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ABSTRACT
FOVEA BASED CODING FOR VIDEO STREAMING

Attentive robots, inspired by human-like vision — are requiredvto have visual
systems with fovea-periphery distinction and saccadic motion capability. Thus, each
frame in the incbming image sequence has nonuniform sampling and consecutive sac-
cadic images have temporal redundancy. In this fhesis, we propose a novel video coding
and streaming algorithm for low bandwidth networks that exploits these two features
Siniultaneously. Our experfmental results reveal improved video streaming in applica-

tions like robotic teleoperation.

Furthermore, we present a complete framework for foveating to the most interest-
ing region of the scene using attention criteria. The construction of this function can
vary depending on the set of visual primitives used. In our case, we show the feasibility
of using Cartesian and Non-Cartesian filters for the cémse of human-face videos. Since
the.algorithm is predicated on the Gaussian-like resolution of human visual system and
is extremely simple to integrate with the standard coding schemes; it can also be used

in applications such as cellular phones with video.



OZET
iLGI TABANLI ViDEO KODLAMA VE iLETiMI

ilgi tabanli robotlar, insana benzer goriiden esinlenerek, fovea-gevre ayrimina ve
izl géz hareketleriyle odaklanma yetenegine sahip olmas: gerekmektedir. Bu sonugla,
ardigik imgelerin i¢inde her yeni gelen §ergeVe diizgiin olmayan Srnekleme, ve ardarda
gelen her cerceve de zamansal artiklik igerir. ’Bu tez calhigmasinda, bu iki belirleyici
niteligi kullanarak diigiik bant genigligine sahip aglar icin yeni bir video kodlama ve
duraksiz iletim algoritmaél oneriyoruz. Deneysel sonuglarimiz, uzaktan robot erigimi

gibi duraksiz video iletim uygulamalarindaki iyilegtirmeyi ortaya cikartmaktadir.

Bunun yaninda, ilgi kriterini kullanarak, sahnedeki en ilging bolgeye odaklan-
abilen ilgi t&banli bir iskelet sistem sunulmaktadir. Bu ilgi tabanh fonksiyon, kul-
lanilan ilkel-gbrme serisine gore degisiklik gosterebilir. Biz'bu ¢alismamizda, ‘Ka‘rtezyen
ve kdrtezyen olmayan siizgeglerin insan yuzii bulﬁnrﬁam i§lemihdeki kullamlabilirligini
gosterdik. -Algoritmamiz insan gorii sisteminin Gauss-benzeri ¢oziiniirligiint kullandig |
ve standart kodlama yontemleri ile cok kolay bir gekilde tiimlestirilebildigi igin, cep

telefonlarindan video yayim gibi uygulamalarda da kullanilabilir.
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1. INTRODUCTION

1.1. Motivation |

Motivated by biological vision systerﬁs, there has been a growing trend to have
robots explore their environment and look at objects in an attentive manner — thereby
minimizing the amount of collected information and thus reducing the reqliired com-
putation considerably [1, 2, 3]. Remote communication with such a robot is then
achieved via real-time video transmission using sta,ndafd coding schemes. However,
such a video has two intrinsic properties which are not exploited in general by the

standard compression algdrithms:

e Fovea-periphery distinction: Unlike traditional cameras, the distribution of re-
ceptor cells on the retina is gaussian-like with a small variance, resulting in a loss
of resolutlon as we move away from the optical axis of the eye [4]: The small
“region of highest acuity around the optical ax1s is called the fovea, and the rest
of the retina is called periphery. Consequently there i is Varylng spatial resolution
within each frame. | |

e Saccades: vSe_condlvy, as a consequence of this fovea-periphery distinction, sac-
cades - very rapid jumps of optical axis - are used to bring images of chosen
objects to fovea where resolution of ﬁne visual detail is at its best [5]. Saccadic
eye movements are one of the capabilities of oculomotor system which is 1nv01ved
in controlling the eye movements. Saccadic eye movements require the computa-
tion of the relative position of a Qisual feature of interest with respect to the fovea

"in order to determine the direction and ampiitude of theAsaccade. Consequently,
consecutive frame sequences in the video stream contain much overlapping infor-

- mation.

In this thesis, the goal is to develop a video streaming system that uses these two
_ properties simultaneously— hopefully leading to a better video quality for such video

transmissions. In order to achieve this, we focus on the two aspects of the problem:



Spatio-Temporal Processing: Given a foveated video sequence, we present an ap-
proach that exploits these two feétures and applies spatio_—temporal processing
to the video accordingly. before it is encoded. "As the fovea size and the. video
encoding bit-rates may both vary, we need to redefine the video quality metrics
that can be used to assess the performance of such a system. -

vaea Determination: Given a non-foveated video sequence, we present a compara-
tive study of two methods that could be used to introduce a foveal—periphery like
sampling of each frame.

Ih order to achieve foveation, an attention criteria needs to be defined. We
investigate the case of using Cartesian and Non-Cartesian filters and show that
they indeed hold the promise of providing an integrated basis of encoding and

recognition.
1.2.. Liter.at‘ure
Two different areas were of interest to our work:
1.2.1. Video Source Coding

The application of varying resolution to video coding and streaming is relatively
new [6]. As outlined .therein, this approach presents several distinct advantages such
as guarantéed compression ratios and speed. Foveal and peripheral regions are coded
differently in spatial domain, and the priority assignment of the ATM cells are used
for transmitting the regions of video frames with varying prioriﬁies [6]. However, in
the case of a network congestion, peripheral information which attracts relatively lower
attention is lost first. However, since the approach depends solely on the ‘Quality of
Service’ (QoS) parameters, it will potentially have problems on best effort systems like
internet. Furthermore, the redundancy along the temporal dimension is not utilized at
all. An approach that applies both spatial & temporal processing on MPEG2 streams
has been presented in [7]. DCT coefficients of the periphery are quantized in order to

‘reduce the length of the bitstream. However, since DCT coefficients are calculated on

eight x eight blocks, the foveal region definition is limited with rectangular shape. In



order to minimize the blocking artifacts between the foveal and the peripheral regioné,
image pyramids and raised-cosine blending are used in [8]. However, such an approach
requires the generated pyramids also to be transmitted through.the channel then im-
plied increased bandwidth. Space-variant approachés such as log-polar mapping of
original frame can also be applied for foveation [9], but the increased compﬁtation for
~ achieving such transformations impede real-time applications. Finally, if methods that
take pérticular coding algorithms like H.263, MPEG-4 and and JVT into account do

not offer compression independent solutions.
1.2.2. Attentive Vision

Attentive robots explore their surroundings in a loop of pre-attention and atten-
tion [2]. The aim of the pre-attention stagé is to determine the next region of attention.
This is achieved through the fovea-periphery mechanism '[10]. The distribution of re-
ceptor cells on the retina is Gaussian-like with a small variance, resulting in a loss of
resolution as- we move away from the optical axis of the eye [4]. The fovea is the small
region of highest acuity around the optical axis and thé rest of the retina is called
periphery. A measure of saliency (either bottom-up or top-down) is used to determine
the next region of interest. Saccades - very rapid jumps of optical axis - are used to
bring images of chosen objects td fovea where resolution of ﬁné visual detail is at its
best. In attentive processing, complex processing is applied on the fovea and it has
been suggested this response is used in recognition. For example, Galant et al.. have
investigated the V4 activity of macaque monkeys stimulated with different surface rép—
resentations and have found the presence of cells selective to both Cartesian ( planar
texture surfaces) and Non-Cartesian (textured spheres and saddles) stimuli [11]. Pre-
vious work on our robot APES has utilized thesé filters in cdmplex recognition task
[12, 13]. The remote access (in particular internet-based) and teleoperation of such
a robot requires real-time transmission of thus generated video — which has varying
resolution and redundancy. Consequently, video streaming methods that exploit these

properties and which can be naturally integrated to these robots become crucial.



