for all ε ∈ (

0, 2
θ

)
, where [A

(θ)
ε ](c) denotes the

complement of the typical set A
(θ)
ε .

Proof: First of all, note that (cf. (IV-8)), we have

[
qθ

1 ∈ G(θ, α)
] ⇒

[
β

θ
=

(
L

θ
− 2

)
+

α

θ

]
. (IV-34)

17This result, in turn, implies that an optimal QuBaR attack which uses the solution to the Sort-
ing Problem II for θ > L/3 has a negligible cumulative success probability, i.e., negligible success
probability.
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Hence, for any qθ
1 ∈ G(θ, α) such that θ > L/3 and 0 ≤ α ≤ θ − L

3
, we have

−1

θ
log p

(
qθ

1

)−H(Q) =
θ + β

θ
− 2, (IV-35)

=
L− θ + α

θ
− 2 =

L + α

θ
− 3, (IV-36)

≤ 2L

3θ
− 2, (IV-37)

≤ 2L

L + 3
− 2 = − 6

L + 3
< 0, (IV-38)

where (IV-35) follows from the fact that p
(
qθ

1

)
= 2−(θ+β) and H (Q) = 2, (IV-36)

follows using (IV-34) in (IV-35), (IV-37) follows since α ≤ θ − L/3, (IV-38) follows

since θ ≥ L
3

+ 1. Note that (IV-38) implies

∣∣∣∣−
1

θ
log p

(
qθ

1

)−H(Q)

∣∣∣∣ ≥
6

L + 3
. (IV-39)

Now, since θ ≥ L
3

+ 1 (equivalently 2
θ
≤ 6

L+3
), we have ε < 6

L+3
for all ε ∈ (

0, 2
θ

)
. Using

this in (IV-39), the claim follows.

Next, we provide an upper bound on the right hand side of (IV-22) using Lemma IV-

2. For all εθ ∈
(
0, 2

θ

)
, we have

2L
3
−1∑

θ=L
3
+1

θ−L
3
−1∑

α=0

Pr (G (θ, α)) ≤
2L
3
−1∑

θ=L
3
+1

Pr
([

Aθ
εθ

](c)
)

, (IV-40)

≤
2L
3
−1∑

θ=L
3
+1

εθ, (IV-41)

≤
(

L

3
− 1

) (
max

L
3
+1≤θ≤ 2L

3
−1

εθ

)
, (IV-42)

where (IV-40) follows from Lemma IV-2 and the fact that, for any given θ, {G (θ, α)}
are disjoint by construction, (IV-41) follows from (III-3). Now, choosing εθ = 1

θ2 for all
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θ, and using (IV-42) in (IV-22), we have

P1 ≤
(

L

3
− 1

) (
max

L
3
+1≤θ≤ 2L

3
−1

1

θ2

)
=

L/3− 1

(L/3 + 1)2 <
3

L
. (IV-43)

Thus, for any δ1 > 0, there exists a sufficiently large L (per assumption A4), where

P1 < δ1. (IV-44)

Note that, for the optimal strategy, which uses the ordering mentioned in (IV-20),

(IV-43) and (IV-44) imply that the range of L
2
≤ B ≤ 2L

3
− 1 is not sufficient to

achieve every given cumulative success probability strictly greater than 1/2, since δ1

can be made arbitrarily small. Therefore, we necessarily need to include guesses with

B = 2L/3 in the optimal structure to achieve a cumulative success probability strictly

greater than 1/2.

