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ABSTRACT 

 

 

POWER ANALYSIS AND LOW POWER REALIZATION   

OF  

DIGITAL FILTER STRUCTURES 

 

 
 Digital Filters are important for Digital Signal Processing (DSP) systems. They are 

widely used in image, speech processing, data transmission. Digital Filters can be used to 

reduce noise in the system, get information from the signal, etc. However, these filters 

consume high power even if they are made in a full custom fashion. The reason is the 

multiplications or divisions in the filters. 

 

 The filters include large number of multipliers. However, if constant coefficients 

are used in the filter, multiplier operations can be represented by adders, subtractors and 

shift operations. By using Canonic Signed Digit (CSD) representation and making 

subexpression sharing on the coefficients, the number of adders in the multiplier which 

leads to less area and less power consumption. 

 

 In this thesis, Finite Impulse Response (FIR) filter structures are studied. A 

different subexpression sharing algorithm is created to select appropriate subexpressions. 

Subexpressions are selected such a way that the adder depth is minimized. Minimizing 

adder depth caused few more adders compared to the other subexpression sharing 

algorithms. However, minimizing the adder depth minimizes the delay and glitches. In the  

algorithm, the minimum length subexpressions are selected first. Therefore, the full adders 

(FAs) used in the adders are reduced.  
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ÖZET 

 

 

DİJİTAL FİLTRE YAPILARININ GÜÇ ANALİZİ VE DÜŞÜK GÜÇ 

TÜKETİMİ ELDE EDİLMESİ 

 

 
 Sayõsal süzgeçler, Sayõsal Sinyal İşleme uygulamalarõ içinde önemli bir yer 

tutmaktadõr. İmge işleme, ses işleme, bilgi aktarõmõ vb. konularda geniş bir kullanõm alanõ 

vardõr. Sayõsal süzgeçler sistemdeki parazitleri azaltmak, sinyallerden bilgi etmek gibi 

alanlarda kullanõlõr. Bu süzgeçler tamamen optimize edilip yapõlsalar dahi yüksek güç 

tüketirler ve fazla yer kaplarlar. Bunun nedeni süzgeçlerde kullanõlan çarpma ve bölme 

mimarileridir. 

 

 Bu süzgeçler fazla miktarda çarpma işlemi içerir. Ama eğer sabit katsayõ 

kullanõlõrsa çarpma işlemi toplama, çõkarma ve kaydõrma işlemleriyle ifade edilebilir. 

Katsayõlarda işaretlenmiş sayõ gösterimi ve alt ifade paylaşõmõ kullanarak çarpmadaki 

toplama işlemlerinin sayõsõnõ azaltabiliriz. Buda daha az güç tüketimi olmasõnõ sağlar. 

 

 Tezde, Sonlu Dürtü Yanõtlõ süzgeç mimarisi üzerinde çalõşõldõ. Değişik bir alt ifade 

paylasõm algoritmasõ geliştirildi. Alt ifadeler seçilirken toplama derinliğinin en azda 

tutulmasõ sağlandõ. Toplama derinliğini en düşük seviyede tutmak diğer alt ifade 

algoritmalarõ ile karşõlaştõrõldõğõnda fazladan birkaç tane toplama işlemine neden oldu ama 

toplama derinliğini düşük tutmak gecikmeyi ve istenmeyen geçişleri düşürdü. Algoritmada 

en az uzunlukdaki alt ifadelerin seçimine öncelik verildi. Bu da toplama işlemlerinin içinde 

kullanõlan tam toplayõcõlarõn sayõlarõnõ düşürdü. 
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1. INTRODUCTION 
 

 

Electronic devices and instruments are widely used in our daily life. Personal 

computers, music players, handphones, all other electronic devices and even the electric 

bulbs use electrical power to operate. 

