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ABSTRACT

EXTENDED MODELS OF FINITE AUTOMATA

Many of the numerous automaton models proposed in the literature can be re-

garded as a finite automaton equipped with an additional storage mechanism. In this

thesis, we focus on two such models, namely the finite automata over groups and the

homing vector automata.

A finite automaton over a groupG is a nondeterministic finite automaton equipped

with a register that holds an element of the group G. The register is initialized to the

identity element of the group and a computation is successful if the register is equal

to the identity element at the end of the computation after being multiplied with a

group element at every step. We investigate the language recognition power of finite

automata over integer and rational matrix groups and reveal new relationships between

the language classes corresponding to these models. We examine the effect of various

parameters on the language recognition power. We establish a link between the deci-

sion problems of matrix semigroups and the corresponding automata. We present some

new results about valence pushdown automata and context-free valence grammars.

We also propose the new homing vector automaton model, which is a finite au-

tomaton equipped with a vector that can be multiplied with a matrix at each step. The

vector can be checked for equivalence to the initial vector and the acceptance criterion

is ending up in an accept state with the value of the vector being equal to the initial

vector. We examine the effect of various restrictions on the model by confining the

matrices to a particular set and allowing the equivalence test only at the end of the

computation. We define the different variants of the model and compare their language

recognition power with that of the classical models.
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ÖZET

GÜÇLENDİRİLMİŞ SONLU DURUMLU MAKİNE

MODELLERİ

Literatürde ortaya sürülmüş olan pek çok makine, bir sonlu durumlu makinenin

ek bir hafıza ünitesi ile güçlendirilmiş hali olarak düşünülebilir. Bu tezde, bu makine-

lerden ikisine, gruplar üzerinde tanımlı sonlu durumlu makinelere ve eve dönen vektör

makinelerine odaklanılmıştır.

G grubu üzerinde tanımlı bir makine, ek hafıza ünitesinde G grubundan bir

elemanı tutma hakkına sahip, belirlenimci olmayan bir sonlu durumlu makinedir.

Başlangıçta hafıza ünitesinin değeri G grubunun birim elemanıdır. Bir hesaplamanın

başarılı sayılabilmesi için hafıza ünitesinin değeri, her adımda grubun bir elemanıyla

çarpıldıktan sonra bitimde grubun birim elemanına eşit olmalıdır. Bu çalışmada tam

sayılı ve rasyonel sayılı matris grupları üzerinde tanımlanan sonlu durumlu makinelerin

tanıdıkları dil sınıfları incelenmiştir. Çeşitli parametrelerin makinelerin tanıma gücünü

nasıl etkilediği araştırılmıştır. Matris yarıgruplarının karar verme problemleri ile ilintili

makinelerinki arasında bir bağ kurulmuştur. Grup üzerinde tanımlı makinelerle ilişkili

olan bazı modellerle ilgili yeni sonuçlar elde edilmiştir.

Yeni tanımladığımız eve dönen vektör makinesi, bir sonlu durumlu makinenin

bir vektörle güçlendirilmesi ve bu vektöre her adımda bir matrisle çarpılma hakkı ver-

ilmesiyle ortaya çıkmıştır. Vektörün başlangıç vektörüne eşit olup olmadığı kontrol

edilebilir ve makinenin kabul şartı, hesaplama bittiğinde vektörün başlangıç vektörüne

eşit olması ve kabul durumlarından birinde bulunulmasıdır. Kullanılan matris kümesi

sınırlanarak ve vektörün eşitlik kontrolünün sadece sonda gerçekleşmesine izin verilerek,

farklı kısıtlamaların makineye olan etkisi incelenmiştir. Makinenin çeşitli sürümlerinin

dil tanıma gücüyle klasik modellerin dil tanıma gücü karşılaştırılmıştır.
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1. INTRODUCTION

1.1. Automata Theory

The theory of computation aims to investigate the computation process and tries

to answer the question “What are the fundamental capabilities and limitations of com-

puters?” as stated by Sipser [1]. To study the computation process, we have to first

formalize the notions of computational problems and computational models.

At the heart of computational problems, lie the decision problems, the problems

whose answers are either yes or no. Any decision problem can be represented by the

set of instances which have the answer yes. Consider the problem of checking whether

a number is prime. This problem can be represented by the set {2, 3, 5, 7, . . . }, where

the members of the set are the prime numbers. Furthermore, the elements of the set

can be represented as strings, a finite sequence of symbols belonging to a finite set

called the alphabet. For instance, the set of prime numbers can be expressed by the set

{11, 111, 11111, 1111111, . . . }, where the alphabet contains the single symbol 1.

Automata theory is the study of computational models that solve decision prob-

lems. An automaton is as an abstract machine which processes an input string and

makes the decision of yes or no, more technically called as acceptance or rejection.

Automata allow us to formalize the notion of computation and serve as mathematical

models for computing devices. The set of all accepted input strings is called the lan-

guage recognized by the machine. If there exists a machine whose language is the set

of yes instances of a problem, than we have a machine solving the problem.

The most basic model which is known as the finite automaton or finite state

machine is an abstract model for computation with finite memory. It is assumed that

the input string is written on a tape and the machine has a tape-head reading the

string from left to right. There exist finitely many states and a set of rules governing

the transitions between these states. Computation starts from a designated initial
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state and one input symbol is consumed at each step. An input string is accepted if

after reading the string, computation ends in a special state called the accept state and

otherwise rejected.

One of the founders of the theory of formal languages, Noam Chomsky, defined

four classes of languages, namely the classes of regular languages, context-free lan-

guages, context-sensitive languages and recursively enumerable languages, forming the

Chomsky Hierarchy. Finite automata recognize exactly the class of regular languages.

1.2. Extended Models of Finite Automata

Throughout the literature, a variety of automaton models has been proposed.

Many different models of automata that have been examined can be regarded as a

finite automaton augmented with some additional memory. The type of the memory,

restrictions on how this memory is accessed, computation mode and the conditions for

acceptance determine the expressiveness of the model in terms of language recognition.

One can list pushdown automata [2], counter machines [3] and Turing machines [4]

among the many such proposed models.

Pushdown automata are finite automata augmented with a stack, a memory which

can be used in the last-in-first-out manner. Their nondeterministic variants, in which

there may be more than one possible move at each step, and the acceptance condition is

the existence of at least one computational path that ends in an accept state, recognize

exactly the class of context-free languages. Note that a language is context-free if it

is generated by a context-free grammar, which is a collection consisting of a set of

variables and terminals, and a set of production rules. Starting from the start variable,

the rules describe how to generate a string of terminals, by replacing each variable with

a string of variables and terminals. The set of all generated strings is the language of

the grammar.

The foundations of the theory of computation have been established by Alan

Turing, who proposed the Turing machine as a model for universal computation [4].
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A Turing machine is a finite automaton equipped with an infinite read-write tape

which is allowed to move in both directions. The Turing machine is a model for our

computers and for the computation process performed by the human mind. A language

is recognized by a Turing machine if for every string in the language, the computation

on the string ends in the accept state. The class of languages recognized by Turing

machines is known as the recursively enumerable or Turing recognizable languages.

Counter machines are finite automata equipped with additional registers that are

initialized to zero at the beginning and can be incremented or decremented based on

the current state and the status of the counters (zero or nonzero) throughout the com-

putation. A finite automaton with 2 counters is as powerful as a Turing machine, which

led researchers to add various restrictions to the definition. For instance, in a blind

counter automaton, the counters cannot be checked until the end of the computation

and the next move depends only on the current state and the scanned symbol. The class

of languages recognized by nondeterministic blind counter automata are incomparable

with the class of context-free languages.

Another variant is the extended finite automaton (finite automaton over a group,

group automaton, G-automaton), which is a nondeterministic finite automaton equipped

with a register that holds an element from a group [5]. The register is initialized to the

identity element of the group, and a computation is deemed successful if the register

is equal to the identity element at the end of the computation after being multiplied

with a group element at every step. The computational power of a G-automaton is

determined by the group G. This setup generalizes various models such as pushdown

automata, Turing machines, nondeterministic blind counter automata and finite au-

tomata with multiplication [6]. When a monoid is used instead of a group, then the

model is also called monoid automaton or M -automaton. The same model also appears

under the name of valence automata in various papers.

The notion of extended finite automata is also strictly related to that of valence

grammar introduced by Pǎun in [7]. A valence grammar is a formal grammar in

which every rule of the grammar is equipped with an element of a monoid called
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the valence of the rule. Words generated by the grammar are defined by successful

derivations. A successful derivation is a derivation that starts from the start symbol

of the grammar such that the product of the valences of its productions (taken in the

obvious order) is the identity of the monoid. Valence pushdown automata, which are

pushdown automata equipped with a register that is multiplied by elements from a

monoid at each step, and context-free valence grammars are discussed in [8].

We have also introduced a new model called vector automaton in [9]. A vector

automaton is a finite automaton which is endowed with a vector, and which can mul-

tiply this vector with an appropriate matrix at each step. One of the entries of this

vector can be tested for equality to a rational number. The machine accepts an input

string if the computation ends in an accept state, and the test for equivalence succeeds.

In order to incorporate the notion of the computation being successful if the

register returns to its initial value at the end of the computation as in the case of

extended finite automata to this setup, we propose the new homing vector automaton

(HVA) model. A homing vector automaton can multiply its vector with an appropriate

matrix at each step and can check the entire vector for equivalence to the initial value

of the vector. The acceptance criterion is ending up in an accept state with the value

of the vector being equal to the initial vector.

1.3. Contributions and Overview

The aim of this thesis is to investigate extended models of finite automata focusing

mainly on finite automata over groups and homing vector automata. We examine the

classes of languages that can be recognized by different variants of these models and

compare them with the classes of languages recognized by the classical models. We

prove separation results based on the different restrictions imposed on the models.

Much of the current literature on extended finite automata pays particular at-

tention to finite automata over free groups and free Abelian groups. This study makes

a major contribution to the research on extended finite automata by exploring finite
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automata over matrix groups for the first time. Most of these results were published

in [10–12].

Matrices play an important role in many areas of computation and many impor-

tant models of probabilistic and quantum computation [13,14] can be viewed in terms

of vectors being multiplied by matrices. The motivation behind analyzing homing vec-

tor automata is the matrix multiplication view of programming, which abstracts the

remaining features of such models away. We investigate homing vector automata un-

der several different regimes, which helps us to determine whether different parameters

confer any additional recognition power. Our results on homing vector automata have

previously appeared in [15–17].

We also present some results on context-free valence grammars and valence push-

down automata. These results are mainly some generalizations of the previously es-

tablished results for the theory of extended finite automata and appeared in [18].

The rest of the thesis is structured as follows:

Chapter 2 contains definitions of basic terminology and formal definitions of some

of the classical models. It provides a framework for the rest of the thesis. A background

on algebra is also presented.

In Chapter 3, we investigate the language classes recognized by finite automata

over matrix groups. For the case of 2 × 2 matrices, we prove that the corresponding

finite automata over rational matrix groups are more powerful than the corresponding

finite automata over integer matrix groups. Finite automata over some special matrix

groups, such as the discrete Heisenberg group and the Baumslag-Solitar group are also

examined. We also introduce the notion of time complexity for group automata and

demonstrate some separations among related classes. The case of linear-time bounds is

examined in detail throughout our repertory of matrix group automata. Furthermore,

we look at the connection between decision problems for matrix groups and finite

automata over matrix groups.
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Chapter 4 defines the homing vector automaton and introduces the various limited

versions that we will use to examine the nature of the contribution of different aspects

of the definition to the power of the machine. A generalized version of the Stern-Brocot

encoding method, suitable for representing strings on arbitrary alphabets, is developed.

The computational power and properties of deterministic, nondeterministic, blind, non-

blind, real-time and one-way versions of these machines are examined and compared

to various related types of automata. We establish a connection between one-way

nondeterministic version of homing vector automata and extended finite automata. As

one-way versions are too powerful even in the case of low dimensions, we pay special

attention to real-time homing vector automata. Some closure properties of real-time

homing vector automata and their stateless (one state) versions are investigated.

In Chapter 5, we focus on pushdown valence automata and context-free valence

grammars. We investigate valence pushdown automata, and prove that they are only

as powerful as valence automata. We observe that certain results proven for monoid

automata can be easily lifted to the case of context-free valence grammars.

Chapter 6 is the conclusion of the thesis. We summarize the results and list some

open questions which form a basis for future research.
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2. BACKGROUND

2.1. Basic Notation and Terminology

2.1.1. Sets

Let A be a set. |A| denotes the cardinality of A. The power set of A is denoted

by P(A). A subset A ⊆ Nn is a linear set if there exist vectors v0, v1, . . . , vk ∈ Nn such

that

A = {v|v = v0 + Σk
i=1civi, ci ∈ N}.

A semilinear set is a finite union of linear sets.

The Cartesian product of sets A1, A2, . . . , An is the set of all ordered n-tuples

(a1, a2, . . . , an) where ai ∈ Ai for i = 1, 2, . . . , n. The Cartesian product is denoted by

either A1 × A2 × · · · × An or by
∏n

i=1Ai.

2.1.2. Strings and Languages

An alphabet is a finite set of symbols and usually it is denoted by Σ. A string

(word) over Σ is obtained by concatenating zero or more symbols from Σ. The string

of length zero is called the empty string and denoted by ε. The set Σ∪ {ε} is denoted

by Σε in short. We denote by Σ∗ the set of all words over Σ.

For a string w ∈ Σ∗, wr denotes its reverse, |w| denotes its length, w[i] denotes

its i’th symbol, |w|σ denotes the number of occurrences of σ ∈ Σ in w.

A language L ⊆ Σ∗ is a set of strings over Σ. For a given language L, its

complement is denoted by L̄. For a given string w, Lw denotes the singleton language

containing only w.
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For a string w ∈ Σ∗ where Σ = {σ1, σ2, . . . , σk} is an ordered alphabet, the Parikh

image of w is defined as

φ(w) = (|w|σ1 , |w|σ2 , . . . , |w|σk).

For a language L, its Parikh image is defined as

φ(L) = {φ(w)|w ∈ L}.

A language is called semilinear if φ(L) is semilinear.

A language L ⊆ Σ∗ is said to be bounded if there exist words w1, . . . , wn ∈ Σ+

such that L ⊆ w∗1 · · ·w∗n. A bounded language is said to be (bounded) semilinear if

there exists a semilinear set A of Nn such that

L = {wa11 · · ·wann : (a1, . . . , an) ∈ A.}

2.1.3. Vectors and Matrices

For a given row vector v, v[i] denotes its i’th entry. Let Ak×l be a k×l dimensional

matrix. A[i, j] denotes the entry in the i’th row and j’th column of A.

The identity matrix I of size n is the n×n matrix with ones on the main diagonal

and zeros elsewhere.

2.2. Automata and Computation

In this section, we are going to talk about basic notions of computation. We refer

to the finite automaton model which may be extended with a storage mechanism as

discussed in Section 1.1 and Section 1.2.
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For a machine M, there exist a finite set of states Q = {q1, . . . , qn} where q1 is

the initial state unless otherwise specified and a set of accept state(s) Qa ⊆ Q. An

input string w ∈ Σ∗ is written on a one-way infinite tape starting from the leftmost

tape square. The transition function denoted by δ describes the next move ofM upon

reading some input symbol. Initially, the tape-head is placed on the leftmost tape

square. Starting from the initial state, the sequence of transitions performed byM on

any input string is called a computation.

The acceptance criteria of an input string depend on the type of the machine

which we will discuss in detail in Section 2.3. A computation is called accepting if the

computation results in the acceptance of the string, and rejecting otherwise. The set

of all strings accepted by M is called the language recognized by M and denoted by

L(M).

2.2.1. Deterministic Computation

A computation is deterministic if there is only one possible move at each step.

When an input string is read, there is only a single computation.

2.2.2. Nondeterministic Computation

In a nondeterministic computation, there may be more than one possible move

at each step. When an input string is read, the computation looks like a tree since

there may be more than one computation path.

2.2.3. Blind Computation

For the machine types which have additional storage mechanisms like registers

or counters, computation is called blind if the status of the storage mechanism cannot

be checked until the end of the computation. The next move of the machine is not

affected by the current status of the storage mechanism. When the computation ends,

the status of the storage mechanism is checked and it determines whether the input
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Figure 2.1. Deterministic and nondeterministic computation

string will be accepted or not.

2.2.4. Empty String Transitions

When a machine makes an empty string (ε) transition, it moves without consum-

ing any input symbol. In deterministic machines, ε moves should be defined carefully

as they may lead to nondeterminism.