1.2.2.1. Face Detection. The face detection and recognition literature is very rich and

several comprehensive surveysﬁ are presented in [14, 15, 16].

e Knowledge Based- Methods: These methods use human knowledgé about
face. In general, these methods rely on the creation of some basic rules and use
of these rules within the frame [17]. |

e Feature Invariant Methods: These methods concentrate on ﬁnding the struc-
tural features of the face that are independent from pose, lighting conditions and
viewpoint.. For instance the relationships between the facial features [18], skin
color [19] can be classified as feature invariant methods. B

e Template Matchingﬁ Structural patterns of the face are stored to describe the
face (hand coded, not learned), and searched within the target image. Deformable
face template [20] is an example of fhis method. |

e Appearance Based Methods: A set of traininé images is used to generate
templates or models. Then these templates are searched within the target im-
age. Some practivcal approaches can be listed as eigenfaces [21], neural-nets [22],

support vector machines [23], and hidden markov models [24].

1.3. Problem Statement

Slippose that thé visual task involves a robot looking at a scene in an attentive
manner and a video is generated meanwhile. The objective can be defined as real-time
transmission of this data over the Internet so that users can see precisely what the
robot is seeing. Moreover, the system should also: i.) allow real-time streaming and

ii.) be usable with any particular video compression algorithm.
1.4. Contributions of the Thesis
The major contributions of this thesis are thr‘ee—fold.

e Video Source Coding: In classical video coding like H.263 [25], all the blocks

in a frame and between frames are coded with the same priority. However, in



many applications such as attentive robot-video streaming, each frame may ha\}e
varying resolution and éonsecutive frames. haye much similariy. In this thesis,.
we present a realtime processing algorithm that processes video frames spatio-
temporally and hence enables more efficient encoding without any alterations
in these standards. Finally, this appfoach can be used in géneral in any low-
bandwidth video transmission since it matches the fall-off resolution of the human
\}isual system. |

e Foveation Based on Attention Criteria: Simple attention criteria can be
used to define foveal regions for’ each frame in the sequence. In particular, we
use Cartesian and Non-Cartesian filters to construct such criterid and show that
these functions indeed hold the promise of introducing fovea-periphery distinction
to each frame. The advantage of such an approach is that since these filters are
rich enough to be also used in recognition as evidenced by previous work [12], an
integrated attentive perception (including pre-attentive, attentive and cognitive
stages) and video-streaming framework is obtained.

e A Complete Réal Time System: A fovea based video streaming system that

works real-time is presented.

1.5. Thesis Outline

The outline of the présentation is as follows: In Chapter 2, we first present
video source coding based on spatio-temporal pfocessing. We next consider foveation
and suggest two alternative approaches that could be utilized — including Haar filters,
Cartesian and Non-Cartesian filters. Following, the details of system design of our of
our web based real time video streaming tool are presented in Chaptef 3. The compre-
hensive set of expériments are explained in Chapter 4 — along with the introduction of
the video Quality Metrics for this purpose. Results of these experiments are discussed
in Chapter,5., Finally, the thesis concludes with a brief summary and comments on

future work in Chapter 6.



2. VIDEO SOURCE CODING

2.1. Spatio-Temporal Processing

Consider an incoming image sequence. Let I! denote the visual field image at
time t. The function ¢! : I} — C maps each pixel in this'region to-a value from the color
space C. The fovea is represented by I} C It. The rest of the visual field is known as
the periphery periphery It = I, — I}. The foveal and peripheral regions have different
resolutions. While the foveal region is of high resolution, that of the periphery is of
much lower resolution. .Furt'hermore, the resolutionr decreases radially in the outward
diréction away from the center of the foveal region — known as the fixation point. At
each time ¢, a new fovea is determined. yThe robot then moves its camera as to fixate
on this newly determined fovea. Such cameré movements correspond to saccadic eye

movements in humans. As a result, an image sequence {I9, ..., I, I'*1 ..} is generated.

Focus of attention

i

Peripheral region -

sual fie \
Vi Iﬂld\

Foveavreglon

Figure 2.1. Visual field and foveation

2.1.1. Fovea Periphery Distinction — Spatial Processing __

In general, most video coding algorithms achieve compression by applying trans-
forms on the original sequence that exploit spatial redundancies such as discrete cosihe
transform (DCT). However, if each frame is partitioned into foveal and peripheral re-
gions, then processing can vary depending on each region. In the foveal region, the
video data is preserved as exactly is. In contrast, in the peripheral region, the video
data is made of lower resolution. Let ¢ denote the color map defined on the incoming

visual field It. Consequently, a new color map & : It — C'is defined as:



ct(x) fzel;
fsxc(z) ifzell

&s(z) = (2.1)

- where fs: I} — ff, is a spatial filter function. The main idea in choosing this filter
is that since the peripheral pixels db not attract oﬁr attehtion, the high frequency
_ contained therein is not important and thus can be removed from the data [26]. Coﬁ—
sequently, the corresponding image areas can be coded with fewer DCT coeflicients.

For example, low pass filters such as Gaussian and blurring ﬁltefs can be utilized.

However, with such a definition, spatial edge artifacts will appear in the recon-
structed image after transmission. In order to minimize this, the color map ¢g is

modified to include o-blending:

&(z) = of(z)d(a) + (1 — ot(z))fs * ¢(z) (2.2)

The blending function o : I{ — [0, 1] is time dependent function whose value at
time ¢ varies between zero and one. The values of o' are one or close to one on the
fovea and converge towards zero for peripheral pixels as a function of their proximity to
the fovea. Consequently, a graduzﬂ color transition is introduced in the fovea periphery
neighborhood. Furthermore, introducing such a blending enables us to define non-
rectangular shaped foveal regions. The flowchart of the spatial processing can be is

shown in Figure 2.2.
9.1.2. Saccadic Motion — Temporal Processing

As the camera saccades from the current fovea to the next, an image sequence

{I0, ..., It It+1, ..} is generated. If temporal sampling is fast enough, there is much tem-



Video frame

* .

fs spatial domain
processor

Iph
> tender €

spatial :>

Figure 2.2. Flowchart of the spatial processing with a-blending

poral redundancy between consecutive saccadic image frames. In general, most video
coding algorithms also exploit temporal redundancies in their compression schemes. In
motion compensation based coding, each frame Ittt can be represented as the differ—
ence of the current frameé and the previous one If, and thus ’be ‘coded using motion
Vectors (MV). As éxpected, the efficiency of this type of coding goes up with increased
temporal redundancy. In attentive vision, we can increase the temporal redundancy
between frames depending on whether foveal or peripheral regions are under consider-
ation. Since the fovea is subject to close scrutiny, all minute detail changes between
frames should be preserved and no new temporal redundancy can be introduced. How-
ever, this is not the case for periphery. Since changes between frames in the peripheral
regions are ignorable to some extent, temporal redundancy can be increased by apply—_
ing filters across temporal dimension. For example, color maps in the periphery can
be updated with every K saccades. In doing so, since the current peripherai ;egion can
be estimated from the previous one, the length of the bitstream using MVs is ‘reduced

considerably. In this case, the temporal color map ¢ : I'! — C is defined as:

() if x € I}

: (2.3)
ctmod () ifz eI}

do(z) =



If both spatial and temporal redundancies are taken into account, the resultiﬁg
color map becomes a composition of the two functions ¢4 and cf as ¢y o : I — C. |
The flowchart of the combination of spatial and temporal processing can be shown in

Figure 2.3.

Video frame

-

fs spatial domain
processor

alpha
. blender

if t mod
a, otherwise

spatio-
temporal
output

> encoder

Figure 2.3. Flowchart of spatial and temporal processing

2.2. Foveation

Spatio-temporal coding assumes that each frame is partitioned into foveal and
| peripheral regions. The next fovea I }+1 at time t+ 1 is chosen from the set of candidate
foveae C(It) — as determined from the visual field. For each candidate fovea I, € C(If),
an attention criteria a : I. — R+ is computed_. The candidate fovea that maximizes

this measure is then designated to be the next fovea as:

Ittt = arg max _a(l 2.4
f g VI.eC(Ik (L) _ (24)
The attention criteria is a scalar valued function of interest based on the presence of
simple features with low computational requirements. This function is determined by
the measure of interest on that frame and its definition will vary from task to task

depending on the measure of interest such as color, intensity or human facial features.
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It should be simple to compute as it is applied many times and need to be very quick

if the system is to operate in real-time.
2.2.1. Attention Criteria.

