
A COMPARISON OF FUZZY METHODS FOR MODELING

by

Ayşe Çisel Aras

B.S., Electrical Engineering, Yıldız Technical University, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2008

iii

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my thesis supervisor,

Prof. Okyay Kaynak, for his invaluable guidance and help during this thesis. I owe

him immense gratitude for having me shown this research area. His wide knowledge

and his logical way of thinking have been provided a good basis for this thesis and have

of great value for me. In addition, he was always accessible and ready to help. This

thesis would be impossible without him.

I especially would like to thank Prof. Ildar Batyrshin. I am deeply grateful for

his help and guidance that are invaluable for me. His direction and suggestions are

very precious in the progress of this thesis.

I would like to express my sincere gratitude to the thesis committee members Prof.

Kemal Cılız and Prof. Levent Akın. I deeply appreciate their insightful comments on

this thesis and their patience.

I would like to thank Assist. Prof. Raşit Bilgin. I am deeply grateful for his help

in correcting my English texts. I would like express my sincere thanks to laboratory

assistances in mechatronics laboratory, Yeşim Öniz and Erdal Kayacan. They are

always helpful and supportive in the progress of this work. I especially thank to Yeşim

Öniz, her friendship is invaluable for me.

Last but not least, I want to express my deep thanks to my family for their love

and invaluable support. They encourage me and take care of me while I was writing

and working on this thesis at late hours.

This thesis has been supported by TUBITAK Grant No: 107E284 and Bogazici

University Scientific Research Project Grant No: 08A204.

iv

ABSTRACT

A COMPARISON OF FUZZY METHODS FOR MODELING

Type-1 Fuzzy Logic Controllers (FLCs) have been used in control applications

for more than thirty years. However, traditional type-1 FLCs are deficient in dynam-

ical unstructured environments and in many real-time applications that include large

amount of uncertainties. Further to this, fuzzy logic systems work cooperatively with

many optimization techniques. Conventionally, the antecedent and consequent part of

the rules are tuned to obtain minimum error response. However, this situation is not

desirable where the expert knowledge about the system is significant. Thus, scientists

have started to seek new approaches or develop existing methods.

In literature, there are a number of noteworthy publications on type-1 fuzzy logic

with parameterized t-norms. During the optimization process in this fuzzy model, the

parameters of the operators and consequent part of the rules are tuned; therefore, the

expert knowledge about the system is not lost or distorted. In line with this trend,

the most important contribution of this thesis is that parameterized conjunctions are

expanded and Constrained Fuzzy Sets (CFSs) with parameterized conjunctions are

proposed. By using constrained fuzzy sets with parameterized conjunctions, both the

uncertainty and the expert knowledge are taken into account. Thus, the expert knowl-

edge about the system is not lost or distorted and the fuzzy model has more design

parameters. This study has the goal of comparing the performance of four different ap-

proaches to fuzzy modeling, using parameterized conjunctions, a novel concept named

Constrained Fuzzy Sets (CFSs), CFSs with parameterized conjunctions, and unnormal-

ized interval type-2 Takagi Sugeno Kang (IT2 TSK). The theoretical and mathematical

backgrounds of the four approaches are briefly described and their performances are

compared in approximating a nonlinear function.

v

ÖZET

BULANIK METODLARININ MODELLEME İÇİN

KARŞILAŞTIRILMASI

Tip-1 bulanık mantık kontrolörleri otuz yılı aşkın süredir kontrol alanında kul-

lanılmaktadır; fakat günümüzde bu yöntem değişken çevre koşullarında ve belirsiz-

liklerin çok olduğu gerçek zamanlı sistemlerde yetersiz kalmaktadır. Bulanık mantık

sistemleri birçok optimizasyon yöntemiyle birlikte çalışmaktadır. Genellikle minimum

hatayı yakalamak için, kuralların öncül ve soncul kısımları adapte edilmektedir; fakat

bu yöntemle üyelik fonksiyonlarındaki uzman bilgisi kaybolabilir veya distorsiyona

uğrayabilir. Bundan dolayı, bilim insanları yeni yöntemler aramaya veya varolan met-

doları geliştirmeye başlamışlardır.

Parametreli t-normlar üzerine literatüre geçmiş çok önemli çalışmaları bulun-

maktadır. Bu metodta optimizasyon işlemi uygulanırken, operatörlerin parametreleri

ve kuralların soncul kısımlarındaki parametreler adapte edildiği için uzman bilgisinde

herhangi bir kayıp ve distorsiyon meydana gelmez. Bu gelişmelere paralel olarak, bu tez

çalışmasının en önemli katkısı parametreli t-normların sınırlı bulanık kümler ile birlikte

kullanılmasıdır. Bu metodta üyelik fonksiyonlarındaki belirsizlikler ve uzmanlık bilgisi

hesaba alınmıştır. Böylece, uzmanlık bilgisinde bozulma ya da kayıp meydana gelmez

ve bulanık model daha fazla dizayn parametersine sahiptir. Bu çalışmanın amacı, dört

farklı metod kullanarak bulanık sistem modellemesini gerçekleştirmektir. Bu dört farklı

metod; parametreli t-normlar, sınırlı bulanık kümeler, sınırlı kümeler ile parametreli

t-normlar ve normalleştirilmemiş aralık değerli tip-2 TSK. Bu dört yaklaşımın matem-

atiksel ve teoriksel yapısı kısaca anlatılmış ve performansları lineer olmayan fonksiyon

yaklaşımı uygulaması ile karşılaştırılmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xii

LIST OF SYMBOLS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Historical Review of Fuzzy Logic . 1

1.2. The Aim of This Study . 6

1.3. The Organization of the Thesis . 7

2. THE THEORETICAL AND MATHEMATICAL BACKGROUND OF FUZZY

METHODS . 9

2.1. Fuzzy Modeling with Parameterized Conjunctions 9

2.1.1. Fuzzification . 10

2.1.2. Fuzzy Rule-Base and Fuzzy Inference System (FIS) 12

2.1.2.1. Intersection of Fuzzy Sets (Conjunction Operators) . . 15

2.1.2.2. Union of Fuzzy Sets (Disjunction) 17

2.1.2.3. NOT (Complement) Operator 19

2.1.2.4. Parameterized Conjunctions 19

2.1.3. Weighted Average Calculation in TSK Model 22

2.1.4. Mamdani Fuzzy Inference and Defuzzification Methods 22

2.1.4.1. Center of Area (Centroid) Defuzzification Method . . . 23

2.1.4.2. Bisector of Area Defuzzification Method 24

2.1.4.3. Smallest of Maximum (SOM) Defuzzification Method . 24

2.1.4.4. Largest of Maximum (LOM) Defuzzification Method . 25

2.1.4.5. Mean of Maximum (MOM) Defuzzification Method . . 26

2.2. Constrained Fuzzy Sets (CFSs) . 27

2.3. Constrained Fuzzy Sets (CFSs) with Parameterized Conjunctions . . . 29

2.4. Interval Type-2 Fuzzy Logic Systems (IT2FLSs) 29

vii

2.4.1. Fuzzification . 33

2.4.1.1. Gaussian Primary Membership Function with Uncer-

tain Standard Deviation 34

2.4.1.2. Gaussian Primary Membership Function with Uncer-

tain Mean . 34

2.4.2. Fuzzy Inference Engine and Rule Base 36

2.4.2.1. The Meet and Join Operators 37

2.4.3. Type-Reduction . 38

2.4.4. Defuzzification . 40

2.4.5. Interval Type-2 TSK Fuzzy Logic Systems (FLSs) 40

2.4.5.1. Model 1 . 40

2.4.5.2. Model 2 . 40

2.4.5.3. Model 3 . 41

2.4.6. Unnormalized Interval Type-2 TSK FLSs 41

3. OPTIMIZATION METHOD . 44

3.1. Sequential Quadratic Programming (SQP) 44

3.1.1. Updating the Hessian Matrix 45

3.1.2. Quadratic Programming Problem Solution 46

3.1.3. Line Search and Merit Function Calculation 46

4. FURTHER RELATIONS IN FUZZY SETS 48

4.1. Similarities and Differences between Constrained Fuzzy Sets (CFSs) and

Type-2 Fuzzy Sets . 48

4.2. Advantages and Disadvantages of Tuning the Membership Functions . 48

5. COMPARISON OF FOUR FUZZY METHODS FOR APPROXIMATION OF

SINC FUNCTION . 50

5.1. Approximation of Sinc Function by Using Parameterized Conjunctions 50

5.2. Approximation of Sinc Function by Using Constrained Fuzzy Sets (CFSs) 52

5.3. Approximation of Sinc Function by Using Constrained Fuzzy Sets (CFSs)

with Parameterized Conjunctions . 55

5.4. Approximation of Sinc Function by Using Unnormalized IT2 TSK FLSs 56

6. CONCLUSION . 60

APPENDIX A: MATLAB CODE FOR METHOD 1 62

viii

APPENDIX B: MATLAB CODE FOR METHOD 2 67

APPENDIX C: MATLAB CODE FOR METHOD 3 73

APPENDIX D: MATLAB CODE FOR METHOD 4 79

REFERENCES . 86

ix

LIST OF FIGURES

Figure 1.1. Number of publications in each year 5

Figure 1.2. Citations in each year . 6

Figure 1.3. Published items in each year . 6

Figure 2.1. Type-1 Fuzzy Logic System (FLS) 10

Figure 2.2. Gaussian membership functions with linguistic values “Very Small”,

“Small”, “Medium”, “Large”, “Very Large” 11

Figure 2.3. Triangular membership functions with linguistic values “Small”,

“Large” . 12

Figure 2.4. Gbell membership functions with linguistic values “Small”, “Large” 13

Figure 2.5. The corresponding surfaces of t-norms (a) Minimum, (b) Algebraic

Product, (c) Bounded Product, (d) Drastic Product 17

Figure 2.6. The corresponding surfaces for S-norms (a) Minimum, (b) Alge-

braic Sum, (c) Bounded Sum, (d) Drastic Sum 19

Figure 2.7. The corresponding surfaces for parameterized conjunctions T(x,y)=xpyq

and T(x,y)=min(xp, yq) . 21

Figure 2.8. Center of area (Centroid) defuzzification method 24

Figure 2.9. Bisector of area defuzzification method 25

x

Figure 2.10. Smallest of Maximum (SOM) defuzzification method 25

Figure 2.11. Largest of Maximum (LOM) defuzzification method 26

Figure 2.12. Mean of Maximum (MOM) defuzzification method 26

Figure 2.13. Five defuzzification methods . 27

Figure 2.14. A Gaussian type-1 membership function (mf) 31

Figure 2.15. Diagram of Footprint of Uncertainty (FOU) 31

Figure 2.16. Interval Type-2 Gaussian membership function with uncertain stan-

dard deviation . 32

Figure 2.17. Block Diagram of Type-2 Fuzzy Logic Systems (T2FLSs) 33

Figure 2.18. Gaussian primary membership function with uncertain standard

deviation . 35

Figure 2.19. Gaussian primary membership function with uncertain mean . . . 36

Figure 5.1. The sinc function that has global maximum at x1 = 3.0, x2 = 3.0 . 50

Figure 5.2. The membership functions that carry the expert knowledge 52

Figure 5.3. The result of approximating two input sinc function by using pa-

rameterized conjunction . 53

Figure 5.4. The Initial membership functions before tuning CFSs 53

Figure 5.5. The membership functions after tuning CFSs 54

xi

Figure 5.6. The result of approximating two input sinc function by using CFSs 54

Figure 5.7. The Initial membership functions before tuning CFSs with param-

eterized conjunctions . 55

Figure 5.8. The membership functions after tuning CFSs with parameterized

conjunctions . 56

Figure 5.9. The result of approximating two input sinc function by using CFSs

with parameterized conjunctions 56

Figure 5.10. Type-1 membership functions . 57

Figure 5.11. Initial interval type-2 Gaussian membership functions with uncer-

tain standard deviation . 57

Figure 5.12. The interval type-2 gaussian membership functions with uncertain

deviation after tuning with 0.40 uncertainty bound 59

Figure 5.13. The result of approximating two input sinc function by using IT2

TSK Unormalized Fuzzy Logic . 59

xii

LIST OF TABLES

Table 6.1. Comparison of the Four Methods 60

xiii

LIST OF SYMBOLS/ABBREVIATIONS

A Fuzzy set A

Ã Type-2 fuzzy set

ain Coefficients of the zi polynomial

α The maximum value of the membership function of the inter-

section of two adjacent membership functions

α∗ The threshold value for the intersection of two adjacent mem-

bership functions

β The minimum value of the membership function of the union

of fuzzy intervals

c Center of Gaussian membership function

Ci Consequent type-1 fuzzy set

dk Search direction

C̃i Consequent type-2 fuzzy set

Fobj Objective function

H Positive definite symmetric matrice

L(x, λ) Lagrangian function

M Number of rules

µ Membership function

µ Lower membership function

µ Upper membership function

µ(z) Aggregated output

nm Number of membership functions

N Number of values that are calculated for the function approx-

imation

oi The result of ith IF-THEN rule

pin The parameter of the G-conjunction operator

Ψ(x) Merit function

Ri ith rule

ri Penalty parameter

S S-norm

xiv

Sc Maximum s-norm operator

Sp Algebraic sum

Sb Bounded sum

Sd Drastic sum

σ Width of the Gaussian membership function

σl Sigma value for lower membership function

σu Sigma value for upper membership function

T T-norm

Tc Minimum t-norm operator

Tp Algebraic product

Tb Bounded product

Td Drastic Product

ωi Upper bound of firing strength for ith IF-THEN rule

ωi Lower bound of firing strength for ith IF-THEN rule

ωi Firing strength of the ith rule

Ωi Interval of firing strength of the ith rule

x The elements of X

X Universe of discourse

xleft The left most of the input space

xright The right most of the input space

zi Output of IF-THEN rule in Sugeno model

z Actual output of the system

zo Result of defuzzification, crisp value

Zi Output of IF-THEN rule in Mamdani model

ZCOS Center of sets type-reduction

zr Maximum value of z

zl Minimum value of z

BFGS Broyden-Fletcher-Goldfarb-Shanno

BMFSA Biomedical Fuzzy Systems Association

CFSs Constrained Fuzzy Sets

xv

CWW Computing with Words

EC Evolutionary Computation

FIS Fuzzy Inference System

FL Fuzzy Logic

FLC Fuzzy Logic Controller

FLSs Fuzzy Logic Systems

FLSI Fuzzy Logic Systems Institute Iizuka

FOU Footprint of Uncertainty

FS Fuzzy Set

IFSA International Fuzzy Systems Association

IT2FLSs Interval Type-2 Fuzzy Logic Systems

IT2 TSK Interval Type-2 Takagi Sugeno Kang

KKT Karush-Kuhn-Tucker

LOM Largest of Maximum

LIFE Laboratory for International Fuzzy Engineering Research

mf membership function

mfs membership functions

ML Machine Learning

NNs Neural Networks

PR Probabilistic Reasoning

QR Quadratic Programming

RMSE Root Mean Square Error

SCEI Science Citation Expanded Index

SOFT Japan Society for Fuzzy Theory and Systems

SOM Smallest of Maximum

SQP Sequential Quadratic Programming

T2FLS Type-2 Fuzzy Logic Systems

TSK Takagi Sugeno Kang

1

1. INTRODUCTION

Conventional computing, which is known as hard computing, in science is based

on precise, rigorous, and quantitative analytical models. The precision and certainty

in the conventional computing lead to computational burden [1]. Moreover, in many

real world applications, most systems encounter many uncertainties and imprecise in-

formation due to the dynamical external environment and the inner uncertainties of

the systems. Soft computing (SC) tries to imitate human mind and is able to take into

consideration these uncertainties and imprecise information. The main methodologies

used in soft computing are:

- Fuzzy Logic (FL)

- Neural Networks (NNs)

- Probabilistic Reasoning (PR)

- Evolutionary Computation (EC)

- Machine Learning (ML)

These methods are complementary rather than competitive and can be used to-

gether to achieve better results [1]. One of the fundamental constituents of soft com-

puting is fuzzy logic and is the focus of this thesis.