2.2.5. Real-time, One-way and Two-way Computation

A computation is called real-time if the tape-head moves right at each step. A

computation is called one-way if the tape-head is allowed to stay on the input tape

while moving from left to right. This can be accomplished by adding an additional

direction component to the transition function which dictates the movement of the

tape-head. A computation is called two-way if the tape-head can move both left and

right. Tape head directions will be specified by a subset of the set D = {←, ↓,→}

where ←, ↓, and → stand for left, stay and right respectively.
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Note that a machine making ε-transitions does not operate in real-time. A one-

way nondeterministic computation may be also defined without specifying the head

directions but allowing ε-moves instead. In that case, it is assumed that the machine

moves right as long as it consumes an input symbol.

2.2.6. End-marker

In some models, the input string is written on the tape in the form w$ and the

machine is allowed to make transition(s) after finishing reading the input string, upon

scanning the end-marker $, which we call postprocessing. Postprocessing may add

additional power depending on the model.

2.3. Classical Models

2.3.1. Finite Automaton

A finite automaton (FA) is a 5-tuple

F = (Q,Σ, δ, q1, Qa),

where Q is the set of states, Σ is the input alphabet, δ is the transition function, q1 ∈ Q

is the initial state and Qa ⊆ Q is the set of accept states. The transitions of F depend

only on the current state and the input symbol.

Formally, the transition function of a one-way deterministic finite automaton

(1DFA) is defined as follows:

δ : Q× Σ→ Q×D,

where D = {↓,→} is the set representing the possible moves of the tape-head, ↓

denoting stay and → denoting right.
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δ(q, σ) = (q′, d) means that F moves to state q′ ∈ Q moving its tape-head in

direction d ∈ D upon reading σ ∈ Σ in state q ∈ Q. We assume that the last move of

the machine always moves the tape-head right.

In a real-time deterministic finite automaton (DFA), the tape-head moves right at

every step and the direction component for the tape-head is omitted from the transition

function:

δ : Q× Σ→ Q.

Let us define the nondeterministic variants of finite automata. The transition

function of a one-way nondeterministic finite automaton (1NFA) is defined as

δ : Q× Σε → P(Q),

so that there may be more than one possible move at each step and the machine is

allowed to make ε-transitions.

A real-time nondeterministic finite automaton (NFA) is not allowed to perform

any ε-transitions. The transition function of an NFA is defined as follows:

δ : Q× Σ→ P(Q).

An input string w of length n is accepted by a finite automaton if there is a

computation in which the machine enters an accept state with the tape-head on the

n+ 1’st tape square.

1NFAs, 1DFAs, NFAs and DFAs recognize the same class of languages known as

the class of regular languages, abbreviated by REG.
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2.3.2. Pushdown Automaton

A pushdown automaton (PDA) is a finite automaton equipped with a stack.

Stacks are one-way infinite storage mechanisms working in last-in-first-out fashion.

The operations applied on a stack are called the pop and push operations, which stand

for removing the topmost symbol from the stack and adding a new symbol on top of

the stack by pushing down the other symbols in the stack, respectively. Note that

the stack alphabet may be different than the input alphabet. At each step of the

computation, the machine may pop the topmost symbol from the stack, move to a new

state, and push a new symbol onto the stack, depending on the current state and the

input symbol.

Formally, a one-way nondeterministic pushdown automaton (1NPDA) is a 6-tuple

A = (Q,Σ,Γ, δ, q1, Qa),

where Γ is the stack alphabet. The transition function of a 1NPDA is defined as

Q× Σε × Γε → P(Q× Γε),

where Γε = Γ ∪ {ε}. (q2, γ2) ∈ δ(q1, σ, γ1) means when in state q1 reading σ ∈ Σε, A

pops γ1 ∈ Γε from the stack, moves to state q2 and pushes γ2 ∈ Γ onto the stack. Note

that γ1 and γ2 can be ε in which case nothing is popped from or pushed onto the stack.

If γ1 is not on top of the stack, then the transition cannot take place.

A string of length n is accepted by a 1NPDA if there exists a computation in

which the machine enters an accept state with the tape-head on the n+1’st tape square

and the stack is empty. There are also alternative definitions for acceptance which do

not require an empty stack. By using ε-transitions, it is easy to see that the stack may

be emptied in an accept state to satisfy the additional empty stack requirement and the

two definitions correspond to the same class of languages, as long as the computation

is one-way and ε-moves are possible.
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1NPDAs recognize the class of context-free (CF) languages.

2.3.3. Turing Machine

A Turing machine is a finite state automaton with the following properties:

• The tape-head can move in both directions.

• The tape-head can read from the tape and modify the tape content by writing

on the tape.

At the beginning of the computation, the input is written on the tape starting

from the first tape square and the rest of the tape contains the special blank symbol.

If the tape-head tries to move left on the leftmost square, its position does not change.

Formally, a (two-way deterministic) Turing machine (TM) is a 7-tuple

T = (Q,Σ,Γ, δ, q1, qa, qr),

where Σ is the input alphabet not containing the blank symbol t, Γ is the tape alphabet

where t ∈ Γ and Σ ⊆ Γ, qa ∈ Q and qr ∈ Q are the accept and reject states respectively.

The transition function of a TM is defined as follows:

δ : Q× Γ→ Q× Γ×D

where D = {←,→}, meaning that T moves to state q′ ∈ Q, updating the tape square

under the tape-head by γ2 ∈ Γ, moving the tape-head in the direction d ∈ D, when in

state q and reading γ1 ∈ Γ from the tape, specified by the transition δ(q, γ1) = (q′, γ2, d).

While processing an input string, the computation may end at any point (before

finishing reading the input string) in the designated accept state resulting in the ac-

ceptance of the input string, in the designated reject state resulting in the rejection

of the input string or the computation may go on forever without ever entering the
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accept state or the reject state.

Turing machines recognize the class of recursively enumerable languages (RE).

2.3.4. Counter Automaton

A counter automaton (CA) is a finite automaton equipped with one or more coun-

ters, a storage mechanism holding an integer which can be incremented, decremented,

and checked for equivalence to zero. Formally a CA is a 6-tuple

C = (Q,Σ, δ, q1, Qa)

and a CA with k counters is abbreviated as kCA. At the beginning of the computation,

counters are initialized to 0. At each step of the computation, depending on the current

state and the status of the counters, C moves to another state and updates its counters.

.

The transition function of a one-way deterministic k-counter automaton (1DkCA)

is defined as follows:

δ : Q× Σ×Θ→ Q× {−1, 0, 1}k ×D

where Θ = {=, 6=}k and D = {↓,→}. A transition of the form δ(q, σ, θ) = (q′, c, d)

means that upon reading σ ∈ Σ in state q ∈ Q, C moves to q′ updating its counters

by c ∈ {−1, 0, 1}k and updates the tape-head with respect to d ∈ D, given that the

status of the counters is θ ∈ {=, 6=}k, where = and 6= denote whether the corresponding

counter values equal zero or not, respectively.

By restricting 1DkCAs so that the status of the counters cannot be checked until

the end of the computation, we obtain one-way deterministic blind k-counter automaton
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(1DkBCA). The transition function of a 1DkBCA is formally defined as follows:

δ : Q× Σ→ Q× {−1, 0, 1}k ×D.

In a blind counter automaton, the next move of the machine does not depend on the

status of the counters.

For the one-way deterministic machines, we assume that the last move of the

machine always moves the tape-head to the right.

The real-time versions, real-time deterministic k-counter automaton (DkCA) and

real-time deterministic blind k-counter automaton (DkBCA) are defined analogously,

by omitting the direction component from the transition functions. The ranges of the

transition functions take the following form: Q× {−1, 0, 1}k.

Let us define the nondeterministic variants of counter automata. The transition

function of a one-way nondeterministic k-counter automaton (1NkCA) is defined as

follows:

δ : Q× Σε ×Θ→ P(Q× {−1, 0, 1}k).

A one-way nondeterministic blind k-counter automaton (1NkBCA) is a restricted 1NkCA

which cannot check the value of the counters until the end of the computation. Tran-

sition function of a 1NkBCA is defined as

δ : Q× Σε → P(Q× {−1, 0, 1}k).

The real-time versions, real-time nondeterministic k-counter automaton (NkCA) and

real-time nondeterministic blind k-counter automaton (NkBCA) are defined analo-

gously by not allowing ε-moves. The domains of the transition functions of these

models are replaced with Q× Σ×Θ and Q× Σ respectively.
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An input string w of length n is accepted by a kCA if there exists a computation

in which the machine enters an accept state with the tape-head on the n+ 1’st square.

An input string is accepted by a kBCA with the further requirement that all of the

counters- values are equal to 0 .

The abbreviations used for counter automata variants discussed so far are given

in Table 2.1.

Table 2.1. The abbreviations for CA variants.

Real-time One-way

Deterministic DkCA 1DkCA

Deterministic blind DkBCA 1DkBCA

Nondeterministic NkCA 1NkCA

Nondeterministic blind NkBCA 1NkBCA

A 1D2CA can simulate a Turing Machine [19] and therefore
⋃
k L(1DkCA) = RE.

As two counters are enough to recognize any recursively enumerable language, a con-

siderable amount of literature has been published on language recognition power of

counter automata under various restrictions. Preliminary work on counter automata

was undertaken by Fischer et al., who investigated real-time deterministic counter au-

tomata [3], and one-way deterministic counter automata [20]. A hierarchy based on the

number of the counters for real-time deterministic counter automata is demonstrated

in [3]. In [20], the state set is separated into polling states from which the machine

moves to another state and updates the counters by consuming an input symbol and

autonomous states which allow machine to update the counters and change the state

without reading anything. It is easy to show that both definitions are equivalent and

correspond to machines with the same language recognition power.

A remarkable result from [20] states the following:

Fact 2.1. [20] Given any kCA with the ability to alter the contents of each counter

independently by any integer between +c and −c in a single step (for some fixed integer

c), one can effectively find a time-equivalent (ordinary) kCA.
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The proof involves using some additional states to simulate counter updates from

the set {−c,−c + 1, . . . , c − 1, c}k with an ordinary counter automaton, without in-

creasing the time complexity and the number of the counters. Hence, we can assume

that any kCA can be updated by arbitrary integers at each step.

One-way deterministic and nondeterministic counter automata working under

time restrictions formed the central focus of study of Greibach in [21], in which the

author proved various separation results between deterministic and nondeterministic

models. Let us note that in [21] and [22] where one-way deterministic counter automata

are investigated, it is assumed that the counter automata can process the end-marker.

In another major study by Greibach, one-way nondeterministic blind counter

automata are examined [23] and some other restricted versions like partially blind

counters and reversal bounded counters are introduced as well.

2.3.5. Finite Automata with Multiplication

A finite automaton with multiplication (FAM) [6] is 6-tuple

W = (Q,Σ, δ, q1, Qa,Λ),

where the additional component Λ is a finite set of rational numbers (multipliers). A

FAM is a finite automaton equipped with a register holding a positive rational number.

The register is initialized to 1 at the beginning of the computation and multiplied with

a positive rational number at each step, based on the current state, input symbol and

the status of the register determined by whether the register is equal to 1 or not.

The input string of a FAM is given in the form w$ and FAMs are allowed to perform

post-processing.

The original definition of FAMs is given for one-way machines where the tape-

head is allowed to stay on the same input symbol for more than one step.
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A one-way deterministic finite automaton with multiplication (1DFAM) is defined

by the transition function

δ : Q× Σ$ × Ω→ Q×D × Λ,

where Σ$ = Σ ∪ {$}, Ω is the set {=, 6=} denoting the whether the register is equal to

1 or not respectively and D = {↓,→} is the set of head directions. It is assumed that

δ(q, $, ω) = ∅ for all q ∈ Qa so that the computation ends once the end-marker $ is

scanned in an accept state. Reading symbol σ ∈ Σ$ in state q ∈ Q, W compares the

current value of the register with 1, thereby calculating the corresponding value ω ∈ Ω,

and switches its state to q′ ∈ Q, moves its head in direction d ∈ D, and multiplies the

register by λ ∈ Λ, in accordance with the transition function value δ(q, σ, ω) = (q′, d, λ).

A one-way deterministic finite automaton with multiplication without equality

(1DFAMW) is a model obtained by restricting 1DFAM so that the register can be

checked only at the end of the computation. The transition function of a 1DFAMW is

defined as follows:

δ : Q× Σ$ → Q×D × Λ,

where the next move of the machine does not depend on the current status of the

register. The 1DFAMW can be seen as the blind version of the 1DFAM model.

We define the real-time versions, real-time deterministic finite automaton with

multiplication (DFAM), and real-time deterministic finite automaton with multiplica-

tion without equality (DFAMW), by removing the direction component from the tran-

sition functions and assuming that the tape-head moves right at each step. The ranges

of the transition functions are updated with Q× Λ.

A one-way nondeterministic finite automaton with multiplication (1NFAM) is a

model that extends the 1DFAM with the ability to make nondeterministic moves. The



20

transition function of a 1NFAM is defined as

Q× Σ$ × Ω→ P(Q×D × Λ).

A one-way nondeterministic finite automaton with multiplication without equality

(1NFAMW) is the blind version of the 1NFAM model which cannot check whether or

not the register has value 1 during computation. Transition function of a 1NFAMW is

defined as follows:

δ : Q× Σ$ → P(Q×D × Λ),

so that the next move of the machine does not depend on the current status of the

register.

We also define real-time versions real-time nondeterministic finite automaton with

multiplication (NFAM) and real-time nondeterministic finite automaton with multi-

plication without equality (NFAMW) by removing the direction component from the

transition functions and assuming that the tape-head moves right at each step. In that

case, the ranges of the transition functions are updated with P(Q× Λ).

For an input string w of length n, w is accepted by a FAM or a FAMW if there

exists a computation in which the machine enters an accept state with the input head

on the end-marker $ and the register is equal to 1.

The abbreviations used for finite automata with multiplication variants discussed

so far are given in Table 2.2.

The following characterization of the class of languages recognized by 1NFAMWs

for the case where the alphabet is unary is given in [6].

Fact 2.2. [6] All 1NFAMW-recognizable languages over a unary alphabet are regular.
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Table 2.2. The abbreviations for FAM variants.

Real-time One-way

Deterministic DFAM 1DFAM

Deterministic blind DFAMW 1DFAMW

Nondeterministic NFAM 1NFAMW

Nondeterministic blind NFAMW 1NFAMW

Furthermore, bounded languages recognized by 1NFAMWs have also been exam-

ined.

Fact 2.3. [6] A bounded language is recognized by a 1NFAMW iff it is semilinear.

1NFAMWs are defined by the tape-head directions and they process the end-

marker. In the next lemma, we show that modifying the definition of 1NFAMW slightly

does not change its recognition power.

Lemma 2.4. LetW be a 1NFAMW. There exists a 1NFAMWW ′ which does not pro-

cess the end-marker and defined using ε-transitions that recognizes the same language

as W.

Proof. Given a 1NFAMW W1 = (Q,Σ, δ, q1, Qa,Λ), we construct W2 from W1 by

first removing the transitions which are traversed upon reading σ ∈ Σ and which do

not move the tape-head, by using some additional states and ε-transitions as follows:

Let Qs be the set of state-symbol pairs of W1 such that (q, σ) ∈ Qs if there is no

incoming transition to q that does not move the tape-head and δ(q, σ) = (q′, λ, ↓) for

some state q′ ∈ Q and λ ∈ Λ. For each (q, σ) pair, let Gq,σ be the graph obtained

from the state transition diagram of W1 by removing all transitions except the ones

of the form δ(q, σ) = (q′, λ, ↓). Let rq,σ be the subgraph of Gq,σ induced by the set of

reachable vertices from q in Gq,σ. We create a copy of each rq,σ which we denote by

rcq,σ and connect it to W2 as follows: From the state q in the original copy, we add

an ε-transition to the state q in rcq,σ. In rq,σ, there should be some states t satisfying
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δ(t, σ) = (u, λ,→) for some u ∈ Q and λ ∈ Λ, since otherwise the rest of the string

cannot be scanned. We remove those transitions from W2 and add a σ-transition to

each original u from the copy of the state t in rcq,σ. The inherited transitions from W1

which do not move the tape-head are removed from W2.

Next we remove the $-transitions fromW2. Let Q$ be the set of states ofW1 that

don’t have any incoming $-transition and have an outgoing $-transition. After finishing

reading the string, W1 should enter a state from Q$, read the $ symbol and possibly

make some transitions without changing the tape-head and eventually end in an accept

state, to accept any string. Let G$ be the graph obtained from the transition diagram

of W , by removing all transitions except the $-transitions. Let rq be the subgraph of

G$, induced by the set of reachable vertices from q in G$, for each q ∈ Q$. We create

a copy rcq of each subgraph rq, replace the $ symbols with ε and connect it to W2: For

each incoming transition to q inW1, we create a copy of the transition and connect it to

the copy of q in rcq. The $-transitions inherited fromW1 are removed fromW2 and any

accept state of W1 is no longer an accept state in W2. W2 simulates the computation

of W1 on any non-empty string until scanning the $ and then follows the transitions

in the newly added states to reach an accept state.

We can safely remove any remaining tape-head directions which move the tape-

head to the right fromW2 and we obtain a 1NFAMW without the tape-head directions

and that does not process the end-marker recognizing the same language as W1.

