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ABSTRACT

UTILIZING WEAKLY-SUPERVISED LEARNING FOR

HASHTAG SEGMENTATION AND NAMED ENTITY

DISAMBIGUATION

Today’s high-performing machine learning algorithms learn to predict by the

supervision of large amounts of human-labeled data. However, the labeling process

is costly in terms of time and effort. In this thesis, we design weakly-supervised ap-

proaches, which are based on automatically labeling raw data, for two different Natural

Language Processing (NLP) tasks, namely hashtag segmentation and Named Entity

Disambiguation (NED). Hashtag segmentation’s aim is to identify the words in the

hashtags, so as to process and understand them better. We propose a heuristic to ob-

tain automatically segmented hashtags using a large tweet corpus and use these data to

train a maximum entropy classifier. State-of-the-art accuracy is achieved for hashtag

segmentation without using any manually labeled training data. The target of NED,

which is the second task that we address, is to link the named entity (NE) mentions

in text to their corresponding records in the Knowledge Base. We hypothesize that

the types of the NE mentions may provide useful clues for their correct disambigua-

tion. The standard approaches for identifying mention types require a type taxonomy

and large amounts of mentions annotated with their types. We propose a cluster-based

mention typing approach, which does not require a type taxonomy or labeled mentions.

This weakly-supervised approach is based on clustering the NEs in Wikipedia by using

different levels of contextual information and automatically generating data for train-

ing a mention typing model. The mention type predictions lead to significant F-score

improvement when incorporated to a supervised NED model. This thesis shows that

designing weakly-supervised approaches by considering the underlying characteristics

of the addressed problem can be an effective strategy for NLP.
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ÖZET

ZAYIF DENETİMLİ ÖĞRENME YAKLAŞIMI

KULLANARAK HASHTAG AYRIŞTIRMA VE VARLIK

İSMİ ANLAMLANDIRMA

Günümüzün yüksek başarımlı makine öğrenmesi yöntemleri başarılarını etiketlen-

miş çok miktarda veri üzerinde öğrenme yapmalarına borçludur. Fakat etiketleme çok

fazla zaman ve efor gerektirir. Bu tezde iki Doğal Dil İşlemesi (DDİ) alanında zayıf

denetimli öğrenim yapmak için otomatik veri etiketleme yöntemi önerdik. İlk uygu-

lama alanımız olan Hashtag Ayrıştırması, hashtag’lerin otomatik olarak işlenmesi ve

anlamlandırılması için orijinal sözcüklerine bölünmesidir. Büyük bir tweet veri setinden

elde edilen istatistiklere göre hashtag’leri otomatik olarak ayrıştırdık ve en güvenilir

ayrıştırmaları maksimum entropi sınıflandırıcısını eğitmek için kullandık. Elle etiketli

eğitim verisi kullanmadan hashtag ayrıştırma problemi için literatürdeki en yüksek

doğruluk oranlarını elde edebildik. Çalıştığımız ikinci alan olan Varlık İsimlerinin

Anlamlandırılmasında (VİA) amaç metinde tanınan varlık isimlerini bilgi bankasında

karşılık gelen kayıtlara bağlamaktır. Bahsedilen varlığın türünü önceden tespit ed-

ersek bu bilginin VİA’da başarıyı artıracağını öngördük. Varlık türü tanımlanması

için standart yaklaşımlar elle hazırlanmış tür taksonomisine ve metinde bahsi geçen

varlıkların türlerinin etiketlendiği büyük miktarda veriye ihtiyaç duymaktadır. Bizim

önerdiğimiz yöntem ile varlıkları değişik seviyelerde bağlamsal benzerliklerine göre

kümelendirip, küme kimliklerini tür olarak varlıklara atadık. Bu sayede, tür taksonomi-

sine olan ihtiyaç giderilirken, Wikipedia makalelerindeki varlıkları, onlara atanan türler

ile işaretleyerek, tür tahminini yapacak sistem için eğitim verisini otomatik olarak

oluşturduk. Tür tahminlerinin ek bilgi olarak kullanılması VİA sisteminin başarısını

anlamlı seviyede artırdı. Bu tez, problemin özelliklerini dikkate alarak tasarlanan zayıf

denetimli öğrenme yaklaşımlarının DDİ’de etkili bir strateji olabileceğini gösterdi.
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1. INTRODUCTION

1.1. Motivation

When a machine learning algorithm is trained with annotated data, it is called

supervised learning as the annotations in the data supervise the learning process. To-

day, in order to achieve human-level performance in many Artificial Intelligence-related

tasks, more and more annotated data are being used. In the literature, near human-

level performance has been reported for image recognition [1], speech processing [2],

and identification of linguistic components in text [3]. However, such supervised learn-

ing with large annotated data may not be feasible, since obtaining such data is labor

intensive, time consuming and costly. Recent studies [4,5] tend to focus on techniques

that use less annotated data and even use only unlabeled or raw data. Considering the

availability of a gigantic amount of raw data compared to the generally small amount of

manually annotated data, utilizing the raw data effectively for learning is a promising

approach to follow.

While supervised learning is still desirable, weakly supervised and unsupervised

learning methods have also been achieving high level performance. Studies [6–8] showed

that using large amounts of raw data in combination with small amounts of annotated

data can improve the learning performance. With the help of automating the labelling

process by making use of the domain knowledge, dependency to manually annotated

data is reduced in weakly supervised learning. Unsupervised learning, on the other

hand, does not require any annotated data. Instead, such methods look for patterns in

data. Clustering is the best example for unsupervised learning where data points that

exhibit similar characteristics are grouped together.

Weak supervision is an umbrella term that covers different ways of making use

of large amounts of unlabeled data. Zhou [9] breaks down weak supervision into three

categories. The first one is incomplete supervision, where only a subset of the training

data has labels. The technique called semi-supervised learning falls into this subcate-
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gory. Such approaches combine a small amount of labelled data with the automatically

extracted intuition from large amounts of unlabeled data in order to enhance the final

trained model. The second type of weak supervision is inexact supervision, where the

training data are given with only coarse-grained labels. In this case, the labels in the

training data set do not reflect the learned task exactly, but give a rough idea about it.

Lastly, the third type is inaccurate supervision. This happens when the labels in the

training set are not always ground-truth. There are many examples of inaccurate su-

pervision in the literature. Most of the studies start with an initial model trained on a

small amount of annotated data and use that model to annotate unlabeled data. These

pseudo-labeled instances are used to expand the actual annotated data so that a better

model is learned out of it. Other methods such as co-training [10] and self-training [11]

also fall into this type of weak supervision.

All in all, it can be time consuming and costly to build manually annotated data.

By using weak supervision, we can automatically create training data with a heuristic or

by re-purposing existing data, which eliminates the need for manually annotated data

and saves time as well as effort. In this thesis, we propose weakly supervised approaches

for two NLP tasks, namely hashtag segmentation and named entity disambiguation.

1.2. Problem Statement

When we are looking to make use of a large amount of unlabeled data, one obvious

area involves tweets, since more than half a billion of them are posted every day, 6000

tweets every second. Tweets are very short documents, mostly around 140 characters in

length. Compared to the language used in regular text like news articles, the language

used in tweets is very noisy and irregular. It was shown that the accuracy of NLP

applications drops up to 20 percent when they are applied on tweets [12]. For example,

the average F1-score of the Stanford Named Entity Recognizer [13], which is trained

on the CoNLL-2003 [14] shared task data set and achieves state-of-the-art performance

on that task, drops from 90.8% [15] to 45.8% on tweets [16]. That hardness attracts

many research studies. One particular aspect of tweets that has not been studied much

till our research is hashtags. Hashtag is a special token that consists of one or more
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words concatenated one after another along with a special prefix pound character “#”.

It originated as a label to mark the content of tweets. Later on, it evolved into an

information conveyor tool where long phrases and even sentences are turned into a

hashtag, such as #ifiwereaboy. Other hashtags may also include complex noun phrases

that include numbers like #o2007comp. As more content is carried through hashtags, it

became more and more important to break them down into their original words. This

enables us to reach and process the conveyed content inside them. In essence, this

task is very similar to word segmentation seen in languages like Chinese and Arabic,

where no boundary is used between words. In our study, we consider tweets in the

English language. Hence, what we need is just regular text in English, where all word

boundaries already exist. Then, we can train our model on this naturally annotated

data in supervised fashion. However, we argue that such regular text might not exhibit

the same characteristics as the words inside the hashtags. Hence, we specifically look

for whether we can create a training data set out of the hashtags themselves. Instead of

segmenting them manually, we proposed a heuristic to automatically segment millions

of hashtags and picked the ones that we are confident about their correct segmentation

with acceptable degree. This is a weak supervision approach, or more specifically

inaccurate supervision, since the word boundaries in auto-segmented hashtags may

not be accurate. Nevertheless, based on our results given in Section 3.6.3, we show

that the model trained with inaccurate supervision outperforms the model trained on

the regular text.

As a second area for applying weak supervision, we addressed the named entity

disambiguation (NED) task, which has been studied for a long time. The goal is to

associate the recognized named entity mention with the corresponding entry in the

reference knowledge base (KB). This can be very helpful to identify which specific

named entities are being mentioned in the context, so that we can apply more precise

processes on them. For example, we can count how many times a specific product

is mentioned or measure the sentiment towards it. However, it is not an easy task.

The mention of the word “Washington” in text may correspond to many different

named entities such as the city “Washington D.C.” or the newspaper “Washington

Post.” There are tens of cities and counties in the United States that are named
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“Washington.” It is hard to decide which among hundreds of candidates are mentioned.

In the literature, many studies [17–19] have tried to incorporate the external data such

as context into the named entity disambiguation task in order to help the learning

algorithm do better and more informed decisions. Likewise, in our research, we focus on

how to make use of context better in order to improve the disambiguation accuracy. We

built a special mention typing model, which predicts the entity type of the mentioned

named entity based on its surface form and surrounding context, so that the predicted

type information can be used as an extra clue for the actual disambiguation task.

We proposed cluster-based types which are automatically generated by clustering all

named entities in our KB based on their contextual similarity observed in Wikipedia

articles. Entities in the same cluster are labeled with the same label, that is the Cluster

ID. Previous works on the the mention typing task [20–22] use manually curated type

taxonomy. Considering that there are over five million named entities in Wikipedia,

manually curated taxonomies are inherently incomplete and require a lot of work to

create. Our cluster-based approach gives us automatically generated types, which

eliminates the need for the taxonomy. Then, we label each hyperlinked mention of

the named entity in the Wikipedia articles with the corresponding cluster-based type

of that entity. This automatically generates training data to train a model to predict

the cluster-based type of a given mention. This approach is weakly supervised, since

the auto-generated training data is not exactly meant to be curated for this task,

not to mention the cluster-based types as inexact labels. As shown in our results in

Section 4.5.4, when we use the predictions of mention typing as an extra input at

the disambiguation task, our model achieves better than state-of-the-art results on a

number of de facto test sets.

1.3. Publication Notes

Parts of the work in this thesis have appeared in the following publications:

• “Segmenting Hashtags Using Automatically Created Training Data”, Çelebi, Arda

and Arzucan Özgür. Proceedings of the Language Resources and Evaluation Con-

ference (LREC), pp. 2981-2985, 2016. (Chapter 3) [23]
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• “Segmenting Hashtags and Analyzing Their Grammatical Structure”, Çelebi,

Arda and Arzucan Özgür. Journal of the Association for Information Science

and Technology (JASIST), Vol. 69(5), pp. 675-686, 2018. (Chapter 3) [24]

• “Cluster-based Mention Typing for Named Entity Disambiguation”, Çelebi, Arda

and Arzucan Özgür. Natural Language Engineering (NLE), 2020, accepted. (Chap-

ter 4) [25]

The other relevant works that are not part of this thesis are:

• “Description of the BOUN System for the Tri-lingual Entity Detection and Link-

ing Tasks at TAC KBP 2017”, Çelebi, Arda and Arzucan Özgür. Proceedings of

the Text Analysis Conference (TAC), 2017. [26]

• “BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets”, Kökciyan,

Nadin, Arda Çelebi, Arzucan Özgür and Suzan Üsküdarlı. Second Joint Confer-

ence on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings

of the Seventh International Workshop on Semantic Evaluation (SemEval 2013),

pp. 554-561, 2013. [27]

1.4. Summary of Contributions

In this thesis, we focused on developing weak supervision approaches to create

automatically annotated training data for two NLP tasks: hashtag segmentation and

named entity disambiguation. The results on both tasks show us that when we create

large amounts of automatically annotated data by designing heuristics based on our

domain knowledge, such a weakly-supervised approach can be an effective strategy for

NLP. Below we outline the contributions for each task, starting with the contributions

achieved for the hashtag segmentation task.

• We introduced a heuristic in order to segment hashtags automatically using al-

most half a billion tweets and obtained 803,000 automatically segmented hash-

tags. We used this data set as a training set in our hashtag segmentation studies.

• We proposed a feature-rich approach for hashtag segmentation based on the max-



6

imum entropy model. In addition to various vocabulary- and orthography-based

features, we also exploited the local and global context information of the hash-

tags by using the tweets in which the auto-segmented hashtags reside. More-

over, we incorporated word boundary clues suggested by a language modeling

approach. The developed hashtag segmentation system achieved state-of-the-art

results without using any manually labeled training data.

• With our state-of-the-art hashtag segmentor, we segmented 60 million (2.1 million

distinct) hashtags and studied their internal structure. We found out that around

80% of the hashtags that contain either positive or negative sentiment are multi-

word hashtags. We also conducted detailed grammatical analysis of those 60

million auto-segmented hashtags, which is the first of its kind in the literature.

• We publicly shared the data sets that we curated and the script of our hashtag

segmentor on the TABI Lab web site [28].

The second part of this thesis involves proposing a new cluster-based mention

typing model to improve the named entity disambiguation (NED) task. The following

contributions are achieved:

• Our research is the first that uses clustering to obtain cluster-based mention

typing models. We clustered over five million named entities and used the cluster

IDs as type labels. Our mention typing models were trained on the hyperlinked

mentions of the named entities in Wikipedia articles after we automatically label

them with their corresponding cluster-based types in a weakly supervised fashion.

At the end, we used the predicted cluster-based types of a given mention as extra

clues to improve the NED task.

• We introduced five different ways of cluster-based mention typing based on rep-

resenting the context around a mention at three different levels. We showed that

improved NED results are achieved when the different typing models are used

together.

• In the candidate generation step of NED, we proposed using the candidates of the

co-occurring mentions in the same document, which leads to higher gold recall

values than the previously reported results. We publicly shared our tool and data
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sets on the TABI Lab web site [29]

1.5. Thesis Overview

This thesis studies the application of weakly supervised learning on two NLP

tasks: hashtag segmentation and named entity disambiguation. Before laying out our

research and results on these two tasks, we first visit the background related to the

research done in this thesis in Section 2. We define the tasks related to the studies

performed in this thesis, such as word segmentation, clustering, and named entity

disambiguation. Then, we explain the methods related to these tasks.

After describing the background, we present our research on hashtag segmenta-

tion in Section 3. Only a few studies have addressed this task in the NLP literature so

far. We start by discussing these relevant studies. Then, we provide the details of our

proposed rich feature-based approach for hashtag segmentation and describe how we

extend it with context and language model-based approaches. In Section 3.3, we ex-

plain our automatic hashtag segmentation heuristic, which helps us obtain segmented

versions of almost a million hashtags out of half a billion tweets. Before giving the

results, in the Evaluation Metric section, we propose using F-score in addition to the

accuracy metric, as we argue that partial results can be as important as predicting the

exact segmentation. In the Experimental Results section, we show that we achieve the

state-of-the-art results on two test sets. More importantly, we show that our weakly

supervised approach to hashtag segmentation achieves better than or comparable re-

sults with respect to the model that is trained on regular tweet text. Now that we have

the state-of-the-art hashtag segmentor in our hands, in Section 3.7, we explain our

findings after we automatically segmented 60 million hashtags from SNAP tweet data

set [30]. In those subsections, we not only study the internal grammatical structure

of hashtags in detail, but also show that most of the time sentiment is trapped inside

multi-word hashtags. Our findings indicate the need for a hashtag segmentor, in order

to make use of hashtags more effectively while processing tweets.
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Section 4 presents the second half of this thesis, which is our research on the

named entity disambiguation task in conjunction with our newly proposed cluster-

based mention typing. We again start by providing the latest related work on named

entity disambiguation and mention typing. Then, we describe how we build our cluster-

based mention typing model in Section 4.2. It starts with the explanation of different

ways of representing a mention’s context. Then, we describe how to represent named

entities based on those different context models and do the clustering based on those

representations. After clustering over five million named entities in Wikipedia and as-

signing the Cluster IDs as cluster-based types to those named entities, we explain how

to train a model that can predict the cluster-based type of a named entity mention.

To accomplish that, we show how we automatically generate training data from hyper-

linked mentions in Wikipedia articles. After obtaining the mention typing model, in

Section 4.3, we start explaining the components of our named entity disambiguation

pipeline. First our state-of-the-art candidate generator comes, which outputs all pos-

sible named entities being referred to by a given mention. After that, we explain our

ranking model which is based on a simple feed-forward neural network. Before getting

into the results, we describe the details on the training and test data sets as well as

how we tune the clustering for better mention typing. In Section 4.5, we first report

the results for the mention typing model, then for the candidate generator, and finally

for the disambiguation model. We also conduct a detailed analysis of the results with

ablation tests.

Before concluding and giving the future directions in Section 6, Section 5 gives

the detailed description of the tools that we developed during this thesis and made

publicly available. These are the hashtag segmentor, named entity disambiguation

related tools, and experiment result database toolkit called xDB.

Have a good read!
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2. Background

2.1. Related Tasks

2.1.1. Word Segmentation

Word segmentation is one of the oldest tasks in the NLP literature. The prob-

lem that word segmentation solves is to correctly identify word boundaries in a given

character string. It can be very challenging, especially for languages without explicit

word boundary separators, such as Chinese and Japanese. In case of Semitic languages

like Arabic and Hebrew, they have rich non-segmental multi-word tokens which makes

the boundary decision harder. Even for languages like English, it can be misleading to

rely on white spaces as word boundaries alone due to punctuation and even typos. To

give an example, while writing tweets, which are restricted to be no longer than 140

characters, people tend to merge words (e.g. “doubledown”) together in order to save

space. Another application of word segmentation involves the recognition of words in

hand-written documents [31].

Word segmentation is the first step before applying any high-level NLP, such as

part-of-speech (POS) tagging, named entity recognition etc. It has been studied for a

long time and today it is almost a solved problem. Early methods used for this task were

as simple as using a dictionary to find words in a given sequence of characters. One of

the best known dictionary-based methods is maximum matching and its variations [32]

enhanced with heuristics, such as greedy algorithm. These methods basically try to

find the longest matching word in the given input. While a dictionary-based method

works well for certain cases, its performance depends on the coverage of the dictionary

and how well the method handles ambiguous cases.

Later state-of-the-art systems employed statistical approaches, since they are in

general more successful at handling unknown words and picking the best possible al-

ternative when there is ambiguity. Such methods treat the problem as tagging, where
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they assign a label to each character based on whether it indicates a word bound-

ary. Conditional Random Fields (CRFs) [33], which is a commonly used method for

sequence labeling was also used [34, 35]. Probabilistic methods such as HMM-based

methods can learn the word boundaries by modeling character sequences. For Chi-

nese word boundary detection, discriminative models such as word-based perceptron

algorithm [36], as well as unsupervised methods [37, 38] are also used. Neural net-

works [39] and lazy learning approaches [40] have also been applied in this domain.

In a more generic boundary detection study, corpus type frequency information along

with maximum length frequency and entropy rate was also used [41].

Another approach for word segmentation is using a language model to find the

best possible word segmentation of a given sequence of characters among many possible

segmentations. Trigram LM to determine the best possible morpheme sequence for

Arabic word segmentation was used [42]. In a web-scale word segmentation study, it

was showed that they can unify and generalize word breaking techniques under the

Bayesian minimum risk framework which can consider multiple document styles with

minimal heuristics [43]. Their tool, namely Word Breaker achieves an accuracy of

97.18% with a trigram model.

In this thesis, we tackle the hashtag segmentation problem, which is in essence

a word boundary detection task. Hashtag is a special token that consists of one or

more words concatenated one after another without any white space along with special

prefix pound character “#”. Considering that they occur in tweets and the fact that

the language of tweets can be quite noisy, it can be considered as a harder task than

regular word boundary detection.

2.1.2. Named Entity Recognition

Named Entity Recognition (NER) is a task of identifying regions of text (i.e. men-

tions) corresponding to entities and categorizing them into a predefined list of types.

Recognition of mentions in unstructured text is an important step for Information Ex-

traction (IE) purposes. This is first realized in the Message Understanding Conference
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(MUC) series. Starting in MUC-6, the research community focused on detecting four

main types of named entities (NEs) in text: person, organization, location, as well as

temporal expressions. In later systems, abbreviations and numeric expressions are also

considered. In CoNLL-2002/2003 [14, 44], in addition to person, organization and lo-

cation categories, miscellaneous category was added, which covered different concepts

like project names, team names etc. More recently, ACE used categories like vehicles

and facilities [45]. ACE also considered identifying temporal expressions as a separate

task.

Early approaches for the NER task involved rule-based methods [46, 47]. Rule-

based systems extensively use curated dictionaries and gazetteers. Rules are con-

structed in the form of finite state patterns. They used gazetteers, manually crafted

proper name grammar rules as well as the discourse interpretation. However, building

such rule-based systems are quite difficult. It requires expertise of curating necessary

vocabularies as well as knowledge of grammar and other related linguistic aspects.

Later on, they were outperformed by Machine Learning (ML) approaches. ML meth-

ods automatically learn a statistical model to classify given input based on labeled

examples. First ML methods require manually annotated high quality training data

to achieve their potential. Maximum Entropy (MaxEnt) model was used as well as

dictionaries and gazetteers in order to create the features for modeling [48]. In vari-

ous studies, multiple learning approaches have been tried together in combination, even

mixed with rule-based approaches. For example, rules and MaxEnt model together were

used [49]. Finite State Transducer (FST) based pattern matching rules in combination

with MaxEnt and bigram-based HMM was employed [50]. They incorporated the rules

into a constrained HMM network in order to remove errors due to lack of training cor-

pus. In CoNLL-2003 evaluations [14], most of the participants used the MaxEnt-based

approach in isolation or in combination with other methods. [13] proposed one of the

most known and used systems in this field, which is called Stanford-NER. They use

Conditional Random Fields (CRFs) [33] and replaced the Viterbi decoding with the

simulated annealing in order to incorporate non-local features.
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In order to model the NER, ML methods require large amount of training data.

However, lack of annotated data made the research community reduce the annota-

tion requirements by making use of large amounts of unlabeled data. Semi-supervised

methods are such methods that start with small set of labeled data and incrementally

expand this set by automatically extracting new data till certain threshold is reached.

This is called bootstrapping. [51] proposed mutual bootstrapping. They started with

small set of entities. By using large corpus, they collected context patterns that sur-

round those known entities. Then those contexts are ranked and used to find new

entities. Similar to [51], [52] use syntax information like subject-object connection

to discover more accurate contextual patterns around the entities. [53] also employed

mutual bootstrapping approach to detect named entities from 100 million web page cor-

pus. Unsupervised approaches have been considered as well. One of the first studies of

unsupervised techniques on NER task was done by [54]. Instead of using high number

of rules or large training data, they only consider 7 simple seed rules. [55] introduced

a system called KNOWITALL, which is an unsupervised, domain-independent infor-

mation extraction system. It uses 8 pattern rules to extract named entities from the

web pages. In [56], they proposed a named-entity recognition system which combines

named entity extraction and named-entity disambiguation in an unsupervised setup.

By processing semi-structured HTML formatted web pages, they automatically created

a large gazetteer of named entities. In [57], they applied existing hyponyms/hypernyms

identification method to detect the hypernyms of sequence of capitalized words. They

use search query patterns to retrieve web pages that suggest the hypernym of looked up

word sequence. For example, in a pattern like “X such as Y”, X can be considered as

hypernym of Y, as in the case of “city such as Istanbul”. By retrieving large amounts of

web pages containing such pattern instances, one can identify the hypernym correctly.

In last 5 years, deep learning approaches took over the NLP landscape by achiev-

ing state-of-the-art results in every applicable field, including image processing, speech

recognition, machine translation, language modeling, and sequence labelling, which

includes NER. [3] presented groundbreaking study on applying deep learning on vari-

ous NLP tasks including NER. They employed Convolutional Neural Network (CNN)

over a sequence of word embeddings with CRF model on top. While success of deep
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learning at NER task started with the hybrid of CNN and CRF models in [3], more

obvious solution is to replace CNN with the model that suited for sequence labelling.

Special type of neural networks called Recurrent Neural Network (RNN) is designed

to handle model time series based problems, like NER. However, they suffer from van-

ishing gradient problem, which prevent them from capturing long-range relations in

the input. Hence, its variant called Long Short-Term Memory (LSTM) is currently

mostly used deep learning architecture for NER. In fact, the best results achieved by

combining two LSTMs to consider both previous and future context in the input, which

are called Bidirectional LSTM (BiLSTM). [58] replaced CNN of [3] with BiLSTM and

also used hand-crafted spelling features. [59] proposed hybrid of BiLSTM and CRF

model like [60] but they manage to model both character- and word-level informa-

tion with BiLSTM. [61] combined BiLSTM, CNN and CRF models together and used

CNNs specifically for character-level representation, instead of utilizing BiLSTM for

that like [59].

In this thesis, we did not do any named entity recognition or use any recognizer.

Instead, we use the already recognized mentions in our named entity disambiguation

studies. In any case, it is an important precursory step for the disambiguation task.

2.1.3. Named Entity Disambiguation

Named Entity Disambiguation (NED) is the task of disambiguating entity men-

tions in text by associating them with entries in a provided knowledge base, like

Wikipedia and DBPedia. It was first introduced in 2009 in the Knowledge Base Pop-

ulation track of the Text Analysis Conference (TAC-KBP) [62].

A typical entity disambiguation system assumes that the named entities men-

tioned in the text are already recognized by the NER step. Hence, it starts with

recognized named entities as well as their predicted entity types, such as person. Hav-

ing said that, traditional entity disambiguation involves two steps: candidate detection

and candidate selection. In the candidate detection step, a list of all possible candidate

named entities from reference knowledge base are generated. In this process, basically
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surface form of the mention is used to as a search query to retrieve all named entities

that are named same or similarly. The second stage is to decide which candidate is

the best match for that mention. If there is no candidate or none of the candidates

are strong enough for the selection, then that mention is disambiguated as NIL entry.

This means that there is no corresponding entry at KB for that particular mention.

Normally NIL mentions with the similar surface forms are clustered together in order

to reflect the fact that they refer to the same unknown entity. This is also called NIL

clustering.

Aside from the candidate generation, NED is mainly considered as a ranking task

as we are expected to choose the most likely candidate that mention is referring to.

To do this ranking, the similarity between the context of a mention and the document

associated with a candidate entity (e.g. its page in Wikipedia) is used. While applying

this ranking, there are two main approaches applied in the literature: local approaches

where every mention is considered independently from others in the context. Ranking

is done by considering whether each candidate is the one we are looking for or not.

Score produced by this binary classification is used for ranking. Some studies [63]

use local statistics about each mention and considered candidate entity. In case of

global approaches, all mentions are disambiguated together, simultaneously in order to

achieve the highest cohesion score in the context.

One of the important aspects of both local and global approaches is to be able to

measure the semantic similarity between the context and candidate entity. The more

similar candidate entity and the context are, the more likely that that entity is men-

tioned in that context. Various techniques have been proposed in the literature. [64]

directly optimizes document and entity representations for a given similarity measure,

instead of utilizing simple similarity measures such as cosine similarity etc. and their

disjoint combinations. They use two-stage approach where first stage is Stacked De-

noising Auto-encoder to discover general concept encodings and second stage is to

fine-tune the parameters based on selected similarity measure as an optimization cri-

teria. Their hierarchical model allows them to model and context and entity with

different levels of abstraction. They train their model on Wikipedia data set and
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achieved then state-of-the-art results on TAC 2010 and AIDA data sets. [65] use Con-

volutional Neural Networks (CNNs) to capture the similarity between context of the

mention and candidate target entity. In the literature, CNNs are proven to be good at

modeling sentences and documents for classification task. [65] use CNNs with different

context granularities and model the topic semantics of context and entity better. [66]

created embeddings for mention, context, and entity separately, and used a neural net-

work framework to integrate these representations for entity disambiguation. In [67],

they first learn low-dimensional embeddings for entities and words by jointly modelling

knowledge base and text in the same vector space and then utilize these embeddings

in a two-layer disambiguation model. [68] focused on learning entity embedding and

selectively leveraging contexts through a local attention mechanism over local context

windows. [69] proposed a method, which jointly maps words and entities into the same

continuous vector space. Their extension to skip-gram model employs two models:

KB Graph model and anchor context model. The first model learns the relatedness of

entities using the link information in the KB. The second model aims to align vectors

so that similar words and entities occur close to one another in the same vector space

by looking at KB anchors and their context words. [70] proposed attention-like mech-

anisms for coherence, where the evidence for each candidate is based on a small set

of strong relations, rather than relations to all other entities in the document. Their

multi-focal attention model is expected to enforce coherence.

In case of global approach, to achieve the highest cohesion while resolving all

mentions in the context [71]. This is based on the assumption that all mentioned

entities in the context occurs in the same context, thus related to each other. This

is also called topical coherence. In such type of approaches, all mentions are resolved

together collectively. In the literature, multiple methods have been proposed over

the years. In [72], their method builds a weighted graph of mentions and candidate

entities, and computes a dense subgraph that approximates the best joint mention-

entity mapping. Many other works are based on the Random Walk [73] and PageRank

algorithm [74]. Scores of entities obtained with these algorithms will be used to select

the matching entity for each mention in the context. In [75], their method called

Iterative Substitution jointly optimizes the identification of the mapping entities while
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maximizing the sum of pair-wise semantic similarities between all linked entities. In

more recent study [76], fast linking is achieved by applying the well-known Forward-

Backward algorithm [77]. Their approach only considers the adjacent assignments

in coherence optimization. Although graph-based approaches are shown to produce

robust and competitive performance, they are computationally expensive because the

graph may contain hundreds of vertices for documents with multiple mentions. Unlike

previous studies, [78] used the position of the mention in the context and avoided using

bag-of-words like approach by modeling the context with Long short- term Memory

(LSTM) and attention mechanism. On top of that, they also propose a pair-linking

algorithm, which iteratively identifies and resolves pairs of mentions, starting from the

most confident pair. They reported that Pair-Linking achieves comparable or even

better results than the state-of-the-art collective linking algorithms. [79] use memory

network [80] based model which leverages the importance of context words in an explicit

way, unlike other neural models such as RNNs and CNNs. Their approach used two

external memories; one to represent context words, other to represent descriptive words

in entity’s Wikipedia page. They regard context words as the memory and the mention

as the query to find important evidences from the memory. They trained their system

on annotated data collected from Wikipedia and tested on TAC-KBL 2010 evaluation

data set.

2.1.4. Mention Typing

Recall that named entity recognizer detects where mentioned named entity is

located in given text and also categorizes them into a predefined list of types. In the

early days, only three major types [81] are considered: those are person, location, and

organization. Even though we see the addition of the miscellaneous type in CoNLL-

03 [14] and later on types of geopolitical entities, weapons, vehicles and facilities [45], it

was not sufficiently large enough to make the NER effective for the relation extraction.

Because there can be hundreds or thousands of different relations between named

entities and that requires being able to categorize named entities of many types. To

solve this problem, [20] introduced the task of fine-grained entity recognition which

categorizes mentions into 112 unique groups based on Freebase types. For example,
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instead of just identifying person type, their approach looked to identify actor, doctor

and 13 other specific types of person. Apart from recognizing the mention in given

text, the task of identifying its type is called mention typing. In other words, mention

typing assumes that mentioned named entities in given text are already recognized

beforehand.

One of the important components of mention typing is the taxonomy of types

itself. While early studies like Ling and Weld relied on hand-picked set of types, later

studies expand the type set even further. [21] derived a very fine-grained type taxonomy

from YAGO [22] based on a mapping between Wikipedia categories and WordNet [82]

synsets. Their taxonomy contains a large hierarchy of 505 types. More recent studies

used tens of thousands of types [83] extracted from the Wikipedia category hierarchy.

In another study, [84] assumed the type set a open set by allowing a free-form phrase

to be the predicted type. Apart from the last approach, most of the studies in this task

used manually curated type taxonomy, such as Wikipedia categories. Even though it

requires tedious human work to curate such a large taxonomy, one important advantage

of using Wikipedia categories is that it also provides a huge set of annotated mentions

of named entities in Wikipedia articles in the form of hyperlinks. Being able to know

the possible types of named entities and having many examples of mentions allow

researchers to use that data as a training data to model the mention typing task.

