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ABSTRACT

AN AUTOMATIC ARCHITECTURE GENERATOR FOR

SIGMA-DELTA MODULATORS CONSIDERING

COMPONENT NON-IDEALITIES

In this thesis, a tool generated in MATLAB environment for automatic modeling

and architecture synthesis of sigma-delta modulators is introduced. The tool is capable

of generating the parametric signal and noise transfer functions of a sigma-delta mod-

ulator of any order automatically. After generating the transfer functions, it optimizes

both the signal and noise transfer functions of the system simultaneously in such a way

to realize a desired frequency response.

Most important of all, this tool is capable of taking component non-idealities into

account and optimizing the coefficients so as to compensate the effects of non-idealities

on the system. The component non-idealities taken into consideration consist of the

integrator non-idealities such as the switched capacitor mismatches, integrator leakage

due to finite DC gain of the op-amp, etc. since they can directly be mapped to the

transfer functions of the system.

The tool uses some criteria in generating the architectures such as minimization

of the number of signal paths of the architecture in order to obtain minimum pos-

sible complexity, avoiding of single closed loops without a delay and forcing all the

coefficients to be real numbers. Also, another important aspect of the tool is that it

spans the whole solution space according to these criteria and returns a set of several

parametric solutions.
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ÖZET

SİGMA-DELTA KİPLEYİCİLER İÇİN ELEMAN

İDEALSİZLİKLERİNİ DE HESABA KATAN BİR

OTOMATİK MİMARİ GELİŞTİRİCİ

Bu tezde, sigma-delta kipleyiciler için MATLAB ortamında geliştirilmiş bir

otomatik modelleme ve yapı sentezleme aracı tanıtılmaktadır. Bu araç, her hangi bir

dereceden bir sigma-delta kipleyicinin parametrik sinyal ve gürültü transfer fonksiy-

onlarını otomatik olarak geliştirebilmektedir. Transfer fonksiyonlarını geliştirdikten

sonra, sistemin hem sinyal hem de gürültü transfer fonksiyonlarını, istenen belirli bir

frekans cevabını gerçekleyebilecek şekilde aynı anda optimize edebilmektedir.

Herşeyden önemlisi, bu araç, eleman idealsizliklerini hesaba katabilme ve mi-

mari katsayılarını bu idealsizliklerin sistem üzerindeki etkilerini yok edebilecek şekilde

optimize edebilme yetisine sahiptir. Hesaba katılan eleman idealsizlikleri, doğrudan sis-

temin transfer fonksiyonlarına aktarılabiliyor olmalarından ötürü, anahtar kondansatör

uyumsuzlukları, işlevsel yükseltecin sonlu DC kazancına bağlı inetgrator kaçağı, vb.

gibi integrator idealsizliklerinden oluşmaktadır.

Araç, yapıları oluştururken mümkün olan en az karmaşıklığı sağlayabilmek için

yapıdaki sinyal yollarının sayısının en aza indirilmesi, gecikmesiz kapalı döngülerin

ortaya çıkmasının engellenmesi, bulunan katsayıların reel olması gibi bir takım kriterler

kullanmaktadır. Ayrıca aracın en önemli yanlarından birisi de bahsedilen kriterlere göre

tüm çözüm uzayını tarıyor ve pek çok parametrik çözüm kümesi döndürüyor olmasıdır.
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1. INTRODUCTION

1.1. Background and Problem Definition

Although real world signals are analog, it is often desirable to convert them into

the digital domain using an A/D converter because digital signals are much more ef-

ficient than analog signals in terms of both data transmission and storage. Intricate

processing of the signal may also necessitate analog to digital conversion since such pro-

cessing is only feasible in the digital domain using either conventional digital computers

or special purpose DSPs. Signal processing in the digital domain is also extremely use-

ful in such areas as biomedical applications, providing the needed accuracy for tasks

such as ultrasound imaging [1]

A/D conversion techniques may roughly be divided into two groups:

• Nyquist-rate (or conventional) converters,

• Oversampling converters.

Oversampling methods are widely used in A/D and D/A conversion since they

avoid many difficulties encountered with conventional methods. Some attributes of

conventional converters such as the use of analog filters, the need for high precision

analog circuits, and vulnerability to noise and interference make their circuits difficult

to implement but, their usage of relatively low sampling rates is still an advantage [2].

Among various oversampling A/D conversion techniques available in the litera-

ture, sigma-delta (SD) conversion technique is becoming more and more popular. SD

converters operate with redundant temporal data, obtained by using oversampling with

low-resolution quantizers, and apply signal processing techniques to combine these tem-

poral data which increases the effective resolution. This temporal parallelism is the

basis of robustness of the SD converters, which have widened their range from instru-

mentation to communication as shown in Figure 1.1. The thermal noise limit position
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in Figure 1.1 corresponds to the state-of-the-art CMOS data converters reported at the

IEEE International Solid-State Circuits Conference (ISSCC’96) [3] and in the IEEE

Journal of Solid-State Circuits [4]. The use of SD based A/D converters for data con-

Figure 1.1. Application range of several modulator architectures in the

resolution-speed plane

version is very attractive, since it uses basic blocks and requires no sample and hold.

The sampling rate employed is much faster than the highest frequency in the message

signal itself. The high accuracy conversion is achieved as a result of the modulator

operating as a self-adaptive, fast limit cycling system [1, 5]. Besides the advantages

of this technique, there are some difficulties in designing SD A/D converters. One

of the major difficulties is the determination of the appropriate SD structure, which

provides the required performance. Since SD A/D converters contain large number

of connections between building blocks (quantizer(s), integrator(s), DAC) there exist

more than one structure satisfying the desired performance specifications for a required

application and generally the design procedure gets extremely complicated. In order

to decrease the complexity of the design procedure, automation tools have been de-

veloped [4, 6, 7]. Although all of these approaches have been successful in addressing

some aspects of the SD converter design problem, none have been able to solve the

architecture selection problem completely.

A standard SD modulator system utilizes several signal feedforward and signal

feedback paths. For every such signal path there exists an associated coefficient, which
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is the path gain. These coefficients are all related to each other and a small change in

one of them may cause dramatic changes in the operation, response, and performance

of the overall modulator. On the other hand, including or removing any of these paths

corresponds to a different modulator topology. Another important issue is that there

are many non-idealities in the SD modulator system in real-life, which should also be

taken into account in the design process. These non-idealities may include the clock-

jitter, kT/C noise, op-amp noise, and integrator non-idealities such as the finite DC

gain (leakage), the switched capacitor mismatches, slew-rate limitation of the op-amp,

dc offset of the comparator, etc. [8].

Hence, in designing an SD modulator, the challenge is not only the selection of

a modulator topology from a large set of possibilities but also the optimization of the

topology parameters, the coefficients, in such a way to satisfy the system specifications

without ignoring the mentioned non-idealities. The design flow should include three

basic steps:

• determination of all possible SD modulator topologies of any order, which is

capable of realizing a desired response,

• selection of the optimum topology from these possibilities,

• calculation of the topology coefficients, which satisfy the system specifications

and still remain in considerable limits.

As obvious from the above discussion, the optimum topology for a specific application

can only be constructed by employing a design automation tool. Some versatile tools

were previously developed in the MATLAB environment as a solution to this design

automation problem such as [9] and [10].

This thesis proposes a new design automation tool generated in the MATLAB en-

vironment. The tool works independently of the modulator order and finds all possible

SD modulator topologies satisfying a desired system response with minimum number

of signal paths which in turn leads to minimum complexity. Compared to similar work

in this area, this tool has several advantages. First of all, it has a stand-alone tool
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which is a symbolic analyzer which works in a SPICE-like fashion; that is, it takes

a netlist of an SD modulator architecture of any order and any complexity in block

level as the input, determines the input-output relation for each block in z-domain and

generates an equation for each node of the architecture in terms of symbolic variables.

The designer may utilize this analyzer to evaluate various design alternatives at the

block level. It is not only independent of the order of the architecture, but also inde-

pendent of the actual blocks, whereby the user may add new functional blocks to the

tool. Another important advantage of the tool proposed is that, it models the inte-

grator non-idealities which constitute most of the non-idealities of the SD modulator

architecture. The tool also optimizes the coefficients not for STF or NTF only, but

for both of them simultaneously and it provides the whole solution space satisfying a

desired response [11, 12].

1.2. Outline of the Thesis

The next chapter deals with the theoretical aspects of the oversampling SD A/D

converters. Basic concepts about SD modulation such as quantization, oversampling,

etc. are described. Various different SD modulator architectures from single-loop to

cascaded stages, single-bit to multi-bit systems are explained.

In Chapter 3, the SD modulator non-idealities are discussed. Their effects on

system performance are investigated.

In Chapter 4, a new automatic architecture generator tool designed in the MAT-

LAB environment is introduced. The operation principles of the tool are described in

detail.

Chapter 5 focuses on the application of the automatic architecture generator tool.

Various examples are given for the application of the tool and the results are discussed.

Finally, Chapter 6 concludes the thesis.
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2. OVERSAMPLING SD A/D CONVERTERS

This chapter focuses on oversampling SD A/D converters. It starts with the de-

scription of basic concepts, continues with the oversampling theory, quantization and

various SD modulator architectures, from single-loop to cascade higher-order architec-

tures. A much more detailed version of the following may be found in [4].

2.1. Basic Concepts

The block diagram of an oversampling SD A/D converter is shown in Figure 2.1.

The following SD A/D converter contains:

• an anti-aliasing filter, to eliminate the spectral components with a frequency

higher than the Nyquist rate. A simple passive first order filter is enough here,

thanks to oversampling.

• a modulator, to sample and quantize the signal. Also the modulator shapes

the power spectral density (PSD) of the inherent quantization error in such a

way that most of its power is carried out of the signal band. The output of the

modulator is usually coded into a reduced number of bits at the sampling rate

[4].