From now on, we may assume that a 1NFAMW is defined without the tape-head

directions and does not process the end-marker.

2.4. Background on Algebra

In this section we provide definitions for some basic notions from algebra and

group theory. See [24,25] for further references.
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2.4.1. Algebraic Structures

Let A be a set. A binary operation ∗ on a set A is a function from A× A to A.

Let B be a subset of A. The subset B is closed under ∗ if for all a, b ∈ B, we also have

a ∗ b ∈ B.

A binary operation ∗ is called

• associative if for all a, b, c ∈ A, we have (a ∗ b) ∗ c = a ∗ (b ∗ c),

• commutative if a ∗ b = b ∗ a for all a, b ∈ A.

A set A, together with a binary operation ∗ is called an algebraic structure (A, ∗).

Let (A, ∗) and (A′, ∗′) be binary algebraic structures. An isomorphism of A with A′

is a one-to-one function φ mapping A onto A′ such that φ(a ∗ b) = φ(a) ∗′ φ(b) for all

a, b ∈ A. If such a map exists, then A and A′ are isomorphic binary structures which

is denoted by A ' A′.

For an algebraic structure (A, ∗),

• an element e ∈ A is called the identity element if for all a ∈ A e ∗ a = a ∗ e = a,

• element a ∈ A has an inverse if there is an element a′ in A such that a ∗ a′ =

a′ ∗ a = e.

2.4.2. Groups, Monoids, Semigroups

The following are fundamental algebraic structures:

• A semigroup (S, ∗) is an algebraic structure with an associative binary operation.

• A monoid (M, ∗) is a semigroup with an identity element e.

• A group (G, ∗) is a monoid where for every element a ∈ G, there is a unique

inverse of a ∈ G denoted by a−1.
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A group may be referred simply as G instead of (G, ∗) and most of the time the

operation sign is omitted and a ∗ b is simply denoted by ab. The order |G| of G is

the number of elements in G. The order of an element g of a group G is the smallest

positive integer m such that gm = e. A group is Abelian if its binary operation is

commutative. A monoid or a semigroup is called commutative, if its binary operation

is commutative.

A monoid is called inverse if for every x ∈M , there exists a unique y ∈M such

that x = xyx and y = yxy. Note that it is not necessary that xy is equal to the identity

of M .

A subset H of a group G is called a subgroup of G if

(i) H is closed under the binary operation of G,

(ii) The identity element e of G is in H,

(iii) For all a ∈ H, a−1 ∈ H.

A subset H of a monoid M is a submonoid if (i) and (ii) hold and a subset H of a

semigroup S is a subsemigroup if (i) holds.

Let A ⊆ G. The subgroup generated by A, denoted by 〈A〉, is the subgroup of

G whose elements can be expressed as the finite product of elements from A and their

inverses. If this subgroup is all of G, then A generates G and the elements of A are

called the generators of G. If there is a finite set that generates G, then G is finitely

generated. The smallest cardinality of a generating set for G is the rank of the group

G. The notion of generating sets also applies to monoids and semigroups.

Let H be a subgroup of a group G. The subset aH = {ah|h ∈ H} of G is the

left coset of H containing a, and the subset Ha = {ha|h ∈ H} is the right coset of H

containing a. The number of left cosets of H in G is the index of H in G.
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Let G1, G2, . . . , Gn be groups. For (a1, a2, . . . , an) and (b1, b2, . . . , bn) in
∏n

i=1Gi =

G1×G2×· · ·×Gn, define (a1, a2, . . . , an)(b1, b2, . . . , bn) to be the element (a1b1, a2b2, . . . ,

anbn). Then
∏n

i=1Gi is the direct product of the groups Gi under this binary operation.

Direct product of monoids and semigroups can be defined similarly.

2.4.3. Groups of Integers, Vectors, Rational Numbers

The set of integers together with the binary operation addition forms a group

denoted by (Z,+). It can be generated by the set {1} and its identity element is 0.

The set of k-dimensional integer vectors for some k ≥ 2 under addition also forms

a group denoted by (Zk,+) and it is finitely generated by k vectors, i’th vector having

1 in its i’th entry and 0 in the remaining entries for i = 1 . . . k.

The set of positive rationals with the binary operation multiplication forms an

infinitely generated group denoted by (Q+, ·), with the identity element 1.

Note that all groups introduced above are Abelian.

2.4.4. Matrix Groups and Monoids

The set of all n × n matrices with integer entries with the operation of matrix

multiplication forms a monoid, which is denoted by Mn(Z).

We denote by GL(n,Z) the general linear group of degree n over the field of

integers, that is, the group of n× n invertible matrices with integer entries. Note that

these matrices have determinant ±1. Restricting the matrices in GL(n,Z) to those

that have determinant 1, we obtain the special linear group of degree n over the field

of integers, SL(n,Z).

Analogously, GL(n,Q) is the group of n × n invertible matrices with rational

entries and SL(n,Q) is the group of n × n invertible matrices with rational entries
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with determinant 1.

2.4.5. Free Monoids and Free Groups

Let A = {a1, a2, . . . , an} be a finite set. We think of A as an alphabet and its

elements ai as the letters of the alphabet. A word is a concatenation of finite elements

of A.

The set of all words over A is denoted by A∗. A∗ together with the binary

operation concatenation is called the free monoid over A. The empty word ε, which is

obtained by concatenation of zero elements, is the identity element of the free monoid.

The set of all nonempty words over A is called the free semigroup over A and often

denoted by A+.

Now assume that for every ai ∈ A, there is a corresponding inverse symbol ai
−1

and let A−1 = {a1−1, a2−1, . . . , an−1}. Consider the set of all words over X = A∪A−1.

We can simplify a word by removing occurrences of aiai
−1, for each i. A word is called

reduced if it cannot be further simplified. The set of all reduced words over X is called

the free group over A. The number of elements in A is called the rank of the free group.

An arbitrary group G is called free, if it is isomorphic to the free group generated by

a subset S of G. Informally, a group is free if no relation holds among the generators

of the group. Two free groups are isomorphic iff they have the same rank.

We will denote the free group of rank r by Fr. Note that F0 is the trivial group

and F1 is Abelian and isomorphic to (Z,+). 2 is the smallest rank of a non-Abelian

free group.

The well known Nielsen-Schreier Theorem for free groups states the following.

Fact 2.5. [26, 27] Every subgroup of a free group is free.

Furthermore, F2 contains free subgroups of every finite rank.
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2.4.6. Free Abelian Groups

Let A be a subset of a nonzero Abelian group G and suppose that each nonzero

element g in G can be expressed uniquely in the form

g = n1a1 + n2a2 + · · ·+ nrar

for ni 6= 0 in Z and distinct ai ∈ A. G is called a free Abelian group of rank n and A

is called a basis for the group. Any two free Abelian groups with the same basis are

isomorphic.

A free Abelian group of rank r is isomorphic to Z×Z× · · ·×Z = Zr. Hence, the

group of integers Z and integer vectors Zn are finitely generated free Abelian groups.

The group of positive rational numbers Q+ is the free Abelian group of infinite rank.

2.4.7. Word Problem

For any finitely generated group G with the set of generators A, we have a

homomorphism φ : X∗ → G where X = {A∪A−1}. Given a group G generated by the

set A, the word problem for group G is the problem of deciding whether φ(w) = 1 for a

given word w ∈ X∗, where 1 is the identity element of G. The word problem language

of G is the language W (G,A) over X which consists of all words that represent the

identity element of G, that is W (G,A) = {w ∈ X∗|φ(w) = 1}. Most of the time, the

statements about the word problem are independent of the generating set and the word

problem language is denoted by W (G).
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3. EXTENDED FINITE AUTOMATA

In this chapter, we investigate extended finite automata over matrix groups. The

theory of extended finite automata has been essentially developed in the case of free

groups and in the case of free Abelian groups, where strong theorems allow the charac-

terization of the power of such models and the combinatorial properties of the languages

recognized by these automata. For groups that are not of the types mentioned above,

even in the case of groups of matrices of low dimension, the study of group automata

quickly becomes nontrivial, and there are remarkable classes of linear groups for which

little is known about the automaton models that they define.

We start with a survey of extended finite automata, and present the basic defini-

tions and observations in Section 3.1.

In Section 3.2, we present several new results about the classes of languages

recognized by finite automata over matrix groups. We focus on matrix groups with

integer and rational entries. For the case of 2 × 2 matrices, we prove that the cor-

responding group automata for rational matrix groups are more powerful than the

corresponding group automata for integer matrix groups, which recognize exactly the

class of context-free languages. We also explore finite automata over some special ma-

trix groups, such as the discrete Heisenberg group and the Baumslag-Solitar group.

The “zoo” of language classes associated with different groups is presented, visualizing

known relationships and open problems.

We also introduce the notion of time complexity for group automata, and use this

additional dimension to analyze the relationships among the language families recog-

nized by finite automata over various groups. We develop a method for proving that

automata over groups where the growth rate of the group and the time are bounded

cannot recognize certain languages, even if one uses a very weak definition of time-

bounded computation, and use this to demonstrate some new relationships between

time-bounded versions of our language classes. The case of linear-time bounds is ex-
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amined in detail throughout our repertory of matrix groups. The results are presented

in Section 3.3.

In Section 3.4, we make a connection between the membership and identity prob-

lems for matrix groups and semigroups and the corresponding extended finite automata.

We prove that the decidability of the emptiness and universe problems for extended

finite automata are sufficient conditions for the decidability of the subsemigroup mem-

bership and identity problems. Using these results, we provide an alternative proof for

the decidability of the subsemigroup membership problem for GL(2,Z) and the decid-

ability of the identity problem for M2(Z). We show that the emptiness and universe

problems for SL(4,Z) are undecidable.

3.1. Basic Notions, Definitions and Survey on Extended Finite Automata

This introductory section provides a brief overview of extended finite automata

and reviews the literature.

We gave the definition for finite automaton in Section 2.3.1. Now let us look from

the point of view of combinatorial group theory.

In [28], a finite automaton F over a monoid M is defined as a finite directed

graph whose edges are labeled by elements from M . F consists of a vertex labeled

as the initial vertex and a set of vertices labeled as the terminal vertices such that an

element of M is accepted by F if it is the product of the labels on a path from the

initial vertex to a terminal vertex. A subset of M is called rational if its elements are

accepted by some finite automaton over M . The idea of rational subset of a monoid is

introduced for the first time in [29].

When M is a free monoid such as Σ∗, then the accepted elements are words over

Σ and the set of accepted words is a language over Σ. If M is finitely generated by a

set A, then equivalently a subset of M is called rational if its elements are accepted

by some finite automaton over A. By letting A to be a finite alphabet Σ, we see that
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the two definitions of finite automaton coincide. Rational subsets of a free monoid are

called rational (regular) languages.

An M -automaton recognizing a language over the alphabet Σ can be seen as a

finite automaton over the monoid Σ∗ ×M such that the accepted elements are (w, 1),

where w ∈ Σ∗. This is stated explicitly in the following proposition by Corson [30].

The proof involves constructing an M -automaton from a finite automaton over Σ∗×M

and vice versa.

Fact 3.1. [30] Let L be a language over an alphabet Σ. Then L is recognized by an

M-automaton if and only if there exists a rational subset R ⊆ Σ∗ × M such that

L = {w ∈ Σ∗|(w, 1) ∈ R}.

Adopting the same definition, one can define a pushdown automaton as a finite

state automaton over Σ∗ × Mcf where Mcf is a certain monoid characterizing the

context-free languages [28]. A word w ∈ Σ∗ is accepted by a pushdown automaton

if there is a path from initial vertex to terminal vertex with label (1, w). Replacing

Mcf with different monoids, it is possible to recognize other classes of languages. This

idea coincides with the formal definition of extended finite automaton, which will be

discussed next.

The definition of extended finite automata appeared explicitly for the first time

in a series of papers by Dassow, Mitrana and Steibe [5, 31, 32]. An extended finite

automaton is formally defined as follows:

Let G be a group under the operation denoted by ◦ with the neutral element

denoted by e. An extended finite automaton over the group G is a 6-tuple

E = (Q,Σ, G, δ, q1, Qa),
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where the transition function δ is defined as

δ : Q× Σε → P(Q×G).

δ(q, σ) 3 (q′, g) means that when E reads the symbol (or empty string) σ ∈ Σε in

state q ∈ Q, it moves to state q′ ∈ Q, and writes x ◦ g in the register, where x is the

old content of the register and g ∈ G.

The initial value of the register is the neutral element e of the group G. An input

string w of length n is accepted if E enters an accept state with the tape head on the

n+ 1’st square and the content of the register is equal to the identity element of G.

The class of languages recognized by an extended finite automaton over G will

be denoted by L(G).

An extended finite automaton over G is also called a finite automaton over G or

a G-automaton and we will use the three terms interchangeably

Extended finite automata have appeared implicitly throughout the literature as

many classical models can be regarded as finite automaton over a particular group.

Pushdown automata [2], blind counter automata [23] and finite automata with multi-

plication without equality [6] are extended finite automata where the group in consider-

ation is the free group, the additive group of integer vectors Zk, and the multiplicative

group of nonzero rational numbers Q+, respectively.

Mitrana and Stiebe investigate the language recognition power of finite automata

over Abelian groups and conclude the following result.



32

Fact 3.2. [5] For an Abelian group G, one of the following relations hold:

L(G) = REG,

L(G) = L(Zk), for some k,

L(G) = L(Q+).

They also discuss the computational power of deterministic extended finite au-

tomata, proving that they are less powerful than their nondeterministic variants.

Throughout this thesis, we will focus on nondeterministic extended finite automata.

In the case of the free groups, Dassow and Mitrana observe the following char-

acterization for the classes of context-free languages and recursively enumerable lan-

guages. Although it is true that F2-automata recognize exactly the class of context-free

languages, the proof given in [31] is not correct.

Fact 3.3. [31] L(F2) = CF.

Fact 3.4. [5, 32] L(F2 × F2) = RE.

In 2005, Corson modified the definition of extended finite automaton by allowing

the register to be multiplied with monoid elements [30]. Extended finite automaton

over a monoid is also called a monoid automaton or M -automaton. Corson focuses

on the connection between the word problem of a group G and the set of languages

recognized by G-automata. He also provides a proof for the fact that L(F2) = CF by

extending the work of Gilman [28].

Another line of research on monoid automata was led by Kambites et al. The

results concerning the class of languages recognized by monoid automata appear in

[33–35]. The connection between a given group G and the groups whose word problems

recognized by G-automata has been studied in [36–38].

Recent work on the subject includes that of Corson et al. [39,40] and Zetzsche [41].
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Corson deals with monoid automata recognizing word problems of free products of

groups in [39]. Real-time G-automata where ε-transitions are not allowed are analyzed

in [40]. Zetzsche investigates the area from a different point of view, not focusing on

particular monoids but proving and generalizing various properties of finite automata

over a broad class of monoids.

Even though extensive research has been carried out on extended finite automata,

no study exists which deal with finite automata over matrix groups. Having presented

the main findings on the subject, we will move on to discuss finite automata over matrix

groups in the next section.

3.2. Languages Recognized by Finite Automata over Matrix Groups

In this section, we are going to prove some new results about the classes of

languages recognized by finite automata over matrix groups. We will start with some

observations from the previous studies. In the remaining parts, we will analyze the

language recognition power of finite automata over various matrix groups.

3.2.1. Observations

Let us start by noting the following facts, which are true by the definitions of the

machines.

• A Zk-automaton is equivalent to a one-way nondeterministic blind k-counter au-

tomaton (1NkBCA).

• A Q+-automaton is equivalent to a one-way finite automaton with multiplication

without equality (1NFAMW).

As mentioned earlier, the characterization of context-free languages by F2-automata

was first stated by Dassow and Mitrana [31], and proven in [30]. Let us recall that F2

contains any free group of rank n ≥ 2 [25].
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The relation between the classes of languages recognized by free group automata

is summarized as follows.

Fact 3.5. [31] REG = L(F0) ( L(F1) = L(Z) ( L(F2) = CF.

The following result states the hierarchy between the classes of languages recog-

nized by Zk-automata.

Fact 3.6. [42] L(Zk) ( L(Zk+1) for k ≥ 1.

Let us mention that the class of context-free languages and the class of languages

recognized by nondeterministic blind counter automata are incomparable.

Fact 3.7. CF and L(Zk) are incomparable for all k ≥ 2.

Proof. Consider the language L = {anbn|n ≥ 0} which is a context-free language. Since

context-free languages are closed under star, L∗ is a context-free language whereas

it cannot be recognized by any Zk-automaton for all k ≥ 1 by [23]. On the other

hand, the non-context-free language L′ = {anbncn|n ≥ 0} can be recognized by a

Z2-automaton.

3.2.2. Automata on Groups of 2× 2 and 3× 3 Matrices

Let G2 be the group generated by the matrices

Ma =

 1 2

0 1

 and Mb =

 1 0

2 1

 .