 

An ordinary electric bulb uses 40 watts to 100 watts of power to operate. The 

variation is with respect to the light needed and this power is retrieved from the power line 

that comes into the building. However, portable electronic devices like handphones need 

batteries to operate. The battery power changes with respect to the type of the phones. If 

the phone has extra futures, then more power is needed. And if the phone is to be small in 

size, then battery must be smaller, which means its power is reduced. Electronic circuits 

inside the device must be designed to be area and power efficient. They have to be small 

and consume low power.  

 

High power consumption also brings heat. If the power of the unit area is high, a 

cooling problem is encounted. For example, in computers, the Central Processor Unit 

(CPU) needs a huge cooler with fan to lower the temperature to within operation bounds.  

 

 Electronic world goes in two parallel directions; analog and digital systems. Both 

may exist in the same platform or separately. Digital Signal Processing (DSP) has an 

increasing use in many key areas of technology; telecommunication, digital television and 

media, biomedicine, digital audio and instrumentation. DSP is now a core subject in most 

electronic, computer, communication areas [4]. 

 

 Digital filters play a great role in DSP systems. A filter can be thought of as a 

system that changes the waveshape, amplitude, frequency, phase of the input signal. The 

common reasons on filtering are to improve quality of the signal, to extract information 

from the signals or to separate two or more signals that have been already combined before 

[4].  
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 In the digital filter, a mathematical algorithm is to be implemented in hardware that 

takes an incoming signal, operates on it and produces an output signal that matches the 

filter objectives. 

 

 There are many filter structures in the literature. Some digital filter structures are 

Finite Impulse Response (FIR), Infinite Impulse Response (IIR), Lattice, Multirate, 

Turbocoders, Viterbi, FFT, Cascade. 

 

Digital filters can be broadly divided into two classes as FIR and IIR. The choice 

between FIR and IIR depends on the application and relative advantages. For example, 

when sharp edges are required, one can use an IIR filter. However, FIR filters have exactly 

linear phase responses. The details are not the subject of this thesis. However, while 

choosing the structure, power should be taken into account. If both filters can do the same 

job, one with less power consumption must be chosen. 

 

In the thesis, Finite Impulse Response (FIR) filters are studied. Whatever the 

structure is, hardware reduction will reduce the power. There are many methodologies for 

reducing the power consumption. Representing the filter coefficients in a diffrerent number 

representation can reduce hardware complexity and power dramatically. 

 

In this thesis, Canonic Signed Digit (CSD) representaion is used. CSD represents 

the given number in the sum powers of two. Some properties of CSD are; no two nonzero 

terms can stand next to each other and there is an extra number -1. This method guarantees 

that the number of nonzero terms in the coefficient can not be greater than half of the 

coeficient length. Research shows that  there is 33% of decrease in power with CSD 

number representation. 

 

Power consumption can be lowered further by applying subexpression sharing 

algorithms to the CSD represented coefficients. In this thesis, a different subexpression 

sharing algorithm is presented, which concentrates in minimizing adder depth and lowering 

the number of Full Adders (FA) used in the multiplier.   
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There are also glitches to be accounted for, since sigificant power is dissipated due 

to glitches. Glitches are caused because of unwanted changes at the outputs of gates. Since 

these outputs are connected to others, reaching the steady state takes time and unwanted 

signal changes occur. This transition period makes filters suffer from glitches. To reduce 

glitches, the adder depth must be minimized to have small adder trees and critical paths 

must be redesigned. In this thesis, glitches are are dealth with changing the selection of the 

subexpressions. However, changing the selection of subexpressions after finding them 

brings new subexpressions and this leads to more adders. Therefore, power dissipation 

increases. However, in some cases where no new subexpressions are produced this method 

works. 

