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ABSTRACT

TIME OF ARRIVAL ESTIMATION WITH MUSIC UNDER

IMPULSIVE NOISE

With the emergence of micro and nano technologies, the context-aware wireless

communications applications have been spreading. Especially, location-awareness has

gained significance recently.

The TOA estimation have been chosen by many wireless communications tech-

nologies such as GSM, and GPS as a ranging metric for locating their subscribers. Once

the TOA is estimated accurately, the distance between the transmitter and receiver is

readily obtained. The TOA is estimated from the first arriving signal component. If

the first multipath component is not detectable, the accuracy of the localization scheme

is threatened.

The environmental noise is another significant factor that affects the performance

of the TOA estimator. Although most wireless communication researches assume that

noise in the environment has Gaussian distribution, it has been shown that many

real-world noise signals have impulsive nature which cannot be modelled by Gaussian

distribution. Instead, the stable distributions are used to model impulsive signals.

The super-resolution FLOM-MUSIC method is proposed to obtain the delay char-

acteristics of indoor channels under impulsive noise, and the performance comparison

between the FLOM-MUSIC and the traditional SOS-MUSIC is done. The improved

performance with FLOM-MUSIC TOA estimator under impulsive noise is shown via

simulations.



v

ÖZET

DARBE ÖZELLİKLİ GÜRÜLTÜ ALTINDA MUSIC

ALGORİTMASI İLE VARIŞ ZAMANININ KESTİRİLMESİ

Son yıllarda elektronik ve haberleşme alanlarındaki gelişmeler ve özellikle telsiz

haberleşmenin inanılmaz bir şekilde yaygınlaşması, konum tespit sistemlerinin önemini

ve onlara olan talebi arttırdı. Günümüzde GSM (Küresel Gezgin Haberleşme Sistemi)

ve GPS (Küresel Konumlandırma Sistemi) teknolojileri en popüler konum bulma servis

saǧlayıcılarıdir. Bu ve benzeri birçok teknoloji, konumlandırma hizmetlerinde sinyalin

uçuş süresinden faydalanmaktadır.

Öte yandan ortamdaki gürültünün istatistiksel modelinin de kestirilen konum

bilgisinin doǧruluǧuna etkisi önemlidir. Uzun yıllar boyunca sinyal işleme uygula-

malarında ortam gürültüsünün Gauss daǧılımına sahip olduǧu kabul edildi ve sinyal

alıcı tasarımları bu kabule göre yapıldı. Ancak son yıllarda yapılan araştırmalarda

birçok yapay gürültü kaynaǧının aslında Gauss modeline uymayan sinyaller yaydıkları

ve Gauss daǧılımına göre tasarlanan alıcıların bu tip ortamlarda kötü performans

gǒsterdikleri ispatlanmıştır. Gauss daǧılımına sahip olmayan bu sinyallerin darbe

özellikli olduǧu ve α- kararlı daǧılım modeli ile temsil edilebileceǧi gösterilmiştir.

Bu çalışmanın konusu, darbe özellikli gürültülü iç ortamlarda radyo kanalının

gecikme özelliklerinin tespit edilmesi yoluyla konumlandırma yapılmasıdir. Bu amaç

için yüksek çözünürlük saǧlayan MUSIC (Çoklu Sinyal Sınıflandırma) yöntemi kul-

lanılmıştır. Yapılan benzetimlerle Gauss modeli ile tasarlanan alıcılar darbe özellikli

gürültü altında düşük verimle çalışırken tezde önerilen yöntemin tatmin edici bir per-

formans sunduǧu gösterilmiştir.
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1. INTRODUCTION

1.1. Background and Motivation

The incredible success of the cellular communications systems and the recent

advances in micro and nano technology have increased the demand for positioning

services. The location estimation of objects has been studied for over decades in radar

and sonar applications. The recent technological advances in electronics and wireless

communications and the increasing popularity of wireless networks have almost made

the location-based services mandatory. For instance, FCC requires that the wireless

communications operators must provide the position of users who emit E911 emergency

calls with an accuracy of few tens of meters.

In a localization scenario, generally there are a few base stations who know their

positions, and an object-to-be-located. It measures its distance to each base station

via several information such as TOA (Time of Arrival), TDOA (Time Difference of

Arrival), AOA (Angle of Arrival), or RSSI (Received Signal Strength Indicator). As a

result, by combining those distance information, the position of the object is estimated

via trilateration or triangulation. Such location estimators are called distance or range-

based.

Positioning systems can be classified in many ways. A classification can be pro-

posed as follows:

1. Localization based on Cellular Networks

2. Localization based on GPS (Global Positioning System)

3. Localization based on Wireless Sensor Networks

4. Localization based on Hybrid Systems

GSM (Global System for Mobile communication), the most common 2G (2nd

Generation) cellular communications standard in Europe, uses TDOA measurements in
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order to locate its subscribers. In TDOA, the time difference between signals travelling

from two different BTSs (Base Transceiver Stations) to an MS (Mobile Subscriber) is

measured. E-OTD (Enhanced Observed Time Difference of Arrival), name of the GSM

positioning service based on TDOA, is becoming a de facto standard for E911 Phase

II implementation for GSM carriers. The accuracy of the GSM localization service is

affected by several factors such as the relative positions of a BTS and an MS, and the

multipath radio channel.

GPS, a well-known positioning service, is based on MEO (Medium Earth Orbit)

satellites. An object carrying GPS receiver communicates with at least four GPS

satellites and measures TOAs of signals coming from them. As a result, by trilateration,

it determines its 3D position. Although GPS provides quite accurate location estimates,

it requires LOS (Line-of-Sight) communication between the GPS subscriber and the

satellites, therefore, it does not work in indoor environments.

The recent advances in MEMS (Micro-Electro-Mechanical-Systems)and wireless

communications have created large wireless sensor networks consisting of low-power,

low-cost, tiny sensor nodes that have communicating, sensing, and computing capa-

bilities. The sensor nodes can be randomly deployed over the area of interest, and

cooperate to fulfill their task. The sensor networks can be used both in commercial

and military applications. Environmental monitoring, health, surveillance, and target

tracking are application areas for sensor networks. Node localization is one of the most

challenging problems for wireless sensor network designers. Although there are many

solution proposals in the literature, the problem has not been overcome yet due to the

design factors of sensor nodes such as low cost, low power, and small size. The location

algorithms for wireless sensor networks can broadly be categorized as beacon-based

and beacon-free. In the first group, the network consist of a few beacon nodes that

know their positions a priori, and nodes with unknown positions that can be named as

blindfolded devices [10]. The beacon nodes may have GPS receivers. Those blindfolded

devices estimate the range between themselves and the beacon nodes via TOA, RSSI,

or AOA, and calculate their positions. At least three beacon nodes must be in the

communicating range of a blindfolded device in order to estimate its position. Once
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a node determines its position, it becomes a beacon node itself. Due to the nature

of the wireless sensor networks, the number of beacon nodes in a network must be as

low as possible. For this purpose, mobile beacons can be used. On the other hand,

there may be an application scenario where GPS is unavailable and nodes are randomly

dispersed over the area. In such a case, a beacon-free localization method is required.

Here, a random initial coordinate is assigned to each node in the network. Then, they

cooperate with each other and make local distance estimations to learn a coordinate

assignment. The ultimate coordinate assignment has both translation and orientation

degrees of freedom has to be accurately scaled. Also, there is a need for converting the

translation and orientation coordinate assignment to absolute position information.

Today, hybrid positioning systems that combine two or more of those three local-

ization systems have emerged for more accurate and cheaper systems. The combination

of sensor networks, GPS, and cellular networks gives better positioning services.

Particularly for distance-based location estimation technologies, the most crucial

part of the positioning mechanism is to accurately model the operational environment.

The relative positions of the transmitter and receiver, the objects in the environment,

mobility of the objects, and the environmental noise have significant effects on the

performance of the estimator. In this thesis, the effect of the noise in the environment

will be analyzed. In many signal processing applications, environmental noise has

been assumed to have Gauss distribution due to the analytical advantages of Gauss

assumption. On the other hand, recent studies have shown that underwater acoustic

signals, and many types of artificial noise signals all have non-Gauss distribution [3].

In [13], [8], and [14], the receivers designed under the Gauss assumption have shown to

fail when they face non-Gaussian noise, which has impulsive nature. This thesis focuses

on the impact of the non-Gaussian noise on TOA estimation for indoor positioning

purposes.
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1.2. Literature Review

There is considerable research on location finding both for indoor and outdoor

environments. Particularly, recent developments in wireless communications have in-

creased the popularity of location-based services. GPS is today’s most popular posi-

tioning technology based on MEO class satellites. However, it does not give accurate

location information in indoor environments. The difference between outdoor and in-

door radio communication channel characteristics make it impossible to easily adopt a

geo-location application designed for outdoor to indoor, and vice versa.

Positioning may be critical for many indoor applications [9]. For instance, it

may be used to track children or disabled people in a residence. Also, it may be useful

in hospitals where location information of patients is important. Furthermore, it may

be needed for tracking fire-fighters or policeman inside a building. Also, it can be used

during the security operations against terrorists’ attacks on specific buildings.

Especially for range-based positioning services, the multipath nature of indoor

radio channel and environmental noise severely affect the performance of the positioning

algorithms. In literature, many efforts have focused on modelling the indoor multipath

radio channel and estimating TOA. The most widely used channel modelling technique

is to collect measurements and then to define a statistical model from measurements.

In [17], the measurements of the frequency response of the indoor radio channel in 1

GHz band are done with a network analyser and the relative path loss envelope and

phase of a 945 MHz CW (Continuous Wave) signal are described. The channel is

modelled by taking the inverse FFT of the frequency response of the measured data.

Before IFFT, windowing is used.

In [4], two super-resolution methods, namely, Minimum-norm and autoregressive

(AR), and FIR (Finite Impulse Response) filter design on frequency-domain data are

employed to estimate the impulse response of the channel. It is shown that AR and

minimum-norm models estimate the peak locations and amplitudes of the channel-

impulse response while the FIR estimator gives a sampled impulse response estimate
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whose roots are null locations of the channel frequency response. It is claimed that FIR

filter frequency response matching method outperforms both the AR and minimum-

norm methods. All three techniques give better time-domain resolutions than the

Fourier estimator and typical time-domain measurement systems.

In [5], two blind techniques for simultaneous estimation of the direction-of-arrival

(DOA) and the channel parameters for a uniform linear array in a multipath environ-

ment are presented. While the first method is based on the sum of weighted complex

exponentials and Padé approximation, the second defines the transfer function of a

linear time-invariant system given its impulse response. Cramér-Rao lower bound

(CRLB) is also derived for the estimator. The environmental noise is assumed to be

signal-dependent and Gaussian distributed.