Note that in the literature, mention typing is also referred as mention-level entity

typing or fine-grained entity typing. However, the term “entity typing” is also used

to refer to the task of identifying all possible types of a named entity given a large

set of corpus. This task is specifically called corpus-level entity typing. It is used for

knowledge base completion [85] which is the task of automatically inferring missing

facts by making use of the information already present in the knowledge base.

2.1.5. Clustering

Clustering is a task that groups similar objects into sets known as clusters so

that objects in the same cluster are similar to each other, while objects in different



18

clusters are dissimilar. It is very popular technique in the NLP literature, specifically

for two major types of use: exploratory data analysis (EDA) and generalization. EDA is

technique to discover the properties of the data with the minimal knowledge about that

data and summarize those main properties in the form of visual methods. Visualization

of clustered data points may give clues about the underlying structure of that data.

The second type of use is the generalization. In this case, as we group similar items

together, we can start to generalize certain information from which we know about

some members of clusters to others in the same cluster.

There are number of different clustering algorithm types depending on their un-

derlying methodology. However, most used ones are called partitional and hierarchical

clusterings. Partitional clustering partitions the entire data set into either a predeter-

mined or an automatically derived number of clusters. It tries to create high quality

clusters according to selected criterion function which measures the similarity or dis-

tance. The most famous clustering of this type is K-means clustering, which is the

one we use in our experiments. On the other hand, hierarchical clustering algorithms

create clusters with a hierarchical relation between them. Each node represents the

cluster that contains all the objects of its descendants. Depending on whether we use

top-down or bottom-up approach, there are two types of hierarchical clustering, namely

agglomerative and divisive clustering. Agglomerative clustering is a greedy bottom-up

approach and starts with a separate cluster for each item. In each step, the two most

similar clusters are merged into a new cluster. In case of divisive clustering, it is a

top-down approach and requires a method for splitting a cluster until singleton cluster.

Hierarchical clustering is good at recognizing underlying hierarchical structure of the

data, if exists. However, this advantage comes with a cost of computational efficiency,

which has a time complexity of O(n3). Whereas, K-means has a linear time complexity.

Having said that, partitional clustering is recommended when dealing with the high

number of data points.

Apart from different clustering methods based on underlying methodology, they

are also grouped into two types depending on how we assign data points to clusters;

those are hard clustering or soft clustering. In hard clustering, each data point either
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belongs to a cluster completely or not. In case of soft clustering, instead of assigning

each data point to a distinct cluster, a probability of that data point to be in each

cluster is calculated. In our experiments, we use hard clustering due to efficiency

reasons.

The most advantageous side of clustering is that it does not need any annotated

data. Hence, it is an unsupervised method. The only needed component is a similarity

measure so as to be able to calculate the level of similarity between two data points.

There are various similarity measures. Euclidean distance is considered as the standard

metric for the K-means algorithm [86]. It is the ordinary distance between two data

points. It calculates the root of square differences between the coordinates of a pair

of objects. Another measure is cosine distance (or similarity) which calculates the

cosine of the angle between two vectors. The higher the degree gets, the more distant

two vectors are from each other. There are also other measures like Jaccard distance,

Manhattan distance, Chebyshev distance, etc.

When it comes to its application in the literature, their unsupervised nature help

In early studies, clustering has been mostly used for grouping documents for better

Information Retrieval (IR) and extraction. For example, in case of cluster-based re-

trieval, it is hypothesized that similar documents match the same information needs so

retrieved documents is listed based on retrieved clusters [87]. Other studies categorized

named entities in order to improve document retrieval [88,89]. Later on, studies intro-

duced clustering words so that instead of dealing with hundreds of thousands words,

we map them to a few thousand clusters and use those clusters. This particular idea

is used specifically in class-based language models. [90] introduced the hypothesis that

similar words have similar distributions of words to their immediate left and right,

which is also called Brown clustering to be described in Section 2.2.6.

In this thesis, we proposed a cluster-based mention typing approach, where we

cluster named entities in our KB based on their contextual similarity as described in

Section 4.2.3. Then we use each cluster as a automatically generated named entity

type. We train a mention typing model based on these cluster-based types and use
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the predictions of the mention typing model as an extra clue for the named entity

disambiguation task.

2.2. Related Methods

2.2.1. Hidden Markov Models

A Hidden Markov Model (HMM) [91] is a statistical Markov model. Markov

models are used to model randomly changing environments. It relies on the basic

assumption that future state of the environment only depends on the current state of

the environment rather than its past states. It is called markov assumption. This helps

to reduces the complexity of the model of the environment by ignoring any complicated

dependency. In case of HMMs, we assume there are unobservable or hidden states.

HMMs are used to model time-based sequential series. We define the process in terms

of states and observations. Like the Markov assumption, we also have observation

independence assumption in HMMs, which states that current observation depends

only on the current state that outputs that observation. Even though the current state

of the system is not directly observable, the output is considered to be visible. Hence,

by observing these outputs, HMM can assign a probability to that sequence of outputs

without knowing the internal states. This way, we can predict the best possible state

sequence that generates that output.

p(X, Y) = p(x1)

t=1

T-1

p(xt+1|xt)

t’=1

T-1

p(yt’|xt’)

x1

y1

x2

y2

xt

yt

...

Figure 2.1. Sample HMM shown for joint probability calculation, p(X,Y).
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Figure 2.1 depicts a sample HMM model to calculate p(X, Y ). X’s are states

and Y’s are observations. We calculate the p(X,Y) by multiplying initial prior state

probability, transition probabilities p(xt+1|xt) and observation probabilities p(yt′ |xt′ )

at each state together. Note that transition and observation probabilities follow the

markov and observation independence assumptions, respectively. Figure 2.1 shows one

hidden state with one observation. However, for an HMM with N hidden states and

an observation sequence of T observations, there are NT possible hidden sequences.

Depending on the values of N and T, it may not be feasible to calculate the joint

probability. Instead of considering all possible cases, an algorithm called Forward

algorithm is used, which is written based on the dynamic programming paradigm

and reduces the complexity to O(N2T ). As it goes over the observation sequence,

it keeps track of intermediate values. At the end, it then computes the observation

probability by summing over the probabilities of all possible hidden state paths that

could generate the observation sequence. The task of obtaining the sequence of states

from the sequence of observations is called decoding. For HMMs, Viterbi algorithm [92]

is used for decoding, which is again based on the dynamic programming.

To give a real life example for HMMs within the context of the word segmentation

task, characters of the word can be represented as the observations. And the situation

which is whether there is a boundary or not at the observation point (i.e. before

corresponding character) can be represented as the state since we do not know if there

is a boundary or not. During our hashtag segmentation studies, we also implemented a

HMM-based segmentation model. Instead of representing each character as a state, we

expand each state with two previous characters, making it a 3-gram character model.

2.2.2. Language Models and OpenFST

A language model (LM), or statistical language model to be precise, defines a

probability distribution over sequences of words. Its main functionality is to calculate

the likelihood of the sequence of words in given input text. This capability makes it

very valuable tool for number of tasks, such as machine translation, speech recognition,

spell checking etc. Being able to calculate the probability of a word sequence also
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means that LMs can be use to determine the best next word coming after that word

sequence. This becomes especially useful in natural language generation related tasks.

LM calculates the joint probability of all words in the sequence which is not feasible

as the length of that sequence increases. Hence at its core it uses various assumptions

and heuristics like the chain rule in probability theory and Markov assumption as

mentioned in previous section. The main parameter of the language model is the

length of history we desire to consider at the calculations. If we consider none of the

any previous words, it is called unigram model, which is the most basic LM model.

However, in order to calculate the probability more accurately, we need to consider

as much history as possible. Modern LMs use up to 5-6 previous words, which makes

them very powerful yet hard to calculate models.

In our experiments, we use LM in our hashtag segmentation studies. With the

help of OpenFST tool, we represent all the possible segmentation of hashtags in a

graph and then use a LM to score this graph and pick the highest scored path. This

path gives us the best possible segmentation calculated by the LM.

OpenFST [93] is a open-source library to construct and use weighted finite-state

transducers (FSTs). FST is a finite automaton which consists of set of states and arcs

connecting those states. Specific to FST, each arc includes input and output labels

where input label is acted as constraint to transition from one state to another by

using that arc. When it is used, it produces output label on the same arc. In case of

weighted FSTs, each arc is also associated with a weight. In the literature, OpenFST

is frequently used tool to work with LMs.

We implemented our OpenFST approach in C++ by using corresponding libraries

of the OpenFST. Our implementation requires a LM and a lexicon in FST format. We

use SRILM tool in order to obtain the language model on given training data set.

However, it outputs the model in its own SRI format. By using make-ngram-pfsg tool,

we first convert it to AT&T format and then use pfsg-to-fsm to get it in FSM format.

As we print out the arcs in plain text, we are able to create FST out of that plain text.

In case of lexicon, we extract it from the data set that we train our LM.
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0 1
g:g/1.0

2 3
e:e/1.0r:r/1.0

4
a:a/1.0

5
t:t/1.0

Figure 2.2. FST representation of word ’great’. Arc weights are 1.0.

When input text with no spaces is given to our OpenFST program, it first creates

a simple FST where each character of the input is converted to an arc. Hence, the input

text is represented as single line FST. To give an example, Figure 2.2 depicts a FST

of word “great”. After converting input to an FST, we compose this FST with our

lexicon FST. This process matches character arc sequences with words in the lexicon

and creates word arcs on top of sequence of character arcs. The next step is to compose

the expanded FST with LM FST. This assigns score to word arc sequences so that we

can choose the highest scored paths. As we traverse the paths, we extract the highest

scored segmentations.

2.2.3. Maximum Entropy Model

Statistical models like HMMs, Naive Bayes etc. assume that features are inde-

pendent from each other. Even though this assumption simplifies the estimation of

feature weights, in reality interaction between features can be complex. And training

data may not include all possible interactions. Hence the model starts to fill or predict

the missing interactions. Complexity of the model may increase when it starts to make

assumptions about that missing data. Maximum Entropy (MaxEnt) Models [94] can

handle feature interactions without falling into that complexity trap. Compared to

other models, MaxEnt models make no assumption about missing or unknown part

of the data. It basically makes a minimum assumption about the prior distribution

over the data. It achieves this by assuming uniform distribution for unknown cases.

That maximizes the uncertainty, that is entropy H(p) of the model, hence the term

maximum entropy.
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H(p) = −
n∑
i=1

pilogpi (2.1)

pi ≥ 0

n∑
i=1

pi = 1

n∑
i=1

pirij = αj , 1 ≤ j ≤ m

(2.2)

Shannon [95] introduced the definition of the entropy H(p), which is given in

Equation 2.1 subject to the Conditions 2.2. It is a way to estimate the average mini-

mum number of bits needed to encode a string of symbols based on the frequency of

the symbols. The maximum entropy principle is a problem that is solved with the con-

strained optimization. To solve, we apply the method of Lagrange multipliers on H(p)

and then calculate the derivative of that with respect to pi. The result is maximum

entropy distribution given in Equation 2.3 where λ0, λ1, ..., λm are chosen based on the

Conditions 2.4.

p∗ = arg max
p

H(p)p∗i =
e
∑m

j=1 λjrij

e1−λo
(2.3)

p∗i ≥ 0

n∑
i=1

p∗i = 1

n∑
i=1

p∗i rij = αj , 1 ≤ j ≤ m

(2.4)

In our research, we use maximum entropy model in our hashtag segmentation

studies. We specifically use C++ version of the maxent toolkit developed by Le Zhang

[96].
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2.2.4. Word Embeddings and word2vec

From computer’s point-of-view, words themselves are no more than symbols.

Symbols are good tool for labeling concepts and referring to things when needed.

However, they are very hard to operate computationally. We can only compare them by

looking at the differences between their surface forms. In order to achieve high levels of

natural language processing, we should be able to compare words at the semantic level,

measure their similarity to each other, and even do other computational operations like

adding or subtracting their meanings and taking the average meaning of set of words.

The motivation behind representing words in terms of vectors comes from two

fields, namely Information Retrieval (IR) and Language Modeling (LM). IR research

field involves searching relevant documents to a given query. Hence being able to repre-

sent documents and query in the same representation format is essential for the success.

Vector Space Model (VSM) [97] came to the light to achieve this. VSM is a encoding

procedure where each document in a collection is represented by a t dimensional vector

and each element represents a distinct term contained in that document. These ele-

ments may be binary or real numbers. With the introduction of vector representation,

one can apply mathematical operations like calculating the similarity between docu-

ment vectors or between document and query vectors. VSM is the earliest method of

representing words as vectors, yet it is not that informative and efficient.

The second area that is interested in word representations is LM. As discussed

in Section 2.2.2, LMs defines a probability distribution over sequences of words and

calculate the probability of seeing the next word after given sequence o words. It is

basically calculated with the Maximum Likelihood Estimation (MLE), over all words

in the vocabulary. However, as the size of the vocabulary gets highers, problems

tend to occur. To cope with this, different smoothing techniques and method called

backing-off [98] have been introduced over the years. Another solution was to cluster

words [90] and generalize words with corresponding classes so that required number

of calculations is reduced significantly. More recently, neural networks [99–101] have

been used to obtain word representations in vectors, which is better known as word
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embeddings today. Despite recent ground-breaking improvements in this area, it is

worth mentioning that using neural networks to obtain word representations was not

that new. In 1986, [102] used the early neural networks to calculate some form of word

representation.

Today, word2vec [101] is one of the most used tools to obtain word embeddings, in

addition to GloVe [103] and FastText [104]. Word2vec uses a neural network approach

to calculate the word embeddings. However, unlike recent deep neural networks which

contain many number of hidden layers, word2vec uses a single hidden layer as depicted

in Figure 2.3. It takes in the vector representation of a single word, passes it through

that hidden layer and uses a softmax activation layer at the end to predict the nearby

word which is located inside the boundary of a window with predefined width. This

model is called skip-gram model. This approach is based on the notion that “you shall

know a word by the company it keeps” [105]. Having said that, words that occur in

similar context is expected to have similar word representations in the vector space.

wt
Input

Projection

wt-2 wt-1 wt+1 wt+2 Output

Figure 2.3. Word2vec’s Neural Network with the Single Hidden Layer.

The training objective of the skip-gram model is to calculate the word representa-

tions that are good at predicting the surround words in a given sentence. In formal way,

the objective function is given in Equation 2.5 given a sequence of words w1, w2, ..., wT ,

where c is the window size to be considered around wt.
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1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (2.5)

The final layer of the neural network is the softmax layer as formulated in Equa-

tion 2.6, where vw and v
′
w are the input and output vector representations of the word

w respectively and W is the number of words in the vocabulary. However, it is not

practical to use this softmax function as its complexity is proportional to W which can

be a very large number in the order of 105 to 106. One of the of word2vec is the intro-

duction of two heuristic methods called hierarchical softmax and negative sampling.

Thanks to these methods, word2vec is able to reduce to complexity of the algorithm

to acceptable range.

p(wO|wI) =
exp(v

′
wO

TvwI
)∑W

w=1 exp(v
′
w
TvwI

)
(2.6)

The word2vec tool accepts raw text as input, which makes it very easy to use. It

assigns a randomly initialized vector to each seen word and iterates through the input

until the convergence. At the end, it outputs tuned word embeddings for each word.

The size of the embedding vector is given as parameter which is chosen between 50-

1000 depending on the intended purpose of the embeddings. The important parameter

of the tool is the window size. Usually 5-10 is chosen as the window size. The smaller

it is set, the more syntax oriented similarity is encoded into the word embeddings.

As it gets higher, word embeddings convey more semantic similarity as the considered

context around the center word gets larger. In our experiments with the named entity

disambiguation, we use word2vec extensively. In addition to that, we also use altered

version called word2vecf [106] which works the same way but accepts the input in two

columns rather than raw text.
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2.2.5. K-means Clustering

K-means clustering is one of the most popular unsupervised machine learning

algorithms. it aims to group similar data points together into fixed number of clusters.

“K” in the K-means corresponds to that fixed number. K is either predefined given

number or it can be determined after testing multiple K values and picking the right

one based on some criteria, such as the one that gives the minimum mean distance

between each data point and the centroid of its assigned cluster.

c(i) = arg min
x

∥∥x(i) − µj
∥∥2

(2.7)

µj =

∑m
i=1 1{c(i) = j}x(i)∑m
i=1 1{c(i) = j}

(2.8)

K-means algorithm starts with assigning each data point x(i) to randomly selected

cluster c(i). The cluster centroid µj ∈ IRn is the arithmetic mean position of the cluster.

The algorithm then runs iteratively and looks for the nearest centroid for each data

point and re-assigns it to that centroid, if it is not already assigned to that. This way,

it optimizes the positions of the centroids after each full pass over the data points. It

halts when either predefined number of iterations have been achieved or no more than

significant number of data points have been re-assigned at the last iteration.

2.2.6. Brown Clustering

Brown clustering [90] is a hierarchical agglomerative clustering method based

on distributional information. It is based on the hypothesis that similar words have

similar distributions of words to their immediate left and right. It uses a binary merging
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criterion based on the log-probability of a given tokens under a class-based language

model. Class-based language model considers the fact that each token is a member of a

class. Brown clustering uses Average Mutual Information (AMI) in Equation 2.9 as the

optimization function. AMI measures the information contained in random variable Y

about the random variable X. Brown clustering merges clusters such that the merge

results in the least loss in global mutual information.

I(X;Y ) =
∑
X,Y ∈A

P (X, Y )log(
P (X, Y )

P (X)P (Y )
) (2.9)

In our experiments, we use brown clustering in the named entity disambiguation

studies. We obtained brown clusters for named entities in Wikipedia. We did this

by collecting a list of named entity ids that occur in each Wikipedia article. This

represents co-occurrence relation among entities. At the end we get large file which

contains rows of entity id listing, each row corresponding to one Wikipedia article. We

used fast C++ implementation of Brown clustering [107] in order to obtain the entity

clusters.

2.2.7. Deep Neural Networks

Neural Networks mimic the way human brain works. They take in an input

and transform it through a series of hidden layers. Each hidden layer consists of

a set of nodes and those nodes are connected to other nodes in the previous layer.

Whole interconnected structure resembles and functions like a network of neurons in

our brain. Like neurons, these nodes receive an input value and transforms it into

a another value by multiplying it with the weights, which amplifies or dampens the

input value. Multiplication of input values with weights are summed and the final

value goes into the activation function where it is determined whether input signal is

allowed to go through. A typical neural network consists of three types of layers as
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depicted in Figure 2.4; input and output layers and number of hidden layers inbetween.

The higher the number of hidden layers is, the deeper the network gets. As the neural

network is being trained, it tunes its weights by going through each training instance

with the objective of minimizing the difference between the real output and predicted

output. This difference is calculated at the output layer and it is redirected into

the neural network in backward direction, which is called back-propagation. As the

difference follows backward from upper layers to the lower layers, weights of the nodes

inside layers are adjusted to reduce the future observed difference at the output. This

forward-backward process continues until convergence.

Input Layer Hidden Layers Output Layer

Figure 2.4. Simple neural network.

In this thesis studies, we use neural networks while doing named entity disam-

biguation. While there are various types of architectures available in the neural network

repertoire, we used specifically Long-short Term Memory (LSTM) networks which are

derived from the Recurrent Neural Networks (RNNs) and Convolutional Neural Net-

works (CNNs). In the following subsections, we describe how these two networks work.

2.2.7.1. Recurrent Neural Networks. A recurrent neural network is a type of neural

network architecture specifically suited for modeling sequential data. As shown in

Figure 2.5, they are networks with loops which allows information to be carried from
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one step of the network to the next. In other words, loops allows information persist

within the network.

Xt

ht

Figure 2.5. Recurrent neural network having a loop.

In order to see how recurrency works, you can imagine the network at each time

step as shown in Figure 2.6. This can also be seen as multiple copies of the same

network at different time points. This chain-like structure is inherently related to

sequences hence their ability to model sequences. Input and even output of RNNs can

be sequence of vectors.

X0

h0

X1

h1

X2

h2

Xt

ht

...

Figure 2.6. An unrolled recurrent neural network.

In more formal language, at each time step t, an RNN takes the input vector

xt ∈ RN and the hidden state vector ht−1 ∈ RM from the previous time step and

produces the next hidden state ht by applying the following recursive operation:

ht = f(Wxt + Uht−1 + b) (2.10)

where W∈RMxN , U∈RMxM , and b∈RM are parameters. f is a non-linear activation

function applied element-wise. In theory, RNNs can compress and represent all his-

torical information up to time t with the hidden state ht. However, in practice it was

shown that vanilla RNNs cannot learn long-range dependencies due to vanishing or

exploding gradients [108] because as we multiply the gradient of the typical activation
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function (eg. tanh or sigmoid) many times, gradient is lost along the way. To cope

with this, variant of RNN called Long short-term Memory (LSTM) network was intro-

duced [109]. LSTM does not use activation function for hidden state, which eliminates

the vanishing gradient. Instead, it contains three multiplicative gates which control

how much information to forget and to pass on to the next time step. Note that LSTM

still experience exploding gradient which can be handled by optimization strategies

like gradient clipping. Following details how to update LSTM cell at time t:

it =σ(Wixt + Uiht−1 + bi)

ft =σ(Wfxt + Ufht−1 + bf )

gt =tanh(Wgxt + Ught−1 + bg)

ct =ft � ct−1 + it � gt

ot =σ(Woxt + Uoht−1 + bo)

ht =ot � tanh(ct)

(2.11)

Here σ(·) and tanh(·) are the element-wise logistic sigmoid and hyperbolic tangent

functions respectively. � is the element-wise product, and it, ft, ot are referred to as

input, forget, and output gates, respectively, all having the same size as the hidden

vector h. ct is cell state and LSTM can add or remove information to the cell state by

gates. Sigmoid function of each gate outputs numbers between zero and one, deciding

how much information can pass through the gate. At t=1, h0 and c0 are initialized to

zero. Wi, Wf , Wg and Wo are weight matrices of different gates for input xt, while Ui,

Uf , Ug and Uo are weight matrices for hidden state ht−1. Whereas bi, bf , bg and bo are

bias vectors.

For sequential tagging tasks, when we have access to both past (left) and future

(right) context, we can make use of both context by using what is called bidirectional

LSTM (BiLSTM) network [110]. It works by giving the input sequence backwards

and forwards to two hidden states separately in order to capture past and future

information, respectively. Then those two hidden states are combined into final output.

It is also possible to extend RNN or LSTM by putting multiple layers on top of

each other and using lower layer’s hidden state as the input for the upper layer. Such
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stacked layers increases the capability of the architecture to learn complex relations.

However optimum number of layers depends on the problem at hand.

2.2.7.2. Convoluational Neural Networks. The Convolutional Neural Network (CNN)

is a specialized type of neural network architecture designed for working specifically

with two-dimensional data, such as images, while it is still possible to apply them

on one-dimensional and three-dimensional data. Their main application area is the

image recognition which involves classifying objects in images and even pinpointing

their exact location. For example, its earliest application is the Optical Character

Recognition (OCR) to digitize written documents.

CNNs are different than traditional neural networks not only due to being able to

handle multi-dimensional input. The nodes in the layers are not necessarily connected

to every other node in the previous layer, but only to a small region of it. Depicted in

Figure 2.7, a simple CNN consists of two major parts; feature extraction part which

includes convolution and pooling operations and fully-connected part at the end to do

the actual desired classification.

PoolingConvolution
(feature maps)

Input Image Fully
Connected

Layer

Figure 2.7. A Simple Convoluational Neural Network.

CNNs starts with applying the convolution on the input, which is the mathemati-

cal combination of two functions to produce the third function. In case of CNN, it runs

the filter (or kernel) on the input and produces a feature map. This process involves

sliding the two-dimensional filter over the two-dimensional image and at each location a

matrix multiplication is performed and results are gathered inside another two dimen-
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sional vector, which is called the feature map. As in case of regular neural networks,

activation function can be used to make the output of convolution non-linear. TanH

and ReLU are the two of the most used activation functions in the literature. TanH

squash the values into a range between -1 and 1, whereas ReLU maps the negative

values to zero and leave positive values as they are.

The second operator of the feature extraction part of the CNN is pooling layer,

which is also called downsampling or subsampling. It is responsible for reducing the

spatial size of the feature map. This is to decrease the computational power required

to process the data through dimensionality reduction. Furthermore, it is useful for

extracting dominant features which are rotational and positional invariant, thus main-

taining the process of effectively training of the model. The most used pooling function

is maxpooling which returns the maximum value from the portion of the image covered

by the kernel. Only the part of the images that shows the strongest correlation to each

feature is selected by the maxpooling. There can be number of convolution and pooling

layer pairs on top of each other in a CNN.

After series of convolution and pooling layers, one or more fully connected layers

are placed on top of them. These layers are like regular neural network layers, each node

in the layer is connected to every node in the previous layer. This part is responsible

for using the extracted features from the first part to classify the input.

While applying CNN on any task, there are number of parameters to choose.

Kernel size of the convolutions, number of filters to use, stride (the size of steps while

sliding filter), padding at the edges, activation function are the major parameters for

the convolution. There are also different pooling methods such as average pooling.

The number of convolution and pooling layers on top of each other is also another

parameter, not to mention each such layer can have its own customized parameter

settings. Finally, the number of fully connected layers at the top and number of nodes

in each of them are the other set of parameters to decide.
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CNNs are not only used with images. They have been extensively used for text

classification, sentiment detection etc. in the NLP literature. This is possible since

a sequence of words forms a two dimensional input which consists of time and word

embedding dimensions. In our named entity disambiguation experiments, we use CNN

in order to characterize mentions, which is also defined as a classification task. We

input sequence of words at the left and right context of the mention into two CNNs and

connect them together with the another fully connected layer at the top as described

in Section 4.2.6.
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3. Segmenting Hashtags

After one year Twitter was debut in 2006, on August 23, 2007 at 10:25pm, Chris

Messina suggested something that no one ever has suggested before. He tweeted “how

do you feel about using # (pound) for groups. As in #barcamp [msg]?” This was the

birth of hashtags. Their existence came out of necessity to tag channels in Twitter so

that people can filter those tweets that are labeled by specific hashtags. Since then, we

use hashtags not only to label channels, but also to convey the actual message that we

want people to hear. When big events happen, Twitter users get coordinated and use

hashtags that are specific to that event. That way, frequently mentioned hashtags in a

short time period show up in the trending hashtags list, thus the messages that these

hashtags convey. Some hashtags are short and compact, while others, especially the

ones that convey some message, can be long, particularly when they are formed from

clauses or complete sentences. #IfTheyGunnedMeDown, #TwitterIsBlockedInTurkey,

#BringBackOurGirls are example hashtags that were seen in the trending lists in the

past years. As these examples suggest, in order to do complete social network content

analysis, we should be able to segment hashtags into their original words and unleash

their content for Natural Language Processing (NLP) tasks such as sentiment analysis

and named-entity recognition.

Considering the history of the NLP field, hashtags are quite a new concept.

Recently, a number of studies have shown that they can be effectively used for various

social media NLP tasks such as for text classification [111], query expansion [112], and

emotion detection [113]. These studies reveal that hashtags have started to attract

the attention of the NLP community. However, so far, no extensive study has been

done on segmenting hashtags and analyzing their grammatical structure. Most prior

studies use their function of being a label without breaking them into their constituent

words [114]. When they need segmented hashtags, they either use the traditional word

segmentation tools [115] or employ simple glossary and rule based approaches [111].

Despite their high accuracy at segmenting words, such tools have not been originally

designed for hashtag segmentation. Our study [23] and [116] showed that hashtag
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segmentation presents a more challenging task than traditional word segmentation, as

both studies outperformed the state-of-the-art word segmentation tool Word Breaker

[43] at segmenting hashtags.

In the first part of this thesis, we develop a feature-rich machine learning based

approach for hashtag segmentation. Here are the list of contributions for this part:

(i) Unlike the traditional supervised machine learning setting, where training is per-

formed using manually annotated training data, we utilize the large amount of

unlabeled data available in the social media and use two approaches to automati-

cally create our training data. In this respect, our approach can be considered as

weakly-supervised. First, we use normalized tweets to create synthetic hashtag

segmentations. Second, we design a special heuristic approach which automati-

cally extracts hashtag segmentations from a large set of tweets.

(ii) We create and share two data sets each one consisting of 1000 manually segmented

hashtags.

(iii) Most prior work do the segmentation in isolation from the context in which a

hashtag occurs. To utilize the words that occur together with the hashtag, we

introduce context-based features. Moreover, we use not only the single tweet

that hosts the hashtag, but also multiple tweets that hold the same hashtag. We

distinguish the difference as local and global context.

(iv) Apart from the feature-based approach, we present a language model (LM) based

hashtag segmentation approach. We look into how LM alone performs at seg-

menting hashtags and then, blend the LM-based approach into the feature-based

one by introducing new features based on the top best LM-based segmentations.

We show that combining context-based features and LM-based features leads to

improved performance.

(v) We run our best hashtag segmentor on 2.1 million distinct hashtags and obtain

their automatically segmented forms. With that set, we first measure how much

sentiment is trapped inside multi-word hashtags. Then, we parse this set by using

a dependency parser and study their grammatical structure. To the best of our

knowledge, this is the first study that reports on the constituent word analysis of
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a large set of automatically segmented hashtags. We argue that such an analysis

reveals the extend of hashtags’ complexity as well as the need to use hashtag

segmentors.

3.1. Related Work

Precursor to hashtag segmentation, the earliest related work is word segmenta-

tion, which is described in Section 2.1.1. Compared to traditional word segmentation

studies, there are only a handful of studies on hashtag segmentation. [117] use an

unsupervised method with a joint probability model learned from multiple corpora.

However, they evaluate their segmentor only by observing improvement in the Twitter

search recall measure. [118] tackle the problem as a compound word segmentation task

and apply the well-known Viterbi algorithm [92] to choose the best possible word se-

quence. Their hashtag segmentor has not been evaluated independently, but has been

used as a component in a search system for tweets. [119] develop a hashtag tokenizer

for GATE [120] by applying a Viterbi-like algorithm to look for the best possible match

by using multiple gazetteers in the GATE framework. [121] focus on normalizing the

surface forms of hashtags in the form of case normalization, lemmatization and syntac-

tic segmentation. They examine tagged and parsed versions of CamelCased hashtags

in a domain specific data set. [116] introduce a hashtag segmentor which starts with a

set of possible segmentations and ranks them by using five features, including context

similarity. They achieve 87.3% accuracy using 5-fold cross validation on their manually

annotated test set. While evaluating our hashtag segmentation model, we also use their

test set, which we call Test-STAN. In our recent study, we developed a feature-rich ap-

proach using MaxEnt and CRFs as the learning algorithms [23]. Various vocabulary-

and orthographic-based features were designed. The use of auto-segmented hashtags

for training versus tweets was evaluated. While using tweets for training resulted in

better performance, MaxEnt was shown to outperform CRFs. An accuracy of 88.2%

was achieved on our manually annotated test set, Test-BOUN [28]. On Test-STAN,

the best accuracy value obtained was 85.4%.
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3.2. Our Approaches to Segment Hashtags

3.2.1. Feature-based Approach

We formulate the segmentation problem as a boundary detection task in a given

sequence of characters. In this setup, each character becomes an individual training

instance for the learning algorithm and is labeled as being the first character (bound-

ary) of a word or not in the sequence. Imagine we have an imaginary cursor pointing

to a character in the given sequence as in Figure 3.1. At each position, we determine

the active features and the learning algorithm uses these features to model this binary

classification task. For each training instance, its class and the list of active features

are given to a MaxEnt model for learning [96]. Each feature is represented as a string

constructed as feature name=feature value, where feature value is obtained based on

the current cursor position. We consider various features with different characteristics.

These features and their initialized values based on the cursor position shown in Fig-

ure 3.1 are listed in Tables 3.1, 3.2, 3.3, 3.4, and 3.5. The first column shows how to

set the values for the corresponding features by using functions1 . The second column

contains the active feature instances, each one constructed as a string consisting of

feature name and value pairs. We group the features into four categories:

# P h o t o O f T h e D a y

WsWe

Wo

Wee Wss

Figure 3.1. Showing the words detected around the cursor position for the hashtag

#PhotoOfTheDay; Ws: longest word at cursor position; We: longest word before Ws;

Wee: longest word before We; Wss: longest word after Ws; Wo: overpassing word “ft”

1The descriptions of the functions that are not already described in text are as follows: ifExist(·)
checks if the given input exists; isUpper(·) and isLower(·) check if there is an upper and lower case
letter in the given position, respectively; isNumber(·) checks if there is a digit in the given position;
ifRestIsNumber(·) checks if all characters from the given position till the end of the input are digits;
countRepeatedCharactersAt(·) counts the number of repeating character starting at the given position
and countRepeatedCharactersAtBackward(·) does the same backward; ifShortWord(·) checks if a given
word is a short word; ifBigramExists(·, ·) checks if the given two words are seen as a bigram in the
training set.
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Table 3.1. Listing all active vocabulary-based feature instances generated based on the

cursor position shown in Figure 1, where Ws=the, Wss=day, We=of, Wee=photo, and

Wo=ft. The plus sign (+) is used as a separator to make the reading easy.