 

 Organization of the chapters are as follows; Chapter 2 is the background of the 

problem and methodology. It describes the problem; why we need to reduce the power and 

it explains what has been done throughout the thesis. In Chapter 3, the subexpresion 

sharing algorithm is analysed and explained in detail. The methods used and key points are 

explained. In Chapter 4, glitch work is explained; how it is found and what is done. In 

Chapter 5, the developed software is explained in detail with flowcharts. In Chapter 6, the 

results from the simulations and analysis are given and discussed. In Chapter 7, 

conclusions and future can be found. 
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2. BACKGROUND OF THE PROBLEM AND DESIGN 

METHODOLOGY 

 

 

2.1 Background of the Problem 

 

 

In digital filters, constraints are small area and low power consumption. In the 

thesis, FIR filter structures are studied. Constant coefficient FIR filters are used for 

simulations. An FIR filter can be described by the following equation. 

 

 
−

=

−=
1

0

)()()(
N

k

knxkany                                               (2.1) 

             

It is obvious from the above equation that FIR filter has a finite duration, since a(k) 

for the FIR has only N values. y(n) is the output, x(n-k) is the input where k represents the 

shifts and a(k) is the corresponding coefficient of the filter. The main problem is in these 

coefficients and power minimization is performed on these coeficients. They are defined in 

two�s complement form as follows. 

 

i
N

i
ia −

−

=
 2

1

0

                                                        (2.2) 

 

where ai = 0 or 1 for i > 0 and a0 = 0 or -1. This is the the two�s complement form. 

However, the CSD is used to reduce the number of nonzero terms. As a short definition, 

b0.b1b2 . . . bN-1 is said to be in CSD format,  if each bi is equal to 0, +1 or -1 and two 

consecutive bi are nonzero. In writing them, -1 can be denoted by N [1].  

 

Figure 2.1 gives the FIR filter diagram used in the thesis. Equation 2.1 can be 

observed in this figure. The small right handed triangles represent the multiplication, z-1 is 

the delay element, and circles with �+� sign are adders. 
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        Figure 2.1. FIR Filter Diagram 

 

In our case, coefficients of the filter are constant. In constant coefficient filters, 

multiplications can be expressed as additions and shift elements. The shifts can be made 

hardwired such that no components like registers are needed to handle the shifts. Thus they 

come at no cost to the system.  

 

Realization of multiplication operations with adders and shifts brings the idea of 

finding common subexpressions for sharing. Therefore, subexpression sharing must be 

increased to lower the number of adders hence the power. Subexpression sharing can be 

utilized in FIR filters with up to 50% of the total number of operators. Even for sharing 

only two most common terms, reductions up to 33% [1]. 

 

To benefit from subexpression sharing, CSD number representation should be used.   

The first investigation of CSD multiplication was done in [3] with showing 33% saving 

with respect to binary coefficient representation. 

 

 In the literature, Minimum Signed Digit (MSD) representation can be found. The 

MSD number representation is obtained from CSD. MSD differs from CSD only in 

positioning of the nonzero terms. In MSD, two nonzero terms can come next to each other. 
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However, this brings subexpression sharing problem. MSD has an advantage over power 

consumption in filters which have high number of taps. However, for subexpression 

sharing the CSD form is more suitable. For minimazation of full adders MSD can be more 

suitable but since the subexpression sharing is the main purpose, CSD is preferred here. 

 

Throughout the literature survey, different subexpression sharing algorithms and 

different methods are found. Hartley�s algorithm [1] and Yurdakul�s algorithm [2] are used 

for comparison with the proposed algorithm in the next chapter.  

 

In both algorithms, it has been seen that adder depth is not dealth with at all. The 

main concentration in both cases and many others in the literature was sharing as much as   

possible. It has been seen that Yurdakul�s algorithm saves the most expressions compared 

to Hartleys�.  

 

Glitches are also very important in power saving since almost 50% of the power 

goes to the glitching in the gates. Glitches occur when there is transition from 0 to 1 or 1 to 

0. While the system stabilizes, glitches occur and power is lost. In the following chapters, 

this will be explained.  