There exists an isomorphism ϕ from F2 onto G2 by [43], meaning that the group G2

is isomorphic to F2. Note that Ma and Mb are integer matrices with determinant 1,

which proves that F2 is a subgroup of SL(2,Z).
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Now the question is whether L(GL(2,Z)) and L(SL(2,Z)) correspond to larger

classes of languages than the class of context-free languages. We are going to use the

following fact to prove that the answer is negative.

Fact 3.8. [30] Suppose G is a finitely generated group and H is a subgroup of finite

index. Then L(G) = L(H).

Now we are ready to state our theorem.

Theorem 3.9. CF = L(F2) = L(SL(2,Z)) = L(GL(2,Z)).

Proof. We are going to use Fact 3.8 to prove the result. Since SL(2,Z) has index 2

in GL(2,Z) and GL(2,Z) is finitely generated, L(GL(2,Z)) = L(SL(2,Z)). Since F2

has index 12 in SL(2,Z) [44] and SL(2,Z) is finitely generated, L(SL(2,Z)) = L(F2)

which is equal to the family of context-free languages by Fact 3.3.

In the next theorem, we prove that allowing the register to be multiplied by

integer matrices whose determinants are not ±1 does not increase the computational

power.

Theorem 3.10. L(M2(Z)) = CF.

Proof. Suppose that an M2(Z)-automaton E is given. When E processes an input

string, its register is initialized by the identity matrix and multiplied by matrices from

M2(Z). Suppose that in a successful computation leading to acceptance, the register is

multiplied by some singular matrix whose determinant is 0. Then the product of the

matrices multiplied with the register will have determinant 0 and the register cannot

be equal to the identity matrix again. Similarly, if the register is multiplied with a

nonsingular matrix whose determinant is not equal to ±1, then the determinant of

the product of the matrices multiplied with the register cannot be equal to 1 again,

since M2(Z) does not contain any matrix with non-integer determinants. Any such

edges labeled by a matrix whose determinant is not equal to ±1 can be removed from



36

E to obtain a GL(2,Z)-automaton, without changing the accepted language. Since

L(GL(2,Z)) = CF, the result follows by Theorem 3.9.

Let us now investigate the group SL(3,Z), the group of 3 × 3 integer matrices

with determinant 1. We start by looking at an important subgroup of SL(3,Z), the

discrete Heisenberg group. The discrete Heisenberg group H is defined as 〈a, b|ab =

bac, ac = ca, bc = cb〉, where c = a−1b−1ab is called the commutator of a and b.

a =


1 1 0

0 1 0

0 0 1

 b =


1 0 0

0 1 1

0 0 1

 c =


1 0 1

0 1 0

0 0 1


Any element g ∈ H can be written uniquely as bjaick.

g =


1 i k

0 1 j

0 0 1

 = bjaick

It is shown in [35] that the languages MULT = {xpyqzpq|p, q ≥ 0}, COMPOSITE =

{xpq|p, q > 1} and MULTIPLE = {xpypn|p ∈ N} can be recognized by H-automata, using

the special multiplication property of the group.

Correcting a small error in [35], we rewrite the multiplication property of the

elements of H.

(bxaycz)(bx
′
ay

′
cz

′
) = bx+x

′
ay+y

′
cz+z

′+yx′

We can make the following observation using the fact that L(H) contains non-context-

free languages.

Theorem 3.11. L(SL(2,Z)) ( L(SL(3,Z)).
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Proof. It is obvious that an SL(2,Z)-automaton can be simulated by an SL(3,Z)-

automaton. Note that L(SL(2,Z)) is the family of context-free languages by The-

orem 3.9. Since L(H) ⊆ L(SL(3,Z)) and the non-context-free language MULT =

{xpyqzpq|p, q ≥ 0} can be recognized by an H-automaton [35], the result follows.

The following result is a direct consequence of Fact 3.8.

Theorem 3.12. L(SL(3,Z)) = L(GL(3,Z)).

Proof. Since GL(3,Z) is a finitely generated group and SL(3,Z) has finite index in

GL(3,Z), the result follows by Fact 3.8.

We have talked about the discrete Heisenberg group H. Now let us look at a

subgroup of H generated by the matrices B and C, which we will call H2.

B =


1 0 0

0 1 1

0 0 1

 C =


1 0 1

0 1 0

0 0 1



H2 = 〈B,C|BC = CB〉 is a free Abelian group of rank 2, and therefore it is

isomorphic to Z2.

We conclude the following about the language recognition power of Z2 and H.

Theorem 3.13. L(Z2) ( L(H).

Proof. Since Z2 is a subgroup of H, L(Z2) ⊆ L(H) follows. The inclusion is proper

since H-automaton can recognize the language MULT = {xpyqzpq|p, q ≥ 0} [35], whereas

any bounded language in L(Q+) is semilinear by Fact 2.3.
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Now let us move on to the discussion about matrix groups with rational entries.

We will start with a special subgroup of GL(2,Q).

For two integers m and n, the Baumslag-Solitar group BS(m,n) is defined as

BS(m,n) = 〈a, b|bamb−1 = an〉. We are going to focus on BS(1, 2) = 〈a, b|bab−1 = a2〉.

Consider the matrix group GBS generated by the matrices

A =

 1 0

−1 1

 and B =

 1/2 0

0 1

 .

Consider the isomorphism a 7→ A, b 7→ B. The matrices A and B satisfy the

property BAB−1 = A2,

 1/2 0

0 1

 1 0

−1 1

 2 0

0 1

 =

 1 0

−2 1

 ,

and we conclude that GBS is isomorphic to BS(1, 2).

We will prove that there exists a BS(1, 2)-automaton which recognizes a non-

context-free language.

Theorem 3.14. L(BS(1, 2)) * CF.

Proof. Let us construct a BS(1, 2)-automaton E recognizing the language UPOW =

{a2n|n ≥ 0}. The state diagram of E and the matrices are given in Figure 3.1. Without

scanning any input symbol, E multiplies its register with the matrix A1 successively.

E nondeterministically moves to the next state reading the first input symbol without

modifying the register. After that point, E starts reading the string and multiplies its

register with the matrix A2 for each scanned a. At some point, E nondeterministically

stops reading the rest of the string and multiplies its register with the element A3.

After successive multiplications with A3, E nondeterministically decides to move to an
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accept state.

Figure 3.1. State transition diagram of E recognizing UPOW

As a result of i multiplications with A1, the register has the value

 2i 0

2i − 1 1


before reading the first input symbol. Multiplication with each A2 leaves 2i unchanged

while subtracting 1 from 2i − 1 for each scanned a. The register will have the value

 2i 0

2i − 1− j 1


as a result of j multiplications with the matrix A2.

For the rest of the computation, E will multiply its register, say k times, with A3

resulting in the register value

 2i

2k
0

2i − 1− j 1


since each multiplication with A3 divides 2i by 2.
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The register contains the identity matrix at the end of the computation if i = k

and j = 2i − 1 which is possible if the input string is of the form a1+2i−1 = a2
i
. In the

successful branch, the register will be equal to the identity matrix and E will end up

in the final state having successfully read the input string.

For input strings which are not members of UPOW, either the computation will end

before reading the whole input string or the final state will be reached with the register

value being different from the identity matrix. Note that A1 = B−1A−1, A2 = A

and A3 = B, where A and B are the generators of the group GBS and recall that

GBS is isomorphic to BS(1, 2). Since UPOW is a unary nonregular language, it is not

context-free and we conclude the result.

Note that L(Z) ( L(BS(1, 2)) since the subgroup generated by a in BS(1, 2) is

isomorphic to Z and L(BS(1, 2)) contains a unary nonregular language.

We showed that allowing rational entries enlarges the class of languages recog-

nized by 2× 2 matrices. What about the group of 2× 2 rational matrices with deter-

minant 1? We give a positive answer for the question, by constructing an SL(2,Q)-

automaton recogizing a unary non-context-free langauge.

Theorem 3.15. L(SL(2,Z)) ( L(SL(2,Q)).

Proof. It is obvious that L(SL(2,Z)) ⊆ L(SL(2,Q)). We will prove that the inclusion

is proper.

Let us construct an SL(2,Q)-automaton E recognizing the language UPOWodd =

{a22n+1| n ≥ 0}. The state diagram of E and the matrices are given in Figure 3.2.

Without scanning any input symbol, E first multiplies its register with the matrix A1.

E then multiplies its register with the matrix A2 successively until nondeterministically

moving to the next state. After that point, E starts reading the string and multiplies its

register with the matrix A3 for each scanned a. At some point, E nondeterministically

stops reading the rest of the string and multiplies its register with the matrix A4. After
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successive multiplications with A4, E nondeterministically decides moving to an accept

state.

Figure 3.2. State transition diagram of E recognizing UPOWodd

Let us trace the value of the register at different stages of the computation. Before

reading the first input symbol, the register has the value

 2x+1 0

2x 1
2x+1


as a result of the multiplications with the matrix A1 and x times the matrix A2.

Multiplication with each A3 leaves 2x+1 and 1
2x+1 unchanged while subtracting 1

2x+1

from 2x for each scanned a. As a result of y multiplications with A3, the register will

have the value

 2x+1 0

2x − y
2x+1

1
2x+1

 .

For the rest of the computation, E will multiply its register with A4 until nonde-

terministically moving to the final state. As a result of z multiplications with A4, the

register will have the value

 2x+1

2z
0(

2x − y
2x+1

)
1
2z

2z

2x+1

 .
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The final value of the register is equal to the identity matrix when y = 22x+1 and

z = x+ 1, which is possible only when the length of the input string is 22x+1 for some

x ≥ 0. In the successful branch, the register will be equal to the identity matrix and

E will end up in the final state having successfully read the input string. For input

strings which are not members of L, either the computation will end before reading

the whole input string, or the final state will be reached with the register value not

equaling the identity matrix.

Since the matrices used during the computation are 2 by 2 rational matrices with

determinant 1, L ∈ L(SL(2,Q)). L(SL(2,Q)) contains a unary nonregular language,

which is not true for L(SL(2,Z)) by Theorem 3.9 and we conclude the result.

Let us note that the set of languages recognized by Q+-automata is a proper

subset of the set of languages recognized by SL(2,Q)-automata.

Theorem 3.16. L(Q+) ( L(SL(2,Q)).

Proof. Let L ∈ L(Q+) and let E be a Q+-automaton recognizing L. We will construct

an SL(2,Q)-automaton E ′ recognizing L. Let S = {s1, . . . , sn} be the set of elements

multiplied with the register during the computation of E . We define the mapping ϕ as

follows.

ϕ : si 7→

 si 0

0 1
si


The elements ϕ(si) are 2× 2 rational matrices with determinant 1. Let δ and δ′ be the

transition functions of E and E ′ respectively. We let

(q′, si) ∈ δ(q, σ) ⇐⇒ (q′, ϕ(si)) ∈ δ′(q, σ)

for every q, q′ ∈ Q, σ ∈ Σ and si ∈ S. The resulting E ′ recognizes L.
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The inclusion is proper since UPOWodd = {a22n+1|n ≥ 0} ∈ L(SL(2,Q)) by Theorem

3.15, and L(Q+) does not contain any unary nonregular language by Fact 2.2, noting

that Q+-automata are equivalent to 1NFAMW’s.

3.2.3. Automata on Matrices of Higher Dimensions

As pointed out in Section 3.1, F2 × F2-automata are as powerful as Turing ma-

chines. Using this fact, we make the following observation.

Theorem 3.17. RE = L(F2 × F2) = L(SL(4,Z)).

Proof. The first equality is Fact 3.4. Recall from Section 3.2.2 that ϕ is an isomorphism

from F2 onto G2, the matrix group generated by the matrices Ma and Mb. Let G′ be

the following group of matrices




M1

0 0

0 0

0 0
M2

0 0

 , M1, M2 ∈ G2


.

We will define the mapping ψ : F2×F2 → G′ as ψ(g1, g2) = (ϕ(g1), ϕ(g2)) for all

(g1, g2) ∈ F2 × F2 which is an isomorphism from F2 × F2 onto G′.

This proves that F2 × F2 is isomorphic to a subgroup of SL(4,Z). The fact

that L(F2 × F2) is the set of recursively enumerable languages lets us conclude that

L(SL(4,Z)) is the set of recursively enumerable languages.

Let us also state that the classes of languages recognized by automata over su-

pergroups of SL(4,Z) such as GL(4,Z) or SL(4,Q) are also identical to the class of

recursively enumerable languages.
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Theorem 3.18. L(G) = RE, where G is any matrix group whose matrix entries are

computable numbers and contains SL(4,Z) as a subgroup.

Proof. Note that any finite automaton over a matrix group can be simulated by a

nondeterministic Turing machine which keeps track of the register simply by multi-

plying the matrices and checking whether the identity matrix is reached at the end

of the computation, provided that the matrix entries are computable numbers. Since

RE = L(SL(4,Z)) and G contains SL(4,Z) as a subgroup, we conclude that L(G) is

the set of recursively enumerable languages.

We summarize the results in Figure 3.3. Solid arrows represent proper inclusion,

dashed arrows represent inclusion and dashed lines represent incomparability.

3.3. Time Complexity

In the previous section, we compared various automaton models solely on the

basis of the groups they employed as a computational resource. The theory of com-

putational complexity deals with various different types of such resources, the allowed

runtime of the machines being the most prominent among them. Some of the automata

we saw in Section 3.2 (e.g. Figure 3.1) have arbitrarily long computations, and it is a

legitimate question to ask whether our results, for instance, the relationships in Figure

3.3, would still hold if one imposed common time bounds on the automata. We study

such questions in this section.

3.3.1. Definitions

Before moving on with our discussion, we have to define some new concepts.

A G-automaton E recognizing language L is said to be strongly t(n) time-bounded

if for any input string x with |x| = n, every computation of E on x takes at most t(n)

steps. We will denote the set of languages recognized by strongly t(n)-time bounded
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Figure 3.3. Language classes associated with groups

G-automata by L(G)st(n).

Although the strong mode of recognition defined above is standard in studies of

time complexity, we will be able to prove the impossibility results of the next subsection

even when the machines are subjected to the following, looser requirement: A G-

automaton E recognizing language L is said to be weakly t(n) time-bounded if for each

accepted input string x ∈ L with |x| = n, E has a successful computation which takes

at most t(n) steps. So any input string is allowed to cause longer computations, as

long as none of those are accepting for inputs which are not members of L. We will

denote the set of languages recognized by weakly t(n)-time bounded G-automata by
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L(G)wt(n). Note that the statement L(G)st(n) ⊆ L(G)wt(n) is true by definition.

Let A be a generator set for the group G. The length of g ∈ G, denoted |g|A, is

the length of the shortest representative for g in (A ∪ A−1)∗. Let

BA
G(n) = {g ∈ G, |g|A ≤ n}

be the set of all elements in G which can be represented by a word of length at most n.

The growth function of a group G with respect to a generating set A, denoted gAG(n),

is the cardinality of the set BA
G(n), that is gAG(n) = |BA

G(n)|. The growth function

is asymptotically independent of the generating set, and we will denote the growth

function of a group G by gG(n).

For a positive integer n, two strings w,w′ ∈ Σ∗ are n-dissimilar for L if |w| ≤ n,

|w′| ≤ n, and there exists a string v ∈ Σ∗ with |wv| ≤ n, |w′v| ≤ n such that wv ∈ L

iff w′v /∈ L. Let AL(n) be the maximum k such that there exist k distinct strings that

are pairwise n-dissimilar.

A finite set of strings S is said to be a set of uniformly n-dissimilar strings for

L if for each string w ∈ S, there exists a string v such that |wv| ≤ n and wv ∈ L and

for any string w′ ∈ S such that w 6= w′, |w′v| ≤ n and w′v /∈ L. Let UL(n) be the

maximum k such that there exist k distinct strings that are uniformly n-dissimilar.

Note that the following is always true by definition, since the strings in a uniformly

n-dissimilar set are pairwise n-dissimilar.

Lemma 3.19. UL(n) ≤ AL(n) for all n ≥ 0.

3.3.2. Limitations of Machines on Slow Groups Running in Short Time

In this section, we are going to present a method for proving that certain lan-

guages cannot be recognized by finite automata over matrix groups when the growth
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rate of the group and the time are bounded.

Theorem 3.20. Let G be a group with growth function gG(n). L /∈ L(G)wt(n) if

gG(t(n)) ∈ o(UL(n)).

Proof. Suppose for a contradiction that there exists a weakly t(n) time-bounded G-

automaton E recognizing L in time t(n). For a sufficiently large n, let S be the set of

uniformly n-dissimilar strings such that |S| = UL(n). For every string wi ∈ S, there

exists a string vi such that wivi ∈ L and wjvi /∈ L for all wj ∈ S with i 6= j .