Next, we proceed with quantifying the contribution to the cumulative success

probability for the case of B = 2L/3. In this case, for the optimal strategy, since

θ = L − B + α and 0 ≤ α ≤ 2B − L for a given value of B, the corresponding (θ, α)

pairs are of the form
{(

L
3

+ α, α
)}

0≤α≤L/3
. Thus, for the case of B = 2L/3, the total

contribution to the cumulative success probability is given by

Pr (G(L/3, 0)) +

L/3∑
α=1

Pr (G(L/3 + α, α)) . (IV-45)

Note that, the right hand side of (IV-45) is “atypical” per Lemma IV-2; accordingly, we

will show that the only significant contribution to the cumulative success probability

is due to the left hand side of (IV-45) since it includes terms within the corresponding

typical set.
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Next, we provide an upper bound on the right hand side of (IV-45). Defining

P2
4
=

∑L/3
α=1 Pr (G(L/3 + α, α)), for all εθ ∈

(
0, 2

θ

)
, we have

P2 =

2L/3∑

θ=L
3
+1

Pr (G(θ, θ − L/3)) , (IV-46)

≤
2L/3∑

θ=L
3
+1

Pr
([

Aθ
εθ

]c)
, (IV-47)

≤
(

L

3

)(
max

L/3+1≤θ≤2L/3
εθ

)
, (IV-48)

where (IV-46) follows from using θ = (L−B + α)|B=2L/3, (IV-47) follows from

Lemma IV-2, (IV-48) follows using (III-3). Choosing εθ = 1
θ2 for all θ in (IV-48), we

have

P2 ≤ L/3

(L/3 + 1)2 <
3

L
. (IV-49)

Thus, for any δ2 > 0, there exists a sufficiently large L (per assumption A4), where

P2 < δ2. (IV-50)

Since δ1 (resp. δ2) in (IV-44) (resp. (IV-50)) can be made arbitrarily small, we neces-

sarily need to use guesses from the set G (
L
3
, 0

)
in order to achieve a cumulative success

probability strictly greater than 1/2.

Next, consider the case of (θ, α) =
(

L
3
, 0

)
: Note that, for any q

L/3
1 ∈ G (

L
3
, 0

)
, we

have

p
(
q

L/3
1

)
= 2−(2L/3). (IV-51)

Per (IV-33), (IV-51) implies that G (
L
3
, 0

) ⊆ A
(L/3)
ε for any ε > 0. Furthermore, after

some straightforward algebraic manipulations, it can be shown that, for 0 < ε < 3
L
, we
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have A
(L/3)
ε ⊆ G (

L
3
, 0

)
; therefore we have

G
(

L

3
, 0

)
= A(L/3)

ε for 0 < ε <
3

L
. (IV-52)

In fact, (IV-52) constitutes the fundamental crux of the converse proof. This observa-

tion implies that, using sufficiently many guesses from the set G (
L
3
, 0

)
is both necessary

(since δ1 and δ2 may be arbitrarily small) and sufficient (since for 0 < ε < 3
L
, we have

Pr
(G (

L
3
, 0

))
= Pr

(
A

(L/3)
ε

)
> 1−ε) to achieve a cumulative success probability strictly

greater than 1/2 for large L (per Assumption A4).

Now, let

P1 + P2 + P3 > 1/2, (IV-53)

denote the cumulative success probability of optimal attack in the set S̃E
p , where P3

denotes the contribution to the cumulative success probability by the guesses from

G (
L
3
, 0

)
18 . Using (IV-43) and (IV-49) in (IV-53), we have

P3 >
1

2
− 6

L
. (IV-54)

Next, let C ′ denote the number of sequences used from the set G (
L
3
, 0

)
. Using

(IV-51), we have

C ′ = P3/2
−2L/3. (IV-55)

18Note that, w.l.o.g. we assume that, at step B = 2L/3, the proposed optimal attack uses guesses
from the set G (

L
3 , 0

)
in the end (i.e., after applying guesses from the sets

{G (
L
3 + α, α

)}L/3

α=1
of which

contributions to the cumulative success probability is denoted by P2). Since our strategy is to “lower-
bound” the number of guesses from the set G (

L
3 , 0

)
and declare the resulting value as a lower bound

on the overall complexity, C̃min, this approach maintains the validity of our result.
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Combining (IV-54) and (IV-55) yields