• a decimator, to filter all the spectral components out of the signal band - most

of which is the quantization error power - and to decimate the data to reduce the

sampling frequency down to the Nyquist frequency so that the signal becomes

coded in large number of bits at the output.

Figure 2.1. Block diagram of a SD A/D converter [4]
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The design of the decimator and the anti-aliasing filter are easy compared to the

modulator since the former is a well-structured digital block that can be designed by

the help of CAD tools and the latter simplified up to a simple RC low-pass filter by

the help of oversampling [13] Associated with the modulator there are several error

mechanisms including the inherent quantization noise and several circuit non-idealities

due to component imperfections which degrade the performance of the system.

2.1.1. Oversampling and Quantization Noise

The quantizer in the SD modulator may be represented mathematically by a

non-linear function as

y = gqi + e, (2.1)

where y is the output and i is the input of the quantizer; gq is the slope of the line

intersecting the code steps (or the quantizer gain) and e is the quantization error. If

the quantizer input is limited to the range [imin, imax], the quantizer error is bounded in

the range [−∆/2,∆/2] where ∆ is the difference between consecutive quantizer levels

or the stepsize.

If the input to the quantizer is assumed to be varying randomly from sample to

sample in the given input range [imin, imax], and the number of levels of the quantizer

is large enough, it can be shown [14] that the quantizer error distributes uniformly in

the range [−∆/2,∆/2] and has a constant power spectral density as white noise. That

is the reason why the quantization error is usually called quantization noise.

If the total quantization noise power is denoted by σ2(e) and if it is uniformly

distributed over the frequency range [−fs/2, fs/2] where fs is the sampling frequency,

then the PSD of the quantization noise is

SE(f) =
σ2(e)

fs
=

∆2

12fs
. (2.2)
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The whole noise power sits in the signal band if the sampling frequency fs is the same

as the Nyquist frequency and it equals ∆2/12. But if the sampling frequency is different

than the Nyquist frequency, the in-band quantization noise power is given by

PQ =
∆2fd

12fs
=

∆2

12M
, (2.3)

where fd is the Nyquist frequency and fd/fs, denoted by M , is the OSR. The in-band

noise power is inversely proportional to the OSR, and as suggested by Equation (2.3),

there occurs a 3dB/octave reduction in the in-band quantization noise power for every

increment in the OSR . The above issues are discussed in more detail in [4].

2.1.2. SD Modulator

A basic SD modulator scheme is shown in Figure 2.2. For the quantizer, the

signal e(t) is assumed to be uniformly distributed in the range [−∆/2,∆/2] and its

PSD is given by Equation (2.2). The validity of these assumptions are proven in [15]

for time-variant modulator inputs. The modulator in Figure 2.2 is a 2-input 1-output

Figure 2.2. (a) Basic structure of the SD modulator. (b) Quantizer model. [4]

system that can be represented in z-domain by

Y (z) = STF (z)X(z) + NTF (z)E(z), (2.4)

where Y (z) is the z-transform of the output, X(z), E(z) are the z-transforms of the

input and quantization noise signals; and STF (z), NTF (z) are the transfer functions
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of these signals respectively. STF (z) and STF (z) are mathematically defined as

STF (z) =
Y (z)

X(z)

∣

∣

∣

∣

E(z)=0

and NTF (z) =
Y (z)

E(z)

∣

∣

∣

∣

X(z)=0

. (2.5)

The transfer functions STF (z) and NTF (z) depend on the modulator architecture

but generally, in order to have a working modulator the following conditions should be

imposed [4]:

|STF (z)| = cte

NTF (z) → 0
for z → 1 (2.6)

The governing equation for the SD modulator scheme shown in Figure 2.2 can be

written as

Y (z) =
H(z)

1 + H(z)
X(z) +

1

1 + H(z)
E(z). (2.7)

This equation, combined with the conditions given in Equation (2.6) results in a discrete

time filter H(z) which is expressed as

H(z) =
z−1

1 − z−1
. (2.8)

Substituting this result in (2.7) leads to an output in the form,

Y (z) = z−1X(z) + (1 − z−1)E(z), (2.9)

which means that the output is a delayed version of the input signal combined with

the shaped quantization noise where the shaping function is the NTF (z) = (1 − z−1).

Since the given NTF is first order, the modulator in Figure 2.2 is said to be a first

order modulator. Another representation of the same modulator is given in Figure 2.3

where both the signal path and the feedback path has the associated coefficients or

gain factors g1 and g ′

1 respectively.
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Figure 2.3. A first order SD modulator

2.1.3. Commonly Used Figures of Merit

Commonly used figures of merit for the performance estimation of oversampling

converters may be summarized as follows:

2.1.3.1. Signal-to-Noise Ratio (SNR). If quantization noise is assumed to be the only

noise source of the system, the SNR, which is only dependent on the input signal

amplitude in this case, is given as

SNR(dB) = 10 log10

(

A2/2

PQ

)

, (2.10)

where A stands for the amplitude of the input sinusoid, A2/2 is the output power

at the frequency of the input sinusoid and PQ is the in-band noise power given by

Equation (2.3). According to Equation (2.10), SNR increases monotonously with the

input amplitude but, beyond a certain input level, the input at the quantizer exceeds

the range [imin, imax] given in Section 2.1.1 and at a definite input level, a sharp decrease

occurs in the SNR vs. input amplitude curve.

It has to be noted that the assumption of quantization noise as the only noise

source is generally very optimistic and there are other noise sources due to circuit level

non-idealities in reality. For this reason, it is more convenient to use the signal-to-(noise

distortion) ratio, TSNR [4].

2.1.3.2. Dynamic Range (DR). The dynamic range is the ratio of the output power

for an input with the full-scale range amplitude and that for an input at the same
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frequency with the previous one but with an amplitude which results in a 0 dB SNR. If

the quantizer is a single-bit one, the full-scale range amplitude corresponds to ∆/2. The

output power for an input resulting in a 0 dB SNR is obviously PQ from Equation (2.10).

So for that case, the DR can be given as [4]

DR(dB) = 10 log10

[

(∆/2)2

2PQ

]

. (2.11)

2.1.3.3. Effective Resolution (B). The effective resolution of an SD modulator may be

defined in terms of its DR as [4]

B(bit) =
DR(dB) − 1.76

6.02
, (2.12)

which states that a 3 dB increase in DR results in a 0.5 bit increase in effective reso-

lution.

2.2. SD Modulator Architectures

Up to now, several different SD modulator architectures have been proposed. The

main objective in designing new SD architectures is to provide the maximum possible

in-band quantization noise reduction. This reduction makes it possible to obtain a

given resolution with a lower oversampling ratio, and in turn results in a lower power-

to-speed ratio for the SD modulator. There are two basic ways of in-band noise power

reduction:

i. Increasing the order of the NTF(z) by increasing that of the discrete time filter

H(z), in order to achieve a better cancellation of the quantization noise.

ii. Increasing the number of bits of the internal quantizer, since increased quantizer

resolution results in an increase in the effective resolution of the modulator. Be-

cause the stepsize ∆ and in turn the PSD of quantization error is reduced by this

way.
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2.2.1. Second Order SD Modulator

If the number of integrators used in the SD modulator architecture is two, then

the modulator is called a ’second order SD modulator’ which is shown in Figure 2.4.

The order of NTF in this case is two also. The stability of this loop is guaranteed if

Figure 2.4. A second order SD modulator

g ′

2 = 2g1g2 [16]. Also imposing g ′

1 = g1 results in the following output:

Y (z) = z−2X(z) + (1 − z−1)2E(z) (2.13)

Compared to the output of a first order system given in Equation (2.9), the NTF (z) is

now a second order filter which provides a better noise cancellation and decreases the

in-band noise power. Also the extra feedback path has has a very important function

in decreasing the correlation between the input and quantization error signals.

The PSD of quantization noise for the second order case is

SQ(f) = SE(f)

[

16 sin4

(

π
f

fs

)]

, (2.14)

where SE(f) is as given in Equation (2.2). Furthermore, the in-band-noise power for

the second order SD modulator is

PQ
∼=

∆2

12

π4

5M5
, (2.15)

where M is the OSR. (For a detailed analysis of the PSD and in-band noise power

for this case, please refer to [4].) As can be deduced from Equation (2.14) and Equa-
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tion (2.15), the DR and the effective resolution is higher for the second order modulator

compared with the first order one.

The difference between NTF (z) of the first and the second order system is shown

in Figure 2.5. For the second order system, the PSD is reduced in the low frequency

regions and it is increased in the high frequency region which means the noise is carried

out of the signal band more efficiently and the in-band noise power is decreased.

Figure 2.5. Noise transfer functions of a first and second order SD modulator as a

function of the frequency [4]

Although the second order modulator has such advantages over the first order

one, it is more prone to instability. An increase in the loop gain beyond a definite

value, or an extra delay in the loop may cause the modulator become instable.

2.2.2. Single-loop High-order Modulators

Higher-order SD modulator architectures can easily be obtained by increasing the

number of integrators before the quantizer. For the generalized case of L integrators,

which means a modulator of order L, the generalized z-domain output can be expressed

as

Y (z) = z−LX(z) + (1 − z−1)LE(z), (2.16)
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and the generalized expressions for the quantization noise PSD and the in-band noise

power become

SQ(f) = SE(f)

[

22L sin2L

(

π
f

fs

)]

, (2.17)

and

PQ
∼=

∆2

12

π2L

(2L + 1)M2L+1
. (2.18)

2.2.2.1. Stability Considerations. As the order L of an SD modulator increases, its

tendency to instability increases also. In order an SD modulator to be called ’stable’

the outputs of the integrators of the system should be bounded in a definite range

for bounded inputs independent of the initial conditions. It can be mathematically

proven that first order and second order systems are stable for every input in the

ranges (−∆/2,∆/2) and (−0.9∆/2, 0.9∆/2) respectively [16].