 

 

2.2 Methodology 

 

 

In this thesis, lowering the power dissipation was the main design constraint and 

eveything done here is for reducing the power disipation. Power anlysis is performed to see 

the results.  Literature survey on number systems and subexpression sharing algorithms are 

done. Then, thesis went through increasing the subexpression sharing and minimizing the 

adder depth together with the FAs. 

 

To minimize the adder depth, greedy style subexpression selection is proposed 

where zero terms between each two nonzero terms are counted and obtained results are 

added with their neighbours to obtain a weight system. Selections are done by finding the 

minimum length subexpressions. It has been seen and proved that selecting minimum 
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length subexpressions incresed the subexpression sharing and leads to less number of FAs. 

Another thing found in lowering the FAs used was selecting or using N01 terms instead of 

10N. If any 10N term is encountered, it is reversed to the N01. This way, there is saving in 

the number of FAs. This saving corresponds exactly to the length of the subexpresion. 

 

For glitch power reduction, various inputs are supplied to localize most common 

transitions. Then, in that branch subexpression selection is changed to reduce glitch power. 

Glitch power discussed in the chapter 4. The following chapter gives detailed information 

about the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8

3. SUBEXPRESSION SHARING ALGORITHM 
 

 

The algorithm is simple. It counts spaces between nonzero terms for selection of 

subexpressions. The main purpose of the algorithm is to find minimum length 

subexpressions and to keep adder length minimum. The algorithm and how the selection is 

done are explained in the next topic.  

 

 

3.1 Selection of Subexpressions 

 

 

As explained before, adder depth and number of full adders are minimized in this 

algorithm. The subexpression sharing selection algorithm can be described as follows: 

 

Step1: Count the number of zeros between each nonzero term. Call them 

g0,g1,g2,. . . 

 

Step2: Add the spaces found in step 1 with coresponding neighbours as follows:   

 h0=g0+g1, h1=g0+g1+g2, h2=g1+g2+g3, h3=g2+g3+g4 . . . 

 

Step3: Find the minimum result in step 2, and if there is only one minimum point 

take the corresponding subexpression. Put zeros to the subexpression 

location for rerun. Then advance to step 5. 

 

Step4: Since there is more than one minimum point, compare step 1 for results of 

the minimum points. Take the minimum one as the subexpression. If there is 

still an equality, any one can be taken. Put zeros to the subexpression 

location for rerun. Advance to step 5. 

 

Step5: If the subexpression found is not discovered perivously add new subexpres-

sion to the subexpression dictionary as done in Table 3.1. Then goto the 

step1 to run process again until no subexpressions exist. 
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Figure 3.1 shows an example of  proposed subexpression selection algorithm. 

 

Table 3.1. Subexpression Dictionary 

 

 

 

 

 

 

 

 

 

The  table is filled in by using the example in Figure 3.1.  As can be seen in  Figure 

3.1, the spaces described in step 2 aove are added and minimum of 3 is found which 

correspond to the first subexpression N01. Then, the subexpression is called 2 and added to 

the Table 3.1. After that, it is erased to find another subexpression. In this order, all 

subexpressions can be found. As can be seen from the figure below, the minimum length 

subexpressions are always selected first.  

 

 

 
Figure 3.1. Subexpression Sharing Algorithm Example 

 

 Since selection is done by pairs and selected subexpression is erased, minimum 

depth is achived. Algorithm finds a subexpression and looks at the dictionary for 

Subexpression 

Found 

Exists in 

Dictionary? 

Subexpression 

Dictionary 

N01 no 2 

N01 yes 2 

1001 no 3 

2002 no 4 

4003 no 5 
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discovered subexpressions. If it is found before, the dictionary value will be used. 

Otherwise the new values will be added to the subexpression dictionary. Figure 3.2 depicts 

the final phases of finding subexpressions. 

