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ABSTRACT

ANALYSIS OF
FUNCTIONAL NEAR INFRARED SPECTROSCOPY SIGNALS

In recent years, positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI) have facilitated the monitoring of the human brain non-
invasively,. during functional activity. Nevertheless, the use of these systems remain
limited since they are expensive, they cannot provide sufficieht temporal detail and they
are not very comfortable for the patient or the volunteer whose brain is monitored.
~ Functional near infrared spectroscopy (fNIRS), on the other hand, is an emerging non-
invasive modality which may be a remedy for the failures of the existing technologies.
However, properly designéd data aﬁalysis schemes for fNIRS have been niissing. In this
M.S. thesis, we intend to introduce a collection of signal processing methods in order to
treat fNIRS data acquired during functional activity of the human brain. Along extensive
hypothesis tests that characterized the statistical properties of the empirical data, we have
described the signals in the time-frequency plane and partitibned the signal spectrum into
several dissimilar subbands using an hierarchical clustering procedure. The proposed
subband partitioning échemc: is original and can easily be applied to signals other than
fNIRS. In addition to these, we have adapted two different exploratory data analysis tools,
namely, independent component analysis (ICA) and waveform clustering, to fNIRS short-
time signals in order to learn generic cognitive activity-related waveforms, which are the
counterparts of the brain hemodynamic response in fMRI. The periodicity analysis of the
signals in the 30-250 mHz range validates that fNIRS measures indeed functional cognitive
activity., Furthermore, as extensive ICA and waveform clustering experiments put into
evidence, cognitive activity measured by fNIRS, reveals itself in a way very similar to the '
one measured by fMRI. These findings indicate that, in the nea"f ﬁiiure, fNIRS shall play a

more important role in explaining cognitive activity of the human brain.
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OZET
YAKIN KIZILOTESI SPEKTROSKOPI iSARETLERININ ANALIZ{

Gegtigimiz yillarda, pozitron yaynimi tomografisi (PET) ve islevsel manyetik
rezonans goriintileme (fMRI), insan beyninin islevsel etkinlik sirasinda gdzlenmesini
kolaylastlrmlstlf. Yine de, pahali olmalan, ‘yeterince zamansal c¢oziiniirliik
vsaglayamamalarl ve béyni gozlenen hasta ya da g(jnijllﬁ icin yeterince rahat olmamalari
nedeniyle bu sistemlerin kullantmu sinirl kalmugtir. Diger yandan, islevsel yakin kiziltesi
spektroskopi (fNIRS), varolan teknolojilerin vyetersizliklerine ¢Oziim olabilecek bir yontem
olarak ortaya ¢ikmaktadir. Ne var ki, fNIRS icin tasarlanmus veri analizi ydntemlerinin
eksikligi cekilmektedir. Bu yiiksek vlisans tezinde, insan beyninin islevsel etkinligi sirasinda
alinan fNIRS verilerine yonelik bir isaret isleme yontemleri biitiiniiniin ortaya ¢ikarilmas:
amaclanmaktadir. Deneysel verilerin istatistiksel. Ozelliklerini nitelendirmek icin yapilan
kapsamli testlerin yam sira, isaretier zaman-frekans diizleminde betimlenmis ve isaret
spektrumu, siradiizensel topaklandirma  kullanilarak, birbirlerinden farkli altbantlara
boliinmiistiir. Onerilen élt bantlara ayirma yontemi 6zgiindiir ve fNIRS isaretlerinden farkl
isaretlere de kolaylikla uygulanabilir. Bunlara ek olarak, fMRI yontemindeki beyin
hemodinamik yamtinin karsitlig olan biligsel etkinlik-iligkili dalga bicimlerini 6grenmek
icin, bagimsiz bilegenler analizi (BBA) ve dalga bigimi topaklandirma gibi iki vayrl
acinsayici veri analizi araci kisa-zamanli fNIRS ’isaretierine uygulanmistir. [saretlerin 30-
250 mHz frekans arahgmdaki»dénemlilik analizi, fNIRS’nin gergekten de islevsel etkinligi
dlctiigiinii gegerlemektedir. Bununla birlikte, kapsamll BBA ve dalga bigirhi topaklandirma
deneylerinin ortaya.koydugu iizere, fNIRS tarafindan &lgiilen biligsel etkinlik, fMRI’de
dlciilene ¢ok benzer bir sekilde ortaya ¢ikmaktadir. Bu bulgular, fNIRS ydnteminin yakin
bir gelecekte insan beyninin biligsel etkinliginin agiklanmasinda su andakinden daha

Onemli bir rol oynayacagini gostermektedir.
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1. INTRODUCTION

Cognitive neuroscience is the study of the human mind which is able to perfom a
variety of tasks inciuding simple ones such as perceiving a color and much more
sophisticated ones as learning, recall and love. Rather than being reserved as a singular
discipline, cognitive neuroscience borrows questions from pyschology, psychiatry,
linguvistics or arts and tries to answer them. The abstract concept of mind links to physical
reality by the organ we call brain. The latter is maybe the most complex system we know.
Its capabilities as well as its disfunctions have conséquences which are scaled by its

complexity for both the individual and the society.

Excluding studies in special subject populations such as neurological patients and
children with developmental disoders, cognitive neuroscientists use computer-based
experimental procedures in healthy adult volunteers in order to explore the brain responses
to a variety of stimulated cognitive tasks [1]. The advents of positron emission ‘\tomography
(PET) and functional magnetic resonance imaging (fMRI) boosted the interest in cognitive
neuroscience since péop]e in the field can now collect data associated with the human brain
function [2]. PET and fMRI together constitute established functional neuroimaging
modalities. They greatly facilitated studies in localizing various brain areas responsible of
attention, peréeption, language processing and generation, memory mechanisms and
emotions [3]. A recent technique in the field is the functional near infrared spectroscopy
(fNIRS) which has its own advantages and disadvantva‘ges compared to PET or fMRI and
yet is in the process of clinical validation [2, 4, 5]. Nevertheless, fNIRS is a promising
~ brain monitoring modality and constitutes the soufce of this thesis. The current work
attempts to propose a general framework in treating fNIRS data from a signal processing

perspective.

In this introductory chapter, the two functional neuroimaging techniques PET and
fMRI are briefly reviewed (Section 1.1) and essential ideas and motivation behind fNIRS
study is eprséd (Sections 1.2 and 1.3). The final section of this chapter is devoted to what

is covered in the thesis report. -



1.1. Functional Neuroimaging Techniques

PET and fMRI are classified as indirect methods in assessing the human brain
function since they rely on some hemodynamic changes, such as the changes in cerebral
blood flow, cerebral blood volume or a\}ailability of oxygen, which are consequent to

neuronal activity. They are both non-invasive in that the recordings are done through the

intact human scalp.

PET uses different isotopes to determine the physiological parameters of cerebral
blood flow and cerebral blood volume. It has the advaniage of allowing the calibration .of
the physiological variables in terms of absolute physical quantities such as metabolic rates
in milligram of a substance consumed per minute per unit volume of tissue. The main

disadvantage is reliance on-radioactivity [3].

The way fMRI monitors changes in local brain activity is by measuring signals that
depend on the differential magnetic properties of oxygenated and deoxygenated
hemoglobin, termed as the blood oxygen level dependent (BOLD) signal. The latter gives a
measure of changes in oxygen availability [3]. Since magnetic resonance images reveal
excellent anatomical detail, particularly of soft tissues, it is possible to generate functional

activity maps with good spatial resolution through the assessment of the BOLD signal.

How do we relate the physiological qtantities measured by PET or fMRI with'the
brain function or specifically to say with the neuroﬁal activity? The answer lies in the
energy metabolism of the brain. In simple terms, the latter ”requires a steady supply of
’ 'oxygen that metabolizes glucose to provide .energy. The demand for glucose and oxygen
by neuronal tissues, which may be more pronounced in a particular brain region due .to a
particular cognitive task at a particular time, is responded by. the increase in cerebral blood
flow to this localized brain region. Similarly, another good indicator of oxygen availability
is the quantity of hemoglobin which is the physiological component responsible of oxygen
transport. Accordingly, these hemodynamic changes, i.e., the.'changes in cerebral blood
volume, cerebral blood flow, deoxyhemoglobin (HbR) or oxyhemog]obin (HbO,), enable

us to measure the functional brain activity indirectly.



1.2. Functional Near Infrared Spectroscopy

Functional near infrared spectroscopy is the assessment of physiological changes
associated with brain activity by exploiting the optical properties of the brain tissue. Near
infrared light in the range of 650-950 nm can pass through the skull and reach the cerebral
cortex up to a depth of 3 cm (see Figure 1.1 (a)) [2, 6]. It is weakly absorbed by the tissue
and at variable amounts by HbR and HbO, depending on the concentration levels of these
agents. Basically due to the significant difference in the near infrared light absorption
spectra of HbR and HbO, (see Figure 1.1 (b)), it is possible to compute the changes in their

concentration levels using the intensity of detected light.

The concentrations of HbR and HbO, can be computed using the modified Beer-
Lambert law [4, 5]. Consider an ideal setting where the concentration of a light absorbing
component in a non-absorbing medium is C. The incident light, with intensity /, and
wavelength A, travels a distance L in this medium. The ordinary Beer-Lambert law yields

the intensity /; of the transmitted light as a function of the wavelength 4 by

I, = LS (1.1)

(a) (b)

Figure 1.1. (a) The principle of near infared spectroscopy (b) Light absorption spectra of
HbR and HbO, in the near infrared range

[From http://www.hitachimed.com/products/optical_measurement.asp]



where g(1) is the absorption coefficient of the component at wavelength A. If we somehow
are able to measure the optical density of the medium at wavelength 4 during the process,

we can then compute the concentration C of the absorbing component by using the

following relation
OD(A)=log(1,/1,)=€(A)CL ' (1.2)

where OD(1) is the measured bptical density. In case there are multiple absorbing
components, the relation (1.2) can be exploited using light at multiple wavelengths. This
observation leads to the application of modified Beer-Lambert law in order to measure the
change in the concentrations of two absorbing physiological components HbR and HbO>
present in the brain tissue which is a nearly non- -absorbing medium as far as considered
wavelengths lie within the near-infrared range. Suppose that we have measured the optlcal
densities of a particular brain region at wavelengths 4 and A2. Neglecting the amount of
the light absorbed by cdmponents other than HbR and HbO,, (1.2) can be generalized one
step further into | '

OD(A,) =} €,y (A)AHD)+ £ 6, (A)AHBO, ] (K (Ay) .3)
© OD(A,) =&y (A)AlHD]+ &0, (A)A[HBO, ] K (4, (1.4)

In the expressions (1.3)-(1~.4), A[Hb] and A[HbOz] ndendte the changes in the

concentrations of HbR and HbO» with respect to their initial levels and K(1;), i=1,2 is a
factor that depends on the mean free pathlength traveled by the light at wavelength A;, note
that it is a common practice to assume K(4;) = K for i =1, 2. Solving these equations for

AlHb] and A[HbO, ], we get

OD(4,)- —’”’LZE%OD(A )
A[Hb)= Eioy ' (1.5)

4)
K‘:gHb (A)—Em (ﬂz)%}
: Hbo, M2
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AlHbO, )= Em' (L.6)

A
K[em,oz (1) = €, (o) 22 E : ))]
Hb 2

Once the changes in the concentrations of HbR and HbO, are determined, other

quantities of physiological relevance, such as total blood volume change A[BV] and

oxygénation A[O2 ], can be deduced through the following equations
A[BV]= AlHb)+ AlHbO, ] (1.7)
Alo,]=AlHbO, - AlHb] (1.8)

A typical fNIRS device consists of light sources and photodetectors together with
additional units: a transmitter circuit that controls the timing and intensity of light sources,
a receiver circuit that collects reflected light from tissues and sends it to the control unit
which is responsible of the synchronized operation of the whole system. Three distinct
fNIRS measurement methods are available: continuous wave, frequency domain and time-
resolved. Continuous wave fNIRS devices, in particular, are prefered for neuroirmaging

/brain monitoring studies [2].

The continuous wave principle is relatively simple. Each source brightens a
particular brain region by emitting light at (at least two) different wavelengths, e.g. 730 nm
"and 850 nm, on a timely basis. Reflected photons are integrated at corresponding
photodetectors that convert the received light intensify into electrical signals out of which
optical density signals are derived. Using two such signals; known absorption coefficients

and the pathlength factor K, A[Hb] and A[Hb02] time-series can be calculated through
equations (1.5) and (1 .6). -



1.3. Motivation behind fNIRS Study

In order to rationalize the use of the fNIRS technique in neuroimaging applicationé,
we certainly have to refer to its similarities with tha fMRI. Driving point is based on the
observation that both modality, although in much different ways, measure a correlate of
oxygen availability in a particular b'rain region. It is an established fact that a reduction in
HbR concentration increases the BOLD signal of fMRI [7]. On the other hand, using the
modified Beer-Lambert law, one can obtain the changes in the concentrations of‘ HbR and
HbO, from raw fNIRS measurements. Hence it would not be unwise to Conjecture that
there should exist some correlation between the hemoglobin signals (HbR and HbO»)
obtained using fNIRS and the fMRI-BOLD signal if we were able to perform simultaneous |
recordings in both modality. Hopefully, this conjecture turns out to be a truth démonstiated
in a recent study [8], i.e., simultaneous BOLD and fNIRS recordings do exhibit strong
correlations indeed. Accordingly, the problems associated with the analysis of fNIRS time-

series happen to be very similar to those encountered in fMRL

Let us now turn our attention to computer aided experiments during which the brain
of a human subject is monitored by an fMRI device. The objective of such an experiment
consists of measuring the BOLD responses in each of thé 3D brain volumes, or voxels,
fMRI. The human subject ié supposed to respond to a series of stimuli which is carefully
designed in order to study a particular brain system (e.g. memory, language, vision) [9].
The measured BOLD responses are ]ocalized, i.e., associated with a particular voxel, and
hence can be used to generate functional activity maps of the human brain as shown in
Figure 1.2 [10]. Quantification of BOLD responses is formalized under” the name of
activity detection since the end goal is to retrieve information concerning neuronal activity
stimulated by cognitive or behavioural tasks [11]. Activity detection constitutes one of the
two major problems in fMRI data analysis and is strongly related to the other, namely the

estimation of the brain hemodynamic response (BHR) function.

The most basic assumption in fMRI data analysis is that there should be some
correlation between sensory stimulus, usually called stimulus par_adigm or onsets, and the

acquired fMRI time-series. At the early stages, the f/MRI problem was solely defined as to



Figure 1.2. A fMRI activity map that results from an experiment involving hand
movement: areas active during right hand movement (green) and areas active during left

hand movement (red) [From http://www.imt.liu.se/mi/Research/fMR1/]

detect significant activation regions assuming a linear system modeling “the neural
channel” which delays and disperses the sensory input [10], i.e., the latter is reflected to
fMRI-BOLD response after being reshaped by the BHR function which stands for the
impulse response of “the neural channel”. This assertion follows from neurovascular
coupling according to which hemodynamic events, such as the BOLD response, have time
scales of several seconds whereas neuronal events, which are fired by sensory stimuli,
happen in a few milliseconds [9]. Excluding the most recent studies [9, 14-16], researchers
assumed a fixed form for the BHR with a few parameters to set, such as Gaussian and
Gamma filters [10, 12, 13]. However, the relation between neuronal activity and the BOLD
response is not completely characterized and still remains as a research topic [17-19].
Accordingly, accurate estimation of the BHR function should be considered as a first step
for accurate activity detection. Within the last few years indeed, BHR function estimation

has received particular interest in fMRI data analysis [9, 15, 16].

Having stated the two major problems in fMRI data analysis, namely (i) activation
detection and (ii) BHR estimation, we can now reconsider them in view of fNIRS. Diffuse
optical methods, e.g. fNIRS, yields measurements that have poorer spatial resolution (3 cm
at minimum) than fMRI [2]. However they, at least potentially, can provide higher

temporal detail in the investigation of physiological rythms hence they are expected to be



more advantageous than fMRI in BHR function estimation. In addition, the fact that
physiological components such as HbR, HbO,, blood volume and oxygenation are readily
obtained from raw fNIRS measurements constitutes a quality that can be used to
understand better the base]ine physiology. On the other hand, while poor spatial resolution
of fNIRS leads to localization problems, an additional shortcoming happens to be the
lacking of accurate computation schemes for hemoglobin concentrations. The latter
inconvenience is due to many simplifications, including those in photon diffusion models
- and tissue geometries, which are considered in deriving the modified Beer-Lambert law.
Hopefully, sirﬁu]taneouS'fMRI-BOLD and fNIRS ‘r'ercordings have the potential to

overcome both limitations [8].

There is a wide variety of fNIRS instruments currently in use‘for commercial and
research purposes [2]. Although their specifications differ to some extent, they all rely on
the principles described in previous sections. On-going fNIRS research is concentrated on
hardware development and systefn characterization. However, a unified -ffamework in
treating fNIRS data from a signal processing perspective is still lacking in contrast to the
abundant literature in fMRI data analysis. In order to introduce the fNIRS technique,
maybe not as an alternative but a useful complement to fMRi, to the service of the clinical
neuroscientist, development of signal processing techniques proper to fNIRS is
- compulsory. In this view, this thésis aims to fill in the gaps and to motivate further research

in fNIRS data ana]ysis.
1.4. Scope of the Thesis

The subsequent chapters in this report is devoted to an understanding of fNIRS
signals. Issues such as statistical and spectral characterizations as well as activity
estimation are visited. The present work is indebted a lot, in many respects, to fMRI data

analysis but only from a conceptual viewpoint.

7 4

In Chapter 2, we provide specifications on the fNIRS device and acquired data as
well as the details of the cognitive protocol. We treat statistical characterization by means

of stationarity and Gaussianity tests.



Chapter 3 is reserved for time-frequency characterization where an original spectral
band selection methodology is proposed. Using the results of band selection and prior
knowledge on the data acquisition protocol, we expose evidences on the presence of

cognitive activity in fNIRS signals.