But unfortunately, for systems of order L > 2, it is impossible to derive a stability

condition mathematically. It is only figured out that the stability depends on the

architecture coefficients (path gains) and the initial conditions. So in order to obtain

stable higher order modulators, the coefficients should be selected properly and the out-

of-band quantization noise should be reduced to such a level to ensure stability. Also

the integrator outputs may be bounded in a definite range by using limiters. Another

way is globally resetting the integrators in case of an unstable operation which can be

made possible by usage of comparators and local feedback loops [17].

2.2.3. High-order SD Modulator Architectures

As explained in Section 2.2.2.1, high-order modulators suffer from the problem

of instability. Various ways have been discovered to overcome the instability problem

associated with these high-order modulators.
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2.2.3.1. Single-loop Modulators. Lee and Sodini have proposed a solution [18] to

the instability problem of high-order modulators which makes it possible to gener-

ate NTF (z) with multiple poles and zeros. The architecture is shown in Figure 2.6.

The STF (z) and NTF (z) of this architecture is as follows:

STF (z) =

L
∑

i=0

Ai(z − 1)L−i

z

[

(z − 1)L −
L

∑

i=1

Bi(z − 1)L−i

]

+
L

∑

i=0

Ai(z − 1)L−i

(2.19)

NTF (z) =

(z − 1)L −
L

∑

i=1

Bi(z − 1)L−i

z

[

(z − 1)L −
L

∑

i=1

Bi(z − 1)L−i

]

+
L

∑

i=0

Ai(z − 1)L−i

(2.20)

By adjusting the coefficients Ai and Bi, the location of zeros and poles may be defined

and the in-band quantization noise power may be minimized.

2.2.3.2. Cascade Modulators. Higher order SD modulator architectures may be ob-

tained by cascading zeroth, first and second order modulators whose stability is guar-

anteed by proper design. The resulting architecture is the ”cascade” architecture which

Figure 2.6. L-th order Lee-Sodini SD Modulator
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is also known as multi-stage or MASH architecture.

In the cascade architecture, the output of one stage is the input of the other as

shown in Figure 2.7 and by this way, the quantization noise is shaped in each section

further and further. After that, the resulting noise is cancelled in a digital cancellation

block. So the order of the NTF (z) is equal to the total number of integrators in the

architecture. For a general case of a cascaded modulator of L-stages (0th, 1st or 2nd

Figure 2.7. Block diagram of a cascade SD modulator [4]

order) the general z-domain output can be expressed as;

Y (z) = STF (z)X(z)+NTF1(z)E1(z)+NTF2(z)E2(z)+ · · ·+NTFL(z)EL(z) (2.21)

where NTFL(z) and EL(z) denotes the NTF and quantization noise of the Lth stage

respectively.

2.2.4. Multi-bit Quantization SD Modulators

Increasing the number of bits of the quantizer in the SD loop increases the res-

olution as noted in the beginning of Section 2.2. Another advantage is that, since for

a multi-bit quantizer it is easy to guess the saturation of the integrator, the multi-bit

system is less prone to instability. Also obviously, increasing the number of quantiza-

tion levels results in a better linear approximation at the output of the quantizer to
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the signal at its input.

A summary of the advantages and disadvantages of the architectures mentioned

in this text is given in Figure 2.8 for comparison purposes.

Figure 2.8. Summary of SD modulator architectures [4]
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3. SD MODULATOR NON-IDEALITIES

In a standard switched capacitor (SC) SD modulator loop there is an inherent

non-linearity due to the non-idealities of the components of the system. This chapter

will summarize these component non-idealities that effect the modulator behavior.

3.1. Clock Jitter

The operation of an SC SD modulator depends on complete charge transfers

during each of the clock phases. After the analog signal has been sampled, the system

turns into a sampled-data system and the variations of the clock periods do not have a

direct effect on the system. So it is enough to compute the effect of clock jitter on the

sampling process in a SD modulator only. Here it can easily be deduced that, the effect

of clock jitter on the operation of an SD modulator is independent of the modulator

architecture.

Sampling jitter causes a non-uniform sampling and increases the total noise power

in the quantizer output. The error introduced when a sinusoidal signal with amplitude

A and frequency fin is sampled at an instant which is in error by an amount δ is given

by [8]

x(t + δ) − x(t) = 2πfinδA cos(2πfint) = δ
d

dt
x(t) (3.1)

where x(t) is the analog input signal.

If the sampling time uncertainty δ is assumed to be a Gaussian process with the

standard deviation of ∆τ , the resulting jitter error has a uniform PSD over the range

[0, fs/2] with a total power of (2πfin∆τA)2

2 .
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3.2. Integrator Noise

The thermal noise associated to the sampling switches and the intrinsic noise of

the operational amplifier are among the most important noise sources affecting the

operation of an SC SD modulator. There are three noise power sources adding up to

the total noise power of the SD modulator system. They are,

• quantization noise

• switch thermal noise

• op-amp noise.

The noise performance of the system is mainly determined by the switches and the op-

amp of the first stage, since the low-frequency gain of the first stage is large compared

to the next stages.

3.2.1. Switch Thermal Noise

Thermal noise is caused by random fluctuation of carriers due to thermal energy

and is present even at equilibrium. Thermal noise has a white spectrum and wide

band limited only by the time constant of the switched capacitors or the bandwidths

of op-amps. Therefore it must be taken into account for both the switches and the

op-amps.

Figure 3.1. A differential SC integrator
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A differential SC integrator is shown in Figure 3.1. The sampling capacitors

Cs1 and Cs2 are in series with switches with the on-resistance Ron. These switches

periodically open and close sampling a noise voltage on the capacitors. Taking Cs1 =

Cs2 = Cs, the total noise power can be evaluated by [13]

e2
T =

∞
∫

0

4kTRon

1 + (2πfRonCs)2
df =

kT

Cs
, (3.2)

where k is the Boltzman constant, T is the absolute temperature and the resistance is

modeled with a series noise source with power 4kTRon∆f and eT is the switch thermal

noise voltage. This voltage is superimposed to the input voltage x(t) as follows:

y(t) = [x(t) + eT (t)]b =

[

x(t) + 2

√

kT

bCf
n(t)

]

b, (3.3)

where n(t) denotes a Gaussian random process with unity standard deviation, b is the

integrator gain and Cf is the feedback capacitance assuming Cf1 = Cf2 = Cf . Since

the integrator is differential, both of the sampling capacitors will contribute to the

switch thermal noise. Also typically, there are also the switched feedback capacitors

at both inputs of the integrators carrying the feedback signals coming from the DAC.

These will also contribute to the thermal noise power.

3.2.2. Op-amp Noise

The flicker noise (1/f), the wide-band thermal noise and the DC offset contribute

to the total RMS noise voltage referred to the input of the op-amp. If this total RMS

noise voltage is denoted by Vn, then the total noise power due to this source, which is

V 2
n , can be calculated by simulation in clock phase Φ2, adding all the noise contributions

referred to the op-amp input and integrating the result over the whole frequency range

[8].
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3.3. Integrator Non-idealities

The transfer function of an ideal integrator is given in Equation (2.8). However,

real analog implementations of the integrator deviate from this ideal response due to

several non-ideal effects. The integrator non-idealities constitute an integral part of

the SC SD modulator performance degradation since they result in incomplete charge

transfer.

3.3.1. Finite DC Gain

The DC gain of an integrator is ideally infinite. However, this DC gain is finite in

practice due to circuit implementation constraints. The physical meaning of the gain

limitation is charge leakage. This leakage means that not all of the previous output

but only a fraction α of it is fed to the input of the integrator in the next cycle. So the

non-ideal integrator transfer function becomes

H(z)non−ideal =
z−1

1 − αz−1
. (3.4)

This limited gain in low frequencies increases the in-band noise [8].

3.3.2. Bandwidth and Slew-rate

The finite BW and SR limitations are related to each other and can be interpreted

as a non-linear gain. The output voltage of the integrator given in Figure 3.1, at the

nth integration period is

vo(t) = vo(nT − T ) + αVs

(

1 − e−t/τ
)

, nT −
T

2
< t < nT (3.5)

where Vs = Vin(nT − T
2 ), α is the integrator leakage, τ = 1/(2πGBW ) is the time

constant of the integrator and GBW is the gain-bandwidth product.The slope of this
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curve reaches its maximum at t = 0 and that slope is

d

dt
vo(t)

∣

∣

∣

max
= α

Vs

τ
. (3.6)

There are two separate cases then, if the slope value calculated by Equation (3.6) is

lower than the op-amp SR value there is no slewing else the op-amp is said to be

slewing.

3.3.3. Saturation

The dynamic of signals is a major concern for SD modulators. The saturation

levels of the op-amp, directly changes the dynamic of signals at the intermediate nodes

in the SD modulator architecture. Because, the saturation levels of the op-amp limit the

maximum achievable voltage level at the output of the integrators and this limitation

may cause dramatic errors in the A/D conversion process, especially for systems with

multi-bit quantizers. Hence, the saturation of the op-amp has a very important effect

on the system performance and should also be taken into account in designing SD

modulators.

The next chapter will introduce a new design automation tool, an automatic

architecture generator, for SD modulators which takes into account most of the mod-

ulator non-idealities and generates all possible modulator architectures satisfying a

desired frequency response.
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4. THE AUTOMATIC ARCHITECTURE GENERATOR

The automatic architecture generator is a new design automation tool for SD

modulators generated in the MATLAB environment. This tool works independently

of the modulator order and finds all possible SD modulator topologies satisfying a

desired system response with the minimum number of signal paths which in turn leads

to minimum complexity. The operation of the tool may be divided into two basic

parts: (1) Generation of the symbolic transfer functions (STF and NTF) for any given

topology of any order and with any complexity, (2) Generation of all possible topologies

with minimum number of signal paths that is, minimum complexity. These two parts

will be explained in detail in the following sections.