 

 
Figure 3.2. Subexpression Sharing Algorithm Example (continued) 

 

 

3.2 Adder Depth 

 

 

It was mentioned above that adder depth is lowered. The adder length of each 

coefficient can be found as follows; 

 

                                      Adder Depth = ceiling ( log2(#nonzero terms) )                        (3.1) 

 

Therefore if there are 6 nonzero terms in a coefficient like in the example in  Figure 

3.1, the adder depth becomes 3 from equation 3.1. According to the equation 3.1, 

maximum depth  possibble for a coefficient is; 

 

                             Max Adder Depth=ceiling( log2(clen/2 +1) )                           (3.2) 

 

Maximum depth in a filter can be found by finding max number of nonzero terms 

in the coefficient�s adder depth. 
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3.3 Adder Length 

 

 

Adder length can be calculated by looking at the input vector length. There is an 

algorithmic calculation of the adder lengths as described in Figure 3.3. The calculation is 

as follows. 

 

                             Adder length = length(xin) +ceil(log(abs|v1*2s1+v2*2s2|))                 (3.3) 

 

 where v1 and v2  is to be 1 for main input and to be calculated for the others. In 

Figure 3.3 input bit vector length is 18 bit. That means length(xin)=18 must be put into 

Equation 3.3. 

   

 
Figure 3.3. Adder Length Calculation 
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3.3 Minimum Full Adders 

 

Minimum number of full adders is achieved by taking minimum length subexp-

ressions first as shown on the following example. If the coefficient is 00010000101, taking 

first 10001 or 101 seems to be equivalent at first sight. However there is a difference as 

depicted in Figure 3.4 where the adder lengths are found. 

 

 

 
Figure 3.4. Subexpression Selection Difference: (a)101 selected  (b)100001 selected 

 

 

In Figure 3.4(a) the first 101 term is selected . Therefore, the adder length is 21 but 

in Figure3.4(b) 100001 term is selected. This caused adder length to be 24. Although in the 

first step, adder length of Figure 3.4(b) is higher, the number of FAs is equal at both cases 

at this step as can be seen in Table 3.2 . However, when the second step comes, Figure 

3.4(a) shows better results in terms of both FAs. 
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Table 3.2. Comparision of full adders 

 FIRST ADD SECOND ADD TOTAL 

FIGURE2.4 (a) 19FA 29FA 38FA 

FIGURE2.4 (b) 19FA 25FA 44FA 

 

 As can be seen in Table 3.2 above, there are 6 fewer full adders, if minimum length 

subexpression is selected first. Number of saved FAs is dependent on the coefficient length. 

 

 

3.4 N01 and 10N Expressions 

 

 

While selecting subexpressions, one should differentiate between 10...N and N0...1 

terms. Because multiplying a number by 10...N or N0...1 is different with respect to the 

number of adders used in the multiplier. This can be explained in Figures 3.5 & 3.6.  

 

                     
 

Figure 3.5. Subexpression 10000-1 example  
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Figure 3.6 Subexpression -100001 example  

 

 

As can be seen from the Figure 3.6, N0...1 subexpression is more advantageous 

over the 10...N subexpression. The gain is proportional to the length of the subexpression. 

In the example, there are 5 shifts. Therefore 5 full adders are gained from this convention. 

The drawback is there is always a carry of  �-� sign in the algorithm. Since the 10...N is 

reversed as N0...1 the sign of the result is changed  to �-� and followed to the next level. 

This may have a drawback in the following stages like two  �-� signs. Therefore, there may 

be an additional unexpected subexpression. 
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4. GLITCH 

 
Signal switching in combinational circuits occours for diferent reasons. Input signal 

transitions take place at different times in a clock cycle. Different logic gates are sensitive 

to different types of transitions in the input. Also propagation delays of logic gates may 

differ. 

 

Gate delays are often assumed to be zero to simplify estimation. In this way, an 

important aspect which is glitch power is always ignored. In a static logic gate, the output 

or internal nodes can switch before the correct logical value reaches a stable point. For 

example, consider an AND gate with two inputs of different delays and consider the 

transition 01 to 10. For a zero delay gate, the output would be stable and would be logic 

zero. However in the example above, if the first input has a lower delay, the output 

becomes a temporary logic one. After that, it settles to zero again. The power lost during 

this unwanted switching activity is called glitching power loss. 