Chapter 4 deals with the non-parametric estimation of cognitive activity-related
»fNIRS waveforms, i.e., the counterpért of BHR function estimation in fMRI. We consider
two approaches, namely independent component analysis and clustering. The former has
- been proven to be a powerful methodology in app]ications where very little prior
information on the data is available. It has been successfully applied to separate EEG and
fMRI sources. In the second clustering approach, we represent waveforms with B-spline

coefficients and cluster them to identify the functional behaviours in the data.

In the concluding Chapter 5, we discuss the findings of the thesis and future

prospects.
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2. STATISTICAL CHARACTERIZATION

In this chapter, we intend to present the characterization of fNIRS data in statistical

terms. In particular, we address the following questions:

(i) How are data acquired? Can we use any domain knowledge to haﬁdle the data?

(i) Does the signal result from é stationary process? If not, can we divide the signal into
short-time segments, so that at least some weakér stationarity criteria are satisfied
such as wide-sense stationarity?

(iii) Is the signal process Gaussian? If not, what can one say about its distribution?

The following sections treat these questions separately in order to provide a

~ statistical characterization of fNIRS signals.
2.1. The fNIRS Device and Data

Functional NIRS data are collected by a syStem developed at Dr. Britton Chance's
laboratory at University of Pennsylvania. The system houses a probe with four three-

wavelength light emitting diodes and 12 photodetectors.

The probe is placed on the forehead and a sports bandage is.used to secure it on its
place and eliminate background light léakage. Functional NIRS measurements are taken
~ from four quadruples of photodetectors, i.e., 16 in total, which are equidistantly placed on
the forehead during a cognitive (e.g. target categorization) task (see Figure 2.1). At the
center of every quadrup]e, there is a source that emits light at three different wavelengths

of 730 nm, 805 nm and 850 nm.
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MID-LEFT MID-RIGHT

RIGHT

Figure 2.1. Source-detector configuration on the brain probe and nomenclature of

photodetectors

2.1.1. Cognitive Protocol

Target categorization or “oddball task” is a simple discrimination task in which
subjects are presented with two stimuli or classes of stimuli in a Bernoulli sequence in the
center of the screen. The probability of one stimulus is less than the other (e.g., 20 per cent
of trials for the “target” or “oddball” stimulus, versus 80 per cent of trials for the “typical”
or “context” stimulus); the participants have to press a button when they see the less
frequent of the two events. Stimulus categories are varied, beginning with the letters
“XXXXX” versus the letters “O0000”. 1024 stimuli are presented 1500 ms apart (total
time, 25 minutes); a target is presented on 64 trials, with a minimum of 12 context stimuli
in between to allow for the hemodynamic response to settle [20]. The subjects are asked to
press the left button on a mouse when they see “00000” and right button when they see
the target “XXXXX?”. This timing parameter is used as the behavioural reaction parameter
tracking the performance of the subjects. Five male subjects with an age range of 22-50 are

recruited for the preliminary test. We have the following additional specifications for target

stimuli.
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@) During the course of a given experiment, there are 64 target stimuli. The stimuli
follow a block periodic temporal pattern, where in every block there are 8 stimuli
with randomly jittered lbcations, and the same pattern is repeated in every one of the
eight blocks during the course of the experimént. In other words, the inter-arrival
patterns between the 1% and 8" targét stimuli répeat themselves successively between
the 9" to 16", 17" to 24" and so on up to 57" and 64®.

(ii) Inter-target interval is a random variable uniformly distributed on the (30, 50)

samples interval, or alternately on the (18, 29) seconds interval.

Duration of stimuli of both context and target types is 500 ms, hence there are blank
intervals of 1 second. Recording is done at a sampling rate of 1.7 Hz, so that the Nyquisf
bandwidth is 850 mHz. | |

2.1.2. Preprocessing of fNIRS Measurements

Raw measurements cénsist of the optical density signals at different wavelengths, as
explained in Section 1.2. It was also argued that a modified version of the Beer-Lambert
law could be used to determine the concentrations of hemog]obm agents from these
optical density signals [4] Notice, however, that only two of them are required in the
computation of hemqglobm components. To be more specific, measurements that belong

to 730 nm and 850 nm are used to obtain these components.

The first step in preprocessing is to assess the quality of measurements and decide
‘ which one to discard. In fact, some of the photodetector outputs were not usable, due to -
either severe motion artifacts or occasional defects of the sensors. We did not apply any
outlier elimination and denoising algorithm since the measurements were not particularly

noisy.

Normally, one should have 16x3 optical density signalsf’[”)er\subject (dr experiment),
i.e., 80x3 in total. After discarding faulty detectors, there remained 72x3 such signals. We
did not observe any regular pattern on the spatial arrangement of rejected detectors

(Table 2.1), i.e., in different exberiments, different ones yielded corrupted measurements.
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Table 2.1. Indices of rejected photddetectors

‘Subject
Indices of rejected photodetectors

Index _Alias

1 AA005 9

2 GY002 - 1to4

3 KI1003 _ 1,13 and 16

4 KP001 -none-
"5

MJ007 -none-

A few comments are in order on the graphical dépiction of primary signal sources
(optical density signals) and the secondary signal sources, that is, the physiological
components, such as HbR and HbO,. "From Figure 2.2, one can see that the optical density
signals as well as hemoglobin component signals exhibit a very slow trend. These trends
have an antagonistic behaviour for HbR and HbO,, that is a rise in the HbR level
correspond to a fall in the HbOz. This observation is compatible with the brain
hemodynamics and already reported in [4]. Furthermore, this trend is actually a nuisance
quantity from the perspective of measuring cognitive activity and should be removed for
all practical purposés. The trend removal is performed by a simple moving average
filtering: a frame of support 500 samples (corresponding to 4.9 minutes of data) is slided
continuously over the time-series and the mean value of the samples inside the frame is
subtracted from the actual value at the frame position. Such a scheme effectively blocks
the slow signal (below 3 mHz) which is responsible of the trend (Figure 2.3). In summary,

preprocessing fNIRS time-series involves the fo]lowin'gk.

(i) Discarding signals from defective photddetectots (see Table 2.1.).

(ii) Computation of the hemoglobin component signals by applying the modified Beer-
Lambert law on the optical density signals that correspond to 730 nm and 850 nm
wavelength. |

(iii) Trend removal by moving average filtering.

One might ask which hemoglobin component should be used for further analyses.
The study on simultaneous recordings of fMRI-BOLD and fNIRS [8] demonstrates that the

changes in oxygena{ed hemoglobin and the simultaneously acquired BOLD exhibit the
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strongest correlation compared with other components such as deoxygenated hemoglobin
and total hemoglobin. In this work, motivated by the fMRI studies, we consider henceforth

oxygenated'hemog]obin, i.e., HbO, signals.
2.2.3. Nomenclature of the Dataset

_ Each HbO; signal in the data set can be refered by two indices: the subject index and
the index of the phodetector from which it is obtained. Denoting a HbO, signal by s(z), the

following notation is adopted.

s ,f(‘)’ (t) : HbO; signal from subject jy, photodetector k.
= {s b (t)l 1<k<K, j, ﬁxe’d} : All the signals from a given subject jo.

L, = {s ,{0 (t')l 1£j<J,k, fixed} : All the signals from a given photodetector ko.

| | L
r={s{®]1<k<K,1<j<J}=0T/ = UT, : All the signals in the dataset from

any photodetector or subject.
j=1,..,jo,.., J (total number of subjects J is 5)
k=1,.., ko,..., K (total number of photodetectors for a given subject K is 16)

Recall that some of the photodetectors are not usable (as Atabulatg:d in Table 2.1),
hence although the detector index runs from one to 16, we obviously skip over the
defective ones.

2.2. Statistical Characterization

This section deals with the statistical characterization of the fNIRS-HbO, signals in

terms of stationarity and Gaussianity (see Appendix A, for details of the statistical tools).

2.2.1. Stationarity of fNIRS-HbO, Signals

Stationarity of a process in the strict sense stands for the time-invariance of the n'®

order joint probability distribution of the process samples. However, from a practical point
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of view, it is usually very difficult and not necessary to prove strict-sense stationarity. A
common practice is to use a graphical depiction of the moving time-average estimates of
the central moments up to order four. The less pronounced are the time variations in these
moments, the more there is ad hoc evidence about the stationarity of the underlying
process. For instance, we say that the signal satisfies the wide-sense stationarity criteria,
whenever the mean and the variance do not change over time. Furthermore, if it is known
that the signal is from a Gaussian process, this implies strict-sense stationarity. Note that

hereafter stationarity will refer to wide-sense stationarity unless otherwise stated.

In the case the process cannot be proven to be stationary, one still would be
interested in the stationarity of the short-time signal segments. Short-time stationarity can
also be investigated with graphical techniques [21]. In Figure 2.4, variation of the central
moments up to order four are shown for a representative HbO, signal. Accordingly,
N-sample segments are eXtracted from the signal with 75 per cent overlap and the
moments are computed. We choose two segment lengths, N = 200 and N = 400 samples,
corresponding, respectively, to two minutes and four minutes of data. Notice that, the
skewness 7 is a measure of the symmetricity of the underlying distribution. For symmetric
distributions, such as the Gaussian, it vanishes. On the other hand, the kurtosis x measures
the “tailedness” of the underlying distribution. For random samples with x > 0, the
underlying distribution is heavy-tailed and said to be super-Gaussian; for those with ¥ <0
the underlying distribution turns out to have flat tails and it is referred as sub-Gaussian. As
the context implies, Gaussian distribution is the limiting case and has zero kurtosis. The
time-average estimates of these moments, for an N—sample fNIRS-HbO, segment with first

and last time indices #; and f; such that - f;+1 = N, can be computed as

1]

(i) Mean u= -]]Vz s(t)

1=t

(ii) Variance o =%2[s'(t)— ul’

1=,

.(iii) Skewness ’(=0_—21V-Z[S(t)—ﬂ]3

1=
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5]

(iv) Kurtosis' k= 0'1N Z [s(t)—,u]4 -3

1=t,

It is known that an accurate estimation of skewness and kurtosis requires relatively
large number of samples, and they are also very sensitive to outliers. Furthermore, the
signal samples are not necessarily identically distributed, hence the estimates for skewness

“and Kkurtosis kurtosis should be interpreted with caution.

From Figure 2.4, we see that the signal fails to be stationary in the long run, however
‘over short intervals there are intervals of stationarity in the wide sense. We notice these
quiet regions in the first 500.and last 1000 samples of the record, while in the central
regions all moments vary. These observations suggest that Hb02>signals are globally non-

stationary, but also would allow for short-time processing under the assumption of

stationarity.
Frame length=400 (25 frames) ) Frame length=200 (53 frames)
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Figure 2.4. Profiles of the statistics for a typical HbO, signal up to fourth order

! The expression stands actually for the normalized kurtosis and in statistical texts it is defined without the
additive constant.
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Table 2.2. Run test results for short-time HbO, frames

(out of 3600 records, significance level a = 0.01)

Frame Number of times Test statistic & The range of & for the

length the stationarity hypothesis - stationarity hypothesis
N is retained Mean Std. Dev. to be retained
400 1 39 28 __— 177-224
200 19 22 - 16 . 84-117
100 ' 82 C 14 9 ' 39-62
50 326 9 6 17-34

30 o 793 7 : 4. 9-22

We can show the non-stationary behaviour of the HbO, signals more formally, using
statistical tests. The run test is a non-parametric, distribuiion-frée test which is suitable for
this purpose [22], based on counting'the number of sign reversals around the median of a
signal. This test comparesb- a statistic ¢, which is one plus the number of sign reversals
around the median, against tabulated values and returns a binary answer on the stationarity
of the tested signal: either retain the stationarity hypothésis or reject it. For the sake of
generality, N-sample frames from each of the signals in the fNIRS-HbO, dataset are
randomly selected. The number of frames per signal is set to 50, yielding 72x50 = 3600
records to test. The number of samples per frame N takes the values of 400, 200, 100, 50
and 30. In Table 2.2 is shown the number of frames marked as stationarity in the run test
for each selection of N. The significance level a of the tests is set to 0.01. Table 2.2 also
shows that HbO, signals, definitely, are non-stationary unless short observation window is
chosen. The mean test statistic & (decimal parts are removed) becomes close to the
expected range only for small values of N (e.g. 30 and 50), hence for short-time analyses,

one can choose frame lengths in the order of 30 and 50 samples.

We observe in Figure 2.4, that skewness is not zero and that kurtosis is not directly
proportional to the variance. These imply that the fNIRS-HbO, process is non-Gaussian. In
the next subsection, the non-Gaussianity of HbO, signals is established by means of

rigorous statistical hypothesis testing.
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2.2.2. Gaussianity Tests for fNIRS-HbO, Signals

There are many siniple" yet powerful Gaussianity (or normality) tests in fhe statistics
literature [23]. They generally assume independent identically distributed (i.i.d.) samples,
hence they are not particularly suited for testing time-series for Gaussianity due to the
correlatedness of the signal samples. Under the milder condition of whiteness, that is, we
‘assume that samples are uncorrelatéd, but not independent, these tests can be used for
establishing the Gaussianity (or non-Gaussianity) of the time-series with lower statistical
accuracy. Howéver, time-series are uncorrelated albeit neither. That is we cannot obtain
-uncorrelated samples by sequentially sampling the signals. One idea to get over these
problems may be to sample the signals at random locations, instead of sequential sampling,
~ so that correlation between samples vanishes. In the sequel, the Kolmogorov-SmimoV (K-
S) test, and the Jarque-Bera (J-B) test are used following the above ideas [23, 24]. On the
other hand, Gaussianity tests dedicated for time-series data do exist, like Hinich’s

bispectrum based test [25]. Howevér, this approach requires the signal to be stationary.

In what follows, the results of both the K-S test, the J-B test and the Hinich test are
presented. However, we first visit some graphical techniques in order to get more inside on

the shape of the underlying distribution.

A very useful Jgraphica] tool is the normal probability plot [26], where an empirical
cumulative distribution function (cdf) is plotted along with the theoretical Gaussian
(normal) cdf (see Figure 2.5). What is special with this graph is that the Gaussian cdf plots
linearly with a slope of one in the log-scale. The distance between the tick marks on the
~ ordinate axis matches the distance between the quantiles of a normal distribution. The
quantiles are close together near the median (probability of one half) and stretch out
symmetrically moving away from the median. Any deviation of the empirical cdf from
linearity is indicative of non-Gaussian behaviour. The top row in Figure 2.5 show test
cases of sample cdf’s of Gaussian and exponential distributions. We see that samples (blue
data points) from the exponential distribution deviates curvilinearly from the straight line
of Gaussian cdf in red. The bottom row of Figure 2.5 illustrates two cases of the sample

cdf plots of actual HbO, data. In Figure 2.5 (c) we see a collection of samples that results
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Figure 2.5. Normal plots for data from different distributions, vertical axes are read as

probability (in log-scale), horizontal axes as data

in a good fit to the normal line, whereas in Figure 2.5 (d) deviations from normality
(especially at the tails) are clear. The latter collection has indeed a positive kurtosis (=
5.14), i.e., it’s heavy tailed. Note that both collections are obtained from the same HbO,

signal but at different random locations sufficiently distanced to guarantee

uncorrelatedness.

After this sample illustration, we need to test over a much large number of
collections, each of which should contain a large number of signal samples in its turn, and
then apply a combined test statistic in order to reject or retain the Gaussianity assumption.
In the following results, consider the signal sets '/, the ensemble of all the HbO, signals,
that is recordings from all detectors, from subject j, j = 1,..., J with J=5. As was given in

Table 2.1, the number of signals K; differs from subject to subject. For each subject j, we
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collect records of 500 samples at random, but pairwise distant locations. 500 samples are

enough for accurate estimates. We get 10K;; for Gaussianity test. Furthermore, we also test

J=5
the whole dataset I', which contains IOZ K ; records, independently.
: . j=1 -

Tables 2;3 and 2.4 present the K-S and J-B tests for normality of HbO> signal
‘samples respectively. Let’s briefly if)troduce the K-S and J-B tests (more details are given
in Appendix A). Let Hy stand for the Gaussianity hypothesis, and let the values &; and &
represent the test statistics used in the K-S and J-B tests. For testing a single record, the K-

'S test proceeds as follows

If & > yis » accept H: non-Gaussian

. If & < yis » accept Hp: Gaussian

where 7 is set at a level such that the probability of falsely rejecting the Gaussian
hypothesis (false alarm probability) a is, say, 0.05. The value of a is said to be the

significance level of the test. Similarly, the J-B test can be formulated as

If & >y » accept H,: non-Gaussian

If &b <y » accept Ho: Gaussian

where y; is set at a level such that the probability of falsely rejecting the Gaussian
hypothesis a is, say, 0.05. Equivalently, these two tests can be performed using computed

false alarm probability py; for K-S test and pjp for J-B test as described below.

If pis (or pjp) < &, accept H,: non-Gaussian

If pis (or pjp) > @ ,»acéept Hy: Gaussian

In order to combine test results of individual records in the signal set T/, following
Fisher’s ideas [27], the combined test statistic P, for both K-S and J-B tests, can be

computed using

P=-2) logll-2p,] 2.1)
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where p; denotes the computed false alarm probability of i™ test (on the i™ record) and the
summation runs up to the total number of records in the signal set. The combined test
statistic Py (or Pj) is a chi-square random variable with 2x(the number of individual tests)
degrees of freedom. The value of Py (or Pj) can be used to determine whether to reject or
accept Ho, i.e., if the value of the chi-square cdf at Pks (or Pj) is too high, accept Ho; else
reject it (see Appendix A for more details on Fisher’s combined test). Based on the results
of Tables 2.3 and 2.4, we see that the J-B test has a more pronounced tendency to reject Ho
than the K-S test. The number of cases the K-S test rejected Ho is less than the J-B test

does; consequently, the significance level achieved by the latter is much smaller than the

one achieved by the former for all the individual signal sets TV and the whole dataset T'. In
conclusion, we can’ safely reject Ho hypothesis for fNIRS-HbO, signals, since thé
probability of rejecting Ho when it is indeed true is extremely low in general (except may
be for T2 where Hy can be accepted at significance level 0.05 since the combined test
yielded a significance of 0.02 for K-S test). In Table 2.4, we also show the mean and
standard deviations of Sample estimates of skewness 7 and.of kurtosis k. We note that the
underlying HbO, distribution can be considered as symmetric (mean skewness is around
zero) with tails heavier than the Gaussian distribution (mean kurtosis is significantly

positive).