1.1. Historical Review of Fuzzy Logic

Fuzzy logic (FL) was introduced to the scientific arena in 1965 by Prof. Lotfi A.

Zadeh, who is a professor of computer science at the University of California, Berkeley,

and the first industrial applications appeared in 1970s. The historical progress of the

traditional fuzzy logic is given below following the documentation of fuzzyTECH R©

5.3 user’s manual [2]. One of the early applications of Fuzzy Logic Controller (FLC)

was developed by Ebrahim Mamdani in England for controlling a steam engine. In

Germany, Hans Jürgen Zimmermann applied FL to decision support systems. Another

important milestone is the use of FL for cement kiln control in 1975 in Denmark.

2

These successful applications in Europe drew the interest of Japanese scientists in

the beginning of 1980s. One of the early applications in Japan was on a water treatment

plant, realized by Michio Sugeno in 1983. In 1987, fuzzy logic control was also applied

to Sendai railways. After these applications FL became prevalent in Japan, and used

in many industrial and consumer products, such as washing machines, cameras, etc.

Because of the technological advantages and the establishment of many companies,

quite a number of fuzzy societies have been founded in Japan. These include:

- International Fuzzy Systems Association (IFSA)

- Japan Society for Fuzzy Theory and Systems (SOFT)

- Biomedical Fuzzy Systems Association (BMFSA)

- Laboratory for International Fuzzy Engineering Research (LIFE)

- Fuzzy Logic Systems Institute Iizuka (FLSI)

- Center for Promotion of Fuzzy Logic at TITech.

The rapid rise of FL in Japan also influenced Europe and a great number of in-

dustrial applications of FL started to appear. About the same time, US also responded

to the competition between Japan and Europe, and FL was used in new areas, such

as decision support systems, hard disk controllers, memory cache, echo cancellation,

network routing, and speech recognition.

Traditional FLCs have widely been used in many control applications with great

success for more than three decades. In real life applications, systems are confronted

with many uncertainties and imprecise information due to the inner and outer dynam-

ics of the systems, such as highly nonlinear systems, incomplete sensory information

and noise from external environment. To overcome these uncertainties, Fuzzy Logic

Systems (FLSs) work collectively with some optimization techniques that enable the

tuning of the system to achieve the desired performance.

Several approaches are proposed in the literature to this end [3], [4]. However,

when a system is affected by both inner and outer uncertainties, the traditional type-1

fuzzy logic systems may become inadequate, and the type of optimization that is done

3

becomes irrelevant. To obtain the desired performance and come up with a minimum

error response, some other approaches should be sought. This thesis has the goal of

comparing the performance of four different approaches to fuzzy modeling, namely the

traditional FLS with parameterized conjunctions, a novel concept named Constrained

Fuzzy Sets (CFSs), CFSs with parameterized conjunctions, and unnormalized interval

type-2 Takagi Sugeno Kang (IT2 TSK). The historical background of these methods

are briefly summarized.

A FS (Fuzzy Sets) has IF-THEN type of rules. During the optimization process,

both the antecedent and the consequent part of the rules can be tuned. If the linguistic

terms play a major role in the design of fuzzy controller, the tuning of the member-

ship functions may not be desirable as the linguistic interpretation can be lost due

to the membership functions moving out of the domain or having large intersections

with each other. In applications where the interpretation of the linguistic variable, the

expert knowledge, and the rule base are important, the membership functions should

therefore not be modified, at least not drastically. Therefore, it is preferable to use the

G-conjunction operators. Although many parametric G-conjunction operators have

been proposed in the literature, the work reported in [5] and [6] is especially inter-

esting because the operators proposed therein are very simple, due to the fact that

they are not required to have the commutativity and associativity properties. In this

thesis, Constrained Fuzzy Sets (CFSs) and CFSs with parameterized conjunctions are

proposed as other approaches alternative to traditional fuzzy logic.

Another approach alternative to traditional fuzzy logic is type-2 fuzzy logic. In

literature, type-2 fuzzy logic was first proposed by Prof. L. A. Zadeh in 1975 as an

extension of type-1 fuzzy sets, and the basic mathematical and theoretical foundations

were established by him [7]. One of the most important features of type-2 fuzzy sets is

the ability to incorporate uncertainties into the membership functions, and this feature

makes type-2 fuzzy sets preferable when there exist significant uncertainties.

The progress of type-2 fuzzy logic since 1975 is briefly summarized below and

prepared by the help of the report “Type-2 Fuzzy Logic: A Historical View” published

4

in 2007 [8].

The emergence of fuzzy set theory goes back to the years 1975-1981. Some notable

works are those carried out by Mizumoto and Tanaka [9], [10] and Dubois and Prade

[11] such as on logical connectives (AND and OR).

By the mid-1980s, type-2 interval fuzzy sets started to be developed by scientists,

Gorzalczany [12], Turksen [13], Schwartz [14] and Klir and Folger [15]. Interval-valued

fuzzy sets were first evolved by Gorzalczany [12], and the figure of these fuzzy sets give

the impression of FOU (Footprint of Uncertainty), which are used today. Bustince’s

[16] and Liang and Mendel’s [17] studies about approximate reasoning gave analogous

outcomes. Turksen has significant studies about the logical connectives that are used

for type-1 fuzzy sets, which were extended to type-2 interval fuzzy sets.

Karnik and Mendel have studies that constitute the skeleton of the type-2 interval

fuzzy sets. In [18], [19], and [20] they developed type-reduction method for type-

2 fuzzy sets. This means that from that time the output of the type-2 fuzzy sets

can be calculated. Furthermore, they completed the type-2 fuzzy logic mathematical

algorithm [18], [20] which enabled the researches to apply type-2 fuzzy logic and the

first technological applications were seen in [21], [22], and [23].

In the study of Prof. L. A. Zadeh [24], fuzzy logic is defined as computing with

words (CWW). In addition, Mendel [25], [26] and Turksen [27] use type-2 fuzzy logic

for CWW.

Another significant establishment is the Representation Theorem by Mendel and

John [28] that gives the ability to use type-1 fuzzy arithmetic for the calculations

in type-2 fuzzy logic. However, the computational burden of type-2 fuzzy logic was

still a problem. Karnik and Mendel developed an iterative algorithm [20] and Wu

and Mendel built minimax uncertainty bounds [29], [30] to reduce the computational

burden of type-2 interval fuzzy sets. After this significant step, the applications of

type-2 fuzzy logic have rapidly increased.

5

The number of publications from 1988 to today reported at

http://www.type2fuzzylogic.org/publications/statistics.php can be seen in Figure 1.1.

The numbers include all types of publications.

Figure 1.1. Number of publications in each year

A search in Web of Science done by entering “type-2 fuzzy” under the general

search tab results in Figures 1.2 and 1.3. The number of publications those in journals

cited by SCIE (Science Citation Index Expanded).

Most of the applications in this topic are about in the area of control engineering

and medical science. The milestones of the control applications are: Plant Control with

type-2 interval fuzzy sets by Melin and Castillo [31], type-2 interval fuzzy logic con-

troller gives better results than type-1 under high uncertainties by Hagras [32], control

of complex multi-variable liquid level process with type-2 interval fuzzy controller by

Wu and Tan [33], the control of nonautonomous robots in a football game with type-2

interval fuzzy logic controller by Figueroa et al [34].

6

Figure 1.2. Citations in each year

Figure 1.3. Published items in each year

1.2. The Aim of This Study

As it is mentioned earlier, traditional fuzzy logic is not efficient in many applica-

tions to problems containing great amount of uncertainty.

7

The aim of this thesis is a comparative study of fuzzy modelling methods that

use different types of fuzzy sets and different methods of fuzzy system optimization.

Based on such study, it is proposed to develop and improve alternative methods to

traditional fuzzy logic and make these methods preferable in applications where the

systems have great amount of uncertainty. The applied methods are:

1. Parameterized Conjunctions

2. Constrained Fuzzy Sets

3. Constrained Fuzzy Sets with Parameterized Conjunctions

4. Unnormalized Interval Type-2 TSK Fuzzy Logic Systems

These four methods are studied and applied into a nonlinear function approximation

and performances are compared.

1.3. The Organization of the Thesis

In chapter one, the historical review of type-1 fuzzy logic, parameterized conjunc-

tions, and type-2 fuzzy logic are given. In sequence, the aim of the project and the

organization of the thesis are briefly presented.

In chapter two, the mathematical and theoretical backgrounds of fuzzy meth-

ods are described in detail. First, type-1 fuzzy logic is described and its usage with

the simplest parameterized G-conjunction operators is explained. Second, constrained

fuzzy sets are defined and a few examples are given. Then, constrained fuzzy sets

with parameterized conjunctions are proposed. Lastly, interval type-2 fuzzy logic and

unnormalized interval type-2 TSK fuzzy logic systems are given.

In the third chapter, the optimization method being used is defined. The appli-

cations are realized by using the optimization toolbox in MATLAB R©.

In the fourth chapter the observed fuzzy relations between CFSs and interval

type-2 fuzzy sets are explained. In addition, the advantages and disadvantages of

8

tuning membership functions are discussed.

In chapter 5, the performances of these four methods are compared in a nonlinear

function approximation. This nonlinear function is a sinc function, which has a global

maximum and several local maximums.

Consequently, the outcomes of the applications are analyzed and further progress

in this area is discussed.

9

2. THE THEORETICAL AND MATHEMATICAL

BACKGROUND OF FUZZY METHODS

As it was mentioned earlier traditional fuzzy logic is not sufficient for highly

nonlinear systems and for the situations where uncertainties and imprecise information

appear. In this work, alternative methods are examined and developed. The theoretical

and mathematical background of these methods are given in the sections below.

2.1. Fuzzy Modeling with Parameterized Conjunctions

The most important feature of fuzzy logic is the ability to define human thinking

and interpretation about the system by using various kinds of (e.g., Gaussian, Gbell,

Triangular, Trapezoidal) membership functions and IF-THEN type of rules. In fuzzy

models, in which the human expert knowledge is the key element of the design of the

fuzzy model, tuning the membership functions can result in the loss or distortion of

the expert knowledge. In such applications, another type of adaptation can be more

appropriate than the adaptation of the membership functions [5], [6].

First of all, when we consider the traditional fuzzy logic systems, there are four

main components, which can be described as:

- Fuzzification

- Fuzzy Rule-Base

- Fuzzy Inference Engine

- Defuzzification

The main structure of type-1 fuzzy logic systems is shown in Figure 2.1.

10

Figure 2.1. Type-1 Fuzzy Logic System (FLS)

2.1.1. Fuzzification

Initially, the crisp inputs are fuzzified by using membership functions. A fuzzy

set A is defined in universe of discourse X and is indicated by a membership grade,

which takes values in the closed interval 0 and 1 ([0, 1]) [3].

A = {(x, µA(x))|x ∈ X} (2.1)

where x are the elements of X, and µA(x) is called the membership function, and

indicates the degree of belonging . Every element of X maps to a membership grade

taking the values between 0 and 1. The fuzzy sets can be defined by using linguistic

labels such as; SMALL, LARGE, MODERATE, YOUNG, SLOW, FAST, etc. These

fuzzy sets are specified by membership functions, so that mathematical computations

can be performed. There are several types of membership functions. For instance,

gaussian, gbell, triangular, trapezoidal, etc.

In the following several types of membership functions are shown [3].

• A Gaussian Membership Function

A Gaussian membership function (mf) is defined as follows:

11

Gaussian mf(x, [sigma, center]) = e−
1
2(x−cσ)

2

(2.2)

where c is the center and σ is the width of the membership function. x is the

input of the system.

The example of Gaussian mf is shown in Figure 2.2.

Figure 2.2. Gaussian membership functions with linguistic values “Very Small”,

“Small”, “Medium”, “Large”, “Very Large”

• A Triangle Membership Function

Triangle mf(x, [a, b, c]) =

0, x ≤ a.

x−a
b−a , a ≤ x ≤ b.

c−x
c−b , b ≤ x ≤ c.

0, c ≤ x.

(2.3)

where a, b, and c define the corners of the membership function and a ≤ b ≤ c.

12

The example of triangle mf is shown in Figure 2.3.

Figure 2.3. Triangular membership functions with linguistic values “Small”, “Large”

• A Gbell Membership Function

Gbell mf(x, [a, b, c]) =
1

1 +

∣∣∣∣∣x−ca
∣∣∣∣∣
2b

(2.4)

where a determines the width, b determines the slope and c determines the center

of the membership function.

The example of Gbell mf is shown in Figure 2.4.

2.1.2. Fuzzy Rule-Base and Fuzzy Inference System (FIS)

Fuzzy Inference Systems are prevalently applied in control engineering and in

multidisciplinary areas. FIS involves nonlinear mapping from input data to output

data and this nonlinear mapping is performed by using fuzzy if-then rules. Fuzzy Logic

Systems are universal approximators and this property enables us to build optimal

13

Figure 2.4. Gbell membership functions with linguistic values “Small”, “Large”

fuzzy models [6]. Traditionally, to obtain an optimal fuzzy model, the membership

function parameters are tuned.

The IF part of the rule is called antecedent or premise, and the THEN part of the

rule is called consequent or conclusion part of the rule. The examples of fuzzy if-then

rules that are used in daily life are as follows;

IF temperature is HIGH and humidity is HIGH, THEN fan works fast.

IF the soil is DRY and the temperature is HIGH, THEN open the valve ROUNDLY.

IF X is POSITIVE LARGE and Y is POSITIVE LARGE, THEN Z is POSITIVE

LARGE.

The fuzzy models differ by using different consequent membership functions, ag-

gregation and defuzzification methods [6]. There are various types of fuzzy models;

14

but the most commonly used ones are:

- MAMDANI MODEL

- SUGENO MODEL (Takagi, Sugeno, Kang (TSK))

Mamdani and Sugeno model are the same in the fuzzification block and in the an-

tecedent part of the rules; they only differ in the consequent part of the if-then rules.

Mamdani Model:

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN Zi = Ci

Sugeno Model:

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where i (i = 1,2,...,M) indicates the number of rule. In these rule structures, Ain and

Ci are the antecedent and consequent fuzzy sets, respectively. Zi is the output of the

Mamdani model and is a fuzzy set. zi is the output of the Sugeno model, which is a

first order polynomial at the consequent part of the rule structure. Xn is the input

variable and n is the number of input variable.