4.1. Generation of the Parametric (Symbolic) Transfer Functions

This part of the tool is a symbolic analyzer for SD modulators. It works in a

SPICE-like fashion; that is, it takes a netlist of an SD modulator architecture of any

order and any complexity in block level as the input, determines the input-output

relation for each block in z-domain and generates an equation for each node of the

architecture in terms of symbolic variables. Then the user is able to find the transfer

function from any node to any node by just writing the ratio of one node to one another.

Several blocks are defined in this tool which can be summarized as follows:

• INTEGRATOR: An integrator block with the z-domain transfer function of 1
1−z−1 .

It has no delay.

• INTEGRATORD: An integrator block with the z-domain transfer function of

z−1

1−z−1 . It has one unit delay, for which the capital letter D stands.

• NONIDEAL INTEGRATOR: An integrator block with the z-domain transfer

function of b
1−cz−1 , where the parameters b and c stand for the integrator non-

idealities that will be explained in Section 4.3. It has no delay.

• NONIDEAL INTEGRATORD: An integrator block with the z-domain transfer

function of bz−1

1−cz−1 where the parameters b and c again stand for the integrator
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non-idealities. It has one unit delay, for which the capital letter D stands.

• ADDER: This is a dynamic block, that is, it works independently of the number

of inputs to it. It can add or subtract any number of signals simultaneously

if the nodes are defined properly as positive (denoting an addition) or negative

(denoting a subtraction) in the netlist.

• GAIN: This is a one-input one-output block used to model the SD modulator

architecture coefficients or path gains. Its output is equal to its input multiplied

by a constant term.

Apart from these there are also some reserved terms used in defining the netlist of

the architecture. These are: (1)IN , and (2)NOISE defining the input signal, and the

quantization noise signal nodes of the architecture. At this point, the 1-bit quantizer

in the SD modulator architecture is assumed to be an ideal unity gain element, which

just adds a noise signal into the system. For this reason it is defined as an adder in the

netlist and no extra element has been defined for the quantizer. The D/A converter is

also considered as ideal and is just a unity gain element. A generic second order SD

Figure 4.1. The generic standard second order SD modulator architecture comprising

all possible feedback and feedforward paths

modulator architecture is shown in Figure 4.1. It comprises all the possible feedback

and feedforward paths from g1 up to g15. Assuming the integrators to be ideal, the

architecture given in Figure 4.1 can be defined in block level by the netlist shown in

Figure 4.2. The tool gets this netlist as the input and generates symbolic expressions

for each node of the architecture of Figure 4.1. For example after processing line 17
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Figure 4.2. The block level netlist for the architecture shown in Figure 4.1

in the netlist, the tool generates the equation

x3 = x2 − x5 − x4 − x23, (4.1)

and line 22 results in the equation

x7 =
z−1

1 − z−1
x3 (4.2)

etc., each xi denoting the symbolic expression associated with node i of the architecture.

Finally, after processing all the lines of the netlist, the symbolic equations can be

expressed in terms of the path gains g1 to g15.

After calculations of all symbolic expressions, the STF and the NTF in terms of

path gains can be generated by inputting manually the proper fractional expressions,

which are

STF =
x22

x1

∣

∣

∣

NOISE=0
and NTF =

x22

x21

∣

∣

∣

IN=0
(4.3)

for the specific architecture of Figure 4.1, where x22 is the output node, x1 is the signal

input node and x21 is the noise input node. The resulting STF and NTF in terms of
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path gains for the given architecture are as follows:

STF (z) =
n2STF

z2 + n1STF
z + n0STF

d2STF
z2 + d1STF

z + d0STF

(4.4)

NTF (z) =
n2NTF

z2 + n1NTF
z + n0NTF

d2NTF
z2 + d1NTF

z + d0NTF

(4.5)

where

n2STF
= −g7 + g6 g5 + g1 g6 g2 − g1 g8

n1STF
= −g1 g9 g2 + g14 g2 g7 − g1 g8 g11 − g1 g15

−g14 g5 g8 − g7 g11 + 2 g1 g8 − g3 g7 − g1 g6 g4

+g3 g6 g5 − g9 g5 + 2 g7 − 2 g1 g6 g2 − 2 g6 g5

n0STF
= −g7 + g3 g7 + g1 g15 − g1 g8 + g9 g5 + g7 g11

−g3 g6 g5 + g6 g5 + g1 g6 g2 + g1 g6 g4 + g1 g9 g4

+g1 g8 g11 + g1 g9 g2 + g14 g5 g8 − g14 g5 g15

−g14 g4 g7 − g1 g15 g11 − g3 g7 g11 − g3 g9 g5 − g14 g2 g7

n2NTF
= 1

n1NTF
= −2 + g3 + g11 − g14 g2

n0NTF
= 1 − g11 + g14 g2 − g3 + g14 g4 + g11 g3

d2STF
= d2NTF

= −g8 g13 + g10 + g6 g13 g2 − g6 g12 + 1

d1STF
= d1NTF

= −2 + g3 + g11 − g9 g13 g2 + g10 g3 + g9 g12

+g10 g11 − g14 g2 − g8 g11 g13 − g14 g10 g2 + 2 g8 g13

−2 g10 − g15 g13 + 2 g6 g12 − g6 g3 g12 + g14 g8 g12

−g6 g13 g4 − 2 g6 g13 g2

d0STF
= d0NTF

= 1 − g3 + g10 − g11 + g6 g13 g2 + g14 g2 + g8 g11 g13

−g15 g11 g13 + g14 g15 g12 + g14 g10 g2 + g14 g4

+g9 g3 g12 + g10 g11 g3 + g11 g3 + g9 g13 g4 + g9 g13 g2

+g6 g3 g12 − g14 g8 g12 + g6 g13 g4 + g14 g10 g4 + g15 g13

−g9 g12 − g6 g12 − g10 g11 − g10 g3 − g8 g13

(4.6)

Before closing this section, it has to be mentioned that this part of the tool can also

be used as a stand-alone tool which is a symbolic analyzer. The designer may utilize

this analyzer to evaluate various design alternatives at the block level. It is not only
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independent of the order of the architecture, but also independent of the actual blocks,

whereby the user may add new functional blocks to the tool. This symbolic analyzer

is a really powerful tool and nothing similar to it has been proposed up to now.

4.2. Generation of All Possible SD Modulator Architectures

This part of the tool is invoked after the symbolic STF and NTF are generated

as described above. The user inputs two numeric transfer functions one describing

the desired STF , and the other describing the desired NTF . These numeric transfer

functions are the responses to be realized by the symbolic transfer functions such as

those given in Equation (4.4) and Equation (4.5) for the generic architecture of Fig-

ure. 4.1. In order to achieve this, the coefficients of the symbolic STF and NTF given

in Equation (4.6) are matched with those of the numeric STF and NTF respectively.

Here it should be reminded that, the poles of both STF and NTF should be at the

same locations in the frequency domain; that is, the denominators of both STF and

NTF are identical to each other as can be seen from Equation (4.6).

If the numeric transfer functions to be realized are in the form;

STF (z) =
p2z2 + p1z + p0

q2z2 + q1z + q0
(4.7)

NTF (z) =
r2z2 + r1z + r0

q2z2 + q1z + q0
(4.8)

where pi, qi, ri are all real numbers, then the tool generates the following set of equations

in terms of fifteen path gain parameters from g1 to g15:

n2STF
= p2, n2NTF

= r2, d2STF
= d2NTF

= q2

n1STF
= p1, n1NTF

= r1, d1STF
= d1NTF

= q1

n0STF
= p0, n0NTF

= r0, d0STF
= d0NTF

= q0

(4.9)

Then, this set of equations, which consist of nine equations for this given specific

example, will be solved simultaneously to generate a set of solutions. Each element of

this set corresponds to a set of path gains from g1 to g15 which in turn corresponds to
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a different SD modulator architecture.

Here it is obvious that the number of equations, which is nine for this specific

case, is less than the number of variables, which is fifteen. On one hand, this excess of

variables increases the complexity of the problem but, on the other hand it introduces

a great deal of freedom to the designer in generating many different topologies all

realizing the same desired response.

In solving this system of equations, the tool uses some criteria such as minimiza-

tion of the number of signal paths of the architecture in order to obtain minimum

possible complexity, avoiding of single closed loops without a delay and forcing all the

coefficients to be real numbers. Taking these criteria into account, different combina-

tions of coefficients are assigned as zeros, which means that those paths are removed

from the generic topology. At the beginning, the number of coefficients to be assigned

as zeros is equal to the amount by which the number of coefficients exceeds the number

of equations. The more is the number of different combinations, the higher is the degree

of freedom and, the more is the number of different topologies. Then the resulting set

of equations are solved by invoking MATLAB’s symbolic toolbox, which is constructed

on the MAPLE kernel.

After the solution set is obtained, the tool runs some checks on the solution

set. Firstly it checks whether there exists any duplicated solutions or not. If yes, it

eliminates them. After that it checks the solutions to ensure that all of them are real

numbers, if not, it eliminates the imaginary ones. Finally, the tool returns a set of

parametric solutions for the coefficients in which the values of coefficients are defined

in terms of a few other coefficients. The rest is just as straightforward as assigning

some values to the parameters in the final solution set. These values should be selected

carefully for ease of implementation such as ±1, ±0.5, etc.