~ The attention criteria a is dependent on the task and should therefore be learned
using the set of visual primitives available. Once the task is selected, the construction

of a consists of the following stages:

e Selection of visual primitives: Suppose there are M different primitives, and
let the m** visual primitive be denoted by €2,,. The Valué of each visual primitive
is obtained via an operator fm: 1 5 — {ln acting on each candidate fovea I..

e Learning: First, a sample set of foveal images containing both good and bad
examples 1s selected. For example, in face tracking, ‘these are foveal images con-
taining faces or no faces. These filters are then applied to this sample set. Based
on statistical properties and the ability to dlfferentlate good foveas from bad few
of these filters are selected. Let us denote this as Mt << M In our case, M; =17
1 The attention criteria is then defined as a function of the responses of these
filters. Two different approaches are used in order to generate this function
o Biological filters: Biological filters are used as visual primitives and attention

criteria is constructed as a function of the most salient fe§v using either their
Weighted linear combination or neural-net based learning.
o Haar filters: Haar filters are used as visual primitives ‘and attention criteria

s constructed based on cascaded adaboost learning.

2.2.2. Biologically Motivated Filters

APES uses a biologically motivated set of visual primitives in its attention and
cognition stages [12, 13]. These filters consist of Cartesian and Non-Cartesian filters as
described originally in [27, 28, il, 29]. In order to be consistent and integrated with the

'rest of the system, we also use this set as our basis as shown in Figure 2.4. Note that

1 Admittedly, a more rigorous approach can be utilized to determine M;.
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[—1 + 1] range is mapped to grayscale in this figure. This set consists of fifty filters —
six Cartesian orientations, concentric and radial filters and two hyperbolic filters with
~ five different frequencies. The mathematical formulé_s of these filters are pfesented in

Appendix A and the interested reader is referred to [12, 13] for further details.-

Figure 2.4. Visualization of Cartesian and Non-Cartesian filters

2.2.3. Learning: Neural Nets

The attention criterion a was first constructed using a neural network app_roach.
The reader is referred to [30, 31, 32] for a comprehensive discussion of neural networks. |
Here, aAneural network having M; inputs is utilized. We used the most differentiate
visual primitives while selecting the number £. The detaﬂs of the selection process can
be found in Chapter 4 The selection of the input visual primitives are is The response
of each of the M; selected filters is input respectively. The outputs of the first layer
are then fully connected to an intermediate layer con31st1ng of H hidden units with
hyperbolic tangent transfer function. Finally the output layer can be trained for the
current task (see Figure 2.5). Hence, the output of each neuron. Wlthm the hldden layer

is:
a; = tanh(¥;—p.n,—1 WiJ X fri +b;). Then the output of the system is:

a=tanh( Y WJ' * a; + bo) , (2.5)

j=0:H~-1
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Figure 2.5. Neural network structure of ‘the Cartesian and Non-Cartesian visual

primitives

2.2.4. Learning: Cascaded Adaboost

The attention criterion a was also constructed using Cascaded Adaboost Ap-
proach [33, 34]. In this learning Haar filters are used as visual primitives. In this
approach, several weak hypotheseé are created, and the results are combined in or-
der to end up with a final hypotheses which is known as boosting. Moredv_er, several
features are extracted from integral of the image it_self_. These features are used for
the learning mechanism of the system. For each feature, a boosted classifier is trained
with a target hitrate and false alarm rate. Afterwards, these boosted classifiers are

cascaded within the network such that the strong features are located at early stages

' 'bf the classifier.
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Candidate
fov

Accepted

_ Rejected
foveae .

Figure 2.6. Schematic description of the detection of an Adaboost. Cascade

From a set of extended Haar-features, Lienhart and Maydt [34] trained a cas-

cade of classifiers, which implements discrete adaboost algorithm. The mathematical

formulation of i** classifier is

1 YT cisha(z) > 3 T o (2.6)

0 otherwise

‘ hz(x) =

Here, hi(z) is the t™* weak learner of the ¢ classifier. Hence a tree based decision
sfructur_e is constructed. If the classifier rejects the input in early stages, then the

system automatically rejects the candidate without applying the rest of the cascades.
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3. SYSTEM DESIGN

Our approach is implemented on video streaming from APES - an attentive robot
developed in our laboratory [35, 36]. APES can b-e remotely controlled and teleoper-
ated and streams its acquired image sequence over the internet. The hardware configu-
ration of the overall system is shown in Figure 3.1.- APES grabs its visual surrounding,
and after pre—attentlon and pre-processing functionalities, it encodes the video and
push it to a video streaming server. Hence, any registered user can connect and watch
the visual field of the APES robot as it explores its current surroundings. One autho-
rized user can also control the APES remotely while watching its captured v1de0 in
real time. In this setup, Helix™™ PrOJect [37] is used as video coding and streaming
framework. RTP/UDP/IP is used for trénsmissiqn of real—tirhe data, and Real Time
Session Protocol(RTSP) is used for session initiation and control of the video stream.
Furthermore, the remote control of the APES (pan & tilt controls) is sent via TCP/IP

for reliable data tranémission.

Streamlng Server
Visual Field

Figure 3.1. Hardware configuration of the overall system
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/ 3.1. APES’s SoftWare

The block diagram of the attentive video streaming is presented in Figure 3.2.
First, real-time video frames are captured in RGB24 bit format with size 384 x 288 at
25 frames/second. The sequence of the pixél values are aligned as Blue - Red - Green

| order. The video frames are captured from Matrox Meteor Card, which digitizes the
CCD camera outputs and ,passés to our application. In order to get the raw video data,

Matrox Imaging Library’s C++ routines are used.

System Flow Chart

y|  Frame
Grabber

Attentive
Perception P Sﬁ:m-l;)erm
(human face) &4

A

Video Pre-
processing
(both spatial &
temporal)

1 »| Robot Head
v Controls
Video
Encoding &
Streaming
Module

/] /\/\\ User

y

internet Interface for
Clients
\-\\/\_/
A\ 2
Video
Streaming <
Server

Figure 3.2. Attentive video stréamihg system flowchart of the APES

. Next, the incoming video frame is directed to the attentive perception module.
Based on current focus of attention point, a 180 X 180 visual field I, is constructed such

~ that the center of visual field corresponds to the center of previous fovea I } Note that
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if the previous focus of attention was located close to the frame borders, the visual
- field is replaced such that no part of it lies outside of the video frame. Candidate

foveae are constructed with an overlapping factor oy : 0 < of <1 and the next fovea

is determined based on an attention criteria.

Let us remark that findings on human eye motibn[38] have revealed that an eye‘
saccades on average three times per second. This h_umber éan goup if thére are multiple
regions of interest. Accordingly, it is less if there is a dominating region of attention.
Sirhilarly, in our system, a foveal region is not computed for each fféme. Rather, the

saccade rate is held about three frames per second.

In pre-processing, the fovea and the‘ periphery are processed as-described in Chap-
ter 2. This frame is then passed to the Helix Video encoder in order to generate a fixed
bit-rate video stream. The bit-rate of the systerh can be éonﬁgured during the start-up
of the application. Following, APES pushes the video stream to a streaming server.
which is then responsible for managing and setting up the realtime video streams with
the streaming clients. Finally, any web user with RealOne Player installed - can connect

to the streaming server and watch the current visual field of the APES robot.