Finally, let’s turn to Hinich’s bispectrum based Gaussianity test which is apblicable
for time-series. The test is based oh the fact that signals from a Gaussian process have zero
bispectrum. Hence if we can compute a test statistic &in that measures how much sample
estimate of the signal bispectrum deviates from zero,'\‘ve can establish whether the signal
comes from a Gaussian prdcess or not. In Hinich’s test also, the test statistic Ehin 15
accompanied with a computed probability phin of the risk in rejecting Ho. As usual, if ppin
exceeds a, one can- deduce that it is risky to reject Ho and the Gaussianity of the signal is
retained. As described previously, false alarm probabilities pyin can be used to compute the
combined test statistic Py, which will be effective for testing the Gaussianity of all the
records together. Note that in Hinich’s test, there is no need for random sampling since it is
purely designed for correlated time-series. However, statibnarity of the records is
necessary, i.e., the size of the individual records should be small. Accordingly, we collect

50 records of 30 sequential samples from each signal. This yields 50K ; cases to test for an
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individual signal set I'/, 50) K, cases for the whole dataset T'. The results are shown in

j=1

Table 2.5 (significance level a-of the individual tests is set to 0.05 again).

Individual Hinich’s tests demonstrate that a majority of short-time fNIRS-HbO

segments fail to come from a Gaussian process. In the overall, the Gaussianity assumption

is rejected with practically no risk. These results are compatible with those of K-S and J-B

tests. The unique but fundamental conclusion of this subsection is that fNIRS-HbO; signals

" are non-Gaussian.

_ Table 2.3. Results of Kolmogorov-Smirnov tests
Signal Set
T 1 r’ r r’ r
Number of 150 120 130 160 160 720
records
Number of ‘
times 72 99 81 84 33 398
H, retained
Number of , ,
times 78 21 49 76 127 322
H, rejected
Mean 0.08 0.05 0.06 0.06 0.10 0.07
Ekx -
Std. Dev. 0.05 0.01 0.03 0.02 0.07 0.04
yisata =0.05 0.06 0.06 006 006 0.06 0.06
Py 161.2 196.36 138.60 121.90 4422 696.81
Resul:)?f t(l;e Reject Hyat - Reject Hpat Reject Hpat  Reject Hgat Reject Hpat  Reject Hp at
combine significance  significance significance  significance  significance significance
tests 10" 0.02 10 10% 107 10"

(based on Py,)




Table 2.4. Results of Jarque-Bera tests
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Signal Set
r I r r* rs r
Number of
records 150 120 130 160 160 720
Number of
times 44 43 20 24 4 143
H, retained .
Number of .
times 106 77 110 136 156 577
H, rejected
Mean - -0.14 0.14 0.06 -0.34 0.05 0.00
z v
Std. Dev. 1.57 0.56 1.18 -0.33 4.86 221
Mean 3.86 1.34 351 0.48 33.75 8.17
K
Std. Dev. 12.26 2.34 5.35 0.84 74.14 33.70
Mean 3578.60 176.00 952.51 37.59 137793.41 25111.52
&b -
Std. Dev. 17276.14 824.60 2581.39 50.67 407016.03 180234.45
7i» at a = 0.05 5.99 5.99 5.99 5.99 5.99 5.99
P; 86.00 75.81 38.75 35.79 4.78 253.96
Result of the Reject Hoat  Reject Hoat  Reject Hpat  Reject Hoat  Reject Hoat  Reject Ho at
combined tests  significance  significance  significance  significance  significance significance
(based on Py) 107 107 10% 10° 1077 102
Table 2.5. Results of Hinich’s tests
Signal Set
T I r r I I
Number of 750 600 650 800 800 3600
records
Number of : :
times 236 238 297 468 359 1583
H, retained
Number of
times 514 362 353 332 441 2017
H, rejected .
Mean 0.15 0.19 0.25 0.26 0.23 0.22
Phin P
Std. Dev. 0.27 0.30 0.34 031 - 0.32 0.31
Piin 450.36 482.44 483.54 " 939.01 717.77 3008.51
Result of the  Reject Hpat  Reject Hpat Reject Hpat  Reject Hoat . Reject Hoat  Reject Hy at
combined tests  significance  significance significance  significance  significance  significance
(based on Pj;,) 1079 10" 10"% 109 10% 0
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3. TIME-FREQUENCY CHARACTERIZATION

In this chapter, we analyze the fNIRS-HbO, signals in the time-frequency plane. We
think that several physiological events are measured by fNIRS and each of them is
associated with a particular frequency band of the HbO, signal. Identification of such

“bands can provide us with some general guidelines in distinguishing between the baseline

and cognitive activity.

Spectral analysis of physiological signals are irhportant_ in that the oscillatory
dynamics in physiological systems are considered to reflect the degree of functionality.
Presence of such dynamics have been observed especially in the brain by neuroimaging
expert‘s. Specifically, electroencephalogram (EEG) signals are analyzed by decomposing
them into several predetermined frequency bands corresponding to different physiological
activities [28]. As Basar and co-workers argue about the oscillatory dynamics in EEG:
“With respect to the brain, resonance is defined as the ability of brain networks to facilitate
(or activate) electrical transmission within determmed frequency bands, when an external
sensory stimulation 51gnal is applied to-the brain” [29]. Efforts for characterizing the
components in 51gnal spectra have usually aimed to provide a physmloglcal
correspondence to the peaks or the energy bands. EEG literature is well developed in the
field of frequency analy51s owing mostly to its early discovery dating back to 1900’s. On
the contrary, new comers in the field of neuroimaging such as fMRI, PET, transcranial
doppler sonography (TCDS) and fNIRS finally have still not received their share -of
attention from the signal prccessing experts. Although several studies have proposed
 association mechanisms between spectral raﬁges and\ physiological actiVities, there is no

consensus on the exact division of spectrum into bands of clinical importance.

Several researchers have decided to investigate the fMRI, PET and TCDS spectra in
search of bands that can elucidate the underlying physiological dynamics where specific
spectral peaks or bands are assumed to be related to a specific task [30]. The general view
is that while some of the oscillatory dynamics occur independent of the task and are
distributed over distinct spectral bands uncorrelated with other physiological activities (e.g.

breathing, heartbeat etc.), others can be directly affected by psychological or pathological

& Bekazici Universitesi Katiphanesi €
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conditions (or vice versa) that exhibit themselves as a shift in performance [31]. A subset

of such studies investigate the coupling mechanisms between cerebral energy metabolism

and cerebrovascular dynamics (namely neurovascular coupling).

In this chapter, we first try to do an exploraﬁve study of the typical fNIRS-HbO;
spectrum. We then present an original frequency subband partitioning methodology. The
proposed subbanding scheme is general and can be applied to signals other than fNIRS-
HbO,. Finally, we prove that fNIRS measures cognitive activity, and that constitutes one of

the major contributions of this work.

3.1. The Typical fNIRS-HbO; Spectrum

A time-frequency representation (TFR) of a non-stationary signal is especially useful
in visualizing the evolution of the spectral content through time. This can for instance be
achieved by the short time Fourier transform (STFT) or windowed Fourier transform

(WFT) as defined below

S(t, f)= O]'s(t)w(t—’[)e—jwdt ’ @B.1)

—00

where s(f) denotes the fNIRS signal of interest and wp(f) is a window of finite support D.
The STFT in (3.1) is actually computed using the ‘discr'ete Fourier transform (DFT), so
that the TFR is discrete in both time and frequency, respectively, with time resolution At
and frequency sampling interval Af.-A TFR is warranted lc,ince_the signéls are non-
| stationary and also because the aim is to .capture‘and characterize local events, like
cognitive activity in the course of the NIRS process. The windowing wp(#) guarantees the
local nature of the spectral analysis and its support is chosen. so that within that D interval
the process can be considered to be at least wide-sense stationary. To control spectral
leakage and peak resolution, the window shape should be judiciously chosen [32]. Table
3.1 gives the parameters used in the TFR analysis. One should see that the frequency
resolution is given by the effective window length, hence it is .of the order of 50 mHz,

while the one mHz frequency sampling rate Af is obtained by padding the windowed time

series with zeroes.
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Table 3.1, Parameters of the TFR (sampling rate F,=1700 mHz)

Parameter Value . Comment

Hamming window has good

Window type | i
yp Hamming sidelobe suppression.

An interval of such length can be

Window length D =
& 36 samples ~21 s considered as “stationary”.
This guarantees at least four
Time resolution At 9 samples =5.3 s samples per chosen window

length, which provides adequate
temporal resolution.

_ This is set in order to have
Frequency sampling Af 1 mHz sufficient number of samples in
the bands as narrow as 10 mHz.

A 3D-graph or the contours of the TFR of a time-series alone would provide us some
qualitative information about the spectral content. Figures 3.1 (2) and (b) consist of such
graphs obtained from a fNIRS-HbO, signal. Observing theser, one may conclude that the
time-series is essentially low-pass (main spectral content<100 mHz), that no significant
events at all in the fange of 200-700 mHz exist and there is some activity pattern bétween
700-850 mHz; Hence without objective measures, inferences we can make from a TFR
remain limited. The TFR should further be exploited by deriving some quantifiable
magnitudes as Blanco et al. suggested [28]. The relative power profile per band is such an

objective measure and will be defined next. Let’s consider a set of frequency intervals

(fops Jur)s 1 = 1,y N that partitions the frequency axis into subbands, which are not

necessarily equal. Then the evolutionary power spectral density within the n' frequency

band at the instant ¢ is defined as
B.(t,f)=S"(t, /)SC ) in f€(furfun) (3.2)

where f,; and f,, denote, respectively, the lower and upper limits of the band. The

total power in the respective band as a function of time can now be calculated by
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a typical fNIRS-HbO; signal (bottom)
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fn.h

I,0= [B,( f)df (3.3)

fn‘l

Similarly the total instantaneous power in the whole frequency spectrum I(¢) is
defined as

f Nyqguist

0= [B,6.)df EEE
0

where, in our case, the integration goes from 0 to 850 mHz. Finally, the relative power

profile in the n™ band as a function of time becomes

=L®

R, () 10

3.5)

The relative power profile per band reﬂects the temporal evolution of the relative
power in each band. It can be conjectured that the dissimilarity in the evolution of the
relative power profi]es is indicative of the relevance or redundancy of the bands. More
explicitly, two bands are considered similar if their R,,(t) responses are close to each other;
conversely, dissimilar bands that have different time evolution of the power profile, R,(f)
are considered to provide different information. In the following section, the relative power
profile will be used as a feature in the systematic partitioning of fNIRS-HbO, spectrum

into non-overlapping subbands.
3.2. Selection of Relevant Frequency Bands

Starting with a fine partitioning of the fréquency spectrum, one can group narrow
bands similar in their evolutionary energy profiles, R,(%), intg wider bands that hopefully
capture significant signal information. In what follows, let’s consider an initial partitioning
of the frequency spectrum into 25 narrow bands of width 10 mHz and a wide high
frequency band covering the 250-850 mHz range, 26 bands in total. All higher frequency

bands are ]umped into one 250-850 band as there is very little power in this frequency
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range and the signals lacked a definitive structure. In fact, this wide band contains only

nine per cent of the total average power.

Since there are many relative power time-series from different bands and

detectors/subjects, the following notation is adopted
R () : time-series of the relative power for the n'™ band of the m™ fNIRS signal

Thus the subscript 7 denotes the frequency band of interest, where n=1,...,N=26. For
1<n <25, the n™ band covers the frequency range [(n-1)x10, nx10)] mHz, while for
n=26, the band covers the 250-850 mHz range. On the other-hand, the superscript m points

J=5
toone of them=1,..., M=72 time series in the dataset I", note that M = Z K Ix Recall that
j=1
these time series were obtained from the 16 detectors of the five subjects, after some
pruning (see Table 2.1). Thus the superscript m refers simply to the m™ measurement. The

time index ¢ runs with the lags of At = 9 samples, ¢t = 1,..., T. It will be convenient to

n

express the whole time series R™(f),t=1,..,T in vector notation as RZ. The T-
dimensional R!" vector denotes the time series of the m™ detector/subject in the n"
frequency band. Notice that we have a total of NxM = 26x72 such RZ’ vectors, each

detector being expanded onto 26 bands, and conversely, there are 72 representative time

series for each band.

We practically search for the formation of the informative bands by a clustering
procedure. In fact, a scheme based on agglomerative clustering® followed by majority

voting can be used as described below. After obtaining the N relative power profiles per

.....

subbands Q"'={Qcm }c=1

detector/subject are clustered into C = 3 subbands. This target number of clusters is

c- ‘Specifically the 26 initially chosen subbands from any

.....

decided for in order to allow a possibly very low frequency band, a high frequency band

and potentially a single “interesting” mid-band.

2 For a brief summary of clustering and agglomerative approaches in particular, see Appendix B.
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There are two important aspects in an agglomerative clustering algorithm: the metric

used to compute distances and the closeness criterion between vectors. Here the following

are adopted

(i) One-minus-the-normalized correlation coefficient as the distance metric:

. o Rm’Rm
aRy Ry =1- e 36
| R =
where (..)stands for the inner product of two vectors and |.| for the Euclidean

norm. The vectors involved in the computation are made zero-mean by subtracting
their mean value.
(ii) Single linkage criterion as the closeness criterion, according to which the pair of

bands (p,q) for which d(R’) ,R'q") is minimum should be merged.

The end product of clustering the R" set is a dendrogram D", an hierarchical tree that
helps us to visualize cluster relationships. An example is shown in Figure 3.2. The
dendrogram for the m™ measurement D" is pruned in order to get the clustered set @™ This
is accomplished by simply obtaining the cutset of the dendrogram that yields the target
number of C clusters. In other words, the dendrogram is cut at a distance value of the
ordinate to yield the desired number of clusters, e.g., at 0.15 as shown in Figure 3.2.
Within each one of the C clusters, the merged bands are similar to each other according to
the chosen cdrrelation coefficient metric, while across clusters they are dissimilar. The
leaves of the dendrogram, that is the singleton clusters, which correspond to the initial
bands, become thus grouped into C = 3 larger bands. Once the agglomerétive clustering is
accomplished we obtain M dendrograms, one for each measurement. To extract a single set
of subbands from the M clusters, a voting scheme is resorted to. At this stage there are in
the overa]i MxC = 72x3 = 216 frequency bands with differing bandwidths, out of which
we try to determine the most frequently occurring ones. Therefore these 21 6 band patterns
should be ranked based on their frequency of occurrence. To make this point clear, let’s
consider again the sample dendrogram in Figure 3.2, which results in the following
subbands: {0-30, 30-40, 40-850}. We determine how many times each of these subband

formations were generated by clustering of all the " measurements, each occurrence
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Figure 3.2. A typical dendrogram: the horizontal axis indexes the initial bands, vertical

axis indicates pairwise cluster distances.

counting as a vote. Selecting the subband patterns that have received the highest number of
votes (frequency of occurrence), we achieve a “canonical” partitioning of fNIRS frequency
spectrum, where the resulting bands are non-overlapping and exhaustively cover the

frequency interval 0-850 mHz.

As a result of band clustering and voting, nine candidate bands that shared 216 votes |
are obtained as shown in Table 3.2. A couple of partitionings that collectively covers the
spectrum is possible (see Table 3.3). The spectrum partitioning that gets the highest |
number of votes happen to be the following sequence of bands: 0-30 mHz, 30-40 mHz, 40- '
250 mHz and 250-850 mHz. They receive in all 142 votes, i.e. 65.7 per cent of the total.
We hence can argue that this partitioning is reliable in characterizing the fNIRS spectrum
in terms of energy percentage profiles. Hereafter we call them as “canonical frequency

bands” and denote them by letters as shown in Table 3.4.
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Table 3.2. Candidate frequency bands (out of 216 cases)

Bands (mHz) Number of votes

250-850 : 44
0-30 35
0-40 ' 35

40-250 35
30-40 : 28

40-850 28
30-250
0-50

'50-250 2

Table 3.3. Possible spectrum partitionings and their signifinances

Spectrum partitioning Votes Percentage
0-30 mHz, 30-40 mHz, 40-250 mHz, 250-850 mHz 142 65.7 %
0-40 mHz, 40-250 mHz, 250-850 mHz 114 52.8 %
0-30 mHz, 30-250 mHz, 250-850 mHz 86 39.8 %
0-40 mHz, 40-850 mHz 63 29.2 %
0-50 mHz, 50-250 mHz, 250-850 mHz 48 222 %

Table 3.4. Canonical frequency bands of fNIRS signals

Bands 0-30 30-40 40-250 250-850 >>
(mHz) A B » C D
Votes 35 28 35 44

Physiological interpretation of the canonical bands: In several studies, three main
frequency bands of interest have been identified for cerebral hemodynamics: a very low
frequency (VLF, 8-33 mHz), a low frequency (LF, 100 mHz) and a high frequency
component (HF, 250 mHz) definitely in synchrony with breathing rate [33]. Similarly, it
can be conjectured that each of the canonical bands is associated to one or more of the
physiological activities that are assessed by hemoglobin Concentrations. The very-low
frequency band, namely the A-band, is responsible for the slow signal or the baseline signal
that is thought to be reflecting the very slow vasomotor fluctuations. In fact, reports on the
frequency content of such fluctuations have identified this signal as being the phasic

dilation and contractions of the small regulating arteries. According to Kuo et al. “these
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vasomotor waves produce fluctuations in cerebral blood volume, which are eventually
reflected in the intracranial pressure” [33]. As a matter of fact, it can be thought that this
band is independent of the stimulated cognitive activity. Based on the observation that
typical brain hemodynamic response model functions, e.g. the centered Gamma function
(Figure 3.3), exhibit significant spectral activity in the 30-50 mHz range, the very narrow
B-band should be related to task-related cognitive activity of the subject. The larger C-band
is also assumed to carry cognitive activity related information, most probably due to the
periodicity of the target stimuli sequence. Moreover, vasomotion and breathing rate are
two physiological facts that are responsible for the emerging of the C-band. Finally, the
high frequency D-band reflects some weak high frequency fluctuations and confines the

aliased part of the heart rate signal (~1.1 Hz).