Here it has to be noted that this tool has some important advantages with re-

spect to other SD modulator design automation tools such as the commonly known

SD Toolbox DELSIG [19]. DELSIG only finds solutions for 4 basic architectures,
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which are cascade-of-resonators-feedback form, cascade-of-resonators-feedforward form,

cascade-of integrators-feedback form, and cascade-of-integrators-feedforward form. On

the other hand, this tool has no such limitation. It can find different topologies for

every modulator architecture defined with a netlist. Occurrence of both several feed-

forward and several feedback paths is allowed in this tool. Also as mentioned earlier,

the STF and NTF are strongly dependent on each other since the poles of both trans-

fer functions are the same. Hence, these two transfer functions should be optimized

simultaneously; since it is not only STF or NTF but both of them that determines

the system behavior. This tool is capable of doing this, which is one of its major

advantages over [10]. A flowchart summarizing the operation of the tool is given in

Figure 4.3.

Figure 4.3. The flowchart of the automatic architecture generator tool
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4.3. Inclusion of the Non-idealities

As described in Chapter 3, the component non-idealities in the SC implementa-

tion of SD modulator architectures have a great impact on the system performance.

Some of the non-idealities described in Chapter 3 can be directly mapped to the trans-

fer functions of the system as an extra parameter or an extra noise source and some of

them cannot. Among those that can be directly mapped to the transfer function, the

integrator non-idealities constitute the most important part and the following analysis

will focus on them.

4.3.1. Extraction of Non-ideality Parameters from a SC Integrator

A SC integrator has been given in Figure 3.1. According to the models proposed

by Robertini and Guggenbühl in [20], all the integrator non-idealities - except the SR

and saturation limitations which cannot be mapped directly to the transfer function -

can be modeled by the following non-ideal integrator transfer function with reference

to Figure 3.1 and with the assumptions Cf1 = Cf2 = Cf , Cs1 = Cs2 = Cs:

H(z)non−ideal =
Cs

Cf

(1 − δ1)(1 − δ2)z−1

(1 − (1 − δ3)z−1)(1 − δ1δ2)z−1
(4.10)

where,

Cs : sampling capacitor

Cf : feedback capacitor

δ1 : charging error

δ2 : charge transfer error

δ3 : finite gain error

The exact expression for the non-ideal integrator is rather complex as can be seen;

but for the sake of simplicity, the higher order terms may be ignored and the transfer
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function in Equation (4.10) can be estimated with the following one:

H(z)non−ideal =
bz−1

1 − cz−1
(4.11)

where the parameters b and c are used to model most of the integrator non-idealities

mentioned before.

These integrator non-idealities are included in the tool as described in Section 4.1

via the NONIDEAL INTEGRATOR and NONIDEAL INTEGRATORD blocks. The

user may include these non-ideal effects in the architecture by just replacing the lines

22 and 23 in the netlist shown in Figure 4.2 properly.

The numeric values of the parameters b and c will obviously be needed for the

tool to be run for any non-ideal architecture. These values may be extracted easily

from an implemented SC integrator circuit by simulation. For a non-ideal integrator

for which the relation between the output Yint(z) and the input Xint(z) is given by

Equation (4.11), the following analysis can be carried on:

Yint(z) =
bz−1

1 − cz−1
Xint(z), (4.12)

Yint(z) − cz−1Yint(z) = bz−1X(z) (4.13)

Taking the inverse z-tansform of the last expression and rearranging, we end up with

y[n] = cy[n − 1] + bx[n − 1], (4.14)

which means the current output sample of the integrator is the sum of c times its pre-

vious output sample and b times its previous input sample. So by running a simulation

for the SC integrator, and taking sufficient number of samples, the values of parame-

ters b and c can easily be estimated. A folded-cascode op-amp has been designed to

be used for implementation purposes of SD modulators and the parameters b and c for

an SC integrator implemented by using this op-amp have been extracted by applying
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the technique described above. These issues will be discussed in the next section.

4.3.2. Design of a High-Performance Operational Amplifier

In order to test the performance of the tool proposed here in a standard second

order system including the discussed integrator non-idealities, several behavioral simu-

lations have been carried out. However, to be more realistic in choice of parameters, a

high-performance fully differential folded cascode op-amp has been designed in Mentor

Graphics AMS Design Architect environment initially. Figure 4.4 shows the schematic

diagram of the designed op-amp. The specifications of this op-amp, with a load capac-

itance of 4 pF at each output are as follows: Gain = 76.5dB, BW = 200MHz, 3− dB

cut-off = 55kHz, SR = 182, 4 V/µs. The output DC level of the op-amp is 1.472V

and the bias voltages are Vbias1 = 2.1V , Vbias2 = 1.83V .

Figure 4.4. A fully differential folded cascode op-amp

The op-amp has been designed as folded cascode, in order to have a high gain by

using only a single stage, and consequently to avoid any need for frequency compen-

sation, which decreases SR, and in turn the speed of the op-amp. Further information

about folded cascode configuration may be found in [21].
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By using this op-amp the switched capacitor integrator shown in Figure 3.1 has

been implemented by selecting Cs1 = Cs2 = 1pF and Cf1 = Cf2 = 2pF . This inte-

grator has been simulated by giving a differential input voltage of Vin = 100mV . The

integrator non-ideality parameters have been extracted as b = 0.4994 and c = 0.9996

for this op-amp from this simulation. For the case of selected capacitor values, the ideal

values of the parameters b and c are 0.5 and 1. So the calculated values denote that

this op-amp may be considered as a very high-performance op-amp since the deviation

of these parameters from their ideal values are very small.

As mentioned earlier, the component non-idealities have great impact in the per-

formance of SD modulators. A reliable design automation tool has to take these non-

idealities into account and generate solutions so as to compensate for the degrading

effects of them. This tool has the capability of doing this, as will be demonstrated in

Chapter 5, and this is one of its major advantages over the previous work in this area.

The program codes for the automatic architecture generator may be found in

Appendix A. Chapter 5 will focus on the application of the tool by demonstrating it

on various examples.
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5. APPLICATION OF THE AUTOMATIC

ARCHITECTURE GENERATOR

This chapter will focus on the application of the tool described in Chapter 4.

Firstly, the application of the tool on a standard second order system ignoring compo-

nent non-idealities will be discussed. Then the case with including the non-idealities

will be demonstrated by examples for three different cases: (1) An ideal op-amp case,

(2) a high-performance op-amp case, (3) a low-performance op-amp case.

5.1. Generation of Standard Second Order Architectures Ignoring the

Component Non-idealities

For this case, the tool has been run by inputting exactly the netlist shown in

Figure 4.2. The integrators are assumed to have the ideal transfer function given in

Eq (2.8). The numeric transfer functions desired to be realized were;

STF (z) = z−2

NTF (z) = (1 − z−1)2 (5.1)

which define the standard second order system response, as STF (z) being an all-

pass filter with two unit delays and NTF (z) being a second order high-pass shaping

function.

The tool has generated 70 different architectures for this case. Out of these 70

architectures, five are given as examples in Table 5.1. The solution in the first column of

Table 5.1 is the standard second order SD modulator architecture shown in Figure 5.1.

This can be verified by making g9 = g13 = 1.

In fact a rather more important result is observed in the third column. The

architecture proposed in the third column is extremely interesting in the sense that the
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Table 5.1. Architectures Found for the Standard Second Order Response

Different Solutions

Coeffs.
1 2 3 4 5

g1 g13
1

g4g9
0 4

g8
g1

g2 0 0 0 0 0

g3 0 0 −0.5 0.5 0.5

g4
1

g9g13
g4 g4

1
4g14

1
g1g9

g5 0 2
g9

− 4
g6

0 0

g6 0 0 g6 0 0

g7 0 0 −4 −4 0

g8 0 0 0 g8 0

g9 g9 g9 −g6

2 0 g9

g10 0 0 0 0 0

g11 0 0 0.5 −0.5 −0.5

g12
2
g9

0 0 2
g8g14

2
g9

g13 g13
1

g9g14
− 2

g4g6
0 0

g14 0 0 1
4g4

g14
g1g9

4

g15 0 −2g4g9 0 g8

2 0

Figure 5.1. The standard second order SD modulator

input signal is not directly fed to the first integrator but given to the second one in the

loop (see Figure 5.2). By making g3 = −0.5, g4 = 1, g5 = −2, g6 = 2, g7 = −4, g9 =
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−1, g11 = 0.5, g13 = −1, g14 = 0.25 we obtain a very interesting topology which still

can realize the desired frequency responses. The architectures shown in Figure 5.1 and

Figure 5.2. The solution proposed in column 3 of Table 5.1

5.2 have been implemented and simulated in MATLAB Simulink and the PSD plots for

these architectures are shown in Figure 5.3. As can be seen from the PSD plots, these

two architectures have exactly the same behavior. The SNR values are approximately

80 dB.

Figure 5.3. The PSD plot for the solution given in (a) Figure 5.1, (b) Figure 5.2

5.2. Generation of Standard Second Order Architectures Including

Component Non-idealities

In this case, the tool has been applied to the same generic second order SD

modulator architecture shown in Figure 4.1, but the integrators have been changed to

non-ideal. That is, the lines 22 and 23 in the netlist in Figure 4.2 have been changed
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properly to define the integrators as non-ideal and this modified netlist has been given

to the tool as input. Three different combinations of the non-ideality parameters b

and c have been used for these simulations: (1) b = 0.5, c = 1, corresponding to

an ideal op-amp (or integrator) case, (2) b = 0.4994, c = 0.9994, corresponding a

high-performance op-amp case and, (3) b = 0.496, c = 0.98, corresponding to a low-

performance op-amp case. The desired response to be realized was again the same

standard second order SD modulator response given in Equation (5.1).

5.2.1. Ideal Op-amp Case

Here the non-ideality parameters have been used as b = 0.5 and c = 1 taking

Cf = 1pF and Cs = 0.5pF for the SC integrator of Figure 3.1. The tool found

135 different architectures satisfying the desired response. One simple solution was

g1 = 1, g2 = 0, g3 = −0, g4 = 2, g5 = 0, g6 = 0, g7 = 0, g8 = 0, g9 = 2, g10 =

0, g11 = 0, g12 = 2, g13 = 1, g14 = 0, g15 = 0. This topology has been implemented

and simulated in MATLAB Simulink and the SNR value has been found to be 101.5

dB.