As it is seen, both in Mamdani and Sugeno model the antecedent parts of the

rules are the same, which contains antecedent fuzzy sets Ain’s, and inputs Xn’s. They

differ in the consequent part of the rules. In Mamdani Model, the consequent part is

a fuzzy set, Ci. On the other hand, in Sugeno Model, the consequent is a real valued

function zi = ainxn + ain−1xn−1 + ...+ ai0. Depending on the degree of the polynomial,

the Sugeno model is called as zero order Sugeno model, first order Sugeno model, and

15

so on [6], [3]. In this work, first order type-1 Takagi Sugeno Kang (TSK) fuzzy logic

systems (FLSs) are considered.

The antecedent part of the rules are combined with the fuzzy operators such as

AND, OR, NOT. These operators determine the firing strength (ωi) of the rules.

Now let’s consider the traditional type-1 fuzzy logic operators and assume Ain

are fuzzy sets where i indicates the number of rules and n indicates the number of

antecedent fuzzy sets.

2.1.2.1. Intersection of Fuzzy Sets (Conjunction Operators). The intersection is called

as AND operator and is basically used for finding the minimum of the antecedent mem-

bership functions [3]:

ωi = min(µAi1(x1), µAi2(x2)) (2.5)

Generally, instead of minimum, one can use any t-norm. T-norm is defined as a

function T: [0,1] x [0,1] → [0,1] satisfying the four conditions monotonicity, commuta-

tivity, associativity, and boundary [3], [6]:

Monotonicity:

T (x, y) ≤ T (u, v) if x ≤ u and y ≤ v (2.6)

Commutativity:

T (x, y) = T (y, x) (2.7)

16

Associativity:

T (x, T (y, z)) = T (T (x, y), z) (2.8)

Boundary:

T (0, 0) = 0,

T (1, x) = T (x, 1) = x (2.9)

In literature, the most commonly used t-norm operations are minimum, alge-

braic product, bounded product, and drastic product that are calculated as follows,

respectively [3], [6]:

Tc(x, y) = min(x, y) (2.10)

Tp(x, y) = xy (2.11)

Tb(x, y) = max{0, (x+ y − 1)} (2.12)

Td(x, y) =

x, if y = 1

y, if x = 1

0, if x, y < 1

(2.13)

The corresponding surfaces of t-norms are given in Figure 2.5 where 0 ≤ x, y ≤ 1 [3].

17

Figure 2.5. The corresponding surfaces of t-norms (a) Minimum, (b) Algebraic

Product, (c) Bounded Product, (d) Drastic Product

2.1.2.2. Union of Fuzzy Sets (Disjunction). Union (disjunction) of the fuzzy sets is

defined by OR operator and is calculated usually by finding the maximum of the

antecedent membership functions [3]:

ωi = max(µAi1(x1), µAi2(x2)) (2.14)

Generally, instead of maximum, one can use any s-norm. S-norm is defined as a

function S:[0,1] x [0,1] → [0,1] satisfying the four conditions monotonicity, commuta-

tivity, associativity, and boundary [3], [6]:

Monotonicity:

S(x, y) ≤ S(u, v) if x ≤ u and y ≤ v. (2.15)

18

Commutativity:

S(x, y) = S(y, x) (2.16)

Associativity:

S(x, S(y, z)) = S(S(x, y), z) (2.17)

Boundary:

S(1, 1) = 1,

S(x, 0) = S(0, x) = x (2.18)

In literature, the most commonly used S-norms are maximum, algebraic sum,

bounded sum, and drastic sum that are respectively calculated as follows [3]:

Sc(x, y) = max(x, y) (2.19)

Sp(x, y) = x+ y − xy (2.20)

Sb(x, y) = min{1, (x+ y)} (2.21)

Sd(x, y) =

x, if y = 0

y, if x = 0

1, if x, y > 0

(2.22)

19

The corresponding surfaces of S-norms are given in Figure 2.6 [3].

Figure 2.6. The corresponding surfaces for S-norms (a) Minimum, (b) Algebraic Sum,

(c) Bounded Sum, (d) Drastic Sum

2.1.2.3. NOT (Complement) Operator. NOT operator is basically used for taking the

complement of the fuzzy set A [3]:

µA(x) = 1− µA(x) (2.23)

2.1.2.4. Parameterized Conjunctions. In type-1 fuzzy logic, the conventional approach

is to tune the parameters of membership functions to obtain minimum error response.

This kind of adaptation results in the loss or distortion of the expert knowledge about

the system and is undesirable in applications where the expert knowledge is vital.

Therefore, parametric conjunction or disjunction operators are considered to be used

as fuzzy operators, thus the parameters of the operators can be tuned with regarding

the expert knowledge of the system. However, these operations are complicated to be

20

realized in hardware implementations and in optimization [6]. In [5], [6] the authors

proposed to tune some simple generalized parametric conjunction operations to obtain

an optimal fuzzy model. A generalized conjuction (G-conjunction) operation is defined

in [6] as a function T: [0,1] x [0,1]→ [0,1] satisfying the properties of binary conjunction

operation:

T (0, 0) = T (0, 1) = T (1, 0) = 0,

T (1, 1) = 0 (2.24)

and monotonicity condition on [0,1]:

T (x, y) ≤ T (u, v) if x ≤ u and y ≤ v. (2.25)

It is to be noted that such operators are not required to have the associativity and the

commutativity properties and therefore some very simple parameterized operations can

be derived. The simplest G-conjunction operations proposed in [6] are the following:

T (x, y) = xpyq (2.26)

T (x, y) = min(xp, yq) (2.27)

where p, q ≥ 0. The corresponding surfaces for simplest G-conjunction operators are

given in Figure 2.7 [6].

In this study, for the example of function approximation by tuning the parameters

of operators, first order type-1 Takagi Sugeno Kang (TSK) fuzzy logic systems (FLSs)

are considered. The IF-THEN rule of the TSK FLS is described as:

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

21

Figure 2.7. The corresponding surfaces for parameterized conjunctions T(x,y)=xpyq

and T(x,y)=min(xp, yq)

where i (i = 1, 2,...,M) indicates the number of rules and n is the number of the

antecedent parameters. In this rule structure, Xn’s (i=1,...,n) are the inputs of the

system, Ain’s (i=1,...,n) are the fuzzy sets, and zi is the output of the each rule. ain’s

are the coefficients of the consequent part of the rule, which is a first order polynomial.

The firing strengths of the rules are calculated by using one of the G-conjunction

operations in Equation (2.26) and (2.27). In the simulations, the first G- conjunction

operator is used as AND operator and defined as follows:

ωi = T (µAi1(x1), · · · , µAin(xn))

= µAi1(x1)
pi1 · · ·µAin(xn)pin (2.28)

where i (i = 1, 2, ..., M) indicates the number of rules. ωi is the firing strength of each

rule. µAin(xn) is the membership function value of the fuzzy set Ain and pin is the

parameter of the G-conjunction operator.

22

After computing the firing strengths (the degree specified by antecedent member-

ship functions), the implication method is applied to find out the result of each rule.

The most commonly used implication methods are product and minimum operations.

product → oi = ωizi (2.29)

minimum → oi = min(ωi, zi) (2.30)

In this study, to find the result of each rule, the product implication method, which

involves multiplying the firing strength with the consequent part of the rules, is used

in this application.

oi = ωizi (2.31)

2.1.3. Weighted Average Calculation in TSK Model

In TSK FLS, there is no need to defuzzify the results of the rules; since they are

already a crisp output [3]. Their weighted average is calculated as:

z =

∑M
i=1 ω

izi∑M
i=1 ω

i
(2.32)

M is the number of rules (i = 1, 2, ..., M) and z is the actual output of the system.

2.1.4. Mamdani Fuzzy Inference and Defuzzification Methods

As it was stated earlier, the antecedent parts of the rules are same for both

Mamdani and Sugeno model. However, in Mamdani model “compositional rule of

inference” is carried out, and can be defined as max-min composition of fuzzy sets [3].

If Ain are the antecedent membership functions and Ci is the consequent membership

23

function, the max-min composition is calculated as:

max-min composition = max(min(Ai1, ..., Ain, Ci)) (2.33)

In addition, compositional rule of inference can be used as the combination of max and

product, for example, t-norm and t-conorm operators [3].

After finding each result of the rule, these results are aggregated by using one of

the aggregation methods; such as maximum, sum, probabilistic or [35].

Each result of the rule that is calculated by implication method is a fuzzy set.

Defuzzification method converts the fuzzy sets into a crisp value. First of all, the qual-

ified fuzzy sets are aggregated, and then by using appropriate defuzzification method

the crisp output is derived [3].

In Mamdani model, there are five types of defuzzification methods;

1. Center of Area

2. Bisector of Area

3. Small of Maximum

4. Middle of Maximum

5. Large of Maximum

2.1.4.1. Center of Area (Centroid) Defuzzification Method. Center of area method is

the most commonly used defuzzification method in Mamdani models. In this method,

the center of gravitiy of the aggregated output membership function is found and is

calculated as follows [3]:

zo =

∫
z
µ(z)zdz∫
z
µ(z)dz

(2.34)

24

where zo is the centroid of the area, a crisp value, z is the output variable, and µ(z)

indicates the aggregated output of the membership functions. An example of centroid

method is shown in Figure 2.8.

Figure 2.8. Center of area (Centroid) defuzzification method

2.1.4.2. Bisector of Area Defuzzification Method. In bisector of area method the ver-

tical line divides the aggregated region in two equal areas, and zo satisfies the following

equation [3]:

∫ zo

α

µ(z)dz =

∫ β

zo

µ(z)dz (2.35)

where α = min{z|z ∈ Z} and β = max{z|z ∈ Z}. An example of bisector of area

method is shown in Figure 2.9.

2.1.4.3. Smallest of Maximum (SOM) Defuzzification Method. SOM, zo, is the small-

est value where value z takes on maximum [3]. An example of SOM defuzzification

method is shown in Figure 2.10.

25

Figure 2.9. Bisector of area defuzzification method

Figure 2.10. Smallest of Maximum (SOM) defuzzification method

2.1.4.4. Largest of Maximum (LOM) Defuzzification Method. The largest of the max-

imum, zo, is the largest corresponding value to the largest z value [3]. An example of

LOM defuzzification method is given in Figure 2.11.

26

Figure 2.11. Largest of Maximum (LOM) defuzzification method

Figure 2.12. Mean of Maximum (MOM) defuzzification method

2.1.4.5. Mean of Maximum (MOM) Defuzzification Method. Mean of maximum is the

mean value of the SOM and LOM [3]. An example of mean of maximum method is

shown in Figure 2.12.

27

For better understanding, the defuzzification methods described above are shown

in Figure 2.13.

Figure 2.13. Five defuzzification methods

2.2. Constrained Fuzzy Sets (CFSs)

The traditional type-1 fuzzy sets can turn out to be insufficient in handling the

uncertainties that are caused by the external environment, imprecise sensory informa-

tion, or highly nonlinear systems. In order to reach the desired performance levels, one

common approach used is the tuning of the membership functions. However, as stated

earlier, this may result in drastic changes in the membership functions and can prevent

some constraints being used, reflecting the linguistic interpretation of these member-

ship functions by the expert. The fuzzy sets that have these kinds of constraints are

called Constrained Fuzzy Sets (CFSs) [36]. Making use of the properties of member-

ship functions various kinds of constraints can be defined. Some of the membership

function properties are:

1. The membership functions are distributed on the input domain.

28

2. The α− β fuzzy partition is defined as follows [36]:

sup
j 6=k

(sup
x∈X

((Aj
⋂

Ak)(x))) = α (2.36)

and

inf
x∈X

((
m⋃
k=1

Ak)(x)) = β (2.37)

where Aj < Ak. α is the maximum value of the membership function of the

intersection of two adjacent membership functions, and β is the minimum value

of the membership function of the union of fuzzy intervals (0 ≤ α < 1 and 0 <

β ≤ 1). α∗ is a threshold value for the intersection of two adjacent membership

functions. α ≤ α∗, the intersection of adjacent membership functions (mfs) should

not exceed the threshold value where α∗ ∈ [0, 1] and α∗ < 1. β ≥ β∗, the union

of mfs should cover the input domain at least on level β∗, where β∗ ∈ [0, 1] and

β∗ > 0 [36].

3. The membership functions are normal, continuous, convex, and α-cuts are closed

crisp intervals [36].

In real life, systems are usually encountered with disturbances and noise resulting

from the external environment. In this study, to represent the uncertainties in the

expert knowledge of the systems, the interval type constrained fuzzy sets will be used.

In this study, during the simulation studies with CFSs, a first order type-1 TSK

FLS and the same rule structure as the previous method is used. The firing strengths

of the each rule are calculated by means of the product t-norm as follows:

ωi = T (µAi1(x1), · · · , µAin(xn))

= µAi1(x1) · · ·µAin(xn) (2.38)

29

µAin(xn) is the membership function value of the fuzzy set Ain. The implication method

used and the actual output of the system is calculated as before, i.e. as in (2.31) and

(2.32) respectively.

2.3. Constrained Fuzzy Sets (CFSs) with Parameterized Conjunctions

In this approach, in addition to the use of Constrained Fuzzy Sets, the G-

conjunction operators are used to calculate the firing strength of the fuzzy model.

The rule structure and the algorithm are the same as the fuzzy modeling with param-

eterized G-conjunctions; but the fundamental difference is that both the membership

function parameters and the parameters of the G-conjunction operators are tuned. The

membership functions of the system are adjusted within the bounds of the constraints;

so that the expert knowledge about the system is not lost. There are various design

approaches for CFSs with parameterized conjunctions:

1. First, tune the membership functions and then tune the parameters of G- con-

junction operators.

2. Tune the membership functions and parameters of G conjunction operators si-

multaneously.

3. In each tuning step, tune the membership functions and then tune the parameters

of G-conjunction operators.

In this study, the second approach is used. The design parameters of the fuzzy

model are tuned together by using one of the nonlinear programming methods.

2.4. Interval Type-2 Fuzzy Logic Systems (IT2FLSs)

Traditional type-1 fuzzy logic controllers have been widely used in many fields for

more than thirty years. However, in many real time applications, systems encounter

large degrees of uncertainties. Traditional type-1 fuzzy sets lack the ability to define

these uncertainties in the membership functions since traditional type-1 fuzzy mem-

bership functions are precise. Scientists have started to seek a new approach for fuzzy

30

systems to handle such uncertainties. In 1975, type-2 fuzzy logic was first proposed by

Prof. L. A. Zadeh as an extension of type-1 fuzzy sets, and the basic mathematical

and theoretical foundations were established by him. One of the most important fea-

tures of type-2 fuzzy sets is the ability to incorporate uncertainties in the membership

functions, and this feature makes type-2 fuzzy sets preferable when there exists signif-

icant uncertainties. The uncertainties that are faced in real world applications could

be listed as follows [17], [37]:

• The meaning of the words that are used in antecedent and consequent part of the

rules can mean different things to different people.

• The input measurements of the system has uncertainties according to the envi-

ronmental conditions (such as wind, rain, humidity etc.), and sensors that are

effected by high noise levels from various sources.

• Using noisy training data stimulates uncertainties.

• Uncertainties in consequents of the system may occur due to the change of actu-

ator characteristics.

• The uncertainties in antecedent and consequent arise due to the changing oper-

ation conditions.