Let Sacc be the set of accepted extended strings of the form wivi ∈ L with

|wivi| ≤ n where wi ∈ S and wjvi /∈ L for all wj ∈ S with i 6= j and |wjvi| ≤ n.

Let C be the set of t(n) time bounded accepting computation paths for the strings in

Sacc. The computation cwivi ∈ C on the string wivi can be written as

cwivi = cwiwivic
vi
wivi

where cwiwivi represents the computation up to the end of the prefix wi and cviwivi represents

the rest of the computation on the string vi.

A configuration of a group automaton is a pair consisting of a state and a group

element. Let us count the number of configurations that can be reached at the end of the

computation cwiwivi . Since the number of states is constant, the number of configurations

that can be reached is dependent on the number of different group elements that can

appear in the register. After reading a prefix wi with |wi| = m ≤ n, the product of

the labels on the edges can be given by l = gi1gi2 . . . gik for some k ≤ t(m), since the

computation in consideration is time bounded. l can be expressed as a product of κ

generators, where κ is at most C · k for some constant C, since each group element

labeling a transition in E is composed of at most some constant number of generators,

which is independent of the length of the string. The number of elements in G which

can be represented as a product of at most κ generators is given by gG(κ) by the

definition of the growth function of G. Hence, the number of different values that can
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appear in the register after reading a string of length exactly m is less than or equal to

gG(κ). Since κ ≤ C · k and k ≤ t(m) and gG(t(n)) ∈ o(UL(n)), we can conclude that

gG(κ) ≤ gG(C · t(m)) ∈ o(UL(n)).

Now it is easy to see that the number of different configurations that can be

reached at the end of a computation cwiwivi is o(UL(n)). Note that the cardinality of

the set S, and thus that of Sacc, is equal to UL(n). Due to the pigeonhole principle,

the same configuration must be reached at the end of two computations cwiwivi and c
wj
wjvj

for some i 6= j. This will result in the acceptance of the strings wivj and wjvi, which

are not members of L. We arrive at a contradiction and conclude that L cannot be

recognized by any weakly t(n) time-bounded G-automaton.

In the next lemma, we set a lower bound on maximum cardinality of the set of

uniformly n-dissimilar strings in the word problem language of some group G.

Lemma 3.21. Let G be a finitely generated group with growth function gG(n). Then

UW (G)(n) ≥ gG(bn
2
c).

Proof. Let A be the generator set of G. The number of distinct elements g in G

which can be represented by a word of length less than or equal to bn
2
c is gG(bn

2
c),

which is the cardinality of the set BA
G(bn

2
c) = {g ∈ G, |g|A ≤ bn2 c}. Let T be the set

containing the string representations of the elements in BA
G(bn

2
c). Every wi ∈ T can

be extended with w−1i so that the extended string represents the identity element of

G and has length less than or equal to n. Since the strings in W (G) are those which

belong to (A ∪ A−1)∗ and represent the identity element of G, the extended string

wiw
−1
i ∈ W (G). For every string wj ∈ T such that i 6= j, wjw

−1
i /∈ W (G) since it

is not possible for wjw
−1
i to represent the identity element of G. We conclude that

the set S is uniformly n-dissimilar. Since |T | = |BA
G(bn

2
c)| = gG(bn

2
c), it follows that

UW (G)(n) ≥ gG(bn
2
c).
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The following theorem is about the language recognition power of finite automata

over polynomial-growth groups which are weakly polynomial time-bounded.

Theorem 3.22. Let G and H be groups with polynomial and exponential growth func-

tions gG(n) and gH(n), respectively. For any polynomial t(n), L(H) * L(G)wt(n).

Proof. Since UW (H)(n) ≥ gH(bn
2
c) by Lemma 3.21, and gH(n) is an exponential func-

tion, UW (H)(n) is also at least exponential. gG(t(n)) is a polynomial function, since

both gG(n) and t(n) are polynomial. Hence, W (H) /∈ L(G)wt(n) by Theorem 3.20, and

the result follows since W (H) is trivially in L(H).

Theorem 3.23. Let G be a group with a polynomial growth function. For any polyno-

mial t(n), CF * L(G)wt(n).

Proof. It is known that the word problem of the free group of rank 2, W (F2), has an

exponential growth function [45]. Assuming that G is a group with polynomial growth

function, W (F2) cannot be recognized by any weakly t(n) time-bounded G-automaton

by Theorem 3.20. Since W (F2) is a context-free language, the proof is complete.

3.3.3. Group Automata Under Linear Time Bounds

Having discussed methods for proving that certain languages can not be rec-

ognized by group automata under time restrictions, in this section will we focus on

linear-time computation.

Let X be a finite alphabet and let X∗ be the free monoid of words over X. For

each symbol x ∈ X, let Px and Qx be functions from X∗ into X∗ defined as follows:

for every u ∈ X∗,

Px(u) = ux, Qx(ux) = u.
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Note that Qx is a partial function from X∗ into X∗ whose domain is the language

X∗x. The submonoid of the monoid of all partial functions on X∗ generated by the set

of functions {Px, Qx |x ∈ X} turns out to be an inverse monoid, denoted by P (X),

called the polycyclic monoid on X. Polycyclic monoids were explicitly studied by

Nivat and Perrot in [46] and have several applications in formal language theory and,

in particular, define an interesting storage model of computation for the recognition of

formal languages [28, 30,33,46,47].

For any element x ∈ X, PxQx = 1 where 1 is the identity element of P (X) and for

any two distinct elements x, y ∈ X, PxQy is the empty partial function which represents

the zero element of P (X). The partial functions {Px, Qx} model the operation of

pushing and popping x in a PDA, respectively. In order to model popping and pushing

the empty string, let us define Pε and Qε as Pε = Qε = 1. The equivalence between

PDA with stack alphabet X and P (X)-automata is due to the nature of the functions

Px and Qx, and investigated in various papers [28, 30, 33]. The resemblance between

the free group and P (X) is used to prove that L(F2) = CF in [30] and [33].

Our aim is to show that F2-automata working in linear time can recognize all

context-free languages. It is stated in [48] that P (X)-automata which consume at

least one input symbol at each step are as powerful as P (X)-automata without any

time bound. However, it is not straightforward to see whether the same is true for

F2-automata.

Theorem 3.24. L(F2)
w
O(n) = CF.

Proof. We are going to use the construction of Kambites [33] to prove that any context-

free language can be recognized by a weakly linear-time bounded F2-automaton.

Let L be a context-free language and let E = {Q,Σ, P (X), δ, q1, Qa} be a poly-

cyclic monoid automaton recognizing L. P (X) is the polycyclic monoid on X where

the cardinality of the set X is n for some n ≥ 2. The construction of Kambites pro-

vides an Fn+1-automaton E ′ = {Q′,Σ,Fn+1, δ
′, q′1, Q

′
a} recognizing the language L. The
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generator set for Fn+1 is X ′, where X ′ = X ∪#.

Let us analyze the construction in more detail.

• Q′ = Q− ∪Q+ where Q− = {q−|q ∈ Q} and Q+ = {q+|q ∈ Q}

• q′1=q+ where q = q1.

• Q′a = {q−|q ∈ Qa}.

• δ′(p+, σ) = (q+, x#) if δ(p, σ) = (q, x#) where x is a positive generator for all

σ ∈ Σ.

• δ′(p−, σ) = (q+, x
′#) if δ(p, σ) = (q, x′#) where x′ is a negative generator for all

σ ∈ Σ.

• δ′(p+, σ) = (q+, 1) if δ(p, σ) = (q, 1) for all σ ∈ Σ.

• δ′(q+, ε) = (q−, 1) for each q ∈ Q.

• δ′(q−, ε) = (q−,#
−1) for each q ∈ Q.

We will prove that E ′ actually runs in linear time. There are two transitions

where the automaton is allowed to move without consuming any input symbols.

For each state q ∈ Q, there are two states q+ and q− in E ′ which are connected

with an edge labeled (ε, 1). These transitions do not change the register value, and

cannot contribute more than half of the runtime of the machine, since at least one

input symbol has to be consumed between any two executions of such transitions.

ε-loops exist in the machine E ′ for each state q− where the loop is labeled by

(ε,#−1). Although this looks worrisome at first for the purpose of bounding the run-

time, the number of times these loops are traversed is actually bounded, as the following

argument suggests. Suppose that the register is multiplied with l1, l2, · · · , lm while read-

ing some input string w of length n, resulting in the register value l = l1l2 · · · lm(#−1)k,

where k ∈ N, at the end of the computation. If w is accepted by the machine, l should
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satisfy the following, as well as being equal to the identity element:

li =

{
(#−1)pxi# for some p ∈ N, if xi is a negative generator

xi#, if xi is a positive generator

This is called a permissible padding in [33]. By looking at the transition function

of E ′, one can see that the register is multiplied by a # only when an input symbol

is consumed. Hence, the number of #’s that occur in l is less than or equal to the

length of the string. The register is multiplied with #−1 without consuming any input

symbol. In order for the #’s and #−1’s to cancel each other, they should be equal in

number. Therefore, it can be concluded that the ε-loops are traversed at most n times.

We can conclude that any context-free language can be recognized by a weakly

linear-time bounded free group automaton. Since F2 contains every free group of

countable rank, the proof is complete.

We state the following theorem, which is the linear-time equivalent of Fact 3.8 [30].

Theorem 3.25. Suppose G is a finitely generated group and H is a subgroup of finite

index. Then L(G)wO(n) = L(H)wO(n).

Proof. We know that the statement is true in general when there is no time bound

by [30]. The proof in [30] still works when all automata in the constructions are

required to work in linear time.

Now we can show that Theorem 3.9 also holds for linear-time bounded group

automaton.

Theorem 3.26. CF = L(F2)
w
O(n) = L(SL(2,Z))wO(n) = L(GL(2,Z))wO(n).

Proof. The proof is identical with the proof of Theorem 3.9 by using Theorem 3.25.
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By using the results proven in Subsection 3.3.2, we can demonstrate the language

recognition power of weakly linear-time bounded H-automata.

Theorem 3.27. L(H)wO(n) ( L(SL(3,Z))wO(n).

Proof. L(H)wO(n) ⊆ L(SL(3,Z))wO(n) since H is a subgroup of SL(3,Z). Since the

Heisenberg group has polynomial growth function [49], there exists a context-free lan-

guage which cannot be recognized by any H-automaton in polynomial time by Theorem

3.23. Since CF = L(SL(2,Z))wO(n) by Theorem 3.26, the result follows.

Theorem 3.28. (i) For k ≥ 5, L(H)wO(n) and L(Zk)wO(n) are incomparable.

(ii) L(H)wO(n) and CF are incomparable.

Proof. i. In [35], a weakly linear-time bounded H-automaton which recognizes the

language MULT = {xpyqzpq|p, q ≥ 0} is constructed. The language MULT cannot be

recognized by any Zk-automaton, since any bounded language in L(Q+) is semilinear

by Fact 2.3.

In [50], it is implicitly proven there exists a uniformly n-dissimilar set of size

Θ(nk) for the language Lk = {0a110a21 . . . 0ak10a110a21 . . . 0ak1} for all integers k. For

k = 5, there exists a uniformly n-dissimilar set of size Θ(n5) for the language L5

and UL5(n) ≥ n5. Since gH(n) is a polynomial of order 4 [49] and t(n) = O(n),

gH(t(n)) ∈ o(UL5(n)). By Theorem 3.20, we conclude the result.

ii. The language MULT = {xpyqzpq|p, q ≥ 0} is not a context-free language. Since H has

a polynomial growth function [49], there exists a context-free language which cannot

be recognized by any H-automaton in polynomial-time by Theorem 3.23.

Let us note that L5 can be recognized by a Z5-automaton in real time. The

existence of the languages Lk can be used to prove the linear-time nondeterministic

counter hierarchy, with the help of Theorem 3.20.

Theorem 3.29. L(Zk)wO(n) ( L(Zk+1)wO(n) for k ≥ 1.
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Proof. The language Lk+1 = {0a110a21 . . . 0ak+110a110a21 . . . 0ak+11} can be recognized

by a Zk+1-automaton in real time. While scanning the first k + 1 segments of 0’s, the

i’th counter is increased for each scanned 0 as 0ai is read. In the remainder of the

computation, the i’th counter is decreased for each scanned 0 when 0ai is read.

There exists a uniformly n-dissimilar set of size Θ(nk+1) for the language Lk+1,

so ULk+1
(n) ≥ nk+1. Since t(n) = O(n) and gZk(n) = nk [45], gZk(t(n)) ∈ o(UL5(n)).

We conclude by Theorem 3.20.

A celebrated result of the field of computational complexity, the nondeterministic

time hierarchy theorem, will enable us to demonstrate that the computational power

F2 × F2-automata is dependent on the time allotted for their execution.

Fact 3.30. [51] If g(n) is a time-constructible function, and f(n+ 1) = o(g(n)), then

there exists a language which cannot be recognized by any nondeterministic Turing

machine in time f(n), but can be recognized by a nondeterministic Turing machine in

time g(n).

Assume that any recursively enumerable language can be recognized by some

linear-time F2 × F2-automaton. One can easily build a nondeterministic Turing ma-

chine that simulates such a F2×F2-automaton with only a polynomial slowdown. But

this would mean that any recursively enumerable language can be recognized by some

nondeterministic TM in polynomial time, contradicting Fact 3.30, which implies that

there exist languages which can only be recognized by nondeterministic Turing ma-

chines which run in at least exponential time. We have proven the following theorem.

Theorem 3.31. L(F2 × F2)
w
O(n) ( RE.

Using the ability of Turing machines to simulate any finite automaton over a

computable matrix group, the statement of the above theorem can be extended as

follows.
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Theorem 3.32. L(G)wO(n) ( RE for any matrix group G whose matrix entries are

computable numbers.

Proof. In Theorem 3.18, we have mentioned that Turing machines can simulate any

finite automaton over a computable matrix group. By the nondeterministic time hi-

erarchy theorem, it can be shown that there exist some languages which cannot be

recognized by any finite automata over matrix groups in linear time.

Theorem 3.33. L(F2)
w
O(n) ( L(F2 × F2)

w
O(n).

Proof. It is obvious that an F2-automaton can be simulated by an F2×F2-automaton.

L(F2)
w
O(n) = CF by Theorem 3.26. The inclusion is proper since the non-context-free

language L = {anbncn|n ≥ 0} can be recognized by an F2×F2-automaton in real time

by using the two registers as two counters.

In the rest of the section, the linear-time counterparts of the relationships in

Figure 3.3 will be stated.

Theorem 3.34. (i) L(Q+)wO(n) ( L(SL(2,Q))wO(n).

(ii) L(Z)wO(n) ( L(BS(1, 2))wO(n) * CF.

(iii) L(SL(2,Z))wO(n) ( L(SL(3,Z))wO(n).

(iv) L(Z2)wO(n) ( L(H)wO(n).

(v) CF and L(Zk)wO(n) are incomparable for all k ≥ 2.

(vi) L(SL(3,Z))wO(n) = L(GL(3,Z))wO(n).

(vii) REG = L(F0)
w
O(n) ( L(F1)

w
O(n) = L(Z)wO(n) ( L(F2)

w
O(n).

Proof. (i,ii,iii,iv) Analogous results where no time bound was imposed on the machines

were proven in Theorems 3.16, 3.14, 3.11, and 3.13, respectively. The group automata

recognizing the witness languages L = {a22n+1 |n ≥ 0}, UPOW = {a2n |n ≥ 0} and

MULT = {xpyqzpq|p, q ≥ 0} operate in weakly linear time in all cases.
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(v) The equivalent result for the general case is given in Fact 3.7. The non-context-

free language L′ = {anbncn|n ≥ 0} can be recognized by a Z2-automaton in real

time.

(vi) The equivalent result for the general case is given in Theorem 3.12. The result

follows by Theorem 3.25.

(vii) The equivalent result for the general case is given in Fact 3.5. F0 is the triv-

ial group, and any regular language can be recognized by a deterministic finite

automaton, which can be seen as finite automaton over F0, in real time. Since

F1 is isomorophic to Z, the equality is obvious. Since the nonregular language

L = {anbn|n ≥ 0} can be recognized by a Z-automaton in real time, the proper

inclusion follows. Lastly, since L(F2)
w
O(n) is equivalent to CF by Theorem 3.26,

the last proper inclusion is still valid.

The results are summarized in Figure 3.4.

3.4. Decision Problems for Matrix Semigroups

So far, we have focused on the langauge recognition power of extended finite au-

tomata over matrix groups. In this section, our aim is to make a connection between

the theory of extended finite automata and the decision problems for matrix semi-

groups. Matrices play an important role in various areas of computation, which makes

it interesting to study decision problems on matrices. Even for integer matrices of low

dimension, many decision problems become non-trivial for finitely generated infinite

semigroups.