5.2.2. High-Performance Op-amp Case

Here the non-ideality parameters have been used as b = 0.4994 and c = 0.9996

which have been extracted from the folded-cascode op-amp shown in Figure 4.4. The

tool has found 84 different architectures satisfying the desired response. One of the

solutions was g1 = 1, g2 = 0, g3 = −0.0008, g4 = 2.0048, g5 = 0, g6 = 0, g7 = 0, g8 =

0, g9 = 2, g10 = 0, g11 = −0.0008, g12 = 2.0024, g13 = 1, g14 = 0, g15 = 0. The

coefficients differ from the ideal case just slightly.

The main difference is the two local positive feedback paths, which the tool puts

around the integrators in order to compensate for the leakage non-ideality. The most

important thing observed here was that; this op-amp has performed very close to the

ideal case even with the ideal op-amp case coefficients given in Section 5.2.1, with an

SNR of 96.89 dB. Simulations for two more cases have been carried on with this op-
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amp, one with the coefficients calculated by the tool but the local feedback coefficients

(g3 and g11) set to zero, and one with all of the calculated coefficients included including

the local feedback ones. The SNR values have been found as 98.7 dB and 100.8 dB

respectively, which means that if the op-amp is a high-performance one, neglecting

the calculated local feedback paths does not cause much degradation in the modulator

performance.

5.2.3. Low-Performance Op-amp Case

It has to be noted that, the power consumption of the op-amp given in Figure 4.4

is rather high in order to obtain a high SR. There may exist some applications in

which power consumption may be a limiting factor and it may be necessary to use an

op-amp with low power consumption. For such an op-amp, the effects of integrator non-

idealities become more significant and there exists a higher deviation in the values of

the parameters b and c compared to their ideal values. Such a case has been simulated

by using b = 0.496 and c = 0.98 which corresponds to a low-performance op-amp.

The tool has found 82 different topologies satisfying the desired frequency re-

sponse in this case. One of the solutions was g1 = 1, g2 = 0, g3 = −0.0403, g4 =

2.0324, g5 = 0, g6 = 0, g7 = 0, g8 = 0, g9 = 2, g10 = 0, g11 = −0.0403, g12 =

2.01613, g13 = 1, g14 = 0, g15 = 0. The deviation from the ideal op-amp case is

higher now, compared to the high-performance op-amp case. The tool again puts

two local positive feedback paths around the integrators to compensate for the leak-

age non-ideality. Three different behavioral simulations have been carried on for this

low-performance op-amp case; one with the ideal op-amp coefficients given in Sec-

tion 5.2.1, one with the calculated coefficients by the tool but the positive local feed-

back coefficients (g3 and g11) set to zero, and finally one with all of the calculated

coefficients including the local feedback ones. These simulations resulted in SNR val-

ues of 74 dB, 84.14 dB and 100.74 dB respectively. The PSD plots for the first case

(the low-performance op-amp and the ideal op-amp coefficients) and the last case (the

low-performance op-amp and all of the non-ideal coefficients calculated by the tool) is

given in Figure 5.4.



38

Figure 5.4. The PSD plot for the case with the low-performance op-amp and (a) the

ideal op-amp case coefficients (b) the non-ideal coefficients calculated by the tool

including the local feedback coefficients g3 and g11

5.2.4. Comparison of the Results

Several important results may be obtained from the simulation data presented in

the previous sections. If the SNR values in Table 5.2 are analyzed, it can be seen that

the SNR value for the case of high-performance op-amp (b = 0.9449, c = 0.9996) with

the ideal op-amp coefficient values is very close to the SNR value for the case of an

ideal op-amp and the ideal coefficient set. This means that if the op-amp is designed

in such a good way that the variations of b and c from their ideal values are very small;

the SD modulator works pretty fine with the ideal system coefficients and no extra

paths are necessary to obtain a satisfactory system performance.

Rather more interesting results are obtained with the low-performance op-amp.

In Figure 5.4, the PSD plot for an SD modulator with a low-performance op-amp

(b=0.496, c=0.98) and ideal op-amp coefficient set is shown. It can easily be seen that

the response is much worse than that of a standard second order SD modulator. The

SNR value for this case (74 dB) is obviously much lower than that of the ideal op-amp

case, which is 101.5 dB. These results give an estimate about how much the system

response may degrade due to the component non-idealities.

On the other hand, the PSD plot of the SD modulator with the low-performance
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Table 5.2. SNR values in dB for Different Simulation Scenarios

Coefficient Sets

Parameter sets Ideal Op-amp

Case Coeffs.

Calculated Non-ideal

Coeffs. Ignoring

Local Feedback

Calculated Non-ideal

Coeffs. Including

Local Feedback

b = 0.5

c = 1
101.5 - -

b = 0.4994

c = 0.9996
96.89 98.7 100.8

b = 0.496

c = 0.98
74 84.14 100.74

op-amp and with all the coefficients calculated by the automatic architecture generator

tool (including the local feedback ones also) is shown in Figure 5.4. As can be seen,

the PSD plot for this case is very close to that of an ideal second order system shown

in Figure 5.3a. The SNR value in this case is very close to the ideal value of 101.5 dB.

This means that the tool is very successful in modeling the non-idealities and proposing

architectures to compensate for their effects on the system performance.

These results are very important because since the tool is so successful in com-

pensating for the effects of system non-idealities, it loosens the performance constraints

of the analog components to be used in designing SD modulators. Hence, it can easily

be possible to obtain very high-performance modulator architectures utilizing rather

low-performance analog components.

Another important issue to be questioned here was what would happen if the

extra coefficients proposed by the tool (g3 and g11 in our case) were omitted since their

values are rather small compared to the other coefficients. The results show that, for

the high-performance op-amp case, omitting them does not make such a big difference,

the SNR decreases to 98.7 dB from 100.8 dB. However, the situation is different for
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the case of the low-performance op-amp. Omitting the extra coefficients decreases the

SNR from 100.74 dB to 84.14 dB, which is a big loss.

5.3. Further Examples on Application of the Tool

The tool is not limited to realize a specific desired frequency response only. Al-

though all the examples up to now were about realizing the frequency response defined

in Equation (5.1), the tool is capable of realizing any other response as long as the

desired numeric STF and NTF are theoretically realizable and the location of poles of

both transfer functions are the same. Further examples will be demonstrated in the

following sections.

5.3.1. Realizing a Band-Pass STF and a Notch NTF

The following transfer functions define a BP STF and a notch NTF response:

STF (z) =
z2 − 1

z2 + 0.8
(5.2)

NTF (z) =
z2 + 1

z2 + 0.8
(5.3)

Such an STF allows only a very narrow frequency region to pass and suppresses the

rest. Such an NTF on the other hand, suppresses the noise at a very narrow frequency

range corresponding to the range of signal frequency allowed by the STF , and allows

the rest of the noise signal to pass. Such a response may be desired to be realized in

specific telecommunication applications such as in designing a narrow-band receiver.

When the automatic architecture generator tool is invoked to realize the response above

by the generic architecture given in Figure 4.1, the number of different architectures

generated is 35. Five out of these 35 solutions are given in Table 5.3 as example.
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Table 5.3. Architectures Found for the BP STF and Notch NTF

Different Solutions

Coeffs.
1 2 3 4 5

g1 0 − 2
g4g9

10g13 0 g1

g2 0 0 0 − 2
g14

2
g1g9

g3 2 0 2 0 0

g4
2

g14
g4 g4

2
g14

− 2
g1g9

g5 − 1
g8g14

0 0 2
g14g15

0

g6 0 0 0 0 0

g7 −1 −1 −1 −1 −1

g8 g8 0 0 0 0

g9 −g8g14 g9 − 0.2
g4g13

0 g9

g10 0 0 0 0 0

g11 0 2 0 0 0

g12 − 0.1
g8g14

0 0 − 0.2
g14g15

0

g13 0 − 0.2
g4g9

g13 0 0.1g1

g14 g14
2
g4

2
g4

g14 −g1g9

g15 0 0 0 g15 − 2
g1

5.3.2. Realizing a Delay-less STF (STF = 1) and Standard Second Order

NTF

In some cases it may be desired to send the signal directly to the output without

a delay. This may provide an advantage in minimizing the power dissipation of the

architectures since the output is subtracted from the input via the feedback path from

the DAC to the input of the first integrator (See Figure 4.1). This subtraction decreases

the amplitude of the signal at the integrator input and may in turn decrease the power
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Table 5.4. Architectures Found for Delayless STF and High-pass NTF

Different Solutions

Coeffs.
1 2 3 4 5

g1 0 1
g4g9

1
g4g9

− 2
g4g6

1
g4g9

g2 0 0 0 0 g2

g3
1
2 0 0 g3 0

g4 g4 g4 g4 g4 g4

g5 − 2
g9

− 2
g9

0 0 − g2

g4g9

g6 0 0 − 2
g9

g6 −2g9

g7 −1 −1 −1 −1 −1

g8 0 0 0 0 0

g9 g9 g9 g9 −1
2g6 g9

g10 0 0 0 0 0

g11 −1
2 0 0 −g3 0

g12
2
g9

2
g9

0 0 g2

g4g9

g13 0 1
g4g9

1
g4g9

− 2
g4g6

1
g4g9

g14 g14 0 0 g2
3

g4
0

g15 0 0 0 0 0

dissipation. For this case the input netlist was still the one shown in Figure 4.2 and the

tool has been invoked to realize the response given in Equation (5.4) and Equation 5.5.

STF (z) = 1 (5.4)

NTF (z) = (1 − z−1)2 (5.5)

The tool has generated 40 different architectures for this case and five out of these 40

are given in Table 5.4.