Type-2 fuzzy logic controllers are able to overcome these uncertainties; because type-2

fuzzy logic sets have a fuzzy-fuzzy relation in membership functions. If the uncertainties

are ignored, the type-2 fuzzy sets will be transformed to type-1 fuzzy sets [38].

A typical example of type-1 fuzzy sets is seen in Figure 2.14. A precise value

corresponds to an input value. The uncertainties that the systems encounter, are not

taken into consideration, which is the reason that the type-1 fuzzy sets are not good

enough in highly nonlinear systems and real life applications. As it is seen in Figure

2.15, when the type-1 membership functions are blurred to the left and right, the FOU

(Footprint of Uncertainty), 2-D diagram, is obtained. It is clear that a closed interval

value corresponds to an input value, and furthermore, this interval has a secondary

membership grade, which constitutes the third dimension of the type-2 membership

functions. For interval type-2 membership functions, this value is either zero or one,

31

Figure 2.14. A Gaussian type-1 membership function (mf)

Figure 2.15. Diagram of Footprint of Uncertainty (FOU)

and its example is seen in Figure 2.16 [17].

In this thesis, interval type-2 fuzzy sets are used because of its simplicity and

ease of use.

32

Figure 2.16. Interval Type-2 Gaussian membership function with uncertain standard

deviation

A type-2 fuzzy set and an interval type-2 fuzzy set are defined as follows, respec-

tively [17], [28]:

Ã =

∫
x∈X

∫
u∈Jx⊆[0,1]

µÃ(x, u)/(x, u) (2.39)

The secondary membership grade for interval type-2 membership functions is

either zero or one, and an interval type-2 fuzzy set is defined as follows:

Ã =

∫
x∈X

∫
u∈Jx⊆[0,1]

1/(x, u) (2.40)

x is called the primary variable. X is the input domain. u is the secondary variable. Ã

is the type-2 fuzzy set.

Jx are the primary membership functions. The union of all primary membership

functions constitutes the footprint of uncertainty (FOU) [17], [28]. This region is

33

bounded with the lower and upper membership functions. These membership functions

are type-1, which makes the use of type-1 fuzzy arithmetic in calculations for type-2

fuzzy sets [38].

The structure of a type-2 fuzzy logic system (T2FLS) is shown in Figure 2.17.

Figure 2.17. Block Diagram of Type-2 Fuzzy Logic Systems (T2FLSs)

As it can be seen, the block diagram of T2FLS is similar to type-1 fuzzy logic

system. The main difference is in the last block. This block is composed of two steps:

type reduction and defuzzification. The main components of type-2 FLS are:

• Fuzzification

• Fuzzy Inference System and Rule Base

• Type-Reduction

• Defuzzification

These four main components are briefly described in the next subsection.

2.4.1. Fuzzification

First of all, the inputs are fuzzified in the fuzzification block. If a fuzzy logic

system contains even one type-2 fuzzy set, this system is called type-2 fuzzy logic

system. Some examples of interval type-2 fuzzy sets are given in the following.

34

2.4.1.1. Gaussian Primary Membership Function with Uncertain Standard Deviation.

A Gaussian primary membership function with uncertain standard deviation is spec-

ified by three parameters c, σu, σl where σu is the sigma value for upper membership

function, σl is the sigma value for lower membership function and c indicates the center

value. The mathematical representation is as follows [17]:

µÃin(x) = e−
1
2
(x−c
σ

)2 (2.41)

where σ ∈ [σl, σu]. i indicates the number of rules (i=1,...,M) and n is the number of

antecedents.

The upper membership is:

µÃin(x) = e−
1
2
(x−c
σu

)2 (2.42)

The lower membership function is:

µ
Ãin

(x) = e
− 1

2
(x−c
σl

)2
(2.43)

An example of Gaussian primary membership function with uncertain standard

deviation is indicated in Figure 2.18.

2.4.1.2. Gaussian Primary Membership Function with Uncertain Mean. A Gaussian

primary membership function with an uncertain mean is specified by three parameters

c1, c2, σ, where center of the membership function changes in the interval [c1, c2], and

σ is the standard deviation of the membership function. The mathematical represen-

35

Figure 2.18. Gaussian primary membership function with uncertain standard

deviation

tation is as follows [17]:

µÃin(x) = e−
1
2
(x−c
σ

)2 (2.44)

where c ∈ [c1, c2]. i indicates the number of rules (i=1,...,M) and n is the number of

antecedents.

The upper membership is:

µÃin(x) =

e−

1
2
(
x−c1
σ

)2 , x < c1

1, c1 ≤ x ≤ c2

e−
1
2
(
x−c2
σ

)2 , x > c2

(2.45)

36

The lower membership function is:

µ
Ãin

(x) =

 e−
1
2
(
x−c2
σ

)2 , x ≤ c1+c2
2

e−
1
2
(
x−c1
σ

)2 , x > c1+c2
2

(2.46)

An example Gaussian primary membership function with uncertain mean is

shown in Figure 2.19.

Figure 2.19. Gaussian primary membership function with uncertain mean

As it was mentioned earlier, due to the computational complexity in this work

interval singleton type-2 fuzzy sets are taken into consideration.

2.4.2. Fuzzy Inference Engine and Rule Base

The fuzzified inputs get into the fuzzy inference block, which works collectively

with the rule base of the FLS. The rule structure of type-2 fuzzy logic is as follows:

37

A General type-2 FLS:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN Zi = C̃i

A T2 TSK FLS:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

In this rule structure, i indicates the number of rules (i = 1, 2,...,M), Ain are antecedent

type-2 fuzzy sets and are indicated with tildes. Zi is output of the system for general

type-2 FLS and C̃i is the type-2 fuzzy set at the consequent part of the rule. zi is the

output of the T2 TSK FLS and is a polynomial. In literature, J. M. Mendel proposed

several kinds of type-2 TSK FLSs, and in this work unnormalized interval type-2 TSK

FLS is studied.

2.4.2.1. The Meet and Join Operators. The antecedent parts of the rules are com-

bined by using meet and join fuzzy operations which are recently defined for type-2

fuzzy sets in [17]. The join and meet operators are defined as:

ωi = µ
Ãi1

(x1)∗ · · · ∗µÃin(xn) (2.47)

ωi = µÃi1(x1)∗ · · · ∗µÃin(xn) (2.48)

In the case of join operation for interval singleton type-2 fuzzy sets “*” indicates

the maximum.

38

In the case of meet under product or minimum t-norm operation for interval

singleton type-2 fuzzy sets, the “*” indicates the minimum or product operation.

In this thesis, meet under product t-norm for interval singleton type-2 fuzzy sets

are applied in the simulations.

2.4.3. Type-Reduction

In type-1 fuzzy logic systems, the output of the system is a type-1 fuzzy set and

this fuzzy set is defuzzified to obtain crisp output by using one of the defuzzification

methods described in the previous section. On the other hand, in type-2 case, the

output is a type-2 fuzzy set. First of all, type-2 fuzzy set should be reduced to a type-1

fuzzy set. This procedure was developed by Karnik-Mendel and is called the “type-

reduction method”. This method is an extension of type-1 defuzzification methods.

There are several types of type-reduction methods such as; centroid, center of sets,...,

etc. The most commonly used type-reduction method is center of sets type-reduction

method and is described in the following [17]:

ZCOS(Z1, ..., ZM ,Ω1, ...,ΩM) = [zl, zr] =

∫
z1
· · ·
∫
zM

∫
ω1

· · ·
∫
ωM

1/

∑M
i=1 ω

izi∑M
i=1 ω

i
(2.49)

The result of the type-reduction procedure, ZCOS, equals to interval set, [zl, zr]. where

zi ∈ Zi = [zil , z
i
r] and ωi ∈ Ωi = [ωi, ωi].

z is calculated as follows:

z =

∑M
i=1 ω

izi∑M
i=1 ω

i
(2.50)

where for any z ∈ ZCOS.

39

The maximum value of z is zr and calculated as:

zr =

∑M
i=1 ω

i
rz
i
r∑M

i=1 ω
i
r

(2.51)

The minimum value of z is zl and calculated as:

zl =

∑M
i=1 ω

i
lz
i
l∑M

i=1 ω
i
l

(2.52)

The computational procedure of Karnik-Mendel is as follows [17]:

For the maximum value of z is:

1. reorder zir for i=1,...,M in ascending order.

2. zr is calculated by using Equation (2.51) and ωir = ωi+ωi

2
for i=1,...,M, and z

′
r = zr.

3. Find R (1 ≤ R ≤M − 1) such that zRr ≤ z
′
r ≤ zR+1

r

4. Find zr by using Equation (2.51) ωir = ωi for i ≤ R and ωir = ωi for i > R. Let

z
′′
r = zr.

5. If z
′′
r 6= z

′
r then go to step 6. If z

′′
r = z

′
r, then stop and set zr = z

′′
r .

6. z
′
r = z

′′
r , and go back to step 3.

For the minimum value of z is:

1. reorder zil for i=1,...,M in ascending order.

2. zl is calculated by using Equation (2.52) and ωil = ωi+ωi

2
for i=1,...,M and z

′

l = zl.

3. Find R (1 ≤ L ≤M − 1) such that zLl ≤ z
′

l ≤ zL+1
l

4. Find zl by using Equation (2.52) ωil = ωi for i ≤ L and ωil = ωi for i > L. Let

z
′′

l = zl.

5. If z
′′

l 6= z
′

l then go to step 6. If z
′′

l = z
′

l , then stop and set zl = z
′′

l .

6. z
′

l = z
′′

l , and go back to step 3.

40

2.4.4. Defuzzification

After the type-reduction procedure, the obtained result is an interval set [zl, zr].

This interval set is defuzzified by taking the weighted average and calculated in the

following [17]:

z =
zl + zr

2
(2.53)

2.4.5. Interval Type-2 TSK Fuzzy Logic Systems (FLSs)

There are two kinds of TSK FLSs in the interval type-2 fuzzy systems: Interval

TSK fuzzy logic systems and unnormalized interval type-2 fuzzy logic systems. Interval

type-2 TSK FLSs are divided into three models depending on the types of membership

functions on antecedent and consequent parts of the IF-THEN rules. In the next

subsection these models are briefly presented [39].

2.4.5.1. Model 1. In this model, interval type-2 fuzzy sets are used in the antecedent

part of the rules and type-1 fuzzy sets are used for the consequent part of the rules. An

example of first order interval type-2 TSK rule structure is shown for the first model

as follows [39]:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN Zi = Cinxn + Ci(n−1)xn−1 + ...+ Ci0

where Ãin is an interval type-2 fuzzy set, Cin is type-1 fuzzy set. Xn is the input and

Zi is the output of the system.

2.4.5.2. Model 2. In the second model, the antecedent part of the rule is interval type-

2 fuzzy set and consequent part of the rule is a first order polynomial [39]. The rule

41

structure is given in the following:

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

where zi is the output of the system and is a first order polynomial. ain are coefficients

of the polynomial. Xn is the input and Ãin are interval type-2 fuzzy sets.

2.4.5.3. Model 3. In this model, both antecedent and consequent part of the rules are

type-1 fuzzy sets. Here the assumption is that the fuzzy sets in the consequent part

of the rules carry the uncertainties, and they are fuzzy numbers [39]. An example rule

structure is given in the following:

Ri = IF X1 is Ai1 and ... and Xn is Ain,

THEN Zi = Cinxn + Ci(n−1)xn−1 + ...+ Ci0

where Ain are antecedent and Cin are consequent type-1 fuzzy sets. Xn is the input

and Zi is the output of the system.

2.4.6. Unnormalized Interval Type-2 TSK FLSs

For the unnormalized interval type-2 TSK fuzzy model, there is no need for type

reduction. The algorithm of this method is briefly given in the following:

The fourth modeling approach used in this thesis is the unnormalized interval

type-2 TSK fuzzy logic system. In this model the antecedent part of the rules are

interval type-2 fuzzy sets and consequent part of the rules are type-0 fuzzy (crisp) sets.

The ith rule structure for M rules is;

Ri = IF X1 is Ãi1 and ... and Xn is Ãin,

THEN zi = ainxn + ain−1xn−1 + ...+ ai0

42

The interval type-2 antecedent fuzzy sets are indicated with tildes. Consequent part

of the rule is a first order polynomial. This model is not the only model to realize an

interval type-2 TSK fuzzy logic system. In literature, J. M. Mendel has proposed other

interval Type-2 TSK models [39], which are briefly described in previous subsection.

Using unnormalized interval type-2 TSK reduces the computational complexity,

when compared to the other interval type-2 TSK fuzzy logic algorithms. The output

of the general unnormalized interval type-2 TSK fuzzy logic is [40]:

ZTSK,2(x) = [zl, zr] =

∫
z1∈[z1l ,z

1
r]

· · ·
∫
zM∈[zMl ,zMr]∫

ω1∈[ω1,ω1]

· · ·
∫
ωM∈[ωM ,ωM]

1/
M∑
i=1

ωizi (2.54)

As it is seen above, the result is an interval type-1 fuzzy set. The algorithm of the

unnormalized interval Type-2 TSK Fuzzy Logic is [40]:

• The firing strength of the each rule is calculated by using ”meet under the product

t-norm [4].” In the calculations of interval type-2 fuzzy sets, the upper and lower

membership functions are used and they are type-1 fuzzy sets. Thus, type-1 fuzzy

arithmetic can be used in the calculations of interval type-2 fuzzy sets. General

formulation of the meet of interval type-2 fuzzy sets is:

n∏
j=1

Aj = [ωi, ωi] (2.55)

where n indicates the antecedent number (j = 1, 2,..., n) and i indicates the rule

number. Aj is the interval type-1 fuzzy set [4]. The meet of interval type-2 fuzzy

sets under product t-norm is basically computed by using the lower membership

functions and upper membership functions. The lower and upper bounds of the

firing strength are calculated as follows:

ωi = µ
Ãi1

(x1) · · ·µÃin(xn) (2.56)

43

ωi = µÃi1(x1) · · ·µÃin(xn) (2.57)

• The output of each rule is an interval set [zr, zl]. The calculation of the minimum

value of z is based on multiplying the lower firing strength of each rule (ωi)

with the consequent of the first order polynomial. The maximum value of z

is calculated by multiplying the upper firing strength of each rule (ωi) by the

consequent of the first order polynomial.

The minimum value of the output is:

zl =
M∑
i=1

ωizi (2.58)

The maximum value of the output is:

zr =
M∑
i=1

ωizi (2.59)

zi = ainxn + ain−1xn−1 + ...+ ai0 (2.60)

3. The defuzzified output of the system is:

z =
zl + zr

2
(2.61)

44

3. OPTIMIZATION METHOD

In this study, the objective function is Root Mean Square Error (RMSE), and is

defined in the following:

Fobj =

√∑N
k=1(z

k
D − zk)2

N
(3.1)

where zkD is the desired output and zk is the actual output of the system (k=1,...,N). N

is the number of values that are used for the calculation of the function approximation.

The aim is to minimize an objective function based on the root mean square

error (RMSE), by using one of the nonlinear programming methods. The parameters,

which are used to calculate the actual output of the system, are adjusted to minimize

the objective function. The parameters to be tuned changes for each method and is

described in the following.