The super-resolution TOA estimation on frequency-domain data with diversity

technique is studied in [16] for indoor geo-location applications. MUSIC (MUltiple

Signal ClassifICation) is used as a high-resolution method and its performance is com-

pared to the performance of traditional TOA estimation techniques which are IFFT

(Inverse Fast Fourier Transform) and cross-correlation technique with DSSS (Direct

Sequence Spread Spectrum) signals (DSSS/xcorr). It applies MUSIC to the measured

channel frequency response to accurately estimate TOA. It also evaluates the effect of

diversity techniques on the performance of super-resolution techniques. It shows that

high-resolution techniques significantly improve the performance of TOA estimation

as compared to IFFT and DSSS/xcorr. It is also shown that signal bandwidth affects

the performance of TOA estimation. According to simulation results, as bandwidth

increases, the all three techniques mentioned in the paper show similar performances.

One significant parameter of the receiver design in wireless communications is

the model of the additive noise. In both [16] and [4], it is assumed that noise has

Gaussian distribution. Their methods are based on the finite second-order statistics of

the data. Also other problems such as high-resolution direction finding, detection of the

number of sources illuminating an array of sensors, the frequency estimation of several

sinusoids have been studied on the Gaussian model basis [3]. Gaussian assumption
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gives analytically closed-form solutions almost in each situation. However, recent signal

modelling studies have showed that many undesired signals in the environment have

an impulsive nature [3].

Considering real-world applications, in some environments, especially indoor,

noise may not fit the Gaussian model. As a result, a receiver designed on the ba-

sis of second-order statistics may fail. Developing signal processing methods for a

larger class of random processes which include the Gaussian as a special case will make

it possible to maintain good operation of the system in non-Gaussian environments.

Recently, in a significant number of signal processing studies, the class of stable

distributions have been used in order to model signals with impulsive nature. Those

distributions include Gaussian signals as a special case and are described by their

characteristic exponent α where 0 < α ≤ 2. When α = 2, it becomes Gaussian

distribution. Stable distributions have heavier tails than the Gaussian distribution and

they do not have finite pth order moments for p ≥ α. Therefore, second order statistics

cannot be used for parameter estimation under impulsive noise. Especially man-made

and artificial noise signals in the environment possibly have impulsive nature, and

therefore they are modelled well by the stable distribution family.

In [13], MUSIC is used for bearing estimation in the presence of impulsive noise

modeled as a complex symmetric alpha-stable (SαS) process. It also assumes that the

signal is complex SαS with the same characteristic exponent α as noise. The so-called

covariation matrix based on the fractional-lower order moment (FLOM) is defined

and eigendecomposition-based MUSIC algorithm is applied to the sample covariation

matrix to obtain the bearing information from the measurement data. The proposed

method, named as ROC-MUSIC (Robust Covariation-Based MUSIC), is compared

with traditional SOS-MUSIC (Second-Order-Statistics-based MUSIC), and it is shown

that the former significantly outperforms the latter.

Fractional-lower order moment (FLOM)-based matrices that can be used with

MUSIC are proposed in [14] to estimate the direction-of-arrivals (DOA) of independent
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circular signals under additive SαS noise. The main difference between [13] and [14]

is that the latter does not model the signal as SαS. It claims that communication sig-

nals do not possess stable distributions, because they have finite variance. It presents

three scenarios that contain circular signals (phase modulation (PM), circularly sym-

metrical Gaussian, and quaternary phase-shift keying (QPSK)) and one scenario that

contains non-circular signals (binary phase-shift keying (BPSK)) all contaminated by

the same SαS noise. Simulation results show that the last scenario has poor perfor-

mance, indicating that FLOM-MUSIC is limited to circular signals. It also compares

the performance of proposed FLOM-MUSIC with ROC-MUSIC and reveals that they

have similar performances.

In [8], subspace-based frequency estimation of sinusoidal signals contaminated

by impulsive noise is presented. It models the noise as an α-stable process and uses the

fractional lower order statistics (FLOS) of the data to estimate the signal parameters.

It makes two proposals: The first is a FLOS-based statistical average, the generalized

covariation coefficient (GCC). It is shown that the GCCs of multiple sinusoids for

unity moment order in SαS noise attain the same form as the covariance expressions

of multiple sinusoids in white Gaussian noise. FLOS-MUSIC and FLOS-Bartlett are

applied to the GCC matrix of the data. Moreover, it is shown that the multiple

sinusoids in SαS can also be modeled as a stable autoregressive moving average process

approximated by a higher order stable autoregressive (AR) process. The simulation

results show that techniques based on lower order statistics are superior to their second-

order statistics-based counterparts, especially when the noise shows a strong impulsive

attitude.

1.3. Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, the α-stable random

processes are introduced and their mathematical properties are given. Chapter 3 gives

information about radio communications and multipath channels. Also, the effect of the

multipath communications is introduced. Chapter 4 presents the proposed solution for

the TOA estimation for geo-location under impulsive noise. The step-by-step derivation
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is given. In chapter 5, the validation of the proposed solution based on the simulation

results is presented. The performance of the estimator is evaluated based on several

parameters, and it is shown that it outperforms the SOS-MUSIC TOA estimator under

impulsive noise. Finally, Chapter 6 gives the concluding remarks and the road-map of

the future work.
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2. ALPHA-STABLE DISTRIBUTIONS

2.1. Introduction

So far, non-Gaussian assumption in signal processing have attracted little atten-

tion and Gaussian distribution has been accepted as the basic signal model in most

areas of engineering and science due to the fact that it has nice analytical properties,

and gives closed-form solutions.

Non-Gaussian distributions have computational complexity and they do not have

closed-form solutions. On the other hand, recent technological developments both in

software and hardware have made it feasible to model some signals as non-Gaussian

where Gauss assumption does not fit the environmental noise. Especially, in some

specific applications where Gaussian assumption leads to inaccuracy, it is necessary to

adopt non-Gauss assumption.

In signal processing applications, the target is to extract the desired information

from observed data contaminated by environmental noise. Due to the fact that the

noise has a random nature, stochastic methods play an important role in the signal

processing. The appropriate noise model increases the accuracy of the design.

In most wireless communications applications, environmental noise is modelled

as additive white Gaussian process for not only it significantly simplifies the design

and performance analysis of the receiver but also the Central Limit Theorem mostly

justifies the assumption. On the other hand, most of signals and noise sources of real-

world applications are definitely non-Gaussian [3]. Underwater acoustic signals, low-

frequency atmospheric noise, and many types of man-made noise are found to be non-

Gaussian [3]. The severe performance degradation is inevitable for systems designed

under Gaussian assumption where the signals in real-case are non-Gaussian. As an

example, consider the matched filter for coherent reception of a deterministic signal

in additive white Gaussian noise (AWGN). Deviation of noise statistics from Gaussian
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model leads to the inaccuracy, such as increased false alarm rate or error probability [3].

On the other hand, a receiver designed by nonlinear signal processing based on the

actual noise statistics may lead to a more accurate receiver than the matched filter. As

a result, there is a trade-off between the accuracy and the computational complexity.

2.2. Signal Processing Applications Based on α-Stable Distributions

Although the stable distribution concept was first introduced by Levy in the

study of generalized central limit theorem in 1925, it was not considered for signal

processing applications until the middle of 1970s. The main reason of ignoring stable

distributions in signal processing is the fact that they do not have closed-form pdf

expressions except for α = 1 and α = 2 which are Cauchy and Gaussian distributions,

respectively. For the rest of the stable random variables, power series expansions are

used to obtain their probability density functions. Another reason is that the second

and higher order statistics do not exist for α-stable random variables. Most signal

processing applications rely on the second and higher order statistics of data.

Although the Gaussian assumption was dominant against α-stable distributions,

in recent years, stable distributions have applied to significant number of applications

in physics, economics, biology and electrical engineering.

In 1919, the Danish Astronomer Holtsmark discovered that random fluctuations

of gravitational fields of stars in space under certain natural assumptions obey the sta-

ble law with α = 1.5. It was one of the first applications of stable distributions. In the

middle of 1960s, the work done by Mandelbrot in economics and finance opened a new

era for the application of stable distributions. He proposed a revolutionary approach

based on stable distributions to the problem of price movement where Gasussian as-

sumption and least-square criterion failed. Many financial variables, such as common

stock price changes, fluctuations in speculative prices, and interest rates have been

shown to closely obey to non-Gaussian stable laws [3]. The stable distribution has also

applied to the signal processing and communications applications. Mandelbrot and

Van Ness used Gaussian and stable fractional stochastic processes to describe long-
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range dependence arising in engineering, economics, and hydrology. What is more, it

has been used to obtain the patterns of error clustering in telephone circuits [3].

It is accepted that the traditional additive Gaussian noise assumption is inad-

equate because of the occurrence of noise with low probability but large amplitudes.

Therefore, the stable distribution that fits better this reality should get more attention.

2.3. α-Stable Distribution Family and Density Functions

Most real-world non-Gaussian signals have impulsive nature where those kind of

signals produce large-amplitude excursions from the average value more frequently than

Gaussian signals. Their probability density functions (pdf) have heavier tails than the

Gaussian pdf. Stable distributions provide a useful mean for this type of signals. The

stable law is a generalization of the Gaussian distribution and includes it as a limiting

case. The heavier tails of the stable density unveils the difference between them.

A stable distribution is mainly determined by the characteristic exponent α

(0 < α ≤ 2). As α decreases, impulsiveness of the signal increases. α = 2 and

α = 1 represent the Gaussian and Cauchy distributions, respectively. Figure 2.1 shows

the probability density function of an α-stable random variable for different values of

α [3].

It is well known that statistical moments of signals are useful tools for obtaining

the desired information in signal processing applications. The conventional spectral

estimation methods based on Gaussian assumption exploit the second order statistics

of the observed data in order to extract needed information. Also, higher order statis-

tics, such as third and fourth order, based signal processing techniques are very useful.

However, stable distributions do not possess finite moments of the order higher than

two. It means that the variance does not exist for signals with α < 2. As a result,

many methods for signal processing applications based on second order statistics are

invalid for stable distributions. Therefore, they require so called fractional lower order

moments (FLOM) that have a moment order p p < α. Instead of variance, the dis-

persion of an α-stable random variable plays an important role. The larger dispersion
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Figure 2.1. Density functions of an α-stable random variable for different α’s

implies more spread around the median of the distribution. Hence, the minimum dis-

persion criteria is desired. Minimum dispersion means minimum fractional lower-order

moments of estimation errors which is the measure of the distance between the true

value and its estimate.

As observed from Figure 2.1, SαS densities have similar features with the Gaussian

densities, such as being smooth, unimodal, symmetric with respect to the median, and

bell-shaped. On the other hand, for small absolute values of x, the SαS densities are

sharper than the densities of normal distributions. In other words, the stable densities

have algebraic tails while Gauss density has exponential tails [3]. The heavier tails

of the stable densities justifies the idea of using them to model non-Gaussian signals

in real world because in many signal processing applications, although non-Gaussian

signals are similar to the Gauss, they have heavier tails [3].

The best way of describing the stable distribution is to determine its characteristic

function, because it does not have a closed-form solution of the probability distribution

function.

The characteristic function of a univariate α-stable distribution function, denoted
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by F(x), is given by

ϕ(t) = exp{jat− γ|t|α[1 + jβsign(t)ω(t, α)]} (2.1)

Here

ω(t, α) =





tan απ
2

if α 6= 1,

2
π

log |t| if α = 1.