TEMPLATE OF FEATURE VALUE ACTIVE FEATURE INSTANCE

Ws longest word starting at cursor=the

len(Wo) length of overpassing word=2

ifExists(Wo) if overpassing word exists=TRUE

ifExists(We&Ws) if words around cursor position exist=TRUE

ifExists(Ws)&isUpper(cursor [0]) if word at cursor position exists

&isLower(cursor [-1]) and cursor position in upper case=TRUE

ifExists(We&Ws)&isUpper(cursor [0]) if words around cursor position exist

&isLower(cursor [-1]) and cursor position in upper case=TRUE

len(Ws) length of longest word starting at cursor=3

len(Wo)+flNegLogProb(Wo) length and floored neg log prob. of overpassing word=2+3

len(Ws)+flNegLogProb(Ws) length and floored neg log prob. of longest word at cursor=3+1

len(We)+len(Ws)+len(Wo) length of words around cursor and overpassing word=2+3+2

shortWordAt(cursor [0])+len(We)+len(Wss) short word in middle and length of surr words=the+2+3

len(We)+flNegLogProb(We) length and floored neg log prob. of word ended before cursor=2+1

len(Wee)+flNegLogProb(Wee)+len(We) length and floored neg log prob.

+flNegLogProb(We) of two words before cursor=5+3+2+1

len(We)+len(Ws) length of longest words around cursor=2+3

len(We)+flNegLogProb(We)+len(Ws) length and floored neg log prob.

+flNegLogProb(Ws) of words around cursor=2+1+3+1

len(Ws)+flNegLogProb(Ws)+len(Wss) length and floored neg log prob.

+flNegLogProb(Wss) of bigram starting at cursor=3+1+3+1

flNegLogProb(We)+flNegLogProb(Ws) floored neg log probability of words around cursor=1+1

wordClass(We)+wordClass(Ws) word class bigram around cursor=10110+110100

wordClass(Ws)+wordClass(Wss) word class bigram at cursor=110100+11100111010

3.2.1.1. Vocabulary-based Features. Vocabulary-based features look for words around

the cursor position in a character sequence based on a given vocabulary. We create our

vocabulary from all used training data sets, which are described in the Training and

Test Data Sets section. As shown in Figure 3.1, we look at five positions w.r.t. the

cursor position for the longest matching words2 . While the existence of an overpassing

word (Wo) such as ’ft’ in Figure 3.1 suppresses the boundary decision, words starting

at the cursor position (Ws) and ending just before the cursor position (We) are positive

indicators for a boundary for that position. The longer they are, the more likely there is

a boundary. Apart from using the longest word Ws as a feature, we also define features

that represent words in terms of their lengths (len(·)) and floored negative unigram

2Assume that there is no longer word in our vocabulary that can match in this specific example.
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log probabilities3 (flNegLogProb(·)). For example, the unigram log probability of the

word “the” is -1.808. Hence, one of the features in Table 3.1 represents the word “the”

(Ws) with the combination of its length 3 and its floored negative log probability 1

(i.e., length and floored negative log probability of longest word at cursor = 3 + 1).

We also use the class codes of the words (wordClass(·)), which we obtain from CMU’s

Twitter Word Clusters [122]. To give an example, since the words “of” and “the”

are represented with Word Cluster codes 10110 and 110100, respectively, one of the

features in Table 3.1 (i.e., word class bigram around cursor = 10110 + 110100) uses

this information to represent the word bigram, where the first word (We) occurs be-

fore the cursor position and the next one (Ws) starts at the cursor position. Such

representations group words into equivalence classes and reduces the number of model

parameters, hence reducing the complexity of the model. We observed that especially

features where words are represented with their lengths and floored negative log prob-

abilities together are more effective in general compared to using the words themselves.

Moreover, since short words4 like “of”, “the” etc. may be seen very frequently inside

any hashtag, one of our effective features looks for a short word shortWordAt(·) at

cursor position which is also supported by the existence of surrounding words We and

Wss.

3.2.1.2. N-gram based Features. Listed in Table 3.2, N-gram based features are ex-

tensions of word-based features. Detecting word bigrams around the cursor position

like (We, Ws) and (Ws, Wss) can be quite indicative of a boundary. Moreover, we

define features based on the bigram frequencies obtained from all our training data

sets. These frequencies are clustered according to their ranges and represented by

their cluster indices. bigramFreqClass(·, ·) assigns a cluster index of 1, for example, if

frequency is higher than 5005 . Similarly to the shortWordAt(·) feature, there is also

a feature that looks for bigrams that are constructed from short words only, like “of

the”. shortNgramAround(·) returns such bigram around the cursor position.

3We use Microsoft’s Web N-Gram Service to collect unigram log probabilities of words in our
vocabulary.

4The list of short words and short bigrams (consisting of short words) that we compiled is available
at our project web site.

5Cluster indices of 6, 5, 4, 3, 2, and 1 are assigned when frequency is lower than 5, 10, 50, 100,
200, and 500, respectively.
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Table 3.2. Listing all active ngram-based feature instances generated based on the cursor

position shown in Figure 1, where Ws=the, Wss=day, We=of, Wee=photo, and Wo=ft. The

plus sign (+) is used as a separator to make the reading easy.

TEMPLATE OF FEATURE VALUE ACTIVE FEATURE INSTANCE

shortNgramAround(cursor [0])+len(Wee) short ngram over cursor and length

+len(Wss) of surrounding words=of the+5+3

bigramFreqClass(We,Ws)+flNegLogProb(Wo) freq class of bigram around cursor

+len(Wo) and overpassing word length=1+3+2

ifBigramExists(We,Ws) if words around cursor seen as bigram=TRUE

bigramFreqClass(We,Ws) frequency class of bigram around cursor=1

bigramFreqClass(Ws,Wss) frequency class of bigram starting at cursor=1

bigramFreqClass(Ws,Wss) frequency classes of bigram starting

+bigramFreqClass(We,Ws) at cursor and around cursor=1+1

len(We)+len(Ws)+len(Wo) len of words around cursor and overpassing and freq

+bigramFreqClass(We,Ws) class of bigram around cursor=2+3+2+1

We+Ws bigram with short word around cursor=of+the

Table 3.3. Listing all active orthography-based feature instances generated based on the

cursor position shown in Figure 1, where Ws=the, Wss=day, We=of, Wee=photo, and

Wo=ft. The plus sign (+) is used as a separator to make the reading easy.

TEMPLATE OF FEATURE VALUE ACTIVE FEATURE INSTANCE

orth(cursor [-1])+orth(cursor [0]) orthographic shape of previous and current character=c+C

orth(cursor [-1])+orth(cursor [0]) orthographic shape of previous

+orth(cursor [1]) current and next characters=c+C+c

orth(cursor [-2])+orth(cursor [-1]) orthographic shape of previous two

+orth(cursor [0]) and current characters=C+c+C

orth(cursor [-3])+orth(cursor [-2]) orthographic shape of previous three

+orth(cursor [-1])+orth(cursor [0]) and current characters=c+C+c+C

cursor [0]+cursor [1]+cursor [2] three character starting at cursor=t+h+e

isNumber(cursor [0]) if number starts at cursor position

& ifRestIsNumber(cursor [0]) and continues till end=FALSE

countRepeatedCharactersAt(cursor [0]) num of times character at cursor repeats forward=0

countRepeatedCharactersAtBackward(cursor [0]) num of times character at cursor repeats backward=0

3.2.1.3. Orthographic shape-based Features. Orthography-based features complement

the vocabulary-based ones. They are listed in Table 3.3. orth(·) converts characters to

their orthographic shapes6 . A capitalized letter or a number around the cursor posi-

tion can be a good indicator of a boundary. Orthography-based features are especially

effective when no word is detected at the cursor position.

6Upper-case letter is replaced with ‘C’, lower-case one with ‘c’, digit with ‘d’; otherwise the
character itself is used
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3.2.1.4. Context-based Features. Context-based features make use of words that occur

in the same tweet that hosts the hashtag. We consider three context-based features.

Table 3.4 presents the context feature instances generated for the example tweets in

Figure 3.2. The simplest feature looks at whether a word in the tweet is seen in the

hashtag starting at the cursor position. To give an example, in Figure 3.2, the first tweet

includes a hashtag #nationalwineday, while the word ”wine” also occurs in the tweet.

Since such detection doesn’t require any vocabulary, this feature is complementary to

vocabulary-based features.

The second feature looks for semantically similar words in the tweet to the word

starting at the cursor position (Ws) in the hashtag. If Ws is semantically similar to a

word in the tweet, then that signals the existence of Ws in the hashtag. We use the

distributed representations of words to compute their semantic similarity. To obtain

that, we train the word2vec tool [101] on the Stanford Twitter Sentiment Analysis

Data set [123] with default parameters to produce a 100-dimensional vector for each

word. The value of this feature is set as the cosine similarity value between the vectors

of Ws and the word that is most similar to Ws in the tweet. In Figure 3.2, the word

“prevent” in Tweet 2 can help to identify the boundary starting with the semantically

similar word “blocked”.

Tweet 1:

Tweet 2:

word-in-context=4+3

orthographic-shape-distribution-in-context=cCc-ccc

most-sem-similar-word-in-context=0.7

Figure 3.2. Sample tweets exemplifying the context-based features.

Considering the fact that the same hashtag may occur in a number of tweets, we

can collect a set of tweets that contain the same hashtag and use all their words as an

extended context. We call this global context, whereas the case where only one tweet

that hosts the hashtag is used is called local context. This increases the chance of

identifying words in hashtags that are mentioned in the global context or semantically

related to them. Moreover, since different capitalized versions of the same hashtag may
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Table 3.4. Listing all context-based feature instances generated based on the cursor

positions shown in Figure 3.2, where Ws=wine for Tweet 1, Ws=blocked for Tweet 2. The

plus sign (+) is used as a separator to make the reading easy.

TEMPLATE OF FEATURE VALUE ACTIVE FEATURE INSTANCE

(feature name=feature value)

len(Ws)+flNegLogProb(Ws) word-in-context=4+3

orthoShapeDist(Ws) ortho-shape-dist-in-context=cCc-cc

cosine-similarity(Ws, Wc) highest-sem-similarity-in-context=0.7

occur in a given tweet set, as a third feature, we look for orthographic shape differences

among all occurrences of a hashtag. We count the number of different capitalization

cases around the cursor position in a window of 3 characters, order them based on

their frequencies, and create a feature from these ordered orthographic shapes. For

example, assume that we have 10 tweets that include #NationalWineDay and 2 tweets

with #nationalwineday. As the cursor is at the starting character of word ‘wine’, there

are 10 “cCc” and 2 “ccc” orthographic shapes observed around that cursor position.

For this case, the feature has the value “cCc-ccc”, which is a concatenation of the

ordered orthographic shapes with a hyphen in between.

3.2.2. LM-based Approach

Besides the feature-based approach to detect word boundaries, we also consider a

completely different approach, which takes into account all likely segmentations, scores

each with a language model (LM), and chooses the highest scoring word sequence as the

best segmentation for the input character sequence. An LM-based approach is generally

successful at detecting word sequences and such a capability is particularly helpful when

it comes to detecting short words (e.g. “in”, “at” etc.) between other words. This is

where the feature-based approach struggles. Nevertheless, the performance of the LM-

based approach is hindered by unknown words as they disrupt the true word sequence,

in which case, LM inevitably scores an incorrect word sequence as the best possible

segmentation. Considering that tweets are full of typos and frequently introduced new

words, the LM-based approach may not perform as expected in this domain. One
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way to cope with this is to use as much data as possible to train the LM. Hence, we

generate the training data set using randomly selected tweets from the SNAP data

set [124]. The SNAP data set contains 20-30% of all public tweets posted during

the seven months period between June and December, 2009. It includes 476 million

tweets. While creating the training set, we filter out the hashtags, links, mentions

and punctuations, which leaves out only word sequences. In order to investigate the

effect of training set size on results, we created multiple training sets with increasing

sizes, starting from 10 million tokens up to 1 billion tokens. From each training set, we

generate the language model with the SRILM tool. We generate the LM from 4-grams

and prune the vocabulary to contain the most frequent 1M words. We use Kneser-

Ney smoothing as the discounting option and use the default values for the rest of the

parameters. In our experiments, we use the learned LM models with the OpenFST

tool7 , which considers all likely segmentations for a given input character sequence

and selects the highest scoring segmentation as the best based on the used model.

3.2.2.1. LM-based Features. Considering the noisy nature of tweets, the LM-based

approach might not always find the exact segmentation. However, if we consider the

N-best segmentations, instead of the best suggested one, it is more likely to have the

correct (or very close to correct) segmentation among them. We argue that the N-best

segmentations can be a supplementary data for the feature-based approach and we

consider three features that make use of that data as boundary clues. This effectively

combines the feature-based and LM-based approaches. First, we use the rank of the

highest scored segmentation that has a word boundary at the cursor position. Secondly,

as an extension to the first one, we concatenate the ranks of all segmentations that have

a boundary at the cursor position. Thirdly, we use the number of segmentations that

have a boundary at the cursor position as the feature value. To illustrate these with an

example, Figure 3.3 shows the top 10 highest scoring segmentations of “greatmovie”,

highest at the top. Alongside, the active feature instance for each LM-based feature

is listed based on the shown cursor position in this example. The equal sign separates

the name of the feature and its value.

7We use make-ngram-pfsg and pfsg-to-fsm tools to make the output of the SRILM tool compatible
with OpenFST.
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1. great movie
2. grea t movie
3. great movi e
4. great mo vie
5. gre at movie
6. gr eat movie
7. g reat movie
8. gre atmov ie
9. gre at mov ie
10. gre atmo vie

10-best segmentation
of “greatmovie”Rank

g r e a t m o v i e

highest-seg-rank-at-cursor=1

ranks-of-segs-w-boundary-at-cursor=1-2-3-4-5-6-7-9

num-of-segs-w-boundary-at-cursor=8

Figure 3.3. Showing the values of LM-based features when the cursor is at the 6th

position while segmenting “greatmovie.”

Table 3.5. Listing all LM-based feature instances generated based on the cursor position

shown in Figure 3.3, where i is the position of the cursor and N-bests holds the N-best

LM-produced segmentations of the input.

TEMPLATE OF FEATURE VALUE ACTIVE FEATURE INSTANCE

(feature name=feature value)

highestSegmentRankAt(N-bests, i) highest-seg-rank-at-cursor=1

segmentRanksAt(N-Bests, i) ranks-of-segs-w-boundary-at-cursor=1-2-3-4-5-6-7-9

numOfSegmentsAt(N-Bests, i) num-of-segs-w-boundary-at-cursor=8

In case of the first feature, the rank represents the index of the segmentation in the

N-best list and the higher it is (i.e., the smaller the index), the more likely that there is

a boundary at that position. For the other two features, the more segmentations have

the boundary at the cursor, again, the more likely that there is an actual boundary

there. We observe the state-of-the-art results when all three LM features are used

together.

3.3. Automatically Generating Training Data

Instead of manually segmenting thousands of hashtags for training purposes, we

considered two approaches. The first one involves acquiring automatically segmented

hundreds of thousands of hashtags and using them for training. For this purpose, we

used the SNAP Stanford Twitter data set [30]. We extracted 2.6M distinct hashtags

from 476M tweets and applied simple heuristics to automatically segment those hash-
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tags. We searched for consecutive word sequences in the SNAP tweets such that their

concatenation corresponds to one of those hashtags. For 1.25M hashtags, we detected

at least one word sequence. We selected the most frequent word sequence for each

hashtag, if the hashtag’s total occurrence is higher than 10 and if the word sequence

corresponds to 75% of the total occurrences of all word sequences that correspond to

that hashtag. For example, in case of #twittermarketing hashtag, we detected 29892

occurrences of “twitter marketing” and 116 occurrences of “twittermarketing” in the

SNAP set. We ended up with 734K hashtags and their automatic segmentation, which

we call it the Hashtag set.

In our second approach, we generated synthetic hashtags by concatenating the

words in tweets. Since the word boundaries are known from the tweets, we can use

these for training purposes. We create two sets of tweets from different sources. The

first set is selected from the Stanford Sentiment Data set. The second tweet set BOUN

was collected with the Twitter Search API by using the names of popular people,

movies, tv shows, sports teams etc. as query.

3.4. Vocabulary Building

Vocabulary might be the most essential part of a word segmentation system.

Because when we give string of characters to the system, it traverse over each character

and look for possible word boundary at that position. Knowing existing words helps

the system to better predict whether a word starts at the current position or ends. All

our vocabulary-based features described in Section 3.2.1.1 depend on the quality of the

vocabulary.

Building a vocabulary is especially difficult in the context of tweets. You need

to make sure that all possible words that can occur in tweets are in your vocabulary.

However it is a very difficult task because there can be many proper or special names

occur in this environment. Moreover, the language used in tweets is so impure, if tweets

are used to build the vocabulary, you may end up having many wrongly spelled words

in that vocabulary. And the ones that hurt the segmentation system most are those
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cases where two or more words are concatenated to each other. Such cases is highly

likely because people can save space due to 140 character length restriction on tweets

in the past. To given an example, “ilove” token can be seen many times in tweets

and due to its high occurrence it might be considered as a valid word. However, it

comprised of words “i” and “love.” It is hard to detect all such cases and clean your

vocabulary.

Despite all disadvantages, having a vocabulary that is derived from the original

source domain provides a great advantage. To filter out invalid words, after building

our vocabulary, we retrieve unigram score for each word from Microsoft Web N-Gram

Service and discard those words having a log score less than -8. Since the language

model (LM) of this service is calculated from a huge web corpus, it is fair to assume

that such threshold will remove most of the invalid words. To support that, we also

run experiments and the best results were taken with -8 threshold.

3.5. Experimental Setup

3.5.1. Training and Test Data

In order to learn how to segment words, learning algorithms need training data

which include already segmented words. For this purpose, we collected tweets with the

Twitter Search API by using the names of popular people, movies, tv shows, sports

teams etc. [23] as query. Moreover, in order to make our results more comparable, we

use the tweets in the Stanford Sentiment data set used by [116]. After filtering the

links and other non-literal tokens in tweets, boundaries of the words were used as gold

standard for training. Two tweet data sets were generated: Tw-STAN and Tw-BOUN.

Since tweets in the Tw-BOUN are collected with specific topic-based queries, this data

set can be considered to be specific to certain domains. On the other hand, tweets in

the Tw-STAN are collected with the emoticons only. Hence, the difference between the

collection methods for the two data sets allows us to measure the effect of “almost”

randomly collected tweets (Tw-STAN) compared to relatively more domain-centric

tweets (Tw-BOUN) on performance. Our third training data set, which is a hashtag
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data set (HASHTAGS), was obtained from the SNAP Twitter data set as described in

Section 3.3

In our trainings, we use portions of these three data sets with increasing sizes.

Table 3.6 lists the number of tokens in those data sets, which roughly gives the number

of positive training instances for hashtag segmentation. Note also that the column at

the right hand-side of the table indicates the number of hashtags selected from the

HASHTAGS data set to make the token counts compatible with the tweet data sets.

Table 3.6. Number of tokens in Tw-BOUN, Tw-STAN, and HASHTAGS datasets

with increasing sizes.

# of Tweets # of Tokens # of Hashtags

Tw-BOUN Tw-STAN HASHTAGS

5K 56K 60K 57K 24K

10K 115K 118K 118K 49K

20K 237K 249K 237K 98K

50K 594K 602K 595K 246K

100K 1189K 1210K 1180K 489K

For the development and testing purposes, we used the test set manually labeled

by [116] as well as two data sets that we created manually [23]. We call the test

set of [116] Test-STAN. It includes 1268 randomly selected hashtags from the Stanford

Twitter Sentiment Analysis data set. To complement that, for development purpose, we

randomly selected 1000 more hashtags from Stanford Twitter data set and segmented

them manually. It is called Dev-STAN. Our second data set includes 1000 hashtags

randomly selected from Tw-BOUN collection. We divided this data set into equal

parts and called them Dev-BOUN and Test-BOUN and used them for development

and testing purposes, respectively. Similar to the difference between Tw-STAN and

Tw-BOUN, these two test sets have different characteristics. STAN test sets are more

likely to contain complex hashtags with high randomness, whereas BOUN test sets

contain more domain-centric hashtags with less randomness. It would be interesting

to observe how the segmentor performs in both cases.
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3.5.2. Evaluation Metrics

Evaluation of word segmentation is usually done by measuring the percentage of

the test instances that are segmented exactly as expected. It is called accuracy mea-

sure. Despite this defacto standard, we argue that F1-score can be a more appropriate

evaluation metric depending on in which task the segmentor will be used. The F1-score

awards partially correct segmentations. Even if not all words are detected correctly,

detecting most of them might still be useful for certain applications. For example,

in case of sentiment analysis, if it can separate the words with sentiment correctly,

it does not matter whether it detect the right boundaries for the other words. More

importantly, since it is more granular, it shows the progress of the segmentor better

during its development period. F1-score is the harmonic mean of precision and recall.

Precision is what percentage of the words outputted by the segmentor is correct, while

recall measures what percentage of the actual words in the test set are identified. In

the following sections, we report our results in both accuracy and F1-score.

3.5.3. Baseline

For both test sets, we consider three approaches at different strengths as baselines.

Our first baseline is based on HMM which was trained on character tri-grams. It

considers both the current and previous two characters with respect to the cursor

position for the boundary detection. We trained it with 100K randomly selected tweets

from Tw-BOUN. However, it performed poorly. As a second approach, we use another

off-the-shelf tool, called Hashtag Tokenizer [119] in the GATE framework [120]. This

gazeteer-based approach achieves slightly better performance than the previous baseline

results, yet still obtains low performance.

While the previous two approaches can be considered as weak baselines, the third

approach, Microsoft’s Word Breaker [43], provides a strong baseline, considering that it

outperforms the other baselines significantly in all metrics. Hence, we consider it as our

actual baseline. As shown by [112], hashtags can be a more challenging segmentation

task for Word Breaker, since it has originally been designed to break URLs.
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Table 3.7. Baseline results on Test-BOUN and Test-STAN sets.

Test-BOUN Test-STAN

Approach F1-score Accuracy F1-score Accuracy

HMM 74.0 69.3 63.0 64.3

GATE Hashtag Tokenizer 76.5 70.2 73.3 71.5

Word Breaker 84.4 86.2 84.6 83.6

3.6. Experimental Results

3.6.1. Context-based Results

Context-based features require us to collect tweets for both training and test

hashtags. However, we observe that some hashtags in the test sets occur rarely. In

order to measure the ideal effect of context and its size correctly, we need to make sure

that all hashtags in the test sets have the same number of tweets in their global context.

To do that, from our training sets, we collected all tweets that contain hashtags from

our test sets. The number of hashtags in Test-BOUN and Test-STAN that occurred in

at least 100 tweets was 300 and 500, respectively. We call these new sets Test-BOUN-

300 and Test-STAN-500 and use them to evaluate the effects of context features.

When we train the best (BEST) feature combination which was reported by our

study [23] on the 100K HASHTAGS data set without adding any context-based fea-

tures, the accuracies on Test-BOUN-300 and Test-STAN-500 are calculated as 90.0%

and 88.9%, respectively. As we add each context feature into this best feature com-

bination, we measure how much increase in accuracy each context feature provides as

shown in Table 3.8 and Table 3.9. We start the size of the context from one tweet

(C=1), which we consider as the local context case. Then, we gradually increase the

number of tweets up to 100 tweets (C=100).

In case of Test-BOUN-300, we achieve the highest scores when we use all context-

based features. Even though using 100 tweets as global context results in the highest
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Table 3.8. Accuracy on the Test-BOUN-300 test set, while the baseline (BEST)

accuracy where no context is used is 90.0%.

Features C=1 C=5 C=10 C=20 C=50 C=100

BEST + Word in Context (WIC) 90.0 90.0 90.3 90.0 90.3 90.7

BEST + Sem. Similar Word in Context (SSWIC) 89.7 90.3 89.7 90.3 90.3 90.3

BEST + Orthographic Shape Distribution in Context (OSDIC) - 91.3 90.3 90.7 90.7 90.0

BEST + WIC + SSWIC + OSDIC 89.7 91.3 91.3 91.7a 91.3 92.7a

accuracy of 92.7%, using as few as 20 tweets still outperforms the baseline accuracy,

which is 90.0%, statistically significantly8 . On the other hand, with Test-STAN-500,

even though all context features in general result in improvement, the orthographic

shape distribution in context (OSDIC) feature results in the best performance. These

results suggest that even if we can collect as few as 20 tweets for global context purposes,

it can still increase the segmentation accuracy.

Table 3.9. Accuracy on the Test-STAN-500 test set, while the baseline (BEST)

accuracy where no context is used is 89.9%.

Features C=1 C=5 C=10 C=20 C=50 C=100

BEST + Word in Context (WIC) 90.1 89.5 90.4 90.1 89.7 89.9

BEST + Sem. Similar Word in Context (SSWIC) 90.6 90.4 89.7 90.1 90.1 90.1

BEST + Orthographic Shape Distribution in Context (OSDIC) - 90.8 91.6a 91.6a 91.4 91.0

BEST + WIC + SSWIC + OSDIC 89.9 91.4b 90.8 90.6 90.8 90.6

3.6.2. LM-based Results

The LM-based results for different training set sizes are shown in Table 3.10. LM

achieves an accuracy of 90% on Test-BOUN when trained with 1 billion tokens. This

score is higher than the best previously reported feature-based result of 88.2% [23].

On the other hand, the best LM-based accuracy obtained on Test-STAN (80.4%) is

lower than the best previously reported feature-based accuracy (85.4%), it is even

lower than the accuracy of the Word Breaker baseline (83.6%). One way to explain

8In Tables 3.8 and 3.9, “a” and “b” indicate statistically significant result compared to the baseline
for p<0.05 and p<0.1 (based on a paired two-tail t-Test), respectively.
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the difference between the two test sets is to look at the perplexity scores9 of those

test sets. Perplexity measures how successful LM is at predicting the next word in a

sequence. The lower the score is, the better the LM is at predicting the next word.

For Test-BOUN and Test-STAN, the perplexity scores are 750 and 6920, respectively.

The huge difference in these scores explains why LM fails on Test-STAN.

Table 3.10. Results of the best (top 1) LM-based word segmentation on Test-BOUN

and Test-STAN sets.

LM Training Size Test-BOUN Test-STAN

in # of tokens F1-score Accuracy F1-score Accuracy

10 Millions (10M) 89.3 84.6 81.0 78.0

100 Millions (100M) 92.2 88.4 82.4 79.7

1 Billion (1B) 93.2 90.0 82.9 80.4

Even if the most likely segmentation returned by LM is not the correct one, it is

likely that the correct segmentation is among the top N segmentations produced by LM.

In Tables 3.11 and 3.12, we calculate the accuracy of LM at top N, by considering

the result as correct, if the gold standard segmentation is among the top scored N

segmentations. F1-score is computed by considering the segmentation with the lowest

edit distance to the gold standard. The accuracy increases up to 94.8% and 93.2% on

Test-BOUN and Test-STAN, respectively. On both data sets, the best segmentation

is most of the time in the top 2. These results indicate that the top N segmentations

contain valuable clues for segmentation.

3.6.3. Results with LM-based and Context-based Features Combines

As described in the LM-based Features section, we designed three LM-based

features using the 10-best LM segmentations. Due to run-time constraints, we used

LM trained on 100M tokens, rather than 1 billion. Table 3.13 shows how much increase

these LM-based features add onto the best feature combination obtained on the Test-

BOUN set in [23]. For any type of training set, we can observe up to 5.6 points increase

9We use 100M-token LM for perplexity calculation. We report ppl1 value given by SRILM’s ngram
tool as the perplexity score.
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Table 3.11. Best possible results in Top N on Test-BOUN.

LM Training Data Size in # of tokens

TopN 10M 100M 1B 10M 100M 1B

F1-Score at Top N Accuracy at Top N

N=1 89.3 92.2 93.2 84.6 88.4 90.0

N=2 93.1 95.8 96.2 89.8 93.6 94.4

N=5 93.4 96.2 96.6 90.0 94.0 94.8

N=10 93.4 96.2 96.6 90.0 94.0 94.8

Table 3.12. Best possible results in Top N on Test-STAN.

LM Training Data Size in # of tokens

TopN 10M 100M 1B 10M 100M 1B

F1-Score at Top N Accuracy at Top N

N=1 81.0 82.4 82.9 78.0 79.7 80.4

N=2 87.2 91.4 92.9 84.8 89.8 91.6

N=5 87.7 92.7 94.4 85.3 91.2 93.2

N=10 87.8 92.9 94.4 85.4 91.5 93.2

in accuracy and 3.9 points increase in F1 score on Test-BOUN test set. Especially the

increase in case of the HASHTAGS training set is consistently high. Note that there

is no statistically significant difference between using all context features or using only

the OSDIC context-based feature.

Likewise, Table 3.14 depicts a similar situation for the Test-STAN set. Using the

LM-based features with 10-best segmentations improves the accuracy by up to 3 points.

The increase is relatively lower than what we observe in Test-BOUN. This is again due

to the fact that LM is better at detecting word sequences in TEST-BOUN than in Test-

STAN. Similarly, using LM-based features on the HASHTAGS training set does not

bring that much improvement compared to the 5.6-points increase on the Test-BOUN

set. Again, in case of the HASHTAGS training set, as we add context-based features,
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Table 3.13. Best results on Test-BOUN set. Baseline (MS Word Breaker) F1-score =

84.4%, Accuracy = 86.2%

LM-based Training Data Size

Training features 5K 10K 20K 50K 100K 5K 10K 20K 50K 100K

Set used? F1-score Accuracy

Tw-BOUN
No 90.5 91.3 91.4 91.5 91.5 85.6 86.8 87.2 87.4 87.4

Yes 93.5 94.6 93.9 93.6 94.1 90.2 91.8 90.4 90.0 90.8

Tw-STAN
No 92.0 92.1 92.1 92.4 91.8 88.0 88.2 87.8 88.2 87.6

Yes 93.8 93.3 93.7 93.6 93.1 90.4 89.6 90.2 90.2 89.2

HASHTAGS

No 89.9 89.4 89.7 90.8 91.0 85.8 85.0 85.0 86.2 86.6

Yes 93.4 92.3 93.6 94.4 94.6 90.2 88.6 90.6 91.4 91.8

Yes+OSDIC 93.2 88.3 93.1 94.9 93.9 89.8 83.0 90.0 92.2 90.6

Yes+All-C 93.5 93.6 94.3 94.5 93.9 90.4 90.4 91.6 91.6 90.8

we observe up to 3 points improvements in accuracy. The best accuracy in Table 3.14

is 88.5%, which is higher than our first published result of 85.4% [23]. To make this

score comparable with the accuracy of 87.3% obtained by [116], we recalculated it on

their original data set which includes over 100 duplicate hashtags compared to our

Test-STAN. In that case, our best score increases to 88.8%10 .

Additionally, in both Table 3.13 and Table 3.14, the segmentors trained with

auto-segmented hashtags (HASHTAGS) tend to produce better results as the size of

the training set increases. Such behavior is less consistent with the other types of

training sets.

10The difference between 88.8 and 87.3 is statistically significant with p<0.05 based on one sample
t-Test.
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Table 3.14. Best results on Test-STAN set. Baseline (MS Word Breaker) F1-score =

84.6%, Accuracy = 83.6%

LM-based Training Data Size

Training features 5K 10K 20K 50K 100K 5K 10K 20K 50K 100K

Set used? F1-score Accuracy

Tw-BOUN
No 84.9 86.9 87.0 87.0 87.0 83.0 85.1 85.4 85.3 85.4

Yes 88.2 89.3 90.0 89.9 90.2 86.1 87.6 88.4 88.3 88.5

Tw-STAN
No 84.4 86.4 85.8 85.9 86.7 83.9 84.2 83.5 84.8 84.8

Yes 86.8 87.8 88.1 88.3 87.9 84.8 85.8 86.3 86.5 85.8

HASHTAGS

No 84.8 85.3 85.4 85.8 86.2 82.9 83.5 83.7 84.1 84.5

Yes 85.4 84.6 86.9 87.6 86.8 83.5 82.4 85.2 85.8 84.9

Yes+OSDIC 86.7 87.3 88.1 87.8 89.5 84.8 85.4 86.5 86.1 87.9

Yes+All-C 86.6 85.8 87.1 87.5 89.2 84.7 83.8 85.4 85.7 87.6

3.6.4. Error Analysis

In order to better understand in which cases our hashtag segmentor fails, we

examine the output of the highest scoring configuration11 from Table 3.14 on the Dev-

STAN set. We observe that almost all of mis-segmented hashtags contain only a single

misclassified boundary. 42% of the erroneous cases are due to special words with low

frequency, such as foreign words or proper names. 23% involve incorrectly segmented

ordinary words like outdoorsport. The next most seen error type is caused by numeric

expressions in single word names such as o2007comp with 13% of coverage. Similarly,

8% of errors are caused by capitalized characters inside single word names, such as

AbleGamers. Such cases are very difficult to handle unless that word is seen in the

training data. Otherwise, the segmentor tends to break the words from the capital-

ized characters. More surprisingly, 9.5% of errors are caused by lack of apostrophe

in hashtags. For example, if a hashtag contains the string “thats” corresponding to

“that’s”, the manually segmented form in the gold standard is “that s”. In such cases,

11The one that achieves 88.5% accuracy when it is trained on 100K tweets from Tw-BOUN.
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the segmentor fails to separate the contracted form of a word from the word that it is

attached to.