For our purposes, we define S-automata or extended finite automata over semi-

groups, generalizing the notion of M -automata from monoids to semigroups. The

emptiness problem is defined as the problem of deciding whether a given machine

accepts any string. By using the decidability of the emptiness problem of the corre-
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Figure 3.4. Language classes recognized by weakly linear-time bounded group

automata

sponding extended finite automata, we provide an alternative proof for the decidability

of subsemigroup membership problem for GL(2,Z) and the decidability of the identity

problem for M2(Z). We show that the emptiness and universe problems for extended

finite automata over SL(4,Z) are undecidable, using the fact that the subgroup mem-

bership problem for SL(4,Z) is undecidable. We also prove some results on the the

decidability of the universe problem for extended finite automata, the problem of de-

ciding whether a given machine accepts every string.



58

3.4.1. Background

Before proceeding to discuss our results, it is necessary to talk about some key

definitions and previous studies on the decidability problems for matrix semigroups.

In the following sequel, let G be a finitely generated group.

Decidability is one of the popular topics of combinatorial group theory. In 1911,

Dehn proposed several decision problems for groups including the famous word problem

[52]. Let us recall the definition for the word problem of a group G.

Word problem for G: Given an element g ∈ G, the problem is to decide whether

g represents the identity element.

Explicitly introduced for the first time by Mikhailova [53], a generalization of the

word problem which is also known as the generalized word problem is the following:

Subgroup membership problem for G: Given {g1, g2, . . . , gn} ∈ G and an element

g ∈ G, the problem is to decide whether g belongs to the subgroup generated by the

elements g1, g2, . . . , gn.

In [53], it is proven that subgroup membership problem for F2×F2 is undecidable,

which yields the undecidability of the subgroup membership problem for SL(4,Z).

One can also consider submonoid membership problem for group G and subsemi-

group membership problem for group G, in which case the problem is to decide whether

g belongs to the submonoid and subsemigroup generated by {g1, g2, . . . , gn}, respec-

tively.

A further generalization is the rational subset membership problem, as the notion

of rational subset generalizes subgroups, submonoids and subsemigroups.
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Rational subset membership problem for G: Given a rational subset R of G spec-

ified using a finite automaton and g ∈ G, the problem is to decide whether g belongs

to R.

Note that the hardness of the problems are in increasing order and the decidability

of rational subset problem implies the decidability of the other problems. Similarly,

the undecidability of the subgroup membership problem implies the undecidability of

the remaining problems.

When we talk about the membership problems for matrices, it is more natural

to consider matrix monoids or semigroups. Hence in the above definitions, we may

replace the group G with a semigroup S or a monoid M .

For matrices, the well studied decision problem is the subsemigroup membership

problem. For 3×3 matrices with integer entries, the subsemigroup membership problem

for M3(Z) is known to be undecidable due to a result by Paterson [54]. The problem

remains open for GL(3,Z) and recently it has been proven that it is decidable for a

subgroup of GL(3,Z), the Discrete Heisenberg group [55].

An extensive study has been carried out for the matrices from M2(Z). In [56],

it is proven that subsemigroup membership problem for GL(2,Z) is decidable. The

result is extended by Potapov and Semukhin in [57] to subsemigroups of matrices from

GL(2,Z) extended by singular matrices and in [58] to subsemigroups of nonsingular

matrices from M2(Z). The problem is still open for the general case of M2(Z).

When the subsemigroup membership problem is asked for the identity matrix,

we obtain the identity problem.

Identity problem for S: Given matrices {Y1, Y2, . . . , Yn} ∈ S, the problem is

to decide whether the identity matrix I belongs to the semigroup generated by the

elements Y1, Y2, . . . , Yn.
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Note that the identity problem is a special case of the subsemigroup membership

problem. The identity problem is also equivalent to the group problem, i.e. the problem

of deciding whether a subset of a given semigroup generates a nontrivial group.

The decidability of the identity problem for M3(Z) is still open. In [59], it was

proven that the identity problem for the discrete Heisenberg group H is decidable

(decidability of the membership problem for H was unknown at the time). The de-

cidability of the identity problem for SL(4,Z), which was open for a long time, was

established in [59,60].

3.4.2. S-automaton

An S-automaton is an extended finite automaton where the group/monoid con-

dition is loosened to a semigroup. In order to define the initialization and acceptance

steps, we need an identity element. If S is a monoid or a group, then an identity ele-

ment already exists and belongs to S. Otherwise, we define 1 to be the identity element

of S. Note that when S is not a monoid nor a group, then E can accept only the empty

string. Nevertheless, we define the concept of S-automaton so that the machines in

the proofs of Theorem 3.42 and 3.46 are constructed properly.

The Emptiness problem for an automaton is the problem of deciding whether

the language recognized by the machine is empty. Universe problem is the problem of

deciding whether the automaton accepts every string.

3.4.3. Decidability of the Subsemigroup Membership Problem for GL(2,Z)

It is proven that the subsemigroup membership problem for GL(2,Z) is decidable

in [56]. We are going to provide an alternative, automata theoretic proof. We will start

by proving a series of lemmas.

For a finite index subgroup H of some finitely generated group G, it is known

that L(H) = L(G) by Fact 3.1. We will go over the proof details and use Fact 3.1 to
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show that given a G-automaton, one can construct an H-automaton recognizing the

same language.

Lemma 3.35. Let G be a finitely generated group and let H be a subgroup of finite

index. Any G-automaton can be converted into an H-automaton recognizing the same

language.

Proof. Let A be the generator set for G and let X = A∪A−1. Let E be a G-automaton

recognizing language L over alphabet Σ. Then there exists a rational subset R ⊆ Σ∗×G

such that L = {w ∈ Σ∗|wR1}. One can define the elements of G in terms of X to

obtain a rational subset R0 ⊆ Σ∗ ×X∗.

Since H has finite index in G, W (G) ∈ L(H) ( [30] Lemma 2.4). It follows that

there exists a rational subset S ⊆ X∗ ×H such that W (G) = {w ∈ X∗|wS1}.

Then the composition R0 ◦ S is a rational subset of Σ∗ × H and it follows that

L = {w ∈ Σ∗|w(R0 ◦ S)1} ( [30], Theorem 3.1). The detailed construction of the

finite automaton recognizing the composition is given in [28] (Theorem 5.3). Hence a

finite automaton F over Σ∗ ×H recognizing L exists, from which an H-automaton E ′

recognizing L can be constructed.

The following construction of a pushdown automaton simulating an F2-automaton

is left as an exercise in [37]. We present here some details of the construction.

Lemma 3.36. Any F2-automaton can be converted into a pushdown automaton recog-

nizing the same language.

Proof. Let E be an F2-automaton recognizing language L over Σ with the state set Q

and let A = {a, b} be the generator set for F2. Let us construct a pushdown automaton

A recognizing the same language with the stack alphabet A. Let (q′, f) ∈ δ(q, σ) be a
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transition of E where q, q′ ∈ Q, σ ∈ Σε and f ∈ F2 such that

f = f1f2 . . . fn where fi ∈ X = A ∪ A−1 for i = 1 . . . n.

In A, we need additional n states q1 . . . qn /∈ Q to mimic each given transition of E .

If fi = a or fi = b, then this corresponds to pushing a or b to the stack, respectively.

Similarly, if fi = a−1 or fi = b−1, then A pops a or b from the stack. Each single

transition of E is accomplished by the pushdown automaton A by going through the

additional states and pushing and popping symbols. Initially, the register of E is

initialized with the identity element of F2, which corresponds to the stack of A being

empty. The acceptance condition of E , which is ending in an accept state with the

register being equal to the identity element is realized in A by starting with an empty

stack and accepting with an empty stack in an accept state. We conclude that A

recognizes language L.

Lemma 3.37. The emptiness problem for GL(2,Z)-automaton is decidable.

Proof. Let E be a GL(2,Z)-automaton. Since F2 has finite index in GL(2,Z), one can

construct an F2-automaton recognizing L(E) by Lemma 3.35. The F2-automaton can

be converted to a pushdown automaton A using the procedure described in Lemma

3.36. Since the emptiness problem for pushdown automata is known to be decidable,

we conclude that the emptiness problem for GL(2,Z)-automata is also decidable since

any GL(2,Z)-automaton can be converted to a pushdown automaton.

Now we prove the main theorem of the section and establish the connection

between the emptiness problem for G-automata and the subsemigroup membership

problem for G.

Theorem 3.38. Let G be a finitely generated group. If the emptiness problem for G-

automata is decidable, then the subsemigroup membership problem for G is decidable.
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Proof. Let H be a finitely generated subsemigroup of G and let g ∈ G be given. We are

going to construct a G-automaton E1 and show that g ∈ H iff L(E1) is nonempty. The

state transition diagram of E1 is given in Figure 3.5. The transition labeled by (a, hi)

stands for each one of the transitions that multiply the register with hi for i = 1 . . . n.

E1 has two states: the initial state q1 and the accept state q2. The transition

function of E1 is defined as δ(q1, a) = (q2, g
−1) and δ(q2, a) = (q2, hi) for each i = 1 . . . n,

where the set {h1, . . . , hn} generates H.

Figure 3.5. State transition diagram of E1

Note that g−1 exists and belongs to G since G is a group. If g ∈ H, then there

exists an integer k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , n} such that hi1hi2 · · ·hik = g. The

string ak+1 is accepted by E1 as the register is initially multiplied by g−1 and there

exists a product of elements yielding g, from which we can conclude that the identity

element can be obtained through a series of transitions of the machine E1. Hence, we

can conclude that L(E1) is nonempty.

For the other direction, assume that L(E1) is nonempty, which means that some

input string is accepted by E1. Since the acceptance condition requires that the product

of the elements multiplied by the register of E1 is equal to the identity element and the

register is initially multiplied by g−1, we can conclude that H contains g.

Now suppose that the emptiness problem for G-automaton is decidable. Then

one can check if g is an element of H by constructing E1 and checking if L(E1) is

nonempty. Hence, the subsemigroup membership problem G is also decidable.
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Remark: After obtaining the results reported above, we learned that a stronger

version of Theorem 3.38 was already proven in [61] and addressed later in [62,63].

Fact 3.39. [61] Let G be a finitely generated group, and M a finitely generated monoid.

Then the following are equivalent:

(i) The rational subset problem for G×M is decidable;

(ii) The membership is decidable for G-automaton subsets of M.

Now we are ready to state our main result.

Theorem 3.40. The subsemigroup membership problem for GL(2,Z) is decidable.

Proof. From Lemma 3.37, the emptiness problem for GL(2,Z)-automaton is decidable.

Then by Theorem 3.38, the result follows.

Note that we cannot extend this result to M2(Z). Even though the emptiness

problem for M2(Z)-automata is decidable, the construction in Theorem 3.38 works only

for group automata.

3.4.4. Decidability of the Identity Problem for M2(Z)

In this section we provide an alternative proof for the decidability of the identity

problem for M2(Z), which was originally proven in [56].

We should first show that the emptiness problem for M2(Z)-automaton is decid-

able.

Lemma 3.41. The emptiness problem for M2(Z)-automaton is decidable.

Proof. Let E be an M2(Z)-automaton. Any transition labeled by a matrix whose

determinant is not equal to ±1 can be safely removed from E , since after multiplication
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with such a matrix, it is not possible that the register is equal to identity matrix again

and what we obtain is a GL(2,Z)-automaton. The emptiness problem for GL(2,Z)-

automata is decidable by Lemma 3.37.

In the next theorem, we make a connection between the identity problem for a

semigroup S and the emptiness problem for the corresponding S-automaton.

Theorem 3.42. Let S be a finitely generated semigroup. If the emptiness problem for

S-automata is decidable, then the identity problem for S is decidable.

Proof. We are going to construct an S-automaton E2 and show that S contains the

identity element iff L(E2) is nonempty. The state transition diagram of E2 is given in

Figure 3.6. The transitions labeled by (a, si) stand for each one of the transitions that

multiply the register with si for i = 1 . . . n.

E2 has two states: the initial state q1 and the accept state q2. The transition

function of E2 is defined as δ(q1, a) = (q2, si) and δ(q2, a) = (q2, si) for each i = 1 . . . n

where {s1, s2, . . . sn} is the generator set for S.

Figure 3.6. State transition diagram of E2

If S contains the identity element, then there exists an integer k ≥ 1 and

i1, i2, . . . , ik ∈ {1, . . . , n} such that si1si2 · · · sik = 1. Then the string ak is accepted by

E2 as there exists a product of elements yielding the identity element and this prod-

uct can be obtained by a series of transitions. Hence, we can conclude that L(E2) is

nonempty. For the converse, suppose that L(E2) is nonempty, which means that some
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input string is accepted by E2. Since the acceptance condition requires that the product

of the elements multiplied by the register of E2 is equal to the identity element, we can

conclude that S contains the identity element.

Now suppose that the emptiness problem for S-automata is decidable. Then one

can check if S contains the identity element by constructing E2 and checking if L(E2)

is nonempty. Hence, the identity problem for S is also decidable.

We connect the two results and state the following.

Theorem 3.43. The identity problem for M2(Z) is decidable.

Proof. By Lemma 3.41, the emptiness problem for M2(Z)-automaton is decidable. The

result follows by Theorem 3.42.

3.4.5. Undecidability of the Decision Problems for SL(4,Z)-automata

In this section we are going to prove undecidability results for the emptiness and

universe problems of SL(4,Z)-automata.

To prove the undecidability of the universe problem for SL(4,Z)-automata, we

first prove the following theorem.

Theorem 3.44. Let G be a finitely generated group. If the universe problem for G-

automata is decidable, then the subsemigroup membership problem for G is decidable.

Proof. We are going to construct a G-automaton E3 such that g ∈ H iff L(E3) = Σ∗

where Σ = {a}. {h1, h2, . . . hn} is the generator set for H. The state transition diagram

of E3 is given in Figure 3.7. The transition labeled by (a, hi) and (ε, hi) stands for each

one of the transitions that multiply the register with hi for i = 1 . . . n.

The rest of the proof is similar to the proof of Theorem 3.38 and omitted here.
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Figure 3.7. State transition diagram of E3

Now we state the undecidability of the emptiness and universe problems for

SL(4,Z)-automata.

Theorem 3.45. Let S be a subsemigroup of SL(4,Z). The emptiness and universe

problems for S-automata is undecidable.

Proof. Since the subgroup membership problem for SL(4,Z) is undecidable [53], by

Theorem 3.38 and by Theorem 3.44, the emptiness and universe problems for SL(4,Z)-

automata are undecidable.

So far, we have established some connections between decision problems for

groups and semigroups and the corresponding automata. Let us also state the fol-

lowing theorem, which links the identity problem for semigroups and the universe

problem for the corresponding automata, for the sake of completeness.

Theorem 3.46. Let S be a finitely generated semigroup. If the universe problem for

S-automata is decidable, then the identity problem for S is decidable.

Proof. We are going to construct an S-automaton E4 such that S contains the identity

element iff L(E4) = Σ∗ where Σ = {a}. {s1, s2, . . . sn} is the generator set for S. The

state transition diagram of E4 is given in Figure 3.8. The transition labeled by (a, si)

and (ε, si) stands for each one of the transitions that multiply the register with si for

i = 1 . . . n.

The rest of the proof is similar to the proof of Theorem 3.42 and omitted here.
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Figure 3.8. State transition diagram of E4

Note that the converses of Theorem 3.44 and 3.46 are not true. For a given

pushdown automaton, an F2-automaton recognizing the same language can be con-

structed [37]. It is a well known fact that the universe problem for pushdown automata

is undecidable, from which we can conclude that the universe problem for F2-automaton

is undecidable. On the other hand, F2 is a subgroup of SL(2,Z) and the membership

problem for SL(2,Z) and thus the identity problem are known to be decidable [59].

3.5. Open Questions

In this section, we are going to list some questions in need of further investigation.

• Does there exist an SL(3,Z)-automaton recognizing W (Z3)? Corollary 2 of [42]

states that the word problem of a finitely generated Abelian group H is recognized

by a G-automaton if and only if H has a finite index subgroup isomorphic to a

subgroup of G. That corollary could be used to give an affirmative answer to

this open question. Unfortunately, the corollary is wrong: Let H be an Abelian

group and let G = F2×F2. L(F2×F2) contains the word problem of any finitely

generated Abelian group. Since F2 × F2 is finitely generated, any finite index

subgroup of F2 × F2 is also finitely generated. Any finite index subgroup of

F2 × F2 is either free or has a subgroup of finite index that is a direct product

of free groups [64]. Any subgroup of an Abelian group is again Abelian. Hence,

it is not possible that G has a finite index subgroup isomorphic to a subgroup of

H.

• Can we describe the necessary properties of a group G so that L(G) contains

W (F2)?
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• Little is known aboutBS(1, 2)-automata. Does L(BS(1, 2)) contain every context-

free language?

• Which, if any, of the subset relationships in Figure 3.3 are proper inclusions?

• Can we add other classes above RE in Figure 3.3 by examining groups on matrices

with uncomputable entries?