Time-domain waveform Magnitude spectrum
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Figure 3.3. The centered Gamma function (left) and its Fourier spectrum magnitude

(right), note that high frequency lobes are due to removing the DC-value of the signal

Although the canonical bands are dissimilar in terms of the chosen metric, there
certainly remain some residual correlations. Hence, a quantification of the similarities
between relative power profiles at these bands would be instructive. In order to track this

purpose, the following is evaluated

_1—M=7z (RI;: -R™)
o 2 e

P =

(3.7)
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where p,qe{A,B,C,D} and R? is as defined previously, again the vectors in the

computation of the inner-product are made zero-mean. The averaged normalized

correlation coefficients p, take the values given in the matrix form below

A B C D1
A 1 050 -094 —0.51
[5,)=|B 050 1 -045 -054].
C -094 -045 1 029
D -051 -054 029 1

We can observe that there exists is a strong negative correlation (correlation
coefficient of minus 0.94) between the A-band and C-band in terms of their relative power

profiles. In other words an accumulation of power in one band (say A) causes a depletion

of the power in the other band (D), and vice versa. One can envision the time series R} ()

and R (r) being almost “antipodal” signals.

3.3. Evidence of Cognitive Activity in fNIRS-HbO; Signals

Since the cognitive stimuli are quasi-periodic, with inter-target intervals uniformly
distributed befWeen 18-29 seconds, we can expect some sort of periodic behavior in the
signal portions that are related to cognitive activity. The frequency bands where more
distinctly such periodic response emerges can be said to better reflect cognitive activity or
the “brain hemodynamic response”. Recall that the brain displays continuous activity
patterns even in the absence of any cognitive task. The cognitive activity waveforms, if
any, will be in general immersed in some baseline activity waveforms. In fact, experiments
show that cognitive activity responses are very difficult to discern by observing the
waveforms in the full-band signals. It follows that classical Fourier spectrum and peak
picking techniques are not suitable for hunting these responses and more sophisticated

statistical methods must be invoked to detect and estimate these hidden periodicities.

Thus we turn now to the time-domain signals corresponding to the fNIRS canonical

‘bands, and investigate the time series in the bands {A,B,C,D} for the existence of a
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periodicity. The admissible periods however should be in the néighborhood of the target
exposition periods used in the experimental protocol, that is in the 18-29 seconds range or
its harmonic/subharmonic multiples. Notice that in frequency domain, the periodicities that
we are seeking, can only be reflected in a sampling effect of the continuous spectrum. That
is, if a time-domain signal is periodic with Py seconds, the corresponding spectrum should
exhibit spectral samples that are 1/Py Hz apart. In the 18-29 secohds range, the sampling of
the spectrum is between 34 mHz and 59 mHz. To accommodate this range of frequencies
let’s consider, based on previous conjectures, the merged version of two cognitive activity
related bands B and C, which covers the 30-250 mHz range. Preliminary analysis shows
that the D-band in the 250-850 mHz range appears too random to contain any cognitive‘
task activity. On the other hand, based on the results from previous studies [33]- [35], it is
hypothesized that the A-band is associated with the fNIRS baseline activity unrelated to the
brain hemodynamics and hence it is excluded. The time-domain signal in the BC-band is
obtained by band-pass filtering of the fNIRS time series signals. To this effect, zero-phase
finite impulse response (FIR) filters with unit gain in the passband and a 3 dB transition
bandwidth of 1 mHz was useful. Notice again at this stage, one should revert to the

original fNIRS signals {s(t)} in (3.1). The corresponding band-pass filtered signals are

denoted as x(t) = sp.(t) for simplicity.

The adopted periodicity measure is based on a classical method to estimate the pitch
period in speech signals: least-square periodicity estimation (LSPE) [36]. It is simply based
on the minimization of the weighted mean-squared error (MSE) between the observed

signal x(7) and an estimated signal x,(f) that satisfies x,(¢) =x,(t+kF), t= 1,..., T and

k=0,..,K =[% J—l where |__| denotes the floor operation. The optimal xo(f), for a
0

given Py, is

D x(t+kP)w(t +kRy)
_ _k
%o(t) = > x(t+kBy)
k

(3.8)

where w(f) is the weight sequence of length T. Observe that (3.8) reduces to the following

in case of all the signal samples are equally weighted, i.e., w(?) is a rectangular window,
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%m=%;amup (3.9

It has been argued that the weight sequence should be selected so that it gets the
maximum value of unity at the center of its support and so that it decays smoothly down to
zero towards the extremes since the periodicity deviates more heavily at the extremes than

at the center. It has originally been shown that Py that minimizes the weighted MSE is

equivalently the one that maximizes

I

IyB)=2 (3.10)

where Iy stands for the weighted energy of the estimate xo(f) and E for the wei ghted energy
of the original signal x(f). The unbiased version of (3.10) yields the Ji-index, which is

expressed as

(3.11)

. 2 2
where I (F) = Z—x—(—t)—w—(—t)— Note that the LSPE with J,-index is also called as the
e > w(t +kRy)
t 0
k

pseudo-maximum likelihood estimation of periodicities [36].

Using (3.11), one should for look for the value of 130 that maximizes the J,(R)

functional and this value is taken as the dominant period in the signal provided the

periodicity index J,(B) is sufficiently high. In fact, the index function can be interpreted
as a confidence score that becomes one for a truly periodic 51gnal Since some maximizing
value of ﬁo can always be foilnd, for this estimate to correspond to a genuine periodicity,
the confidence score should exceed a threshold. In the case offNIRS-HbOz, the allowed

range of f’o is between Poix and Py, as infered from the experimental protocol, in which
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Simulated data at various stages
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Figure 3.4. (a) Simulated quasi-periodic sequence of cognitive activity waveforms; (b)

White noise sequence (SNR = 10 dB); (c) An actual A-band signal; (d) Superposition of
the signals (a), (b) and (c); (¢) Band-pass filtered version of (d) in the BC-band

J,(ﬁo) values are computed. Let’s note that, since the cognitive stimuli are not exactly
periodic and since furthermore the cognitive activity signals are heavily embedded in
baseline signals, we should not expect the Ji(B,) scores to be too high, and hence heavy

thresholding should be avoided. Furthermore, cognitive activity is not expected to be fired
just after the target onset, that is, variable amounts of delay may obscure periodicities, if
any, of the cognitive activity waveforms. In order to illustrate the viability of the LSPE
algorithm, we may resort to a simulated data sequence, as shown in Figure 3.4, that
consists of the superposition of a hypothetical cognitive activit')/’fwwﬂaveform train embedded
in white noise (so that the signal-to-noise ratio is 10 dB) with an actual signal from A-band.
The cognitive activity waveform is modeled as the centered Gamma function which is

frequently used in fMRI data analysis [10]. The average periodibcity of cognitive activity
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waveforms is set to 40 samples with a random jitter between (-10,10) samples in order to

simulate the experimental protocol.

Two cases can be considered prior to the application of the LSPE. In the first case,
unfiltered HbO; signal (e.g. signal (d) in Figure 3.4) is input to the algorithm; in the
second case, in order illustrate the justifiability of prefiltefing in the BC-band, the
‘prefiltered version takes the role of input (e.g. signal (e) in Figure 3.4). The periodicity
index profiles within the (20,60) sarﬁples range with and without filtering the synthesized
signal, are shown in Figure 3.5. In both cases, the LSPE estimate coincides with the
jittered theoretical periodicity of 40 samples, a fact that illustrates the ability of LSPE in
tracking jittered periodicities in presence of noise and even additive interference. Using the
prior knowledge that the A-band does not contain pitch-period like periodicity information,
we can get much higher index (or confidence) values by prefiltering the signal in-the

approptiate band which is the BC-band.

Periodicity index profiles

1 T - T T T T i 1
—— Without prefiltering
e With prefiltering
08} -
506- i
g .
E04r i .
0.2 o
0 ! i ! I ! L,
20 25 30 35 40 45 50 55 60

Periodicity (samples)
Figure 3.5 Periodicity index profiles for simulated data without prefiltering (solid line) and

with prefiltering (dotted line), after local maxima selection and thresholding

On the other hand, the situation with real data is exemplified with two cases as
shown in Figure 3.6. In the first case, prefiltering results in a slight increase in the Jy-index
value without considerably affecting the value of the detectéd pérodicity (see Figure 3.6
(a), the second plot below is obtained after local maxima selection and thresholding). In the
second case where without prefiltering no periodicity can be detected with a high

confidence, we observe that a periodicity value, with a much better confidence, emerges

within the expected range (see Figure 3.6 (b)).
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Periodicity index profiles
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Figure 3.6. (a) Periodicity index profiles of a fNIRS-HbO, signal with (dotted line) and

without (solid line) prefiltering
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Figure 3.6. (continued) (b) Periodicity index profiles of another fNIRS-HbO, signal with
(dotted line) and without (solid line) prefiltering



41

In order to process the real fNIRS-HbO, data, it would be wise to proceed as follows.
Since the experimental protocol consists of eight identical sessions in succession, the LSPE
algorithm can be run session by session, by considering each of the eight time segments of

the signal x(1), 1 = 1,.., T separately. Let’s denote each session by the superscript
[=1....,8so that {x’ (t)} stands for the /™ experimental segment of the 30-250 mHz band-

pass filtered fNIRS signal from some subject/detector. The session-wise prdcessing of the
_fNIRS signals helps also to mitigate the non-stationarity. In fact, one can view the signal
portions in different sessions as independent realizations of the target-categorization

- experiment. We now summarize the steps involved in looking for periodicities of HbO,

signals below.

(i) The periodicity range in which we look for periodicities is (20, 60) samples.

(ii) We look for local maxima of the J,(B) function, where once a peak is found no
 further peak is searched within a neighborhood of (-3, 3) samples.

(iii) We set a threshold of 0.1 on the periodicity belief value J, (130) .

(iv) For each signal portion, we let the algorithm return the periodicity estimate with the

largest J;-index.

Those ﬁo values that fall within the (30, 50) samples interval are thought to belong

. to the single-tfia] cognitive activity sequence in the experiment. Those falling outside are

considered as fortuitous values, indicative of the fact that detector is not capturing properly
any cognitive activity signal. Since there are 8 time segments x'(f) per detector, each
x(¢) signal returns eight period estimates, IA’O’,l=1,..., 8 along with their confidence

scores. Accumulating separately the scores of the periodicities falling, respectively, inside
and outside the expected range, the cumulative score of inside periodicities S;, and the

count of inside periodicities Cj, for a given detector and subject can be defined as

8 A A
i =20, (P)O(By) (3.12)
{=1
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8 .
C,, =Y 6(Fy) | (3.13)
=1 .
. - . 1 o Do e s
with S(Bly= '1f f’? is inside the expected range (3.14)
0 if £, is outside the expected range

where [=1,...,8 is the session index. Corresponding expressions for the outside
periodicities S, and C,,, are defined similarly. Furthermore, in order to investigate inter-
subject and inter-detector variations of periodicities, two additional quantities are

computed: periodicities falling in the proper rangev averaged over all subjects for a given

photodetector, denoted as I_)w,,jec,s (k), k= 1,..., 16 and inside periodicity averaged over all
photodetectors for a given subject, denoted as Eelecm( 7, Jj=1,...,5. The error bar plots

corresponding to these two quantities, P (k), k= 1,...,16 and Py (7)) 55 = 1,10, 5

are displayed in Figures 3.7 and 3.8. The bar plots of the scores S, and S,., and the scatter
plots of the inside and outside periodicities with respect to the photodetector number for
different subjects are shown in Figures 3.9-3.13. Several conclusions can be drawn from

these resu]ts.

(i) The averaged estimated periodicity values match the expected value of Py = 40,
whether the average is computed over detectors or subjects, as illustrated in Figures
3.7-3.8.

(ii) For any detector or subject there is significant dispersion of estimated periodicity
values. The large spread, of the order of 10 per cent in each sense, may be due to the |
jitter of target instances, to the presence of remaining baseline activity, and to the
limited observation interval containing at most eight target stimuli.

(iii) The above described method can be used to classify detectors (or optodes) as
responsive of Cognitive activity periodicity and the qonfresponsive ones, that is,
those detectors that do not show any evidence of periodicity within the expected
range. The discrimination method is based on the not-in-the-range periodicity score
S,ut, as illustrated in Figures 3.9-3.13. The reason why some detectors do not yield
conjectured periodicity can be due to the latera]izationr effeét for that subject or

simply corrupted measurements. One argument that support lateralization conjecture
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is that groups of adjacent detectors all succeed or fail. For example; for Subject 1,
detectors 3-12 are “good” (detector 9 was not working though), while detectors 1-2
and 13-15 are “bad” (see Table 3.5 where the indices of responsive photodetectors
are shown). On¢ other reason could be due to the location of the optodes with respect
to the light sources. Since the source-detector distribution determines the volume of |
brain being sampled, millimeter range shifts and a]ignménts in the probe will result
in a significant change in the brain volume being monitored. Finally, the corruption
observed could be due to the skin effects (larger arteries on the skin surface right
underneath the optode) dominating the signal.

(iv) There are also marked differences between subjects. For example, Subjects 1, 3 and
4 (especially Subject 4) yields high periodicity scores consistent across all of his/her
detectors, while Subjects 2 and 5 are dubious (see Figures 3.9-3.13). Although inter-
subject variation is always expected in such studies, there is no standard procedure to
isolate corrupted data from statistical analysis for fNIRS signals. The periodicity
analysis method provided in this work might be used as a rule of thumb in

identifying the corrupted data or the patient that is not cooperating.

The results of the previous subsection togethe'r‘with those of the current one are
significant in two aspects. First, the bands of interest in fNIRS-HbO, are observed to be
localized in the lower part of the spectrum (<250 mHz). The selected canonical bands have
a considerable frequency of occurrence hence they are reliable in time-frequency
characterization. Second, periodicity detection experiments have exposed that fNIRS
indeed measures cognitive activity and prefiltering in the BC-band is exceptionally useful.

Furthermore, the proposed scheme would be useful in assessing the quality of the

measurements.
Table 3.5. Responsive photodetectors such that Si; > Sour
Subject Photodetector quadruples
. left mid-left mid-right right
Index Alias (1-4) (5-8) (9_12) (13-16)
o 50 a4 B sos@DEl Podiland ol T TR T
2 -not any- 8 9,11 and 12 13to 16 (all
3 a0 sw8@pl 0 9iol2@ll) i isandile
1 © 5tw08@) . 9 Ilandl12 . 13tol6(all) -
5 1 to 4 (all) 5and7 9,11 and 12 13 to 16 (all)
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Inside and outside periodicity scores vs. Detectors
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Inside and outside periodicity scores vs. Detectors
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s Inside and outside periodicity scores vs. Detectors
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5 Inside and outside periodicity scores vs. Detectors
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4. FUNCTIONAL ACTIVITY ESTIMATION

The purpose of this chapter is to introduce and discuss algorithms for the extraction

of waveforms associated with cognitive activity. We consider short-time fNIRS segments
(of length m), which consist of the m samples right after the subjects are presented with the

target stimuli. We adopt the following notation.

i=1,..,1=64 (total number of targets per experiment I is 64) -

J= 1, jo sy J=5 (total number of subjects J is 5)

k=1,.,k,..., K=16 (total number of photodetectors fbr a given subject K is 16)
X : A generic m-dimensional data vector that consists of sequential HbO, samples.

X : A generic dataset that consists of multiple realizations of x.

X2 (i) : A HbO, vector from the signal s;° (t), target location i.-
XA’:)’ = {x,’(‘; (i)] 1<i<1, j,fixed, k, fixed } All the vectors from signal sk" (t)
X ={xi(i)|1i< 1,1k <K, j,fixed} : All the vectors from I'%.

X, ={x{ ®|1i<1,12j<J,k, fixed}: All the vectors from T .

Xh = u X > : All the vectors from left photodetectors of subject jo.

X b rd—tefi = u X . All the vectors from mid-left photodetectors of subject jo.
2 ’ ) .
X !'3_ v = X . All the vectors from mid-right photodetectors of subject jo.
n —ripn k=9 .

X o = u X; Jo+ All the vectors from right photodetectors of subject jo.
righ k=1

Recall for some values of the index &, the corresponding signal is omitted due to the

fact that the measurement is corrupted.
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It was noted before that the {NIRS signals exhibit properties similar to fMRI-BOLD
signals recorded during functional brain activation, since both modalities measure,

although in different ways, hemoglobin agents. It is also assumed that a typical fNIRS
segment includes the following.

(i) Cognitive activity related component: “brain hemodynamic response”
- (ii) Baseline physiological compoﬁent
(iii) Higher frequency components

(iv) Noise, movement artifacts

We use independent component analysis (ICA) and dqstering as exploratory tools to
find out “interesting” waveforms in a generic dataset X [37, 38]. The former decomposes a
signal into statistically independent components whereas the latter searches for most
commonly occuring “interesting” waveforms (some of which can be associated with
cognitive activity), in a multidimensional feature space. In Sections 4.1 and 4.2, both
approaches are described in the fNIRS-HbO, setting. In Section 4.3, we introduce the
preliminaries concerning the experiments. In Sections 4.4 and 4.5, we present the results of
ICA and clustering experiments, respectively. The final section discusses the evaluation

and comparison of these investigations.
4.1. Independent Component Analysis Approach

Independent component analysis (ICA) can be interpreted as finding a suitable basis
for multivariate data (for a brief summary of independent component analysis, see
Appendix C). Accordingly, ICA is similar to principal component analysis (PCA) where
the basis vectors are ranked in terms of the data variance they account for. In contrast, ICA
uses higher order statistical information to find a suitable basis in such a way to maximize
statistical independence between projections onto different basis vectors. In formal terms,

let x be an m-dimensional random observation vector, we thén want to find a linear

transformation A so that

x=As ' 4.1)
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where the components s; and s; (of the transformed vector s) are statistically “as
independent as possible”, i=1,...,n ; j=1,..,nso thati # jand n <m. The matrix A is the
so-called mxn mixing matrix and the n-dimensional vector s is the vector of independent

components. We are only given a multivariate dataset X = {x(i)| i=1,..,1 } that consists

of I realizations of the random vector x. The columns of the matrix A are said to form an

ICA basis that is suitable for representing the observations in the sense explained above.