(2.2)

sign(t) =





1 if t > 0

0 if t = 0

−1 if t < 0

(2.3)

and

−∞ < a < ∞, γ > 0, 0 < α ≤ 2, −1 ≤ β ≤ 1 (2.4)

As seen from (2.12), for a complete determination of a stable characteristic function,

four parameters, (α, a, β, γ), are needed. They are defined as follows:

1. α is the characteristic exponent and is uniquely determined. It has a value be-

tween (0,2] and defines the thickness of the tails of the distribution. If α = 2, the

distribution is Gaussian and if α = 1, the distribution is Cauchy.

2. γ is the dispersion, also named as scale parameter (γ > 0). It is similar to the

variance of the Gaussian distribution. For Gaussian case, it is half the variance

of that Gauss random variable.

3. β is the symmetry parameter. If β = 0, the distribution is called symmetric
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α-stable, (SαS ). The Gaussian and the Cauchy distributions are both SαS.

4. a is the location parameter. For SαS distributions, it is the mean when 1 < α ≤ 2,

and the median when 0 < α < 1.

A stable distribution is called standard if a = 0 and γ = 1. Figure 2.2 shows

different SαS time series depending on α. It is apparent that as α increases, the signal

gets more impulsive and has higher amplitude values.
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Figure 2.2. Different SαS Time Series for a: α = 2 (Gauss),b: α = 1.9, c: α = 1.7, d:

α = 1.3, e: α = 1.0 (Cauchy), f: α = 0.8, g: α = 0.5, h: α = 0.3

The probability density function of a standard stable random variable is readily

obtained by taking the inverse Fourier transform of its characteristic function.

f(x; α, β) =
1

π

∫ ∞

0

exp(−tα) cos[xt + βtαω(t, α)]dt (2.5)
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Due to the fact that Fourier transform has the symmetry property, f(x; α, β) =

f(−x; α,−β). Zolotarev studies the derivatives of the (2.5) and shows that they are

bounded [3].

The stability property and the generalized central limit theorem are the two

important properties of the stable distributions. They are defined as follows:

1. Stability Property: A random variable X is stable if and only if for any indepen-

dent random variables X1, X2 with the same distribution as X, and for arbitrary

constants a1, a2, there exist constants a and b such that

a1X1 + a2X2 d aX + b (2.6)

where ’d’ implies that the terms at two sides have the same distribution.

2. Generalized Central Limit Theorem: X is the limit in distribution of normalized

sums of the form

Sn = (X1 + . . . + Xn)/an − bn (2.7)

where X1, X2, ... , are i.i.d. and an →∞, if and only if X is stable.

As mentioned before, there is no closed-form expression for the general stable density

and distribution functions, except for the Gaussian (α = 2), Cauchy (α = 1, β = 0), and

Pearson (α = 1/2, β = −1) distributions [3]. For the rest of the stable distributions,

the approximate stable density functions are obtained by using power series expansions.

For x > 0, the standard stable density function is given by

f(x; α, β) =





1
πx

∑∞
k=1

(−1)k−1

k!
Γ(αk + 1)(x

r
)−αk sin[kπ

2
(α + ζ)], 0 < α < 1

1
πx

∑∞
k=0

(−1)k−1

k!
Γ( k

α
+ 1)(x

r
)k sin[kπ

2α
(α + ζ)], 1 < α ≤ 2

(2.8)
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where

η = β tan(πα/2), r = (1 + η2)−1/(2α)/, ζ = −(2/π) arctan η. (2.9)

and Γ(·) is the gamma function defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt. (2.10)

For the standard symmetric α-stable (SαS) distributions, the density function reduces

to

fα(x) =





1
πx

∑∞
k=1

(−1)k−1

k!
Γ(αk + 1)|x|−αk sin[kπα

2
], 0 < α < 1

1
πα

∑∞
k=0

(−1)k

2k!
Γ(2k+1

α
)x2k, 1 < α ≤ 2.

(2.11)

The behavior of SαS and Gaussian densities are similar near the origin, however, the

tails of the first decays at a lower rate than the latter. The densities of an impulsive

signal have algebraic tails, whereas the Gaussian density has exponential tails. As the

characteristic exponent α decreases, the tail of the SαS density becomes heavier, that

is, highly impulsive signals have small characteristic exponent α. This is the reason for

why SαS densities are suitable for modelling impulsive noise and signals.

The symmetric α-stable (SαS) distribution is defined by its characteristic func-

tion

ϕ(ω) = exp(jδω − γ|ω|α) (2.12)

The pdf of Gaussian and Cauchy distributions for a random variable x are given below

respectively,

f1(γ, δ; x) =
1

π

γ

γ2 + (x− δ)2
(2.13)
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f2(γ, δ; x) =
1√
4πγ

exp[−(x− δ)2

4γ
(2.14)

2.4. Bivariate Isotropic Stable Distributions

The definition of the multivariate stable distributions are done via the stability

property. Let F (x) be a k-dimensional distribution function where x ∈ R. It is stable

if, for any i.i.d random vectors X1, X2 with distribution function Fx and arbitrary

constants a1, a2, there exist a ∈ R, b ∈ R and a random vector X with the same

distribution function F (x) such that

a1X1 + a2X2 d aX + b. (2.15)

While the family of one-dimensional stable distributions forms a parametric set, the

family of multivariate stable distributions forms a nonparametric set [3].

Multidimensional isotropic stable distribution is an exception which can be readily

defined. Bivariate isotropic stable distributions have been used as the model of the noise

in signal processing applications with impulsive noise [13], [14].

The characteristic function of a bivariate isotropic α-stable distribution is given

by

ϕ(ω1, ω2) = exp(j(δ1ω1 + δ2ω2)− γ|ω|α) (2.16)

where ω = (ω1, ω2) and |ω| =
√

ω2
1ω

2
2.

Note that α and γ are the characteristic exponent and the dispersion, respectively.

δ1 and δ2 are the location parameters. The distribution is isotropic with respect to the

point (δ1,δ2). The two marginal distributions of the isotropic stable distribution are

SαS with parameters (δ1, γ, α) and (δ2, γ, α).
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2.5. Fractional-Lower Order Moments (FLOMs) and Covariations of

Symmetric α-Stable Processes

It is known that only moments of order less than α exist for the non-Gaussian

SαS distribution family. Let p denote the moment order and assume that the α-stable

distributions are symmetric (β = 0) and centered around the origin (a = 0). In many

signal processing applications, second-order statistics (SOS) play an important role,

however, they do not work for non-Gaussian signals due to their infinite variance. In

this section, the fractional-lower order moments (FLOMs) and covariations which will

be used in signal processing applications with non-Gaussian signals are introduced.

Before going into details, it is worthy to give some basic types of the stable processes,

because there are many types of them. Two most popular of them are as follows:

1. Sub-Gaussian Processes: A stable process X(t), t ∈ T is an α-sub-Gaussian

process (α-SG(R)), if for all n ≥ 1 and different indices t1, ..., tn, (X(t1), ..., X(tn))

has the following characteristic function

ϕ(u) = exp(−[
1

2

n∑

l,m=1

ulumR(tl, tm)]α/2) (2.17)

Here R(t, s) is a positive-definite function, u = [u1, ..., un]T , and αε(1, 2]. If

R(t, s) = R(t − s) = R(s − t), the sub-Gaussian process is stationary. Actually,

sub-Gaussian processes are variance mixtures of Gaussian processes [3]. When

X(t) is α-SG(R), then X(t) is re-written as follows

X(t) = S1/2Y (t) (2.18)

where S is a positive stable random variable with characteristic exponent equal

to α/2, and Y (t) is a Gaussian process with zero-mean and covariance function

R(t, s).

2. Linear Stable Processes: Let U(n), n = 0,±1,±2, . . . be a family of i.i.d SαS ran-

dom variables. X(n) =
∑∞

i=−∞ aiU(n − i) is a stationary SαS random process
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if
∑∞

i=−∞ |ai|α−δ < 0 for some 0 < δ < α when 0 < α < 1, or if
∑∞

−∞ |ai| < ∞
when α ≥ 1. Finite-order autoregressive (AR), moving-average (MA), and au-

toregressive moving-average (ARMA) processes are the examples of linear stable

processes.

2.5.1. Fractional Lower Order Moments (FLOMs) of Symmetric α-Stable

Processes

The fractional lower order moment (FLOM) for SαS random variable with zero

location parameter and dispersion γ is defined as follows:

Let X be a SαS random variable with zero location parameter and dispersion γ.

Then the FLOM is given by

E|X|p = C(p, α)γ
p
α (2.19)

for 0 < p < α where

C(p, α) =
2p+1Γ(p+1

2
)Γ(− p

α
)

α
√

πΓ(−p
2
)

(2.20)

and Γ(·) is the Gamma function defined in (2.10).

The interesting point of (2.19) is that it is independent of X. For the proof of

(2.19) and (2.20), please see [3].

2.5.2. Covariations of Symmetric α-Stable Processes

The second-order statistics of data play a prominent role in the signal processing

applications. Filtering, signal detection and estimation and many other statistical

signal processing applications rely on the correlation and covariance concepts. As stated

before, α-stable distributed signals do not have finite variance, that is, covariance is

nonsense. Instead, so-called covariation has been proposed by Miller and Cambanis [3].
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Note that covariation plays a similar role for SαS as covariance plays for Gaussian

random variables.

Assume that X and Y are jointly SαS with 1 < α ≤ 2. The covariation of X

with Y is given by

[X, Y ]α =

∫

S

xy<α−1>µ(ds) (2.21)

where S is the unit circle and µ(·) is the spectral measure of the SαS random vector

(X,Y). For any real number z and a ≥ 0, the following notation is used

z<a> = |z|asign(z) (2.22)

In particular, z<0> = sign(z).

On the other hand, the covariation coefficient of X with Y is defined by

λX,Y =
[X, Y ]α
[Y, Y ]α

(2.23)

Let X and Y be jointly SαS with 1 < α ≤ 2. Assuming that the dispersion of Y is

γy [3],

[Y, Y ]α = ‖Y ‖α
α = γy (2.24)

λXY =
E(XY <p−1>)

E(|Y |p) 1 ≤ p < α (2.25)

[X,Y ]α =
E(XY <p−1>)

E(|Y |p) γy 1 ≤ p < α (2.26)

Some significant properties of covariations are given in the following [3].
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1. If X1, X2 and Y are jointly SαS, then the covariation [X,Y ]α is linear and given

by

[aX1 + bX2, Y ]α = a[X1, Y ]α + b[X2, Y ]α (2.27)

for any real constants a and b.

2. If α = 2, the covariation of jointly SαS random variables X and Y reduces to the

covariance of jointly Gaussian two random variables X and Y

[X,Y ]α = E(XY ) (2.28)

3. Generally, [X, Y ]α is not linear with respect to the second variable Y. However,

the following pseudo-linearity property with respect to Y can be given. If Y1 and

Y2 are independent and X, Y1, Y2 are jointly SαS, then

[X, aY1 + bY2]α = a<α−1>[X, Y1]α + b<α−1>[X,Y2]α (2.29)

for any real constants a and b.