Optimization toolbox in MATLAB R© is very useful to implement optimization

methods. In MATLAB R© [41], there are three methods for nonlinear optimization

problem with constraints:

1. Trust-region

2. Active set sequential quadratic programming

3. Interior-point

3.1. Sequential Quadratic Programming (SQP)

In nonlinear programming, the most commonly used method is the second method,

Sequential Quadratic Programming (SQP). In nonlinear programming, Karush-Kuhn-

Tucker (KKT) conditions are used iteratively in SQP, which are necessary for a local

optimum solution, and for special situations necessary and sufficient conditions for a

45

global optimum solution [42].

In this method, at each iteration, a QP problem is solved, and this QP problem

is derived from the approximation of the Lagrangian function, which is defined below

[41]:

L(x, λ) = f(x) +
m∑
i=1

λigi(x) (3.2)

The quadratic sub-problem is [41]:

minimize
d∈Rn

1

2
dTHkd+ Of(xk)

Td (3.3)

where Ogi(xk)Td+ gi(xk) ≤ 0 and Ogi(xk)Td+ gi(xk) = 0

As described in MATLAB R©, Sequential Quadratic Programming (SQP) is com-

posed of three main steps [41]:

3.1.1. Updating the Hessian Matrix

In each step of iteration, Hessian of the Lagrangian matrix is calculated by BFGS

(Broyden-Fletcher-Goldfarb-Shanno) [43], approximation of a positive definite quasi

Newton [41].

Hk+1 = Hk +
qkq

T
k

qTk sk
− HT

k Hk

sTkHksk
(3.4)

where sk = xk+1−xk and qk = Of(xk+1)+
∑n

i=1 λiOgi(xk+1)−(Of(xk)+
∑n

i=1 λiOgi(xk))

46

3.1.2. Quadratic Programming Problem Solution

A Quadratic Programming (QP) sub-problem is solved in each step of the itera-

tion [41].

minimize
d∈Rn

q(d) =
1

2
dTHd+ cTd (3.5)

where Aid = bi, i=1,...,me and Aid ≤ bi, i = me+1, ...,m

3.1.3. Line Search and Merit Function Calculation

The outcome of the above QP problem is a dk vector and this vector is a search

direction and is used for the new iteration [41].

xk+1 = xk + αdk (3.6)

The line search is realized such that an αk value is found that minimizes the

below merit Ψ(x) function [41].

Ψ(x) = f(x) +
me∑
i=1

rigi(x) +
m∑

i=me+1

rimax{0, gi(x)} (3.7)

The penalty parameter ri is defined as [41]:

ri = (rk+1)i = max
i
{λi,

1

2
((rk)i + λi)} (3.8)

Line search is a significant step for the convergence of the algorithms.

In this thesis, for the tuning of the parameters of the methods considered for

modelling, the function “fminimax” of the MATLAB R© optimization toolbox is ap-

47

plied. This function uses Sequential Quadratic Programming and gives us the ability

to implement bounds, equality and inequality constraints. For a fair comparison, the

same optimization approach is used in all cases.

48

4. FURTHER RELATIONS IN FUZZY SETS

4.1. Similarities and Differences between Constrained Fuzzy Sets (CFSs)

and Type-2 Fuzzy Sets

In constrained fuzzy sets, the linguistic terms are bounded depending on the

constraints. During the optimization process, the membership functions that represent

the linguistic interpretation move in the uncertainty bound, and this constitutes a

continuum set of interval type-2 fuzzy sets. For instance, a Gaussian membership

function carries the expert knowledge about the system and has an uncertainty interval.

During the optimization process, the center and sigma values are changing [c1, c2] and

[σ1, σ2] in this interval. This constitutes a continuum of interval type-2 fuzzy set. On

the other hand, when Gaussian membership function with uncertain standard deviation

is taken into consideration, sigma value is in the interval of [σl, σu], and has a single

center value c.

In real life applications, systems encounter with many disturbances and noise from

the external environment. type-1 fuzzy sets are not efficient in real-world applications

with high amount of uncertainty; because they use crisp and precise membership func-

tions. Today, it is better to use CFSs or type-2 fuzzy sets depending on the type of

the application.

4.2. Advantages and Disadvantages of Tuning the Membership Functions

Fuzzy controllers give us the flexibility to choose design parameters and to de-

termine which parameters are to be tuned. If the linguistic terms play a major role

in the design of fuzzy controller, by tuning the membership functions the linguistic

interpretation will be lost or distorted, as the membership functions may move out of

the domain or may have large intersections with each other. Especially in industrial

process control, this will give rise to drastic changes that will affect the performance

of the process adversely.

49

In fuzzy models, in which the human expert knowledge is the key element of the

design of a fuzzy model, tuning the membership functions will result in the lost or

distortion of the expert knowledge. In such applications, another adaptation will be

more appropriate than the adaptation of the membership functions.

Furthermore, by tuning the membership functions, a membership function can

move so far that it may become a subset of another one, so the interpretation of the

linguistic variables and the structure of the rules will be corrupted.

In the applications, where the interpretation of linguistic variable, expert knowl-

edge, and rule base are important to obtain an optimal fuzzy model, the membership

functions should not be modified. To obtain a desired approximation and come up with

a minimum error response, other approaches should be sought. As a new approach,

the tuning of the membership functions can be restricted with constraints on fuzzy

sets, and also the parameters of operators can be tuned to get a proper approximation

results.

50

5. COMPARISON OF FOUR FUZZY METHODS FOR

APPROXIMATION OF SINC FUNCTION

The performances of the four modeling approaches described above are tested on

the Sinc function, the equation of which is given below:

z = f(x1, x2) =

∣∣∣∣∣sin[π(x1 − 3)]

π(x1 − 3)

∣∣∣∣∣
∣∣∣∣∣sin[π(x2 − 3)]

π(x2 − 3)

∣∣∣∣∣ (5.1)

This function has a global maximum at x1 = 3.0 and x2 = 3.0 and also has several

local maximums. The input range is in between [0, 8] (x1, x2 ∈ [0, 8]). Four Gaussian

membership functions are used for each antecedent.

Figure 5.1. The sinc function that has global maximum at x1 = 3.0, x2 = 3.0

5.1. Approximation of Sinc Function by Using Parameterized

Conjunctions

For the application of this method, the input space is first partitioned equally

x1, x2 = (0, 0.5,· · · ,8) and 17x17 = 289 values of the function is calculated. It is

51

assumed that the membership functions carry the expert knowledge about the system.

Four Gaussian membership functions for each antecedent, which are shown in Figure

5.2, are distributed on the input domain and the rule base is composed of 16 rules.

The ith rule is described as follows:

Ri = IF X1 is Ai1 and X2 is Ai2,

THEN zi = ai2x2 + ai1x1 + ai0

In this rule structure, Ai1 and Ai2 are the fuzzy sets, defining the linguistic variables

(e.g., small, medium, large, etc.). zi is the output of the each rule and ai2, a
i
1, and ai0

are the coefficients of the first order polynomial. To calculate the firing strength for

each rule the G-conjunction operators with the parameters pi, and qi are used as AND

operator and have the following form:

ωi = T (µAi1(x1), µAi2(x2)) = µAi1(x1)
pi .µAi2(x2)

qi (5.2)

The actual output of the system is:

z =

∑M
i=1 ω

izi∑M
i=1 ω

i
(5.3)

where i = 1, 2,..., M and M indicates the number of rules (M=16). z is the actual output

of the system and zi is the output of each rule. To tune the parameters pi, and qi, Root

Mean Square Error (RMSE) is minimized by using one of the most commonly used

nonlinear programming approaches, Sequential Quadratic Programming (SQP). Since

the membership functions are assumed to characterize the linguistic interpretation,

their parameters are kept fixed. The objective function, RMSE is:

Fobj =

√∑N
k=1(z

k
D − zk)2

N
(5.4)

zD is the desired output and N = 289 is the number of values that are calculated

52

Figure 5.2. The membership functions that carry the expert knowledge

for the approximation of the function. During the optimization process, for the left sides

of the rules, 32 (16x2=32) parameters, and for the right sides of the rules, 48 (16x3=48)

parameters are tuned; as a result, a total of 80 parameters are adjusted to minimize

the RMSE (since the membership functions are assumed to characterize the linguistic

interpretation, their parameters are kept fixed.) The bound constraints are applied to

the right and left sides of the rules, and respectively are −49.9 ≤ ai2, a
i
1, a

i
0 ≤ 50 and

0.1 ≤ pi, qi ≤ 50. The obtained results are shown on Figure 5.3. The approximation

error obtained is 0.03455.

5.2. Approximation of Sinc Function by Using Constrained Fuzzy Sets

(CFSs)

In this approach, the parameters of the membership functions are tuned within

some constraints so that any expert knowledge present in them is not lost. A first

order type-1 TSK fuzzy logic model with 16 rules, having the same rule structure as

in the previous method is used. Initially, four Gaussian membership functions for each

antecedent that are indicated in Figure 5.4 are distributed in the input domain, and

defined as:

Gaussian membership function = e
1
2
(x−c
σ

)2 (5.5)

53

Figure 5.3. The result of approximating two input sinc function by using

parameterized conjunction

Figure 5.4. The Initial membership functions before tuning CFSs

Sigma (σ) determines the width and c determines the center of the membership func-

tions. The expert knowledge about the system is not certain about ∓0, 40. Since, the

model has a total of eight membership functions and there are two parameters for each

membership function, 16 parameters of the left sides of the rules are adjusted within

the constraints by using SQP optimization method. The 48 parameters of right sides

of the rules, ai2, a
i
1, a

i
0, are tuned together with the left side of the rules. The final

membership functions and the approximated fuzzy model are shown in Figure 5.5, and

54

Figure 5.5. The membership functions after tuning CFSs

Figure 5.6, respectively. As it is seen, the membership functions are moved within the

constraints and thus any expert knowledge about the system is not lost. The error for

this approximation method is 0.04175.

Figure 5.6. The result of approximating two input sinc function by using CFSs

55

5.3. Approximation of Sinc Function by Using Constrained Fuzzy Sets

(CFSs) with Parameterized Conjunctions

In this approach, CFSs are used with the G-conjunction operators. The rule

structure, and the fuzzy model is the same as in the previous approaches; but the major

difference is that the G-conjunction operator is used as AND operator, described as:

ωi = T (µAi1(x1), µAi2(x2)) = µAi1(x1)
pi .µAi2(x2)

qi (5.6)

where i = 1,2, ..., 16. The initial Gaussian membership functions are distributed as

in Figure 5.7. In this model, the objective function is the RMSE, and SQP nonlinear

Figure 5.7. The Initial membership functions before tuning CFSs with parameterized

conjunctions

optimization method is used to tune a total of 96 parameters (for the left side of the

rules 48 and right sides of the rules 48 parameters). The right and left sides of the

rules are tuned together. The membership functions after tuning are shown in Figure

5.8, and the experimental results that are obtained after tuning are shown in Figure

5.9. The obtained approximation error (RMSE) is 0.021074.

56

Figure 5.8. The membership functions after tuning CFSs with parameterized

conjunctions

Figure 5.9. The result of approximating two input sinc function by using CFSs with

parameterized conjunctions

5.4. Approximation of Sinc Function by Using Unnormalized IT2 TSK

FLSs

One of the most important features of the interval type-2 fuzzy sets is the ability

to incorporate uncertainties in the membership functions, and this feature makes type-

57

Figure 5.10. Type-1 membership functions

2 fuzzy sets preferable when there exists significant uncertainties. In this example, the

approximation of sinc function is obtained by using unnormalized IT2 TSK FLS. Type-

1 fuzzy sets used to identify the initial membership functions of interval type-2 fuzzy

sets. First of all, as it is seen in Figure 5.10, type-1 Gaussian membership functions

are distributed on the input domain with intersection of the alpha value α = 0.5.

Figure 5.11. Initial interval type-2 Gaussian membership functions with uncertain

standard deviation

In this application, Gaussian primary membership functions with uncertain standard

deviations are used. Standard deviations of the Gaussian membership functions have

the uncertainty interval ∓0.40. The sigma and center values of each antecedent upper

and lower membership functions for uncertainty interval are 0.40. As it is seen in

Figure 5.11, type-1 membership functions are blurred to the left and right by changing

58

the sigma value in the uncertainty interval of 0.40. The ith rule is given below:

Ri = IF X1 is Ãi1 and X2 is Ãi2,

THEN zi = ai2x2 + ai1x1 + ai0

Ai1 and Ai2 are interval type-2 fuzzy sets, which describe the linguistic values. In the

realization of unnormalized IT2 TSK fuzzy logic, the antecedent membership functions

are interval type-2 Gaussian membership functions with uncertain standard deviations

and the consequent membership functions are type-0. SQP optimization method is

used to minimize the error. The objective function to be minimized is:

Fobj =

√∑N
k=1(z

k
D − zk)2

N
(5.7)

N equals to 289 and is the number of values that are calculated for the function approx-

imation. During the approximation of the nonlinear function, both the parameters of

membership functions, σiupper, σ
i
lower, and ci, and the right sides of the rules, ai2, a

i
1, a

i
0

are tuned together. The centers of the membership functions are bounded in the in-

terval of input domain not to move out of the domain and also the parameters at right

sides of the rules are bounded in the interval −49.9 ≤ ai2, a
i
1, a

i
0 ≤ 50. As it is seen in

Figure 5.12, by tuning the membership functions, the expert knowledge is somewhat

lost; but the uncertainties are taken into account. Figure 5.13 depicts the modelling

performance. The resulting approximation error is 0.030219.

59

Figure 5.12. The interval type-2 gaussian membership functions with uncertain

deviation after tuning with 0.40 uncertainty bound

Figure 5.13. The result of approximating two input sinc function by using IT2 TSK

Unormalized Fuzzy Logic

60

6. CONCLUSION

This thesis focuses on four different methods for fuzzy modeling and on their

mathematical and theoretical background. One of the methods (CFSs) is a novel one

and aims to reach a compromise between type-1 fuzzy sets and type-2 fuzzy sets for

handling the uncertainties in the membership functions. The performances of these four

methods are examined and compared for the approximation of a nonlinear function.

The resulting RMSEs together with the number of parameters tuned are given in Table

6.1.

Table 6.1. Comparison of the Four Methods

Method 1 Method 2 Method 3 Method 4

RMSE 0.03455 0.04175 0.021074 0.030219

No of Parameters 80 64 96 72

Optimization Method SQP SQP SQP SQP

iteration no 100 100 100 100

Fuzzy modeling with simple parameterized conjunctions that do not carry asso-

ciativity and commutativity properties is proposed in [5] and [6]. This proposed model

was evolved in this study, and fuzzy modeling with CFSs that include parameterized

G-conjunctions is proposed. The first three methods are significant in the applications

where the expert knowledge is crucial. In addition, comparing these three methods,

the best result is obtained by the CFSs with parameterized conjunctions. The reason

is due to this model taking into account the uncertainties of the linguistic values and

having more design parameters such as the parameters of membership functions, the

parameters of operators, and coefficients at the consequent part of the rules. On the

other hand, in the application of parameterized conjunctions, the membership func-

tions carry the expert knowledge, and are kept fixed; but the coefficient parameters

and parameter of operations are tuned together. As a result, in this model the uncer-

tainties in the expert knowledge are disregarded. Thus, the modelling is not as good

as the third approach; but better than the second approach. In the second approach

with CFSs, the uncertainties are described in the membership functions as constraints.