Let’s rewrite (4.1) in the following form

x=|a, a, - a,| . |=as +a,s,++a,s, (4.2)

Thus, the data vector x is decomposed as a linear combination of the columns of A,
where the weights s; are the independent components. From this perspective, ICA can be
very useful in discovering the underlying nature of many physical phenomena, where
observations result from combinations of unrelated or independent activities. However,
there are two ambiguities in ICA, which may be anAnoying for some applications [37]. First,
ICA does not provide a natural ordering of the independent components or equivalently of
the basis vectors. This is in contrast to PCA where the basis vectors are ordered as a
function of data variance they explain. Second, independent components can be estimated
up to the sign, that is, we should also consider the negative versions of the estimated

components.

It is reasonable to assume, much as in the fMRI studies, that the components (i)-(iv)
of NIRS cited above are mutually independent and that they are linearly combined. This
makes the problem suitable for ICA. Accordingly, the basis vectors estimated by ICA will
correspond to one or more of the above components. Since observations consist of short-
time segments sampled just after the target onsets, it is highly likely that one can estimate a
cognitive activity related waveform or the “brain hemodynamic response” in one of the

columns of the mixing matrix A. The FastICA® algorithm is used for that purpose. As a

? See Appendix C.
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common practice, dimensionality is reduced from m to n by PCA, then the observation
vectors with reduced dimensions are whitened, and finally the basis that is spanned by the
columns of A is estimated by maximizing an objective function that “measures”
independence. In addition, we remove the ambiguity in the estimated basis vectors, by

using a brain hemodynamic response model, traditionally adopted in fMRI analyses, such

as the Gamma function.

4.2. Clustering Approach

Another exploratory tool for discovering interesting waveforms related to cognitive
activity is clustering the fNIRS signal segments. Clustering4 is the generic name for the

methods that help us to partition a multidimensional dataset into a set of clusters
Q={Qc’qc

observation in the dataset is assigned to one of the clusters Q. represented by its centroid

c=1,...,C} where q_ is the centroid of the cluster Q.. That is, each

q, - In this way, we are able to label the observations and furthermore summarize the data

variabilities in terms-of cluster centroids.

The fNIRS segments, sampled just after the target presentation, can be clustered to
find out typical waveforms that reflect the cognitive activity. To this purpose, we may use
the original fNIRS-HbO, segments x directly as input to a clustering algorithm or we may
first extract some features. The feature extraction may help in removing noise and
redundancy from the raw data. For example, the B-spline approximation is useful in
putting into eVidence the functional nature of the data and in eliminating irrelevant high-
frequency fluctuations, noise and artifacts [39]. B-spline approximation is also known to
have superb summarizing property for the waveforms by just using a few coefficients.

With these ideas in mind, for all the vectors x(i) of dimensionality m in a given dataset X,
the corresponding B-spline approximation coefficients y(i) of dimensionality n < m are
computed. Afterwards, the B-spline feature set Y={y(i)|,1 <i<lI } is input to the

clustering algorithm in order to learn the set of clusters @. Here again, an agglomerative
clustering approach is adopted, in other words, we start with a set of clusters where each

y(i) is a singleton cluster, and then group them step by step as described in Appendix B.

4 See Appendix B.
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For the distance metric, we consider the one-minus-the-normalized correlation coefficient

which is defined by

@D, y(i»

dly(@), y(j)]=1-7nT =20
P ol

4.3)

where the vectors y(i) and y(j) are made zero-mean by subtracting the mean value of their
components. For the closeness criterion, we adopt the average linkage which states that the

pair of clusters with minimum average distance between their members should be merged

at each step. The dendrogram D of the vectors y(i) is then pruned in order to get the C-

cluster set @. We hop'e eventually to identify one (or more) of the C-cluster centroids q° as
cognitive activity related, based possibly on its resemblance to Gamma function. It may
~ turn out that none of the centroids resembles the sought after waveform. This can be due to
the fact that the dataset does not contain any cognitive activify related waveform or that the

sparse evidence is submerged in some heavy baseline activity.
4.3. Preliminaries for the Experiments

In this section, we discuss two issues: formation of the datasets and ranking the

estimated basis vectors.

4.3.1. Formation of the Datasets

We had obseved in Chapter 3 that some of the subjgcts/photodetectors were more :
responsive to cognitive activity as measured by fNIRS, as compared to others where the
evidence of protocol-induced periodicity was dubious. Specifically, Subjects 1,3 and 4 had
yielded higher scores of periodicity in the admissible interval of (30, 50) samples and that
the qualified photodetectors followed a more or less regular spatial pattern. Acqording]y,
we will pay more attention to the subjects/photodetectors in the formation of the datasets
and discard those with low periodicity scores (those with dubious evidence of cognitive

activity), which are Subjects 2 and 5. For convenience, we replicate Table 3.5, Subjects 2

and 5 omitted, in the sequel.
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Table 4.1. Subjects/photodetectors considered in cognitive activity estimation

Subject Photodetector quadruples
No. Alias left mid-left mid-right right
' : - (1-4) (5-8) (9-12) (13-16)
1 AA005 3 and 4 5to 8 (all) 10, 11 and 12 16
3 KI1003 4 5 to 8 (all) 9to 12 (all) - 15and 16
4 KP001 1-to 4 (all) 5 to 8 (all) 9,11 and 12 13 to 16 (all)

Some guidelines to build a dataset for cognitive activity estimation are as follows.

(H1) Single subject, single quadruple case. Both inter-subject and inter-quadruple
variations are important, hence each photodetector quadruple of a given subject
should be treated separately. ,

(H2) All detectors case. We must explore inter-subject variation by grouping together the
signals from all photodetectors in forming the dataset of a given subject.

(H3) All subjects case. We explore inter-quadruple variation by grouping together the

signals from all subjects in forming the dataset of a given quadruple.

According to the guidelines (H1)-(H3), several different datasets can be formed as

given in Table 4.2.

Table 4.2. Possible forms of datasets

Subject Photodetector quadruples
left mid-left mid-right right all
Index (1-4) (5-8) 9-12) (13-16) (1-16)
1 : (H 1 ): Xllefl (Hl ): thnid-lefl (H 1 ): Xllnid—rigln (Hl ): Xll'ighl (Hz): X l
3 H):X3, HI):X g (HI:X it CHI): X o (H2): X°
4 (H1):X,, HI):X i HD:X midorigne (H1)1 X il (H2): X*
193 and 4 (H?’): Xlefr (HS): Xmid—left (H3): Xmid—righl (H3): Xriglxl

Note that in grouping detectors and/or subjects, we only consider the pruned ones. To

explicate Table 4.2., consider for example X, . It is the union of individual datasets X ,’;}, ,

jo=1,...,5. Although after some pruning Subjects 2 and 5 are excluded, let X it =X,

- Similarly,

X! stands for the union of individual datasets X 20, ko = 1,..., 16, with
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uninformative photodetectors duly discarded, either due to the fact that they provided no

measurements at all or that they yielded in-range periodicity scores lower than out-of-range

periodicity scores. X' happens practically to be the union of responsive photodetectors of

Subject 1 (the same applies to X* and X*). It is also worth noting that (H2)-type and

(H3)-type datasets are large in the number of fNIRS-HbO, vectors as compared to (H1)-
type datasets.

Another‘ important issue is the selection of the&dimensionality m of fNIRS-HbO,
vectors X, that is, the number of samples after the stimulus. A natural choice for m would
be the mean inter-target interval (ITI), which is 40 samples. This setting of m is compatible
with both theoretical ITI of stimuli sequence and the estimated periodicities of Chapter 3.
For both explorations, i.e., ICA and clustering, the training waveform vectors will consist

of 40 HbO, samples following each target instance.
4.3.2. Ranking the Estimated Vectors

In order to associate ICA basis vectors and/or clustering centroids to some cognitive
activity, we require the supervision of an expert or a golden standard. Unfortunately, there
is no such a deus-ex—machina, there is even no consensus on the functional form of
cognitive activity. Therefore, we refer to a common practice used in fMRI data analysis.
We rank the estimated vectors, using a known brain hemodynamic response function

model. The Gamma function is one such model defined as

2 -(t—T% S
h(t)= A(t—T) e fort=>T . (4-4)
0 fort<T :

where 7 is the time-constant that characterizes the response, A is the gain and T is the
delay in responding to the target stimulus. The sampled version of this waveform will be
denoted by the m-dimensional vector h with components /; sampled at time instances =0,
T, , ..., (-DT ..., (m-1)T; where T; is the sampling period. The candidate vectors are
ranked based on their matching degree to the waveform in (4.4), after that the parameters

A Tand 7 are estimated. Let z be some estimated m-dimensional vector (either by ICA or
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clustering) with components z, [ = 1,..., m. The parameters A, T and 7 are estimated by a
mean squared error procedure |

minarg Y. [z, =, (A, T, D)]’ (4.5)
I=]

AT,r =

Notice that, A is allowed to také negative values as well to account for the ambiguous

sign of the ICA basis vectors. Furthermore the range of values for the remaining
parameters, namely T and z, is constrained. The delay T is constrained to be between zero
‘and a reasonable upper bound, say ~2-3 secs. The time constant 7 is constrained to be in
the range of (1, 4) seconds. Constrained minimization of (4.5) can be solved by routines
readily available in scientific packages (e.g. the Optimizaﬁon Toolbox in Matlab 6.5).
Once the optimum model h, is found, the estimated vectors z can be ranked based on their
correlation with h,. The higher is the correlation value of a vector z with h,, the more

likely that the response is deemed to be a cognitive activity related waveform.
4.4. Results of the Independent Component Analysis Approach

As discussed in Section 4.1, most ICA algorithms demand dimensionality reduction
of data which can be realized by PCA. Thus, after eigendecomposition of the data, only
those n projections of multivariate data with the highest variance are kept, so that
effectively, the m-dimensional vector x is transformed into a vector of smaller dimension
n<m. The subspace dimension n is selected based on proportion of data variance (PoV).
When PoV was set to 90 per cent for the fNIRS-HbO, vectors n was found to be 4. This
subspace projéction simplifies the data and removes the high frequency fluctuations and
other irrelevant components. Furthermore, n sets an upper limit to the number of .
independent components or basis vectors that can be estimated by the algorithm. Four basis
vectors are also plausible since one can expect one or two cognitive activity related basis

vector(s) and the rest to represent the baseline activity. The parameters in the ICA

approach are shown in Table 4.3.
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Table 4.3. Parameters in ICA experiments

Parameter Value (or range)
Dimensionality of input vectors m 40
Reduced dimension n 4
Number of basis vectors n 4
Range for delay T (0,3) seconds or (0,5) samples
Range for time constant (1.4)

To illustrate the case in point, let’s consider an (H1)-type dataset, namely X :,,-d_,g, >

which consists of 256 vectors from mid-left photodetectors of Subject 4 (alias: KP001). In
Figure 4.1, the estimated basis vectors are shown in blue curves (red curves correspond to
the Gamma functions fit to basis vectors, thick black bars mark the estimated delay). At the
top-left, the basis vector that best fits the model function (with a correlation value of 0.90)
is displayed. Other basis vectors, in decreasing order, are displayed in the rest of the figure.
We believe that an fMRI expert would rank these waveforms in much the same way as
given by the correlation measure. In fact the low-ranking waveforms are not at all suited

for cognitive activity representation and they must arise from the baseline activity.

CC =0.89941 , TAU = 1.9072 CC=0.82837 , TAU=1
05
e / '
% TV \ O
o _n_s " "
0'50 5 10 15 20 0 5 10 15 20
CC=0.78123, TAU = 26455 o8 CC=051471, TAU=4
05 - y
o _." SETNONN 8 4
;; i e § 0 ol
{ ‘ /
E “. / \‘\' \ ¥
V N T /
‘\.\‘— ‘o
s 5 10 15 20 -~ 5 10 15 20
Time (sec) Time (sec)

Figure 4.1. Four basis vectors estimated from dataset X ;M_,eﬂ using ICA
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Table 4.3. Parameters in ICA experiments

Parameter Value (or range)
Dimensionality of input vectors m 40
Reduced dimension n 4
Number of basis vectors n 4
Range for delay T (0,3) seconds or (0,5) samples
Range for time constant T (1,4)

To illustrate the case in point, let’s consider an (H1)-type dataset, namely X :".d_,eﬁ .

which consists of 256 vectors from mid-left photodetectors of Subject 4 (alias: KP001). In
Figure 4.1, the estimated basis vectors are shown in blue curves (red curves correspond to
the Gamma functions fit to basis vectors, thick black bars mark the estimated delay). At the
top-left, the basis vector that best fits the model function (with a correlation value of 0.90)
is displayed. Other basis vectors, in_ decreasing order, are displayed in the rest of the figure.
We believe that an fMRI expert would rank these waveforms in much the same way as
given by the correlation measure. In fact the low-ranking waveforms are not at all suited

for cognitive activity representation and they must arise from the baseline activity.

. CC=0.89241, TAU = 1.8072 CC=0.82837, TAU=1
05 05
B ]
. 05
0‘50 5 10 15 20 0 5 10 15 20
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Figure 4.1. Four basis vectors estimated from dataset X ,‘,’”.d_,eﬁ using ICA
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Table 4.4 summarizes the quality of fit for basis vectors estimated from (H1)-type
datasets. We report only the correlation coefficients of the best-fitting vectors. In all cases,
the correlation coefficient is on the order of 0.9, suggesting that ICA yielded indeed
conjectured type of cognitive activity waveforms. The estimated time-constants of Gamma

functions, as a by ~product, may be of particular interest for computat10nal neuroscientists
(see Table 4.5). )

In Table 4.6, we give, for (H2) and (H3)-type datasets, the correlation scores between
the best-fitting basis vectors and corresponding Gamma models as well as the estimated
time-constants. Note that correlation scores have slightly decreased for larger datasets (i.e.

H(2) and (H3)-type). Let’s comment and raise questions based. on thé results given in
Tables 4.4-4.6.

(i) For Subjects 1 (alias: AA005) and 3 (alias: KI003), all quadruples yield Gamma fits

with close time-constants. The mean time-constant for datasets X,, to X, is

1.26 (see Table 4.5). Interestingly, the time-constant for the (H2)-type dataset X ’

(which is the union of X,, to X,

nght

) is 1.44 (see Table 4.6). Similarly, the mean

time-constant for datasets X o 10 X ,3,8,,,

is 2.]5, while the time-constant for the (H2)-

type dataset X (Wthh is the union of X i O X}

,,A,,,) is 2.20. That is, inter-
quadruple variations, in terms of time-constants, for these subjects are not
pronounced. Can one practically use the same individual model for all quadruples of
these subjects?

(ii) For Subject 4 (alias: KP0O1) inter-quadruple variations are more pronounced.

(iii) Inter-subject variations do exist based on the observation that the same quadruple of
different subjects yielded in general different time-constants, except maybe the mid- |
left quadruple (to see this, consider each column of Table 3.5 individually).

(iv) The time-constants obtained for Subject 1 is clearly lower than those of Subjects 3

and 4. One can notice that mid-left and mid- right quadruples of these subjects

respond similarly to each other.



Table 4.4. Correlation coefficients between best-fitting ICA basis vectors and

corresponding Gamma models for (H1)-type datasets
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Subject Photodetector quadruples
, ‘ @
No.  Alias left mid-left mid-right right 2 &
(1-4) (5-8) (9-12) (13-16) g s
<
1 AA005 0.96 0.93 0.91 0.94 093 0.02
3 K1003 Q.88 0.89 0.96 0.91 091 0.04
4 KP001 0.93 0.90 0.90 0.90 0.91 0.01
Mean 0.92 0.91 0.92 0.92
Std. Dev. 0.04 0.02 0.03: 0.02
Table 4.5. Time-constants of Gamma models to best-fitting ICA basis vectors
for (H1)-type datasets
Subject Photodetector quadruples
= @z
. left mid-left mid-right right &
No.  Alias (1-4) (5-8) 9-12) (13-16) T
1 AA005 1.22 1.28 1.37 1.17 1.26¢  0.08
3 K1003 227 1.72 2.60 2.03 2.15 037
4 KP001 3.27 1.91 244 141 226 0.80
Mean 225 1.64 2.14 1.54
Std. Dev. - 1.03 0.32 0.67 0.44

Table 4.6. Correlation coefficients between best-fitting ICA basis vectors and

corresponding Gamma models, best-fitting time-constants for (H2) and (H3)-type datasets

Dataset
(H2)-type (H3)-type
X! X’ x* X p X vid-ten mid—right A right
Correlation 0.88 0.95 0.89 0.93 0:91 | 0.77 - 091
Time-constant 1.44 2.20 1.38 1.3569 4 1.5162 4
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Remind ourselves that Gamma time-constant is but one of the aspeéts of data and
that one can still glean more information from a visual investigation of the best-fitting
basis vectors. Figs 4.2 and 4.3 are two different ways of looking at the plots of best-fitting
ICA basis vectors for (H1)-type datasets. Figure 4.2 displays them on a subject-by-subject
basis in order tp evaluate inter-quadruple variations. One can see that, per quadruple, the
time responses are essentially similar and stable over subjects.\ Subject 4 (alias: KP001),
‘presents only the slight exception m that its left quadruple responds with a larger time-
constant. Figure 4.3 also shows that, on a subject-by-subject comparison, all of the
quadruples of Subject 1 responds in a very distinct way compared with Subjects 3 and 4.

The mid-left quadruples of the latter respond similarly as well as their mid-right

quadruples.