4. If X and Y are independent and jointly SαS, then [X, Y ]α = 0 Note that the

converse is generally not true.

5. The Cauchy-Schwartz inequality holds for any jointly SαS random variables X

and Y and has the following form

|[X, Y ]α| ≤ ‖X‖α‖Y ‖<α−1>
α (2.30)

Particularly, if X and Y have unit dispersion, one has |[X, Y ]α| ≤ 1.

Assume that X and Y are both linear combinations of independent SαS random vari-

ables and let Uis be independent SαS random variables with dispersions γi, i = 1, ..., n.

For any numbers a1, ..., an, b1, ..., bn where all bis are not zero

X = a1U1 + ... + anUn and Y = b1U1 + ... + bnUn
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Using the basic properties of covariation

[X, X]α = γ1|a1|α + ... + γn|an|α (2.31)

[Y, Y ]α = γ1|b1|α + ... + γn|bn|α (2.32)

[X,Y ]α = γ1a1b
<α−1>
1 + · · ·+ γnanb

<α−1>
n (2.33)

λXY =
γ1a1b

<α−1>
1 + · · ·+ γnanb<α−1>

n

γ1|b1|α + · · ·+ γn|bn|α (2.34)

2.6. Complex SαS Random Variables and Covariations

In this thesis, the environmental noise is assumed to be complex-valued SαS,

therefore it is worthy to explain the complex symmetric stable variables.

A complex random variable X = X1 + jX2 is SαS if X1 and X2 are jointly SαS.

Note that all real and complex SαS have zero-means and αε(1, 2]. The characteristic

function of a complex SαS is given by

ϕ(ω) = E{exp[jRe(ωX∗]} = E{exp[j(ω1X1 + ω1X1)]}

= exp[−
∫

S2

|ω1x1 + ω2x2|αdΓX1,X2(x1, x2)] (2.35)

Let X = X1 + jX2 and Y = Y1 + jY2 be jointly SαS. The covariation of X and Y is

defined by

[X,Y ]α =

∫

S4

(x1 + jx2)(y1 + jy2)
<α−1>dµx1,x2,y1,y2(x1, x2, y1, y2) (2.36)

where S4 is the unit sphere in R4 and µx1,x2,y1,y2(x1, x2, y1, y2) is the spectral measure

of the SαS random vector (X1, X2, Y1, Y2). For a complex number z and β > 0, the

following convention is used

z<β> = |z|β−1z∗ (2.37)
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where ∗ denotes conjugate. As a result, the covariation coefficient of X with Y is

defined by

λXY =
[X, Y ]α
[Y, Y ]α

(2.38)

The following properties hold for two complex jointly SαS with zero means and a

characteristic exponent α that has a value between (1, 2] [12].

E(|X|p) =
p2pΓ(p/2)Γ(−p/α)

αΓ(−p/2)
[X,X]p/α

α , 0 < p < α (2.39)

λXY =
E(XY <p−1>)

E(|Y |p) , 1 < p < α (2.40)

[X1 + X2, Y ]α = [X1, Y ]α + [X2, Y ]α (2.41)

[aX, bY ]α = ab<α−1>[X, Y ]α (2.42)

[X, Y ]α = 0 if X and Y are independent. (2.43)

2.7. Generation of Complex Isotropic SαS Random Variables for

Simulations

In this thesis, the environmental noise is assumed to be impulsive and it is mod-

elled as the complex isotropic SαS. Let X = X1 + jX2 be the complex isotropic SαS

random variable of characteristic exponent α (α < 2) and dispersion γ. It is generated

as follows [12]:

1. Generate a real stable random variable A of characteristic exponent α/2, disper-

sion cos2(πα/4), and skewness β = 1. For the generation of a real stable random

variable, refer to [12].

2. Generate two i.i.d. zero-mean Gaussian variables G1 and G2. They are indepen-

dent of the real stable random variable A
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3. Compute X as follows

X = A1/2(G1 + jG2) (2.44)

Note that the vector (X1, X2) is sub-Gaussian with underlying vector (G1, G2). Also,

it can be proven that the real and imaginary parts of X are always dependent, unless

G1 and G2 are degenerate.

The relationship between the dispersion γ of the complex random variable X =

X1 + jX2 and the variance σ2 of the complex Gaussian random variable G = G1 + jG2

is an important point of the generation process of the complex isotropic SαS. It is given

by

γ = (σ2/2)α. (2.45)

The proof can be found in [12]. In Figure 2.3, 2.4, and 2.5 plots of generated complex

isotropic SαS for different characteristic exponent α values are given.
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Figure 2.3. Complex Isotropic SαS for α = 1.5

Figure 2.4. Complex Isotropic SαS for α = 1.8
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Figure 2.5. Complex Isotropic SαS for α = 1.9999̄



27

3. INDOOR RADIO CHANNEL

Generally, there are two types of communication media namely guided and un-

guided. Wired communication is an example of the first group where a reliable link

is built between the communicating entities. On the other hand, wireless medium,

an example of unguided medium, is unpredictable and has disruptive effects on the

communications. It does not provide a reliable communication link. It is impossible

to define a unique model to represent all types of wireless communications channels.

The importance of the wireless medium stems from the fact that it provides mobile

communication, which has become prolific in last decade. Furthermore, it is more flex-

ible compared to wired links. Signals with different frequencies require different wires,

however, they can be sent over the same wireless link which is air. Some of the most

popular frequencies used by wireless communications technologies are 900 MHz and

1.8 GHz (cellular), 2-5 GHz (WLANs), and 28-60 GHz (microwave).

Roughly speaking, there are two operational environments for wireless commu-

nications; indoor and outdoor. In this section, mainly, indoor radio channels will be

introduced because the environment where the problem is defined is indoor.

3.1. Radio Communications and Positioning in Indoor Environments

Due to the fact that radio signals with frequencies above 800 MHz have extremely

small wavelengths compared with the dimensions of the building features, it is feasible

to assume electromagnetic waves as rays [7]. Both indoor and outdoor environments

have three main effects on wireless communications: reflection, diffraction and scatter-

ing.

The reflection is caused by the ground, walls of buildings, the ceiling and the

floor and has the amplitude coefficients usually determined by plane wave analysis.

Impinging of electromagnetic waves on obstructions larger than the wavelength causes

to the specular reflections. Also the frequency and the angle of incidence, and the
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nature of the medium contribute to the ray attenuation. Reflections are especially

effective in indoor environments. On the other hand, its importance is decreased in

outdoor environments due to multiple transmissions that reduce the strength of the

signal to negligible values.

Diffracted fields are generated by the edges of buildings, walls and other large

objects that act as a secondary wave source and propagate away from the diffracting

edge as cylindrical waves. The diffracted component of the signal may reach a receiver,

which is not in the line of sight of the transmitter. The strength of a diffracted sig-

nal is lowered to much greater levels than the attenuation caused by reflection and

transmission. Therefore, diffraction is significant especially for outdoors where signal

transmission through buildings is virtually impossible.

Irregular objects such as walls with rough surfaces and furniture of indoors and

vehicles, foliage of outdoors cause rays to scatter in all directions in the form of spher-

ical waves. Especially when the dimensions of objects are on the order of a wavelength

or less than it, scattering happens. It is not significant when the receiver or sender

is not located in a highly cluttered environment. In Figure 3.1 and Figure 3.2, re-

flection, scattering and diffraction are picturized for indoor and outdoor environments,

respectively [7].

Figure 3.1. Radio Propagation in an indoor environment
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Figure 3.2. Radio propagation in an outdoor environment

3.2. Indoor Radio Channel

The studies for characterizing indoor radio communications have greatly increased

due to the recent advances in WWAN and WLAN technologies. Indoor and outdoor

communications have different characteristics. First of all, the communication distance

in indoor environments is much smaller than that of outdoor. Furthermore, the en-

vironmental conditions that determine the radio channel may frequently change. The

structure of the building and the positions of the objects in the environment signifi-

cantly affect the performance of the radio communication system.

Due to scattering, reflection and refraction caused by the structure of environ-

ments, multipath fading occurs at receiver. Fading is the rapid fluctuation of the

amplitude of a radio signal that happens in a short time interval or distance. Due

to fading, different versions of an original signal arriving at receiver at different time

instants lead to phase and amplitude distortions on the original signal.

The amplitude and phase of signals arriving at the receiver are random variables.

The time-varying behavior of the channel is caused by the motion of the communicating

entities or by the movement of the reflectors and scatterers. The movement of objects

in the environment, mobile receiver and transmitter have crucial effects on the quality

of wireless communication. A mobile receiver with high speed may pass through several
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fades in a short period of time. As a worst case, receiver can stop at a location at which

received signal is in a deep fade where wireless communication may stop.

The relative motion between the receiver and the transmitter causes multipath

waves to face frequency change named as Doppler shift. In other words, Doppler

shift defines the random frequency modulation caused by the relative motion between

receiver and transmitter. It depends on the velocity and direction of those two commu-

nicating entities. If receiver moves toward transmitter, Doppler shift will be positive,

otherwise it will be negative.

Another parameter creating Doppler shift is the speed of objects in the environ-

ment. It introduces a time varying Doppler shift on multipath waves. However, if the

velocity of objects is lower than receiver, their effect may be ignored.

The relationship between the bandwidth of the multipath channel and the band-

width of the transmitted signal has effect on wireless communication. If the latter is

larger than the first, the signal is distorted, but fading effect is not significant. For

opposite case, signal power will change rapidly but it will not be distorted in time.

The wireless communication designers often choose to model the indoor radio

channel statistically instead of trying to eliminate multipath distortions. If the model

fits the real case well, the receivers and transmitters designed according to the model

can work fine. The success of cellular communications and fast developments in micro

and nano technologies increased the demand for wireless communications, that ,as a

result, increased the research on the modelling of indoor radio channels. The method

is straightforward; once the measurements have collected in the real world, a proper

statistical model that fits those measurements are defined. The most widely accepted

indoor radio channel model is the impulse response characterization of the multipath

fading channel, first suggested by Turin [6].

The multipath fading effect of an indoor radio channel is also called small-scale

fading because the amplitude of a radio signal fluctuates over a short period of time
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or travel distance. The large-scale path loss can be ignored for indoor radio communi-

cations [15]. The three significant phenomenon caused by multipath fading are rapid

changes in signal strength, random frequency modulation because of varying Doppler

shifts on different multipath signal components and echose (time dispersion) caused by

multipath propagation delays.

The main factors introducing small-scale fading are speed of surrounding objects,

speed of the mobile, the transmission bandwidth of the signal and multipath propaga-

tion. The first two factors cause to Doppler shift on signal components while the other

two factors cause to signal distortions, rapid changes in signal strength and echoes.

3.2.1. Multipath Indoor Channel Impulse Response

The impulse response completely characterizes the channel and contains all infor-

mation about it. It was first proposed by Turin for the time-invariant radio channels

and found wide acceptance in the literature. It gives the wideband channel charac-

terization of the channel and provides all necessary information for simulating and

analyzing any type of radio communication. A linear time-varying filter is used to

model the random time-varying indoor multipath channel. Time variation is caused

by mobile receiver whereas filtering represents different amplitudes and delays of mul-

tipath signals arriving at the receiver at any time instant.