3.7. Understanding The Content of Hashtags

In this section, we investigate the importance of having a hashtag segmentor.

We first count the number of words in millions of auto-segmented hashtags and then

measure how much of the sentiment is trapped inside multi-word hashtags. Then, we

analyze the grammatical structure of auto-segmented hashtags to observe the complex-

ity of hashtags. In these experiments, we use the hashtags extracted from the SNAP

tweet data set and apply our best model to get their segmented versions. We calcu-

late these statistics on both 2.1 million distinct hashtags12 and all 60 million hashtag

occurrences in the SNAP data set.

3.7.1. Length of Hashtags

The simplest thing we can do with this data set is to calculate the length his-

togram of hashtags as shown in Figure 3.4. In this figure, we can see that most of the

hashtags have a length of 10, while the average length is 12.5 characters. Even though

we cut the tail at length 30, there are hashtags as long as character limit allows, which

was 139, excluding the # sign.

3.7.2. Orthography of Hashtags

Orthography deals with the shape and type of the characters in a string of charac-

ters. Whether character is capitalized or if it is a digit or letter is important information

for boundary detection. For example, seeing capitalized letter after lower cased letter

might be a very good indicator of a word boundary. Same is also true for sequence of

numbers preceded by a letter. Having said that, we measure general statistics about

orthographic shape of hashtags seen in this 2.6M data set. In 40.8% of hashtags we

observe at least one capitalized character. 76.7% of these cases have the capitalization

12The count is taken in case-insensitive mode.
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Figure 3.4. Hashtag Character Length Histogram.

inside the word rather than the first character being capitalized. This supports the

common thinking that using capitalization as a feature should be very beneficial. It is

interesting to note that out of 2.6M hashtags, 6% of them are completely capitalized.

In case of digits, there is at least one numeric value in 7.9% of the hashtags. In those

cases, 44.7% of them have at least one capitalized value along with that digit.

3.7.3. Word Count in Auto-segmented Hashtags

When we look at the word count calculated on the set of distinct hashtags in

Table 3.15, 87.7% of the hashtags consist of multiple words, which means that hashtags

are not simple one-word labels. Even when we calculate the percentages in all 60 million

occurrences, this value only drops to 48.6%. In other words, half of the time we need a

hashtag segmentor to break down a hashtag into its constituent words. Most of distinct

multi-word hashtags contain two or three words and people tend to use hashtags that

are no longer than three words in 93.8% of all cases.
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Table 3.15. Number of words in auto-segmented hashtags.

# of % in Distinct % in All 60M

Words 2.1M Hashtags Occurrences

1 12.3 51.4

2 38.5 30.8

3 24.7 11.6

4 12.5 4.3

5 6.1 1.3

> 5 5.9 0.6

3.7.4. Trapped Sentiment inside Multi-word Hashtags

Considering that half of the hashtag occurrences consist of multiple words, it is

important to measure how often a word with sentiment occurs in multi-word hashtags.

We use the AFINN sentiment analysis tool [125] [126], which assigns a sentiment score

to a given text.

Table 3.16. Percentage of observed sentiment in auto-segmented hashtags.

% in Distinct % in All 60M

Sentiment 2.1M Hashtags Occurrences

Neutral 75.7 86.8

Positive 10.7 7.1

Negative 13.6 6.1

Table 3.16 shows that, out of 2.1M distinct hashtags, 10.7% convey positive

sentiment and 13.6% have negative sentiment. When we do the same calculation on all

hashtag occurrences, the percentages drop to 7.1% and 6.1%, respectively. One thing

to point in Table 3.16 is that people tend to use positive hashtags more often than

negative hashtags, yet there are more distinct negative hashtags than positive ones. In

other words, people are more creative at creating negative hashtags.
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Our further analysis of hashtags containing positive or negative sentiment reveals

that only 0.5% of distinct hashtags with positive sentiment, and 0.8% of distinct hash-

tags with negative sentiment are single-word, and the remaining ones are multi-word.

When we consider all hashtag occurrences, we observe that only 20.7% of positive hash-

tags and 19.5% of negative hashtags are single-word. This means that, only around

20% of sentiment (either positive or negative) are seen in single-word hashtags. To put

it another way, around 80% of sentiment is trapped inside multi-word hashtags.

3.7.5. Parsing Auto-segmented Hashtags

As the language in tweets are noisy and irregular, we chose to use TweeboParser

[127] to parse segmented hashtags. TweeboParser is a dependency parser which is orig-

inally trained to parse tweets. It outputs which word in the given input grammatically

depends on which other word, along with the part-of-speech (POS) tag assigned to

each word. A word that does not depend on any other word is called root. Figure 3.5

shows an example dependency parse tree for the “Definition of Fail” hashtag. It is a

noun phrase which includes the noun “Definition” as the root (or head) of the phrase

and has an attached prepositional phrase which is headed by the preposition “of” and

its dependent noun “Fail.”

Definition           of             Fail

N
P

N

Figure 3.5. Dependency parse tree for “Definition of Fail” where the arrows point

which word depends on which other.

While the dependency parser outputs the grammatical structure of the entire

sentence or phrase, to keep our analysis simple, we only consider the root of the whole

parse and its dependent tags one level below. When we just look at the root tag, it tells

us which type of phrase or clause the whole structure is. When we look at its dependent

tags, we basically observe how it is made of. While most of the hashtags have single

root like the one shown in Figure 3.5, there can also be multiple roots, where each root
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corresponds to an independent clause. However, for the sake of simplicity we perform

our analysis on hashtags with single root in their parses.

3.7.6. Analysis of Root Tags

Table 3.17 shows the percentages of the most frequent POS tags at the root

level from the parses of segmented hashtags. One might argue that most hashtags are

supposed to be noun phrases, since they are mostly used for labeling. However, it

indicates that almost half of the 2.1M distinct hashtags are noun headed expressions,

namely noun phrases. Following that, with 26.0%, verb headed expressions come in the

form of various clauses. As we consider all occurrences, we observe that noun-based

expressions are used more often (77.1%) and usage of verb-based expressions drops

down to 11.9%.

Table 3.17. The most frequent root tags.

% in Dist. % in All 60M

Root Tag 2.1M Hashtags Occurrences

Noun (N) 48.1 77.1

Verb (V) 26.0 11.9

INTJ (!) 5.8 3.4

Adjective (A) 2.5 1.3

Preposition (P) 2.0 1.0

Coord. Conjunction (CC) 1.0 0.4

Adverb (R) 0.4 0.3

Multi-root cases 12.5 3.5

The third most common root tag is interjection (INTJ). However, we observe

that many words tagged as interjection are actually unknown words not recognized by

TweeboParser. Most of such cases include out of vocabulary words originating from

foreign languages, wrong segmentations, and proper names. The other single-root POS

tag cases, namely adjective (A), preposition (P), coordinating conjunction (CC), and

adverb (R) cover a very small portion. The rest of the cases covering 12.5% of distinct
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hashtags are complex expressions made of multi-root tags.

3.7.7. Analysis of Tag Patterns Around the Root

In order to inspect the structure of a hashtag, we investigate the tags that are

connected to the root tag in the TweeboParser’s output. We call these “tag patterns

around the root tag.” In the tables below, we show these patterns as a sequence of

tags in the order of their occurrence. We also include the root tag, which is surrounded

by brackets to make it distinguishable. In Figure 3.5 above, while the root tag is N,

it has only one dependent tag, which is P. Hence, the tag pattern around the root tag

is denoted as [N] P. Below, we analyze the most frequent tag patterns around each

major root tag separately.

Table 3.18. The most frequent tag patterns headed by a noun.

Tag Pattern % in Dist. % in All Example Segmented Hashtag

N [N] 41.0 23.3 Lindas Piernas; Beanie Siegel

[N] 11.3 59.1 MUNICES; Agression; Punicorn

A [N] 10.8 5.4 EXCELLENT GINA; New Iberia

N N [N] 7.1 1.3 Alex Volta Logo; buen servicio VE

[N] P 5.6 1.9 Definition Of Fail; apps to come

Table 3.18 lists the most frequent tag patterns headed by a noun root tag. As

shown in the first row, 41% of distinct hashtags in noun form are constructed by

combining two nouns together. It is almost four times more than the ones with single

noun, consisting of 11.3% of cases. 10.8% of noun-headed hashtags have a single

adjective modifier. When we consider the percentages in all occurrences, hashtags

with single noun become dominant.

Table 3.19 lists the most frequent patterns headed by a verb tag. This time the

most frequent pattern is sentence in imperative form, which covers 14.4% of distinct

verb-based hashtags. Note that the fourth case is also in imperative form, which

increases the total to 20.2%. The other three cases can be considered as regular sentence
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Table 3.19. The most frequent patterns headed by a verb.

Tag Pattern % in Dist. % in All Example Segmented Hashtag

[V] N 14.4 23.7 Hate Camilla Belle; Unfollow diddy

N [V] 11.3 8.9 Louis Presume; vegas sucks

N [V] N 6.4 4.0 dont judge medotcom; beat stabber

[V] V 5.8 4.2 dont judge medotcom

O [V] N 4.7 3.9 this is genius; i chrisf baby

formations, whose percentage sums up to 22.4%. When looking at all occurrences, we

observe that people tend to use imperative form more often than regular form.

Table 3.20. The most frequent patterns headed by an adjective.

Tag Pattern % in Dist. % in All Example Segmented Hashtag

N [A] 29.1 9.2 Vincents gay; cambio social

[A] P 15.2 3.1 sick of the heat; scared of iPhone

R [A] 13.1 3.9 finally safe; very confused

[A] 11.2 74.6 Willing; INSPIRING; Tempting

A [A] 6.2 1.3 deep undercover; the daily green

Considering trapped sentiment inside hashtags, another important root tag to

investigate is adjective. According to Table 3.20, surprisingly, 29.1% of adjective-

headed hashtags include the adjective as a post modifier following a noun. On the other

hand, 74.6% of all adjective-headed hashtags consist of single word adjective. However,

when we consider all hashtags, not only the ones headed by adjectives, adjectives are

mostly used inside expressions especially as a noun modifiers (A [N] in Table 3.18).

This also supports our finding that sentiment is trapped inside multi-word hashtags

considering the fact that adjectives carry most of the sentiment compared to other

word types.
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3.8. Discussion and Future Work

In our experiments, two annotators manually segmented the hashtags in the Test-

BOUN and Dev-STAN sets. On Test-BOUN, 330 of the hashtags were segmented by

both annotators and there were 21 hashtags where the two annotators disagreed with

each other (6.3%). In case of Dev-STAN, 600 hashtags were annotated by both an-

notators and the two annotators disagreed on 20 cases (3.3%). Hashtag segmentation

is a difficult task for machines due to lack of context and the constantly evolving en-

vironment of Twitter. Almost half of the failures of the developed hashtag segmentor

are related to uncommon and foreign words and only quarter of the failures look pre-

ventable as they involve regular words. The performance of Microsoft Word Breaker,

which is the state-of-the-art word segmentor, on the hashtags indicates the difficulty of

this task. Our context-based approaches might be helpful. Especially, when we make

use of multiple tweets that contain the same hashtag as global context, that can remedy

the lack of context. It is not ideal to rely on a single tweet as the source of context

because people tend to do typos, deliberately shorten words, and omit putting space

between words while writing tweets. However, if we collect statistics from multiple

tweets, we enable the sampled data to better reflect the characteristics of the general

population.

The simplicity of our proposed heuristic to obtain automatically segmented hash-

tags for training a hashtag segmentor resembles the bootstrapping approach of [128]

while doing word sense disambiguation. He makes two simple assumptions regard-

ing the relation between the sense of a word and its surrounding words. By using

collocation-based statistics, he learns which words are indicative of a particular sense.

He also trains a classifier with a small set of labeled data to predict the sense of polyse-

mous words. When he uses that classifier on unlabeled data, he picks those predictions

with probability above a certain threshold as new labeled instances, which iteratively

increases the size of the labeled data set. Similar to Yarowsky’s approach, our heuristic

also assumes that an already segmented form of a hashtag occurs in the same tweet

as the hashtag and the correctly segmented form can be chosen based on its frequency

and its relative frequency with respect to alternative forms.
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There are also various areas that have a potential for improvement. First off,

we conducted our experiments on the SNAP data set, which contains tweets posted

around 2009. It would be interesting to apply the same grammatical study on hashtags

that are collected from more recent tweets. Moreover, showing the evolution of those

statistics over a large time span would be a very interesting research area. It can

be suspected that today people may tend to use longer and more complex hashtags

than earlier times. That can amplify the idea that we need a hashtag segmentor to

understand the hashtags and their effects on the hosting tweets.

Another improvement area for the hashtag segmentor is the replacement of the

MaxEnt model with deep learning techniques. In our experiments (not reported), we

briefly tried deep learning, but did not achieve good results. We believe application

of deep learning techniques must be explored more extensively. We formulate hashtag

segmentation as a binary classification task and neural networks (NNs) are very good

at classification tasks. Especially, character-based NN models achieve great results on

various tasks and hashtag segmentation can be good fit for such models. An NN model

may also take the hosting tweet as an extra input along with the hashtag itself and use

it as context information as we did in our experiments. At this point, it needs to be

said that one of the drawbacks of our solution is that it requires input from external

SRILM toolkit in order to feed Language Model (LM)-based features. This means that

we need to run another program offline, which is not ideal. Instead, today the best LMs

are RNN-based models. So, we can train an RNN-based LM at the side and then train

the hashtag segmentor NN along with that model together. This gives us a stand-alone

single neural network at the end, which requires no external tool. Moreover, NN-based

approach especially with RNN-based LM extension may also cancel out the need for

a vocabulary which makes it more robust and flexible. All these would simplify the

solution.

In the experiments, we formulated hashtag segmentation as a binary classification

task. However, it can also be formulated as a sequence labeling task. In fact, we applied

Hidden Markov Model (HMM) and it performed very poorly as shown in Table 3.7.

Another alternative method is Maximum Entropy Markov Models (MEMMs), but they
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have label bias problem due to local variance normalization. Instead, Conditional Ran-

dom Fields (CRFs) is a better alternative, as it adapts global variance normalization

which solves the label bias. Sequence labeling requires us to have labels. Our task

becomes assigning those labels to characters. We can use different labeling schemes.

For example, we may have fine-grained labels like FIRST CHAR, SECOND CHAR,

NTH CHAR, and LAST CHAR. Note that this is basically increasing the number of

labels from two (i.e. BOUNDARY and INTERNAL) to four. In sequence labeling

tasks like named entity recognition extending the label set (i.e. from BIO to BILOU

tagging format) is shown to improve the results [15]. Hence, it is possible that a model

with more fine-grained labeling can associate specific features with specific labels better

and that may improve its predictions. However, such a labeling scheme is not suitable

for MaxEnt, since it is not originally designed for sequence classification. Instead, we

can use such a fine-grained labeling approach with deep learning algorithms and we

can even extend the neural network model with a Conditional Random Fields (CFRs)

layer, which tends to improve the results for sequence labeling tasks [58].

Apart from these major improvement points, there are a number of other things

to try. For example, we observe that using auto-segmented hashtags as training data

does not provide the best results on both test sets. One thing to try is to apply some

kind of filtering mechanism (automatic or another heuristic) on those auto-segmented

hashtags so that we can exclude the ones with less confidence.

3.9. Conclusion

In this part of this thesis, we explore extending a feature-based machine learning

approach with context-based features and LM-based approaches for hashtag segmen-

tation. We observe that context-based features improve the results without needing

thousands of tweets in the context. As few as 20 tweets are sufficient. While using

LM alone does not improve the results, utilizing N best segmentations given by LM as

features helps us obtain the state-of-the-art results on both test sets. Moreover, as we

add context-based features on top of that, we see up to 3 point increase when training

is done on the HASHTAGS set, which makes HASHTAGS the best training set on
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Test-BOUN. Error analysis shows that most of the incorrectly segmented hashtags are

due to low frequency words like foreign words, expressions with numbers, and special

capitalized cases. We used the word boundaries in tweets to create the Tw-BOUN

and Tw-STAN training data sets. One possible future work would be using segmented

tweets [129] to create training data, since tweet segments can be seen as phrases with

similar characteristics to hashtags and may be more successful at representing word

boundaries in hashtags compared to whole tweets.

In the second part of our research, we segment millions of hashtags extracted from

the SNAP Tweet data set and then analyze their structure. We observe that almost

90% of 2.1M distinct hashtags include multiple words. Moreover, we observe that in

80% of sentiment bearing hashtags, sentiment is trapped inside multi-word hashtags.

As we further analyze the parses of auto-segmented hashtags, we discover that about

quarter of distinct hashtags are written as verb headed expressions, especially in im-

perative form. However, as we consider all occurrences, people tend to use noun-based

hashtags more often. Adjectives are mostly used inside expressions rather than as

single word hashtags. All these show that hashtags are not simple one-word labels,

hence hashtag segmentation is necessary for a better understanding and utilization of

hashtags, especially in the sentiment analysis task.
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4. Named Entity Disambiguation

We humans name things around us in order to refer to them. Many times, differ-

ent things can have the same name. For example, when you visit the disambiguation

page [130] for the word “Washington” in Wikipedia, you see tens of cities and counties

in the United States that are named “Washington.” Moreover, the same word is used

as a hyperlink title to refer to several different articles throughout Wikipedia. Things

that can be denoted with a proper name are called named entities. The Knowledge

Base (KB) of a machine keeps the list of all known named entities to that machine.

When they are mentioned in a document, the task of identifying the correct named

entity that a mention refers to among all the possible entities in the KB is called

Named Entity Disambiguation (NED). Figure 4.1 gives three example sentences with

the mention “Washington”, each referring to a different named entity. For a human,

it is not hard to figure out which entity is being referred to by considering the clues in

the surrounding context of the mention. However, from a machine point of view, each

mention may refer to any one of the hundreds of named entities in its KB.

Washington is averaging 5.3 yards per carry this season with both Bynum and Nacua out 
there at the same time

But as Washington and his men marched westward over the Appalachian Mountains, they 
received stunning news

In Washington, the number of signatures required to qualify a directly initiated state statute 
for the ballot is equal to 8 percent of the votes cast for the office of governor

person
George Washington:

football team
Washington Huskies:

state
State of Washington:

Figure 4.1. Mentions of different named entities with the same surface form

“Washington.”

NED, in general, is done in two steps. In the first step, the candidate named

entities in the KB are identified based on their lexical similarities to the given entity

mention. In the second step, which is the actual disambiguation step, each candidate

is scored based on some extracted features. The one with the highest score is returned

as the predicted named entity corresponding to the input mention. In this field, the

reference KB is most commonly based on Wikipedia, as is in our case.
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In the literature, various approaches have been proposed to solve the NED task.

Early studies used entity-specific local features like the similarity of the candidate to

the document topic in order to score them individually [17,131]. [71] proposed the idea

that entities in a document should be correlated with each other and consistent with

the topic of that document. How well a named entity is connected to the surrounding

named entities is measured by coherence. They tried to optimize the coherence by

including global context-based features that take into account the surrounding candi-

dates into the disambiguation decision. Later studies looked at collective disambigua-

tion, where all candidates are considered together in the decision process, rather than

individually [132]. Most of the collective models employed computationally complex

graph-based approaches in order to find the sub-graph of candidates with the high-

est coherence. As the deep learning approaches advanced, Long Short-term Memory

(LSTM) [78] models have been used to capture the long-range relations between words

in the context, and attention-based neural networks have been used [68] to pay more

attention to the most relevant segments in the surrounding context of mentions. En-

tity embeddings, which are continuous vector-based representations of named entities,

have been optimized to detect the relations between the candidate named entities and

their context [69]. A number of recent studies have investigated utilising the category

hierarchy of Wikipedia for Named Entity Disambiguation. [133] proposed to integrate

the symbolic structure of the category hierarchy of the named entities in Wikipedia in

order to constrain the output of a neural network model. [134] used the same principle

of making use of type hierarchy, but proposed a hierarchically-aware training loss. [83]

followed a similar approach, but rather than predicting the entities directly, they only

modeled the fine-grained entity properties, which represent detailed entity type infor-

mation. Then, they used that as a filtering mechanism at the disambiguation step. In

addition to all these new techniques, more and more studies have been using Wikipedia

as a vast resource for representation learning from its text and the hyperlinked mentions

in the text.

This research focuses on identifying the type of a mentioned named entity first

and then using this information to improve the prediction of the identity of that named

entity at the disambiguation step. The first step is called mention-level entity typing, or
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Figure 4.2. The Workflow of the Proposed System (NE: Named Entity, NED: Named

Entity Disambiguation).

mention typing in short. It is the task of predicting the type (e.g. politician, city etc.)

of a single mention given its surface form and its surrounding context. Prior studies on

this task use manually curated type taxonomies, like Wikipedia categories, and assign

each named entity mention to one or more such types. However, considering there are

millions of named entities, such manual curation is inherently incomplete. Hence, we

propose to obtain types automatically in an unsupervised fashion and use these types

to improve NED. The workflow of the proposed approach is summarized in Figure 4.2.

In the first step, we cluster named entities based on their contextual similarities in

Wikipedia and use the cluster ids as types, hence cluster-based types. These types no

longer correspond to conventional discrete types as exemplified in Figure 4.1. Instead,

each cluster-based type represents a cluster of named entities that are mentioned in

similar contexts. Since the entities with the same conventional type tend to occur in

similar context, it is also likely to obtain clusters that implicitly correspond to these

types, like person or football team. In the second step, we train a mention typing

model on the hyperlinked mentions in Wikipedia, which have been labeled with their

cluster-based types through distant supervision. In the third step, mentions in the

NED data sets are classified with this typing model. The fourth step involves using

those type predictions as features for training an entity candidate ranking model. In

the final step, for each entity mention in the NED test sets, the trained ranking model

selects the most possible entity candidate in the KB. We use a simple feed-forward

neural network model to score the candidates based on local context-independent and

global context-based features, which include the aforementioned predictions. Moreover,

in order to maximize the contribution from the context, we use five different ways of

representing entities, which leads to five different clusterings of them and, thus, five

cluster-based types for each entity. By using five different typing predictions together,

our system achieves better or comparable results based on randomization tests [?] with
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respect to the state-of-the-art levels on four defacto test sets.

Here is a summary of our contributions to the literature:

(i) This research is the first at using clustering to obtain cluster-based mention types

and using these to improve the NED task.

(ii) We introduce five different ways of cluster-based mention typing based on rep-

resenting the context around a mention at three different levels. We show that

improved NED results are achieved when the different typing models are used

together.

(iii) In the candidate generation phase, we propose using the candidates of the co-

occurring mentions in the same document, which leads to higher gold recall values

than the previously reported results. We publicly share our tool and data sets.

The rest of this chapter is organized as follows. In the next section, we give

the related work on NED, mention typing, and clustering. Section 4.2 introduces

cluster-based mention typing, where the methods for clustering named entities and

then predicting the cluster-based types are presented. Section 4.3 describes how to

disambiguate the entities. It starts with our candidate generation method and then

explains the local context-independent and global context-based features used to rep-

resent the mentions for disambiguation. It ends with the description of our ranking

model for disambiguation. Section 4.4 gives the details on our experimental setup.

Next, in Section 4.5, we present our results on the mention typing model and disam-

biguation model, along with a detailed error analysis. Section 4.6 discusses the issues

and suggests new ways to extend our research on mention typing and named entity

disambiguation. Finally, Section 6 finishes this chapter with concluding remarks.

4.1. Related Work

As introduced in Section 2.1.3, Named entity disambiguation is one of the

most studied tasks in the NLP literature. The main function of NED is the ranking

of possible entity candidates for the recognized mention so as to pick the best one as
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the predicted referred entity. There are various approaches to formalize the ranking

of the candidates. Early studies [17, 131] ranked the candidates individually by using

features like similarity between the candidate and the test document. [71], hypothesiz-

ing that entities should be correlated and consistent with the topic of the document,

used features that optimize the global coherence. [69, 135] used a two-step approach

where they select the most likely candidates in the first step, calculate their coherence

score based on their surrounding selected candidates and then use that score in the

second step (i.e., the ranking step). Due to its simplicity, we also adapt this two-step

approach. Later studies [132] considered the ranking collectively, rather than individ-

ually. Graph-based approaches [72, 136] were proposed for collective disambiguation,

where the topic coherence of an entity is modeled as the importance of its correspond-

ing node in a graph. Several studies were conducted where different algorithms were

used to model node importance, including the personalized version of the PageRank al-

gorithm [137], probabilistic graphical models [138], inter-mention voting [139], random

walk [73, 136], minimum spanning tree [140], and gradient tree boosting [141]. Unless

heuristics are used, these models are, in general, computationally expensive, as they

consider many possible relations between the nodes.

In addition to the way to rank, representing the context, mention and entity is

another important aspect in NED. [142,143] used topic modeling to obtain word-entity

associations. However, such models learn a representation for each entity as a word

distribution. [144] argued that counting-based distributional models are usually out-

performed by context-predicting methods, such as embeddings. That said, improved

embedding calculations with word2vec [101] led to many studies. [67, 69, 145] inves-

tigated learning entity and word embeddings jointly, which enables a more precise

similarity measurement between a context and a candidate. They used the text in

Wikipedia as the main source for entity representations. In addition, the knowledge

graph of Wikipedia has also been exploited [19]. [146] learned multiple semantic em-

beddings from multiple KBs. In our study, we obtain the entity embeddings with

their EAD-KB approach. However, instead of using multiple KBs, we make use of

the context of the same KB in five different levels. When it comes to deep learning

approaches, [78] employed Long Short-Term Memory (LSTM) networks with atten-
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tion mechanism. [68] used attention mechanism over local context windows to spot

important words and [147] expanded this to the important spans with conditional ran-

dom fields. While these approaches used neural networks with attention mechanism

to model the named entities and mentions together and pick the best matching can-

didate entity, we used a simple LSTM to model the type prediction of the mentions

only and then used that information as an extra clue for a simple feed-forward neural

network-based ranking model. Other studies [66, 78, 148] modeled context using the

words located at the left- and right-hand sides of the mention. Either the sentence or a

small window is used as the context boundary. Similar to these studies, we model the

left and right context separately. In addition, we propose representing the local and

global context separately, in three different ways, which in our results is empirically

shown to provide a richer way of characterizing entity mentions.

Mention typing is the task of classifying the mentions of named entities with

their context dependent types as introduced in Section 2.1.4. It is a relatively new

study area and a specialized case of corpus-level entity typing, which is the task of in-

ferring all the possible type(s) of a named entity from the aggregation of its mentions in

a corpus. Some of the recent studies on corpus-level entity typing used the contextual

information [149], the entity descriptions in KB [85,150] as well as multi-level represen-

tations at word, character and entity level [151]. The way [151] represent the entities in

terms of these three levels with increasing granularity resembles our way of considering

the context at different scales by representing local and global context separately. In

case of the mention-level entity typing or mention typing in short, [20] proposed an

entity recognizer called FIGER, which uses a fine-grained set of 112 types based on

Freebase [152] and assigns those types to mentions. They trained a linear-chain condi-

tional random fields model for joint entity recognition and typing. [21] derived a very

fine-grained type taxonomy from YAGO [22] based on a mapping between Wikipedia

categories and WordNet [82] synsets. Their taxonomy contains a large hierarchy of 505

types organized under 5 top level classes (person, location, organization, event, and

artifact). They used a SVM-based hierarchical classifier to predict the entity mention

types. These studies usually created their training data sets from Wikipedia using

a distant supervision method, which is the practice that we also employed. Mention
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typing has also recently been used to improve NED. [133] used Wikipedia categories to

incorporate the symbolic information of types into the disambiguation reasoning. [153]

used type, description and context representations together to obtain entity embed-

dings. [134] employed CNN with position embeddings to obtain a representation of the

mention and the context. [83] formulated NED as purely a mention typing problem.

However, all of these studies rely on manually crafted type taxonomies. The main

difference of our approach from these studies is that we generated types automatically.

We use clustering to partition the named entity space of our KB into clusters, each

holding entities that occur in a similar context. Then, each cluster is assigned as a

type to the entities in that cluster. This makes our cluster-based types more context

oriented than manually crafted types. Moreover, since we obtain multiple clusterings

based on different contextual scopes, we ended up having multiple type sets, each ex-

hibiting the characteristics of the context differently, unlike the traditional manually

crafted type sets in the literature.

Clustering is a powerful tool to partition the data set into similar groups without

any supervision as introduced in Section 2.1.5. There is a large variety of methods in the

literature. They can be mainly grouped into partitional (or centroid-based) clustering,

such as K-means [154], density-based clustering, like DBSCAN [155], distribution-

based clustering, like the Expectation-Maximization algorithm [156], and hierarchical

clustering. Among them, partitional clustering, and more specifically K-means, is one

of the most practical algorithms due to its simplicity and time complexity. One of

the early application areas of clustering includes the clustering of search results [87] in

the Information Retrieval field. Later studies categorized named entities in order to

improve document retrieval [88,89]. In the NLP field, clustering has been used to group

similar words together. [90] introduced Brown clustering which assumes that similar

words have similar distributions of words to their immediate left and right. While

this method assigns each word to one cluster (i.e., hard clustering), [157] proposed a

distributional clustering method which calculates the probability of assigning a word

to each cluster (i.e., soft clustering). Word clustering has been used to improve many

tasks like statistical language modeling [158], text classification [159], and induction

of part-of-speech tags [160]. In the Named Entity Recognition task, [161] clustered
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text patterns that represent relations between certain types of named entities in order

to better recognize their mentions in text. In mention typing, [162] proposed a joint

hierarchical clustering and linking algorithm to cluster mentions and set their types

according to the context. Their approach to clustering is similar to ours. However, they

rely more on knowledge base taxonomy in order to generate human-readable types. In

our case, we do not need to have human-readable types, as mention typing is merely

an intermediate step in order to obtain additional contextual clues for named entity

disambiguation. In the NED task, the term “Entity Clustering” has exclusively been

used for the co-reference resolution (CR) task [163], which is to detect and group the

multiple mentions of the same entity within a document or multiple documents (i.e.

cross-documents). If this task is done on mentions that have no corresponding entries

in KB, it is called “NIL clustering” [164]. In these studies, hierarchical agglomerative

clustering is mainly used due to its efficiency as it merges similar mentions into a new

group recursively in a bottom-up approach. When CR is done within a document,

the clustering only considers the merge combinations within that document, which

can be in the order of thousands. However, the number of combinations in cross-

document CR can be in the order of millions, which requires more efficient clustering

algorithms. Some of the proposed methods include a distributed Markov-Chain Monte

Carlo approach to utilize parallel processing [165], a discriminative hierarchical model

that defines an entity as a summary of its children nodes [166] and the use of latent

features derived from matrix factorization of the surrounding context [167]. Moreover,

[168] proposed a discriminative model which is trained on a distantly-labeled data set

generated from Wikipedia. A recent review of the CR literature is provided by [169].

CR has also been used in a joint task with entity linking [170, 171]. Apart from using

mention clustering directly, [172] clustered 10000 lemmatized nouns into 1000 groups

based on syntactic relations in order to learn features that are useful for the CR task.

While clustering has been explicitly used on mentions of named entities, to the best

of our knowledge, our work is the first study on clustering millions of named entities.

Moreover, we represent entities at different contextual levels and do the clustering for

each level.
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4.2. Cluster-based Mention Typing

In the mention typing task, named entities in a KB are in general assumed to be

assigned to manually-crafted predefined type(s), and the task is to classify the mentions

of named entities to these predefined types based on their context. Considering that

there can be millions of named entities in a KB, manually designed predefined types are

inherently incomplete. Therefore, we propose using clustering to define the entity types

in an unsupervised fashion. We cluster named entities that occur in similar contexts

together and assign the corresponding cluster id of an entity as a type label to that

entity. As [101] argued, similar words occur in similar contexts, hence have similar word

embeddings. That said, similar entities should have similar entity embeddings. When

we cluster named entities based on these embeddings, similar entities are expected to

be grouped into the same cluster and each cluster is expected to contain entities of

similar types based on common contextual clues. Note that these cluster-based types

do not necessarily correspond to regular named entity types, and they do not need to.

In our work, their only purpose is to represent the context so that the named entity

disambiguation model can decide how likely it is that a certain candidate named entity

is mentioned in the given context.