 

Glitches on an internal or output node are dependent on its logic depth. Generally, 

nodes that are logically deeper are more prone to signal glitches. Therefore in this thesis  

adder depths are minimized. Another drawback of these signal changes is delay. It will 

decrease the response time of the filter and filters will operate at lower frequencies. Also, a 

logically deep node is typically affected by more input switching and therefore more open 

to the glitches. To reduce glitches, depth of combinational logic can be shortened by 

adding pipeline registers.  

 

For low power design, glitching should be minimized because it causes power 

dissipation. It was reported [5] that in a combinational circuit the power dissipaton can be 

as high as %20 of the total power dissipation, and can be much more in some circuits such 

as combinational adders.  

 

Glitches are very important in filters, because nearly half of the power dissipated 

goes to glitches. Reducing glitch can be done by making a depth analysis of the filter. By 

giving series of inputs to the filter, the adder tree can be analysed and most common 
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branches of the 1 to 0 and 0 to 1 transitions can be found. By this way, glitch reduction is 

possible. 

 

In this thesis, subtrees are found that occupy most of the transitions and 

subexpression selection change is made in that branch. In some cases, it was observed to 

bring advantages in the number of transitions. Overall, glitches do not decrease 

significantly. The use of ripple carry adders throughout the study may be the reason for 

high glitching. 
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5. SOFTWARE 
 

 

Software codes were written in C programming language. C codes are divided into 

two sections; the algorithm code and the vhd code creator. Algorithm c code is explainded 

in detail in the next section. For both algorithm code and vhdl code creator, there will be a 

flowchart given for better understanding of how the codes work. Algorithm code was 

developed as explained in previous chapters. However, most of the programming time was 

taken by the vhd code creator file. There are also small c codes are written for manuel 

entry of adders, substractors and other components. In the following section, the algorithm 

code is explained and then the vhd code creator is explained in detail.       

 

 

5.1 Algorithm Code 

 

 

Algorithm finds the subexpressions as explained in previous chapters. Afterwards it 

produces a text file, where the FIR filter is described by subexpressions. Then, this text file 

is used by the vhdl code creator. In this section, the algorithm is explained via a flowchart.  

The algorithm code output is in the same format that Yurdakul and Hartley use. The format 

of the text file is illustrated in Figure 5.1. 

 

 
                                     Figure 5.1. Example Output of  the Algorithm Code 
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From Figure 5.1, the description of a 120 tap FIR filtercan be seen. Symbols  start 

with �a� are the coefficients. �d� symbolizes the delay element output. It doesn�t have effect 

on the calculations. It just buffers its input. Symbols starting with �t� are used for adder 

taps. Finally the symbol �o� represents the output of the filter. It seems that the symbol for 

input is missing. However, for simplicity in the vhd code creator, �a1� is the input. 

Therefore, filter coefficients start from �a2�. 

 

Coefficients are held in a text file also. They are taken one by one and entered into  

the program. Each coefficient is processed sequentially and subexpressions are found. 

While subexpressions are found they are written to a dictionary array. Newly discovered 

subexpressions are written to the output file as in Figure 5.1. When all subexpresions are 

found, the taps and then output is written to the output file. The format of the input that is 

given to the program can be found in Figure 5.2. 

 

 
Figure 5.2. Example Coefficient File 

 

The algorithm code flowchart can be found in the next page in Figure 5.3. 