Figures 4.4 (a) and (b) exhibit the best-fitting ICA waveforms for (H2) and (H3)-type
datasets, respectively. Figures 4.4 (a) illustrates inter-subject variation, notice for example
Subject 1 has a more agile response compared to the others while Subject 3 has the most
sluggish one. Actual'ly, Subjects 3 and 4 have similar responses in selected quadruples, i.e.,
middle ones, while the ensemble of all their quadruples is considered, they appear
different. In Figure 4.4 (b), we wanted to bring forward inter-quadruple dissimilarities. It
can be seen that all quadruples have distinct responses. The idea of merging all subjects
into one dataset may not be a good idea after all as inter-subject variations will be a
nuisance factor when observing inter-detector variations. Therefore, Figure 4.4 (b) should

be interpreted with caution, as it shows quadruple responses “averaged” over subjects.

In summary, ICA proves to be a viable scheme in extracting cognitive activity
related waveforms, whether observed per detector group or whether averaged over all

subjects or detectors.
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Figure 4.2. Best-fitting ICA basis vectors for (H1)-type datasets shown subject-by-subject.
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Figure 4.3. Best-fitting ICA basis vectors for (H1)-type datasets shown quadruple-by-
quadruple.
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Figure 4.4. (a) Best-fitting ICA basis vectors for (H2)-type datasets (b) Best-fitting ICA
basis vectors for (H3)-type datasets

4.5. Results of the Clustering Approach

In this section, we discuss the results of clustering the fNIRS-HbO, waveforms.
Waveform clustering algorithms in the literature first obtain a parametric representation of
the waveform and then cluster this parameter vector [39]. B-spline approximation has been
successfully applied to represent the functional nature of waveforms. Therefore, we
approximate the fNIRS-HbO, signals by B-splines, in other words we project the signals
on the space spanned by compactly supported, orthonormal B-spline basis functions. To
this effect, Unser’s algorithm for cubic B-splines on regular grids is simple yet efficient,
and implemented by a series of down/upsampling and linear filtering operations [40].
Since the algorithm demands a regular grid, the dimensionality m of the data vectors x and
the dimensionality n of the feature vectors are constrained. For optimal results on the
boundaries, the relation m = D(n-1)+1, where D is an integer downsampling factor, should
be satisfied. If we take for data dimension m = 41 instead of m = 40, the feasible reduced
dimensions become ne€ {21,11,9, 6,5} for De{2,4,5,8,10}, in that order. Figure 4.5
illustrates the waveform approximation for each D. The noisy curve (dotted line) stands for
a typical fNIRS-HbO, segment, out which we hope to extract functional (or cognitive
activity related) part. One can see that the selections of » = 21 or n = 11 do not provide
sufficient smoothing and that the most plausible are obtained by setting » = 6 and n = 5

(with n = 9 we have somewhat a mediocre result). Since there is no considerable difference
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e A fNIRS signal segment and its B-spline approximations
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Figure 4.5. A noisy fNIRS-HbO, signal segment (vector) and its corresponding cubic B-

spline approximations for various values of n

between setting n = 6 or n = 5, we choose n = 5 cubic B-spline approximation coefficients

for explaining m = 41 dimensional vectors x.

The second critical choice is the number of clusters C. A “good” clustering is said to
be the one in which within cluster distances are minimized and between cluster distances
are maximized [41], with minimum possible number of clusters. There are several cluster
validity indices based on this idea in the multivariate data analysis literature, [42]-[44]. In
this work, we consider a heuristic criterion function to determine the number of clusters C.

The criterion function is expressed as

&
PIRI(D)
R (o +(1-A)C (4.6)

Y Yd©Q,.0)

c=1 I=1]#c
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where S(Q.) stands for within-cluster distance of cluster O and d(Q,,Q,) denotes the

distance between clusters Q. and Q,.° The second term in the right-hand side of (4.6) is a
penalty terms that precludes indefinite growth of. the number of clusters. From this
perspective, (4.6) has the flavour of the minimum description length criterion and is
compatible with William of Occam’s assertion: “Among the many possiblé explanations,
the simplest one has the highest generalization ability.”. The regularizration parameter Acan
‘be manually set and depends on the amount of importance we want to associate to
description parsimony or cluster scatter. In the sequel, 4 is set as high as 0.95 sihce cluster

scatter is much more important as an issue than a small number of clusters.

In order to minimize (4.6), for each (H1)-type dataset (there are 12 of them), the
clustering algoriihm is run for C = 2,..., 10 and (4.6) is evaluated. The same procedure is
repeated for (H2) and (H3)- type datasets (for (H2)-type there are three datasets, for (H3)
there are 4). This yielded nine different clusterings (since there are nine different choices
for C), i.e., nine- quality of clustering value Jg,c per dataset. The clustering performance
curves which consist of the Jg,¢ values averaged within each category are shown in Figure
4.6. For completeness, Jg,c -curve averaged over all possible 19 datasets is also provided.
Due to the lack of data, we could not perform va]idation tests for generalization purposes.
The results here are tuned to the training data and it remains to be seen whether they are
valid for any other,.. realizations (of these types of datasets). Figure 4.6 suggests that a
setting of C = 4 or C = 5 is satisfactory. In the sequel, we take C = 5 since we observe that
it sometimes gives better results than the choice of C = 4. Table 4.7 summarizes the

parameters used in clustering experiments.

Tables 4.8 to 4.11 display the major findings of clustering experiments. The
number of members per cluster gives an idea about how the input vectors (B-spline
coefficient vectors y) are distributed over the éstimated clusters (see Table 4.8 for (H1)-
type datasets and see Table 4.10 for (H2) and (H3)-type dataseigs.)\.\The vectors are more or
less evenly distributed, i.e., there are no over-populated or under-populated cluster s.
Interestingly, the centroids of the largest clusters (in terms of the number of members)
need not always be the best-fitting one. In other words, the population assigned to the

centroid represented by the best Gamma approximation ranked low, e.g., fourth or fifth,

5 See Appendix B for explicit definitions of these quantities.
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Figure 4.6. Jg,c-curves averaged over (H1)-type datasets (top left), over (H2)-type
datasets (top right), over (H3)-type datasets (bottom left), over all datasets (bottom right).

" Table 4.7. Parameters in clustering experiments

Parameter - " Value (or range)
Dimensionality of input vectors m 41
Reduced dimension n 5
Number of clusters C 5

Distance metric One-minus-the-normalized correlation coefficient
Closeness criterion Average linkage
Range for delay T (0,3) seconds or (0,5) samples
Range for time constant © 1,4

especially in the (H2) and (H3)-type datasets. Thus not all the i;lpuf waveforms following a
stimulus can be expected to reflect the hemodynamic behaviour. Instead, the interference
from the baseline may be more pronounced, or the subject may have not even responded to
the corresponding target. On the other hand, in terms of cluster quality, all datasets yield

equivalent results. Tables 4.9 and 4.11 indicate that, at C = 5, the value of the clustering
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index Jog,c becomes 0.34 for almost all cases. This fact was already illustrated in Figure
4.6. :

Table 4.8. Number of cluster members for (H1)-type datasets

Dataset Cluster . ‘ . nuﬁi)t:xl' of
O 0, 03 N Qs samples
X L 36 23 19 i R
X rllid;leﬁ 81 63 55 - 50 256
X rlnid—-right 65 | 33 28 192
X 20 9 8 64
X 19 19 13 " ) 64
) S 46 44 20 256
). G 53 28 27 256
X o 20 8 6 128
Xy 41 0 | 256
D A 98 64 44 o 256
A 69 50 . 44 1o 192
X4 67 59 | 31 256

Shaded rows correspond to centroids that are best-fitting in terms of the correlation with corresponding
Gamma fits

Table 4.9. Quality of clustering values for (H1)-type datasets

Subject Photodetector quadruples

-

AlL left mid-left mid-right right = =

No. 1as (1-4) (5-8) (9-12) (13-16) g g
1 AA005 0.34 0.33 0.34 0.32 033 001
K1003 0.34 0.34 0.34 0.33 0.34  0.00

4  KP001 0.35 0.33 0.34 . 035 034 00l

Mean 034 . 033 0.34 0.33

Std. Dev. 0.00 0.00 0.00 0.01
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Table 4.10. Number of cluster members for (H2) and (H3)-type datasets

Total
Clust
Dataset aster number of
O Oz . Qs 0Os samples
1
X 169 149 106 18 640
(H2)-type X° 219 127 T 04
4
X 245 212 183 960
Xy 139 99 77 448
X via- 260 237 143 768
(H3)-type i -lef N
X vid—right 205 185 109 87 | 640
X rieh 141 106 73 71 TR

Shaded rows correspond to centroids that are best-fitting in terms of the correlation with corresponding
Gamma fits

Table 4.11. Quality of clustering values for (H2) and (H3)-type datasets

Dataset
(H2)-type (H3)-type
1 3 4
X X ' X Xlefr X mid=left X mid—right X right
Jooc-value 0.34 0.34 0.35 0.35 0.35 0.35 0.34

In Tables 4.12-4.14, we give the correlation scores of the best-fitting waveforms with
corresponding Gamma models and the estimated time-constants. Observations are in the

sequel.

(i) In general, correlation scores for (H1)-type small datasets are not too high andv \they
fluctuate. For instance, we see that for left and mid-right photodetectors of Subject 3
(alias: KI003) in Table 4.12, the correlation score become as low as 0.69.

(ii) The most consistent quadruple in terms of the time-constants is the mid-right one,
however correlation values (~0.82) for corresponding datasets X ,{;,.d_,,.g,,, , j=1,3,4
are mediocre.

(111) The most consistent subject in terms of the time-constants is Subject 3 (allas

KP001). Interestingly, left and mid-right quadruples have proven to give better

correlation values (~0.97) than those of the remainder for this subject (~0.81).
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(iv) The most consistent quadruple in terms of the correlation scores is the right one,

however correlation values (~0.85) for corresponding datasets X Jusj=1,3,4are

mediocre.

(v) The most consistent subject in terms of the correlation scores is Subject 1 (alias:
AAQO5). Interestingly, photodetector quadruples of left hemisphere have proven to
give better correlation values (~0.95) than those of the right one for that subject

(~0.85).
(vi) For larger datasets, the most satisfactory results came from Subject 4 (alias: KP0O1,

X* of (H2)-typ¢) with a correlation value of 0.91 and from left and mid-left

quadruples (X, and X, ., of (H3) type ) with perfect matches (correlation values

~ of 1.00 and 0.99 respectively). |

(vii) There exist significant standard deviations in Table 4.13 both for inter-subject and
inter-quadruple observations.

(viii) Much in the same way as in Table 3.6 for ICA analysis, we observe that there are
significant differences in the estimated waveforms among subjects and among

detector quadfuples (see Table 4.14).

Table 4.12. Correlation coefficients between best-fitting cluster centroids and

corresponding Gamma models for (H1)-type datasets

Subject ' Photodetector quadruples

= 4

. left mid-left mid-right right =

No.  Alias (1-4) (5-8) ©-12) (13-16) :E ¥
1 AA005 0.98 0.93 0.83 0.87 090 0.06
3 K1003 0.68 0.93 0.69 0.86 079 0.12
4 KP001 1.00 0.78 0.94 0.83 089 0.10

Mean 0.88 0.88 : 0.82 0.85

Std. Dev. 0.18 0.08 0.12 0.02
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Table 4.13. Time-constants of Gamma models to best-fitting cluster centroids

for (H1)-type datasets

Subject Photodetector quadruples
: @
No.  Alias left mid-left mid-right right = &
(1-4) (5-8) (9-12) (13-16) g g
1 AA005 2.93 1.41 1.57 351 235 1.03
3 KI003 1.20 149 1.40 2.60 167 0.63
4  KP001 2.11 1.88 1.60 1.39 175 031
Mean 2.08 1.59 1.52 2.50
Std. Dev. 0.86 0.25 0.1 1.06

Table 4.14. Correlation coefficients between best-fitting cluster centroids and

corresponding Gamma models, best-fitting time-constants for (H2) and (H3)-type datasets

Dataset
(H2)-type (H3)-type
1 3 4
X X X X left X mid-left X mid—right X right
Correlation 0.87 0.75 » 0.91 1.00 0.99 0.71 - 0.85
Time- 3.52 1.79 2.95 2.34 1.97 111 4.00 -
constant

Let’s turn now our attention to graphical results depicted in Figures 4.7-4.9. Similar
to the presentation of ICA results in Figures 4.2-4.4, Figures 4.7 and 4.8 display the best-
fitting centroidal waveforms on a subject-by-subject basis and on a quadruple-by-
quadruple basis. One can observe that on some centroidal waveforms, there exists a second
rise, résu]ting in a two-bump appearance. This wave shape cannot be easily modeled by the
single bump Gamma function, which explains the low correlations in Tables 4.12 and 4.14.

It’s disputable whether these waveforms are indeed related to any cognitive activity.

In summary, for (H1)-type datasets, one can state that Subject 4 (alias: KPOO]) and
mid-left quadruple prove to be the most responsive among subjects and among quadruples,
respectively. This fact can also be verified from Figures 4.9 (a) and (b) where (H2)-type

dataset and (H3)-type dataset results are displayed.
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Figure 4.9. (a) Best-fitting centroidal waveforms for (H2)-type datasets (b) Best-fitting

cluster centroids for (H3)-type datasets

4.6. Comparison of ICA and Clustering Approaches

Both ICA and clustering approaches were used on a comparative basis to extract

cognitive activity related waveforms. They differ, although they mutually confirm each

other, in the following aspects

(1)

(ii)

In ICA, we decompose the data into its purportedly statistically independent
components. Based on its similarity to the model waveform, we have associated one
of the basis vectors to the cognitive activity. Other basis vectors were thought to
model the baseline which was considered as a confounding component. Notice again
that under the linearity assumption, the baseline and brain hemodynamics are
additively combined. Since there is no evidence that contradicts neither linearity nor
the independence assumption, we accept ICA as a plausible model.

In clustering, there is no underlying transformation model but we simply group data
directly. We assume that the sought after hemodynamic response is not a rare event,
but it occurs sufficiently often. In other words, it should not be eclipsed by the
baseline, high frequency fluctations or other unwanted components. B-spline
approximation can be a remedy for removing high frequency fluctuations or artifacts.
Even combined with this property of B-spline approximation, clustering is not as
efficient as ICA in distinguishing between the functional activity, the baseline and
other physiological components (such as breathing and vasomotion) since those

components have very close spectral ranges of dominance. Recall that the
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conjectured A-band of the baseline and the B and C-bands of cogniti\}e activity were
neighboring in the fNIRS spectrum and most probably they interfere with each other
(that’s why simple linear filtering is not considered). On the other hand, it’s easier to
interpret the outcome of clustering compared to ICA outcome as we are searching
commonalities of directly observed waveforms. Once a valid centroidal waveform is |
determined, the target instances of the population assoéiated'with this waveform

qualify as those instances the subject better reflects cognitive activity.

In the sequel, we present a comparison of the ICA and clustering approaches. Let’s
‘concentrate the best-fitting ICA basis vectors and centroidal waveforms obtained from
(H2) and (H3)-type datasets. Figures 4.10 (a) and (b) display IC‘A basis vectors for (H2)
and (H3)-type datasets, Figures 4.10 (c) and (d) do the sanﬂe thing for estimated cluster

centroids. Let’s itemize the observations for clarity.

(i) Similarity of responses of Subject 3 (alias: KI003) and Subject 4 (alias: KP0O1) is
observed in both ICA basis vectors and cluster centroids (Figures 4.10 (a) and (c)).

(i) While the response of Subject 1 (alias: AA0OS), as estimated by ICA, has a small
time-constant, in contrast, the one estimated by clustering is sluggish (Figures 4.10
(a) and (c)). Note that individual quadruple responses of this subject, as estimated by
ICA (see Figure 4.2), were very similar (with a low standard deviation of the
estimated time-constants of the Gamma fits), hence we should rely more on ICA
results for this case.

(iii) ICA yielded all different quadruple responses (Figure 4.10 (b)). On the other hand
for the ciustering case, with the exception of the right quadruple, the other three
quadruple responses are quite similar (Figure 4.10 (b)). At this stage, we ca;lnot
decide in favour of one or the other approach.

(iv) It is comforting to know that the right quadruple responses, as estimated by ICA and
clustering (Figures 4.10 (b) and (d), black curves), are virtqglly identical.

In conclusion, we have been able to extract cognitive activity-related waveforms
from NIRS-HbO, time-series. In this effort, the guideline has been the degree of match

with the model waveform of the Gamma function. We have found ICA to be more
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satisfactory than clustering in terms of the consistency of its results. These observations

and conclusions, however, need to be corroborated by a clinical neuroscientist.
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Figure 4.10. (a) Best-fitting ICA basis vectors for (H2)-type datasets, (b) Best-fitting ICA
basis vectors for (H3)-type datasets, (c) Best-fitting centroidal waveforms for (H2)-type
datasets and (d) Best-fitting centroidal waveforms for (H3)-type datasets
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5. CONCLUSIONS

Let’s recall that-the thesis aimed to develop a signal processing framework for fNIRS

s1gnals recorded durmg functional brain activation. In the following, we present the main

conclusion drawn from this research.

5.1. Ensemble of fNIRS Signals as a Random Process

In Chapter 2, we have explored two aspects of the fNIRS as a random process,

namely the statlonarlty and the underlying distribution.

o)

(ii)

Stationarity: Run tests have shown that we cannot easily reject the stationarity
assumption for fNIRS-HBO, signal frames of length 30 to 50 samples, i.e., 18 to 29
secs of data. Assuming ergodicity at least per subject, the short-time stationarity
legitimizes the estimation of signal attributes such as autocorrelation, power spectral
density, etc. from a signal recorded within such intervals. Fortunately, this range
coincides with the target presentation intervals of the cognitive protocol (which also
vary from 30 to 50 samples). We have used this domain-specific knowledge in
assuming that single-trial cognitive activity-related waveforms are confined within
(30,50) Samples interval. Therefore, we feel justified in using signal processing
techniques under the assumption of stationarity. On the other hand, the long-term
non-stationarity of fNIRS signals is mostly due to the baseline which is responsible
of the trend. I's known that even in resting state, the hemoglobin ‘and
oxyhemdglobin concentrations. in the brain change over time [45]. During task-
related cognitive activity, the subject’s hemodynamic responses are superimposed on
the baseline, which in ensemble result in a non-stationary process.