[
C ′ > 22L/3

(
1

2
− 6

L

)]
=⇒

[
C

(
ÃE

opt

)
> 22L/3

(
1

2
− 6

L

)]
, (IV-56)

since C
(
ÃE

opt

)
> C ′. Next, using SE

p ⊆ S̃E
p yields

CE
min = C (

AE
opt

) ≥ C̃E
min = C

(
ÃE

opt

)
> 22L/3

(
1

2
− 6

L

)
, (IV-57)

where AE
opt and ÃE

opt have been defined in (IV-1) and (IV-13), respectively. Hence, the

claim finally follows.
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APPENDIX E: PROOF OF THEOREM 2.3.3

For the sake of clarity, we use the notation Gk

(
ik = 1, θk,

(
qθk+ik−1

ik

)
k

)
(instead

of Gk

(
ik = 1, θk,q

θk+ik−1
ik

)
) throughout the proof in this section.

(i) First of all, note that letting AE
opt = {Gk}C(AE

opt)
k=1 denote the optimal exhaustive-

search type QuBaR attack against ABSG with success probability Prsucc

(
AE

opt

)
,

the claim is equivalent to the following statement:

For any i 6= j; i, j ∈ {1, . . . , C (
AE

opt

)} (assuming θj > θi w.l.o.g.), we have
(
qθi

1

)
i
6= (

qθi
1

)
j
. Suppose to the contrary, we have

(
qθi

1

)
i

=
(
qθi

1

)
j

for some

i 6= j; i, j ∈ {1, . . . , C (
AE

opt

)} where w.l.o.g. θj > θi. Given AE
opt, we construct

an exhaustive-search type QuBaR attack ÃE via eliminating Gj from AE
opt, i.e.,

ÃE 4
= {G̃k}C(AE

opt)−1

k=1 where G̃k = Gk for k ∈ {1, . . . , j − 1} and G̃k = Gk+1 for

k ∈ {j, . . . , C (
AE

opt

)− 1}. Next, note that

[(T (Gj) = 1) ⇒ (T (Gi) = 1)] =⇒[
Pr

(
∨C(AE

opt)
k=1 [T (Gk) = 1]

)
= Pr

(
∨1≤k≤C(AE

opt), k 6=j [T (Gk) = 1]
)]

. (V-1)

If Gj is a correct guess, then all
(
q

θj

1

)
j

are correct, which implies
(
qθi

1

)
j

are

necessarily correct as well since θi < θj. Further, this implies that
(
qθi

1

)
i

are

correct as well per the contradiction assumption. Hence, this proves the left hand

side of (V-1); thus, the right hand side of (V-1) is true as well. This, in turn, is

equivalent to Prsucc

(
AE

opt

)
= Prsucc(Ã

E) which yields the promised contradiction

(C
(
ÃE

)
= C (

AE
opt

)− 1) since AE
opt is an optimal exhaustive-search type QuBaR

attack for the given success probability Prsucc

(
AE

opt

)
; hence the proof the first

statement of Theorem 2.3.3.

(ii) Suppose not; then this means that there exists some i, j ∈ {
1, 2, . . . , C (

AE
opt

)}
,

i 6= j, such that Pr [(T (Gi) = 1)∩ (T (Gj) = 1)] > 0. This implies that there

is some realization q̃ of Q with non-zero probability such that the events of

(T (Gi) = 1) and (T (Gj) = 1) both occur at the same time. In other words,
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there exists some q̃ with Pr (Q = q̃) > 0 such that
(
qθi

1

)
i
= q̃θi

1 and
(
q

θj

1

)
j
= q̃

θj

1 .

However, this implies that
(
qθi

1

)
i
is a prefix of

(
q

θj

1

)
j

(assuming w.l.o.g. θi < θj).

Hence contradiction (per the first statement of Theorem 2.3.3) and the proof of

the second statement of Theorem 2.3.3.

(iii) This statement is the direct consequence of the first and second statements of the

theorem.