43

5.3.3. Application of the Tool on a Third Order System

As mentioned earlier in the text, the automatic architecture generator tool is

independent of the modulator order. A single-loop third order SD modulator archi-

tecture comprising all possible feedback and feedforward paths is shown in Figure 5.5.

This architecture has been defined as a netlist in a similar manner to the one shown

in Figure 4.2 and the architecture generator tool has been invoked by inputting that

netlist in order to realize the following standard third order SD modulator response:

STF (z) = z−3 (5.6)

NTF (z) = (1 − z−1)3 (5.7)

The tool has found 3107 different architectures satisfying the response given in Equa-

Figure 5.5. A third order SD modulator architecture comprising all possible feedbac

and feedforward paths

tion (5.6) and Equation (5.7). Five out of these 3107 solutions have been given in

Table 5.5.



44

Table 5.5. Architectures Found for the Third Order System

Different Solutions

Coeffs.
1 2 3 4 5

g1
1

g24

1
3

g7

g4g9
g13 g13 0

g2 0 0 0 0 0

g3 0 0 0 0 −1
3

g4 g4 g4 g4
1
3

g5

g13
g4

g5 0 0 0 g5 0

g6 0 0 0 0 0

g7 g7 g7 0 0 − 1
g4g21g23

g8 0 0 0 0 0

g9 0 g9 g9 g9 0

g10 −g7 0 3
g17

1
3(3 + g5g21)g5g9 0

g11 0 0 0 0 0

g12 0 g7

g9
3g4g13 0 − 3

g21

g13 − 2
g24

1
3

g7

g4g9
g13 g13 − 3

g4g21

g14 0 0 0 0 0

g15 0 0 0 − (9+g5g21)g5g9

9g13
− 1

9g23

g16 0 0 0 0 0

g17 − 1
g7

3
g7

g17
3

g5g9
0

g18 0 0 0 0 0

g19 0 0 0 0 0

g20 0 0 0 0 1
3

Continued on next page
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Different Solutions

Coeffs.
1 2 3 4 5

g21
g24

g4
0 0 g21 g21

g22 0 0 0 0 0

g23 − 1
g7g24

0 0 0 g23

g24 g24 − 9
g4g7g9

0 g5g21

g13
0

g25 0 0 0 0 0

g26 0 0 0 0 0

In this chapter, the automatic architecture generator tool has been demonstrated.

Several examples have been given about the application of the tool. Most of the

examples were about the application of the tool on second order systems but it has to

be reminded that, as explained in Section 2.2.3, it is possible to construct higher order

modulators by cascading several first and second order stages. Hence this tool can

easily be used in the design of cascaded higher-order modulators, since each stage of a

cascaded higher-order modulator can be generated by applying this tool. Generation

of single-loop high-order modulators by applying this tool may not be feasible since the

amount of time required may increase dramatically. In fact, implementing high-order

modulators in single-loop fashion is not logical since the stability condition for this

type of modulators cannot be derived mathematically as described in Section 2.2.2.1.
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6. CONCLUSIONS AND FUTURE WORK

The use of SD based A/D converters for the primary data conversion is very

attractive, since it uses basic blocks and requires no sample and hold. Besides the

advantages of this technique, there are some difficulties in designing SD A/D converters.

One of the major difficulties is the determination of the appropriate SD structure, which

provides the required performance. Since SD A/D converters contain large number of

connections between building blocks (quantizer(s), integrator(s), DAC) there are many

structures satisfying the desired performance specifications for a required application

and generally the design procedure gets extremely complicated. In order to decrease

the complexity of the design procedure, automation tools have been developed.

A standard SD modulator system utilizes several signal feedforward and signal

feedback paths. For every such signal path, there exists an associated coefficient, which

is the path gain. These coefficients are all related to each other and a small change in

one of them may cause dramatic changes in the operation, response, and performance

of the overall modulator. On the other hand, including or removing any of these paths

corresponds to a different modulator topology. Another important issue is that there

are many non-idealities in the SD modulator system in real-life, which should also be

taken into account in the design process. These non-idealities may include the clock-

jitter, kT/C noise, op-amp noise, and integrator non-idealities such as the finite DC

gain (leakage), the switched capacitor mismatches, slew-rate limitation of the op-amp,

dc offset of the comparator, etc.

So, in designing an SD modulator, the challenge is not only the selection of a

modulator topology from a large set of possibilities, but also the optimization of the

topology parameters the coefficients in such a way to satisfy the system specifications

without ignoring of mentioned non-idealities.

In this thesis, a tool created in the MATLAB environment for automated design

of SD modulator architectures has been proposed. The tool starts working on a generic
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SD modulator architecture as shown in Figure 4.1. There is no limit other than time

on the order or the complexity of this generic architecture. The parametric STF and

NTF are calculated at first for the generic architecture automatically. These symbolic

transfer functions are matched to a set of numerical transfer functions describing a

definite, desired response to be realized by the generic architecture of interest. A set of

equations is created in this manner. Since the number of coefficients is always greater

than the number of equations, there is a high degree of freedom in the system, which

makes it possible to have a set of parametric solutions for the architecture coefficients.

The tool makes use of this degree of freedom and finds all the possible SD modulator

topologies satisfying the desired frequency responses. It even finds some architectures,

which look unconventional at first glance but have been proven to be working through

behavioral simulation. The tool uses some criteria in this process such as minimization

of the number of signal paths in the architecture, and avoiding the occurrences of closed

signal loops that has no delay.

Although there are several other tools proposed for the solution of the design

automation problem of the SD modulators, this tool has many advantages over the

others. First of all, it has a symbolic analyzer which works in a SPICE-like fashion; that

is, it takes a netlist of an SD modulator architecture of any order and any complexity

in block level as the input, determines the input-output relation for each block in z-

domain and generates an equation for each node of the architecture in terms of symbolic

variables. This symbolic analyzer may be used as a stand-alone tool and the designer

may utilize this analyzer to evaluate various design alternatives at the block level. It

is not only independent of the order of the architecture, but also independent of the

actual blocks, whereby the user may add new functional blocks to the tool. Another

advantage is that, the tool optimizes both STF and NTF simultaneously, not only one

at a time. Also it spans all the solution space according to the criteria mentioned above

and returns parametric solutions, not only a few strict numeric solutions.

Most important of all, this tool has the capability of taking the component non-

idealities into account and optimizing the coefficients such a way to compensate the

undesired effects of these non-idealities. Most of the component non-idealities can be
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mapped directly to the transfer function of the system and most of them are related

to the switched capacitor integrator in the SD modulator system. For this reason, the

tool focuses on modeling the integrator non-idealities as mentioned earlier.

Despite all its advantages described up to now, of course the tool has some weak-

nesses which may be defined as open problems and future work in this area. The

major problem is the architecture selection problem. The tool proposed here generates

many architectures realizing a definite frequency response but it gives no idea about

which one of these architectures is the best in terms of some performance criteria such

as power dissipation, sensitivity, area, etc. In fact this architecture selection prob-

lem is the subject of another thesis which has been progressing simultaneously with

this one. Furthermore, the architecture generation and selection problem may be de-

fined as a non-linear discrete optimization problem if well-defined cost functions can

be constructed for the performance metrics (power dissipation, sensitivity, area, etc.).

Another questionable part of this work is the strict definition of the desired re-

sponse with the numeric z-domain transfer function as given in Equation (4.7) and

Equation (4.8). As another approach, the desired frequency response may be defined

with looser constraints, for example by some ranges for band frequencies and some

ranges for the magnitude responses corresponding to the defined frequency bands with

a given amount of tolerance. In such a case, many different numeric transfer functions

may be generated in the given tolerance boundaries. Then the generated architectures

and the desired frequency response may be optimized simultaneously to give the best

solution. Maybe one numeric transfer function, after including the non-idealities, will

result in much simpler architectures and much lower power dissipation will be obtained

in the presence of system non-idealities.

Also the assignment of zeros to maximum number of coefficients, as shown in

Figure 4.3, is done somewhat randomly. A better and more intelligent algorithm may

be proposed to minimize the number of signal paths in the architecture.
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Finally; considering all the advantages and disadvantages discussed above, it can

be said that the approach of the tool proposed in this work to the problem of design

automation and architecture generation for SD modulators, has many innovative parts

from all aspects. Also the results shown in the preceding sections prove that the tool

works very well and is quite successful in proposing a new solution to the architecture

generation problem of SD modulators.
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APPENDIX A: THE SOURCE CODES

The whole automatic architecture generator consists of the following functions

and scripts written in MATLAB environment.

1. symbolic tfs.m: The symbolic transfer functions are generated via this script.