Gaussianity: We performed three different Gaussianity tests on fNIRS-HbO, signals.
The conclusion of all these, namely Ko]mogorov-Smirno/v teét, Jarque-Bera test and

Hinich test, was common so that HbO, signals are non-Gaussian. The implication is

two-fold.
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The linear minimum mean-squared error (MSE) estimators will not be globally
optimal, in extracting cognitive activity-related waveforms.

The use of ICA in'chapter 4 is plausible. ICA can be achieved under the
assumption that all, but except one, sources which linearly combine to yield the
observations, are non-Gaussian. Since the observed signals are non-Gaussian,

the sources cannot be “more” Gaussian than the observations by Central limit
theorem (CLT).

Furthermore, as skewness and kurtosis analyses have put into evidence, the
distribution of detrended HbO, samples is symmetric with heavy tails. This suggests
that Gaussian mixtures are not suitable for modeling the distribution. |

5.2. Relevant Spectral Bands of fNIRS Signals

In Chapter 3, we investigated canonical bands that purportedly corresponded to the

cognitive activity.

)

(ii)

The short-time spectrum revealed that fNIRS signals have their main spectral content
below 0.1 Hz. Furthermore, we have observed a peaking at around 0.7-0.85 Hz range
as the aliased part of‘ the heartbeat signal, compatibly with the cardiac frequency
range, i.e, 0.6-1.2 Hz [45]. Otherwise, the whole fNIRS spectrogram was too
promiscous in localizing temporal events such as the responses to cognitive task

stimuli.

Canonical bands: We have developed a method to parse the signal spectrum into -

canonical subbands that, we think, can faithfully be associated to diffefent
physiological components, such as the baseline, the task-related activity orothers
such as the breathing effect and the cardiac pulsations. The subbanding scheme uses
dissimilarity between relative power profiles per band of thgsignal. We note that the
proposed subband partitioning methodology is general 5;c’1nc\i\ can be utilized for a

similar analysis of any set of signals. For fNIRS signals recorded during functional

brain activation, we found the following.
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A-band: 0-30 mHz. We conjecture that this band corresponds fo the baseline
signal, or at least some part of it, which is independent of task-related cognitiVe
activity.

B-band: 30-40 mHz. The centered Gamma function, which is a commonly used
braivn hemodynamic response model in fMRI, has its spectral peak in this
frequency interval. We believe that the fundamental lfrequ'ency of task-related
events in fNIRS lies in the B-band.

C-band: 40-250 mHz. The relatively larger C-band is also assumed to carry
task-related information due to the periodicity of target stimuli induced by
cognitive protocol. Moreover, it overlaps with the respiratory-frequency range
(100-500 mHz) [45] and is hypothesized to include vasomotion.

D-band: 250-850 mHz. This band contains a very. small proportion of the total
signal power and is definitely uncorrelated with cognitive activity. Notice that
since the upper limit is set by the Nyquist sampling theorem, it only contains

the aliased part of the heartbeat signal.

Notice that fMRI experiments carried over subjects at the resting state, have shown
that the baseline activity is observed up to 100 mHz [45]. Thus, at least in fMRI, the
baseline extends over our A-band, B-band and lower one third of the C-band.
Accordingly, interference from the baseline, 'although less pronounced, should
coexist with other components cited above at the B and C-bands.

(iii) Evidence of cognitive activity: We have validated our conjecture on the protocol-
induced periodicity. Some of the fNIRS-HbO, signals exhibit the target quasi-
periodicity. The observability of such periodicity was instrumented in classifying
photodetectors/subjects as responsive and non-responsive to cognitive stimuli. The
algorithm we have used was the least-square periodicity estimation method which
implicitly assumes the stationarity of the signal being analyzed. Notice that the
(30,50) samples stationarity range established by the run tests couldn’t carry such a
periodicity information, since the sought-after periods wefé/}ﬁ that rangé. In order to
mitigate the problems associated to non-stationarity, we have first prefi]teréd the
signals in the BC-band, as a common practice in statistical signal processing since
many signals. may look stationary after trend removal [22]. Stationarity was not

actually the major concern in prefiltering but a useful side-benefit. Based on our
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conjectures on the canonical bands, prefiltering had the effect of removing the
baseline component significantly and putting the protocol-induced periodicity into
evidence. A second precaution concerning stationarity was using signal sessions that
include 8 targets at most. Since target exposition patterns were identical for such
sessions (there are 8 of them per experiment), we have been able to collect enough
evidence to decide for the responsiveness or non-responsi?eness of a signal from a
specific photodetector/subject pair. In conclusion, we have observed that the mean

periodicity estimated from qualified pairs matches the mean inter-target interval

length of 40 samples.

3.3. Cognitive Activity-Related Waveform Extraction

With the goal of identifying the brain hemodynamic response waveform to a single
cognitive stimulus, we explored two non-parametric methods: ICA and clustering. Both of
these methods are exploratory. The outcomes of the non-parametric schemes were
benchmarked against the model waveform, that is the parametric fit to the Gamma

waveform was tested. Based on the results, we concluded the following.

(1) Inter-subject and intér-quadruple-of—detectors variations exist.

(ii) In terms of the co'nfovrmance to Gamma function model, waveforms estimated by
ICA are more plausible to be cognitive-activity related than those estimated by
clustering.

(iii) ICA decomposition yields not only the cognitive activity-related waveform, but also
others that can potentially be used to model the baseline interference.

(iv) The brain hemodynamlc response can be more flexibly parametrized as compared to
Gamma model which relegates all the characteristics to a single parameter. Instead,
B-spline coefficients represent the global waveform while preserving locality

property.
(v) A final interesting alternative could be the ICA of B- splme coefﬁclents for cogmtwe

activity-related waveform extraction.
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5.4. Future Prospects

Several future research topics can be proposed, as presented in the sequel.

5.4.1 Process Characterization

We emphasize the following issues.

(@)

Distribution of fNIRS data: As established in Chapter 2 and pointed out in
Section 5.1 as well, fNIRS signals do not arise from a Gaussian process.
Furthermore, the unimodality of the samples precludes Gaussian mixture
modeling. A future work may concentrate on the density estimation of HbO,
signal samples either in a non-parametric way (e.g. by a kernel or K-nearest
neighbor estimator) [38] or using a parametric heavy-tailed distribution model
[37]. Such a study would not only complete the statistical characterization of
fNIRS signals but it would also provide preliminaries for Bayesian estimation

of the cognitive activity-related waveforms.

(i1)  Alternative time-frequency features: In Chapter 3, we have prefered the relative

power profile per band as an objective measure of the time-frequency
representation. Blanco et al, suggested other objective measures such as the
series of the mean weight frequency, the main peak frequency and the
monofrequency deviation in the analysis of EEG signals [28]. An exploration
of ‘the variations of these quantities over time, at the canonical bands we
determined, may be pursued in order to maximize the benefits of the time-

frequency analysis.

(iii) Alternative subband partitioning scheme: The motivation behind wavelet

packet analysis of EEG signals [46] is very similar to the one behind our

" subbanding methodology. The wavelet packet analysjs may be implemented

for fNIRS signals to see whether the results of both ‘methods mutually confirm

each other.
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5.4.2. Alternative Methods for Functional Activity Estimation

The following issues can-be addressed for the extraction of the cognitive activity

related waveforms.

)

(i)

Fuzzy clustering of B-spline coefficients can potentially improve waveform
classification [38]. In real applications there is often no sharp boundaries between
clusters. Hence one risks of artificially assigning data into some clusters in crisp
clustering. In contrast to the latter, the assignments in. fuzzy clustering are
accompanied with membership degrees that vary frbm zero to one. Such an approach
may be useful in classifying the responses of a subject in a more fle’ﬁible way and in
associating a confidence to the estimated cognitive activity-related waveform.

The self-organizing map (SOM) can be another clustering-based approach [47]. A
SOM is a 1D or 2D array of vectors that are equivalent to cluster centroids. In the
SOM, the centroids are configured in such a way that neighboring centroids on the
grid are similar to each other whereas the farther away ones are dissimilar. This
property of the SOM may be exploited in order to observe cognitive éctivity
variations. The dot-product SOM algorithm, in particular, should be considered in
the first place since it relies on a correlation metric, like in our agglomerative

scheme, to evaluate correspondences.

(iii) Bayesian modeling:One of the most up-to-date approaches in the non-parametric

estimation of the brain hemodynamic response (BHR) function in fMRI is due to
Ciuciu et al. [9]. A reduced form of the generative data model, suitable for single-

trial events, can be described as

y, =h+Cd, +v, - (5.1)
Y, = [y,_ S TPLILI ]T: the observed BOLD sequence (vector) of length m in

response to the K™ target stimulus at instance f.

‘h = [ho,hl ;o h ]T is the unknowm BHR vector of length m.

s o m-1
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C=|c;,.ep | is a set of orthonormal basis. functions c, =[cys+c, " that can

*™m

model the low-frequency components, i.e., the baseline.

- u . I .
d, —[d,,k,dz,k,m,dg,k] - vector of unknown weighting coefficients of the basis

functions at the arrival of the k™ target stimulus.

- u . .
vV = [V,‘_ Viars sV, +m_,] : the term that stands for unwanted random physiological

fluctuations and measurement noise after the arrival of the Kt target stimulus.

They treated the model (5.1), and its general form which is suitable for multitask
cognitive protocols, in a Bayesian formalism and estimated BHR functions, that are
validated for both real _ahd synthetic data, using expectation conditional
maximization (ECM) algorithm [48]. The very same approach can be adopted in
fNIRS for the extraction of cognitive activity-related waveforms by modeling prior
information on the brain hemodynamics and the baseline measured by fNIRS, in

order .

(iv) Dynamic Bayesian modeling: The model (5.1) is time-invariant in that it imposes a

fixed vector h for every trial of the cognitiVe stimulus, as the methods of Chapter 4 in
this report implicitly assumed. On the other hand, (5.1) can be extended to a

dynamical model using a state-space approach as described below.

h,, =T(k+1,kh, +w, (5‘.2)
y,=h,+Cd, +v,

where T(k+1,k) is the state-transition matrix that should cope with the

dependencies between successive responses and w, is a disturbance vector. From
this viewpoint, the estimation of the cognitive activity-related waveforms (or the
BHR) based on (5.2) constitute a further research topic that should consider the
extended Kalman Filtering concepts [49], such as Markov chain Monte Carlo

methods or particle filtering [50], in the fNIRS setting.
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(V) Non-linear neurovascular coupling: A majority of the BHR estimation schemes in

fMRI commonly assume linearity between neuronal activity and BOLD response.
However, the true underlying mechanism, i.e., the neurovascular coupling, is not
completely understood and characterized [9]. Linearity is often retained for its
simplici-ty. In the fMRI literature, there exists a couple of attempts in non-linear
modeling of neurovascular coupling through support vecfor machines [51], [52].

Based on these ideas, (5.1), or equivalently the second equation in (5.2), extend to
Y =f(X)h+Cd, +v, | (5.3)

where X stands for the binary stimuli matrix as a mean of expressing neuronal
activity in mathematical formalism and f(-) is a non-linear function of X. Notice
that in (5.3), the model is still linear in h, but X undergoes a non-linear
transformation. Multilayer perceptrons, which can learn any non-linear function in

theory [38], can be constructed in conjunction with the ideas proposed in items (iii)

and (iv) above as a further prospect in fNIRS.
5.5. Remarks on the Experimental Protocols and Measurements

In this final section, we would like to discuss two important aspects of cognitive

experiments in the context of fNIRS.

(i) Simultaneous fMRI-fNIRS measurements: There is a necessity to simultaneously

aéquire fMRI and fNIRS data during functional brain activity. For the time being, "

cognitive activity-related waveform extraction in fNIRS, due to its low spatial
resolution, cannot find its true running track unless it is accompanied with
simultaneous fMRI data. To clarify, using fNIRS one cannot obtain fine detail brain
activity maps,.a]though the brain hemodynamic response can be more accurately
estimated by fNIRS thanks to its higher temporal detail. Research in optimizing
spatial photosensor-array geometry is a relatively new field in diffuse optical
methods [2] and localization of externally recorded signals in fNIRS is still very
difficult [8]. Another argument in favor of simultaneous use of fNIRS and fMRI is

the lacking of reliable quantification schemes for Hb and HbO, concentrations, as
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reported in [8]. Once such recordings from both modality are acquired

simultaneously, the fNIRS waveforms can be utilized for generating more reliable

fMRI activation maps.

Design of experimental protocols: In stimulus design of even-related fMRI
experiments, two dichotomies exist: randomized vs. block designs. The former
consists of impulsive train of target stimuli with random arriva]srand it can possibly

be interleaved with a series of more frequent context stimuli. The cog‘nitive protocol

of the present work is an example to randomized designs. On the other hand, in block

designs, the stimuli sequence can be described as a series of rectangular waves. In a
recent study [53], it has been argued that “randomized designs offer maximum
estimation efficiency but poor detection power, while block des‘i'gns offer good
detection power at the cost of minimum estimation efficiency.”. Since activation
detection in fNIRS cannot be an issue unless devices that can provide more spatial
detail are implemented, randomized event-related designs should be considered in

the first place for maximum estimation efficiency in fNIRS experiments.
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APPENDIX A: STATISTICAL TOOLS

We made use of [22-27, 38] in preparing the material presented in this part.

A.1. Hypothesis Testing

Statistical h_ypothesis testing provides a formal way to decide if the results of an |

experiment are significant or accidental. Consider a record -of samples that consist of n
measurements (samples). Suppose futher that we want to determine whether these
measurements come from a known distribution fo (whose parameters are fully specified) or
not. Initially, we hypothesize that f, is indeed the underlying distribution of the samples;
- this is called the null hypothesis and denoted as Hy. The alternative hypothesis, i.e., that the

- samples are not drawn from Jo, is denoted as H;. We now state the problem as deciding

whether to accept or reject H,.

At this point, we assume that we will accept Hy, if a test-statistic ¢, computed from
the available n samples, is below some critical value y; otherwise we will accept H,. That

is

If g’,‘ >y, accept H, :samples are not drawn from f;. A1)
If £<y, accept H,:samples are drawn from f,. '

We can make two kinds of error

. False Alarm (Type 1 error): Reject Hy (accept H;) when Hp is true.
- False Miss (Type Il error): Reject H; (accept Hp) when Hj is true.

e

The probability of false alarm PFA is expressed as

PFA=Pr{E29{H,} - (A.2)
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The hypothesis test can equivalently be performed by the following statements

If PFA<a, accept H, :samples are not drawn from f,. -
If PFA> ¢, accept H (it is risky to accept H,): samples are drawn from f. (A3)
where a is said to be the significance level of the test. As the context implies, there is a
‘one-to-one correspondence between the significance level o and the critical value y. In
order to compute (A.2), we must know the distribution of the test-statistic & orAsimply its
percentage points (critical values at corresponding significance levels). Usually, we set the
significance level to 0.05 or 0.01 and use a statistical table to find out the corresponding
critical value. Afterwards we compare the test-statistic against the critical value and decide
whether to accept of reject Hy as descibed above. If we require the explicit knowledge of
the PFA, we can read it from the graph of the cumulative distribution function (cdf) of the
test-statistic. Suppose we read p; at ¢ from the graph of its cdf for some test: if the test is
significant in the upper tail PFA=1- p;, or otherwise, if it is significant in the lower tail
PFA=p;.

The use of hypothesis teéting is certainly not limited to test whether the
measurements are drawn from a known distribution or not. Some of hypothesis testing
examples are: (i) There is no signal in the present intérval, (ii) The short-time signal is
stationary, (iii) There is neuronal activation in a particular brain region at a particular time,

(iv) Smoking does not kill, (v) Team A will defeat Team B in the next match, etc.
A.2. Run Test for Stationarity

Run test can detect a monotonic trend in a time series x(f), =1,..., 2N, by evaluating
the number of runs in a time-series derived from x(f). A “run” is defined as a sequence of
identical observations that is followed or preceded by a different observation or no

observation at all. To this effect, we first evaluate the median iy of the observations and

derive the series y(f) as

y)=0 if x(©)<m,

A4
yn=1 if x(t)2m, (A4)
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Then we compute the number of runs in y(t), that is the number of consecutive
observations where the signal exceeds the median level and similarly the number of
consecutive observations where the signal remains below the median level. If x(¢) is a

stationary random process, the number of runs R is a random variable with

MHp=N+1
(A.5)
o2 o NN -1)
B aN-1

2 . .
where u,and o denote the mean and variance of R, respectively. An observed number

of runs significantly different from N+1 is indicative of non~stati(5narity because of the

possible presence of a trend in x(#). Using the run distribution with parameter N, that is

n=24,..,2N

P(R=n)=- . (A6)

n=35,..,2N -1

we determine whether the signal x(?) is stationary or not by hypothesis testing.
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A.3. Gaussianity Tests

A.3.1. Kolmogorov-Smirnoy Test

The Kolmogorov Smirnov test (K-S test) is a general purpose test based on
comparing the empirical cumulative distribution function (ecdf) of the available samples

_w1th the theoretical cdf of the dlstrlbutlon that the test is carried for. It is defined as

H :Random variable X follows the specified distribution F(x).

_ A7
H, :Random variable X does not follow the specified distribution F(x). (A7)
The K-S test-statistic &, is defined as
N
&, = mlaxlF (x,)=F,(x,) (A.8)

where F (x,) is the ecdf of observations X, t = i,..., N. The KS-test can be utilized for
testing . observations for Gaussianity (normality). Since F(x) should be completely
specified, we first make the observations Zero-mean, unit-variance and then we compute
F(x). We evaluate (‘A.8) using the standard normal cdf in place of F(x) and the ecdf Fe(x).
Once s is obtained, the rules of hypothesis testing can be applied to decide for normality
using tabulated critical values of the K-S test-statistic distribution. Note that this test

requires independent identically distributed (i.i.d.) data.
A.3.2. Jarque-Bera Test
The Jarque-Bera (J-B) test is a normality test that uses third and fourth order central

moments based on the fact these vanish for normal random varigplgs. The J-B test-statistic

& is a function of the sample estimates of the skewness and of the kurtosis denoted by 7

and &, respectively.