Algorithm code is not too complicated as it drawn in the flowchart. First of all, tap no and 

wordlength is read from the coefficient text file and neccesary arrays are created. Then, the 

first coefficient is read from the file. Number of nonzero terms are counted to check if 

there is any term to be taken as a subexpression. After that, There is a if statement; if the 

counted number of nonzero terms is 1 or none, then there is no need to find subexpressions 

since the result is already known to be 0. If there are more then 1 nonzero terms, then the 

subexpression must be found. In the next step, the number of zero terms between each 

nonzero termis  found. Then, there is one more operation that the counted zeros are added 

together to create a weighted result. This will be used to select the subexpression. 
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Figure 5.3 Algorithm Code Flowchart 
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After finding weighted sums, there is an if condition. The software checks if there 

is only one minimum point found. If the answer is yes, then the subexpression is taken and 

written to a dictionary and for minimum adder depth condition it is erased from the 

coefficient to find other subexpressions. This way two term subexpressions taken at a time. 

If the answer is no, the counted zeros are compared and minimum one is taken to be the 

subexpression and its place filled by zeros. If both are the same again, then the 10N and 

N01 comparision is made. If an N01 term exists, then it is taken. Otherwise any 

subexpression may be used. The left hand sided expression is taken by default. After 

finding a subexpression, the loop refreshes itself until there is no coefficient left. In the 

next section, the vhd code creator software is explained in detail with a flowchart. 

 

 

5.2 VHD Code Creator 

 

 

Vhd code creator is written to make power simulations avaliable. The code creator 

output many vhd files and they are coded at the gate level. Therefore, it will be very easy 

to download this code to an FPGA and use it. The code uses ripple carry adders for its 

adders and subtractors. Shifts are made hardwired which means that there is no need for 

registers or buffers to make shifts. Entire hardwired shifts are taken by the code by 

appopriate placement of the inputs and outputs. The VHD code creator also take care of 

adderlengths as explained in the previous chapters.  

 

The flowchart of the software code can be found in Figure 5.4. It is a very 

simplified flowchart, since the code is over 1000 lines it is not possible to fit it in one page 

as a flowchart. There are many of if commands in the code because of the ripple carry 

adder operations, shifts variations and adder signs. Since the vhd code is written in gate 

level there are many fprintf commands. All of these different possibilities and file 

processing makes the code huge.  

 

 On the other hand, flowchart is easy to understand. First, the input file that is taken 

from the algorithm code is read. The first character is compared with �o�, �d�, �t� in order. If 

there is o recognized, it means the fõlter is at its last line and there is nothing but output is 
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written to the main vhd code and code exists. If �d� is recognized, it means there is a need 

of a register. The length of the register is looked up from the previous tap output. Since 

they are all written to arrays, there is no problem in finding this data. After that, the register 

is created at gate level in a separate file. In the main code, it is present as a component.  

The program goes back to the input file and reads another input. If this input is �t�, then the 

tap addition is to be done. For tap addition, there are two inputs; one of them comes from 

the previous stages� register output and the other is the this stages multiplication output. 

These two inputs must be added to get the tap addition result. Therefore, the code 

computes the adderlength to be used in this addition from the Equation 3.3. 

 
Figure 5.4. Vhd Code Creator Flowchart 
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The adder vhd code is created in a seperate file and the tap adder subcomponent is 

written to the main vhd file. Then, the code reads another input from the file. If the input 

starts with �a�, that means there is a subexpression. There is an addition, therefore the adder 

lengths are calculated as explained before and the adder is created as a seperate vhd file. If 

there is a smilar adder created before, there is no need to create the same adder again. Both 

must have same length, shift and carryout. The main vhd code is updated with this adder 

component.  

 

 The creation of seperate subcomponents and adding them into the main vhd file is 

done as in this order. While taps are created, all these components in the main vhd file are 

connected through signals. This way, the vhd files are created.  
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6. RESULTS 

 

The Subexpression finder and vhd code producer software has been written to carry 

out simulations. 120 tap 18 bit and 124 tap 14 bit FIR filters are used for these simulations 

The comparisons of components for 120 tap filter is in Table 6.1. 