[equation, gains, var] = tf_gen2(’generic_2nd_omer_15gain.txt’);

syms z E IN;

nodes = solve(equation,var);

var_array = split(var, ’,’);

var_array(1);

for m = 1 : length(var_array)

eval([’syms ’ var_array{m}])

eval([var_array{m} ’= nodes.’ var_array{m};]);

end

It invokes the ”tf gen2.m” function which is as follows:

function [total_equation, no_of_gains, variables] = tf_gen(scriptname)

syms z IN OUT E b c;

fid = fopen(scriptname);

i = 1;

no_of_gains = 1;

no_of_equations = 0;

variables = [];

while (feof(fid) ~= 1)

tline = fgetl(fid);

[T,R] = strtok(tline);

if length(T) == length(’IN’)

if T == ’IN’

[component(i).in1, component(i).dummy] = strtok(R);
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equation(i).out = [’x’ component(i).in1 ’= IN’];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = equation(i).out;

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’NOISE’)

if T == ’NOISE’

[component(i).in1, component(i).dummy] = strtok(R);

equation(i).out = [’x’ component(i).in1 ’= E’];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’ADDER’)

if T == ’ADDER’

node_array = split(R, ’ ’)

equation(i).out = [’x’ char(node_array(length(node_array))) ’=’]

node = [’x’ char(node_array(length(node_array)))]

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

for j = 1:length(node_array)-1

if str2num(char(node_array(j)))< 0

equation(i).out = [equation(i).out ’-x’
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num2str(abs(str2num(char(node_array(j)))))]

node = [’x’ num2str(abs(str2num(char(node_array(j)))))]

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

else

equation(i).out = [equation(i).out ’+x’ char(node_array(j))]

node = [’x’ num2str(abs(str2num(char(node_array(j)))))]

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

end

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’QUANTIZER’)

if T == ’QUANTIZER’

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] = strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=’ ’x’ component(i).in1];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;
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end

end

if length(T) == length(’GAINXX’)

if T(1:4) == ’GAIN’

index=T(5:6);

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] = strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=’ ’g’ num2str(index) ’*’

’x’ component(i).in1];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

no_of_gains = no_of_gains + 1;

end

end

if length(T) == length(’GAINX’)

if T(1:4) == ’GAIN’

index=T(5);

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] = strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=’ ’g’ num2str(index) ’*’

’x’ component(i).in1];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]
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end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

no_of_gains = no_of_gains + 1;

end

end

if length(T) == length(’DAC’)

if T == ’DAC’

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] = strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=’ ’x’ component(i).in1];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’INTEGRATORD’)

if T == ’INTEGRATORD’

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] =

strtok(component(i).out);
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equation(i).out = [’x’ component(i).out ’=

x’ component(i).in1 ’/(z-1)’];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’INTEGRATOR’)

if T == ’INTEGRATOR’

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] =

strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=

x’ component(i).in1 ’*z/(z-1)’];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end
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end

if length(T) == length(’NONIDEAL_INTEGRATORD’)

if T == ’NONIDEAL_INTEGRATORD’

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] =

strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=

x’ component(i).in1 ’*b/(z-c)’];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’NONIDEAL_INTEGRATOR’)

if T == ’NONIDEAL_INTEGRATOR’

[component(i).in1, component(i).out] = strtok(R);

[component(i).out, component(i).dummy] =

strtok(component(i).out);

equation(i).out = [’x’ component(i).out ’=

x’ component(i).in1 ’*(b*z)/(z-c)’];

node = [’x’ component(i).in1];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

node = [’x’ component(i).out];
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if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

if length(T) == length(’OUT’)

if T == ’OUT’

[component(i).out, component(i).dummy] = strtok(R);

eval([’syms x’ component(i).out]);

equation(i).out = [’x’ component(i).out ’= OUT’];

node = [’x’ component(i).out];

if isempty(strfind(variables, node)) == 1

variables = [variables ’,’ node]

end

total_equation = [total_equation ’,’ equation(i).out];

no_of_equations = no_of_equations + 1;

end

end

i = i + 1;

end

variables = variables(2:length(variables))

end

2. equgen.m: The matching of symbolic transfer functions to the numeric transfer

fucntions are done by this function. Then the bunch of equations to be solved

are created.

function denklem = equgen(tf, response_tf)

syms IN E z b c

denklem = [];
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tf = collect(simplify(tf));

[tf_num tf_den] = numden(tf);

[response_tf_num response_tf_den] =

tfdata(response_tf, ’v’)

[c_tf_num t_tf_num] = coeffs(collect(tf_num), z)

[c_tf_num_sort, t_tf_num_sort] =

coeffsort(c_tf_num, t_tf_num, z)

[c_tf_den t_tf_den] = coeffs(collect(tf_den), z)

[c_tf_den_sort, t_tf_den_sort] =

coeffsort(c_tf_den, t_tf_den, z)

if t_tf_num_sort(length(t_tf_num_sort)) == ’z’

tf_num_order = 1;

else

tf_num_order_char = char(t_tf_num_sort(1))

tf_num_order_char =

tf_num_order_char(3:length(tf_num_order_char));

tf_num_order = str2num(tf_num_order_char)

end

if t_tf_den_sort(length(t_tf_den_sort)) == ’z’

tf_den_order = 1;

else

tf_den_order_char = char(t_tf_den_sort(1))

tf_den_order_char =

tf_den_order_char(3:length(tf_den_order_char));

tf_den_order = str2num(tf_den_order_char)

end
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diff = tf_num_order - length(response_tf_num) + 1

diff2 = tf_den_order - length(response_tf_den) + 1

if diff < 0

display(’This response cannot be realized by this topology!’)

return;

elseif diff > 0

response_tf_num = fliplr(response_tf_num)

for i = 1 : diff

response_tf_num = [response_tf_num, 0];

end

response_tf_num = fliplr(response_tf_num)

end

if diff2 < 0

display(’This response cannot be realized by this topology!’)

return;

elseif diff2 > 0

response_tf_den = fliplr(response_tf_den)

for i = 1 : diff2

response_tf_den = [response_tf_den, 0];

end

response_tf_den = fliplr(response_tf_den)

end

for j = 0 : tf_num_order

if t_tf_num_sort(tf_num_order + 1 - j) ~= z^j

t_tf_num_sort(length(t_tf_num_sort) + 1) = z^j

c_tf_num_sort(length(t_tf_num_sort) + 1) = sym(’0’)

end

[c_tf_num_sort, t_tf_num_sort] =
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coeffsort(c_tf_num_sort, t_tf_num_sort, z);

end

for j = 0 : tf_den_order

if t_tf_den_sort(tf_den_order +1 - j) ~= z^j

t_tf_den_sort(length(t_tf_den_sort) + 1) = z^j;

c_tf_den_sort(length(t_tf_den_sort) + 1) = sym(’0’);

end

[c_tf_den_sort, t_tf_den_sort]

= coeffsort(c_tf_den_sort, t_tf_den_sort, z);

end

for i = 1 : length(t_tf_num_sort)

denk = [char(c_tf_num_sort(i)) ’=’ num2str(response_tf_num(i))];

denklem = [denklem ’,’ denk];

end

for i = 1 : length(t_tf_den_sort)

denk = [char(c_tf_den_sort(i)) ’=’ num2str(response_tf_den(i))];

denklem = [denklem ’,’ denk];

end

denklem = denklem(2:length(denklem))

end

It uses the ”coeffsort.m” [22] to sort the polynomial coefficinets here.

function [SortCoefVctr,SortSymPwrVctr] =

coeffsort(CoefVctr,SymPwrVctr,SortSym)

if isempty(SortSym)

fprintf(1,’\n\nError coeffsort No sort symbol provided\n\n’);

return



61

end

LenSymPwrVctr = length(SymPwrVctr);

SymPwrIdx = [];

if LenSymPwrVctr > 1

for k1 = 1:LenSymPwrVctr

SymPwrIdx(k1) = find(SymPwrVctr == SortSym^(k1-1));

end

for k1 = 1:LenSymPwrVctr

SortCoefVctr(k1) = CoefVctr(SymPwrIdx(k1));

SortSymPwrVctr(k1) = SymPwrVctr(SymPwrIdx(k1));

end

SortCoefVctr = fliplr(SortCoefVctr);

SortSymPwrVctr = fliplr(SortSymPwrVctr);

elseif LenSymPwrVctr == 1

SortCoefVctr = CoefVctr;

SortSymPwrVctr = 1;

elseif (LenSymPwrVctr < 1)

| (isempty(CoefVctr)) | (isempty(SymPwrVctr))

fprintf(1,’\n\nError coeffsort Empty argument vectors\n\n’);

end

if isempty(SymPwrIdx)

SortCoefVctr = CoefVctr*SymPwrVctr;

SortSymPwrVctr = 1;

end

return;

3. generic.m: The initial set of parametric. solutions are found by this script. It

is invoked by the ”generate topology” script.

var = ’g1, g2, g3, g4, g5, g6, g7, g9, g11, g12, g13, g14, g15’;

var_ = split(var, ’,’);
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combos = nchoosek(var_, 4);

k = 1;

h = sym(’0’);

for i = 1 : length(combos)

eval([’denk.a’ num2str(i) ’=

subs(denklem2 , combos(’ num2str(i) ’,:), {0, 0, 0, 0});’])

end

for i = 1 : length(combos)

eval([’temp = char(denk.a’ num2str(i) ’(1));’]);

for j = 2 : length(denk.a1)

temp = [temp ’,’ eval([’char(denk.a’ num2str(i)

’(’ num2str(j) ’));’])];

end

temp;

t = solve(temp,var);

if isempty(t) ~= 1

for n = 1 : length(combos(1, :))

for index = 1 : length(t.g1)

eval([’t.’ combos{i,n} ’(’ num2str(index) ’)= h;’]);

end

end

eval([’cozum15.a’ num2str(k) ’= t;’]);

k = k + 1

else

continue

end

end

4. generate topology.m: The ”generic.m” script is invoked by this script and the

initial set of solutions are obtained. Then the checks against delayless loops,
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imaginary solutions, etc. are applied here

denklem2 = subs(denklem2, ’g8’, 0);

denklem2 = subs(denklem2, ’g10’, 0);

%denklem2 = subs(denklem2, c, 0.9996)

%denklem2 = subs(denklem2, b, 0.49942)

generic;

omer = omer15;

eliminate_rows;

omer_real =

subs(red_sol, var_, {10,10,10,10,10,10,10,10,10,10,10,10,10});

you = 1;

for i = 1 : length(omer_real)

if isreal(omer_real(i, :)) == 1

omer_son(you, :) = red_sol(i, :);

you = you + 1;

end

end

It also invokes the ”eliminate rows.m” script here.

red_sol(1,:) = omer(1,:)

for i = 2 : length(omer)

k = 1

siz = size(red_sol);

for j = 1 : siz(1)

if ifzero(omer(i,:), red_sol(j, :)) == 1

k = 0;
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end

end

if k == 1

red_sol = [red_sol; omer(i,:)]

end

end
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