61

Although the parameters of the consequent part are tuned, the operators used are

non-parameterized and this limits the modeling performance and the highest RMSE

value is obtained when compared to the other approaches.

CSFs and interval type-2 fuzzy sets give the designer the flexibility to define un-

certainties in the fuzzy sets. CFSs use fuzzy intervals, same as interval type-2 fuzzy

sets; but CFSs move in that interval and a specified input takes on a precise value. In

contrast, in the interval type-2 fuzzy sets, specified input takes on an interval value [4].

Furthermore, while tuning the CFSs, the membership function parameters, both sigma

and center, move in the boundary of the constraints which constitutes a continuum set

of interval type-2 fuzzy sets. Comparing the simulation results of CFSs with parame-

terized conjunctions and the unnormalized IT2 TSK FLSs, the formal preserves expert

knowledge within the boundary of uncertainty and also has more design parameters

which gives the designer more degrees of freedom. On the other hand, the latter has

fewer design parameters and also in the tuning of the parameters, the expert knowledge

is lost as it defines the uncertainty in terms of the interval type-2 fuzzy sets.

As a conclusion, based on the experiences obtained in this work with regards to

the modelling of a complex function with two inputs, it can be stated that CFSs with

parameterized G-conjunctions give better results when compared to the other methods

considered. In this model, the expert knowledge is conserved within the uncertainty

bounds of the knowledge. The parameters at the left side of the rules (membership

function parameters and parameters of operations), and the right side of the rules (the

coefficients of the first order polynomial) are tuned together.

The future work in this area will be on different type of constraints to define the

uncertain expert knowledge in CFSs and CFSs with simple parameterized conjunctions.

In addition, the other models of interval type-2 FLSs will be studied and the results will

be compared. The expected outcome is that CFSs with parameterized conjunctions

are preferable in the applications where the expert knowledge is significant.

62

APPENDIX A: MATLAB CODE FOR METHOD 1

22.05.2008 11:11 J:\Tezprog\Sincfminigaus3new3.m 1 of 4

% Sinc Function which has a global maximum at x = 3, y = 3
% Parameterized T-norm (the simplest G-conjunction operators)
clc
clear all
% Input x (X1)
x1 = 0; hx = .5; x2 = 8;
x = (x1:hx:x2)';
nmx=4;
% Input y (X2)
y1 = 0; hy = .5; y2 = 8;
y =(y1:hy:y2)';
nmy=4;
% Partitioning the inputs

[X,Y] = meshgrid(x,y);

% Nonlinear Function

ZD = sinc_new(X).*sinc_new(Y);

% Plotting the Nonlinear Function
figure;
mesh(X,Y,ZD);
title('INPUT')
axis([x1 x2 y1 y2 -1 1])
figure;
subplot(2,2,1);mesh(X,Y,ZD);
title('INPUT')
axis([x1 x2 y1 y2 -1 1])

lz = size(ZD)
nz=lz(1)*lz(2)

% initial gaussian membership parameters for input 1 and input 2

alpha1=0.5*ones(nmx,1);
alpha2=0.5*ones(nmy,1);

for i=1:1:nmx
 p1(i,2) = ((i-1)*((x2-x1)/(nmx-1)))+x1;
 p1(i,1) = (x2-x1)/(2*(nmx-1)*sqrt(-2*log(alpha1(i,1))));
end
for i=1:1:nmy
 p2(i,2) = ((i-1)*((y2-x1)/(nmy-1)))+y1;
 p2(i,1) = (y2-y1)/(2*(nmy-1)*sqrt(-2*log(alpha2(i,1))));
end

mx1 = gaussmf(X,[p1(1,1) p1(1,2)]);
mx2 = gaussmf(X,[p1(2,1) p1(2,2)]);
mx3 = gaussmf(X,[p1(3,1) p1(3,2)]);
mx4 = gaussmf(X,[p1(4,1) p1(4,2)]);

mx=[mx1 mx2 mx3 mx4];

my1 = gaussmf(Y,[p2(1,1) p2(1,2)]);

63

22.05.2008 11:11 J:\Tezprog\Sincfminigaus3new3.m 2 of 4

my2 = gaussmf(Y,[p2(2,1) p2(2,2)]);
my3 = gaussmf(Y,[p2(3,1) p2(3,2)]);
my4 = gaussmf(Y,[p2(4,1) p2(4,2)]);

my=[my1 my2 my3 my4];

p=ones(16,2); % initial parameters of operations
r=zeros(16,3); % initial parameters of right sides of rules:
A=[p r]; % initial parameters before iterations
lb = zeros(size(A))+0.1; % lower bounds for parameters
lb(:,3:5)=-50+ lb(:,3:5); % lower bounds for parameters
ub = 50*ones(size(A)); % upper bounds for parameters

error = []; %errors of training data

%B=indexes of premises in k-th rules:
%B(k,1) - xk; B(k,2) - yk
% k=1: if mx1 and my1 then
% k=2: if mx1 and my2 then...

B=[1 1
 1 2
 1 3
 1 4
 2 1
 2 2
 2 3
 2 4
 3 1
 3 2
 3 3
 3 4
 4 1
 4 2
 4 3
 4 4
];

%global mx my B X Y ZD lz Z

npar=length(A);
Z=0;
f8=sinc3fminifunnew(A,mx, my, B, X, Y, ZD, lz);
err = f8; % initial error
serror =err;
global Z serror kiter kc

errstring=num2str(err); % used for plotting

%===below is optimization !!!===============
error = []; % collect errors
options = optimset('MaxFunEvals',250*npar,'MaxIter',250*npar,'TolFun',1e-8);

64

22.05.2008 11:11 J:\Tezprog\Sincfminigaus3new3.m 3 of 4

sa=size(A);
npar=sa(1)*sa(2);

tic % time of beginning
for kc=1:100
 kiter=0
 A1 = fminimax(@sinc3fminifunnew,A,[],[],[],[],lb,ub,[], options,mx, my, B, X, Y,
ZD, lz);
 f8=sinc3fminifunnew(A1,mx, my, B, X, Y, ZD, lz); % error
 error2 = f8
 error=[error error2]; % collect errors
 A=A1;
end
toc % time of end

errstring=num2str(error2);

subplot(2,2,2);mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])

subplot(2,2,3);
plot(error)
title('Error curve (n=80 parameters)')
xlabel('Number of iterations')
f88=Z-ZD;
titstr=['Error surface for OUTPUT, RMSE = ' errstring];
subplot(2,2,4);mesh(X,Y,f88);
title(titstr);
axis([x1 x2 y1 y2 -1 1])
figure;
mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])
% Plotting Initial membership functions
x = 0:.1:8;y=0:.1:8;
% INPUT x
figure;
for j=1:1
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'r')
 hold on
 title('Initial Mfs of Input X1')
end
for j=2:2
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'b')
 hold on
 title('Initial Mfs of Input X1')
end
for j=3:3
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'c')
 hold on
 title('Initial Mfs of Input X1')
end

65

22.05.2008 11:11 J:\Tezprog\Sincfminigaus3new3.m 4 of 4

for j=4:4
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'k')
 hold on
 title('Initial Mfs of Input X1')
end
% INPUT y
for j=1:1
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'r')
 hold on
 title('Initial Mfs of Input X2')
end
for j=2:2
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'b')
 hold on
 title('Initial Mfs of Input X2')
end
for j=3:3
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'c')
 hold on
 title('Initial Mfs of Input X2')
end
for j=4:4
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'k')
 hold on
 title('Initial Mfs of Input X2')
end

66

22.05.2008 11:09 J:\Tezprog\sinc3fminifunnew.m 1 of 1

function f = sinc3fminifunnew(A,mx, my, B, X, Y, ZD, lz)

global Z serror kiter kc
kiter=kiter+1; % number of iterations

sz=lz(2);
nz=lz(1)*lz(2);

w=zeros(lz); sw=w; swf=w;%firing values of rules

%In Rule k:
%If x=x1 and y=y1 then f=A(k,3)*x+A(k,4)*y+A(k,5)
%firing value of rule calculated as:
%mx^A(k,1)*my^A(k,2)

for k = 1:16 % 16 rules
 %firing value w of k-th rule:
 k1=B(k,1); % index of mx1...mx4
 i1=1+(k1-1)*sz; % columns of mxk1 in mx
 j1=k1*sz; % --"--"--"
 k2=B(k,2); % index of my1...my4
 i2=1+(k2-1)*sz; % columns of myk2 in my
 j2=k2*sz; % --"--"--"
 w=(mx(:,i1:j1).^A(k,1)).*(my(:,i2:j2).^A(k,2));
 sw=sw+w; %sum of weights
 F=X*A(k,3)+Y*A(k,4)+A(k,5); %right sides
 swf=swf+w.*F; %sum of weighted outputs
end

Z=swf./sw; %total output for each point
ff=Z-ZD;
f = sqrt(sum(sum(ff.*ff))./nz);
disp(['kc= ' num2str(kc) ' kit= ' num2str(kiter) ' err= ' num2str(f)])

serror=[serror f];

67

APPENDIX B: MATLAB CODE FOR METHOD 2

22.05.2008 11:12 J:\Tezprog\Sinccfsfminigaus3new3.m 1 of 5

% Sinc Function which has a global maximum at x = 3, y = 3
% CFSs method2
clc
clear
% Input x (X1)
x1 = 0; hx = .5; x2 = 8;
x = (x1:hx:x2)';
nmx=4;
% Input y (X2)
y1 = 0; hy = .5; y2 = 8;
y =(y1:hy:y2)';
nmy=4;
% Partitioning the inputs

[X,Y] = meshgrid(x,y);

% Nonlinear Function

ZD = sinc_new(X).*sinc_new(Y);

% Plotting the Nonlinear Function
figure;
mesh(X,Y,ZD);
title('INPUT')
axis([x1 x2 y1 y2 -1 1])
figure;
subplot(2,2,1);mesh(X,Y,ZD);
title('INPUT')
axis([x1 x2 y1 y2 -1 1])

lz = size(ZD)
nz=lz(1)*lz(2)

% initial gaussian membership parameters for input 1 and input 2

alpha1=0.5*ones(nmx,1);
alpha2=0.5*ones(nmy,1);

for i=1:1:nmx
 p1(i,2) = ((i-1)*((x2-x1)/(nmx-1)))+x1;
 p1(i,1) = (x2-x1)/(2*(nmx-1)*sqrt(-2*log(alpha1(i,1))));
end
for i=1:1:nmy
 p2(i,2) = ((i-1)*((y2-y1)/(nmy-1)))+y1;
 p2(i,1) = (y2-y1)/(2*(nmy-1)*sqrt(-2*log(alpha2(i,1))));
end

p = [p1;p2]; % Antecedent membership function parameters

r=zeros(8,6); % initial parameters of right sides of rules:
A=[p r]; % initial parameters before iterations
lb = zeros(size(A))+0.1; % lower bounds for parameters
lb(:,1:1)=p(:,1:1)*0.60;
lb(1,2)=-0.4;lb(5,2)=lb(1,2);

68

22.05.2008 11:12 J:\Tezprog\Sinccfsfminigaus3new3.m 2 of 5

lb(2,2)=1.6;lb(6,2)=lb(2,2);
lb(3,2)=3.2;lb(7,2)=lb(3,2);
lb(4,2)=4.8;lb(8,2)=lb(4,2);
lb(:,3:8)=-50+ lb(:,3:8);
ub(:,1:1)=p(:,1:1)*1.40; % upper bounds for parameters
ub(1,2)=0.4;ub(5,2)=ub(1,2);
ub(2,2)=3.7334;ub(6,2)=ub(2,2);
ub(3,2)=7.4666;ub(7,2)=ub(3,2);
ub(4,2)=11.2;ub(8,2)=ub(4,2);
ub(:,3:8)=ones(8,6)*50;

error = []; %errors of training data

%B=indexes of premises in k-th rules:

B=[1 1
 1 2
 1 3
 1 4
 2 1
 2 2
 2 3
 2 4
 3 1
 3 2
 3 3
 3 4
 4 1
 4 2
 4 3
 4 4
];

global B X Y ZD Z lz

npar=length(A);
Z=0;
f8=sinc8334funnew(A, B, X, Y, ZD, lz);
err = f8; % initial error
serror =err;
global Z serror kiter kc

errstring=num2str(err); % used for plotting

%===below is optimization !!!===============
error = []; % collect errors
options = optimset('MaxFunEvals',500*npar,'MaxIter',500*npar,'TolFun',1e-8);

sa=size(A);
npar=sa(1)*sa(2);

tic % time of beginning
for kc=1:100

69

22.05.2008 11:12 J:\Tezprog\Sinccfsfminigaus3new3.m 3 of 5

 kiter=0
 A1 = fminimax(@sinc8334funnew,A,[],[],[],[],lb,ub,[], options,B, X, Y, ZD, lz);
 f8=sinc8334funnew(A1, B, X, Y, ZD, lz); % error
 error2 = f8
 error=[error error2]; % collect errors
 A=A1;
end
toc % time of end

errstring=num2str(error2);

subplot(2,2,2);mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])

subplot(2,2,3);
plot(error)
title('Error curve (n=64 parameters)')
xlabel('Number of iterations')
f88=Z-ZD;
titstr=['Error surface for OUTPUT, RMSE = ' errstring];
subplot(2,2,4);mesh(X,Y,f88);
title(titstr);
axis([x1 x2 y1 y2 -1 1])
figure;
mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])
% Plotting Initial membership functions
x = 0:.1:8;y=0:.1:8;
% INPUT x
figure;
for j=1:1
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'r')
 hold on
 title('Initial Mfs of Input X1')
end
for j=2:2
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'b')
 hold on
 title('Initial Mfs of Input X1')
end
for j=3:3
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'c')
 hold on
 title('Initial Mfs of Input X1')
end
for j=4:4
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'k')
 hold on
 title('Initial Mfs of Input X1')
end

70

22.05.2008 11:12 J:\Tezprog\Sinccfsfminigaus3new3.m 4 of 5

% INPUT y
for j=1:1
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'r')
 hold on
 title('Initial Mfs of Input X2')
end
for j=2:2
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'b')
 hold on
 title('Initial Mfs of Input X2')
end
for j=3:3
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'c')
 hold on
 title('Initial Mfs of Input X2')
end
for j=4:4
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'k')
 hold on
 title('Initial Mfs of Input X2')
end
figure;
for j=1:1
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'r')
 title('Final Mfs of Input X1')
 hold on
end
for j=2:2
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'b')
 title('Final Mfs of Input X1')
 hold on
end
for j=3:3
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'c')
 hold on
 title('Final Mfs of Input X1')
end
for j=4:4
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'k')
 hold on
 title('Final Mfs of Input X1')
end
axis([0 8 0 1])

for j=5:5
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'r')
 title('Final Mfs of Input X2')
 hold on
end
for j=6:6
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'b')

71

22.05.2008 11:12 J:\Tezprog\Sinccfsfminigaus3new3.m 5 of 5

 title('Final Mfs of Input X2')
 hold on
end

for j=7:7
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'c')
 hold on
 title('Final Mfs of Input X2')
end
for j=8:8
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'k')
 hold on
 title('Final Mfs of Input X2')
end
axis([0 8 0 1])