In this thesis, all the codes are written in C++. Because Qf the time critical
processes, some perfofmance primitives of Intel chip—éets are used. We used Matlab for
‘training thé Neural Network system. After obtaining the neural-net parameters, the
attention criteria was implemented in C++. Additional information about software

libraries used in this thesis in Appendix C.
3.2. Application Software

In order to develop a real time video processing and streaming system for internet

users, a variety of different applications were designed and implemented:

e Training

e Real time video pre-processing
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e Encoding and streaming

o Web interface

The user guides of these applications can be found in Appendix D.
3.2.1. Attention Criteria Learner

In order to construct the attention criteria, VirtualDub which is an open-source
video editing tool was modified [39]. VirtualDub is capable of editing pre—recorded
AVI video files. The user can access a specific frame data of the video ﬁle. Each frame
pixel can be retrieved as its 24 bit RGB value. The user can seek also the contents
of the video file with a scroll bar, and can mark any desired region of interest fovea.
After the marking operation, a message-box asks to the user whether he accepts the
selected area or not. If the selected area is accepted, respénses of all 50 biological filters
are calculated by the system. Moreover these results are saved to an output file. The

output file can be used later during the learning stages. .

Figure 3.3. Graphical user interface of the training program

In Figure 3.3, a snapshot of the Training Program is shown. If the frame on
the main window of the program is you double-clicked, the frame sequence window is
created. By using the slider, the desired frame can be searched. If a point within these

frames is selected by clicking, a fovea region whose center is on this point is generated
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within a message box. If this fovea is accepted, the 50 filter responses are calculated

and this region is saved as bltmap for later uses. The ﬂowchart of the training program |

is shown in Flgure 3.4.

Load video

v

Setup
fovea-size,
description

y
v

Choose fovea

Compute and save
responses

reject-

Figure 3.4. Graphical user interface of the training program

3.2.2. Attentive Video Producer

After the training process, the attention criteria need to be tested with random
and previously untrained video. For this purpose, an offline video processing and
streaming tool was developed. This program has a graphical user mterface that allows
the loading of any compressed video content including Mpegd and Dvix. First, the
input video is selected. Next, attention criterion is selected. For now, the attention
criteria are “Simple Weight”, “Fix Fovea”, “Neural-Nets” and “Adaboost”. Finally,
processing modes (no processing, spatial processing, spatio-temporal processing) are
selected. The program is capable of highlighting the border of the fovea. The rest of
the program acts like a video player with play, pause and stop optlons By using the
| ‘glider, one can go through the video sequence and search for a particular scene. With

the selected configurations, the program processes and displays the video frames in real
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time.

“imle Weight

Figure 3.5. Graphical user interface of the attentive video producer application.

The user interface of the application is available in Figure 3.5. The user can
change the ‘pre-processing mode and attention criteria at run-time. The fovea region

can be highlighted by using a checkbox.
3.2.3. Online APES Video Broadcasting Tool

Since the application running on APES should have low memory requirements
‘and be strictly real-time, next an online corﬁmand line application was developed. The
functionalities of the command-line application ére very similar to the off-line video
processing tool thatl is described in subsection 3.2.2. The difference stems from the
fact that as its name implies, it takes APES's video output as its input. Flirthermore,
APES uses the selected attention criteria as it is exploring around and generating this
video sequence. Finally, it is possible to specify the target bit-rate of the video encoder,
and send the encoded video content to a streaming server in real-time. Hence, any web

client can connect to the stre"aming server and watch the APES’s visual surrounding,

which is identical to what APES pérceives.



20

Figure 3.6. Web interface of the APES

A snapshot of the web interface is shown in Figure 3.6. An embedded RealOne
player is invoked within the web page, and by using the RTSP url of the robot, the
clients can see the the APES’s visual field like APES sees. An authenticated user can
also control the motor of the APES head, and can navigate the scene with these con-
trols. The four buttons at the right of the ﬁgure controls the APES’s head movement,
and the user is able to pan and tilt the camera. The web user interface of APES is

developed by a group from Intelligent Systems Laboratory at Bogazici University [40].
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. 4. EXPERIMENTS

| 4.1. Video Database

'I‘his approach has been tested on a video database generated using APES. APES

“is made to look at a person with varying poses and proximity. Each video is of 20
seconds long. For each person, nine poses were recorded — including three different
frontal, right and left views. During each session, the subject talks and makes random
facial expressions. Each of the views are recorded from three different distances — short

(two meters), intermediate (four meters), and far (more than four meters) ranges.
4.2. Video Quality Measures
4.2.1. Foveal Mean Square Error

In order to quantify the visual quality of the foveal system, two metrics are used:
The first metric is Foveal Mean Square Error(FMSE) which is similar to Mean Square
Error (MSE), but is defined only on the fovea®

zelt

S (o ds — P (4.1)

n=1

pusE= L
_|If|

However, it is well known that MSE value has a clear physical meaning in statistical

sense, but it may not always reflect perceived visual quality [41].

4.2.2. Foveal Structural Similarity Measure

As an alternative, Structural Similarity Measure (SSIM) - a metric capturing
the amount of structural degradation between two images has been proposed in [41].

In this metric, luminance, contrast, and structural components of the two images are

2FMSE is a newly defined quality metric. We leave it to the vision science researchers to check its
validity but for our applications, based on visual observations, it seems to be meaningful.
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weighted and a quality index is generated. Since there is spatial similaﬁty within the
neighborhood of pixels, this structural similarity should also be used while quantifying
the image quality. Note that Mean Square Error is independent from the structure and

may not be good for the image quality metrics.

The luminance comparison I(z,y) is made by comparing the mean of the images.

Here z and y are the images that will be compared. I(z,y) = %‘% ‘Here C; is
z Yy

used in order to prevent unstable conditions if the value of P2+ /"Z = 0 is very close to

Zero.

| The contrast comparison c(z,y) is made by comparing the standard deviation of
two images, as an estimate of the contrast. Then c(z,y) = f;‘—fﬁ%ﬁ% Like C;, Cy is
. z v

used in order to prevent unstable conditions if the value of o2+ 02 is very close to zero.

The last term is structural comparison s(z, y), which is conducted after luminance
subtraction and variance normalization. Then the correlation of £—uz/0z and y—py /oy
is used for the structural metric. 'Geomevt‘rically, the corfélation coeflicient ’corresponds'
to the cosine of the angle between the T — g and y — iy vectors. s(z,y) = IaitCs

oz0y+C3 "

The combination of these three measures is

(2 py + C1)(204y + Cy)

= 4.2
TR+ i+ O+ 3+ o) “?

SSIM(z,y)

However, since the focus is on the fovea, we use a modified version Foveal Struc-

tural Similarity Measure (FSSIM) which is defined only on the fovea:
(2/»"ctTocfg.U'ct + C’1)(20'(6‘7.<>cf9)c" + Cs)

4.3
(/‘l’zg,ocfs + /‘l’gt + Ol)(o.'itrocg + O'gt + 02) ( )

FSSIM =

i, and o are the mean and variance of the respéctive images within the fovea. C)
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and Cy are used in order to prevent unstable conditions if the values uit ot + p? or
Uz% oct, T o2 are very close to zero. The values of C; and Cs are selected as C; = 0.01,
C, = 0.03 respectively. Note that FSSIM < 1 with equahty holding if and ‘only if the

source and the target images are identical.

Finally,,note that FMSE value indicates the mean square error of the fovea region.
" If the FMSE value increases, so does the quantity of error increase. On the other
hand, FSSIM value indicates the similarity measure of the fovea region by using HVS
properties. If the reference frame and the input frame are same, F'SSIMJ value is equal

to one - means similar -, otherwise it goes to zero.

4.3. Attention Criteria

4.3.1. Sample Foveas

Attentlon criteria is constructed based on a sample foveal set — containing both
target and non-target objects, faces in our case. “VirtualDub has been modified so that
the user can manually mark the desired foveal region of each frame in a selected video
sequence and the filter responses are automatlcally generated and stored. The user canA :

specify the following parameters: |

e Frame index: The frame number in the video sequence.

e Foveal size: The target fovea can be selected in any length and width.

e Foveal center: The coordinates of the foveal center are specified as a function
of the position of the left-bottom corner of the foveal reglon |

e Task keyword: A task keyword is used 1ndex all the files containing the calcu-
lated filter responses. For example, this phrase may be “face”,“non-face”. For
visuality and later use, the candidate foveae that are generated during the learn-
ing phase are also store/d as bitmap images. |

e Scaling factor: In order to search the desired object in multiple scales, a gaus-

sian pyramid of the frame is constructed. The scaling factor is the decimation

factor of the Qaussian pyramids.
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Figure 4.1- 4.2 show positive and negative sample foveas respectively.