Cluster NEs 
and get 

Cluster-based 
Type            

for each NE

Label NE 
Mentions 
w/Cluster- 

based Types 
in Wikipedia

Learn to 
Predict 

Cluster-based 
Type of 
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Figure 4.3. The Four Steps of Cluster-based Mention Typing.

As depicted in Figure 4.3, our cluster-based mention typing involves four steps.

First, we calculate the entity embeddings based on some contextual representation.

In the second step, clustering is applied to group similar entities based on their em-

beddings. As we get the clusters, we assign the cluster id as a cluster-based type to

each entity in that cluster. In the third step, to train a typing model, we prepare a

training data set by automatically labeling the hyperlinked mentions of named enti-

ties in Wikipedia articles with the assigned cluster-based types. In the final step, we

train a typing model with this auto-generated training data. At test time, the typing
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model only uses the mention surface form and its surrounding context to predict the

cluster-based type. These cluster-based type predictions are used as extra features at

the entity disambiguation step.

We cluster entities in five different ways based on different representations of

entities. We obtain four embeddings for each entity based on four different (three

contextual, one synset based) representations and use them to produce four separate

clusterings of the entity space with K-means. To increase the variety, we also use

Brown clustering, which requires no embeddings but takes simpler input. At the end,

we get five different mention typing models, one for each clustering. Before explaining

each step in the following subsections, we first describe how to represent the context

of a mention in three different formats.

4.2.1. Three Different Representations of a Mention’s Context

The context of a mention is basically the content that resides at the left- and

right-hand side of the mention. These are called left and right contexts, respectively.

In this research, we represent this context in three different ways. Figure 4.4 shows a

document at the left-hand side where three entity mentions are underlined. At its right,

it shows the three different ways of representing the context specific to the mention

“Democratic Party”. For that particular mention, the dimmed sections are not part of

the used context.

Word-based Context (WC) is a traditional context in the form of sequence of

words adjacent to the mention at its left- and right-hand side. This context has a local

viewpoint, since only the words of the sentence that holds the mention are used. This

is shown in the second box of Figure 4.4, where the words in the same sentence with the

mention are kept as the word-based context. Surface Form-based Context (SFC)

keeps the surface forms of the mentions at the left- and right-hand side of each mention,

excluding all other words in between as shown in the third box. Compared to WC, this

includes words farther than the mention into the context. They reflect the topic of the

document better than the other words. Entity-based Context (EC) only consists



78

Figure 4.4. A Sample Document and the Different Types of Context used for the

Named Entity Mention of “Democratic Party”.

of entity ids surrounding the mention, excluding all the words as shown in the fourth

box. Considering the fact that co-occurring entities are related and consistent with the

topic of the document, EC also reflects the topic of the document. Both SFC and EC

present a global viewpoint at the document level compared to the local viewpoint of

WC that is mostly based on the sentence level. Having said that, cluster-based types

generated with WC-type context may act more like traditional named entity types, as

the surrounding words might reflect their semantic roles better. On the other hand,

cluster-based types based on SFC and EC may act more like topic labels.

4.2.2. Obtaining Entity Embeddings

We obtain four different embeddings for each entity in KB using Wikipedia arti-

cles as training data. Three of those embeddings are based on the three different ways

of representing the context of the named entity mentions in text. The forth embedding

is based on the synsets (or types in BaseKB terminology) in the YAGO and BaseKB

data sets that are associated with each entity. Figure 4.5 gives overviews the process.

WC-based Entity Embeddings (EWC) are obtained by using the word2vec

tool [101] on Wikipedia articles. Word2vec gets the input as sequence of tokens and

calculates an embedding for each token (i.e., target token) in the given input based on

its window of surrounding tokens at the left- and right-hand side. Note that word2vec
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Figure 4.5. Steps of Obtaining Entity Embeddings by using Different Types of

Context.

does not use the sentence boundaries as context boundaries as in the definition of

WC. Instead, it uses a window of words around the mention. In order to obtain the

embeddings for the entities, we reformat the Wikipedia articles based on the EAD-KB

approach [146]. We replace the hyperlinked mention (i.e., a-href tag and the surface

form together) of each named entity with its Wikipedia id, which is a single unique

token that corresponds to that entity. As we run the word2vec tool on these reformatted

articles, we obtain embeddings for both regular words and entity ids.

SFC-based Entity Embeddings (ESFC) do not rely on the immediate adjacent

words of the entity mention as in EWC . It is hard to represent this in linear bag-of-

words context as word2vec expects. Hence, we use the word2vecf tool [106], which is an

altered version of word2vec. While word2vec assumes a window of tokens around the

target token as context, word2vecf allows us to define the context tokens arbitrarily,

one-by-one for the target token. It takes the input in two columns, where the first

column holds the target token and the second column has a single context token. As

exemplified in Figure 4.6, the input file contains one row for each target and context

token pair. We select a window of mentions around each hyperlinked mention in
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Wikipedia and use the words in their surface forms to create the input data for the

word2vecf tool.

Barack_Obama
Barack_Obama
Barack_Obama
Barack_Obama
...

United
States
Democratic
Party
...

Input to get ESFC w/word2vecf:

Barack_Obama
Barack_Obama
Barack_Obama
Barack_Obama
...

wordnet_person
wordnet_us_president
wordnet_politician
wordnet_african_american
...

Input to get ESYN w/word2vecf:

Figure 4.6. Input Samples from the Example Contexts in Figure 4.4 to Obtain ESFC

and ESY NC with the word2vecf Tool.

EC-based Entity Embeddings (EEC) are calculated by using the entity ids of

the surrounding mentions in the given EC. In this case, we remove all the words in the

Wikipedia articles and only keep the entity ids of hyperlinked mentions as tokens. As

we run word2vec on these reformatted articles, we get an embedding for each mentioned

named entity, which is calculated based on a window of the mentioned named entities

around it.

Synset-based Entity Embeddings (ESY N) are the only type of entity embed-

dings that do not reflect the context-based similarity of entities, but their synset-based

similarity. In WordNet, a synset is a set of synonymous words grouped together. Word-

Net uses the synset records to define a hypernym hierarchy between them to reflect

which synset is a type of which other. YAGO v3.1 [22] uses those synsets as category

labels to represent certain types of named entities, such as person, musician, city etc.

Moreover, YAGO extends the WordNet synsets with its own specialized synsets, pre-

fixed “wikicat” (e.g., wordnet person 100007846 is a hypernym of wikicat Men in the

YAGO synset taxonomy). In YAGO data set, named entities are labeled with one or

more synsets. In addition to YAGO, we also use BaseKB Gold Ultimate Edition [152]

data set which is based on the last Freebase dump of April 19, 2015. It contains over

1.3 billion facts about 40 million subjects, including 4 million from Wikipedia. It is

similar to YAGO, except it has its own simple type taxonomy, independent of Word-

Net synsets. In our experiments, we combine the type definitions from both YAGO

and BaseKB data sets and call them synsets for the sake of simplicity. By combining

them, we aim to have a synset for as many named entities as possible. We then use
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the associated synsets of named entities as their context tokens as word2vecf allows us

to define custom context. We give the entity ids in the first column and the associated

types in the second column as shown in Figure 4.6. In this process, we do not use

all available synsets though. We replace any specialized synset (ones starting with

wikicat *) with its hypernym WordNet synset. We also filter out some BaseKB types

that do not reflect type information (e.g., base.tagit.topic and types with user names).

4.2.3. Clustering Named Entities

Now that we have entity embeddings, we can use them to cluster named entities.

In order to do that, we primarily use the K-means algorithm due to its simplicity and

time complexity. It is a partitional (or centroid-besed) clustering algorithm. After

setting the number of centroids (i.e. K) manually at the beginning, it assigns every

data point to the nearest centroid. We use the euclidean distance between the entity

embedding and the centroid vectors. After the assignment step, the centroids are

recomputed. This process continues till a stopping criterium is met13 . In addition to K-

means, we use the Brown clustering which is originally introduced to group words that

have similar distributions of words to their immediate left and right. Both algorithms

have time complexity that is linear in terms of the number of items being clustered [173]

provided that other factors are fixed. Considering that we have over five million named

entities in KB, this property makes them very eligible for our experiments.

As in Figure 4.7, we give entity embeddings (EX) to K-means as input. In case

of Brown, we use the Wikipedia articles in the Entity-based context format. After

getting clusters (CX), the cluster ids are assigned to entities as cluster-based types.

It is important to note that each clustering of the named entity space breaks that

space into groups. In terms of the named entity normalization task, the discriminative

power of a clustering depends on how well it distinguishes the correct candidate for

a named entity mention from the other candidates. The ideal case occurs when the

13We stop iterating when there is no more than 1% change in the assignment of entities to the
clusters. Also, we allow at most 50 iterations.
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Figure 4.7. Creating Different Clusterings of Named Entities with the K-means and

Brown Clustering Algorithms, where X ∈{WC,SFC,EC,SynC}.

correct named entity for a mention is placed in a different cluster from the other most

likely candidates and the cluster of the mention is also predicted to be the same as its

corresponding named entity. Using high number of clusters makes the clustering more

discriminative as each cluster corresponds to lower number of entities. However, that

also makes the typing model task harder as it increases the ambiguity. In Section 4.4.3,

we explore the right number of clusters for our experiments. Moreover, since we have

five different clusterings and each breaks the entity space differently, using a combi-

nation of them is expected to make the aggregate discriminative power even higher.

Hence, using multiple clusterings can be seen as an alternative to using higher num-

ber of clusters. Note that Section 4.4.3 also explains our heuristic to select the best

combination in order to achieve a better performance at the disambiguation step.

4.2.4. Preparing Training Data for the Typing Model

So far, we have described our approach for clustering named entities and assigning

the cluster ids to entities as types. In order to train a typing model to predict the type

of an entity mention in an input text, we need training data that includes mentions

labeled with these types. We create the training data from the hyperlinked mentions in

Wikipedia articles using distant supervision. We label each hyperlinked named entity

mention with its assigned cluster-based type. Since we have five different clusterings,

we produce five different training data sets.
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As described in Section 4.2.1, we represent the context of a mention in three

different formats and three of our clusterings (namely, CWC , CSFC , CEC) are obtained

according to the corresponding context formats. Take CWC for example. Clusters in

CWC hold entities that are similar to each other in terms of word-based context (WC).

It is compatible to train a typing model for CWC with input in the WC format because

labels are created from the characteristics that made up the input in that format. Same

is true for CSFC that goes with the surface form-based context (SFC) and CEC with

entity-based context (EC). Figure 4.8 exemplifies three training instances in WC, SFC,

and EC formats, respectively. They are generated based on the example in Figure 4.4.

Each instance consists of three input fields in addition to the label; surface form, left

and right context. Surface form is the common input. Like surface form, contexts in

the first two cases are in the form of words. In case of the third, it is in entity ids.

Label Surface Form Left Context Right Context

Cluster_10 Democratic Party A member of the , he was the first African American to be elected to the presidency .

Cluster_232 Democratic Party Barack Obama U.S.

Cluster_43 Democratic Party Barack_Obama United_States

Figure 4.8. Example Training Instances from Figure 4.4 in WC, SFC, and EC

Formats, Respectively.

In case of CSynC and CBRO, we use word-based context and surface form-based

context, respectively. In order words, we use the same formatted input for CWC and

CSynC pair and CSFC and CBRO pair with the exception of the labels. Note that

clusters in the CSynC hold entities that are associated with similar synsets. Synsets

are like semantic categories and local context is better suited to infer which synsets

the mentioned entity is associated with. Hence, the word-based context is used. On

the other hand, using global context is better suited to infer CBRO based types. We

choose to use the surface form-based context over the entity-based context. This is

due to the fact that surface form-based context can easily be obtained by gathering

the surface forms of the surrounding named entities. However, entity-based context is

only available after we get the best predictions from the first stage of our two-stage

disambiguation approach described in Section 4.3. In other words, by using the surface

form-based context, we are making the Brown-based mention typing model available

at the first stage, which increases the success rate of the first stage.
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4.2.5. Specialized Word Embeddings for the Typing Model

When it comes to predicting the cluster of a mention with word-based context, it

is common practice to use word embeddings that are obtained from a data set that is

similar to the domain data. In our case, it is Wikipedia, which is a widely used source

to obtain word embeddings in the literature. In our experiments, we did not use regular

word embeddings calculated with word2vec. Instead, we propose two word embeddings

that are more discriminative at predicting the cluster of a given mention. We use these

word embeddings together to represent the word-based input for the mention typing

model.

Cluster-centric Word Embeddings (WCC): We hypothesize that word em-

beddings, which are obtained from the data that reflect the characteristics of the prob-

lem, may be more effective at solving that problem. In this case, the problem is to

predict the cluster-based type of a mention. Hence, we inject a piece of cluster infor-

mation into the context in hope that word embeddings are being influenced by their

presence and become better at predicting the cluster-based type. In order to accom-

plish that, in Wikipedia articles, we filter out the html tag (i.e., a-href) of the named

entity mentions and leave its surface form alone. At the same time, we add a special

token to the right of that surface form. That token corresponds to the assigned cluster

id of the mentioned named entity. Embeddings of those words that are close to the

specific cluster token are expected to be affected by that and become indicators of that

cluster. We use the word2vec tool on this modified data set. Since the clustering of

named entities is done at training time and does not change based on the given test in-

put, the same embeddings that are obtained at training time are used at the test time.

We obtain different word embeddings for each of the five named entity clusterings,

since entities are assigned to different clusters in each case.

Surface Form-based Word Embeddings (WSF ): While word embeddings in

WCC are only based on the words surrounding the named entity mention, another type

of word embedding can be obtained with the words inside the surface forms exclusively.
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In order to do that, we use the Anchor Text data set14 of DBpedia [175]. It contains

over 150 million (entity id, surface form) records, one for each mention occurrence

in Wikipedia. We extract around fifteen million unique such records for almost all

named entities in our KB, along with their frequencies. We name this data set as

the Surface Form Data Set. Since this data set only includes the surface forms of

the entities, but not their surrounding sentences, we use the associated cluster ids of

entities as context tokens with the word2vecf tool. In other words, for each word in the

surface form of a named entity, the cluster id of that entity is given as a context word,

which results in (surface form word, cluster id) pairs. We also take the frequencies

of the surface form records into account. The more frequent one surface form is, the

more important it is. Therefore, while creating the training data set for WSF from

the (surface form word, cluster id) pairs, the number of instances included for each

surface form word is proportional to the logarithm of its frequency in the Surface Form

Data Set.

4.2.6. Model to Predict Cluster-based Types

Now that we generate a training data that includes labeled mentions with their

corresponding named entities’ cluster-based type, we are ready to train a mention

typing model to predict those types. At the end, we end up having five typing models:

Word model based on CWC , Surface model on CSFC , Entity model on CEC , Brown

model on CBRO and Entity model on CEC .

We experiment with two different typing model architectures: Long Short-Term

Memory (LSTM) and Convolutional Neural Network (CNN) models. CNNs are widely

used for text classification, whereas LSTMs are effective at modeling sequences of

items. Both models receive the same three-part input described in the previous section.

However, since we have two sets of word embeddings for surface words as described in

4.2.5, we can represent the Surface-part as two inputs for both models, one with WCC

and the other with WSF . In our experiments, we seek to compare both models and

14We use the English version of the Anchor Texts data set from DBPedia Downloads 2016-10
available [174].
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pick the best performing one. Details on these models are given below.

4.2.6.1. LSTM-based Typing Model. In this model, each input part is given to a sepa-

rate LSTM layer and their output is concatenated and fed into the final softmax layer as

illustrated in Figure 4.9. Surface1 gets the Cluster-centric Word Embeddings (WCC),

which are better at discriminating cluster-specific words. Surface2 gets the Surface

Form Word Embeddings (WSF ), which are optimized for discriminating cluster-specific

surface words seen in large set of surface forms. We use dropout layers [176] before and

after the LSTM layers in order to prevent overfitting. Our preliminary experiments led

us to using bi-directional LSTM (BiLSTM) for the Surfacex and uni-directional one

for the left and right ones. Moreover, reversing the order of words in the right context

produces better results. We argue that words that are closer to the mention are more

related to the mention and play more important role at the prediction.

Concat

Softmax

Left 
LSTM

Surface1 
BiLSTM

Surface2 
BiLSTM

Right
LSTM

CC
: W

SF
: W

Figure 4.9. LSTM-based Model for Mention Typing.

4.2.6.2. CNN-based Typing Model. CNN-based model is very similar to the LSTM-

based model, except that the input parts are given to the convolution layers. As

pictured in Figure 4.10, each input part is fed into the six convolution layers with

kernel sizes 1 through 6. These layers model the sequence of words in different lengths,

like n-grams in a language model. We use hyperbolic tangent as an activation function

over the convolution layers and apply max pooling layer prior to merging all into one

layer before feeding to the softmax layer. Like in the LSTM-based model, we use

dropout after the word embeddings and before the softmax layer.
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Figure 4.10. CNN-based Model for Mention Typing.

4.3. Disambiguating Named Entities

Disambiguation of named entities is often formulated as a ranking problem. First,

a set of candidate named entities for a given mention are obtained. Then, each of them

is scored individually, resulting in a ranked list of candidates. Finally, the highest

ranked candidate is returned as the final prediction. In our experiments, we use a

two-stage approach for ranking. At the first stage, we train our model and rank the

candidates with the available features and get a ranking probability for each candidate.

As a result of the first stage, the highest scored candidates are used to define the entity-

based context shown in Figure 4.4. This allows us to run the Entity typing model,

which accepts the context in terms of entities only. At the second stage, we use those

ranking probabilities to define new features that encapsulate future insight. With the

addition of new features, we again train our ranking model and get the final ranking

of the candidates. In the following subsections, we first describe how we obtain the

candidates. Next, we explain our disambiguation model by first describing the features

we used and then, the model itself.

4.3.1. Candidate Generation

In the literature, most of the studies do not mention how to index and search

entities to generate candidates based on the surface form of a mention. Some of the

ones [18, 177] providing this information report that they use Apache Lucene [178].

Lucene provides fuzzy search property which tolerates certain percentage of mismatch
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at character level with the Damerau-Levenshtein distance. However, such off-the-shelf

tools consider each mention individually and do not use contextual clues from other

mentions in the same document. Moreover, they do not provide additional information,

such as the type of the matched surface form, which we use as a feature (i.e. surface-

form-type-in-binary in Table 4.2) at the disambiguation step. Hence, we implemented

our own candidate generation tool.

For the indexing, as in [72], we use all available surface forms of named entities in

DBpedia and Wikipedia (including anchor texts, redirect and disambiguation records).

In other studies, while some [68, 179] used additional web corpora, others [135, 140]

used only Wikipedia. We index surface forms based on character tri-grams. In case of

searching, the pseudocode of our search procedure is in Algorithm 1.

Our algorithm works in two stages. In the first stage, it starts with searching

named entities matching with the mention surface form (Lines 17-25). It first retrieves

indexed surface forms that have at least certain amount of character tri-gram overlap

(T=60%) with the search query (i.e., mention surface form). Then, it picks the ones

that have the ratio of the edit distance at the character level to the query length less

than certain value (E=25%). If not, then it checks for the word overlap. It can tolerate

up to one word mismatch (D=1) if query contains more than one word (W=2). After

this selection, all matched candidates are returned. This first stage is similar to what

off-the-shelf third party indexing and search tools provide.

In the second stage of our algorithm, we expand the candidates of each mention

with the candidates from other mentions in the same document, since the same entity

can be mentioned more than once. We do this in two steps. The first step looks at if

surface form of one mention is completely seen in the other’s (Lines 6-8). For example,

“Barack Obama” can be first mentioned in full name and then as “Obama” in the same

document. The second expansion step uses the most frequently co-occurring named

entities (Lines 9-14) observed in Wikipedia articles. We only include the ones that

have a surface form that includes the mention surface form in itself. At the end, we
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1: procedure getMatchedNamedEntitiesForDocument(set of mentions, N)

2: matchedEntitiesForMentions = []

3: for each mention in set of mentions do

4: matchedEntities = getCandidatesForMention(mention)

5: add matchedEntities to matchedEntitiesForMentions

6: for each mentiona and mentionb pair in set of mentions do

7: if mentiona is completely seen in mentionb then

8: add matchedEntitiesb to matchedEntitiesa

9: for each mentiona in set of mentions do

10: for each matched entity in other mentions do

11: for each most frequently co-occurring entity of matched entity do

12: for each surface form of co-occurring entity do

13: if mentiona is completely seen in surface form then

14: add that entity to matchedEntitiesa

15: return scoreCandidatesThenPickTopN(matchedEntitiesForMentions, N)

16: procedure getCandidatesForMention(query)

17: matchedEntities = []

18: for each entity in the knowledge base do

19: for each surface form of entity do

20: if trigramOverlap(surface form, query) ≥ T% then

21: if editDistance(surface form, query) ≤ E% of query length then

22: add entity to matchedEntities

23: else if numWords(surface form) ≥ W and numWordDiff(surface form, query) ≤ D then

24: add entity to matchedEntities

25: return matchedEntities

Figure 4.11. Pseudocode of the candidate generation algorithm.

order the final set of candidates by scoring each candidate based on a specific formula15

(Line 15) and return the highest scored 100 candidates as the final output.

4.3.2. Ranking Features

Each candidate is scored according to certain properties. These properties are

named as features and their scalar values are turned into a vector which is given to

the ranking model as input. In our experiments, we use a total of twelve features. In

order to understand how they are calculated, we first give the definitions of the relevant

variables, sets of values, and functions in Table 4.1.

15We observed that the following candidate scoring gave the highest recall on the AIDA.train
set: score = entity frequency + num of occ in test doc*100 - jaro winkler distance*10000, where en-
tity frequency is the total number of times the entity is seen in our Surface Form Data Set. We observe
that Jaro-winkler distance performs better than Levenstein edit distance.
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Table 4.1. Variables, Sets, and Functions used at Defining Ranking Features.

Variable: Description

SFm Surface form of the mention

SF best
c Closest surface form of the entity c wrt SFm given by the candidate generator

Dc Doc2vec embedding of the candidate entity c

Dt Doc2vec embedding of the test document t

Ec Entity embedding of the candidate entity c

TSF
c Type of the surface form SF given by the candidate generator

T e
c Type of the candidate entity c

Pn
c Probability given by the typing model n for the entity c being in its cluster-based type

Rc Ranking probability of candidate entity c calculated by the first stage ranking

Set: Description

Sc Set of all surface forms for the candidate entity c seen in Surface Form Data Set

Cm Set of all candidates for the mention m

Ct
c Set of all occurrences of the same candidate c in test document t

Cprev
c Set of all previous occurrences of the candidate c wrt the mention m

Cnext
c Set of all future occurrences of the candidate c wrt the mention m

CtopNxM Set of highest ranked N candidates in the surrounding window of M mentions

Function: Description

freq(SFc) Number of times the surface form SF is seen for entity c in Surface Form Data Set

dist(A,B) Levenstein edit distance between two strings A and B

cos(A,B) Cosine similarity between two vectors A and B

log(A) Natural logarithm of the scalar value A

avg(
∑

) Average of the sum of the values

binarize(A) Binarized code of the number A

argmax(S) The maximum value among the set of values S

argsecmax(S) The second maximum value among the set of values S

Variables in Table 4.1 represent either strings, scalar values, or vectors. SFm

and Dt are the only variables that are not related to the candidate. Whereas, Dc, Ec,

and T ec are candidate-specific and calculated offline, hence they do not depend on the

mention being considered. The rest of the variables depend on the mention. Sets are

variables that represent a set of values. For example, Sc corresponds to all the surface

forms of the candidate entity c. The rest includes set of candidate entities that are

determined based on specific position. Functions are applied on these variables and

sets in order to define more detailed features.
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We group the ranking features into four main categories as shown in Table 4.2.

In the literature, the features used for disambiguation are basically divided into two

main categories, namely local context-independent and global context-based features.

In order to make it more explicit, we further break down the global features into three

sub-categories. Those are mention-level, document-level and second stage features.

Table 4.2. List of Features used by the Ranking Model and their Descriptions.

Local Features :

surface-form-edit-distance dist(SF best
c , SFm)

entity-log-freq log(
∑

s∈Sc
freq(SF s

c ))

surface-from-type-in-binary binarize(T
SF best

c
c )

entity-type-in-binary binarize(T e
c )

idt-typing-prob Pn
c , where n ∈ {Word,Surface,Synset,Brown,Entity}

Mention-level Features :

avg-surface-form-edit-distance avg(
∑

c′∈Cm dist(SF best
c′ , SFm) )

max-diff-surface-form-log-freq argmaxc′∈Cm freq(SFc′ )-freq(SFc), if freq(SFc) is not max

freq(SFc) - argsecmaxc′∈Cm freq(SFc′ ), otherwise

max-diff-doc-similarity argmaxc′∈Cm cos(Dc′ ,Dt)-cos(Dc,Dt),if cos(Dc,Dt) is not max

cos(Dc,Dt) - argsecmaxc′∈Cm cos(Dc′ ,Dt), otherwise

max-diff-idt-typing-prob argmaxc′∈Cm Pn
c′ - Pn

c , if Pn
c is not max

Pn
c - argsecmaxc′∈Cm Pn

c′ , otherwise

Document-level Features :

max-idt-typing-prob-in-doc argmaxc′∈Ct
c
Pn
c′

Second-stage Features :

max-ranking-score argmaxc′∈C
prev
c

Rc′ if Cprev
c is not empty

argmaxc′∈Cnext
c

Rc′ if Cnext
c is not empty & TSF

c′ = WikiID

0 , otherwise

max-cos-sim-in-context argmaxc′∈CtopNxM
cos(Ec, Ec′ ) * Pn

c′

Local Features are those that consider the individual properties of the candidate

without taking into account any other candidate. For example, the feature surface-

form-edit-distance considers the edit distance between the most similarly matched sur-
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face form (SF best
c ) of the candidate in our Surface Form Data Set and the actual surface

form (SFm) of the mention. The more distant they are, the less likely the candidate

is the actual one. In order to take into account the popularity of the candidate, the

feature entity-log-freq uses the total number of times that named entity is seen in the

Surface Form Data Set. It uses the logarithm to scale down and smooth the values.

The more popular the candidate is, the more likely it might be mentioned. Another

local feature doc-similarity is the cosine similarity between the doc2vec16 embeddings

of the test document and the Wikipedia article of the candidate. The similarity be-

tween the two corresponds to the similarity between the context of the test document

and the context in which the candidate is expected to be mentioned.

Table 4.3. Entity Types and Surface Form (SF ) Types in SFDB.

Type Description

E
n
ti

ty
T

y
p

es

Entities labeled w/following YAGO synsets and BaseKB types

Person wordnet person 100007846, people.person, ...

Organization wordnet organization 108008335, organization.organization, ...

Location wordnet site 108651247, location.location, ...

SportsTeam wordnet team 108208560, wordnet club 108227214, ...

Misc Any other dissimilar synset or type

S
u

rf
a
ce

F
o
rm

T
y
p

es

When ...

WikiID SF is same as the MainT itle of the entity

Redirect SF is labeled as ”redirect” in Wikipedia dump files

Disambiguation SF is labeled as ”disambiguation” in Wikipedia dump files

FirstName the entity is Person-type and SF is a known first name (eg. John)

Surname the entity is Person-type and SF is a known surname (eg. Smith)

FirstWord SF is the first word in the main title of the entity

LastWord SF is the last word in the MainT itle of the entity

PrefixPhrase SF is prefix phrase in the MainT itle of the entity

SuffixPhrase SF is suffix phrase in the MainT itle of the entity

BeforeComma SF is the phrase before comma in the MainT itle of the entity

OrgAcronym SF comprised of first letters of MainT itle of the entity

The two features entity-type-in-binary and surface-form-type-in-binary are binary

vectors that encode the type of the candidate entity and the surface form, respectively.

These types are based on the categorization of the entities and surface forms defined

in Table 4.3. We assign a type to each named entity in our KB based on whether

16We train Gensim’s Doc2vec tool on Wikipedia articles with embedding size=300 and set the
other parameters to their default values in order to obtain document embeddings
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it is labeled with one of the pre-defined YAGO synsets or BaseKB types. We define

five main types. While Person, Organization, Location and Misc types are common

in the named entity recognition literature, we added the SportsTeam type since many

mentioned entities in AIDA data sets are of this type. In case of the surface form

types, we assign one or more applicable types to the SF best
c . Other than Redirect and

Disambiguation types in Table 4.3, the rest is based on the similarity between the

surface form and the MainT itle of the entity, which is obtained from its Wikipedia ID

by replacing any underscore character with the blank space and discarding any phrase

given in parenthesis. Certain combinations of these two types can give clue about the

likelihood of the candidate. For example, it is more likely that mention of Person

type entity is made in surface form of type FirstWord or Organization type entity in

OrgAcronym type surface form.

The final local feature idt-typing-prob is the probability (P n
c ) of labeling the

mention with the pre-assigned cluster-based type of the candidate by the typing model

n. More precisely, when the typing model is applied to the input text containing the

mention, it outputs the probability of the mention belonging to each of the cluster-

based types. As we know the pre-assigned cluster-based type of the candidate, the

probability of that type is set as P n
c . Since we have five different typing models, this

feature contributes with five separate values. Note that each feature that includes P n
c

does that.

Mention-level Features consider the relative value of individual candidate’s

feature with respect to the other candidates’ for the same mention (Cm). The first fea-

ture avg-surface-form-edit-distance takes the average of all surface-form-edit-distance

feature values of Cm. Averaging helps us represent the edit distance of an average can-

didate. We can argue that the higher it is, the more likely that none of the candidates

are the actual entity being mentioned. The features prefixed with max-diff- compare

the candidate’s corresponding feature value with respect to the best value seen for the

mention. If the value is already the best, then it uses the second best value. The higher

positive value it is, the more likely that the candidate is the actual one. Or, the lower

negative value it is, the less likely that the candidate is the one. max-diff- converts a
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context independent value to a context dependent by representing it with respect to

the highest (or the next highest) seen value.

Document-level Features consider all occurrences (Ct
c) of the same candidate

in the same test document. We have one such feature and it uses the highest seen

P n
c value for the considered candidate. When the same entity is seen as candidate in

multiple mentions, each has its own P n
c value depending on the position of the mention

in the document. The highest of them increases the chance of the other occurrences of

the same candidate with the lower P n
c in the same document.

Second-stage Features are only available after the ranking model with the pre-

viously described features is trained and applied on the candidates once. These features

use the ranking probability of each candidate (Rc). The first feature max-ranking-score

keeps the highest Rc among the previous occurrences of the same candidate (Cprev
c )

in the same document. If there is no previous occurrence of the candidate before the

considered mention, then it looks at the future occurrences (Cnext
c ) only if T SFc′ of that

candidate is WikiID. This means that having an occurrence of the candidate with high

Rc increases the chance of the next occurrences of the same candidate in the same

document. The same affect for the early occurrences can only happen if the future

occurrence is mentioned in its full title. The second feature max-cos-sim-context uses

the cosine similarity between the entity embeddings (Ec) of the candidates17 . This fea-

ture is set to the highest cosine similarity value between the candidate and the highest

ranked N candidates in the surrounding window of M mentions.

4.3.3. Neural Network Model for Disambiguation

Our neural network for ranking candidate named entities is a two-layer feed-

forward neural network and one softmax layer18 at the top. We use dropout layer after

each feed-forward layer. We turn the ranking task into a binary classification task,

17We use co-occurrence based entity embeddings obtained with the word2vecf tool. We set the
window size to 5 and number of iterations to 20 on top of default settings.

18In our experiments, we observed that using the softmax layer instead of logistic regression in the
PyTorch provides higher results for this binary classification task.
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where we classify each candidate as true or false candidate at the training time and

then use the output probability of the true class to rank the candidates at the test

time. For each candidate, we create its own input vector, which includes all numeric

values for the features described in Section 4.3.2. Since we do re-ranking, we have two

disambiguation models in our experiments, the first one does the initial ranking and

the second one does the final ranking based on additional ranking insight obtained from

the first model. In both cases, we use the same network architecture, except the fact

that the first model does not include the second-stage features. The values for those

features are calculated from the output of the first model. Hence, in case of the test

sets, we first need to run the first model on them and get the ranking scores for each

candidate. After that, we can run the second model to get the final ranking results.

Feed-forward

Softmax

Feed-forward

Input vector

Figure 4.12. Neural Network Structure for our Disambiguation Model.

4.4. Experimental Setup

4.4.1. Training and Test Data Sets

4.4.1.1. Data Sets for the Mention Typing. We derived our data sets from Wikipedia

which includes over five million well-written documents, each describing one named

entity. Most of the mentions of named entities and concepts in the documents are

manually annotated with HTML anchor tag. However, Wikipedia Editing Guidelines

suggest authors to annotate only the first occurrence of a named entity in the Wikipedia

articles, which means that most of the mentions are not annotated in the articles.

Hence, we try to auto-annotate the remaining occurrences in the documents. To do

this, we look for the word sequences (with greedy match) that are previously annotated

in the same document and then auto-annotate them at the rest of the document. This

process increases the number of mentions considerably with an acceptable error rate.
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However, we did not try to annotate mentions with the partial names.