• Theorem 3.20 uses the definition of uniform n-dissimilarity requiring that gG(t(n))

∈ o(UL(n)). Would the theorem be still true if we replace UL(n) by AL(n) ? The

gap between UL(n) and AL(n) might be large as mentioned in [50]. Consider the

language L = {aibj|i 6= j}. It is stated in [50] that a set of uniformly n-dissimilar

strings for L cannot contain more than two strings. However, AL(n) /∈ O(1),

since L is not a regular language.

• Can real-time F2-automata recognize every context-free language?

• Can we prove a stronger version of Theorem 3.23, which is independent of the

time component? For instance, for the case of F2, is it true that W (F2) /∈ L(H)

in general?

• The decidability of the membership problem for GL(3,Z) and the identity prob-

lem for M3(Z) are still open. We propose that investigating the decidability of

the emptiness and universe problems for extended finite automata defined over

3× 3 integer matrices is one possible way for obtaining results about the decision

problems on these matrix semigroups.
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4. HOMING VECTOR AUTOMATA

The idea of augmenting the classical finite automaton model with an external

storage unit that can hold unlimited amounts of information, yet can be accessed in a

limited mode, is a celebrated topic of automata theory. In this chapter we introduce

homing vector automaton, a finite automaton equipped with a vector which can multi-

ply its vector with an appropriate matrix at each step and can check the entire vector

for equivalence to the initial value of the vector.

Matrices are fundamental objects in mathematics and computer science. They are

also crucial in automata theory as many finite automaton models such as probabilistic

and quantum can be simulated by vector matrix multiplications. Likewise, the vector

matrix multiplication view of programming forms the basis of the computation process

of homing vector automata.

Homing vector automata are also closely linked to finite automata over matrix

groups which we have discussed in Chapter 3. Although in both models the computa-

tion is carried out by a series of matrix multiplications, the nature of the registers and

the acceptance conditions differentiate the two models.

We examine homing vector automata under several different regimes, enabling us

to determine the effect of definitional parameters such as whether the input is scanned

in real-time or pausing the head on an input symbol for several steps is allowed, whether

the machine can read its register during computation or is blind, with acceptance

possible only if the register has returned to its initial value at the end, and whether

nondeterminism confers any additional recognition power over deterministic programs.

Another way in which one can examine the nature of the computational power

of homing vector automata is by examining models in which the matrices used at each

step for transforming the vectors are restricted in some way. Although the definition

allows arbitrary rational matrices, one may constrain the matrix entries to belong to
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a particular set. In most automaton algorithms in this chapter, the entries of the

matrices belong to the set {−1, 0, 1}, as this basic set will be seen to already capture

many capabilities of homing vector automata. Let us note that multiplications with

matrices whose entries belong to this set can be used to perform additions, subtractions,

resets, and swaps between the vector entries. It is possible to recognize some of the

languages in the following discussion with homing vector automata of lower dimension

when a larger set of matrix entries is allowed.

The rest of this chapter is structured in the following way:

In Section 4.1, we introduce homing vector automaton, giving the definitions for

one-way, real-time, blind and non-blind versions. We begin with some observations

about homing vector automata in Section 4.2. A method we use for encoding strings

on an alphabet of arbitrary size in a blind homing vector automaton, based on Stern-

Brocot tree [65, 66], may be of independent interest and is presented in Section 4.3.

In Section 4.4, we investigate the relationship between counter automata and HVAs.

In Section 4.5, we establish a connection between the nondeterministic one-way blind

version of the HVA model and the extended finite automata, and use this link to prove

that these machines can recognize any Turing recognizable language, even when the

vector dimension is restricted to four. We then focus on HVAs with real-time access

to their input in Section 4.6. We analyze the relationships between different versions

of HVAs, present some closure properties, and analyze their stateless versions. Section

4.7 lists some open questions.

4.1. Definitions

Generalizing the idea of finite automaton equipped with a register, we have pre-

viously introduced in [9] the vector automaton, a finite automaton which is endowed

with a vector, and which can multiply this vector with an appropriate matrix at each

step. We give the definition for the real-time deterministic version.
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A real-time k-dimensional deterministic vector automaton (DVA(k)) [9] is a 7-

tuple

V = (Q,Σ,M, δ, q1, Qa, v),

where M is a finite set of k × k-dimensional rational-valued matrices, v is the initial

(k-dimensional, rational-valued) row vector, and δ is the transition function defined as

δ : Q× Σ$ × Ω→ Q×M.

Let w ∈ Σ∗ be a given input. The automaton V reads the sequence w$ from left

to right symbol by symbol. It uses its states and its vector to store and process the

information. In each step, it can check whether the first entry of the vector is equal

(=) to 1 or not ( 6=). We call this feature the “status” of the first entry and represent

it by the set Ω = {=, 6=}.

The details of the transition function are as follows. When V is in state q ∈ Q,

reads symbol σ ∈ Σ$, and the first entry status is ω ∈ Ω, the transition δ(q, σ, ω) =

(q′, A) results in V entering state q′ ∈ Q, and its vector being multiplied by A ∈ M

from the right.

At the beginning of the computation, V is in state q1 and the vector is v. The

initial vector is freely chosen by the designer of the automaton. Then, after reading

each symbol, the state and vector are updated according to the transition function as

described above. Thus the vector v(i) at step i is obtained by multiplying the vector

v(i−1) at step i − 1 by a specified matrix A so that v(i) = v(i−1)A. The input w is

accepted if the final state is an accept state and the first entry of the final vector is 1

after processing the right end-marker $. Otherwise, the input is rejected. The set of

all accepted strings is said to be the language recognized by V .
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As the acceptance condition for many of the classical models requires that the

register is equal to its initial value at the end of the computation, we adopt the same

requirement for vector automata and propose homing vector automata.

A k-dimensional homing vector automaton (HVA(k)) is a 7-tuple

V = (Q,Σ,M, δ, q1, Qa, v),

where M is a set of k × k rational valued matrices and v is an initial row vector with

rational entries, as in the definition of vector automaton.

A HVA is different from a vector automaton in two ways: (1) Homing vector

automata do not read the right end-marker after reading the input, so there is no

chance of postprocessing and, (2) instead of checking the status of the first entry, a

homing vector automaton checks whether the complete current vector is identical to

the initial vector or not.

Formally, the transition function of a one-way k-dimensional deterministic hom-

ing vector automaton (1DHVA(k)) is defined as

δ : Q× Σ× Ω → Q×D ×M,

such that Ω is the set {=, 6=}, where = indicates equality to the initial vector v, and 6=

otherwise, D is the set of head directions {↓,→} and M is a set of k×k rational-valued

matrices. The initial vector is freely chosen by the designer of the automaton.

Specifically, δ(q, σ, ω) = (q′, d, A) means that when V consumes σ ∈ Σ in state

q ∈ Q, with its current vector corresponding to ω ∈ Ω (ω having the value = if and only

if the current vector equals the initial vector), it switches to state q′ ∈ Q, multiplying

its current vector with the matrix A ∈ M on the right and moving the tape-head in

direction d ∈ D.



74

A one-way k-dimensional deterministic blind homing vector automaton (1DB-

HVA(k)) is a restricted 1DHVA(k) which is not allowed to check the vector until the

end of the computation. The transition function δ is defined as

δ : Q× Σ→ Q×D ×M,

so that the next move of the machine does not depend on the current status of the

vector.

By omitting the tape-head directions and assuming that the tape-head moves

right at each step, we obtain the real-time k-dimensional deterministic homing vector

automaton (DHVA(k)) and real-time k-dimensional deterministic blind homing vector

automaton (DBHVA(k)) models. The ranges of the corresponding transition functions

are replaced with Q×M.

Now we are going to define the nondeterministic versions of homing vector au-

tomata. Formally, the transition function of a one-way k-dimensional nondeterministic

homing vector automaton (1NHVA(k)) is defined as

δ : Q× Σε × Ω→ P(Q×M).

The blind version, one-way k-dimensional nondeterministic blind homing vector

automaton (1NBHVA(k)) is a 1NHVA(k) which is not allowed to check the vector until

the end of the computation. The transition function of a 1NBHVA(k) is defined as

δ : Q× Σε → P(Q×M).

By not allowing ε-moves, we obtain the real-time versions, real-time k-dimensional

nondeterministic homing vector automaton (NHVA(k)) and real-time k-dimensional

nondeterministic blind homing vector automaton (NBHVA(k)). The domains of the
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transition functions are replaced with Q×Σ×Ω and Q×Σ respectively, by replacing

Σε with Σ.

An input string w of length n is accepted by a homing vector automaton if there

exists a computation in which the machine enters an accept state with the tape-head

on the n+ 1’st tape square and the vector is equal to the initial value v.

The abbreviations used for homing vector automata variants discussed so far are

given in Table 4.1.

Table 4.1. The abbreviations for HVA variants.

Real-time One-way

Deterministic DHVA(k) 1DHVA(k)

Deterministic blind DBHVA(k) 1DBHVA(k)

Nondeterministic NHVA(k) 1NHVA(k)

Nondeterministic blind NBHVA(k) 1NBHVA(k)

Given a homing vector automaton V = (Q,Σ,M, δ, q1, Qa, v), we abbreviate it by

HVA(k)M when we want to specify the set of matrices M used by V . When we want to

specify the number of states of a machine, we add an n- (or (n)- to avoid any confusion)

to the front of the model name, where n = |Q| is the number of the states.

We will denote the set of k×k matrices whose entries belong to the set {−m,−m+

1, . . . , 0, . . . ,m− 1,m} for some positive integer m by Sk(m).

4.2. Some Observations

Homing vector automata are not allowed to perform postprocessing by definition,

since the computation ends once they reach the right end-marker. We start by observ-

ing that allowing postprocessing does not bring any additional power to NBHVAs and

1NBHVAs.
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HVAs using end-marker will be denoted by the abbreviation HVA$.

Lemma 4.1. Let L be a language recognized by a XBHVA$(k) V, where X ∈ {N,1N}.

Then, L is also recognized by a XBHVA(k) V ′.

Proof. First of all, we assume that V does not contain any $-transitions that do not

lead to an accept state, since any such transitions may be removed from V without

changing the language. We are going to analyze the cases of real-time and one-way

computation and in each case, we will start constructing V ′ such that V ′ mimics the

transitions of V on every possible symbol σ ∈ Σε.

If the computation is real-time, then it ends as soon as the right end-marker is

processed. We create new transitions to handle the postprocessing, which emulate V ’s

last action before reading the end-marker (which would end up in an accept state) and

the end-marker (σ$) at once: At any point during the scanning, if reading σ would

cause V to switch to a state from which the end-marker $ would lead to an accept state,

a new nondeterministic transition takes V ′ to the additional state, which is an accept

state. During this transition, the register is updated so that the update accounts for

both reading σ and $. All other states of V ′, which are inherited from V , are designated

to be non-accept states. Thus, V ′ simulates the computation of V on any non-empty

string, and accepts the input in some computational path if and only if V accepts it.

Now suppose that the computation is one-way. Let Q$ be the set of states of V

that have an outgoing $-transition. After finishing reading the string, V should enter a

state from Q$, read the $ symbol and possibly make some ε-transitions and eventually

end in an accept state, to accept any string. Let G$ be the graph obtained from the

transition diagram of V , by removing all transitions except the $-transitions and ε-

transitions. Let rq be the subgraph of G$, induced by the set of reachable vertices from

q in G$, for each q ∈ Q$. We create a copy of each subgraph rq and denote it by rcq,

replace the $ symbols in rcq with ε and connect it to V ′: For each incoming transition

to q in V , we create a copy of the transition and connect it to the copy of q in rcq.

The $-transitions inherited from V are removed from V ′ and any accept state of V is
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no longer an accept state in V ′. V ′ simulates the computation of V on any non-empty

string until scanning the $ and then follows the transitions in the newly added states

to reach an accept state.

If L contains the empty string, we add one more state that has the following

properties: (i) it becomes the new initial state of the resulting machine, (ii) it is an

accept state, (iii) it causes the machine to behave (i.e. transition) like the original

initial state of V upon reading the first symbol, and (iv) there is no transition coming

in to this state.

The idea given in the proof of Lemma 4.1 does not apply for non-blind models

since the status of the vector may be changed after reading the last symbol of the input

(just before reading the right end-marker). In fact, one can show that DHVAs using

end-marker are more powerful than ordinary DHVAs in terms of language recognition

by the witness language NEQ = {aibj|i 6= j} .

Theorem 4.2.
⋃
k L(DHVA(k)) (

⋃
k L(DHVA(k)$).

Proof. The subset inclusion is immediate, since the postprocessing may very well in-

volve multiplication with the identity matrix. For the inequality, consider the language

NEQ = {aibj|i 6= j}. Suppose for a contradiction that there exists a DHVA(k) V rec-

ognizing NEQ for some k. Let v be the initial vector of V . There exist sufficiently long

strings w1 = ambn and w2 = ambo, m 6= n, m 6= o, n < o such that V is in the same

accept state after reading w1 and w2 and the vector is equal to v, since the strings

belong to NEQ. When both strings are extended with bm−n, ambnbm−n /∈ NEQ whereas

ambobm−n ∈ NEQ. Since the same vector is being multiplied with the same matrices

associated with the same states during the processing of the string bm−n, it is not

possible for V to give different responses.

Now let us prove that the language NEQ can be recognized by a DHVA$(2) V ′.

The initial vector of V ′ is v′ = (1 1), and the state diagram of V ′ is given in Figure

4.1.
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Figure 4.1. State diagram of V ′ recognizing NEQ

For each a, the first entry is increased by 1 and for each b the first entry is

decreased by 1 using the second entry of the vector, which is equal to 1 throughout the

computation. The increment and decrement operations are performed by the matrices

A and B.

When reading the end-marker, if the value of the vector is equal to its initial

value, meaning that the number of a’s and b’s were equal to each other, the vector is

multiplied with C=, which sets the second entry to 0, so that the input string is not

accepted. Otherwise, if the vector is not equal to its initial value, meaning that the

number of a’s and b’s were not equal, the vector is multiplied with C 6=, which sets the

first entry to 1. This returns the vector to its initial value, and the input string is

accepted.

Any BHVA with end-marker whose matrices are rational valued can be simulated

by a BHVA with end-marker and integer valued matrices in the cost of increasing the

size of the vector by 2. The proof is due to Abuzer Yakaryılmaz and can be found

in [17].

Lemma 4.3. For any given rational-valued (n)-XBHVA$(k) V, where X ∈ {D,1D,N,1N},

there exists an integer-valued (n)-XBHVA$(k+2) V ′ that recognizes the same language.

For nondeterministic HVAs, we can state the following corollary.

Corollary 4.4. Rational-valued XBHVAs and integer-valued XBHVAs where X ∈

{N,1N} recognize the same class of languages.
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Proof. By using Lemma 4.3, we can conclude that any rational-valued XBHVA can be

simulated by an integer-valued XBHVA using the end-marker. Then, by using Lemma

4.1, we can remove the end-marker.

Note that although they recognize the same classes of languages, a rational valued

HVA can be simulated by an integer valued HVA in the cost of increasing the vector

size by 2 and using some additional states.

4.3. Encoding Strings with Homing Vector Automata

While recognizing certain languages, it may be necessary to hold information

about the string that is read so far in the entries of the vector. We call this notion

“encoding the string”.

In this section, we are going to discuss some encoding techniques that can be

performed by homing vector automata. The methods are applicable by the most re-

stricted, real-time deterministic and blind version and therefore can be carried out by

any homing vector automata. In the first part, we present the generalized Stern-Brocot

encoding which can be performed by k-dimensional homing vector automata using only

matrices belonging to the set Sk(1), for any string belonging to a k-letter alphabet. In

the second part, we present another encoding method which can be performed by 2-

dimensional HVAs, regardless of the size of the alphabet. The method also can be used

for base conversion, which may be necessary while recognizing some specific languages.

4.3.1. Stern-Brocot Encoding

The Stern-Brocot tree is an infinite complete binary tree whose nodes correspond

one-to-one to positive rational numbers [65,66]. Crucially for our purposes, the Stern-

Brocot tree provides a basis for representing strings as vectors of integers, as suggested

for binary alphabets in [67]. The fractions in the Stern-Brocot tree can be stored as

vectors of dimension 2, where the vector entries are the denominator and the numerator
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of the fraction. This representation allows us to perform the binary encoding easily in

homing vector automata, as follows.

The empty string is represented by (1 1). Now suppose that we want to encode

a binary string w of length n. For i = 1 to n, if w[i] = 0, we add the value of the first

entry to the second one, and if w[i] = 1, we add the value of the second entry to the

first one, multiplying the vector with the appropriate one of the following matrices M0

and M1:

M0 =

 1 1

0 1

 M1 =

 1 0

1 1


A list of some binary strings and their encodings is as follows. A proof on the uniqueness

of the encoding can be found in [67].