Figure 4.1. Visualization of positive training samples, including 100 human face fovea

candidates

4.3.2. Filter Responses

Although foveal size may vary, they are resized to 40 x 40 before applying the
biological filters with the aim of introducing normalization for the learning stage. In
‘order to determine the most salient filters, first all the filter responses are computed
for all the sample set and stored using the “.’I‘raining Qoftware”. Average and standard
deviation of each filter for both positive and negative samples aré then calculated. The
filters ha;\ring well-separated responses for good and bad samples and small variations

are designated as salient filters. In our experiments, these turn out to be filters as

shown in Table 4.3.
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Figure 4.2. Visualization of negative training samples, including 100 non-face fovea

candidates

4.4. Attentive Learning
4.4.1. Choosing the Filter Subset

The filter responses o}, are calculated and stored by using the training applica-
tion. In Figures 4.1-and 4.2, you can see some positive and negative fovea candidates
respectively. The mean and standard deviation of each filter response is calculated by
grouping the responses as positives and negatives. Hence for each filter M, I have the
mean and standard deviation of positive faces, and non-faces. Then I observed that
seven filter statisficsout of fifty filter have their face and non-face means are separated
and relatively small variances. 9o the decision of the input visual primitives are based

on the normalized distance of the mean face and nonface results with respect to their

standard deviations.

In Table 4.3, you can see the indexes of the selected filters and their corresponding
mean and standard deviations. Figure 4.3 contains the visualization of seven selected

visual primitives within 50 Cartesian and Non-Cartesian filters.

& Bofazici Universitesi Kataghanesi €
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Table 4.1. Mean and standard deviation of the first 25 Filter Responses calculated

from face and non-face training samples

Filter index || p Face resp. | o Face resp. | p Non-Face resp. | o Non-Face resp.
1 13179 297.86 859.38 677
2 585.29 151.82 536.93 ©479.85
3 44732 | 1519 402.93 . 364.6
4 325.79 83.526 31246 282.7
5 271.94 64.432 237.14 190.16
6 1035.8 228.61 | 70467 - 554.1
7 489.88 12042 | 27482 1200.8
8 265.59 - 74.948 168.21 , 110.94
9 160.65 | 35.761 98.766 . 66.382
10 98.835 22.763 71.658 42.185
11 909.59 2604 | 767.58 504.28
12 433.42 118.87 260.04 181.17
13 - 243.04 ' 68.73 153.25 89.423
14 139.39 40.929 94295 | 56479 -
15 90.27 © 26.827 - 67.275 39.154
16 1027.8 322.34 949.64 689.76
17 467.51 170.28 463.76 331.45
18 323.28 105.94 334.08 ~ 266.56
19 241.46 74.927 253.75 205.68
20 198.58 63.003 206.02 166.65
21 1004.6 264.64 730.79 464.63
22 488.94 127.66 265.64 192.47
23 268.93 63.167 154.45 93.228
24 151.93 40.784 98.294 60.527
25 96.477 25.486 70.127 41.533

Then, we compose the subset of flter responses Q' = [ Q5 Qo Qgs Qyr e

where €2; is the normalized amount of deviation that the ™ filter response from the

7
mean face response. {}; =

Qi — o, (face)
0Q;(face)
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Table 4.2. Mean and standard deviation of the second 25 Filter Responses calculated

from face and non-face training samples

Filter index || u Face resp. | o Face resp. | u Non-Face resp. o Non-Face resp.
2 - 1055.3 266 679.45 459.79
27 508.38 118.84 291.55 196.26
28 257.13 73.216 183.27 11741
29 15454 31.104 110.66 ~80.984
30 98.774 |  23.327 77.278 49.945
31 1372.6 | 389.64 956.41 586.3
32 702.34 191.55 508.48 283.24
33 517.06 162.35 | 379.95 217.07
34 548.04 151.18 462.92 953.28
35 862.59 240.12 840.56 457.3
36 3177.3 919.45 2183.8 1443.5
37 2247.9 663.13 15629 997.02
38 1101 325.34 978 563
39 ~ 888.99 276.14 871.42 53234
40 671.84 212.98 673.76 403.4 -
a 1946.2 604.68 13184 824.08
42 - 1049.6 304.03 748.47 461.78
43 I 682.83 203.87 503.95 299.04
44 557.97 170.35 521.36 288.15
45 747.25 196.69 747.49 410.81
46 2272.6 | 630.94. 14506 943.98
47 1097.2 26743 | 800.05 - 528.71
48 737.78 197.8 594.04 382.24
49 1195.8 336.7 84376 549.06
50 821.4 249.79 731.75 468.56

4.4.2. Determination of System Weights

4.4.3. Attention Criterion

The first attention function is a simple weighted linear combination of the re-

. sponse of these salient filters as a(l§) = T M % fm(I§). This attention can be
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Table 4.3. Mean and standard deviation of seven filter responses caléulated‘ﬁ'om face

and non-face training samples

Filter index || u Face reép. o Face resp. | ¢ Non-Face resp. & Non-Face resp.
1 1317.94 297.85 859.38 - 67700
7 489.88 129.42 274.82 -200.80
9 160.65 35.76 98.76 66.38
12 433.42 118.83 260.04 18117
23 268.93 63.17 154.44 93.23
27 || 50837 118.84 291.55 - 196.26
46 2272.64 630.94 © 1450.64 04398

o S

Figure 4.3. Visualization of seven selected visual primitives within 50 Cartesian and

Non-Cartesian filter set

considered as a weak classifier.

The second'attentioh criteria is generated using a neural network as explained in
Section 2.2.3. For this purpose, a simple feed-forward neural network model with seven
inputs, one hidden layer with 15 perceptrons, and one output layer with one perceptron
is used. The decision of a face or non-face can be easily made by looking the output
of the system. In aﬂl of the perceptrons at hidden layer and output layer, a bias term

is used and a hyperbolic tangent transfer function. Hére are the input weights, biases,

and layer weights of the system:
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(4.4)

System parameters are trained using resilient back-propagation algorithm with

supervised learning, which means the weights are adjusted such that given the desired

output of the inputs, the system minimizes the output error. The network converges

to 10~3 error rate after training for 702 epochs. W corresponds to the input weight

matrix of the neural net. W;; indicates the weight of 5t input and the ith perceptron

of the hidden layer.
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21.85 |

~181 [ o4 ]
—5.77 ~12.97
—13.53 ~13.25
1.49 | _5.08
—2.91 5.87
1.36 . 673 |
b=| 116 bp=—-0034 W =| 436 | (4.5)

182 | | —es3 |
0.17 - 6.83
2.53 . 8.39
743 | | | 1358
5.63 6.21
0.46 | | 6.93
| 546

Moreover all perceptrons of the hidden layer has a biased term given.in matrix b,
where b; is the bias of i** perceptron. Similarly, the 15 weights W' and the bias b, of

‘the output layer is also calculated.
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5. RESULTS AND ANALYSIS

5.1. Spatio-Temporal Processing

5.1.1. Methodology

In order to evaluate the performance of the algorithm, an extensive statistical
comparative study was conducted. Fifst, the APES Video Database was created by
making the robot look at scenes consisting primarily of a person — talking and mimick-
ing at three different distances (long, intermediate, short distances) and three different
poses (left, right, frontal views)[42]. Each incoming video was recorded in 384 X 288
resolution, 20 second long, 25frames/sec RGB video in uncompressed AVI format
without any preprocessing. Next, the videos in this daf,abase were subjected to the

following preprocessing:

e Twelve video sequences are selected randomly from the APES Database - with
four of long, intermediate and short distanée category respectively.

e Next, for each video sequence, the foveal area is détermined after visual exami-
nation of the video sequencé and ensuring that the fovea overlaps with the image '
area containing the peréon’s face. For each category, two different fovea sizes are
considered: | A

_ For long-distance sequences (more than four meters), these are taken to be
100 x 100 and 130 x 130 pixels;