 

            Table 6.1. Component Comparisons of the Algorithms for 120 tap filter 
 

 

 

 

 

 

 

 

 

 Proposed algorithm found 6 more adders compared to Hartley�s algorithm in Table 

6.1.  Maximum adder depth is smaller in Hartley�s and proposed algorithm compared to 

Yurdakul�s algorithm. From the Table 6.1 and Table 6.2, number of inverters are minimum 

in proposed algorithm. Component and adder depth comparisons of 120 tap 14 bit filter can 

be found in Table 6.2. Maximum adder depth is same in all algorithms for this filter. 

 

            Table 6.2. Component Comparisons of the Algorithms for 124 tap filter 
 

 

 

 

 

 

 

 

 

 Hartley�s 

Algorithm

Yurdakul�s 

Algorithm 

Proposed  

Algorithm 

INVERTERS 340 634 302 

FLIP-FLOPS 2819 2819 2819 

FAs 3543 3409 3634 

ADDERS 70 69 76 

A. DEPTH 3 4 3 

 Hartley�s 

Algorithm

Yurdakul�s 

Algorithm 

Proposed   

Algorithm 

INVERTERS 177 329 165 

FLIP-FLOPS 2414 2414 2414 

FAs 2658 2603 2667 

ADDERS 33 33 34 

A. DEPTH 3 3 3 
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 The wordlength in second filter is 14. Filter is not complex. Therefore, 

subexpression sharing is high and number of adders are close. Propesed algoithm found 1 

more adder compared to other algorithms. 

 

Table 6.3. Power comparisons of algorithms for 120tap filter 

Inputs Simulation 

Type 

Hartley�s 

Algorithm(µW)

Yurdakul�s 

Algorithm(µW)

Proposed  

Algorithm(µW)

zd 8623 8456 8760 66000 

Sample ed 13400 13334 13729 

zd 11772 11560 12010 16384 

Sample ed 21311 21427 21887 

zd 11768 11555 12007 4096 

Sample ed 21216 21333 21592 

 

Power simulations for 120 tap filter is in Table 6.3. Zero delay and enable delay 

simulations are performed for filters. 3 different random input files are used. Power 

consumption of proposed algorithm 2% above compared to Hartley�s algorithm.  

 

Table 6.4. Power comparisons of algorithms for 124 tap filter 

Inputs Simulation 

Type 

Hartley�s 

Algorithm(µW)

Yurdakul�s 

Algorithm(µW)

Proposed  

Algorithm(µW)

zd 6501 6441 6521 66000 

Sample ed 9343 9219 9467 

zd 9041 8968 9069 16384 

Sample ed 14051 14536 14573 

zd 9126 9053 9157 4096 

Sample ed 14560 14581 14615 

 

Power simulations for 124 tap filter is in Table 6.4. Filter has 14 wordlength and 

filter coefficients are short. Therefore, hardware complexity of the filter is low. Power 

simulation results are close.  
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In zero delay simulations, gates are static and there is no gate delays. In enable 

delay simulations, gates are not static. Therefore, glitch is also present in the simulations. It 

can be seen from Table 6.3 & 6.4 that glitch increases the power dramatically. In all cases, 

nearly 30% of the power consumed by glitches.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26

7. CONCULUSION & FUTURE WORK 

 

 

FIR filter based power analysis was done. A new subexpression algorithm was 

proposed which optimizes the adder depth that leads to minimum glitch and delay. The 

proposed algorithm also decreases the number of FAs. The number of FAs is dependent on 

the coefficient length. The number of total adders was seen to increase slightly compared 

to Hartley�s algorithm. 

 

As future work, the subexpression sharing algorithm can be developed to have less 

adders than before. This can be done by adding a search mechanism on frequently used 

subexpressions. If frequently used subexpressions are taken first, as well as taking into 

account the adder length, there will be few adders. Minimizing the appearence of 1xN 

terms will lead to less FAs. These will be the motivation to continue analysing other Filter 

structures.  
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