The linear time-varying filter model of the radio channel is given by

h(t, τ) =
P−1∑

k=0

bk(t)δ(τ − τk(t))e
jθk(t) (3.1)

where t stresses the time-variation of the channel, P is the number of multipaths,

bk(t), τk(t), and θk(t) are the random time-varying amplitude, arrival-time and phase

sequences, respectively. For the complete characterization of the channel, those three

parameters are needed. t and τ are the observation time and application time of the

impulse, respectively. δ(·) is the Dirac delta function.
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The channel can be characterized by using discrete-time impulse response where

the time axis is divided into small time intervals named as ”bins” [6]. It is assumed that

each bin either has one multipath signal component or not. In other words, due to the

fact that bk(t, τ) may be zero, some excess delay bins may not have multipath and delay

τk at some time t . In Figure 3.3, a multipath channel example at different snapshots

is given where t varies into the page, and the time delay bins are quantized to widths of

∆τ . Due to the fact that two paths arriving within a bin cannot be resolved as distinct

paths, the bin size should be chosen as the resolution of the specific measurement. In

this model, each impulse response is described by a sequence of ”0”s and ”1”s where a

”1” indicates the presence of a path in a given bin and a ”0” represents the absence of

a path in that bin. Each ”1” is associated with an amplitude and a phase value. The

simulation of any indoor wireless communication system can be done with this model.

The objects in the environment are possibly in motion in a real situation; however the
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Figure 3.3. Time-varying discrete-time impulse response of a multipath radio channel

channel variation is relatively slow compared to the signal rate, therefore, the channel

parameters can be assumed as time-invariant random variables [16]. The mathematical

representation of the time-invariant radio channel is given by

h(t) =
P−1∑

k=0

bke
jθkδ(t− τk) (3.2)

which is the complex, low-pass channel impulse response of the channel.
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Figure 3.4. The mathematical model of the radio communication

The received signal is the convolution of the channel h(t) and the transmitted

signal s(t).

y(t) =

∫ ∞

−∞
s(τ)h(t− τ)dτ + n(t) (3.3)

where s(t) is the transmitted signal and n(t) is the complex-valued additive noise.

By using ( 3.4), and assuming that the signal m(t) = R(s(t)ej2πf0t) is transmitted

through the channel (here s(t) is any low-pass signal and f0 is the carrier frequency),

the received signal is

y(t) = R(ψ(t) expj2πf0t) (3.4)

where

ψ(t) =
P−1∑

k=0

bks(t− τk)e
jθk + n(t) (3.5)

Thus, each kth multipath signal component undergoes a time delay τk. The mathe-

matical model of the communication is given in Figure 3.4.

3.2.2. Power Delay Profile and Related Parameters of the Multipath Radio

Channel

The multipath channel parameters are observed from the power delay profile

which is the average of instantaneous power delay profile measurements over a local
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area. The instantaneous multipath power delay profile of the channel is given by [15]

|y(t0)|2 =
P−1∑

k=0

b2
k(t0) (3.6)

where y(t) is the output of the channel and t0 is a time instant.

Depending on whether the transmitter and the receiver directly see each other,

measured radio channel profiles in different locations of a building are categorized as

LOS (Line-of-Sight) and OLOS (Obstructed Line-of-Sight). For each of those cate-

gories, the performance of a wireless communication system shows significant varia-

tions. Several copies of the transmitted signal arrive at the receiver. These copies may

consist of a line-of-sight (LOS) ray and several other rays reflected from or scattered

by objects in the environments such as walls, ceilings, tables, etc., which are called

non-line-of-sight (NLOS) waves. It is possible that the LOS waves may be attenu-

ated so that they cannot be detected at the receiving-end. The multipath components

are added according to their relative arrival times, amplitudes, and phases, and their

random envelop sum is observed by the receiver [6]. The shape and the structure of

the building, and the resolution of the measurement setup determine the number of

detected paths.

The most crucial stage of the location estimation applications is the accurate

detection of the direct line-of-sight (DLOS) path between the sender and receiver. The

DLOS path represents the straight line between the communicating pair even if there

are obstructions between them. The significance of the DLOS path is that the distance

between the sender and receiver is readily obtained from TOA or AOA information,

therefore any inaccuracy in the estimation of TOA or AOA leads to the wrong position

estimates. Also the communication bandwidth has effect on the accuracy of a position-

ing system. If a system uses TOA for location estimation, it requires wide bandwidths

to resolve multipath components and detect the TOA of first path.

From the receiver’s point of view, channel profiles are divided into three groups:
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[7]:

• DDP (Dominant Direct Path): In this category, the DLOS path is detectable

and it is the strongest path in the channel profile. GPS uses TOA for outdoor

applications where multipath components are much weaker than the DLOS path.

• NDDP (Non-Dominant Direct Path): Here the measurement system can detect

the DLOS path, however it is not the strongest one. GPS receivers that want to

lock to the strongest path will inaccurately estimate the TOA which will lead to

the positioning error. In such a case, RAKE receiver can resolve the multipath

and provide accurate TOA estimation of DLOS path.

• UDP (Undetected Direct Path): The DLOS path is completely undetectable.

GPS and RAKE receiver cannot determine the DLOS path in this case.

The estimation error of TOA or DOA of the DLOS path directly affects the performance

of the geolocation application. The environmental noise, the signal bandwidth, possible

interference from other systems, and the relative power and delay of the signal arriving

via other paths contribute to the estimation error of the distance between the sender

and receiver.

In Figure 3.5, Figure 3.6, and Figure 3.7, three measured power delay profiles of

different indoor multipath channels for respectively DDP, NDDP, and UDP cases are

given [9]. The relative received power is on axes y and excess delay is on axes x. The

vertical dashed line is the expected delay of the first arriving path (TOA).

There are several so-called channel sounding methods developed for obtaining

power delay profile of multipath channels in the literature such as direct pulse mea-

surements, spread spectrum sliding correlator measurements, and swept frequency mea-

surements. They are not detailed in this study. For further information, we refer

to [15].

Different multipath channels are compared and quantified according to the three

parameters, namely, mean excess delay τ , rms delay spread στ , and excess delay spread
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Figure 3.5. A DDP measured power delay profile example

Figure 3.6. A NDDP measured power delay profile example

(X dB) which can be determined from a power delay profile [15].

The first moment of the power delay profile is the mean excess delay and is given

by

τ =

∑
k β2

kτk∑
k β2

k

=

∑
k P (τk)τk∑
k P (τk)

(3.7)
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Figure 3.7. A UDP measured power delay profile example

where P (τk) is a single power delay profile which is the temporal average of consecutive

impulse response measurements collected and averaged over a local area.

On the other hand, the rms delay spread is obtained from the square root of the

second central moment of the power delay profile. It is defined as

στ =
√

τ2 − (τ)2 (3.8)

where

τ 2 =

∑
k β2

kτ
2
k∑

k β2
k

=

∑
k P (τk)τ

2
k∑

k P (τk)
(3.9)

Note that those two parameters define the time dispersive properties of wide band

multipath channels. They are obtained from a series of measurements collected from

a local area, however, a number of measurements at many local areas are needed in

order to properly determine the statistical properties of multipath channel parameters.

Let at time instant τx, multipath energy falls X dB below the maximum. In such

a case, excess delay spread (X dB) of the power delay profile is defined as τx−τ0, where
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τ0 is the delay of the first arriving signal.

Although power delay profile determines the channel characteristics in time-

domain, it is possible to define the channel in frequency-domain by magnitude fre-

quency response. One can be obtained from the other via Fourier transform. For

the frequency-domain characterization of a multipath channel, the so-called coherence

bandwidth is used. It is inversely proportional to the rms delay spread.

The small-scale fading can be classified based on either time-delay spread or

Doppler spread, however, in this study, it is assumed that indoor radio channel and

communicating entities are static, therefore, the classification based on the first para-

meter is mentioned here. The multipath channel fading can be either flat or frequency-

selective depending on the time-delay spread. In flat-fading, the radio channel has

a constant gain and linear phase response over a bandwidth which is larger than of

the transmitted signal. In such a channel, the gain of the received signal may change

in time, however, its spectrum does not. This kind of channel is easy to model and

assumed as not having excess delay. On the other hand, if the channel bandwidth

which has constant gain and linear phase is smaller than the bandwidth of transmit-

ted signal, it creates frequency-selective fading on the signal. In such a radio channel,

several replicas of the original signal which are attenuated and delayed arrive at the re-

ceiver. The spectrum of the transmitted signal is distorted. It is not easy to model the

frequency-selective fading channels because each multipath component must be mod-

elled. For the analysis of frequency-selective fading channels generally 2-ray Rayleigh

fading model, computer generated impulse responses, or measured impulse responses

are used.

3.2.3. The Distribution of Multipath Fading

In an indoor wireless radio channel, multipaths cannot be resolved as distinct

pulses if the difference in time delay of a number of paths is much less than the recip-

rocal of the transmission bandwidth. The unresolvable paths add vectorially and the

envelope of their sum is observed. Thus, the envelope is a random variable. Suppose
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that B is the transmission bandwidth. If tki
− tkj

≤ 1/B, i, j = 1, 2, ..., n, then

bke
jθk =

n∑
i=1

bki
ejθki (3.10)

defines the resolved multipath component.

The distribution of the amplitude of multipaths may vary depending on the area,

objects in the environment, etc. In this section, two of the well known multipath

amplitude distributions are given.

3.2.3.1. The Rayleigh Distribution. If there is no strong received component, the

small-scale amplitude fluctuations are well modeled by the Rayleigh fading with a

probability density function (pdf) given by

f(x) =
x

σ2
exp

x2

2σ2
(3.11)

where σ is the Rayleigh parameter. It is also called the most probable value.
√

π/2σ

and (2− π/2)σ2 the mean and the variance of the distribution, respectively.

The theoretical definition of the Rayleigh distribution is done by Clarke’s model

used for mobile channel [6]. This model assumes that the transmitted signal arrives

the receiver via P directions, the ith path has a complex strength xie
jθi and can be

described by a phasor with an envelope xi and a phase θi. At the receiving-end, these

signals are added vectorially and the resultant phasor is given by

xejθ =
∑

i

xie
jθi (3.12)

According to Clarke’s model, over small areas and in the absence of LOS path, the

xi’s are almost equal (xi = x, i = 1, 2, ..., P ). Thus, (3.12) becomes xejθ = x
∑

i e
jθi .

The phase of each path θi depends on the path length, and changes by 2π when

the path length changes by a wavelength. Thus, phases are uniformly distributed
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over [0, 2π). Now, the problem is to obtain the distribution of the envelope sum of a

large number of sinusoids with constant amplitude and uniformly-distributed random

phases. The In-phase and Quadrature (I and Q) components of the received signal

are independent, and, by the central limit theorem, are Gaussian random variables.