A2 7
fjh = ﬁ(zﬂ +—’:1_] (A9
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N

vy DR ) A.10
N LA (A.10)
A 1 N A4 )
k=g 2 n - -3 (A.11)

~ A2 . .
where & and 67 are the sample estimates of the mean and the variance of the observations
X, t=1,..., N. The limiting distribution, for i.i.d data, of the J-B test-statistic Ep is Xiie,
Chi-square with two degrees of freedom. Again it is a simple matter to calculate (A.9)-

(A.11) and apply hypothesis testing concepts using the fact that é‘j,, — 2. However, the

results are only accurate for sufficiently large N and i.i.d. data since the estimates of higher

order moments can be biased for small N and correlated data.
A.3.3. Hinich’s Gaussianity Test for Time-series

The above described tests assume i.i.d data and are not suitable for time-series unless
one collects data samples at random distant locations. Hinich’s bispectrum-based test is
purely designed for correlated time-series. In theory, signals that result from Gaussian
processes have zero third and higher-order cumulants and this knowledge can be exploited
for determining the underlying process of the signal. However in practice, sample
estimates of cumulants do not strictly vanish. Thus, one needs a test to determine whether
or not estimated quantities are significantly different from zero in the statistical sense. For

a linear non-Gaussian process X(¢), the following identity holds

S (i)
S, ()8 (f)S.(fy + )]

= constant or zero (A.12)

The left-hand side of (A.12) is the bicoherence of the random process {X(#)}. In
particular, the numerator term S (f,,f,) is the bispectrum and S.(f) is the power

spectral density, fi and f being frequency variables. Again, sample estimates of the

bicoherence will not be constant, and we need a test to determine whether the non-
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constancy is statistically significant. Hinich developed a test which determines whether a

given signal is non-Gaussian as

H,: X(¢) has zero bispectrum, i.e., the prbcess is Gaussian.
H, : X(t) has non - zero bispectrum, i.e., the process is not Gaussian.

Accordingly the test is based on whether the ratio in (A.12) differs significantly from

zero or not. Hinich’s test statistic &,;, is the sum of the squared bicoherence values over the

principal domain of the bispectrum, and is Chi-square distributed. The test can be

performed either by using &, and (A.1) or the computed probability of false alarm Phin and
(A.3) at the desired significance level q. ‘

A.4. Fisher’s Method for Combining Independent Tests

Fisher’s method can be used for combining independent tests for several records

based on computed false alarm probabilities, also called p-values, of individual tests.

Suppose K tests are made of null hypotheses H{,i=1,..., K each of which states the ecdf of
the samples of the i record, xf ,t=1,..., N, is greater than the standard normal cdf. Let H,

be the composite hypothesis that all H('; are true, that is, if anyone i‘s false then we must
reject Hy. Suppose further that each test returned pi as its significance level, i.e., the
probability of rejecting H, when it is indeed true. Furthermore, when H{ is true, p; is a
uniform random variable in the interval (0, 1). Hence we obtain a re;cord of K samples with
uniform distributions if all Hj together, or equivalently the composite hypothesis Ho,

holds. In such a situation, any deviation from uniformity would be sufficient for rejecting
the composite Hypothesis Ho, i.e., the normality of all records. For instance, the
Kolmogorov-Smirnov test can be used for detecting deviations of p-values from
uniformity. On the other hand, Fisher developed a test-statistig,,d@noted by P, that can

easily be computed in terms of p-values and be directly used for rejecting or accepting H

R =_2§10g(p,.) (A.14)

(A.13) -
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Wheré log(.) stands for the natural logarithm. P, combines one-tail component statistics p;,
each of which are the significance levels of the tests, that determine whether the ecdf is
greater than the standard normal cdf, or not in our working example. P, itself is significant
at the upper tail of its limiting distribution. In the literature, there exist other versions of
statistics of this type, which combines two tail component statistics, each of which tests
whether the ecdf is equal to the theoretical cdf, or not. One such statistic which is

significant at the lower tail of its limiting distribution is defined as
K
P,=-2)logll-2p,| (A.15)

The limiting distributions of both P; and P; are ;{22,( , hence a Chi-square test, with

appropriate degrees of freedom, i.e., 2K, suffices for combining the individual test results.
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APPENDIX B: CLUSTERING

In exploratory data analysis as well as in pattern recognition, discovering the
underlying distribution of multivariate data in the multidimensional space is of particular

1mportance. A clustering procedure is a non-parametric method that gives dominant modes

~of the multivariate data in terms of clusters or groups of data points that possess»sfrong

internal similarities. In formal terms, clustering partitions a multivariate dataset

X= {x' I t= 1,...,N} into a set of clusters Q: {Qc,qc l c= 1,_,,,C } where q, is the centroid

of the cluster Q.. To this effect, often a criterion or a set of criteria is to be satisfied for a

set of clusters @. Two major issues are of concern in clustering

(i) The way we measure similarity between data samples,

(ii) The aspects of the clusters that lead to a natural grouping of the data.

Note that we made use of [38, 41] in preparing the material presented in this

appendix.

B.1. Similarity Measures

Similarity measures addresses the item-(i) above. The most natural way to measure
similarity between two samples is to evaluate the distance between them. A suitable

distance metric satisfies

. Non-negativity: d(x,y) =0

ol Reflexivity: d(x,y)20 < x=y

= Symmetry: d(x,y) =d(y,X)

= Triangle Equality: d(x,y)+d(y,z) <d(x,z)

Note that it is possible to transfom a similarity measure into a distance metric so that

it gains the above cited properties. Some of the distance metrics and similarity measures

that are widely used in clustering are in the sequel.
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. . m % )
Minkowski metric d(x,y)= (Z]xk - yklc) » where c¢2>1 is the selective
k=1
parameter. The Minkowski metric is equivalently called as L.-metric. Notice that for
¢ = 2, the Minkowski metric evalautes to the familiar Euclidean distance. For ¢ = 1,it
can be recognized as Manhattan or city block distance that accounts for the sum of
the absolute distances along each of the m coordmate axes. In some cases, the

distances along a single axis is much more important than in all of the remainder.

L, = nklglx|xk - ykl is evaluated in such situations.

Mahalanobis distance d(x,y)=(x—m)” £"" (y—m) involves data-dependent terms
as the mean vector m and the covariance matrix X of the observations
{x'|t=1,...,N} for which x and y are two generic instances. The Mahalanobis

distance is invariant under dilations, translations and rotations in the m-dimensional

space.
. ,
~ Cosine of the angle s(x,y) =”::"T)),’”’ where ||| stands for the Euclidean distance. In

case the cosine of the angle is a meaningful measure of similarity, we can use
d(x,y)=1-s(x,y) as a distance metric for clustering, d(x,y)can be called as one-
minus-the-cosine-of-the-angle. In some situations, it would be more appropriate to
treat the observations as sequences of values (e.g., when the components of the
vectors are consecutive samples of a short-time signal), rather than as vectors, by

subtracting the mean value of their components from each of the vectors, i.e., for x,

Xpnow = Xp —lzx,. for k= 1,..., m and similarly for y, before computing s(x,y). The
1 m - -

resulting similarity measure is called as the normalized correlation coefficient, and
the distance metric derived from it as one-minus-the-normalized-correlation-

coefficient in a'way compatible with the signal processing literature.
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B.2. Clustering Criteria

The choice of the distance metric is one of the i 1ssues in clustering, the aspects of data

that we exploit for grouping constitute another. An optimal clustering is generally defined

as the one that minimizes within- cluster

and maximizes between clusters distances.

However, such distances need to be defined to get several different criterion functions. In
Table B.1, many possibilities are dlsplayed.

Table B.1. Several definitions

for within-clusters distance § (Q.) and between-cluster distance d Q..9)

Within-cluster distance

S(Q.)

average distance

1 i
Sa =W_)Z”X —X

nearest neighbor distance

S, = me ”x -x "

centroid distance

oK -al

Between-cluster distance

d(Q.,0,)

single linkage

— — v v/
dx—mm,.'j—"x x”

complete linkage

- =[x —x
dx—max,.'j—"x x”

" average linkage

b= Sl ]

centroid linkage

ce = ”qc _ql"

. . ! .
Q. and Q,: two clusters with centroids q° and q',c # 1, respectively

x' x' e

. o i i . o
sl X X e, j# )

N_ and N,: the number of samples in clusters Q. and Q,, respectively

The distance norm " . ” can be chosen as one of the metrics presented in B.1 or others

that are not given here, according to the specific application. Notice that the combination

of within-cluster distance, between-clusters distance and the distance metric to form a

criterion function should be carried with caution since an inappropriate combination can

cause misinterpretation of the data. In summary, a criterion J is implicitly expressed as
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= fls,).4(Q.,0),c] (B.1)

where ¢,l=1,..,C withc 2] and C'is the total number of clusters . The parameter C appears

in (A.1) in order to optimize J with minimum possible number of clusters.

B.3. Clustering Algorithms

C]ustermg algorithms are dichotomized in the way they make the partitioning: (i)

partitive ‘approaches and hierarchical approaches. The former divide a dataset into a,

usually prescribed, number of clusters C. In a partitive algorithm, initially one should

choose a criterion function to optimize, determine the number of clusters C, determine

assignment (for data vectors) and update (for centroids) rules as dictated by the chosen
criterion. The pseudo- code s as follows.

(1) Initialize the cluster centroids q°.

(2) Assign each of the data vectors to one of the clusters o°

using the a551gnment rules.

(3) Update the cluster centroids q° using the update rules.
(4) Stop if the partitioning is unchanged (or the criterion
function is optimized); otherwise return to step (3).

Hierarchical clustering algorithms can be further subdivided to divisive and

agglomeratzve schemes. The latter is more commonly used and can be implemented by the

fol]owmg steps.

(1) Initialize: Assign each vector to its own cluster.

(2) Compute distances between all clusters (according to chosen
metric and between-clusters distance).

(3) Merge the two clusters that are closest to ecah other.

(4) Return to step (2) until there is only one cluster left.
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By executing the above steps, we obtain an hierarchical tree, or a dendrogram, that

holds correspondences between the data vectors. The dendrogram can be utilized in

interpreting the underlying structure of the data. Exploxtmg the dendrogram tree to finalize
the clustermg procedure is another issue.

Sessenccsusrsnrareneasanenstnnnnes 3 clusters

4 clusters

Figure B.1. A sample dendrogram of 8 data points.

In Figure B.1, a sample dendrogram is shown along with three of the plausible cuts.
Con51der for instance, the one that results in four clusters. To identify the clusters, we
look, on each branch, for the next node below the cut. Accordingly, we get the node B as a
singleton cluster, the leaves of the node C as the second cluster, the leaves of the node D as
the third and finally the leaves of the node E as the fourth. In short, each node stands for a
cluster whose members are the leaves of that node. The height of the nodes is proportional
to the distance betWeen its childs, i.e., the clusters that are merged at that level. For
instance, the height of the node A is proportional to the distance between the clusters
denoted by the nodes B and C. Observe that the cut need not to be straight. Although there
exist sophisticated methods that give cuts at different levels; usually, the dendrogram is

pruned at a fixed level to yield the desired number of clusters C.



APPENDIX C; INDEPENDENT COMPONENT ANALYSIS

We made use of [37, 38] in preparing the material presented in this part.
C.1. Description of the Independent Componeht Analysis

Independent component analysis (ICA) seeks directions of multivariate data that are

mutually most independent. It is formalized by the following general definition.

ICA of a random vector x consists of finding a linear transform s=Wx so that
the components s; are as independent as possible, in the sense of maxzmtzzng

some function F(s) that measures independence.

If the dimensioriality m of the observation vectors x matches the number of
independent components 7 (i.e., dimensionality of the independent components vector S),
the relation s = Wx can be inverted as X = As. The matrix A is said to be the mixing
matrix, rec1procal]y the matrix W as the demixing matrix. The naming of these matrices
follows from the classical example of ICA, where two people speaks in a room
simultaneously and you record their speech with two microphones that, ideally, capture but
only the mixture of tjheir voices. You have two time signals x(f) and x,(f) as measured by
the two microphones. Can you recover the individual speech of both of these people, i.e.,

the source signals s;(f) and s,(f), by just fnaking use of the observed signals x;(¢) and x»(£)?

Using ICA, the answer is yes, if certain conditions are fulfilled. In the general case of m

observed mixtures x;(¢) and n sources s;(f), these conditions are stated as follows

(1) The instances of each of the observed mixtures xi(f), ¢ = 1,...,T must be independent
identically distributed (i.i.d) in time.

(ii) All the indepenent components s;, with the possible excéptibn of one component,
must be non-Gaussian.

(iii) The number of observed of observed mixtures m must be as large as the number of
independent cdmponents n,ie., mn.

(iv) The matrix A must be of full column rank.



97

However, even if the above cited conditions are fulfilled, there are two ambiguities in

identifying. the columns of the mixing matrix A.

(1) The columns of A can be estimated up to a multiplicative constant. That is, we
cannot recover the original intensity of the sources neither their sign.

(i1) The columns of A can be estimated up to a permutation. Hence ICA does not provide
an ordering of the independent components.

Two elements are fundamental in solving the ICA problem: an objective function
that measures independence (or a quantity negatively related to independence) and an

optimization algorithm that maximizes (or minimizes) the objective function. Among the
basic ICA methods, one can cite '

ICA by maximizing non-Gaussianity. Non-Gaussianity is related to
independence by the Central Limit Theorem which basically states that the sum
of i.i.d. random variables has the Gaussian distribution in the limiting case.
Intuitively to say, if the generative linear mixture model holds for a set of
observed mixtures, they must be “more” Gaussian than the underlying sources.
Hence, ICA can be achieved equivalently by maximizing non-Gaussianity
between the sources to be estimated. Kurtosis and negentropy-based methods
exploit this knowledge.
= ICA by maximum likelihood estimation. It is possible to solve the ICA
problem by classical maximum likelihood methods in case the distributions of
the sources are of certain specific form with some parameters to be determined.
These methods treat the problem in a semi-parametric way.
" ICA by minimization of mutual information. Mutual information is a natural
measure of dependence between random variables, that vanishes if and only if
the random variables are statistically independent. As a result, the minimization
of mutual information constitutes another approach for solving the ICA

problem.

In addition to these, in the literature, there exist other basic ICA methods that use

higher-order cumulant information and concepts of non-linear decorrelation.
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C.2. Applications of the Independent Component Analysis

The applications of ICA are certainly not limited to the working example of the
previous section, which may be generalized under the name of blind source separation.

Blind deconvolution i 1s another signal processing problem that ICA methods have been

found to work successfully in some cases. Furthermore, ICA has received a considerable

Interest in especially image feature extraction, as an alternative to classical principal
component analysis (PCA). Low-level features of natural image data, extracted by ICA,
have been shown to correspond closely to those observed in pnmary visual cortex. Texture

analysis, biometric pattern recognition, image compression and watermarking constitute

those applications that make use of ICA image features.

On the other hand, ICA is, first of all, an exploratory data analysis tool that can be
benefited in applications where little prior knowledge about the underlymg physical
phenomena is available. Areas like astrophysics, biomedical signal processing, economics

and social sciences possess a great deal of such applications.
C.3. The FastICA Algorithm
FastICA is a fast fixed-point ICA algorithm which is based on the maximization of a

negentropy approximation. Specifically, FastICA maximizes the following objective

function for finding one independent component

Jw'z) =[Elow™2)}- Elco)f | C1y

where, z is the preprocessed version of the observed vector X, W is one of the
columns of the mixing matrix W, v is a standard normal random variable and G is
practically any non-quadratic function. Note that, E{.} is comquggi by sample estimates.
The following choices for G has been found to be very useful for robust approxirhations of

negentropy

G,(u)=logcoshu and G, (u)=—exp(~u®/2) (C2)
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The FastICA algorithm consists of a preprocessing and an optimization step details
of which are given next.

C.3.1. Preprocessing

Preprocessing involves centering and whitening..

Centering. We make the observed vectors zero-mean by subtracting the mean

vector of the observations,

X =x~Efx} - | (C.3)

Whitening. We transform % to z so that the covariance matrix of the latter becomes

identity, i.e., E{zzr}=l. This can be achieved by first eigendecomposing
E{iiT}=EDET where E is the orthogonal matrix of eigenvectors and D is the

diagonal matrix of eigenvalues of E{iir} Then,

- z=ED?’E"% (C4)

Note that in case one would like to estimate fewer independent components than the

observations such that m>n; only n columns, which are significant in terms of the

eigenvalues, of the the transformation matrix V=ED™2E” are involved in the

computation of (C.4).
C.3.2. FastICA for Estimating Oneindependent Component
The FastICA algorithm can then be performed by the following‘ procedure.

(1) Choose an initial random vector w.
(2) W ERG'w z)}- E{G (W z)lw

(3) wew/w|
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(4) If not converged, return to step (2).

where " . ” denotes the Euclidean norm, G and G” are the first and second derivatives of G

in which place one of the functions in (C.2) can be utilized.

C.3.3. FastICA for Estimating Multiple Components

In order to estimate several independent componénts, the above procedure should be

repeated as many times as the number of independent components we want to estimate. To

preclude convergence to the same maxima, the vectors wy,..., w, should be decorrelated at

each step. This can be achieved in two ways.

= Deflation-based decorrelation. Let w,..., w), be estimated by the above procedure,

to remove the projections of wy,..., w, from the next estimated vectors Wy, we

perform the following

. P
T
wp+l « wp+l _pr+lewj
= (C.5)

’ wp+l « wp+l /"w ptl

= Symmetric decorrelation. Decorrelation can equivalently be achieved in a

simultaneous manner by

W« (WWT) 2w (C.6)

where W is the demixing matrix, as estimated at some step of the iterative procedure.
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