— For intermediate distance sequences. (four meters), they are 130 x 130 and
160 x 160 pixels; |

_ Tor short distance sequences (two meters), they are taken to be 160 x 160
190 x 190 pixels respectively. ’

e Each sequence is first only spatially processed - using the two different fovea sizes.
In spatial processing, fivex five box blur filter is selected as spatial filter function
fs. For a-blending the transition width is chosen as five.

e Hach sequence is next spatio-temporally processed for the two different fovea
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sizes. K is selected as three in this process.

e The original raw video and the two preprocessed videos are then are then encoded

with Real-Media [37] codec with bit-rates 25k/sec and 35k/ sec. A sample frame

is shown in Figure 5.1.-

Original Frame (25 kbits/sec) Spatial Foveation (25 kbits/sec) Spatial & Temporal Foveation (25 kbits/sec)

Figure 5.1. Sample frames that are encoded at 25 kbits/sec fix rate using RealOne

encoder

In Figure 5.1, the video frames from left to right are no preprocessing ,spatial only
and spatio-temporal preprocessing frames respectively. In spatial and spatiotemporal

encoding, 130 x 130 fovea is used on face regions.
5.1.2. Results

In analysis part, all the encoded video frames are compared with the original
input raw frames. The comparison is performed as follows: Firsﬁ, for each encoded
“frame, MSE,FMSE,SSIM,FSSIM values are calculated. Since the number of encoded
frames and the number of input raw frames may vary because of the encoding process,
minimum FMSE values within five frame neighborhood of input raw frames are selected

as reference frames. For each sequence, the first 450 frame statistics are stored.

Figure 5.2 presents FMSE and FSSIM values of a video sequence with a 130 X
130 sized fovea with classical coding, with spatial and spatio-temporal coding. The
sequence is encoded at 35 kbits /sec. As expected, compared to classical coding, spatial

and spatio-temporal coding improve the FMSE and FSSIM values considerably.

Next, statistical metrics are gathered for each processed sequence. FSSIM and
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Figure 5.2. FMSE and FSSIM values of each frame within a video sequence from

APES video database.

FMSE values are first normalized by dividing ’each frame’s FSSIM and FMSE values by

their originally coded frames FSSIM and FMSE values respectively and then averaged

over the video. Finallj, average normalized FSSIM and normalized FMSE values for

each fovea size and encoding bit-rate is computed. For each group, the mean, minimum

and maximum values are calculated — using the 2700 frarnes in each group. Figure 5.3

presents the FMSE results.

Normalized FMSE values of "spatial” processed
25kisec Video

+ Median

130x130 160x160 190x180

Fovea Size

100x100

Normalized FMSE values of "spatio-temporal®
processed 25k/sec Video

130x130
Fovea Size

100x100 160x160 190x190

Normalized FMSE values of "spatial” processed
35k/sec Video

130x130 160x160 190x190

Fovea Slze

100x100

Normalized FMSE values of "spatio-temporal™
processed 35k/sec Video

100x100

130x130
Fovea Size

160x160 190x190

" Figure 5.3. Normalized FMSE values of all encoded frames with respect to fovea sizes.

In Figﬁre 5.3, the normalized FMSE values of encoded frames are grouped with

respect to the encoding bit rate and the pre-processing mode. In each graph, the

minimum, maximum and the median of the normalized FMSE values for each fovea.
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size is drawn. The first two graphs on the top of the figure show the spatial and spatio-

temporal results at 25 kbits/ sec respectively. The graphs at the bottom contain the
results for 35 kbits/sec. |

As you can see from the top-left graph in Figure 5.3, we end up with 15 per
cent FMSE improvement for 100 x 100 and 130 x 130 lfovea sizes. As we increase the
fovea size, the video quality of the fovea converges to the originally coded fovea quality
(see the bottom-left graph in Figure 5.3). Interestingly, if we look at 35 kbits/sec
performances, the FMSE improvements can increase up to 22 pef.- cent. However,
there is not much added performance between just spatial and spatio-temporal coding
schemes — possibly due to the temporal ﬁltering selected for our particﬁlar application.

The performance should improve with a more appropriately selected filter.

Similarly, the FSSIM values are shown in Figure 5.4. Averaged FSSIM values are
greater than one, which is consistent with the FMSE outputs.

Normalized FSSIM values of “spatio-temporal®

Normalized FSSIM values of “spatial” processed
. processed 25k/sec Video

25k/sec Video

« Median - Median

100x100 130x130 160x160

190x180

100x100 130x130 160x160 190x190

Fovea Size

Fovea Size

Normalized FSSIM values of "spatial® processed
35k/sec Video

Normalized FSSIM values of “spatio-temporal®
processed 35k/sec Video

- Median - Median

130x130 160x160
Fovea Slze

100x100

190x190

130x130 160x160 190x190

Fovea Size

100x100

Figure 5.4. Normalized FSSIM values of all encoded frames with respect to fovea sizes.

We aiso computed the required processing overhead for the spatial and spatial-

temporal coding schemes in order to check its suitability for real-time applications (on
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Table 5.1. Computational overhead statistics for spatial and épatio—témporal

pre-processing in milliseconds (K = 3)

Fovea size || Overhead (msec) Overhead (msec)

-for spatial coding | for spatial-temporal coding v(K=3)

100 x 100 9.39 | 5.3
130 x 130 9.64 ’ 5.29
160 x 160 9.47 5.48

190 x 190 948 5.55

a Pentium II /1000 Mhz with 224 MB RAM). Each fovea éize was considered seperately
using randomly selected 200 frames. The results are asv shown in Table 5.1.2. First of
all, it is observed that the worst is about 10msec — which is quite acceptable with the
frame rate of 25 frames/sec. As expected, the ovérhead is reduced considerably with

the spatial-temporal coding.
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6. CONCLUSION

In this thesis, we present a fovea based coding scheme for video streaming through
low bandwidth networks that exploits two important aspects of human vision: foveé-‘
periphery distinction and saccadic motion. Thus, each frame in the acquired image

- sequence has nonuniform sampling and consecutive saccadic images have temporal re-
dundancy. Such a coding scheme is suitable for applications such as video broadcasting

from attentive robot or cellular phones with video where the perceiver fixates on objects

in a continual manner.

Our experimentafresults shows that compared to classical coding, spatial and
spatio-temporal coding improve the transmission quality. Foveae with size 100 x 100
and 130 x 130 give better video quality at 25 kbits/sec and 35 kbits /sec encoding rate.
Hence in pre-attention stagé, we should take the resultant fovea size into account for

a better quality within fovea region.

There is not a considerable video quality improvement between spatial and spatio-
temporal processmg, however when we compare the two approach with respect to the
computational overhead, spatial processing requlres a computatlonal overhead twice
more than the spatio-temporal processing. This overhead can be critical in real-time

applications.

Next, the issue of foveation is studied. Foveation is based on an attention criteria
- & mathematical function encoding the salient features in the incoming image. We
consider visual primitives based on Cartesian and Non-Cartesian filters. Although
these filters have been utilized in previous work for recognition purposes, they are used
here for the first time in the pre-attention stage for foveation. Qur preliminary studies
indicate even With extremely limited learning, it is possible to have a 20 percent miss
rate and about 20 percent false alarm rate. Since the experiments are done with a
small set of training phase, we can easily increase the performance by creating a large

 training samples and readjusting the learning paraméters. Hence, this work reveals
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that these set of visual primitives can also be used in both pre-attention and attention

stages.

For our future work, we will focus on improving the performance‘ of the pre-
attention stage. We will also work on methods for ihcreasing temporal redundancy
through careful generation of the saccadic movements. A recognitidn module can be

added to the system in order to recognize the focus of attention subject, whom it is

interacted with.
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APPENDIX A: VISUAL PRiMITIVES »

In this section, the construction of visual primitives is reviewed briefly. The

reader is referred to [12] for all the details.
'A.1. Cartesian Filters

The Cartesian filters fn, : SO(1) X SO(1) — [—1,1] can be formulated in Equa-
tion A.1. Please note that SO(1) =2 [-%,%].