The joint distribution of x (x =
√

I2 + Q2) and θ (θ = arctan(Q/I)) was studied by

Rayleigh [6] and his research revealed that x and θ are independent, x is Rayleigh and

θ is uniformly distributed random variables.

Slack shows that even when there are only six sine waves with uniformly distrib-

uted and independently fluctuating phases are combined, the resulting amplitude and

phase are very closely Rayleigh and uniformly distributed, respectively [6].

As stated before, it is assumed that xi’s are equal, however it is not realistic

because it means that each path has the same attenuation. On the other hand, it can

be shown that even when the amplitudes of multipaths are not equal and any single one

of them does not contribute a major fraction of the received power (i. e. , xi <<
∑

x2
i ,

i = 1, 2, ..., P ), the variations of the resulting amplitude can be described by Rayleigh

distribution.

In the literature, there are lots of studies based on measurement data showing

that the Rayleigh distribution is suitable for modelling the indoor radio channel and

small scale fading. Also the Rician distribution can describe some LOS paths. On

the other hand, the log-normal distribution is used when only signal levels below the

median are considered. [2] investigated the amplitudes of the multipath components in a

factory environment based on measurement data. It has been shown that the amplitude

has Rayleigh distribution. On the other hand, measurement data collected in an office

environment show that the amplitude distribution is approaching to Rayleigh than log-

normal [6]. According to measurement data collected in a scenario where either receiver

or transmitter is located outside the building, and the other inside, the amplitude has

showed a good Rayleigh distribution [6]. When both receiver and transmitter are

inside building, measurements show that the multipath channel coefficients can be

modelled as Rayleigh [6]. Depending on the presence or absence of a LOS path, Rician
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distributions can be used as well.

3.2.3.2. The Rician Distribution. When there is a strong path in the environment

apart from low level scattered paths, the Rician distribution can be used to model it.

This strong path can be either a LOS path or a path that goes through much less

attenuation compared to other received components. This path was called fixed path

by Turin [6]. As a result, the received signal vector can be assumed to be the sum of

two vectors; a vector which has deterministic amplitude and phase, that is, the fixed

path, and a scattered Rayleigh vector whose amplitude and phase are random. Let pejq

be the random component, with p being Rayleigh and q being uniformly distributed

and uejv be the fixed component where u and v are not random. The received signal

vector xejθ is the phasor sum of the aforementioned two signals. Rice has showed that

the joint pdf of x and θ is given by [6]

f(x, θ) =
x

2πσ2
exp−x2 + u2 − 2xu cos(θ − v)

2σ2
(3.13)

where x ≥ 0, −π ≤ (θ − β) ≤ π.

Since the length and phase of the fixed path usually changes, v can be said to

be a uniformly distributed random variable over [0,2π). This assumption leads to the

independency between x and θ. As a result, x can be modeled as Rician distribution

and its pdf is given by

f(x) =
x

σ2
exp(

−x2 + u2

2σ2
)I0(

xu

σ2
) (3.14)

where I0 is the zeroth-order modified Bessel function of the first kind, u is the envelope

of the strong component and σ2 is proportional to the power of the Rayleigh component.

As it can be seen in (3.14), if u approaches to zero, the strong path is eliminated

and the amplitude distribution becomes Rayleigh. As a result, Rician distribution

includes Rayleigh distribution as a special case.
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4. PROBLEM STATEMENT

In this section, the TOA estimation with MUSIC under non-Gauss noise which

is modelled by the stable distribution family is presented. Before going through the

proposed solution, it is worthy to give information about TOA estimation with MUSIC

under Gauss noise.

4.1. TOA Estimation with MUSIC under Gauss Noise

Although IFT have been used for years for the estimation of time delay char-

acteristics of multipath radio channels, super-resolution methods have been getting

more popular in recent years due to the fact that they provide better resolution than

IFT [16].

In [16], the TOA estimation problem under Gaussian noise is analyzed and

second-order-statistics (SOS) based MUSIC was proposed in order to resolve multi-

paths of indoor radio channel. First of all, frequency-domain data is obtained, and

autocorrelation matrix is estimated from the observed data. The MUSIC is based on

the eigen-decomposition of the autocorrelation matrix. It is applied to the second-

order-statistics of the data and the MUSIC pseudospectrum whose peaks give the path

delays of the radio channel is obtained. Also, time-diversity technique is applied to

the problem to improve the accuracy of the TOA estimate. At each diversity branch

of receiver, the TOA is estimated independently, and the estimates coming from all

branches are combined to attain an optimum estimate. There are various combining al-

gorithms for different diversity techniques. The equal-gain combining algorithm is used

in [16]. The MUSIC, IFT and DSSS are applied to the measured frequency-domain

data and it is shown that the SOS-MUSIC provides the best performance.
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4.2. TOA Estimation with MUSIC under non-Gauss Noise

The complex low pass equivalent of the multipath indoor radio channel impulse

response is given by

h(t) =
P−1∑

k=0

bkδ(t− τk) (4.1)

where P is the number of multipath components, bk = |bk|ejθk and τk are the complex

attenuation and propagation delay of the kth path, respectively. Let τk’s be in the

increasing order. Therefore, τ0 is the first arriving path that needs to be estimated for

indoor positioning purposes. Also, note that bk is complex Gaussian and θk is uniformly

distributed between [0, 2π), that is, |bk| is Rayleigh distributed. By taking the Fourier

transform of (4.1), the frequency domain channel response is obtained as follows

H(f) =
P−1∑

k=0

bke
−j2πfτk (4.2)

If we exchange the role of time and frequency variables in (4.2), we obtain a harmonic

signal model [16]. As a result, any spectral estimation technique suitable for the har-

monic signal model is applicable to the frequency response of the multipath indoor

radio channel for time-domain analysis [16].

H(τ) =
P−1∑

k=0

bke
−j2πfkτ (4.3)

In order to obtain discrete frequency data, the M -point DFT is applied to the (4.1).

The discrete channel frequency response H(f) has M coefficients at M equally spaced

frequencies. ∆f is the frequency increment. The resulting equation is given by

H(m∆f) =
P−1∑

k=0

bke
−j2π(f0+m∆f)τk (4.4)

where m = 0, 1, . . . , M − 1. The channel is assumed to be low-pass, therefore f0 = 0.
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By taking into account noise in the environment which is assumed to be com-

plex isotropic SαS distributed random process, the sampled discrete frequency domain

channel response is given by

x(m) = H(m∆f) + n(m) =
P−1∑

k=0

bke
−j2πm∆fτk + n(m) (4.5)

The vector form of the signal is

x=H+n=As+n (4.6)

where

x = [x(0) x(1) . . . x(M − 1)]T

H = [H(0) H(∆f) . . . H((M − 1)∆f)]T

n = [n(0) n(1) . . . n(M − 1)]T

A = [a(τ0) a(τ1) . . . a(τP−1)]

a(τk) = [1 e−j2π∆fτk e−j2π2∆fτk . . . e−j2π(M−1)∆fτk ]T

s = [b0 b1 . . . bP−1]
T

and T denotes the transpose operation.
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It is worthy to define the M × P A matrix for clarity.

A =




1 1 . . 1

e−j2π∆fτ0 e−j2π∆fτ1 . . e−j2π∆fτP−1

e−j2π2∆fτ0 e−j2π2∆fτ1 . . e−j2π2∆fτP−1

. . . . .

. . . . .

e−j2π(M−1)∆fτ0 e−j2π(M−1)∆fτ1 . . e−j2π(M−1)∆fτP−1




(4.7)

Generally, MUSIC is applied to the covariance matrix for the separation of signal and

noise subspaces. However, due to infinite variance of the complex isotropic SαS noise,

the covariance is not valid. Instead, the so-called FLOM-based covariation matrix is

calculated from data matrix and used as the input to the MUSIC. The overall method is

called FLOM-MUSIC TOA estimator. The step-by-step derivation of TOA estimation

algorithm with FLOM-MUSIC under stable noise is given in the following section.

Before presenting the solution, the model of the channel and noise signals must

be determined. In [13], the ROC-MUSIC algorithm for source localization in impulsive

noise environments is presented and it is assumed that both signal and noise are jointly

complex isotropic SαS with characteristic exponent α ∈ (1, 2]. However, information

signals always have finite variance, and therefore, the assumption made by [13] about

the bearing signals is not realistic [14].

In this thesis, the channel and the environmental noise are assumed to be complex

Gaussian and complex isotropic SαS with α ∈ (1, 2], respectively. As mentioned in

Chapter 2, second order statistics cannot be applied to the TOA estimation problem

due to the impulsive noise assumption. Instead, FLOMs will be used and the resulting

covariation matrix will be called FLOM-based covariation matrix [14].

The assumptions made for the derivation of the solution are as follows:

• A1: In bk = |bk|ejθk , the amplitude |bk| and the phase θk are statistically inde-
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pendent real random variables. The first is Rayleigh distributed while the latter

is a sequence of i.i.d. random variables with uniform distribution over [0, 2π).

• A2: nm is the sequence of zero-mean, i.i.d. complex isotropic SαS random

variables with 1 < α ≤ 2.

• A3: A given by (4.7) is of full rank. This assumption is necessary for all subspace

methods in order to extract the desired information from noise.

Note that, from A2 and A3, x given by (4.6) is zero-mean.

Now, the task is to construct the FLOM-based covariation matrix C from N

snapshots of data and apply MUSIC to seperate the signal and noise subspaces by

eigen-decomposition. The proposed solution for the TOA estimation under impulsive

noise is given in the next section.

4.2.1. TOA Estimation with FLOM-MUSIC

The step-by-step derivation of the problem solution is as follows:

1) Build data matrix from N data snapshots. Each snapshot has length of M.

Resulting data matrix is M ×N .

2) Obtain the (M × M) FLOM-based covariance matrix, C which will be the

input for MUSIC algorithm introduced in the third step. The covariance matrix C is

computed as follows [14]

C = (1/N)(X|X∗|(p−2)X∗); (4.8)

3) The conventional MUSIC under Gauss noise is based on the eigen-decomposition

of the correlation matrix. However, α-stable random processes do not have finite pth

order moment for p ≥ α. Instead of correlation matrix, FLOM-based covariation ma-

trix C is defined in the second step. Now, the input of the MUSIC is the FLOM-based
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covariation matrix, C. As a result of eigen-analysis of C, the following equation is

obtained

C = PDP−1 (4.9)

where D is the (N ×N) diagonal matrix having eigenvalues of C on the diagonal, and

P is the (N×N) matrix composed of N eigenvectors on the columns. It can be readily

seen that each eigenvector has a length of N.

The matrix form of C is given as follows

C = ASA + γI (4.10)

The FLOM-based covariation matrix C has the following properties [14]

• It is bounded except for α < 1 which implies a high impulsive environment.

For such a condition, zero-memory nonlinearity (ZMNL) is proposed to clip the

undesired impulsive noise [14].

• It has the TOA information embedded in A.

• The elements on the diagonal of C are identical.

• S in (4.10) is nonsingular.