Table 4.4. Statistics on the Data Sets for the Mention Typing Models.

Num. of Average Num. of

Data Set Instances Tokens per Context

WC-SmallTrain 981,000 22.2

WC-LargeTrain 9,828,000 22.2

WC-Test 9,700 22.2

SFC-SmallTrain 500,000 28.9

SFC-LargeTrain 5,000,000 28.9

SFC-Test 50,000 29.0

EC-SmallTrain 500,000 14.8

EC-LargeTrain 5,000,000 14.8

EC-Test 50,000 14.8

After this pre-processing step, we create a separate data set for each context

representation. Note that we represent the context in three different levels as described

in Section 4.2.2. In case of word-based context (WC), we break the Wikipedia articles

into sentences and collect only those sentences that have at least one named entity

mention and the length is between 10-50 words. We use the sentence boundary detector

tool and tokenizer in the Stanford CoreNLP [180]. We ended up having 46.8M such

sentences. Out of those, we randomly selected sentences and created WC-* data sets.

In case of surface form-based context (SFC), we start with the same sentences and

then for each mention, we get the mention surface forms of the previous and next 10

mentions in the same document. Again we randomly selected instances and created

SFC-* data sets. For the entity-based context (EC), around each mention we collected

the previous and next 10 named entities in the same document. This is called EC-* data

sets. Sample training instances are already exemplified in Figure 4.8 in Section 4.2.4.

For each type, we created small and large training sets and a test set as given in

Table 4.4. The number of instances and the average number of tokens in the context

(left and right combined) are also provided.

4.4.1.2. Named Entity Disambiguation Data Sets. There are a number of publicly

available data sets with different characteristics for the NED task. For training, de-

velopment and test purposes, we use AIDA [72], which is derived from Reuters news
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articles of the CoNLL 2003 NER task. Being the widely used and largest NED data

set, it comes in three pieces: AIDA.train (train), AIDA.testa (dev), and AIDA.testb

(test). We report the results on AIDA-testb as in-domain evaluation results, since all

our training is done on AIDA-train. In order to see how the model that is trained

on AIDA.train achieves on the data sets that exhibit different characteristics, we test

that model on a number of other test sets. This is called cross-domain evaluation. We

also use MSNBC [71], AQUAINT [181] and ACE2004 [135], which are the next

three most frequently used test sets. ACE2004 is a subset of ACE2004 Coreference

documents, while AQUAINT contains news articles from the Xinhua, New York Times

and Associated Press. Since they are also used for wikification, they include Wikipedia

concepts apart from named entities. As the recent studies used the revised versions of

these data sets prepared by [73], we report our results on these revised versions as well.

Apart from these, we also consider three more test sets in order to observe how our

system performs on shorter documents. KORE50 [182] includes 50 short sentences

on various topics such as celebrities, music etc. Most of the mentions are single-word

such as first names, which makes the deduction of the actual mentioned named entity

very difficult. RSS-500 [183] includes short formal text collected from a data set con-

taining RSS feeds of the newspapers compiled in [184]. The texts are on a wide range

of topics such as world, business, science etc. Reuters-128 [183] is a small subset of

the well-known Reuters-21587 corpus containing short news articles about economy.

Details about these data sets are given in Table 4.5. Note that since we use

Wikipedia as our reference KB, we map the DBpedia-based annotations in KORE50,

RSS-500 and Reuters-128 to the corresponding Wikipedia-based IDs. The AIDA sets

have the most annotations among all, which makes them suitable for training and

development. KORE50, RSS-500, ACE2004, and Reuters-128 are the sets that have the

smallest average number of mentions per document (Avg#M/D). In terms of sentence-

based context size, the KORE50 and AIDA sets have the smallest average number of

words per sentence (Avg#W/S). Some of these data sets include NIL annotations,

which have no a corresponding named entity at the reference KB. As a design decision,

we exclude such annotations and report the results accordingly in our experiments.
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Table 4.5. Statistics on the Disambiguation Data Sets.

Data Set Domain RefKB #Mentions Avg#M/D Avg#W/S

AIDA.train news Wikipedia 18,448 19.5 15.7

AIDA.testa (dev) news Wikipedia 4,791 22.2 17.2

AIDA.testb (test) news Wikipedia 4,485 19.4 14.5

MSNBC news Wikipedia 656 32.3 28.8

MSNBCrev news Wikipedia 655 32.8 27.5

AQUAINT news Wikipedia 730 14.3 28.5

AQUAINTrev news Wikipedia 722 14.4 28.5

ACE2004 news Wikipedia 255 4.5 37.0

ACE2004rev news Wikipedia 256 4.5 38.6

KORE50 mixed DBpedia 143 2.9 14.6

RSS-500 RSS-feeds DBpedia 517 1.0 32.2

Reuters-128 news DBpedia 621 4.9 28.0

4.4.2. Evaluation Metrics

During the evaluation of the cluster prediction model and the disambiguation

model, we report the results in standard micro-average F1-score. It is the harmonic

mean of the precision and recall measures. Precision measures the percentage of ma-

chine’s predictions that are correct compared to the gold (human) annotations. On the

other hand, recall measures the percentage of the gold annotations that are predicted

correctly by the machine. In case of the disambiguation results, a number of stud-

ies reported their results in bag-of-title (BoT) F1-score [135, 181], which is designed

for Wikification systems. It is used to evaluate a NED system for indexing purposes.

Hence, it discards the duplicate gold annotations and predictions in a document and

uses the same F1-score metric on the filtered out numbers. Moreover, we report our

results in InKB accuracy in case of the AIDA test set due to the convention in the

literature. On the other test sets, we use a threshold on the ranking probability and

do not assign an entity to a mention if our system is not confident with the assignment

(i.e., the ranking probability is below the threshold). In our experiments, we use 0.03

as the threshold.



99

4.4.3. Optimizing Clustering for Better Disambiguation

Important thing before getting into the experimental results is tuning of the clus-

tering for better disambiguation. As described in Section 4.2.3, how we cluster named

entities determines the effect of the discriminative power of clustering on the disam-

biguation step. The more clusters we use, the fewer entities each cluster has, hence the

more discriminative the clustering becomes. For example, consider the cluster contain-

ing the gold standard entity. When we have fewer entities in that cluster, we expect it

to be relatively easier to identifying the correct entity among the others, compared to

when we have more entities in the same cluster. However, when we have more clusters,

this makes the typing model difficult to solve due to the increase in the number of

classes (i.e. types). There are two main factors we considered for optimization. The

first is the window size chosen while calculating the entity embeddings on which we

run the K-means algorithm. The second and more important factor is the number of

clusters to be generated by the clustering algorithms. However, it is not feasible to

try all possible combinations and measure which one achieves the best performance at

the disambiguation step. That is because for each combination, we need to get the

clusterings, train their typing models, train the ranking model on their predictions and

then finally measure the disambiguation success. Instead, we introduce the following

three-step approach.

The first step is to produce a wide range of clusterings for the named entity

space with different window sizes for embeddings and different numbers of clusters.

The second step includes selecting a good sample of clusterings and training a typing

model with each selected clustering. Since we use multiple mention typing models for

disambiguation, the third step is to select one clustering for each typing model so as to

achieve high at the disambiguation step. In order to choose this combination, we also

propose a heuristic that minimizes the number of times we train the ranking model.

Below, we explain each step in more detail.

The first step involves creating various clusterings of named entities for each of the

five clustering approaches. The first and primary parameter is the number of clusters.
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In case of the Brown-based approach, we run the tool with number of clusters from

1000 to 1500 in 100 incremental steps. For the other four clustering approaches, we run

the K-means algorithm with number of clusters from 600 to 3000 in 200 incremental

steps. The second parameter is related to the calculation of the entity embeddings

which are only used by K-means. In case of Synset-based approach, since there is no

sequential context, we use word2vecf and the only parameter we change is the iteration.

For the other three approaches, we use word2vec and experiment with different values

of the window parameter. We use window sizes of 2 and 3. Using other values does

not provide any better results. We set the iteration parameter for the Synset-based

approach to 20. At the end of the first step, we get a total of 70 clusterings.

At the second step, we pick one or more parameter combinations for each clus-

tering approach. However, instead of selecting randomly, we proposed a metric that

helps us evaluate each clustering based on how well it might help discriminate the

candidates for the benefit of the disambiguation model. This metric is called Average

Gold Candidate Cluster Size (AGCCS). When we group the candidates of the mention

based on the clustering at hand, we end up having clusters of candidates, or candidate

clusters. The one that holds the gold (true) candidate is called gold candidate cluster.

The smaller the size of the gold candidate cluster is, the less number of candidates

are being favored by the cluster prediction model at the disambiguation step. In other

words, it becomes more discriminative. For each parameter combination, we calculated

AGCCS value on the AIDA.train data set, which includes over 18000 mentions with

an average of 84 candidates for each mention.

Figure 4.13 shows how AGCCS changes, as we increase the number of clusters.

Generally, it drops, because using more clusters leads to less number of entities inside

the clusters, hence the smaller size for the gold candidate cluster. Note that AGCCS

generally decreases fast at first but does not drop below 2.5. The dots in Figure 4.13

show the chosen cases that we train a typing model for. We particularly pick the ones

with the lowest AGCCS value. Moreover, we also consider some other local minimums,

since they are obtained with less number of clusters. At the end, we have 19 different
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Figure 4.13. Change of Average Gold Candidate Cluster Size (AGCCS) as the

Number of Clusters is Increased for each Clustering Approach.

typing models calculated19 , hence 19 dots in Figure 4.13.

The third step is to pick the best clustering combination. Note that based on 19

calculated typing models, we ended up having 540 different combinations20 . However,

it is not feasible to train a disambiguation model for each combination and pick the

19We have three Word models for 1000, 2000, 3000 clusters with window=2; six Surface models
for 1400, 1600 and 2400 clusters with window=2 and 800, 1000 and 2000 clusters with window=3;
two Entity models for 1000 and 2200 clusters with window=3; three Synset models for 600, 1000, and
2000 clusters with iter=20; and five Brown models for 1000, 1100, 1200, 1300, and 1400 clusters

20540 = 3 Word x 6 Surface x 3 Synset x 6 Brown x 2 Entity.
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best performing one. Instead, we proposed a heuristic that scores the typing model

combinations according to Equation 4.1 . We omit the Entity typing model in order not

to involve the second-stage ranking into this procedure. After getting the first-stage

fixed, we pick the best performing Entity model which is obtained with 2200 clusters.

arg min
w∈Word,s∈Surface,y∈Synset,b∈Brown

Pw + P s + P y + P b

where P t =
∑
m∈M

∑
cng∈{Cm−cg}

P t
cng
− P t

cg , if P t
cng

> P t
cg

(4.1)

Note that a typing model t outputs the probabilities of the cluster-based types

for a given mention. Since we know the pre-assigned cluster-based type of each can-

didate ctype, we also know P (ctype|mention), or P t
c in short. The ideal case from the

disambiguation point of view is to have all typing models assign the highest probability

to the gold candidate cg so that it can be easily distinguishable from the rest of the

candidates (i.e. Cm−cg), which are called non-gold candidates, or cng. However, in real

world scenario, typing models can make a classification mistake which leads to cng hav-

ing higher probability than cg. We call them competing non-gold candidates. Having

higher typing model probability falsely favors them in the disambiguation step. Hav-

ing said that, Equation 4.1 chooses the model combination such that it minimizes the

aggregate probability difference between gold candidate and competing non-gold can-

didates calculated over all mentions M . For these calculations, we use the AIDA.train

data set.

At the third step, instead of picking the typing model combination that has the

lowest value according to Equation 4.1, we select the lowest scored 10 combinations and

train a ranking model for each. Then, we score them on the AIDA.testa development

set and pick the one that achieves the highest disambiguation score. The selected

combination is Word model with 1000 clusters, Synset model with 1000 clusters, Brown

model with 1300 clusters, and Surface model with 2400 clusters. For the Entity model



103

in the second-stage of the ranking, we use the model with 2200 clusters.

4.5. Experimental Results

4.5.1. Evaluation of the Candidate Generator

In order to evaluate the candidate generator, we use the gold recall measure,

which is defined as the percentage of the annotated (gold) named entities in the data

set that have been suggested by the candidate generator. Table 4.6 gives the gold

recall values for our candidate generator and two other candidate generators in the

literature. Note that most of the NED studies use a smaller number of candidates in

order to discard the least possible cases before doing the ranking. Hence, Ratinov [135]

and Ganea [68] use the highest scored 20 and 30 candidates per mention, respectively.

In our experiments, we use top 100 (N = 100) candidates in order to increase the

recall of the NED system and to have more negative examples during the training of

the model. To evaluate our candidate generator, we also calculate gold recall for top

20 and 30 candidates. Moreover, in order to measure the contribution of the second

stage of our candidate generation algorithm described in Section 4.3.1, we also calculate

these recalls without applying the second stage. The results of the proposed candidate

generator as well as the ones of [135] and [68] are given in Table 4.6. In addition to

these, [18] reported a recall of 97.7 on AIDA.train when N = 100.

When we compare our recall values with other studies, in almost all cases the

proposed candidate generator achieves better performance except with respect to the

performance of [135] on the AQUAINT. The results also show that the second stage

in the candidate generator produces a substantial improvement. It means that using

candidates from similarly titled surrounding mentions and extending the candidates

even further with their co-occurring entities from Wikipedia results in higher recall

values. The only exception is with the AQUAINT and AQUAINTrev.

When we perform error analysis, we observe that in case of KORE50, small

context and mostly one word mentions result in low recall. In case of RSS-500, the
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Table 4.6. Gold Recall Values for Candidate Generation on the NED Data Sets.

Ours w/o 2nd Stage Ours w/ 2nd Stage Ganea Ratinov

Data Set N=100 N=30 N=20 N=100 N=30 N=20 N=30 N=20

AIDA.train 97.97 97.56 97.16 99.74 99.22 98.61 - -

AIDA.testa 97.63 97.26 97.07 99.85 99.22 98.24 96.6 -

AIDA.testb 97.87 97.07 96.58 99.62 98.59 97.36 98.2 -

MSNBC 91.63 91.63 91.01 99.70 99.22 98.29 98.5 88.67

MSNBCrev 91.91 91.91 91.30 99.85 99.08 98.47 - -

AQUAINT 96.93 96.23 95.25 97.40 96.09 94.69 94.2 97.83

AQUAINTrev 97.92 97.37 96.68 98.06 96.95 96.12 - -

ACE2004 96.86 95.29 93.73 96.86 95.65 94.51 90.6 86.85

ACE2004rev 96.88 95.70 94.14 96.88 96.09 94.92 - -

KORE50 86.01 82.52 81.82 92.31 88.81 87.41 - -

RSS-500 88.39 86.27 85.69 89.56 87.43 86.85 - -

Reuters-128 88.41 87.60 87.28 95.65 90.82 89.21 - -

annotated mentions only include part of the existing surface form (e.g., only the word

“France” is annotated for the available surface form “Tour de France”). Since we do

not take into account the immediate surrounding words of the annotated mentions

during the search or use an off-the-shelf named entity recognizer [78] to expand the

boundaries, we achieve relatively low recall on RSS-500. Table 4.7 reports the average

number of candidates per mention generated for N = 100. It also shows the average

length of the mentions in characters and the average edit distance between the surface

form (SFm) of the mention and the best matched surface form of the candidate (SF best
c )

per candidate. The highest values for both metrics are seen in Reuters-128, while the

average mention length values on the AIDA sets also show their characteristic difference

from the other sets, which is important considering that we train our disambiguation

model on the AIDA.train and test it on the other sets.

4.5.2. Contribution of Specialized Word Embeddings in Mention Typing

Instead of using regular word embeddings (i.e. WR) as input for our mention

typing models, we introduced two different word embeddings in Section 4.2.5. Those
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Table 4.7. Statistics on the Candidates Generated for each NED Data Set.

Average Num. Average Average

Data Set of Candids (N=100) Mention Length Edit Distance

AIDA.train 84.65 8.9 1.7

AIDA.testa 84.35 9.0 1.8

AIDA.testb 84.45 8.9 1.9

MSNBC 92.97 10.2 2.6

MSNBCrev 94.22 9.9 2.5

AQUAINT 78.07 11.6 2.1

AQUAINTrev 78.22 11.6 2.1

ACE2004 79.15 11.0 2.2

ACE2004rev 79.17 11.0 2.2

KORE50 85.44 6.3 1.2

RSS-500 70.90 11.3 2.7

Reuters-128 72.79 12.6 3.8

are the cluster-centric word embeddings (WCC) and surface form based word embed-

dings (WSF ). WCC is proposed as an optimized version of WR, as it is influenced

by the applied clustering during the calculation. Both embeddings are obtained with

word2vec21 on all Wikipedia articles. They are used as an input to Left, Right and

Surface1 components (either LSTM or CNN layers shown in Figures 4.9 and 4.10) of

the typing model. In case of WSF , it is obtained with word2vecf22 from the large surface

form data set as described in Section 4.2.5. Different from the previous two embed-

dings, WSF is used as an input to the Surface2 component of the typing model. Note

that, like Surface1 component, Surface2 also takes the words of mention’s surface

form as input but in WSF embeddings instead.

In order to measure the contribution of using WCC over WR and using additional

WSF , we trained both LSTM23 - and CNN24 -based models with different embedding

combinations for each typing model. Note that each typing model is trained and tested

21We set window=2, size=300, and use the default values for the other parameters.
22We set size=300, and use the default parameter values for the other parameters.
23We set the learning rate to 0.1 and use the standard gradient descent optimizer with Nesterov

momentum of 0.9. We set the weight decay rate to 1.2e-06 and clip the gradients at 2.0. We set the
hidden state size to 600 for all LSTM layers. Wherever applied, dropout probability is set to 0.5. We
use batch size of 200.

24We use the same parameter values as in the LSTM-based model, except the clip value is set to
1.0. The CNN filter sizes are set to 64.
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on its own designated data set described in Section 4.4.1.1. To consider all combinations

in a feasible time frame, the small version of those data sets (the ones named *-

SmallTrain and *-SmallTest) are used. In Table 4.8, we measured how accurately the

typing model predicts the cluster-based type labels assigned to each mention in the

test sets. The results are given in F1 score.

Table 4.8. Showing the Contribution of the WCC (over WR) and WSF Embeddings

When Typing Models are Trained and Tested on *-SmallTrain and *-SmallTest Sets.
Arch. Inputs Mention Typing Models

Type Left Surface1 Surface2 Right Word Synset Surface Brown Entity

LSTM WR WR NotUsed WR 67.5 66.6 66.1 68.6 67.1

LSTM WCC WCC NotUsed WCC +2.4 +1.9 +5.3 +4.4 +0.9

LSTM WR WR WSF WR +4.6 +1.0 +6.4 +4.8 +2.2

LSTM WCC WCC WSF WCC +5.3 +3.0 +7.0 +6.3 +2.5

CNN WR WR NotUsed WR 69.1 61.1 58.3 60.3 61.4

CNN WCC WCC WSF WCC +3.7 +7.5 +14.5 +10.6 +6.3

The first rows for the LSTM and CNN-based models in Table 4.8 consider the case

where we do not use any special word embedding except the WR. The following rows

show how much the F1-scores change with respect to the first row (i.e., the baseline),

first when we replace WR with WCC , then when we use WSF . Shown at the last rows,

using both special embeddings together increases the scores considerably, up to 3 to

7 points. Their contribution is even more visible in case of the CNN-based models.

When we do the same analysis on the other NED sets, we also observe very similar

contribution levels. Based on these results, we use WCC and WSF together in the rest

of our experiments.

4.5.3. Cluster-based Mention Typing Results

In order to evaluate the cluster-based mention typing models, we train and test

our five different models on the *-LargeTrain and *-LargeTest sets defined in Sec-

tion 4.4.1.1. The results in F1-score are given in Table 4.9 for both the LSTM- and

CNN-based models. However, since they are tested on different sets, the F1-scores are



107

not comparable25 across the table. Hence, the average loss per instance is included in

parenthesis. It is calculated by normalizing the total cross entropy loss value given by

the model on the test set with the number of instances in that set. Note that average

loss per instance is a better evaluation metric than F1-score for assessing the quality

of the predictions for the disambiguation step, since, the prediction probabilities are

used as features in the ranking model. F1-score only measures how accurate the model

predicts the true label, whereas average loss per instance indirectly takes the model’s

probability of that predicted label into account.

Table 4.9. F1-scores and Average Loss per Instance Values for the Mention Typing

Models Trained and Tested on the *-LargeTrain and *-LargeTest Sets.
Arch. Type Word Synset Surface Brown Entity

LSTM 81.2 (1.10) 78.6 (1.52) 83.4 (0.80) 83.8 (0.68) 82.1 (0.74)

CNN 81.0 (1.09) 79.0 (2.14) 81.0 (0.83) 81.6 (0.75) 79.6 (1.43)

When the context is local as in the Word and Synset models, CNN performs

similarly to LSTM. However, in general the LSTM-based models outperform the CNN-

based models. This is supported by both F1-score and average loss per instance values.

Hence, in the rest of our experiments, we use LSTM for all mention typing models.

When we compare the different models with each other through the average

loss per instance value, the Synset model turns out to be the worst performer and

the Word model comes after that. This means that these two sentence-based models

are outperformed by the document-level typing models, namely Surface, Brown, and

Entity. This might be expected due to the larger context at the document-level. In

case of the worst performer, the synset-based model is based on clustering of the entity

embeddings that have not originated from the context, but are based only on the

similarity of the assigned synsets. In other words, the cluster-based type labels used

for training the Synset model are not optimized for the contextual similarity. This

might affect the success of the typing model which learns to predict based on the

contextual similarities. The Synset model not being optimal for typing model is also

supported by the results in Table 4.8. Specialized word embeddings do not help the

25In order to keep the results as much comparable as possible, we train all typing models based on
the same number of clusters, which is 1000.
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Synset model much compared to the other models.

4.5.4. Disambiguation Results

For the disambiguation step, we trained our disambiguation model26 on the

AIDA.train data set and did the feature selection based on the AIDA.testa devel-

opment set. We train our ranking model in two-stages. At the first stage, the model is

trained and run on all data sets. The ranking probabilities for the candidates are stored

and used in the additional features, which are classified as the second stage features in

Section 4.3.2. Our final results27 are obtained after training the ranking model with all

the features. The results are reported in Table 4.10 (for test sets with large context)

and Table 4.11 (for test sets with small context).

Table 4.10. Results in F1 and BoT F1 on the NED Test Sets with Large Context.

System MSN MSNrev AQU AQUrev ACE ACErev AIDAb

Phan et al. 2017 91.8 - - - 92.9 - -

Ganea and Hofmann 2017 - 93.7 - 88.5 - 88.5 92.2

Guo and Barbosa 2016 - 92.0 - 87.0 - 88.0 -

Yamada et al. 2016 - - - - - - 93.1

Phan et al. 2018 91.0 - 87.9 - 88.3 - -

Sil et al. 2018 - - - - - - 94.0

Le and Titov 2018 - 93.9 - 88.3 - 89.9 93.1

Radhakrishnan et al. 2018 - - - - - - 93.0

Raiman and Raiman 2018 - - - - - - 94.8

Fang et al. 2019 - 92.8 - 87.5 - 90.5 94.3

Liu et al. 2019 - - - 87.3 - 86.6 87.6

Cheng and Roth 2013 [BoT] 90.0 - 90.0 - 86.0 - -

Yang et al. 2018 [BoT] - 92.6 - 90.5 - 89.2 95.9

Ours

w/o Typing Models (Baseline) 87.3 88.4 84.5 87.0 80.8 82.0 81.4

w/4 T.Models (1st Stage) 91.9 92.6 88.4 90.7 89.5 90.3 89.9

w/5 T.Models (2nd Stage) 92.6 93.0 89.0 90.7 90.0 91.1 93.2

w/5 T.Models (2nd Stage) [BoT] 90.8 92.1 89.8 91.9 91.8 93.2 92.6

26We set the learning rate to 0.05 and use the standard gradient descent optimizer with Nesterov
momentum of 0.9. The first and the second layers contain 500 and 300 units, respectively. The
dropout values after the first and the second layers are set to 0.1 and 0.7, respectively. The training
data are given in batches of 400 instances.

27We train our system 20 times with different seed values.
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The upper part of the tables provides the results reported by the previous studies

in the literature. Note that the results from the two studies at the bottom are given

in BoT F1-score. The lower part of the tables presents our results given in traditional

micro F1-score and BoT F1-score. The first line in ”Ours” part shows the results taken

without using any features related to the mention typing models or the second stage.

We call it our baseline. As we add the features calculated with the four typing models

(namely Word, Synset, Surface, and Brown), we can observe increase of 2 to 8 points on

all test sets. Next, we apply the second-stage, where we add the second stage features

and the features calculated with the Entity typing model. The results are improved

further, especially on AIDA.testb with 3.3 points increase.

In order to compare our results with the SOTA results in Table 4.10, we perform

the randomization test with respect to the studies that achieved close to our results.

On AQUAINT, we achieve better than Phan et al. (2018) at statistically significant

level28 . On MSNBC, our higher F1-score turned out to be not statistically significant

compared to Phan et al. (2017). On the revised ACE2004, our higher result is not

statistically significant29 compared to Fang et al. (2019). On the revised AQUAINT,

our results are 2.2 points higher than Ganea and Hoffman (2017) and 1.4 points higher

in BoT F1 with respect to Yang et al. (2018). However, we are unable to perform valid

randomization tests30 with respect to their results.

In case of test sets with shorter context, Table 4.11 shows that our best system

cannot achieve better performance than its counterparts. The worst performed test sets

compared to the SOTA results are KORE50 and RSS-500. KORE50 has the lowest

average number of words per sentence and RSS-500 has only one mention per document

on average. Our context-centric approach cannot utilize such short context enough.

This is in fact the most common problem for all NED systems. On the other hand,

28We compared our 20 runs with the one run of them that produced the same reported F1-score
and observed p-value=0.014 on average.

29Table 4.10 includes the adjusted F1-score as they did not output prediction for 5 mentions of 256
that we have. Their reported F1-score of 91.2 is on 251 mentions, on which we achieve an F1-score of
91.7.

30Ganea and Hoffman (2017) provided the output of one run. The F1-score calculated on that run
is 91.1, while the score reported in their study as the average of five runs is 88.5 ± 0.4. The provided
output might be from their best run, while the score from our best run is 91.5.
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Table 4.11. Results in F1 and BoT F1 on the NED Test Sets with Short Context.

System KORE50 RSS-500 Reuters-128

Phan et al. 2017 79.4 80.4 91.8

Phan et al. 2018 78.7 82.3 85.9

Ours

w/o Typing Models (Baseline) 40.4 68.9 72.0

w/4 T.Models (1st Stage) 56.1 74.4 76.5

w/5 T.Models (2nd Stage) 57.5 76.1 79.3

w/5 T.Models (2nd Stage) [BoT] 58.5 77.7 88.6

Reuters-128 has a relatively larger context based on those metrics, however its average

number of edit distance per candidate is the highest with respect to the other sets. That

may cause the lower scores on Reuters-128. This is actually connected to the fact that

AIDA.train on which we train our disambiguation model is characteristically different

from these three data sets. One particular difference to mention is that the average edit

distances given in Table 4.6 in the AIDA sets are lower than many of the other sets.

Whenever our NED model gets candidates with relatively higher edit distances on any

of the test sets, it assigns low scores to such candidates as expected. This affects the

gold candidates disproportionately, when there are alternative candidates with lower

edit distances.

It is interesting to note that the AQUAINT test set contains many concepts (e.g.,

“power plant”, “radioactive waste” etc.) along with named entities. Our success might

be related to the fact that we train our typing models on Wikipedia, which also includes

the mentions of concepts.

4.5.5. Analysis of the Experiments

4.5.5.1. Ablation Study on the Ranking Features. In order to understand the contri-

bution of the ranking features, we perform two ablation tests. Moreover, since we do

the ranking in two stages, we calculate the contributions for both stages as well as for

the baseline, which is the system that doesn’t use any features obtained from the typing

models. Before getting into the analysis, one factor has to be noted while evaluating
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the contributions. The second stage uses additional “second stage” features and their

success depends on the success of the features used in the first stage. Since those first

stage features are still used in the second stage, their contribution drops as they share

their success with the second stage features. Hence, it is more appropriate to evaluate

the contribution of the first stage features based on the results at the first stage.

The first test examines the contribution of each feature by excluding that feature

from the model. Table 4.12 lists all the features used in our experiments. Note that

some of them are not available (N/A) for certain stages. The results31 are shown in

the F1-scores taken on the AIDA.testa (dev) set. As each feature is excluded, the drop

in the F1 score is given. The first thing to notice is the high-level contribution of edit

distance based features. Surface form is the major factor at the disambiguation task.

The second thing is the decreasing contributions towards the second stage.

Table 4.12. Showing the Contribution of each Feature in F1 Scores by its Exclusion

at Different Stages on the AIDA.testa Development Set.
System Baseline 1st Stage 2nd Stage

All Features Included 82.1 93.3 94.4

Local Features:

- surface-form-edit-distance (1) -9.7 -4.0 -1.3

- entity-log-freq (2) -3.0 -1.1 -0.1

- surface-from-type-in-binary (3) -2.4 -1.6 -0.6

- entity-type-in-binary (4) -1.8 -0.9 -0.4

- idt-typing-prob (5) N/A -0.2 -0.2

Mention-level Features:

- max-diff-surface-form-log-freq (6) -4.2 -0.8 -0.4

- max-diff-doc-similarity (7) -4.1 -0.6 -0.2

- avg-surface-form-edit-distance (8) -0.6 -0.6 -0.3

- max-diff-idt-typing-prob (9) N/A -0.5 -0.3

Document-level Features:

- max-idt-typing-prob-in-doc (10) N/A -0.7 -0.2

Second-stage Features:

- max-ranking-score (11) N/A N/A -0.5

- max-cos-sim-in-context (12) N/A N/A -0.8

Even though there are four groups of features shown in Table 4.12, for the sake

of contribution analysis, it is better to group them as surface form based (numbered

31We train each model 10 time with different seed values and report the average results.
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1,3,6,8), candidate based (2,7), typing model based (5,9,10), and ranking based (11,12)

features. Each group considers the disambiguation task from different aspects.

Surface form based features are mention oriented, completely independent

from the context. The results in Table 4.12 show that they keep their contribution high

at all stages. This can be attributed to the fact that other features do not consider

surface form. In other words, there is no contribution overlap between surface form

based features and other features.

Typing model features are mostly context driven. Their contribution in Ta-

ble 4.12 does not look notable at the individual level. However, the change between the

Baseline and the 1st stage, which is 11.2, comes from adding the typing model features.

The low individual contributions can be explained by the fact that those three features

are derived from the same value hence, their contributions overlap. Interestingly, using

the highest typing model probability seen in other occurrences of the same candidate

in the same document (10) is more powerful than using the typing model probability

of the candidate (5) for the considered mention.

Candidate based features are more candidate specific, with no direct involve-

ment of the surface form. Their contribution drops substantially at the 2nd stage. Even

though (2) is widely used in the NED literature, it is calculated offline and independent

of the mention or its context. This might explain its low performance. In case of (7),

it is based on doc2vec embedding similarity between candidate’s Wikipedia page and

the test document. In other words, it is similar to the other typing model features.

The results support that their contributions overlap.

Ranking based features help us take into account the surrounding candidates.

The results show that they contribute quite well compared to others. Especially (12)

might be the main driver behind the F1 score improvement of the 2nd stage.

In our further analysis, we observe that using max-diff version of the features

performs better than using the feature itself. max-diff compares the value of the feature



113

with respect to the highest value seen among its sibling candidates. For example, using

only doc-similarity does not contribute better than max-diff-doc-similarity. The same

is true for max-diff-surface-form-log-freq. We argue that this is related to the fact that

doc-similarity and surface-form-log-freq are context independent and applying max-diff

makes them context dependent.

Table 4.13. Showing the Contribution of each Mention Typing Model in F1 Scores by

its Exclusion at Different Stages on the AIDA.testa Development Set.
System 1st Stage 2nd Stage

All Mention Typing Model Features Included 93.3 94.4

- Word -1.1 -0.6

- Synset -1.4 -0.7

- Brown -0.6 -0.2

- Surface -0.6 -0.3

- Entity N/A -0.2

Our second ablation analysis evaluates the contribution of each typing model.

Table 4.13 shows the amount of drop in F1 score when we exclude each typing model

from the 1st and 2nd stages on the AIDA.testa (dev) set. Note that features (5,9,10)

shown in Table 4.12 have multiple values, one for each used typing model t. Considering

that the Synset typing model is the worst one at predicting the types as shown in

Table 4.9, it is surprising to see that it is the best contributing model. Like Synset, the

other local-context based model, namely the Word typing model comes second. This

indicates that typing models based on local (sentence-based) context contribute to the

success of NED more than typing models based on global (document-based) context.