Jew(@,y) = cos(w x (@ x z+ B X)) (A1)

In Equation A.1, o = sin((c — 1) x II/A), and 8 = cos((c — 1) x II/A). The
‘parameters ¢, and w are orientation, and frequency of the sinusoid respectively. By
choosing ¢ =1,...,A, and w € {k x 6w |k =1,..., K}, the Cartesian filters look similar
to those in [11]. In this work, we choose A=6, 6w =2, éﬁd K =5. “

A.2. _Non—Cartesian Filters

Non—Cartesian filters [11] are also a function of sinusoids, but the arguments of
the sinusoid have nonlinear component. The Non—Cartesian filters can be. grouped' as
concentric, polar, and hyperbolic filters. The concentric filters fry : SO(1) X SO(1) —
[~1,1] can be modeléd as fru(,y) = cos(w x (z* +y?)). By varying w € {kxdéw |k =

1,..., K}, we generate circular filters with different frequencies.' :

The polar filters fz : S0(1) x SO(1) — [~1,1] is defined as faw(z,y) = cos(w X
arctan(y/z)). Again by varying the frequency parameter w € {k x éw [k =1,... K 1,

a set of circular filters.are modeled.

In the final step, we generate two different forms of hyperbolic filters. First of
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the hyperbolic filters fo,(z,y) = cos(w x arctan(y/z)) is fouw(z,y) = cos(w X (y2 +2?)).
. The second set of hyperbolic ﬁlteré fiow(®,y) = cos(w x arctan(y/z)) is obtained by
rotating the fgw(af, y) function around the origin by 0 degrees, which yields frow(z, ) =
fow(cos(f) x z + sin(f) X y,—sin(f) x z + cos(f) x y). By choosing # = 7/4 and
~w € {kxdw|k=1,.., K}, we obtain another set of hyperbolic filters.

A.3. Filter Responses

The response of each filter is computed based on 2— D convolufion results of the
candidate fovea I% and the filter kernel f,,. According to the experiments of Bozma et
al. [12], the response of each filter Qy, for m = 1,..., M — where m = (c — 1) x K+k,
w=kéw,and M = (c—1) x K _ can be calculated by using the filter output of
fow- Experimentally, the best choice of for Cartesian filters few € F,c=1, .6
can be calculated by discarding the mean intensity level Qf the filter outputs. In our
case, we define Q,, for m = 1,..,30 as the standard deviation of the convolution result
Q,, = stdev(fow * Ig) Again, for Non-Cartesian filters (Circular; Polar, Hyperbolic,
‘and Rotated Hyperbolic),experimentally the best choice of Q,, is found as the greatest
magnitude of the response. In our case, it can be formulated as Qn, = ma:z:(' fcw*Ig),

where m = 31, ..., 50. |
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APPENDIX B: VIDEO STREAMING PROTOCOLS

B.1. Real-Time Streaming Protocol (RTSP)

RTSP is a standards based streaming media protocol endorsed by the Internet
Engineering Task Force (http: / [ietf.org), and it is defined in RFC:2326. The basic
responsibility of RTSP is controlling and setting up the streaming media delivery. It
can be on top of TCP or UDP. It ié used between the streaming client and the media
serirer. Default port for RTSP is 554. There are several messages like DESCRIBE,
SETUP, PLAY, PAUSE, and TEARDOWN. Streaming client can query the prdperties
of a content(URL, ) using DESCRIBE message. The server responses the DESCRIBE
message by sending a Session Description Protocol called SDP, which contains the
port ranges, audio and video encodings and so on. Then SETUP message is used for
initiating the data connections. Since the multimedia data is transported in a separate
channel, the ports and transport protocol are negotiated in this step. Then client can
send PLAY and PAUSE messages until the connection is closed with the TEARDOWN

message.
- B.2. Real-Time Transport Protocol (RTP)

RTP specifies a packet structure for packets carrying audio and video data, which
is described in RFC:1889. It runs on top of UDP, so there is no guarantee of receiving
RTP packets in sequence order, or recovery of packet loss, however since there is no
~ need to channel setup procedure, and redelivery of all lost packets in TCP, it is better to
* use RTP for real time multimedia applications. Due to the nature of UDP datagrams,
the application is responsible of handling packet loss, end to end jitter, delay jitter by

using play-out buffer and some error-resilience methods.
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APPENDIX C: TECHNICAL NOTES ON SOFTWARE
| COMPONENTS USED |

C.1. Matrox Meteor- MIL 7.5

Matrox Meteor is a video capture card for CCD cameras. We used it’s capture
mechanism and A/D conversion. AVIExport module of MIL is used for the creat- -
ing the Video Database. There is no other processing method used on that card.
For more info, http://www.matrox.com/imaging/products/meteor2/- home.cfm and

http: //www.matrox.com/imaging/ products/mil/home.cfm.
C.2. Intel Image Processing Library,v‘2.5

The Intel Image Processing Library provides a set of highly optimized C functions -
that implement image processing functions on Intel architecture p'ro'cessors. In partic-
ular, functions responsible for hoiding the image data, changing the region of interest,
performing 2D ﬁltvers on thié region, transformation of color space from RGB tb YUV,
YUV to RGB, selection of channel of interest. For more information, the homepage of

TPL can be found at http://developer.intel.com/software/products/perflib /ipl/.
C.3. Intel Signal Processing Library v4.5

The Intel Signal Processing Library provides a set of highly optimized C functions
that implement typical signal processing operations on Intel Architecture processors. Tt
is the loWeSt level API for Signal Processing. We used several data conversion routines
of this APL Moredver Intel Image ‘Processing Library is also built on Intel SPL. For

more information, please refer to http:// developer.intel..com/ software/products /per-

flib/spl/.
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C.4. OpenCV Project

OpenCV means Intel Open Source Computer Vision Library. It is a collection of
C functions and few C++ classes that implement some popular algorithms of Image
Processing and Computer Vision. In this _thesis, a routine that frames a region of in-
terest region border with constant colors was utilized. Secondly, HaérObjectDetection
module was used as a benchmark in the foveation part of the thesis. These routines

are available from http://www.sourceforge.net/projects/opencvlibrary.
C.5. Microsoft DirectX 9.0

Microsoft DirectX is a set of low-level application programming interfaces (APIs)
for creating games and other high-performance multimedia applications. It includes
support for two-dimensional (2-D) and three-dimensional (3-D) graphics, Sound effects
and music, input devices, and networked applications such as multiplayer games. In the
thesis work, DirectSth API which performs high-quality video and audio playback or
capture is used during the application of processing or fovea determination on frames
captured by APES, USB web-cameras, or any stored AVI ﬁle.s (it also supports Divx

and Xvid video codecs).
C.6. Helix Producer 9.1

Helix Producer is used as video coding of APES robot. It is also an open source
project and it uses Real Codec for encoding. We modified the producer such that we can
feed it with our preprocessed video frames that is captured from Matrox Frame Grab-

ber. More information can be found at https:// helix-producer.helixcommunity.org/
C.7. APES API

High level C++ API that T developed by using all the tools above. This is the
core API for the Vision and Video Streaming. Furthermore it contains the GUI API’s.
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C.8. Helix Streaming Server

An open source on demand and live streaming server that can stream video and
audio to Real Clients. The clients could be run on PCs, haﬁdhelds; and Mobile phones.
The server is running on Linux machine. It uses 554 port for RT'SP protocol, UDP
port range for RTP protocol, 8080 port for communication with the video source APES.