Assuming that N > P , theoretically the N −P smallest eigenvalues of C are all equal

to the dispersion γ. The eigenvectors corresponding to N − P smallest eigenvalues

of C are called noise eigenvectors, while the P largest eigenvectors are called signal

eigenvectors. What MUSIC does is that it splits N -dimensional subspace that contains

signal contaminated by complex isotropic SαS noise into two orthogonal subspaces,

called signal subspace and noise subspace spanned by the signal eigenvectors and noise

eigenvectors, respectively.
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Let

J = [j0 j1 . . . jP−1] (4.11)

be the signal eigenvectors and

K = [kP kP+1 . . . kN−1] (4.12)

be the noise eigenvectors.

The projection matrix of the noise subspace is determined by

Φ = K(KHK)−1KH = KKH (4.13)

Due to the fact that a(τk), (k = 0, 1, . . . , P − 1), must be in the signal subspace

Φa(τk) = 0. (4.14)

As a result, the multipath delays τk, 0 < k < P − 1, are obtained from the peaks of

the MUSIC pseudospectrum given by

SMUSIC =
1

aH(τ)KKHa
=

1∑N−1
i=P |kia|2

(4.15)

The first peak of the pseudospectrum is the estimate of τ0 denoted by τ̂0. Once it

is estimated, the distance between the transmitter and the receiver are readily calcu-

lated. The SMUSIC pseudospectrum gives the delay characteristics of the indoor radio

channel, that is, the arrival times of the multipath components, however, power levels

on the pseudospectrum are not realistic, therefore, MUSIC does not give a complete

characterization of the channel. Whereas τ̂0 is the TOA of the first arriving path, other

delays stem from other multi paths.
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The derivation is done for non-Gaussian distributed noise. IFT is a conventional

method for finding the delay characteristics of a multipath radio channel. Under Gauss

noise, the TOA estimation with SOS-based MUSIC was studied and compared to IFT

in [16] and it was shown that SOS-MUSIC is superior to IFT, that is, IFT cannot resolve

multipath especially for low SNR values. Due to the fact that non-Gauss noise is more

disruptive than Gauss noise, it is apparent that IFT would be completely unsatisfactory

under impulsive noise for low GSNR values, therefore, it was not considered in our

study.
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Figure 5.1. Simulation Process

5. SIMULATION RESULTS

In this chapter, the performance of the proposed FLOM-MUSIC TOA estima-

tion algorithm is evaluated and compared with the performance of SOS-MUSIC TOA

estimator [16] under non-Gaussian noise. The effect of the GSNR (Generalized Signal-

to-Noise Ratio), the characteristic exponent α, and the fractional lower order moment p

on the estimators’ performances are studied. Also, the distributions of FLOM-MUSIC

and SOS-MUSIC TOA estimators are interpreted via the Kolmogorov-Smirnov good-

ness of fit test [1]. Figure 5.1 picturies the estimation process based on computer

simulations. The observed data vector is obtained by sampling the channel frequency

response uniformly over a given frequency band as given in (4.5). For indoor mul-

tipath channels, it can be assumed that the maximum delay τmax is less than 500

nsec [7]. Therefore, the frequency sampling interval ∆f is chosen to be 1/2τmax = 1

MHz. The bandwidth is chosen to be 100 MHz, therefore the size of one snapshot

is fs/∆f = 2B/∆f = 200 where fs is the sampling frequency. Due to the low-pass

assumption, it is assumed that the carrier frequency f0 = 0 in (4.4).

Due to the infinite variance of α-stable random processes, the traditional signal-

to-noise ratio (SNR) definition is invalid in this study. Instead, so called the generalized
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Figure 5.2. 5-path indoor radio channel sample

signal-to-noise ratio (GSNR) [14] is used and defined as follows:

GSNR = 10 log(E{|h(t)|2}/σα) (5.1)

If α = 2, (5.1) becomes the well-known signal-to-noise ratio (SNR) that defines the

ratio of signal variance to noise variance.

The resulting pseudospectrum of our TOA estimation algorithm has peaks around

the delays of the indoor radio channel paths if the estimation is successful. Due to the

fact that the pseudospectrum is in time domain, the places of those peaks give the

estimates of the path delays. Figure 5.2, Figure 5.3, and Figure 5.4 show a simulated

5-path indoor radio channel and the corresponding FLOM-MUSIC and SOS-MUSIC

pseudospectra, respectively. For the rest of our simulations, it is assumed that the

indoor radio channel has two paths introducing 100 nsec and 200 nsec delays, re-

spectively. It is also assumed that the channel is complex Gaussian with uniformly

distributed phase over [0, 2π) rad and the noise is complex isotropic SαS. The parame-
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Figure 5.3. The FLOM-MUSIC pseudospectrum
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Figure 5.4. The SOS-MUSIC pseudospectrum
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ters of the stable noise are assumed to be known although there are several parameter

estimation methods for α-stable random processes in the literature [3].

The MUSIC algorithm assumes that the covariation matrix is both Hermitian and

Toeplitz which assures that it is conjugate symmetric and has equal elements along all

diagonals. However, the sample covariation matrix C estimated from data samples

does not fit this assumption. In order to attain conjugate symmetry, two methods are

used and their performances are compared via simulations. Forward-backward method

is the first one used in order to improve the FLOM-covariation matrix. The resulting

forward-backward covariation matrix is calculated as follows

CFB =
1

2
(C + JC∗J) (5.2)

where ∗ denotes conjugate and J is the (M×M) exchange matrix whose elements are

zero except for ones on the anti-diagonal. The proposed algorithm using forward-

backward method is called FLOM-MUSIC with forward-backward improvement. The

second method is the well-known general improvement method given by

CG =
1

2
(C + C∗) (5.3)

This method is named as FLOM-MUSIC with general improvement.

In simulations, the performances of FLOM-MUSIC and SOS-MUSIC TOA esti-

mators are evaluated in terms of two criteria; the success rate and the mean-squared-

error (MSE) of the first arriving path. The FLOM-MUSIC is the proposed solution

while the SOS-MUSIC is the TOA estimation algorithm proposed for Gauss noisy en-

vironments [16]. On the other hand, a threshold level must be determined in order to

estimate path delays from the pseudospectrum. In other words, peaks having larger

power than the threshold power level will be accepted as path delays. In our simula-

tions, for each value of GSNR, α and p, 1000 trials are done and they have taken values

between [5 dB,30 dB], [1,2] and [0.5,2], respectively. The total number of simulated

trials is 160000, that is, 160000 pseudospectra were obtained. The noise floor of all
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obtained pseudospectra are almost equal to 57 dB, that is, the minimum power level of

each pseudospectra are about 57 dB. It is also seen from the simulated pseudospectra

that maximum power level of outliers is 57.184 dB. As a result, it was chosen that peaks

having power higher than 57.184 dB (it is equal to the noise floor plus 0.174 dB) which

is the threshold level are evaluated as delay estimates. The threshold level should be

carefully determined from measurements or simulations. It affects the sensitivity of

the receiver.

In our study, the success rate is defined in two different ways as follows:

• The algorithm successfully resolves two paths, that is, the pseudospectrum ex-

hibits exactly two peaks inside the interval [90 nsec,210 nsec]. The powers of

those peaks are higher than 57.184 dB. It does not have any peak higher than

the threshold level out of that region. It is named as the resolution success rate.

• If the first peak of the resulting pseudospectrum over the threshold is around 100

nsec (in the interval of [90 nsec,110 nsec]), it is assumed that the trial is successful

because it gives the TOA. If exist, other peaks are neglected. It can be called as

the success rate for finding the TOA.

In both cases, the success rate becomes the ratio, in percentage, of the successful trials

to the total number of trials. The successful estimates of two paths are denoted by τ̂0

and τ̂1.

The mean-squared-error is the second evaluation parameter which is the averaged

sample mean-squared error of the first peak in the pseudospectrum having power larger

than 57.184 dB. The location of this peak gives the estimate of τ0, denoted by τ̂0.

The success of the estimator is not considered for the computation of the MSE. It is

calculated as follows:

MSE = (1/R)
R∑

b=1

(τ̂0(b)− τ0)
2 (5.4)

where R is the total number of trials.
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Under impulsive noise, 1000 trials are performed and the success rates and the

MSE of the general and forward-backward FLOM-MUSIC and SOS-MUSIC are com-

puted for each GSNR, α, and p values. During each trial, the data matrix is built from

100 snapshots and each snapshot is a 200-point vector. The resulting pseudospectrum

is evaluated at 10000 points.

5.1. The Effect of the GSNR on the Performances of FLOM-MUSIC and

SOS-MUSIC

As stated before, the traditional SNR definition is invalid for impulsive noise due

to its infinite variance. Instead, GSNR given by (5.1) is used. It is changed over [5

dB,30 dB] and for each GSNR value, 1000 trials are done for specific characteristic

exponent α and fractional moment order p values. For each trial, it is determined if

the estimators resolve two paths successfully, if they have a peak around 100 nsec and

the MSE of the first peak over the threshold level is calculated.
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Figure 5.5. Resolution Success rate vs GSNR for α = 1.8 and p = 0.9
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Figure 5.6. Resolution Success rate vs GSNR for α = 1.8 and p = 1
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Figure 5.8. Resolution Success rate vs GSNR for α = 1.5 and p = 0.7

The resolution success rates for the general FLOM-MUSIC, the forward-backward

FLOM-MUSIC, the general SOS-MUSIC, and the forward-backward SOS-MUSIC are

presented in Figure 5.5, Figure 5.10, Figure 5.7, and Figure 5.8. In the literature,

the noise with the characteristic exponent α = 1.8 is referred to as slightly impulsive

whereas stable noise with α = 1.5 is called highly impulsive [14]. For low GSNR values,

the general FLOM-MUSIC is the most successful while forward-backward SOS-MUSIC

gives the worst performance. The superior performance of the general FLOM-MUSIC

gets more apparent under α = 1.5. Although the general SOS-MUSIC provides slightly

better performance than the general FLOM-MUSIC under α = 1.8, it cannot reach

the same resolution success rate with that of the general FLOM-MUSIC as α decreases

even under maximum GSNR value equals to 30 dB.

In Figure 5.9, Figure 5.10, Figure 5.11, and Figure 5.12, simulation results for the

second successful estimate definition are given. Here, each trial having the first peak

with larger power than the threshold level inside [90 nsec,110 nsec] are assumed to be

successful. The success rate values are higher than the resolution success rate values
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for the same GSNR.
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Figure 5.9. Success rate for finding TOA vs GSNR for α = 1.8 and p = 0.9

The error on the estimates is a significant parameter for the evaluation of the

estimators. As seen in Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16, for low

GSNR values, forward-backward FLOM-MUSIC and SOS-MUSIC have smaller esti-

mation errors than general FLOM-MUSIC and SOS-MUSIC. However, by increasing

GSNR, the estimators with general improvement provide lower estimation errors than

the estimators with forward-backward improvement. Another result is that MSE is

higher for lower α.
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Figure 5.10. Success rate for finding TOA vs GSNR for α = 1.8 and p = 1
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Figure 5.11. Success rate vs GSNR for α = 1.5 and p = 0.75
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Figure 5.12. Success rate for finding TOA vs GSNR for α = 1.5 and p = 0.7
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Figure 5.13. MSE vs GSNR for α = 1.8 and p = 0.9
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Figure 5.14. MSE vs GSNR for α = 1.8 and p = 1
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Figure 5.15. MSE vs GSNR for α = 1.5 and p = 0.75
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Figure 5.16. MSE vs GSNR for α = 1.5 and p = 0.7

5.2. The Effect of the Characteristic Exponent α on the Performances of

FLOM-MUSIC and SOS-MUSIC

In this section, in order to show the effect of the characteristic exponent α on

the performances of estimators, various simulation results are presented. α is changed

over [1,2] and 1000 trials were done for (GSNR=25 dB, p=0.7), (GSNR=25 dB, p=1),

(GSNR=25 dB, p=α/2), and (GSNR=20 dB, p=α/2).