4.5.5.2. Error Analysis of the Ranking Model. In order to understand where our rank-

ing model fails, we analyzed the failed cases on the AIDA.testa (dev) set in detail. Our

first analysis involves measuring the role of the popularity of a candidate and the fre-

quency of its surface form. It is intuitive to assume that popular entities are more

likely to be mentioned than less popular entities. In our case, we define the popularity

of a named entity as the total number of times that named entity is seen in the Surface

Form Data Set. Similarly, when one surface form is seen more times with a certain

entity than others, it is more likely that that surface form refers to that entity when-
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ever it is used. When one surface form may refer to many entities, it causes ambiguity,

which is the main source of the failures for the ranking model.

In Table 4.14, we calculate certain ratios and percentages based on the popu-

larity of the candidate (F e) and the frequency of its surface form (F s). During these

calculations, G is the set of the gold (true) candidates, one for each mention in the

data set. G′ is its subset that only includes the ones (i.e. failed golds) that are failed

to be predicted correctly by our model. P ′ is the set of wrong predictions that are

suggested instead of gold candidates. Note that X is a variable in shown calculations

and it should be replaced with either F e or F s, when appropriate. Moreover, Xmax

refers to the maximum value among all non-gold candidates of the same mention for

the selected X.

Table 4.14. Analyzing the impact of the popularity of the candidate entity and its

surface form frequency when our system fails on the AIDA.testa (dev) set.
Case Description Calculation X = F e X = F s

[1] Ratio of failed golds’ X avg
∑

g′∈G′ Xg′/avg
∑

g∈GXg 0.17 0.05

to all golds’ X

[2] Ratio of predictions’ X avg
∑

p′∈P ′ Xp′/avg
∑

g′∈G′ Xg′ 2.78 10.69

to failed golds’ X

[3] % of cases when gold’s X is
∑

g∈G[Xg > Xmax]/size(G) 0.36 0.48

higher than the max’s X

[4] % of cases when failed gold’s
∑

g′∈G′ [Xg′ > Xmax]/size(G′) 0.29 0.16

X is higher than the max’s X

Case [1] in Table 4.14 looks at the ratio of failed golds’ popularity and form

frequency to the all golds’ in terms of averages. The values 0.17 for F e means that the

average popularity of failed golds is about five times lower than the average popularity

of the golds. In case of F s, we can say that when our system fails, the form frequency

of the gold candidate is 20 times less frequent than the average gold candidate’s surface

form.

In Case [2], we compare the values of wrongly predicted candidates and the corre-

sponding gold candidates. For F e, it shows that the popularity of the wrongly predicted

candidate is 2.78 times higher than the popularity of the actual gold candidate. This

is 10.69 times in case of F s, which means that the form frequency plays more role than
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the popularity.

Case [3] measures the percentage of the cases when gold’s popularity or form

frequency is higher than any other sibling candidate. The nominator of [3] in Table 4.14

counts for how many g Xg is higher than Xmax. The denominator normalizes that value

to get the percentage. Case [4] measures the same value for the failed golds. In case of

F e, the value 0.36 means that 36% of the time the golds are the most popular candidate

and it is 29% for the failed golds. In other words, most of the time golds are not the

most popular ones among the candidates32 and that ratio does not change much among

the failed golds. In case of F s, half of the time gold candidates are the ones that the

surface form refers to most. That ratio drops considerably in case of failed golds. All

in all, our system pays more attention to the form frequency than the popularity and

prefers the candidates that the surface form refers to most. This also aligns with Case

[2].

In addition to this analysis, we also measure the role of edit distance at failures.

There are 15 gold candidates out of 4791 golds that have non-zero edit distance value in

the AIDA.testa set. Meaning that, none of their surface form in our database matches

with the surface form of the mention exactly. Our system fails 10 of those 15 cases.

Compared to a total of 282 failures, it is less than 4% of errors. However, in case of

test sets like Reuters-128, it makes the difference.

Another aspect we analyze is how accurate our system predicts when there are

multiple mentions of the same entity. Out of 4791 mentions, 2863 of them involve

the multi-mention cases. Our system fails at 153 of those cases, which does not look

significant. Yet, it also means that more than half of the total failures of our system

involve such cases. Moreover, in 60% of 153 cases, our system predicts none of the

instances of the multiple-times mentioned entity correctly.

32This might be the reason why the entity-log-freq feature does not have a notable impact on the
disambiguation results.
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4.6. Discussion and Future Work

In this research, we cluster named entities with two clustering algorithms: Brown

clustering algorithm and primarily K-means algorithm. Since we have over five million

named entities to cluster, we did not focus on picking the best clustering approach due

to computation time overhead. Instead, we choose K-means specifically for its wide-

acceptance in the literature and more importantly its acceptable linear time complexity

O(Kn), where K is the number of clusters and n is the number of items to be clustered.

In fact, we experience the burden of quadratic time complexity in case of the Brown

clustering algorithm and the highest number of clusters we were able to run with

Brown was 1400, as shown in Figure 4.13. In case of other clustering algorithms,

one possible candidate might be hierarchical clustering, or more specifically top-down

hierarchical clustering. While bottom-up approach can go as far as O(n2logn), top-

down approach’s time complexity is comparable to K-means. Moreover, hierarchical

approaches do not require pre-defined number of clusters. Nevertheless, in order to

determine that number, we still need to look at the dendrogram created during the

hierarchical clustering procedure and find the optimum point to cut. Since we have over

five million data points to cluster, that task might be as difficult as finding the optimum

number of clusters for K-means. Another alternative is the K-medoid algorithm, which

is closely related to K-means. The motivation to use K-medoid might be to represent

the centroids of the clusters in terms of the existing named entities in the given input,

rather than the average of the entities in a cluster. Considering that named entities are

unique concepts that are denoted with proper names, it is in general unlikely that one

of them can act as medoid (center) and others are grouped around it. This can also be

explained as follows: since there are over five million data points to cluster, it might

be the case that items are not grouped together in spherical shapes. They might be

scattered more arbitrarily. However, the K-medoid clustering algorithm is known to

have a disadvantage in such situations, as it relies on minimizing the distances between

the medoid and non-medoid items. Furthermore, the time complexity of K-medoid is

O(n2), which also makes it less ideal compared to K-means.
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There are a number of areas that can be addressed as future work to improve

the proposed system. One of the disadvantages of our mention typing model is its

dependency on context. The shorter it is, the worse it performs. One solution is to

utilize the existing context as much as possible with techniques like attention. Similarly,

the latest advances in embeddings such as BERT [185] can be another alternative

as their context-customized embeddings help better represent the context. Another

problem is the fact that our weakest typing model is the Synset-based model. It can

be argued that lack of contextual information in the Synset-based types leads to a

low performing typing model. Despite its high performance at the disambiguation

step, finding a solution to this drawback might improve our weakest model and lead

to even better results. Part of the problem might be related to insufficient context

while learning the entity embeddings with word2vecf before obtaining the synset-based

clustering of named entities. Compared to regular context which may include hundreds

or thousand words, synset-based context can be very small like three or five synsets

depending on how many synsets are associated with the named entity in the YAGO

and BaseKB data sets. One way to expand it is to incorporate the synset hierarchy to

extend the assigned synsets because YAGO synsets are based on the WordNet synsets

which are connected with IsA relations forming a taxonomy hierarchy. For example, for

each synset associated with a named entity in YAGO, we can also include its hypernym

(i.e. parent) synset as another context item for that named entity while calculating

entity embeddings with word2vecf. Moreover, we can even consider each synset entry

as a named entity and use its hypernym as its context. This way, word2vecf may learn

the embedding of the synset based on its hypernyms and that eventually may affect

the embedding calculations of the related named entities.

Clustering of named entities is another improvement area. For example, there are

other clustering methods like Expectation Maximization clustering, which provides soft

clustering. In our experiments, we use K-means which does hard-clustering. It would

be interesting to convert our mention typing model to make use of a soft clustering

approach. For example, instead of doing classification, we may compare the output

vector of the mention typing model with the soft-clustering of the mentioned named

entity. Such vector comparison might hold more detail for loss generation which might
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lead to better training of the model. In our study, we obtain each clustering of the

named entity space independently from the others and pick the best combination for

the disambiguation step in Section 4.4.3. We face the dilemma of using larger clus-

ter numbers to improve their discriminative power for the disambiguation step versus

being less accurate at predicting the cluster-based types. These two contradicting cri-

teria may lead to a non-optimal solution. Nevertheless, we still achieve SOTA results.

However, a more optimized clustering approach (such as customized K-means) that

considers these two criteria together can produce better clusters. Customized cluster-

ing can even be designed to minimize the overlap between different types of clusterings.

Alternatively, feedback from the disambiguation step can be circled back to the clus-

tering step for iterative revision of clusters. One more ideal solution to consider is to

design an end-to-end system that does the mention typing and named entity disam-

biguation together. However, that might be difficult to design. In the ranking step,

the most prominent features are edit distance and popularity related features. The

loss values of the ranking model more likely originate from those types of features.

Considering that we would like to push the loss values from the ranking model back to

the mention typing model, this may not result in any significant improvement. More-

over, the training data set for the named entity disambiguation task is relatively very

small. This also means that the mention typing model may not learn much from that.

One possible end-to-end approach is to do the clustering and mention typing modeling

together. This means that clustering opseeration must be differentiable so that it gen-

erates loss value to make the model learn. There are studies in the literature [186] that

adapt clustering algorithms like K-means into neural network architecture by applying

the perspective of differentiable programming. By combining such a network with the

mention typing model network, we can both learn the mention typing and clustering

together.

4.7. Conclusion

In the second part of the thesis, we introduce a cluster-based mention typing

approach. We cluster named entities based on their contextual embeddings and assign

those cluster ids as type labels to entities. Our analysis shows that using window as
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short as two to calculate entity embeddings with word2vec turns out to give better

clusterings for the disambiguation task. We calculate five different clusterings of over

five million named entities, each considering different contextual aspect. Based on

these, we train five different mention typing models. The results show that LSTM-

based models achieve better results than CNN-based models. Moreover, the models

that use document-level context predict the cluster-based types better than the models

with sentence-level context. We also introduce two specialized word embeddings that

are influenced by the presence of cluster information during their calculation. Their

analysis shows that such influence helps the typing model better predict the cluster-

based types.

The second contribution of our study is to use the predictions of the mention

typing model as features for the disambiguation of named entities. Our analysis shows

that each typing model improves the disambiguation performance. However, using

one typing model is not enough to achieve state-of-the-art (SOTA) results. As we use

five of the models together, our system achieves better or comparable results based on

randomization tests with respect to the state-of-the-art levels on four defacto test sets.

Considering that our ranking model is a simple two-layer feed forward neural network,

we score each candidate individually in a binary classification-based approach rather

than employing a collective disambiguation approach. Moreover, we use the top 100

candidates rather than the top 20 and 30 as in previous works. Achieving SOTA

results indicates the potential of using mention typing models. Our further analysis

shows that even though the typing models with sentence-level context obtain lower

scores at predicting the types, they are the most contributing models compared to

document-level models at the disambiguation step.

Additionally, we study the candidate generation step. Our analysis shows that

using candidates from similarly titled surrounding mentions and extending the candi-

dates even further with their co-occurring entities from Wikipedia gives higher recall

values.
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5. Tools

We compiled our studies on two different tasks into two publicly available tools.

Those are hashtag segmentor and named entity disambiguator. In addition to those

two, we also developed an experiment result management platform which is called xDB.

In the following sections, we describe these three tools in detail.

5.1. Hashtag Segmentor

We implemented a feature-based hashtag segmentor. This means that the raw

input is converted into a set of features on which the model can train and eventually be

able to do segmentation predictions. Each feature is expected to represent one aspect

of the input that gives a clue about whether there is a boundary in considered position

in given input character sequence as described in Section 3.2.1.

Feature Generation
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Generator

Input 
Sequence
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Model
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Figure 5.1. The Flow of the Process in the Hashtag Segmentor.

Figure 5.1 depicts the flow of the process in the segmentor. It can be broken down

to two major steps. The first step involves reading the input and converting it to set

of features. While the input is raw and unreadable for the machine, its transformation

into feature space makes it representable and thus learnable by the machine. After
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feature generation, at the second step, it gives these features to the off-the-shelf tool,

namely maxent. This tool acts in two ways depending on the purpose. If you run the

segmentor in order to segment a character sequence (or a set of sequences in a file),

it makes the maxent tool use those generated features at calculating the probability

of whether there is word boundary at each character in a given sequence. This is

done based on pre-trained segmentation model. After getting boundary probability for

each character, if the probability of having a boundary at position i is higher than not

having a boundary, then the segmentor get to the conclusion that there is a boundary

at position i. After making this decision for each position in the input, it outputs its

final segmented version.

On the other hand, instead of segmenting any input, if you want to train your own

segmentation model, then you can give a already segmented input to the segmentor and

it generates those features as before at the first step and then make the maxent tool

use those features at training a new model. Since segmented input already includes the

word boundary positions, it can learn which features are more likely indicators of the

word boundary. During the training, the maxent tool goes several iterations over the

input and then saves the model into a file which can be used later to do segmenting.

5.1.1. Requirements

The segmentor was implemented in Python 2.7. Hence, the first requirement is

to have Python 2.7 installed on your system. The second requirement is the maxent

tool which is used as a classifier. This tool was mainly written in C++ and you should

be able to compile it on your system by installing appropriate compiler. Note that you

may use another compatible classifier on the Internet as long as it accepts the input

and outputs the results in the same format. Check the format details in the manual of

the maxent tool. Note that one of the components of the hashtag segmentor toolkit is

the N-best generator, which provides information for LM-based features described in

Section 3.2.2.1. N-best generator has its own set of requirements which are provided

in Section 5.1.6.1. However, if you choose not to use LM-based features, you do not

need to run N-best generator.
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5.1.2. Files and Folders

In this section, we explain the files and folder hierarchy of the hashtag segmentor

toolkit. When you download the distributed version of this toolkit and you unzip that

compressed file and following files and folders come out of it. The main two scripts at

the top folder are runHashtagSegmentor.py and runNBestGenerator.py scripts, both

written in Python. All the functionality of the toolkit can be reached by executing

these scripts with the appropriate arguments. For available arguments for these two

scripts, check the Sections 5.1.3 and 5.1.6.2, respectively.

5.1.2.1. “data” Folder. This folder keeps the data files that are used by the segmentor

while segmenting given input or training a new model. Following describes the function

of each file.

• default.vocab: It is the default vocabulary file that is used in our experiments.

It contains list of words along with their log frequency. Check the Section 5.1.5

for more detail in vocabulary.

• recommended.features: It contains a list of features that are recommended

based on our studies with this segmentor on various data sets. This file is used

as a default parameter setting when the segmentor is used to train a new model.

• cmu.word.classes: This file contains a list of word and word class pairs from

a data set called Twitter Word Clusters [122]. In this tool, certain features use

these classes instead of words themselves. This effectively reduces the number of

unique features and makes the learning more feasible.

• default.bigrams: It contains bigram statistics extracted from a large set of text.

It basically includes a frequency value of seeing a word followed by another word.

Hence data is given in three columns.

• default.stop.words: It keeps a list of stop words. These are small set of words

(e.g. “the”) that have no specific semantic meaning but are used more for func-

tional purposes. Stop words are generally ignored during language processing.

We also use them to ignore in specific cases.
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• default.short.stop.words: This file keeps a list of stop words that has a length

up to four characters. Certain features use this list to ignore certain cases.

• default.short.ngrams: Short words are very problematic cases for the hashtag

segmentor. There can be many words in the vocabulary that include the word

“to” or “on” in itself. Word-based features and NGram-based features are directly

affected by such words because they create too many false-positive clues. When

two short word comes one after another, it creates a extra problematic case. In

order to take into account these cases, we collected a set of most frequent bigrams

where both words are short, that is no longer than four characters.

• default.special.words: This is a special set of words that contain at least one

capitalized character inside of them. For example, YouTube, iPhone and McDon-

ald. Even though given examples are known cases and hence can be segmented

correctly, this file enables the system to be aware of such special words so that

it takes those cases into account. There are special features that look for these

special words in the cursor position.

5.1.2.2. “src” Folder. This folder keeps the source files of the hashtag segmentor. Fol-

lowing describes the function of each file.

• Modeler.py: It is the base class for the classifier class. It also keeps the functions

to measure the accuracy of the classifier if a test file is given with the test file

parameter.

– MaxEntModeler.py: It derives from the Modeler.py and is responsible

for calling the “maxent” tool based on given parameters. In the parameter

file, you can specify further settings such as iteration count=[integer], cut-

off=[integer], guassian prior=[float], gis=[0—1] parameters. These values

are passed directly to the maxent tool at the command line.

• FeatureGenerator.py: It is the base class for different types of feature genera-

tors. It keeps track of which features are set as active ones and calls corresponding

functions to look for those features for considered cursor position in the input.

– WordFeatureGeneratory.py: It is special type of feature generator class
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that looks for basic word-based features around the currently considered

cursor position. For example, one word-based feature looks at the longest

word starting at the cursor position. Note that valid words are given in the

vocabulary, which is files/default.vocab by default.

– NGramFeatureGenerator.py: This feature generator class is specialized

in the features that look for the existence of consecutive words (i.e. n-

grams). For example, one particular such feature checks if there a word that

ended before the cursor position and another word that starts at the cursor

position. Existence of such case might give a clue about whether there is a

word boundary at that considered cursor position.

– OrthographicFeatureGenerator.py: It is another type of feature gener-

ator that defines features related to orthographic shape rather than words.

To give an example, if there is a capitalized character at the cursor position

and lower-cased characters before and after that capitalized character, it is

highly likely that there is a word boundary at that position. Such features

look for the orthographic shape of cursor’s surroundings.

– ContextFeatureGenerator.py: Context-based features are defined in this

generator. These features look for clues collected from the context informa-

tion, which is given in a separate file. For example in case of segmenting

hashtag, the tweet that contains that hashtag is the context for that hashtag.

There can be many tweets given as context for the same hashtag. Check

Section 5.1.4 for more information on how to set the context file.

– NBestFeatureGenerator.py: This generator holds the functions that de-

fine language model-based features. These features use the output of the

N-Best Generator which calculates the most likely N segmentations of the

input based on pre-trained language model. For example, one such feature

looks at how many of those N segmentations include a word boundary at

the currently considered cursor position.

• Vocabulary.py: It holds the functions that deal with the vocabulary, such as

loading and filtering based on given parameters.

• Generator.py: It keeps the instances of all feature generators and coordinate

the feature generation. It is responsible for loading the input sequence one-
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by-one and calling each special feature generator’s createSequenceData function

with that sequence so that they can create all required data to be used at the

feature generation. After that, for each character in the sequence it first calls

createPositionData function to create position-specific data and then calls the

function of each activated feature with the created sequence and position-specific

data. If the feature is active at that position, the function generates a value for

the feature, which is specific to the cursor position. This value represents the

situation at that position.

5.1.2.3. “segmentation models” Folder. This folder keeps a folder for each saved model.

The hashtag segmentor toolkit comes with four pre-trained model. Each model folder

holds the model file itself and the parameter settings file which holds the parameters

used to create that model. The model file is generated by the maxent toolkit. Following

is the explanation of each pre-trained model in this toolkit.

• default.model: This folder keeps the default model that is trained based on the

basic set of recommended features. These exclude context-based and language

model-based features as they require extra set of inputs that a regular user might

not be able to run right after they install this toolkit.

• default.model.wLM: This folder keeps a model that considers LM-based fea-

tures on top of the default model. It requires you to be able to run nbest-generator

as it needs to create N-best segmentation for each input.

• default.model.wContext: This folder holds a model that take into account the

context-based features in addition to the default recommended ones. In order to

segment any input with this model, you should also be able to provide context

data. The details are described in Section 5.1.4.

• default.model.wLM and Context: This is another default model that con-

siders all types of recommended features.

Note that in order to segment any input with these models, you need to give

the name of the model (i.e. its folder name) as input with the --model parameter of
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the runHashtagSegmentor.py script. Moreover, when you instruct the runHashtagSeg-

mentor.py script to train a new model, it saves that model with the name given with

--output model parameter under the segmentation models folder. Check the following

sections for more details on this.

5.1.2.4. “language models” Folder. This folder holds the pre-trained language models

to be used by the N-best generator. The original distribution of the toolkit does not

contain any pre-trained language model due to their large size. However, it can be

downloaded at our project website [28]. For example, after downloading the zip file

named “default.lm.targ.gz”, unzip its content into this folder which should be a folder

named “default.lm”, so that it can be recognized by the N-best generator automatically.

5.1.2.5. “nbest generator” Folder. This folder contains the source files for the nbest generator

toolkit that comes with the hashtag segmentor toolkit. Its content is described in Sec-

tion 5.1.6.3.

5.1.3. Command Line

runHashtagSegmentor.py script can be used for two main purposes. The first one

is to break the given input into original words and the second one is to train a new

segmentation model.

• --input text : If you want to segment a specific character sequence for the test

purposes, you enter that sequence following this parameter.

• --input file: If you have a set of character sequences to segment in a file, you can

use this parameter to enter that file’s position. Input file contains one character

sequence per row.

• --output file: If you give a file to segment with input file parameter, the results

can be outputed in two ways. If you do not set output file, then it automatically

generates a output file by appending “.segmented” to the end of the input file

name. However, if you want to have the output in specific file, then you can set
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that file name with output file parameter.

• --model : If you want to run the segmentor to segment any input, you need to

specify the model which is used at predicting the word boundaries. If not defined,

it uses the default model which comes with the distribution.

• --training file: In order to train a new segmentation model, you need to have a

training file which includes a set of segmented character sequences. This param-

eter is used to define the position of that file. Note that when this parameter is

set, the segmentor goes into the training mode.

• --output model : At the training time, you need to name the model so that all

data related to newly calculated model is saved under the “models” folder with

that name. If you want to use that model for the segmentation later on, then

you use that name with the model parameter.

• --test file: In order to measure the accuracy of the segmentor, you can give a test

file which includes a set of segmented character sequences. Based on used model,

the segmentor ignores the already given word boundaries and predicts them from

scratch. Following that, it compares those predictions with respect to given true

cases. It measures the results in the Accuracy and F1-score (including precision

and recall) metrics.

• --output details : If you like to see the generated features for each character in

given input, you need to set this parameter to 1. If you are segmenting a single

sequence with the input text parameter, then it outputs the details onto the

screen directly. In case of segmenting a file with the input file parameter, then

it automatically generates an extra output file with “.features” extension. Note

that the output file may vary depending on whether you use output file parameter

or not.

• --parameters : The segmentor supports many features as listed in Appendix A.

When you train a new model, it uses the recommended subset of those features

by default. However, if you like to select your own subset, you can list them

row-by-row in a file and use this parameter to specify that file. Note that, copy

of this file is saved under the generated model folder.
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To give an example, for the test purposes, if you like to segment a character

sequence such as “greatmovie” by using default model, you can run the following

command line:

python runHashtagSegmentor.py --input_text greatmovie

When you run the command above, it outputs the segmented version of the input

on the screen. Moreover, if you like to see the generated features per each character,

you can also add --output details 1 to the command line. In this case, the output on the

screen will include 10 more lines, each listing a set of active features for corresponding

character in the input “greatmovie”. Next, if you have a set of character sequences in a

file named “my.hashtags” which includes one sequence per row and want the segmentor

to segment them and put the results in a specific file called “my.segmented.hashtags”,

here is how to do that:

python runHashtagSegmentor.py --input_file my.hashtags

--output_file my.segmented.hashtags

After executing this command, the output file includes a segmented version of

each line from the input file. Again you can extend this command with --output details

1 in order to reach generated features. In this case, an extra output file named

“my.segmented.hashtags.details” will be generated. The format of this file is a set of

rows separated by the blank row. Each row set corresponds to one character sequence

in the input file and each row lists active features per character in that sequence.

If you have your own training data in a file named “my.training.data” and like

to train your own model and name it “my.model”, then in order to train a following

command should do that:
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python runHashtagSegmentor.py --training_file my.training.file

--model my.model

When you run this command, it first generates all active features per training

instance and then call maxent tool to train a model. The resulting model file is saved

under “models/my.model” folder along with the parameter file that keeps the record

of the model parameters (i.e. features). The command above uses the default recom-

mended features33 in order to generate active features per training case. However, if you

like to specify your own set of features, then you list them in a file, say “my.features”

and add --parameters my.features to the end of the command line above.

5.1.4. Context File for Context-based Features

In order to be able to use context-based features, you need to specify context

information for every training instance in training file. Note also that this only works

when training file contains list of segmented hashtags, that is not any raw text. Then

context file should include list of tweets separated by the tab character for each hashtag

in the training file. These tweets should also include that hashtag inside them, which

is why they provide context for that hashtag. Name of the context file should be given

by appending “.context” extension to the name of the training file. For example, if

you have an input file named “my.input.file”, then its corresponding context file should

be named as “my.input.file.context”. Similarly, if you want to train a new model with

context-based support, then you need to provide the context file corresponding to that

training file. Again, its name should start with the name of the training file, followed

by the “.context” extension. This is also the case when you define the test file with

test file parameter.

33You can see those recommended features in the files/recommended.features file.
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5.1.5. Vocabulary

The hashtag segmentor toolkit comes with its own vocabulary. However, if you

are interested in building your own vocabulary for further training purposes, you should

note that there are two types of vocabulary format that the segmentor accepts. First

option is a simple list of words in a single column. However, many features of the

segmentor rely on the word frequency information. Hence, the second type of vocab-

ulary allows you to specify that frequency information. In that case, the vocabulary

again the frequency and word itself in two columns, each column separated by the tab

character. You can also specify the frequency in the negative logarithmic scale and use

logfreq2int=yes parameter to convert it back to integer scale inside the tool. Plus, you

can also use minneglogfreq parameter to specify minimum negative log frequency value

for filtering undesired words without having to change the vocabulary. Moreover, you

can also specify minimum word length with minwordlen parameter for further filtering.

5.1.6. N-best Generator

N-best Generator consists of two scripts:

• nbest generator: It is the main executable file that is responsible for generating

the highest scored N segmented versions (i.e. n-best segmentations) of given input

character sequence. It is written in C++ and compiled with OpenFST library

support so that it can read a LM encoded in OpenFST format.

• runNBestGenerator.py: It is a wrapper script written in Python. It is used

to prepare the raw input to the format that is acceptable for the nbest generator.

It can also be used to train a new LM, which is required by nbest generator.

5.1.6.1. Requirements. Our Hashtag Segmentor toolkit comes with a dummy LM that

is generated from a small text file. You can use this LM to run hashtag segmentor with

the LM-based features. As described before, Hashtag Segmentor calls runNBestGen-

erator.py script at the background, which subsequently calls nbest generator script.
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Hence, in order to make this call chain to work, the minimal requirement is to setup

OpenFST toolkit [93] on your system and make sure that path to /path/to/openfst/src/lib

is included into the system library path variable, which is LD LIBRARY PATH for

the Linux-based systems.

If you are not satisfied with the dummy LM distributed with this toolkit, then you

can generate your own by using runNBestGenerator.py script. However, before doing

that, you need to install two additional 3rd party packages. Those are AT&T’s FSM

Library [187] and SRI’s SRILM [188]. You may add the path to their bin directories to

your system path environment variable, such as PATH in case of Linux-based systems.

You may also provide those paths as extra input arguments to runNBestGenerator.py.

5.1.6.2. Command Line. runNBestGenerator.py script accepts two types of input.

One is a single character sequence to test the script and the second input type is

a file that contains one or more character sequences (e.g. hashtag without ’#’ sign),

each in its own row. In order to generate n-best segmentations, you can run this script

with following arguments:

• --input text : If you want to try out a character sequence, you put that sequence

after this argument.

• --input file: If you have a file to segment, you put the full path of that file after

this argument.

• --output file: If you want the script to output the results into specific file, you

can set the full path of that output file this argument. By default, it is not set,

which means that the script determines the output file name automatically by

appending “.segmented.default” to the end of the input file.

• --top n: This argument allows you set the number of highest scored segmented

versions of input to be outputted. By default, it is set to 10.

• --lm: This is to set the LM. By default, it is set to be the dummy LM which

comes with the toolkit.
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To give an example, for the test purposes, if you like to segment “greatmovie”

character sequence by using our dummy LM and get highest scored 5 segmentations,

here is the command line:

python runNBestGenerator.py --input_text greatmovie --top_n 5

If you have a file, named “my.file”, which contains one sequence of characters per

each row and get the segmentation of highest scored 20 segmentations of each by using

the dummy LM, here is the command line to run:

python runNBestGenerator.py --input_file my.file --top_n 20

If you like to train a new LM, you can give extra input arguments to the runNBest-

Generator.py script. Here are those arguments:

• --training file: This script is capable of generating LM by running series of com-

mands from OpenFST toolkit and AT&T’s FSM Library. LM is generated from

a raw text file and this argument is used to give the full file path to that file.

• --output lm: This is to set the name of the LM that is being generated.

• --vocab size: In order to filter out least frequent words, this parameter allows you

to keep the most frequent N words in the vocabulary of the LM. By default, N is

set to 300,000.

• --min word freq : If you want to filter out words that do not occur more than

some specific value, you can use this argument. By default, it is disabled.

• --ngram: This parameter is a specific setting used while training language models.

It represents the maximum number of sequential words (i.e. n-grams) to be used

to train a LM. By default, it is set to 4.

• --srilm: This is to give the path for the binary files of the SRILM toolkit. By
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default, it is disabled provided that you add that path to your system.

• --att fsm: This is to give the path for the binary files of the AT&T’s FSM Library.

By default, it is disabled provided that you add that path to your system.

• --openfst : This is to give the path for the binary files of the OpenFST toolkit.

By default, it is disabled provided that you add that path to your system.

To give an example, if you have a text file named “my.text.file” and like to create

a new LM named “my.lm”34 by only keeping the most frequent 50,000 words in that

text file, here is the command line:

python runNBestGenerator.py --training_file my.text.file

--vocab_size 50000 --output_lm my.lm

5.1.6.3. Files and Folders. We provide all source code files for nbest generator exe-

cutable, along with Makefile in order to be able to compile the sources codes on your

platform. Those files are located under the “nbest generator” folder of the Hashtag

Segmentor toolkit. In case of the runNBestGenerator.py script, it is located at the

root folder of the toolkit.

It is also important to note the LM files, which are used by nbest generator. In

fact, LM is a bundle of six files. Those are: (1) vocabulary file, (2), vocabulary symbol

file, (3) open fst file, (4) lexicon fst file, (5) determinized lexicon fst file, and (6) the

file that keeps the parameters used while training the LM. You do not worry about

these files. Each LM is stored in its own directory and that folder path identifies each

individual LM. Our dummy LM comes inside the “lms/dummy” folder.

34By default, generated LMs are stored under “lms” folder of this toolkit.
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5.2. Named Entity Disambiguation Tools

5.2.1. Knowledge Base Server and Candidate Generator

The first step for the named entity disambiguation task is to generate a list of

candidate named entities for a given mention so that disambiguation step can choose the

most likely one as the predicted output. In the literature, most of the studies [18,177]

use off-the-shelf indexers like Apache Lucene. They index the all possible known titles

of the named entities and then find the entities that have similar title with respect

to given mention surface form. Such methods do not make use of context fully. In

Section 4.3.1, we argue that same named entities might be occur multiple times in

the document and later mentions in the document tend to have the short form of the

actual title of the named entity. Hence, they can be hard to detect. However, if we

know which named entities are already suggested as candidate entities in surrounding

mentions, we can give more chance to them when the surface form of the mention

matches so little with the titles of those named entities.

For our studies, we implement the Knowledge Base (KB) Server and Candi-

date Generator together in one program. It is a stand-alone executable written in

C programming language. It runs at the background and listens to specific port for

commands. The goal of the KB Server is to keep certain information about named en-

tities in the KB and make them accessible from web browser for fast exploration. Such

information includes all known titles of the named entity, redirects (i.e. alternative

titles) from Wikipedia dump, entity types seen in YAGO and BaseKB data sets. Since

KB Server includes all title information, it can also act as a candidate generator. KB

Server runs at the background because it requires to load and index too much data so

that loading time can be as long as an hour. Hence, it is not practical to run it every

time we need to generate candidates for a document. Instead, we run it once at the

background and send our requests any time.

./KBServer port=<PORT_INDEX> params=<FILE_NAME>
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5.2.1.1. Input Parameters. Our KB Server accepts the input parameters in a file at

the execution time as shown above. It consists of two-column structure where the first

column keeps the name of the parameter and the second column keeps the value of the

parameter. Here are the parameters and description of their values:

• wikipedia ids: This parameter points to a file where the list of all named en-

tity ids are kept. In our research, we use Wikipedia as our actual Knowledge

Base. Hence, each row in this file is the unique named entity identified with the

Wikipedia ID. This ID is basically the main title of the named entity, such as

“Barack Obama”. Note that it is not single token, but contains white spaces.

While loading it, KB Server replaces all the white spaces with underscore char-

acter.