72

22.05.2008 11:12 J:\Tezprog\sinc8334funnew.m 1 of 1

function f = sinc8334funnew(A, B, X, Y, ZD,lz)

global Z serror kiter kc
kiter=kiter+1; % number of iterations

nz=lz(1)*lz(2);

w=zeros(lz); sw=w; swf=w;%firing values of rules

for k = 1:16 % 16 Rules
 %firing value w of k-th rule:
 k1=B(k,1);
 k2=B(k,2);
 w=(gaussmf(X,[A(k1,1) A(k1,2)]).*(gaussmf(Y,[A(k2+4,1) A(k2+4,2)])));
 sw=sw+w; %sum of weights
 if k<=8
 F=X*A(k,3)+Y*A(k,4)+A(k,5); %right sides
 elseif k==9 | k==10 | k==11 | k==12 | k==13 | k==14 | k==15 | k==16

 F=X*A(k-8,6)+Y*A(k-8,7)+A(k-8,8);

 end
 swf=swf+w.*F; %sum of weighted outputs
end

Z=swf./sw; %total output for each point

ff=Z-ZD;
f = sqrt(sum(sum(ff.*ff))./nz);
disp(['kc= ' num2str(kc) ' kit= ' num2str(kiter) ' err= ' num2str(f)])

serror=[serror f];

73

APPENDIX C: MATLAB CODE FOR METHOD 3

22.05.2008 11:12 J:\Tezprog\Sincparamcfsfminigaus3new3.m 1 of 5

% Sinc Function which has a global maximum at x = 3, y = 3
% CFS with Parameterized method3
clc
clear all
% Input x (X1)
x1 = 0; hx = .5; x2 = 8;
x = (x1:hx:x2)';
nmx=4;
% Input y (X2)
y1 = 0; hy = .5; y2 = 8;
y =(y1:hy:y2)';
nmy=4;
% Partitioning the inputs

[X,Y] = meshgrid(x,y);

% Nonlinear Function

ZD = sinc_new(X).*sinc_new(Y);

% Plotting the Nonlinear Function
figure;
subplot(2,2,1);mesh(X,Y,ZD);
title('INPUT')
axis([x1 x2 y1 y2 -1 1])

lz = size(ZD)
nz=lz(1)*lz(2)

% initial gaussian membership parameters for input 1 and input 2

alpha1=0.5*ones(nmx,1);
alpha2=0.5*ones(nmy,1);

for i=1:1:nmx
 p1(i,2) = ((i-1)*((x2-x1)/(nmx-1)))+x1;
 p1(i,1) = (x2-x1)/(2*(nmx-1)*sqrt(-2*log(alpha1(i,1))));
end
for i=1:1:nmy
 p2(i,2) = ((i-1)*((y2-y1)/(nmy-1)))+y1;
 p2(i,1) = (y2-y1)/(2*(nmy-1)*sqrt(-2*log(alpha2(i,1))));
end

p = [p1;p2]; % Antecedent membership function parameters

param1=ones(8,2); % initial parameters of parameterized conjunctions
param2=ones(8,2); % initial parameters of parameterized conjunctions
r=zeros(8,6); % initial parameters of right sides of rules:
A=[p r param1 param2]; % initial parameters before iterations
lb = zeros(size(A))+0.1; % lower bounds for parameters
lb(:,1:1)=p(:,1:1)*0.60;
lb(1,2)=-0.4;lb(5,2)=lb(1,2);
lb(2,2)=1.6;lb(6,2)=lb(2,2);
lb(3,2)=3.2;lb(7,2)=lb(3,2);
lb(4,2)=4.8;lb(8,2)=lb(4,2);

74

22.05.2008 11:12 J:\Tezprog\Sincparamcfsfminigaus3new3.m 2 of 5

lb(:,3:8)=-50+ lb(:,3:8);
ub(:,1:1)=p(:,1:1)*1.40; % upper bounds for parameters
ub(1,2)=0.4;ub(5,2)=ub(1,2);
ub(2,2)=3.7334;ub(6,2)=ub(2,2);
ub(3,2)=7.4666;ub(7,2)=ub(3,2);
ub(4,2)=11.2;ub(8,2)=ub(4,2);
ub(:,3:12)=ones(8,10)*50;

error = []; %errors of training data

% B=indexes of premises in k-th rules:

B=[1 1
 1 2
 1 3
 1 4
 2 1
 2 2
 2 3
 2 4
 3 1
 3 2
 3 3
 3 4
 4 1
 4 2
 4 3
 4 4
];

global B X Y ZD Z lz

npar=length(A);
Z=0;
f8=sincparam8334funnew(A, B, X, Y, ZD, lz);
err = f8; % initial error
serror =err;
global Z serror kiter kc

errstring=num2str(err); % used for plotting

%===below is optimization !!!===============
error = []; % collect errors
options = optimset('MaxFunEvals',500*npar,'MaxIter',500*npar,'TolFun',1e-8);

sa=size(A);
npar=sa(1)*sa(2);

tic % time of beginning
for kc=1:100
 kiter=0
 A1 = fminimax(@sincparam8334funnew,A,[],[],[],[],lb,ub,[], options,B, X, Y, ZD,
lz);
 f8=sincparam8334funnew(A1, B, X, Y, ZD, lz);

75

22.05.2008 11:12 J:\Tezprog\Sincparamcfsfminigaus3new3.m 3 of 5

 error2 = f8
 error=[error error2]; % collect errors
 A=A1;
end
toc % time of end

errstring=num2str(error2);

subplot(2,2,2);mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])

subplot(2,2,3);
plot(error)
title('Error curve (n=96 parameters)')
xlabel('Number of iterations')
f88=Z-ZD;
titstr=['Error surface for OUTPUT, RMSE = ' errstring];
subplot(2,2,4);mesh(X,Y,f88);
title(titstr);
axis([x1 x2 y1 y2 -1 1])
figure;
mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])

% Plotting Initial membership functions
x = 0:.1:8;y=0:.1:8;
% INPUT x
figure;
for j=1:1
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'r')
 hold on
 title('Initial Mfs of Input X1')
end
for j=2:2
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'b')
 hold on
 title('Initial Mfs of Input X1')
end
for j=3:3
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'c')
 hold on
 title('Initial Mfs of Input X1')
end
for j=4:4
 subplot(1,2,1);
 plot(x,gaussmf(x,[p1(j,1) p1(j,2)]),'k')
 hold on
 title('Initial Mfs of Input X1')
end
% INPUT y
for j=1:1

76

22.05.2008 11:12 J:\Tezprog\Sincparamcfsfminigaus3new3.m 4 of 5

 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'r')
 hold on
 title('Initial Mfs of Input X2')
end
for j=2:2
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'b')
 hold on
 title('Initial Mfs of Input X2')
end
for j=3:3
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'c')
 hold on
 title('Initial Mfs of Input X2')
end
for j=4:4
 subplot(1,2,2);
 plot(y,gaussmf(y,[p2(j,1) p2(j,2)]),'k')
 hold on
 title('Initial Mfs of Input X2')
end
% Final Mfs Input 2
figure;
for j=1:1
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'r')
 title('Final Mfs of Input X1')
 hold on
end
for j=2:2
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'b')
 title('Final Mfs of Input X1')
 hold on
end
for j=3:3
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'c')
 hold on
 title('Final Mfs of Input X1')
end
for j=4:4
 subplot(1,2,1);plot(x,gaussmf(x,[A(j,1) A(j,2)]),'k')
 hold on
 title('Final Mfs of Input X1')
end
axis([0 8 0 1])
% Final Mfs Input 2
for j=5:5
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'r')
 title('Final Mfs of Input X2')
 hold on
end
for j=6:6
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'b')
 title('Final Mfs of Input X2')

77

22.05.2008 11:12 J:\Tezprog\Sincparamcfsfminigaus3new3.m 5 of 5

 hold on
end

for j=7:7
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'c')
 hold on
 title('Final Mfs of Input X2')
end
for j=8:8
 subplot(1,2,2);plot(y,gaussmf(y,[A(j,1) A(j,2)]),'k')
 hold on
 title('Final Mfs of Input X2')
end
axis([0 8 0 1])

78

22.05.2008 11:13 J:\Tezprog\sincparam8334funnew.m 1 of 1

function f = sincparam8334funnew(A, B, X, Y, ZD,lz)

global Z serror kiter kc
kiter=kiter+1; % number of iterations

nz=lz(1)*lz(2);

w=zeros(lz); sw=w; swf=w;%firing values of rules

% In Rule k:
% If x=x1 and y=y1 then f=Ak3*x+A4*y+A5
% firing value of rule calculated as:
% w = m(Ak1)*m(Ak2)

for k = 1:16 % 16 rules
 %firing value w of k-th rule:
 k1=B(k,1);
 k2=B(k,2);

 if k<=8
 w=(gaussmf(X,[A(k1,1) A(k1,2)]).^A(k,9)).*(gaussmf(Y,[A(k2+4,1) A(k2+4,2)]).
^A(k,10));
 sw=sw+w; %sum of weights
 F=X*A(k,3)+Y*A(k,4)+A(k,5); %right sides
 elseif k==9 | k==10 | k==11 | k==12 | k==13 | k==14 | k==15 | k==16
 w=(gaussmf(X,[A(k1,1) A(k1,2)]).^A(k-8,11)).*(gaussmf(Y,[A(k2+4,1) A(k2+4,
2)]).^A(k-8,12));
 sw=sw+w; %sum of weights
 F=X*A(k-8,6)+Y*A(k-8,7)+A(k-8,8);

 end
 swf=swf+w.*F; %sum of weighted outputs
end

Z=swf./sw; %total output for each point

ff=Z-ZD;
f = sqrt(sum(sum(ff.*ff))./nz);
disp(['kc= ' num2str(kc) ' kit= ' num2str(kiter) ' err= ' num2str(f)])
serror=[serror f];

79

APPENDIX D: MATLAB CODE FOR METHOD 4

22.05.2008 11:10 J:\Tezprog\sincTT2B8new6.m 1 of 6

% Sinc Function which has a global maximum at x = 3, y = 3
% by fminmax in Matlab 7.1
% IT2
clc
clear all

x1=0; x2=8; hx=.5;
x = (x1:hx:x2)';
lx=length(x);
nmx=4; % number of membership values on X (X1)

y1=0; y2=8; hy=.5;
y = (y1:hy:y2)';

ly= length(y);
nmy= 4; % number of membership values on Y (X2)

[X,Y]= meshgrid(x,y);
ZD = sinc_new(X).*sinc_new(Y); % my sinc function

optim=1; % we use optim=0 to check function and not to optimize
 % we use optim=1 to optimize

if optim ==0
 figure;
 mesh(X,Y,ZD);title('INPUT')
 axis([x1 x2 y1 y2 -1 1])

else
 figure;
 subplot(2,2,1);mesh(X,Y,ZD);title('INPUT')
 axis([x1 x2 y1 y2 -1 1])

 lz=size(ZD)
 nz=lz(1)*lz(2)

 %upper membership function parameters for input 1

 mf_upper_1=[1.5854 0;
 1.5854 2.6667;
 1.5854 5.3333;
 1.5854 8];

 %upper membership function parameters for input 2
 mf_upper_2=[1.5854 0;
 1.5854 2.6667;
 1.5854 5.3333;
 1.5854 8];

 %lower membership function parameters for input 1
 mf_lower_1=[0.6794 0;
 0.6794 2.6667;

80

22.05.2008 11:10 J:\Tezprog\sincTT2B8new6.m 2 of 6

 0.6794 5.3333;
 0.6794 8];
 %lower membership function parameters for input 2
 mf_lower_2=[0.6794 0;
 0.6794 2.6667;
 0.6794 5.3333;
 0.6794 8];
 mf_lower_11=0.6794*ones(4,1);
 mf_lower_22=0.6794*ones(4,1);
 mf_up =[mf_upper_1;mf_upper_2];
 mf_low = [mf_lower_11;mf_lower_22];
 r=zeros(8,6);
 A=[mf_up mf_low r];% initial parameters of right sides of rules:

 lb = zeros(size(A))-49.9; % low bounds for parameters
 lb(:,1:1) = -49.9*ones(8,1);
 lb(:,2:2) = zeros(8,1);
 lb(:,3:3) = -49.9*ones(8,1);
 ub = 50*ones(size(A)); % upper bounds for parameters
 ub(:,1:1) = 50*ones(8,1);
 ub(:,2:2) = 8*ones(8,1);
 ub(:,3:3) = 50*ones(8,1);
 error = []; %errors of training data

 %B=indexes of premises in k-th rules:

 B=[1 1
 1 2
 1 3
 1 4
 2 1
 2 2
 2 3
 2 4
 3 1
 3 2
 3 3
 3 4
 4 1
 4 2
 4 3
 4 4
];

 global B X Y ZD Z lz

 npar=length(A);
 Z=0; % function value in b8funnew
 f8=sincT2B3funnew(A,B, X, Y, ZD, lz);
 err = f8; % initial error
 serror =err;
 global Z serror kiter kc

81

22.05.2008 11:10 J:\Tezprog\sincTT2B8new6.m 3 of 6

 errstring=num2str(err); % used for plotting

 %===below is optimization !!!===============
 error = []; % collect errors
 options = optimset('MaxFunEvals',300*npar,'MaxIter',300*npar,'TolFun',1e-8);

 sa=size(A);
 npar=sa(1)*sa(2);
 %options(14)=10*npar; % by default 100*npar

 tic % time of beginning
 for kc=1:100
 kiter=0
 A1 = fminimax(@sincT2B3funnew,A,[],[],[],[],lb,ub, [],options,B, X, Y, ZD,
lz);
 f8=sincT2B3funnew(A1, B, X, Y, ZD, lz); % error
 error2 = f8
 error=[error error2]; % collect errors
 A=A1;
 end
 toc % time of end

 errstring=num2str(error2);

 subplot(2,2,2);mesh(X,Y,Z);title('OUTPUT');
 axis([x1 x2 y1 y2 -1 1])

 subplot(2,2,3);
 plot(error)
 title('Error curve')
 xlabel('Number of iterations')
 f88=Z-ZD;
 titstr=['Error surface for OUTPUT, RMSE = ' errstring];
 subplot(2,2,4);mesh(X,Y,f88);
 title(titstr);
 axis([x1 x2 y1 y2 -1 1])
end % optim
figure;
mesh(X,Y,Z);title('OUTPUT');
axis([x1 x2 y1 y2 -1 1])

x=0:.01:8;
y=0:.01:8;
x=x';y=y';
figure;
plot(x,gaussmf(x,[1.1324 0]),'m')
hold on
plot(x,gaussmf(x,[1.1324 2.6667]),'m')
hold on
plot(x,gaussmf(x,[1.1324 5.3333]),'m')
hold on
plot(x,gaussmf(x,[1.1324 8]),'m')

figure;