(iv) First recall that, at optimality C (
AE

opt

)
is the smallest possible value (given the

success probability Prsucc

(
AE

opt

)
). This observation and (2.10) clearly imply that

the optimal strategy consists of “sorted” guesses (in descending order) with re-

spect to the probabilities {Pr (T (Gk) = 1)} of the corresponding success events

{(T (Gk) = 1)} since the success probability Prsucc

(
AE

opt

)
is fixed.
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APPENDIX F: PROOF OF LEMMA 3.2.1

First of all, note that

p (xn|un) =
p (xn,un)

p (un)
, (VI-1)

=

∏n
i=1 p(xi)p(ui|xi)

p (un)
, (VI-2)

where (VI-2) follows since p (xn) =
∏n

i=1 p(xi) and the DMC nature of p(u|x).

Next, we deal with p (un):

p (un) =
∑
xn

p (xn) p (un|xn) , (VI-3)

=
∑
xn

n∏
i=1

p(xi)p(ui|xi), (VI-4)

=
∑
x1

p(x1)p(u1|x1) · . . . ·
∑
xn

p(xn)p(un|xn), (VI-5)

=
n∏

i=1

∑
xi

p(xi)p(ui|xi), (VI-6)

where (VI-4) follows since p (xn) =
∏n

i=1 p(xi) and the DMC nature of p(u|x).

Using (VI-6) in (VI-2) yields:

p (xn|un) =

∏n
i=1 p(xi)p(ui|xi)∏n

i=1

∑
xi

p(xi)p(ui|xi), (VI-7)

=
n∏

i=1

(
p(xi)p(ui|xi)∑
xi

p(xi)p(ui|xi)

)
, (VI-8)

=
n∏

i=1

p(xi|ui), (VI-9)

where (VI-9) follows using the definition of p(x|u) given in the statement of the lemma.

Hence the result follows.
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APPENDIX G: PROOF OF LEMMA 3.2.2

First of all, we have

p (yn|un) =

∑
xn p (yn,un,xn)

p (un)
, (VII-1)

=

∑
xn p (yn|xn,un) p (xn|un) p (un)

p (un)
, (VII-2)

=
∑
xn

p (yn|xn) p (xn|un) , (VII-3)

=
∑
xn

(
n∏

i=1

p(yi|xi)p(xi|ui)

)
, (VII-4)

=
∑
x1

p(y1|x1)p(x1|u1) · . . . ·
∑
xn

p(yn|xn)p(xn|un), (VII-5)

=
n∏

i=1

∑
xi

p(yi|xi)p(xi|ui), (VII-6)

=
n∏

i=1

∑
xi

p(yi|xi, ui)p(xi|ui)p(ui)

p(ui)
, (VII-7)

=
n∏

i=1

∑
xi

p(yi, ui, xi)

p(ui)
, (VII-8)

=
n∏

i=1

p(yi|ui), (VII-9)

where (VII-3) follows from (3.1), (VII-4) follows from (3.3) and DMC property of

communication channel,p(y|x), (VII-7) follows using (3.1). (VII-9) is the desired result,

hence the proof.



80

APPENDIX H: PROOF OF LEMMA 3.2.3

First, note that we have

Pr (C) =
n∏

i=1

2nR∏
w=1

p(xi(w)), (VIII-1)

Pr
(
C̃|C

)
=

n∏
i=1

2nR∏
w=1

p(ui(w)|xi(w)), (VIII-2)

where both (VIII-1) and (VIII-2) follows from the definition of encoder’s and decoder’s

codebooks, respectively.

Combining (VIII-1) and (VIII-2) yields:

Pr
(
C̃
)

=
∑
C

n∏
i=1

2nR∏
w=1

p(xi(w))p(ui(w)|xi(w)), (VIII-3)

=
∑

x1(1)

p(x1(1))p(u1(1)|x1(1)) · . . .

·
∑

xn(2nR)

p(xn(2nR))p(un(2nR)|xn(2nR)), (VIII-4)

=
2nR∏
w=1

n∏
i=1

∑

xi(w)

p(xi(w))p(ui(w)|xi(w)), (VIII-5)

=
2nR∏
w=1

n∏
i=1

p(ui(w)), (VIII-6)

where p(ui(w))
4
=

∑
xi(w) p(xi(w))p(ui(w)|xi(w)) as in the statement of the theorem.

Hence, (VIII-6) is the desired result, which concludes the proof.
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