• wikipedia redirects: This parameter points to a file where redirects obtained

from the Wikipedia dump are mapped to corresponding Wikipedia ID. Hence,

it has two-column input. Note that there can be multiple redirects for a single

Wikipedia ID. For example, “Barak Obama”, “Barack H. Obama”, “Borrack

Obama” are some of the redirects of “Barack Obama”. When people search for

certain entities in Wikipedia, they may wrongly type the name of that entity.

However, these redirects most often match with those wrongly entered names

so that Wikipedia can “redirect” people to the right entity. Basically, redirects

provide alternative titles for named entities.

• wiki2basekb: This file keeps the mapping between BaseKB ID and Wikipedia

ID. It is used to connect BaseKB type taxonomy information to Wikipedia entries.

• wiki2dbpedia: This file keeps the mapping between DBPedia ID and Wikipedia

ID. DBPedia is the main source of the named entity titles. Hence, this file helps

us to know which DBPedia entry corresponds to which Wikipedia entry.

• basekb entity types: This file keeps the BaseKB types. It maps each BaseKB

entry to a one BaseKB type. Hence, it has two-column structure.

• yago taxonomy: This file keeps the YAGO type taxonomy. It maps child type

to a parent type. For example, it maps “wikicat American female musicians” to

“wordnet musician 110339966”. Note that YAGO types are extension of Word-

Net synsets.
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• yago entity synsets: It maps the named entity defined in YAGO data set to

a YAGO type. Note that YAGO is built on top of Wikipedia. Hence, named

entities in YAGO has Wikipedia IDs. In other words, this file maps Wikipedia

IDs to YAGO types.

• dbpedia titles: This files contains all seen titles for named entities in DBPedia

namespace. It has three-column structure. The first column keeps the named en-

tity ID in DBPedia namespace. The second and third columns keep one particular

title and its frequency seen in DBPedia data set, respectively.

Once all these files are loaded, KB Server combines a lot of different informa-

tion from Wikipedia, YAGO, BaseKB, and DBPedia and serves them from one point.

Thanks to DBPedia, it knows which titles are used most to refer to each named en-

tity. Redirect information from Wikipedia expands the list of alternative titles for each

named entity. Thanks to YAGO and BaseKB, it knows the entity types of each named

entity. Moreover, KB Server also automatically populates alternative titles based on

the type of the named entity. For example, if named entity is a person type and has

three words in its main title, it also generates a new alternative title with the first and

third word from that main title, if no such title exists already.

5.2.1.2. Request Script and Output Format. As mentioned before, KB Server runs

at the background and listens to specified port number for any request. We also

implemented a separate Python script that gets the document with recognized mentions

and converts that data to a special format that KB Server can understand and then

sends it to the KB Server. Note that our candidate generator needs to see the whole

document so that it can make use of the context better, as described earlier. Hence each

input file should only contain mentions from one document. This script converts each

recognized mention into four column input, each column separated by tab character

and each such entry separated by other entry with the new line character. Those four

columns are the (1) start position, (2) end position of the mention in the document,

(3) mention surface form and (4) recognized named entity type. Here is how to call

getCandidates.py script.
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python getCandidates.py

--server_ip <IP_ADDRESS>

--server_port <INT>

--input <FILE_NAME>

--output <FILE_NAME; optional>

--topn <INT; default 100>

--max_edit_distance <INT; default -1>

You need to specify the IP address of the machine on which KB Server is running

as well as the port number that you make it run. Then you need to specify the input

file name with –input parameter. If you specify the output file name with –output

parameter, it will write the candidates into that file. Otherwise, it will create a new file

name by appending “.candidates” suffix to the input file name. You can also specify

how many candidates you like to see at most with –topn parameter. If you have specific

edit distance constraint, you can also specify maximum allowed edit distance value.

The output is produced in JSON format. Each candidate is given in a separate

line and following fields are given for each candidate:

• start: Given start position for the mention

• end: Given end position for the mention

• wiki id: Wikipedia ID of candidate named entity

• basekb id: BaseKB ID for the candidate named entity

• matched title: Matched title of the candidate that is most similar to given

mention surface form

• title freq: Title frequency for matched title of the candidate

• total title freq: Total frequency of all titles of the candidate named entity

• num other occ: Number of occurrences of the candidate named entity in given

document

• edit distance: Edit distance between matched title of the candidate and given

mention surface form
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• jw distance: Jaro-Winkler distance between matched title and given mention

surface form

• matched title func: Title function which refers to origin of the matched title.

It can redirect, or auto-generated.

5.3. xDB (Experiment DB)

During our studies, we conducted over thousands of experiments. Each experi-

ment runs with set of parameters and produces a result that is specific to those given

parameter values. Keeping track of which parameter combinations results in the what

outcome is a very important but difficult task. It is not only about keeping the note of

the highest scored experiment at hand. There can various sets of independent exper-

iments, not to mention re-calculating the experiments after every significant improve-

ment to the algorithm. From the start, we needed a platform to save, manage, and

navigate thousands of experiment results. In order to handle that load, we developed

a web-based tool.

While designing this tool, we have couple of objectives in our mind:

• We should be able to create a personal account for each user in the system so

that multiple researchers can use the tool at the same time.

• We should be able to create different experiments for different tasks. Results of

various parameter combinations in each experiment can be saved under corre-

sponding experiment record.

• We should be able to select specific parameter value and see only those experiment

results in which that parameter is set to selected value. In other words, we should

be able to filter results.

• We should be able to save different metric values such as precision, recall, F1-

score, accuracy and loss. Moreover, we should be able to save these values per

each epoch so that we can see the change in their values over time.

• We should be able to create a task record from available parameters and keep it

in the Task Queue so that an external script checks this queue for new tasks and
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start the experiment with selected parameter values as soon as possible.

• Since multiple people (e.g. student and teacher) can be interested in the same

experiment, they should be able to share the results with each other over the

system.

We addressed each of above points and made our tool available for download at

GitHub [189]. Following sections explain these points in detail. If you need more help,

please visit the GitHub page of the xDB.

5.3.1. General Layout of the System

xDB tool consists of couple of components as depicted in Figure 5.2. The first

component is the web user interface of the xDB. It allows user to interact with xDB

platform through his or her web browser, such as Chrome. It consists of two parts;

back-end and front-end. Back-end of the website is written in PHP. It resides on the

web server and accepts requests from the front-end of the website and executes them.

Front-end is written in JavaScript. By making use of AJAX methodology, the front-

end presents a responsive user interface such that the web page does not need to be

reloaded in order to show the response to each request. Instead, it executes the request

at the background and shows the results on the fly.

Web 
Server

(eg. Apache)
xDB Database

(MongoDB)

Task Queue

User

PHP+JavaScript 
based xDB GUI

xDB Task 
Runner
Script

User’s 
Experiment 

Tool

Figure 5.2. Diagram Showing the Components of xDB Platform and Its Interactions.

The second component of the xDB is the database where all records of the system

are saved. For this purpose, we use external database toolkit, namely MongoDB. PHP

can interface with the MongoDB through a driver that should be installed into the
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web server. Once installed, through web server, xDB can execute commands such as

reading from the database or changing the records.

The third component of the xDB is the Task Queue. This component allows user

to create new runs through xDB user interface quickly and automatically run the user’s

experiment tool with selected parameter values. It basically consists of two parts. First

part is the queue section in the website where we see the list of current tasks in the

queue. The second part is a python script called “Task Running Script” in Figure 5.2.

It runs at the background and checks the queue periodically. Once it detects new task,

it runs the user’s experiment tool with selected parameter values defined in the created

task. Moreover, this task runner script can fire multiple scripts one after another

depending on maximum allowed number of scripts that can run simultaneously on the

same computer.

5.3.2. Setting up xDB

In order to install xDB and run it, you need to do following steps. However, before

installing, you need to make sure that you satisfy the system requirements. xDB is a

web application written in PHP and JavaScript. Hence, first and foremost, it requires

a web server to run, such as Apache server. PHP has to be installed and activated in

Apache settings. Moreover, since it assumes that the data is kept inside a MongoDB

server, it also requires MongoDB server running on the machine. In addition to that,

in order to be able to connect to the MongoDB server through PHP, PHP-MongoDB

driver [190] must be installed. Also specific to PHP version 7, alcaeus’ mongo-php-

adapter module [190] must be installed and activated for further compatibility. As an

extension to the xDB, it includes a Task Queue which manages submitted actions. In

order to run these actions as they are created, there is also an Python script which

runs at the background and checks for newly submitted actions every second or so. In

order to be able to run that script, Python must be installed on the server, as well.

xDB is publicly available at GitHub. In order to install it, you need to clone

or download xDB repository from GitHub onto your machine. After opening it up,
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you need to copy the contents of the “web” folder into a folder under the root folder

of your web server such as Apache. Assume that you have a Linux environment and

web server folder is located at “/var/www/html” and you choose the name “xdb” for

that folder, then files under web folder will be copied under “/var/www/html/xdb”.

Having said that, if you are using your localhost, then the web page address to see

xDB is “localhost/xdb”. If you are using PHP version 7, then as aforementioned, you

also need to setup alcaeus’ mongo-php-adapter and copy the ”vendor” folder of the

mongo-php-adaptor under the “xdb” folder.

Once you enable PHP to interface with MongoDB server running on a machine,

you need to set the address of that MongoDB database in the “php/utils.php” file.

Without doing that, when you try to see the content of “xdb” folder with your web

browser, it will show an error message. You can change the “$salt” value in the

“php/utils.php”. This is one layer of security around saved user passwords in the xDB.

Note that xDB does not keep passwords in plain text is uses crypt function of PHP

and adds “salt” onto that to make it more secure. Note that you are not advised to

change the salt after setting up the xDB because already signed up users cannot log

in anymore. Also make sure that you do not share the salt value publicly. Otherwise

saved passwords in the xDB becomes vulnerable to being decoded.

Next step is to set the admin account. You need to open the address of newly

setup xDB into your web browser. In example above, it is “localhost/xdb”. If every-

thing is okay so far, then it requests you to enter a password for admin account. Enter

the same password twice. This will create an admin account in the xDB so that you

can create user accounts.

In order to make the task queue component of the xDB operational, you need to

open “runTaskQueue.py” script and set the path of your experiment tool. Note that

your tool needs to accept input arguments through the command line. It should also

handle accept specific parameter values that is specific to xDB, such as experiment

id, experiment token. Once it can accept the input as specified, you need to run

“runTaskQueue.py” with experiment id and leave it.
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5.3.3. User Accounts in xDB

There can be many people in a research lab and you can create one account for

each user inside xDB. xDB comes with “admin” user, which manages all the users in

the xDB platform. He or she can approve new user requests or even delete the user.

In order to create a new account, you need to enter a valid email address and

a password. There is no email confirmation in xDB. Your request will be saved into

xDB so that later on admin user can see the new requests and approve or reject them.

When it is approved, you can get to the login panel and enter your user information

to start using the platform.

5.3.4. Experiments in xDB

If you are experimenting on any task like named entity disambiguation or sen-

timent analysis, you implement a tool and start testing it on the development and

test sets. You may run that tool multiple times with different parameter values and

normally keep all the results you obtained in a text file or maybe in spreadsheet for

quick access. In xDB, all the runs you do regarding one task is called experiment. All

the data in xDB is kept inside experiments. Hence, first thing you need to do is to

create a new experiment by clicking “Create a new Experiment” link shown at the top

of the xDB panel after logged in. It opens up a new dialog window where you enter

the name of the experiment.

Once you create it, you are ready to save your experimental results inside xDB.

Keep in mind that you do not fill some kind a form to save the results. Instead, you

call the xDB API from your tool whenever you calculate the results. In order to do

that, you need three things: (1) web address of the xDB API, (2) experiment ID (3)

experiment token. The token is like a secret key that only the owner of the experiment

can know, like a password. Yet, owner can share it with other people so that they can

also run their tools and insert new results to the owner’s experiment. Experiment ID

and token can be reached by opening the settings of the experiment. Once you have
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them, you can make an API call like shown below.

[XDB-WebAddress]/php/xdbEngine.php?cmd=create_new_run&

experiment_id=[id]&token=[experiment-token]&

params=[list-of-parameters]&dev=[dev-file]&test=[test-file]

5.3.4.1. Runs in Experiments. In the API call shown above, the command you call

is to create a new run entry. Other than experiment ID and token, it also needs the

parameters and development and test file names. Note that you can run your tool

multiple times with different parameter values. In xDB, each time you execute your

tool with different parameter set, it is called “run”. Since this is a URL link, parameters

should be given in key=value format, each separated with ampersand character. Once

you make this call, it creates a new run entry in xDB database and returns its ID. Now,

you are ready to save the result for this specific run. In order to do that, you need to

do the following API call with experiment id and token, as well as run id which was

returned by the first call.

[XDB-WebAddress]/php/xdbEngine.php?cmd=report_iteration_result&

run_id=[id]&experiment_id=[id]&token=[experiment-token]&

is_test=[0/1]&is_best=[0/1]&epoch=[number]&fscore=[value]&

precision=[value]&recall=[value]&accuracy=[value]&loss=[value]

As the command (i.e. “cmd”) field suggested, it is to report the iteration result.

Meaning, you can not only save the final result, but also result of each epoch which

happens when you finish looping over the training data set. If you look at the other

fields, you can see that, you can give F1-score, precision, recall, accuracy and even

loss value to be saved as the result. You can also specify the epoch index as well as

whether this result is taken on development or test set (by setting “is test” field 0 or

1, respectively)
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Once you save the results by making these calls, you are ready to see them inside

xDB. In order to do that, you will a list of available experiments after logged in. Then

when find the experiment, you will see list of development files. If you save the results

on one development file, there will be one listed then. Once you click on that file, you

will see a list of saved results.

5.3.4.2. Browsing the Results. xDB allows you browse the results of all runs you saved

in an experiment. First, you can order them based on specific evaluation metric like F1-

score or accuracy. Note that you can alter shown evaluation measure(s) via the settings

of the experiment. Each run is shown along with its given specific parameter values. In

order to make the readability easy, if there are certain parameter values are all shared

among all listed runs, then it is shown separated at the top of the list and removed

from the list of parameters from all runs. That way, you can more easily focused on

differences (i.e. different parameters values) between the runs. Moreover, you can

even click on any specific parameter and filter only those runs that have that specific

parameter value. The list will update itself and selected parameter will be shown above

the list so that you can remove that selection and make all runs re-appear.

If you want to see the saved results of one particular run in more detail, you

can click on the F1-score or accuracy or loss value and new popup window opens up

and show the graph of how that selected evaluation measure value changes over the

epochs. Note that listed runs are ordered based on development set results, not test

set results. That is because in an scientific experiment, you need to select the best

possible parameter combination based on development set results and then report the

result of those parameter combination(s) on the test set. Hence, in Figure ??, the

result on the test set is separately given at the point where the result is the highest on

the development set.

5.3.4.3. Adding a Baseline. One of the components of a typical experiment is the

baseline. It measures the success of a simple method on the development or test set.

The goal of the experiment is to suggest a new method that exceeds the baseline
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method. Hence, it is the case that you may have one or multiple baseline scores in

your hand and you may like to see where it is positioned with respect to the results

you obtained from your runs.

In order to do that, you need to go to the experiment menu at the toolbar and

select “Add a new baseline” option. The dialog panel pops up. You can set the name of

the baseline and enter the different evaluation measure values for that baseline. Once

you add it, it will be listed as a run among other runs with highlighted differently.

Now, you can easily see which runs are better than the baseline. You can delete the

baseline and add new ones, if you like.

5.3.5. Tasks in xDB

As described in previous section, when you run your tool, you call xDB API to

create the run entry with parameter values that are given to that tool. In other words,

you should be able to provide those parameter values to your tool as an argument on

your own. This might be not feasible if you have many parameters, like fifty. You may

write your own program to generate all possible parameter value combinations and run

all of them. Such search grid approaches can be used while experiment. However, you

may need to wait for a long time to finish.

xDB allows you to create a task in an experiment where you manually set the

value of parameters. Note that when you save the results of the run into the xDB

platform, it also keeps track of all used parameter values. You may see and manage

the list by selecting the “Manage Parameters” option under the experiment menu.

You can edit existing ones or add new parameter values. While creating the task,

these parameters are shown to you so that you can select among them. Nevertheless, it

is still not easy to select the value for each parameter from shown list. Hence, you can

also click “run” link shown for each listed run inside the experiment and xDB shows

you the “Create a Task” window where all parameters of the experiment are listed but

this time the parameters of the chosen run come as pre-selected. This enables you to

change only small number of parameter values and create a new task with selected
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values. In other words, you can easily create a new task that resembles closely to

existing run.

Once you create a new task, it is placed into the task queue. Each experiment

has it own task queue. Hence, from the experiment menu, you can open it and see

all the tasks inside. After placed into the queue, now it is the job of external script

that checks the queue in frequent periods and start your tool automatically with the

selected parameter values at the background. This way, you can quickly start new runs

and get their results into the xDB platform.

5.3.6. Sharing Results

One of the important objectives of xDB is to be able to share the results of exper-

iments with others in the system so that they can track the progress. One particular

scenario is student-teacher relation. Students run the experiments and teacher observes

the results. You can also see it like reporting the results from inside the system directly

rather than copy-and-pasting them into an email and send it to related party.

In xDB, you can share the results of a development set in an experiment, rather

than whole experiment. When you open the experiment, you go to the file menu

which resides at the right hand-side of the experiment menu and then select “Share

the Results of This File” option. A popup window will emerge, you need to enter the

username of the other user. The experiment and shared development file will appear

at the panel of selected person.
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6. Conclusion

6.1. Contributions

Today’s high-performing machine learning algorithms generally depend on man-

ually annotated training data, which can be hard and costly to curate. In this thesis,

we explored weakly-supervised learning for two NLP tasks: hashtag segmentation and

named entity disambiguation. We showed that we can achieve the state-of-the-art

(SOTA) results by designing heuristics to automatically create training data by utiliz-

ing the patterns in the raw data as well as by re-purposing the existing data sets that

have not been originally created for the target tasks.

In case of the hashtag segmentation task, manually segmented hashtag data sets

are not sufficiently large for training. For example, the data set curated by [116]

contains 1268 manually segmented hashtags. More recently, [191] shared a larger data

set of 12,594 hashtags. People tend to give the same message both in the regular

tweet text and in the hashtags. Therefore, thanks to half a billion tweets in the

SNAP data set [30], there are tweets that include both a hashtag and its segmented

formation in their text. We hypothesize that if we detect such pairs of tweet text

and hashtags and filter out the infrequent cases, the rest may form a viable set of

training data for hashtag segmentation. In case of the named entity disambiguation

task, we hypothesize that being able to predict the entity type of a mention, which is

called mention typing, beforehand can increase the performance of the disambiguation

task. Yet, curating a type taxonomy is very hard and there is no an explicitly created

training data set for mention typing. Instead, we hypothesize that named entities

that occur in similar context should be assigned to the same type because context is

half of the input for mention typing, while the other half is the surface form of the

mention. Following that, we cluster named entities based on the semantic similarity of

their context and assign cluster IDs as types, namely cluster-based types. Moreover,

we re-purpose the hyperlinked mentions in Wikipedia articles by labeling them with

corresponding cluster-based types, which gives us the training data for mention typing.
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For both tasks, we design heuristics that rely on the underlying characteristics of the

problem space. The experimental results for both tasks support our hypotheses. Here

are the detailed contributions of this thesis work.

In the first part of this thesis, we tackled the hashtag segmentation task, which is

in essence a word boundary detection task. In this particular task, if the language is a

space-delimited one like English, it is easy to obtain training data, because any space-

delimited text can be used as a training data set. In other words, the word boundaries

come already annotated within a regular text. However, segmenting hashtags into their

constituent words is not as easy as segmenting words in regular text like news articles.

That was shown by the poor performance of the SOTA Word Breaker tool of Microsoft

on hashtags in Table 3.7. Word Breaker achieves only 84.4 and 84.6 F1-score on the

Test-BOUN and Test-STAN sets, respectively. That means that if we use regular

space-delimited text as training data, it may not be enough. Instead, we proposed a

simple heuristic based on traversing half a billion tweets and breaking the seen hashtags

into the most possible original words with certain confidence. That gave us 803,000

automatically segmented hashtags. We used this as a training data set for hashtag

segmentation. Even though it might include inexact segmentations, the results on the

Test-BOUN and Test-STAN test sets indicate its potential. Especially on the Test-

BOUN set, the training set that includes automatically segmented hashtags achieves

94.9 F1-score, which is better than using regular space-delimited text obtained from

tweets, which achieves 93.6 F1-score. On Test-STAN, the difference is not significant.

At the time of our study, there was no extensive work on hashtags, even though

tweets and thus hashtags have been widely used on the Web. We proposed a feature-

rich approach, which converts the raw input into a list of features and learns to predict

the word boundary positions based on the observed features at the target character.

We formulated the problem as a binary classification task and used the maximum

entropy classifier (MaxEnt) to model the task. We explored over 100 features, which

are grouped into four types.
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Vocabulary-based features look for known words around the target character. The

existence of long words before or starting at the target character indicates a boundary

with high probability. One important point regarding vocabulary-based features is that

we did not use the words themselves as feature values. If we used the words themselves,

there could be as many features as the number of different words in the dictionary, or

more if we consider n-grams of words. This would considerably increase the complexity

of the model to be learned. Instead, we encoded the words in terms of their frequencies

(seen in Wikipedia) and lengths. If a word is observed 1000 times and consists of 5

characters, we represented it as “3:5”. “3” represents the floored negative logarithm of

its frequency and “5” is its length. In other words, we grouped words based on their

frequencies and lengths and used the group ID as a feature. This effectively reduced

the number of unique features and made the model simpler and easier to learn.

Vocabulary-based features are limited due to the possibility of new or out-of-

vocabulary words. Hence, we also designed orthography-based features as a second

type of features. These features depend on the shapes of the characters around the

target character. For example, if the target character is capitalized, while the previous

one is not, this might indicate a word boundary.

The third type of features are context-based features. Even though the words

of the hosting tweet have been used as context features in [116], we extended that

approach with context coming from multiple tweets that host the same hashtag. While

words in tweets can be good indicators of boundaries, people may also capitalize the

same hashtag differently. We used all these clues together and showed that as few as

20 tweets that host the same hashtag can provide effective information about how to

segment that hashtag.

The forth type of features that we investigated are Language Model (LM)-based

features. LMs are originally designed to score the next word in a sentence and give the

probability of the sentence being uttered. An LM can also be used to get the N-best

segmentations of a character sequence into its original words. We trained a LM on a

large corpus, which consists of 1 billion words. We obtained the N-best segmentations
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and encoded the boundary positions as features in our feature-based approach. With

the help of context-based features and especially LM-based features, we achieved SOTA

results on both Test-BOUN and Test-STAN test sets.

We used our state-of-the-art hashtag segmentor to segment 2.1 million distinct

hashtags and studied their internal structure. This is the first study of its kind in

the literature. The first thing we observed is that 90% of 2.1 million hashtags include

multiple words. This indicates that in order to understand the hashtags, we first need

to have a hashtag segmentor. Moreover, our analysis revealed that around 80% of the

hashtags that contain positive or negative sentiment consist of multiple words. In other

words, 80% of the time sentiment is trapped inside multi-word hashtag. This also means

that in order to perform sentiment analysis on tweets, a hashtag segmentor may help to

identify the sentiment inside multi-word hashtags. Recently, [191] showed that applying

hashtag segmentation in the SemEval 2017 sentiment analysis task increases the average

recall by 2.6%. After segmenting the hashtags, we applied TweeboParser [127] on those

and conducted a grammatical analysis of 2.1 million hashtags. It is yet again the first

study of its kind. We discover that about quarter of distinct hashtags are written

as verb headed expressions, especially in imperative form. However, as we consider

all occurrences, people tend to use noun-based hashtags more often. Adjectives are

mostly used inside expressions rather than as single word hashtags. This observation

might explain why sentiment is trapped more often inside multi-word hashtags, since

sentiment is mostly carried by the adjectives. All in all, all our observations show that

hashtags are not simple one-word labels. Hence, hashtag segmentation is necessary for

the understanding and utilization of hashtags.

As a final contribution in this phase of this thesis, we publicly shared our code

and data sets. The source code for the hashtag segmentor is available at GitHub along

with explanatory guidelines. We shared our automatically segmented 803,000 hashtags

as well as the Test-BOUN test set, so that other researchers can test and evaluate their

systems with respect to ours.
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Since our publication, there have not been many study done on hashtag seg-

mentation. More recently, [191] framed the hashtag segmentation task as a pairwise

ranking problem, where they order the candidate segmentations of a given hashtag.

They applied a neural network based multi-task learning approach and achieved 94.5%

accuracy on the Test-STAN test set, whereas they reported that our segmentor achieved

92.4% accuracy. However, they trained our system on their own training set and we

believe the version without the LM-based features was used. Our results showed that

the LM-based features significantly improve the performance of our segmentor.

At the second phase of this thesis, we focused on the named entity disambiguation

(NED) task. This field has been well studied and several recent deep learning techniques

have been already investigated in the NED literature. Unlike most prior studies, we

approached the problem from weakly-supervised learning perspective. We re-purposed

a large amount of data that is not directly related to the NED task. Hence, we explore

the idea that if we predict the type of a mentioned named entity, we can use that

information at the disambiguation step as an extra clue. This task of predicting the

type of a mention is called mention typing. However, the success of mention typing

depends directly on the type set or type taxonomy. If it is a small set, it does not

provide much information for disambiguation, even though the type prediction task is

easier to learn. If it is a large set, then the task of predicting the types becomes harder

to learn. The available type taxonomies are curated by humans and there are a number

of disadvantages. Firstly, it is labor intensive. Secondly, the types are not designed

based on the contexts of the mentions. Instead, they are buckets that hold categorically

the same type of entities. However, predicting the type of a mention directly depends

on the context. Thirdly, considering that there are over five million named entities in

Wikipedia-based Knowledge Base, such a type taxonomy is inherently incomplete.

All these considered, we proposed to generate our type set by clustering named

entities based on their contextual similarity. Each cluster becomes a type, hence named

as cluster-based type. Our research is the first at using clustering to obtain a cluster-

based mention typing model. We clustered over five million named entities. Then, a

mention typing model is trained on the hyperlinked mentions of the named entities in
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Wikipedia articles, after we label them with their corresponding cluster-based types.

At the end, we use the cluster-based type prediction of a given mention as an extra

clue to improve the NED task. We implemented a basic two layer feed-forward neural

network with no addition of attention mechanism. We convert each candidate into an

input feature vector and calculate its probability of being the real mentioned named

entity. The highest scored one becomes the prediction of our system. Our system

achieves better or comparable results based on randomization tests with respect to the

state-of-the-art levels on four defacto test sets. The successful contribution of cluster-

based mention typing modeling is also supported by the fact that our disambiguation

model is simple compared to other studies in the field.

As specified before, being able to utilize context as much as possible directly

affects the success of the NED task. Hence, we proposed three different ways of rep-

resenting context. The first context type is word-based context, which considers the

local (or sentence-based) context around the mention. Types predicted based on this

context are expected to be like semantic types, because the surrounding words like

verbs and adjectives are likely to give clues about the semantic meaning of the entity.

The second type of context is surface form-based context, which includes all surface

forms of the surrounding mentions in the same document. This is more like document-

level context. Types predicted based on this context can be more like topics, because

context only includes nouns and it is broader compared to sentence-level context. The

third type of context is entity-based context, which includes the entity IDs of the sur-

rounding mentions. It is more entity-specific, because context is represented directly in

terms of the entity IDs instead of the words composing the entity mention. Modeling

based on this type of context is also modeling the co-occurrence and order relations

(i.e. which entity is often seen before which) between named entities. Representing

context in these three formats allows us to obtain three different types of entity embed-

dings and thus three different clusterings of named entities. We run word2vec on each

context type to obtain embeddings and run K-means on those embeddings to cluster

them. We also represent context in terms of synsets assigned to named entities in the

YAGO and BaseKB data sets and obtain a forth way of clustering named entities. As

a fifth approach, we use Brown clustering on entity-based context as an alternative to
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K-means. At the end, we ended up having five different clusterings of named entities

and thus five mention typing models, each looking at the context from different level.

Our experiments show that these five models complement each other, since the best

results are achieved when all are used together.

Another important contribution in these studies is the candidate generation tool

that we design. We again utilize the idea that context is very important. We propose

using the candidates of the surrounding mentions in the same document. It is observed

that the same named entity can be mentioned multiple times in the same document

and its later mentions in the document are most likely to be in their shorter forms.

Moreover, if the later mentions consists of only one word, it may refer to many possible

named entities in the knowledge base. Think about how many people there are with the

name “Mike”. However, if there is already a mention of “Mike Tyson” in a document,

it becomes more likely that the single word “Mike” in the same document refers to

“Mike Tyson”. By using this intuition, we implemented our own candidate generator

instead of using off-the-shelf tools, which achieved higher gold recall values than the

previously reported results in the literature. We publicly share our tool and data sets.

All in all, in this thesis, we focused on automatically generating training data

by employing weakly-supervised approaches for two NLP tasks. For both tasks, we

used simple learning algorithms, namely the Maximum Entropy classifier for hashtag

segmentation and a shallow feed-forward neural network for named entity disambigua-

tion. Nevertheless, state-of-the-art performance is obtained by utilizing automatically

generated training data and by a detailed representation of the input in terms of fea-

tures or different levels of context information. Our results show that when we design

heuristics that rely on the underlying characteristics of the problem space, the training

data generated by those heuristics can help achieve state-of-the-art results.

6.2. Impact

In this thesis, we designed weakly-supervised approaches to automatically gen-

erate labeled data for training purposes. We developed and evaluated the proposed
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approaches for English, but these approaches can be easily applicable to other lan-

guages. Our heuristic to obtain auto-segmented hashtags from a tweet collection is

completely language independent. For example, we can apply it on tweets in Turkish

and obtain auto-segmented hashtags in Turkish. One possible constraint might be the

size of the tweet collection. In case of frequently used languages, it would be very easy

to collect millions of tweets. But that may not be the case for less frequently used lan-

guages on the Internet like Catalan [192] from Spain, or even endangered languages like

Siwi [193] from Egypt. In case of our cluster-based mention typing approach, we can

use Wikipedia in Turkish to obtain mention typing models for Turkish. This is again

limited by the size of Wikipedia in the target language. For example, there are over

five million articles in the English version of Wikipedia, but that number goes down

to just over 350,000 in case of Turkish. The proposed mention typing model also relies

on DBpedia for the title database. Nevertheless, DBpedia comes in 125 languages.

For the synset-based typing model, we use the YAGO and BaseKB data sets. They

can be considered as language independent assuming that named entities in those data

sets also include foreign (non-English) named entities. To sum up, we believe sufficient

data are available on the Internet to train and use the proposed cluster-based typing

models for most of the widely-spoken languages.

The utility of predicting the cluster-based type of a mention can go beyond named

entity disambiguation. For example, cluster-based mention typing can be applied to

improve co-reference resolution. One possible challenge for this particular application

is the existence of pronoun-based mentions. Since the surface form of a pronoun-based

mention is generic, meaning any named entity might be referred to by that, the mention

typing model will not be able to utilize the surface form and it will rely only on the

left and right context of the mention. Like co-reference resolution, another application

area is NIL clustering, which is the task of clustering the mentions of NIL entities (i.e.,

entities that have no corresponding entries in the KB) and identifying all the mentions

that correspond to the same NIL entity. In addition to using the surface forms of the

mentions, utilizing their context is key to success. Prediction of the cluster-based types

might provide extra clues for this task. This can be especially helpful at the corpus

level (i.e. cross-document) as there is more context to predict cluster-based types.
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The proposed cluster-based mention typing model can also be applied to the

relation extraction task. The goal of this task is to detect relations between entities

that are mentioned in the text. In the literature, various approaches are used to extract

relations such as rule-based approaches like trying to match a given text with phrase

templates that are known to indicate specific relations. There are also feature-based

approaches, which extract syntactic and semantic features from a given text and try

to predict the relation between two entities that occur in the same sentence. In such

cases, prediction of the cluster-based types of the entities might be used as an extra

clue. Another method for relation extraction is using string kernels [194]. Originally

proposed for the text classification task, string kernels compute the similarity of two

strings. [195] applied string kernels to relation extraction by modeling the context

around the two entities, which they refer to as the before, middle and after portions of

the context. Considering that our cluster-based mention typing models also take into

account the left and right context of the mention separately in the model architecture,

the mention typing approach is very similar to string kernels. Hence, our cluster-based

mention typing model has potential to improve the relation extraction modelling, like

string kernels.

Another application area of cluster-based mention typing might be question an-

swering. In a configuration where possible candidate answers are generated and the

output is determined by scoring them, the task becomes a ranking task. Then, our

ranking approach in named entity disambiguation can be applied for question answer-

ing as well. As in our case, cluster-based types can be assigned to candidate answers

beforehand. The question can be used as context to calculate the probability of each

cluster-based type and that probability can be used for scoring the candidate answers.

All in all, the approaches proposed in this thesis can be extended in various

directions.
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