82

22.05.2008 11:10 J:\Tezprog\sincTT2B8new6.m 4 of 6

for j=1:1
 subplot(1,2,1);plot2d1(gaussmf(x,[mf_upper_1(j,1) mf_upper_1(j,2)])',gaussmf(x,
[mf_lower_1(j,1) mf_lower_1(j,2)])',x')
 hold on
 title('Initial Mfs of Input X1')
 plot(x,gaussmf(x,[1.1324 0]),'m')
 hold on
end
for j=2:2
 subplot(1,2,1);plot2d11(gaussmf(x,[mf_upper_1(j,1) mf_upper_1(j,2)])',gaussmf(x,
[mf_lower_1(j,1) mf_lower_1(j,2)])',x')
 hold on
 title('Initial Mfs of Input X1')
 plot(x,gaussmf(x,[1.1324 2.6667]),'m')
 hold on
end
for j=3:3
 subplot(1,2,1);plot2d111(gaussmf(x,[mf_upper_1(j,1) mf_upper_1(j,2)])',gaussmf(x,
[mf_lower_1(j,1) mf_lower_1(j,2)])',x')
 hold on
 title('Initial Mfs of Input X1')
 plot(x,gaussmf(x,[1.1324 5.3333]),'m')
 hold on
end
for j=4:4
 subplot(1,2,1);plot2d1112(gaussmf(x,[mf_upper_1(j,1) mf_upper_1(j,2)])',gaussmf
(x,[mf_lower_1(j,1) mf_lower_1(j,2)])',x')
 hold on
 title('Initial Mfs of Input X1')
 plot(x,gaussmf(x,[1.1324 8]),'m')
 hold on
end

for j=1:1
 subplot(1,2,2);plot2d1(gaussmf(x,[mf_upper_2(j,1) mf_upper_2(j,2)])',gaussmf(x,
[mf_lower_2(j,1) mf_lower_2(j,2)])',x')
 hold on
 plot(x,gaussmf(x,[1.1324 0]),'m')
 hold on
 title('Initial Mfs of Input X2')
end
for j=2:2
 subplot(1,2,2);plot2d11(gaussmf(x,[mf_upper_2(j,1) mf_upper_2(j,2)])',gaussmf(x,
[mf_lower_2(j,1) mf_lower_2(j,2)])',x')
 hold on
 plot(x,gaussmf(x,[1.1324 2.6667]),'m')
 hold on
 title('Initial Mfs of Input X2')
end
for j=3:3
 subplot(1,2,2);plot2d111(gaussmf(x,[mf_upper_2(j,1) mf_upper_2(j,2)])',gaussmf(x,
[mf_lower_2(j,1) mf_lower_2(j,2)])',x')
 hold on
 plot(x,gaussmf(x,[1.1324 5.3333]),'m')
 title('Initial Mfs of Input X2')

83

22.05.2008 11:10 J:\Tezprog\sincTT2B8new6.m 5 of 6

end
for j=4:4
 subplot(1,2,2);plot2d1112(gaussmf(x,[mf_upper_2(j,1) mf_upper_2(j,2)])',gaussmf
(x,[mf_lower_2(j,1) mf_lower_2(j,2)])',x')
 hold on
 title('Initial Mfs of Input X2')
 plot(x,gaussmf(x,[1.1324 8]),'m')
 hold on
end

figure;
for j=1:1
 subplot(1,2,1);plot2d1(gaussmf(x,[A(j,1) A(j,2)])',gaussmf(x,[A(j,3) A(j,2)])',
x')
 hold on
 title('Final Mfs of Input X1')
end
for j=2:2
 subplot(1,2,1);plot2d11(gaussmf(x,[A(j,1) A(j,2)])',gaussmf(x,[A(j,3) A(j,2)])',
x')
 hold on
 title('Final Mfs of Input X1')
end
for j=3:3
 subplot(1,2,1);plot2d111(gaussmf(x,[A(j,1) A(j,2)])',gaussmf(x,[A(j,3) A(j,
2)])',x')
 hold on
 title('Final Mfs of Input X1')
end
for j=4:4
 subplot(1,2,1);plot2d1112(gaussmf(x,[A(j,1) A(j,2)])',gaussmf(x,[A(j,3) A(j,
2)])',x')
 hold on
 title('Final Mfs of Input X1')
end
for j=5:5
 subplot(1,2,2);plot2d1(gaussmf(y,[A(j,1) A(j,2)])',gaussmf(y,[A(j,3) A(j,2)])',
y')
 hold on
 title('Final Mfs of Input X2')
end
for j=6:6
 subplot(1,2,2);plot2d11(gaussmf(y,[A(j,1) A(j,2)])',gaussmf(y,[A(j,3) A(j,2)])',
y')
 hold on
 title('Final Mfs of Input X2')
end
for j=7:7
 subplot(1,2,2);plot2d111(gaussmf(y,[A(j,1) A(j,2)])',gaussmf(y,[A(j,3) A(j,2)])',
y')
 hold on
 title('Final Mfs of Input X2')
end
for j=8:8
 subplot(1,2,2);plot2d1112(gaussmf(y,[A(j,1) A(j,2)])',gaussmf(y,[A(j,3) A(j,

84

22.05.2008 11:10 J:\Tezprog\sincTT2B8new6.m 6 of 6

2)])',y')
 hold on
 title('Final Mfs of Input X2')
end

85

22.05.2008 11:11 J:\Tezprog\sincT2B3funnew.m 1 of 1

function f = sincT2B3funnew(A, B, X, Y, ZD,lz)

global Z serror kiter kc
kiter=kiter+1; % number of iterations

sz=lz(2);
nz=lz(1)*lz(2);

w_upper=zeros(lz); sw_upper=w_upper; swf_upper=w_upper;%firing values of rules
w_lower=zeros(lz); sw_lower=w_lower; swf_lower=w_lower;%firing values of rules
% In Rule k:
% If x=x1 and y=y1 then f=Ak3*x+A4*y+A5
% firing value of rule calculated as:
% w = m(Ak1)*m(Ak2)

for k = 1:16 % 16 rules
 %firing value w of k-th rule:
 k1=B(k,1);
 k2=B(k,2);
 w_upper=(gaussmf(X,[A(k1,1) A(k1,2)]).*gaussmf(Y,[A(k2+4,1) A(k2+4,2)]));
 w_lower=(gaussmf(X,[A(k1,3) A(k1,2)]).*gaussmf(Y,[A(k2+4,3) A(k2+4,2)]));
 sw_upper=sw_upper+w_upper; %sum of weights
 sw_lower=sw_lower+w_lower;
 if k<=8
 F=X*A(k,4)+Y*A(k,5)+A(k,6); %right sides
 elseif k==9 | k==10 | k==11 | k==12 | k==13 | k==14 | k==15 | k==16

 F=X*A(k-8,7)+Y*A(k-8,8)+A(k-8,9);

 end
 swf_upper=swf_upper+w_upper.*F; %sum of weighted outputs
 swf_lower=swf_lower+w_lower.*F;
end

Z_upper=swf_upper; %total output for each point
Z_lower=swf_lower; %total output for each point
Z=(Z_upper+Z_lower)/2;
ff=Z-ZD;
f = sqrt(sum(sum(ff.*ff))./nz);
disp(['kc= ' num2str(kc) ' kit= ' num2str(kiter) ' err= ' num2str(f)])

serror=[serror f];

86

REFERENCES

1. Zadeh, L. A., “Soft Computing and Fuzzy Logic”, IEEE Software, Vol. 11, No. 6,

pp. 48-56, November 1994.

2. fuzzyTECH R© 5.3 User’s Manual, c©1999 INFORM Gbmh / Inform Software Corp.,

July 15 1999.

3. Jang, J.-S. R., C.-T. Sun and E. Mizutani,Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence, Upper Saddle River,

NJ: Prentice Hall, 1997.

4. Mendel, J. M., Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New

Directions, Upper Saddle River, NJ: Prentice Hall, 2001.

5. Batyrshin, I. and O. Kaynak, “Parametric Classes of Generalized Conjunction and

Disjunction Operations for Fuzzy Modeling”, IEEE Trans. on Fuzzy Systems, Vol.

7, No. 5, pp. 586-596, October 1999.

6. Batyrshin, I., O. Kaynak and I. Rudas, “Fuzzy Modelling Based on Generalized

Conjunction Operations”, IEEE Trans. on Fuzzy Systems, Vol. 10, No. 5, pp. 678-

683, October 2002.

7. Zadeh, L. A., “The Concept of a Linguistic Variable and its Appplication to Ap-

proximate Reasoning”, Information Sciences, Vol. 8, pp. 199-249, 1975.

8. John, R. J. and S. Coupland, “Type-2 Fuzzy Logic: A Historical View”, IEEE

Computational Intelligence Magazine, Vol. 2, No. 1, pp. 57-62, February 2007.

9. Mizumoto, M. and K. Tanaka, “Fuzzy Sets of Type 2 Under Algebraic Product and

Algebraic Sum”, Fuzzy Sets and Systems, Vol. 5, pp. 277-290, 1981.

10. Mizumoto, M. and H.-J. Zimmerman, “Some Properties of Fuzzy Set of Type 2”,

87

Information and Control, Vol. 31, pp. 312-340, 1976.

11. Dubois, D. and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Aca-

demic Press, New York, 1982.

12. Gorzalczany, M. B., “A Method of Inference in Approximate Reasoning Based on

Interval-Valued Fuzzy Sets”, Fuzzy Sets and Systems, Vol. 21, pp. 1-17, 1987.

13. Turksen, I. B., “Fuzzy Normal Forms”, Fuzzy Sets and Systems, Vol. 69, pp. 319-

346, 1995.

14. Schwarz, D. G., “The Case for An Interval-Based Representation of Linguistic

Truth”, Fuzzy Sets and Systems, Vol. 17, pp. 153-165, 1985.

15. Klir G. J. and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Prentice-

Hall, 1988.

16. Bustince, H., “Indicator of Inclusion Grade for Interval-Valued Fuzzy Sets. Applica-

tion to Approximate Reasoning Based on Interval-Valued Fuzzy Sets”, International

Journal of Approximate Reasoning, Vol. 23, No. 3, pp. 137-209, 2000.

17. Liang, Q. and J. M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and

Design”, IEEE Transactions on Fuzzy Systems, Vol. 8, pp. 535-549, 2000.

18. Karnik, N. N. and J. M. Mendel, “Introduction to Type-2 Fuzzy Logic Systems”, In

Proc. IEEE World Congress on Computational Intelligence, pp. 915-920, Anchorage,

Alaska, USA, 1998.

19. Karnik, N. N. and J. M. Mendel, “Type-2 Fuzzy Logic Systems: Type Reduction”,

In Proceedings IEEE Systems, Man and Cybernatics, pp. 2046-2051, 1998.

20. Karnik, N. N. and J. M. Mendel, “Centroid of A Type-2 Fuzzy Set”, Information

Sciences, Vol. 132, pp. 195-220, 2001.

88

21. John, R. I., “Type-2 Fuzzy Sets for Community Transport Scheduling”, In Proceed-

ings of the Fourth European Congress on Intelligent Techniques and Soft Computing-

EUFIT’96, Vol. 2, pp. 1369-1372, 1996.

22. John, R. I., “Type-2 Fuzzy Sets for Knowledge Representation and Inferencing”,

Research Monograph 10, School of Computing Sciences, De Montfort University,

1998.

23. Karnik, N. N. and J. M. Mendel, “Application of Type-2 Fuzzy Logic System to

Forecasting of Time Series”, Information Sciences, Vol. 120, pp. 89-111, 1999.

24. Zadeh, L. A., “Fuzzy Logic = Computing with Words”, IEEE Transactions on

Fuzzy Systems, Vol. 4, pp. 103-111, 1996.

25. Mendel, J. M., “The Perceptual Computer: An Architecture for Computing with

Words”, In Proc. FUZZ-IEEE 2001, Melbbourne, Australia, 2001.

26. Mendel, J. M., “Fuzzy Sets for Words: A New Beginning”, In Proc. FUZZ-2003,

pp. 37-42, St. Louis, MO, USA, 2003.

27. Turksen, I. B., “Type 2 Representation and Reasoning for CWW”, Fuzzy Sets and

Systems, Vol. 127, pp. 17-36, 2002.

28. Mendel, J. M. and R. I. John, “Type-2 Fuzzy Sets Made Simple”, IEEE Transaction

on Fuzzy Systems, Vol. 10, No. 2, pp. 117-127, 2002.

29. Wu, H. and J. M. Mendel, “Introduction to Uncertainty Bounds and Their Use in

The Design of Interval Type-2 Fuzzy Logic Systems”, In Proceedings of FUZZ-IEEE

2001, Melbourne, Australia, 2001.

30. Wu, H. and J. M. Mendel, “Uncertainty Bounds and Their Use in The Design of

Interval Type-2 Fuzzy Logic Systems”, IEEE Transactions on Fuzzy Systems, pp.

622-639, Oct. 2002.

89

31. Melin, P. and O. Castillo, “Intelligent Control of Non-Linear Dynamic Plants Using

Type-2 Fuzzy Logic and Neural Networks”, In Proc., FUZZ-IEEE 2004, Budapest,

Hungary, July 2004.

32. Hagras, H., “A Hierarchical Type-2 Fuzzy Logic Control Architecture for Au-

tonomous Mobile Robots”, IEEE Trans. Fuzzy Systems, Vol. 12, pp. 524-539, 2004.

33. Wu, D. and W. W. Tan, “A Type-2 Fuzzy Logic Controller for the Liquid-Level

Process”, In Proc. FUZZ-IEEE 2004, pp. 953-958, Budapest, Hungary, July 2004.

34. Figueroa, J., J. Posada, J. Soriano, M. Melgarejo, and S. Rojas, “A Type-2 Fuzzy

Controller for Tracking Mobile Objects in the Context of Robotic Soccer Games”,

In Proc. FUZZ-IEEE 2005, pp. 359-364, Reno, Az, USA, May 2005.

35. MATLAB R© Fuzzy Logic Toolbox Tutorial, c©1994-2005 The MathWorks, Inc.

36. Batyrshin, I. and M. Wagenknecht, “Towards a linguistic description of dependen-

cies in data”, International Journal of Applied Mathematics and Computer Science.

Special Issue on Computing with Words and Perceptions (ed. by D. Rutkowska, J.

Kacprzyk, L.A. Zadeh), Vol. 12, No. 3, 391-401, 2002.

37. Hagras, H., “Type-2 FLCs: A New Generation of Fuzzy Controllers”, IEEE Com-

putational Intelligence Magazine, Vol. 2, No. 1, pp. 30-43, February 2007.

38. Mendel, J. M., “Type-2 Fuzzy Sets and Systems: An Overview”, IEEE Computa-

tional Intelligence Magazine, Vol. 2, No. 1, pp. 20-29, February 2007.

39. Liang, Q. and J. M. Mendel, “An Introduction to Type-2 TSK Fuzzy Logic Sys-

tems”, IEEE InternationalFuzzy Systems Conference Proceedings, 1999.

40. Liang, Q. and J. M. Mendel, “Equalization of Nonlinear Time-Varying Channels

Using Type-2 Fuzzy Adaptive Filters”, IEEE Transactions on Fuzzy Systems, Vol.

8, No. 5, October 2000.

90

41. MATLAB R© Optimization Toolbox Tutorial, c©1994-2005 The MathWorks, Inc.

42. Walsh, G. R., Methods of Optimization, A Wiley-Inrescience Publication, John

Wiley & SONS, 1975.

43. Chong E. K. P. and S. H. Zak, An Introduction to Optimization, John Wiley &

SONS, INC , Second Edition, USA, NY, 2001.