More information can be found at https:// helix—Server.helixcommuniﬁy.org/ .
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APPENDIX D: APES APPLICATIONS USER GUIDE

D.1. Compiling and Running the Applications

The following software packages are required: Visual C++ 6.0 SP5 + Processor

- Pack and Microsoft Macro Assembler (MASM) 6.15. The Processor Pack is a free
~ download from Microsoft’s website, although it needs to be patched to SP5 first. It
also includes MASM (ml.exe) as well. The latest version of the software can be accessed
by a Concurrent Version System(CVS) Client for checkiﬁg out the source codes from

http://www.isL.boun.edu.tr . Most popular CVS client WinCVS can be downloaded

free from http://ww.wincvs.org.
D.1.1. Prerequisites

Several libraries need to be installed before compiling the source code. .

e Matrox Imaging Library(MIL) 7.5: MIL is neededvfor compiling the frame
grabber module of Matrox Meteor capture-card. The frame grabber code onlyv
works with Matrox-Meteor Capture card, so if you do not run the application in
real-time, its not mandétory to install MIL 75

e Intel Image Processing Library(IPL) v2.5 IPL v2.5 is used for low level
image processing performance routines: The IPLHelper module uses this library.
You can download IPL v2.5 from http:// developer.intel..com/ software/products/
perflib/ipl/. | _ _ A

e Intel Signal Processing Library(SPL) v4.5 SPL v4.5 is used for low level
signal processing performance routines. The IPLHelper module uses this library.
SPL v4.5 can be downloaded from http://developer.intel.com /software/products/
perflib/spl/.

e Microsoft DirectX 9.0 Microsoft DirectX 9.0 or later needs to be installed in
order to compile the IOManager module. DirectX—SDK can be used for opening
and seeking offline video files. It can be downloaded from DirectX SDK from
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Microsoft’s website.

D.2. Using The APES API

APES.dsw workspace file includes seven static library projects. The name of

these projects are:

AttentionInterface.dsp

BiologicFilters.dsp

Encoder.dsp
e Pre_processor.dsp

IPLHelper.dsp

IOManager.dsp
SSIM.dsp

The contents of these projects are explained in the sequel.
D.2.1. AttentiohInterfécé

Attentionlnterface library implements the pre-attentive and attentive stages. The

list of important files and their basic functionalities is shown in Table D.1.

D.2.2. BiologicFilters

The Cartesian and Non-Cartesian Filters are implemented in this library. The
grabbed: frames are also encapsulated with an object in this library. Here is a list of

important files and classes of BiologicFilters library:

D.2.3. Encoder

The encoder library for encoding the video frames is developed in RealMedia

codec format. This encoder was modified such that instead of taking an offiine video
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Table D.1. Brief description of important files in Attention Interface library

Attention.cpp | An abstract class for pre-attention. By deriving this
class, any pre-attention mechanism can be imple-
mented. AH derived classes should implement lo-

catenextfovea(..) method.

HaarFaceDetect.cpp Implementation of Cascaded Adaboost method using
Extended Haar Features. It uses the current frame as
an input and returns the foveae list, which contains

the coordinates of the face candidates.

ProposedFaceDetection.cpp | This file contains the pro.posed face detection algo-
rithm with trained neural network. There is also an

implementation of simple weighting of the filter re-

sponses.

file, it can also be input realtime video frames. Hence, spatio-temporally processed
frames coming from APES can be encoded. Here are some important parts of the

Encoder library:
D.2.4. Pre_processor

Pre_processor library is responsible of processing the raw input frame Spatially or
Spatio-Temporally with given parameters. Hence the video quality of the fovea region

considerably improved.

D.2.5. IPLHelper

This library contains high level image processing functions. It uses the Intel

performance primitives for these functions. Here is some important routines that I

déveloped.
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Table D.2. Brief description of important files and classes in BiologicFilters library

ApesFrame.cpp All raw video frames in RGB24 format are encapsulated with
ApesFrameObject. You can define region of interest area
' for an ApesFrame. Then all the opérations on this object is
affected only on the defined region of interest. If the ROI is

null, then the operations are made on whole frame.

Fovea Structure that holds the bottom left coordinates, width, and

height of focus of attention area.

CandidateFO\}ea.cpp This class holds the Biologic Filter Responses of each fovea
candidate. Note that fovea candidates are created within
the visual field I, of the frame with an overlapping factor of
of. A CandidateFovea object is also capable of retrieving
the index of maximum candidate fovea response, which will

be the next fixation fovea.

FilterKernel.cpp An abstract class for Biologic filters that contains two-

dimensional filter kernels.

CartesianFilter Implementation of the FilterKernel class. It initializes éll

Cartesian Filter kernels. .

ConcentricFilter Implementation of the FilterKernel class. It initializes all

Concentric Filter kernels.

PolarFilter | Implementation of the FilterKernel class. It initializes all

Polar Filter kernels..

HyperbolicFilter | Implementation of the FilterKernel class. It initializes all

Hyperbolic Filter kernels..

D.2.6. IOManager

If the AttentionInterface is the brain of the application, then JOManager will be
the hearth of the applicatioh. Because all low level video frame capture and offline
video file access functions are completed using this library. In this table, I will explain

. the core functionalities of the C++ files.
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Table D.3. Brief description of important file.and classes in Encoder library

~encoder.cpp “Responsible for the encoding job. It contains crucial

classes and routines for video encoding and streaming.

CEncoderApp The input frame dimensions and target output bitrate
could be configured via this object. All of the controls

of the encoding engine are done via CEncoderApp.

dataDestinationServer | It contains the IP and port number of the streamingi
server. CEncoderApp uses this object to direct the

RTP video stream to the target streaming server.

datalnputVideo The input video frame formats of the video encoder is
stored in datalnputVideo. Frame rate, width, height,
and color format are some of the properties of dataln-

putVideo.

Table D.4. Brief description of important file and classes in Pre_processor library

preprocessor.cpp | This is the C++ file that is responsible for pre-
' processing the video frames in order to use the avail- |-

able band-with more efficiently.

Spatial 55 box blur filter is applied to the outside of the fovea

region. -

SpatioTemporal | In addition to the Spatial coding, the refresh rate of
' the consecutive periphery region of video frames can

be tuned in SpatioTemporal routines.

NoPreProcessor | There is also a possibility to turn off the preproces.s-
ing. It is useful if we want to comparé the performance
of the quality improvements of Spatial and Spatio-

| Temporal -coding with the case of no preprocessing

outputs.

D.2.7. SSIM -

In this library there is a list of routines for calculating the statistical measures

and some video quality metrics. Here is some important functions in SSIM library:
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Table D.5. Brief description of important functions in IPLHelper library

IPLHelp_ BGR_to_YCrCb

It is a color space conversion routine that converts ‘
pixel values from BGR space to YCrCb spac;a. The
mathematical formula of the conversion is: Y = 0.3 x
R+06xG+0.1xB U=B-Y V=R-Y Cb=|
0.5 (U+1) Cr=V/1.6+0.5.

IPLHelp_8U_to_FP

Converts 8 bit unsigned pixel value to 32 bit floating

precision value. It is useful when you operate floating

| point operations on the raw frames.

IPLHELP _calculate_Stdev

This function calculates the standard deviation of the

pixel values.

IPLHelp_CopyImage

This copies the source image pixels to destination im-
age. The interesting utility is the copy process is de-

fined only the region of interest areas.

IPLHelp.compute-filter_responses

This method convolves the candidate fovea with the

Biologic Filter-bank and computes the filter responses.




Table D.6. Brief description of important files in IOManager library

FrameGrabber.cpp

This is the file that enable us to digitize the CCD

camera output and make it publicly available to the |-

applications. I used a callback function for implement-

ing this utility. When a new frame is captured, then it

| is directly accessible to the applications via a shared

memory.

SaveAvi.cpp

This class can save any raw video frame sequence in
uncompressed AVI file format. It is useful to save
the outputs of attentional sequences for conducting

experimental outputs.

DirectXHelper.cpp

This class deals with the low level DirectShow APL
By using this class a complete DirectX Graph can be

created.

Videolnput.cpp

This class is developed using DirectXHelper routines.

You can open and seek any video files with this class.

as well as querying the index of a particular video

frame. The frame is returned in in 24bit RGB pixel

format.

Table D.7. Brief description of important functions in SSIM library

calculateMSE

This function calculates the Mean Square Error and

Foveal Mean Square Error of an encoded video frame.

calculatePSNR

This function calculates the Peak Signal to Noise Ratio
and Foveal Peak Signal to Noise Ratio of an encoded

video frame.

calculateSSIM

And this routine calculates the Structural Similarity
Metric and Foveal Structural Similarity metric of an

encoded video frame.

50
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