In Figure 5.17, Figure 5.18, Figure 5.19, the resolution success rate results for

various values of p are presented. As α gets larger than 1.1, a fast increase in the

resolution success rates of the general and forward-backward FLOM-MUSIC estimators

happens whereas SOS-MUSIC estimators still have poor resolution success rates. As α

approaches to the Gaussianity, the performances of the general FLOM-MUSIC and the

general SOS-MUSIC TOA estimators get similar. Also the latter resolves two paths

slightly better than the former when α > 1.6 due to the high GSNR value. As seen

from Figure 5.20, in the case of a lower GSNR value (GSNR=20 dB), the general
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SOS-MUSIC outperforms the general FLOM-MUSIC after α > 1, 7. The effect of the

fractional moment order on the FLOM-MUSIC estimator and the superiority of the

general improvement over the forward-backward improvement are apparent from the

figures as well.
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Figure 5.17. The Resolution Success Rate vs α for GSNR=25 dB, p=0.7

Regardless of resolving two paths successfully, Figure 5.21, Figure 5.22, Figure

5.23 and Figure 5.24 present the results of the simulations inspecting the first peak

of the pseudospectrum. The same story given for the resolution success rate is valid

here. On the other hand, those success rate values are slightly higher than the reso-

lution success rates. Lastly, Figure 5.25, Figure 5.26, Figure 5.27, and Figure 5.28

presents the results of the estimation errors. As seen from the figures, the estimators

with forward-backward improvement have lower MSE for low α values, however, as

α increases, the general FLOM-MUSIC and SOS-MUSIC show better performance in

terms of estimation error. The general FLOM-MUSIC TOA estimator has the lowest

MSE for α > 1.4. Also the effect of the fractional moment order p is apparent from

the figures. In the following section, its effect is investigated via simulation results.
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Figure 5.18. The Resolution Success Rate vs α for GSNR=25 dB, p=1
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Figure 5.19. The Resolution Success Rate vs α for GSNR=25 dB, p = α/2
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Figure 5.20. The Resolution Success Rate vs α for GSNR=20 dB, p = α/2
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Figure 5.21. The Success Rate for Finding TOA vs α for GSNR=25 dB, p=0.7
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Figure 5.22. The Success Rate for Finding TOA vs α for GSNR=25 dB, p=1
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Figure 5.23. The Success Rate for Finding TOA vs α for GSNR=25 dB, p = α/2



67

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

60

70

80

90

100

The Characteristic Exponent αααα

Su
cc

es
s 

R
at

e 
fo

r 
F

in
di

ng
 T

O
A

 in
 P

er
ce

nt
ag

e

The Success Rate for Finding TOA vs αααα (GSNR=20 dB, p=αααα/2, 1000 Trials)

General FLOM-MUSIC FB FLOM-MUSIC General SOS-MUSIC FB SOS-MUSIC

Figure 5.24. The Success Rate for Finding TOA vs α for GSNR=20 dB, p = α/2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

2

2.5
x 10

5

The Characteristic Exponent αααα

M
SE

The MSE of the First Peak Over the Threshold vs αααα (GSNR=25 dB, p=0.7)

General FLOM-MUSIC FB FLOM-MUSIC General SOS-MUSIC FB FLOM-MUSIC

Figure 5.25. MSE vs α for GSNR=25 dB, p=0.7
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Figure 5.26. MSE vs α for GSNR=25 dB, p=1
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Figure 5.27. MSE vs α for GSNR=25 dB, p = α/2
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Figure 5.28. MSE vs α for GSNR=20 dB, p = α/2

5.3. The Effect of the Fractional Moment Order p on the Performance of

FLOM-MUSIC

In this section, simulations are done to see the effect of the fractional lower

moment order p on the performances of the estimators. The SOS-MUSIC estimator

is independent of p, therefore the general and forward-backward FLOM-MUSIC TOA

estimators are compared.

In Figure 5.29, Figure 5.30, and Figure 5.31, the simulation results for GSNR=25

dB and α = 1.5 are presented. The effect of the fractional moment order p on the suc-

cess and the accuracy of both estimators under highly impulsive environment (α = 1.5)

is apparent. As p increases, the successes of the estimators sharply decrease whereas

their MSEs significantly increase. The general FLOM-MUSIC performs better than

the forward-backward FLOM-MUSIC in terms of both success rate and MSE. Further-

more, in order to attain higher success rate and lower estimation error, p should be

close α/2 for highly impulsive environments. Increasing p leads to unsatisfactory per-
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formance in terms of both success rate and MSE. For slightly impulsive environments
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Figure 5.29. The Resolution Success Rate vs p for GSNR=25 dB, α = 1.5

(α = 1.8), simulation results are depicted in Figure 5.32, Figure 5.33, and Figure 5.34.

As p approaches to α/2 = 0.9, the success rates of the estimators steadily increase

while their MSEs sharply decrease. On the other hand, increase in p causes to slight

improvement in the success rates. Again, the general FLOM-MUSIC performs better

than the forward-backward FLOM-MUSIC.
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Figure 5.30. The Success Rate for Finding TOA vs p for GSNR=25 dB, α = 1.5
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Figure 5.31. MSE vs p for GSNR=25 dB, α = 1.5
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Figure 5.32. The Resolution Success Rate vs p for GSNR=25 dB, α = 1.8
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Figure 5.33. The Success Rate for Finding TOA vs p for GSNR=25 dB, α = 1.8
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Figure 5.34. MSE vs p for GSNR=25 dB, α = 1.8

5.4. The Asymptotical Distribution Tests for FLOM-MUSIC and

SOS-MUSIC Estimators

In the literature, the asymptotical distribution of the traditional MUSIC estima-

tor has been studied and under Gaussian noise, in [11] it is shown that SOS-based

MUSIC is Gauss-distributed. However, the assumption of impulsive noise changes the

distribution. It is not trivial to statistically analyze the distribution of FLOM-MUSIC

TOA estimator due to the stable distribution of environmental noise. There are some

statistical goodness-of-fit tests in which the validity of one hypothesis is tested without

specification of an alternative hypothesis. The Kolmogorov-Smirnov test (KS-test) is

such a method that tries to determine if there is a significant difference between two

data sets [1]. The advantage of KS-test is that no assumption has to be made about

the distribution of data. In other words, it is non-parametric.

First of all, 35000 estimates from the general and forward-backward FLOM-

MUSIC and SOS-MUSIC TOA estimators are generated under GSNR=25 dB, α=1.5,
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and p=0.75. The first peak of the pseudospectrum over the threshold level is evaluated

as the estimate.

In Figure 5.35, Figure 5.36, Figure 5.37, and Figure 5.38, the histograms of the

four estimators are given. Kolmogorov-Smirnov test is applied to 35000 samples of the
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Figure 5.35. The histogram of the general FLOM-MUSIC TOA estimator

general and the forward-backward FLOM-MUSIC and SOS-MUSIC estimators. The

normal distribution hypothesis test was rejected at a significance level of 5 per cent, that

is, FLOM-MUSIC and SOS-MUSIC TOA estimators do not fit normal distribution.

This result can be seen from the figures as well.
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Figure 5.36. The histogram of the forward-backward FLOM-MUSIC TOA estimator
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Figure 5.37. The histogram of the general SOS-MUSIC TOA estimator
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Figure 5.38. The histogram of the forward-backward SOS-MUSIC TOA estimator
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6. CONCLUSION AND FUTURE WORK

In this thesis, the TOA estimation with MUSIC under impulsive noise and com-

plex Gaussian multipath indoor channel assumptions is formulated. The environmental

noise is assumed to be SαS distributed. The structure of the FLOM-based covariation

matrix is similar to the structure of the second-order based covariance matrix proposed

in [16]. The MUSIC is applied to the FLOM-based covariation matrix, and the delay

of the first arriving path, TOA, is estimated. Also two improvement methods, namely,

general and forward-backward, are applied to the covariation matrix in order to obtain

Hermitian symmetry.

Simulations are run for the evaluation of the performance of the proposed esti-

mator. Also, the SOS-MUSIC is applied to the problem in order to see the difference

between the FLOM-MUSIC and the SOS-MUSIC TOA estimators under impulsive

noise.

Two criteria are defined as the evaluation parameters; the success rate and the

MSE. Simulation results show that the proposed FLOM-MUSIC outperforms the tra-

ditional SOS-MUSIC in terms of both parameters.

In this study, it is shown that the SOS-MUSIC TOA estimator fails under low

GSNR values. On the other hand, our simulation results show that the proposed

FLOM-MUSIC TOA estimator have satisfactory performance under this circumstance

in terms of resolution capability and low estimation error. Furthermore, it is seen that

the general FLOM-MUSIC works better than the forward-backward FLOM-MUSIC.

The effect of the characteristic exponent α on the performances of the estimators

are investigated via simulations. Under low α values, the SOS-MUSIC gives completely

poor results whereas the FLOM-MUSIC works well.
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Due to the fact that the FLOM-based covariation matrix depends on the frac-

tional moment order p, the performances of the general and the forward-backward

FLOM-MUSIC TOA estimators with respect to p are studied. Our simulation results

show that the value of p significantly affects the performance of the estimator and the

optimum p value is close to α/2 especially for low characteristic exponent values. As

α approaches to 2 which is the Gaussian case, it can be chosen larger than α/2.

Finally, the Kolmogorov-Smirnov test is applied to 35000 samples of the general

and the forward-backward FLOM-MUSIC and SOS-MUSIC estimators. It is seen that

these estimators do not fit the Gaussian distribution. The obtained histograms of the

estimators support this result as well.

All in all, in this thesis, it has been shown that TOA estimation under impulsive

noise can be done by applying the FLOM-MUSIC while the SOS-MUSIC cannot be

used. Especially for low GSNR values and under highly impulsive environments where

α is around 1.5, it apparently outperforms SOS-MUSIC. Another useful result stem-

ming from this study is that the fractional moment order p should be chosen carefully

because it affects the success of the FLOM-MUSIC TOA estimator. A wrong choice

may lead to high estimation errors. Our simulation results show that p should be

around α/2 for α ∈ [1, 1.5] whereas it is possible to increase p as the distribution of

noise approaches to Gaussian. Lastly, it is not trivial to define the statistical distri-

bution and bounds of the estimator. The future work will focus on the asymptotical

distribution and error bound of FLOM-MUSIC TOA estimator.
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