0 (1 2) 00 (1 3) 10 (2 3) 000 (1 4) 010 (3 5)

1 (2 1) 01 (3 2) 11 (3 1) 001 (4 3) 011 (5 2)

Given the vector representation vw of a string w, it is also possible to decode the

string with the following procedure: Let |w| = n and vw = (a b). Set w[n] = 0 if b > a,

and w[n] = 1 otherwise. Subtract the smaller entry from the larger one to obtain vn−1w

and repeat this routine until you obtain the vector (1 1). When the given vector is not

a valid representation of a string, then it is not possible to obtain (1 1). The matrices

required for this procedure are N0, which has the effect of subtracting the value of the

first entry of the vector from the second entry, and N1, for the symmetric action. Note

that N0 = (M0)
−1 and N1 = (M1)

−1.

N0 =

 1 −1

0 1

 N1 =

 1 0

−1 1


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We generalize the scheme mentioned above to strings on alphabets of arbitrary

size and present a new method for encoding strings. Let Σ = {a1, a2, . . . , ak}, and

w ∈ Σ∗. With the generalized Stern-Brocot encoding method described below, it is

possible to uniquely encode w using a vector of size k and k×k matrices whose entries

belong to the set {−1, 0, 1}.

We start with the k dimensional vector (1 1 · · · 1), which represents the empty

string. Suppose that |w| = n. To encode w, for i = 1 to n, if wi = aj, the vector is

multiplied with the matrix Ek
j , the k dimensional identity matrix whose j’th column

has been replaced with a column of 1’s. Multiplication with Ek
j causes the j’th entry

of the vector to be replaced by the sum of all the entries in the vector.

Among the different generalizations of the Stern-Brocot fractions, one that ap-

pears in [68] under the name of “Stern’s triatomic sequence” is similar to the encoding

we propose for the case k = 3. The similarity lies in the construction of the sequence,

but that sequence is not used for the purpose of encoding. As far as we know, no such

generalization exists for the case k > 3.

In the following lemma, we prove the uniqueness of this generalized encoding.

Lemma 4.5. No two distinct strings on Σ (|Σ| = k) can be represented by the same

vector of size k using the generalized Stern-Brocot encoding.

Proof. We will prove by induction on n that if a k-dimensional vector v is the gener-

alized Stern-Brocot encoding of a string of length n, then v is not the encoding of any

other string of length at most n.

The empty string is represented by the k-dimensional vector of 1’s. The claim

clearly holds for n = 0, since no other strings of at most this length exist. Now assume

that the claim holds for all natural numbers up to n− 1. Let w be a string of length n.

The vector vw representing w is obtained by multiplying the vector vn−1w , representing

the first n−1 symbols of w, with Ek
j if w[n] = aj. We will examine various possibilities
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regarding this final multiplication. Note that at a single step, it is possible to modify

only a single entry of each vector. Now consider any string u 6= w with |u| = l and

l ≤ n. If w and u have the same first n − 1 symbols, then vn−1w = vl−1u , the last

symbols of the two strings are unequal, and it is not possible to obtain vw = vu since

the same vector is multiplied by different matrices. In the remaining case, we know

by the induction hypothesis that vn−1w 6= vl−1u . If these vectors disagree in more than

two entries, there is no way that one can obtain the same vector by multiplying them

once with some matrices of the form Ek
j . So we consider the case of the two vectors

disagreeing in at most two entries.

Suppose that vn−1w and vl−1u differ only in the i’th entry. If the final multiplications

both work on the i’th entries, they will be adding the same number to them, resulting

again in vectors differing in their i’th entries. If one or more of the final multiplications

deals with another entry, then the final vectors will surely disagree in that entry. It is

not possible in any case to end up with equal vectors,

Now suppose that vn−1w and vl−1u differ in two entries. If the final multiplications

work on the same entry, then the final vectors will disagree in at least one entry. In

the only remaining case, each one of the vectors is multiplied by a matrix updating a

different one of the disagreeing entries. Let us represent the disagreeing entries of the

vectors vn−1w and vn−1u by the pairs (a b) and (c d), respectively. Let x be the sum of the

remaining k− 2 entries in which the vectors agree. Without loss of generality, say that

the entries become (a a+ b+x) and (c+ d+x d) after the final multiplication. But

if the final vectors are equal, these pairs should also be equal, implying c+ b+ 2x = 0,

an impossibility.

We therefore conclude that it is not possible to have vw = vu for any string u of

length at most n.

Like in the binary case, given the vector representation of a string, it is possible

to reconstruct the string. The all-ones vector corresponds to the empty string. Any
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other vector vw encoding a string w of length n in this encoding has a unique maximum

entry, say at position j. Then w[n] is aj, and we obtain vn−1w by subtracting the sum of

the other entries from the greatest entry. One repeats this procedure, reconstructing

the string from right to left, until one ends up with the all-ones vector. In terms of

matrices, multiplications with the inverses of Ek
j s capture this process.

We demonstrate the use of generalized Stern-Brocot encoding in the following

example.

Example 4.6. MPALl = {w#wr|w ∈ {a1, a2, . . . , al}∗} ∈ L(DHVA(l)Sl(1)).

Let us construct a DHVA(l)Sl(1) V recognizing MPALl. The input alphabet is

{a1, a2, . . . , al}, and the corresponding matrices are {El
1, E

l
2, . . . , E

l
l}. Starting with

the l dimensional vector of 1’s, V encodes the string by multiplying its vector with the

matrix El
j whenever it reads an aj until it encounters a # . After reading the #, V

starts decoding by multiplying the vector with matrix (El
j)
−1 whenever it reads an aj.

If the string is of the form w#wr, the vector will be multiplied with the inverse

matrices in the correct order and the resulting value of the vector will be (1 1 · · · 1).

We also need to show that the input string is not accepted when it is not of the

form w#wr. Consider an input string x#yr and suppose that it is accepted by V . Let

v′ denote the vector after reading x# and let Y denote the product of the matrices the

vector is multiplied while reading yr. Since the string is accepted, v′Y = (1 1 . . . 1)

must be true. Since the matrices (El
j)
−1

are invertible, Y is also invertible, which

implies that v′ must be unique. Since y#yr ∈ MPAL, then v′ must be the vector

obtained after reading y . From Lemma 4.5, we know that every string has a unique

representation and we conclude that x and y are identical.
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4.3.2. Base-m Encoding

In this subsection, we discuss a well-known encoding technique, which can be

easily adopted to homing vector automata.

For any w ∈ {1, 2, . . . ,m − 1}+ and m ≤ 10, let em(w) be the base-10 number

encoded by w in base-m:

em(w) = m|w|−1w[1] +m|w|−2w[2] + · · ·+m1w[|w| − 1] +m0w[|w|].

The encoding em(w) can be easily obtained by using vector-matrix multiplications.

Starting with the initial vector v = (1 0), and multiplying the vector with

Ami =

 1 i

0 m


for each symbol i, em(w) is obtained in the first entry of the vector.

When the vector is multiplied by Ami , the second entry is multiplied by m and

then incremented by i. As a result, this process ends up with em(w) appearing in the

second entry of the vector.

Given w ∈ {1, 2, . . . ,m − 1}+, it is also possible to obtain the encoding for wr,

that is em(wr) in the second entry of the vector. This can be accomplished starting

with the initial vector (1 0) and multiplying the vector with the matrices Bm
i for each

symbol in Σ.

Bm
i =

 m i

0 1


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Multiplication by Bm
i increments the second entry by i times the first entry and

multiplies the second entry by m. After reading k symbols, the first entry holds mk.

By the base-m encoding, any number in base-m that does not contain a 0 digit

can be converted to its base-10 equivalent. One should be careful if 0 is included in

the alphabet, since appending 0s at the beginning of the string wouldn’t change its

encoding and the encoding wouldn’t be unique in such a case. Nevertheless, by letting

the alphabet to be {0, 1, . . . ,m−1} and using the same matrices as above, any number

in base-m can be converted to its base-10 equivalent.

For instance, for the case where the alphabet has size 2, the matrices used for the

conversion have the following form:

A2
0 =

 1 0

0 2

 A2
1 =

 1 1

0 2

 .

Hence given w ∈ 1{0, 1}∗, one obtains the base-10 integer corresponding to the

binary number represented by w in the second entry of the vector upon multiplication

by the matrices A2
0 and A2

1.

When m = 10 and w is a string containing at most 9 different symbols, then note

that one can obtain w in the first entry of the vector, by multiplying the vector with

A10
i for each symbol i ∈ Σ = {0, 1, . . . , 9}.

A10
i =

 1 i

0 10


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4.4. Relationship with Counter Automata

In this section, we are going to analyze the relationship between counter automata

and homing vector automata. In the first part, we will examine the blind case and show

that homing vector automata outperform counter automata. In the second part, we will

present some incomparability results between real-time non-blind counter automata

and homing vector automata.

4.4.1. Blind Counter Automata

We are going to start this section by showing that BHVA(1)’s and kBCA’s are

equivalent in power.

Theorem 4.7.
⋃
k L(XkBCA) = L(XBHVA(1)) where X ∈ {D,N,1D,1N}.

Proof. Let C be an XkBCA. We are going to construct a XBHVA(1) V simulating C.

The register of V is initialized to 1. We are going to choose k distinct primes {p1, . . . , pk}

to be multiplied with the register of V , each representing a counter. An increment and

decrement of the i’th counter of C is simulated by multiplying V ’s register by pi and

1
pi

respectively. A string is accepted by V if the register is equal to 1 at the end of the

computation, that is when all the counters are equal to 0.

Now suppose that we are given a XBHVA(1) V . We are going to construct a

XkBCA C simulating V . We may assume that the register of V is not multiplied by 0,

since such a computation will never be accepting. Let A = {a1, a2, . . . , an} be the set of

all rational numbers the register of V can be multiplied with. Let P = {p1, p2, . . . , pk}

be the set of prime factors of the denominators and the numerators of the rational

numbers in A. Then each ai ∈ A can be expressed as

ai = (−1)ti
p
x1i
1 p

x2i
2 · · · p

xki
k

p
y1i
1 p

y2i
2 · · · p

yki
k

,
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where ti = 0 if ai is positive and ti = 1 if ai is negative. C will have k counters and

the state set of C will consist of two copies of V ’s states, Q × 0 and Q × 1. The two

copies are needed to encode the sign information of V ′s register in the states of C. Any

computation starts in the first copy, in the state (q1, 0). Suppose that V moves to state

q′ from state q by multiplying its register with ai. This transition is implemented in C

by adding the following transitions: If ti = 0, then the transitions from (q, 0) to (q′, 0)

and from (q, 1) to (q′, 1) exist in C. If ti = 1, then the transitions from (q, 0) to (q′, 1)

and from (q, 1) to (q′, 0) exist in C. In these transitions, the j’th counter is incremented

by xji − yj1 . The only accept states of C are those of the form (q, t0) where q is an

accept state of V . A string is accepted by C when all the counters are equal to 0 , that

is when the register of V is equal to 1.

We list the following equivalences among the models.

• L(1NBHVA(1)) =
⋃
k L(1NkBCA) =

⋃
k L(Zk) = L(Q+) = L(1NFAMW)

In the next theorem, we show that HVA(2)s are more powerful than counter

automata. Before proving our result, we first prove a lemma to compare the computa-

tional power of real-time and one-way deterministic blind counter automata.

Lemma 4.8.
⋃
k L(DkBCA) =

⋃
k L(1DkBCA).

Proof. We are going to show that any computation by a 1DkBCA can be carried out

in real-time by a DkBCA. For each input symbol, there can be only one outgoing

transition from each state, since the computation is deterministic. There cannot be

any loop in the state diagram which does not move the tape head, since in such a case,

the next symbol will never be scanned. The only transitions which don’t move the tape

head should be in the form schematized in Figure 4.2. We omit the counter updates

in the figure.

There should be a sequence of transitions which do not move the tape head when

scanning the symbol σ, followed by a transition which moves tape head right, upon
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Figure 4.2. A part of the transition diagram of a one-way deterministic blind counter

automaton

scanning the same symbol. Any other outcoming arrows from these states cannot be

traversed as it is not possible to read any symbol different from σ without moving the

tape head. This sequence of transitions can be handled by a single transition which

moves the machine from qi1 to qin , moves the tape head right and makes the necessary

modifications on the counters. Hence a DkBCA recognizing the same language as the

original one which operates in real-time can be obtained.

Theorem 4.9.
⋃
k L(XkBCA) ( L(XBHVA(2)) where X ∈ {D,1D,N,1N}.

Proof. The inclusions follow by Theorem 4.7, as HVA(1)s are capable of simulating

counter machines. For the deterministic case, it is known that no DkCA can recognize

the language MPAL2 in real-time for any k [22]. Hence we get that no DkBCA and

therefore no 1DkBCA (as the two models are equivalent by Lemma 4.8) can recognize

MPAL2. On the other hand, MPAL2 can be recognized by a DBHVA(2) as shown in

Example 4.6.

For the nondeterministic case, any unary language recognized by a 1NkBCA is

regular by Fact 2.2, since
⋃
k L(1NkBCA)= L(1NFAMW). It is possible to recognize

the unary nonregular language UPOW′ = {an+2n|n ≥ 1} by a NBHVA(2) V with the

initial vector v = (1 1), whose state transition diagram is given in Figure 4.3.

Now we show that the same result can be achieved by 3-dimensional nondeter-

ministic HVAs whose matrices are restricted to have integer entries.
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Figure 4.3. State transition diagram of V recognizing UPOW′

Theorem 4.10.
⋃
k L(XkBCA) ( L(XBHVA(3)M3(Z)) where X ∈ {N,1N}.

Proof. Any XkBCA can be simulated by a XBHVA(1) by Theorem 4.7 and any XB-

HVA(1) can be simulated by a XBHVA$(3)M3(Z) by Lemma 4.3. By using additional

states, we can obtain an equivalent XBHVA(3)M3(Z) without end-marker by Lemma

4.1.

We are going to show that the inclusion is proper by constructing a NBHVA(3)S3(1)

V recognizing the unary nonregular language UPOW′ = {an+2n|n ≥ 1}. The state tran-

sition diagram of V is given in Figure 4.4. Starting with the initial vector (1 1 1), V

multiplies the vector with matrix A1 when reading each a. The idea is to add the first

and second entries together repeatedly to obtain powers of 2, so that after reading k

symbols the value of the vector is equal to
(
2k 2k 1

)
. V nondeterministically guesses

n and starts decrementing the first entry from that point on by multiplying the vector

with the matrix A2 which fixes the second entry to 1 immediately. At the end of the

computation, the value of the vector is equal to (1 1 1) if and only if the input string

is of the form an+2n for some n.

We conclude the result since no XkBCA can recognize the language UPOW′ by Fact

2.2.
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Figure 4.4. State transition diagram of V recognizing UPOW′

If we further restrict the matrices to have entries from the set {−1, 0, 1}, then we

obtain the following result.

Theorem 4.11.
⋃
k L(XkBCA) (

⋃
k L(XBHVA(k + 1)Sk+1(1)

) where X ∈ {D,N,1D,1N}.

Proof. Let us simulate a given XkBCA by a XBHVA(k+1)Sk+1(1) V . Let (1 1 · · · 1)

be the initial vector of V . The k + 1’st entry of the vector will remain unchanged

throughout the computation, which will allow the counter updates. At each step of

the computation, V will multiply the vector with the appropriate matrix A ∈ T where

T ⊆ Sk+1(1) is the set of all (k+1)×(k+1) matrices corresponding to possible counter

updates. Since each counter can be decremented, incremented or left unchanged, |T | =

3k. All matrices will have the property that A[i, i] = 1 and A[k+1, k+1] = 1. When the

i’th counter is incremented and decremented, then A[k+ 1, i] = 1 and A[k+ 1, i] = −1,

respectively. At the end of the computation, the input will be accepted if the vector is

equal to (1 1 · · · 1), which happens iff all counters have value 0.

The inclusions are proper by the witness languages MPAL2, which can be recognized

by a DBHVA(2)S2(1) by Example 4.6 for the deterministic case and UPOW′, which can

be recognized by a NBHVA(3)S3(1) by Theorem 4.10.
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4.4.2. Non-blind Counter Automata

The fact that the individual entries of the vector cannot be checked prevents us

from simulating a non-blind counter automaton by a HVA. Since 1D2CA can recognize

any recursively enumerable language, we focus on the real-time case.

We are going to show that in the real-time deterministic case, counter automata

and blind homing vector automata are incomparable. First, we give a characterization

for DHVA(k)s when the alphabet is unary.

Theorem 4.12. For any k, all languages over Σ = {a} accepted by a DHVA(k) are

regular.

Proof. Let L be a unary language accepted by a DHVA(k) V and let v be the initial

vector of V . We are going to construct a DFA recognizing L to prove that L is regular.

We assume that L is infinite and make the following observation. Since V has finitely

many states, at least one of the accept states of V will be accepting more than one

string. Let w1 and w2 be the shortest strings accepted by an accept state qa with

|w1| < |w2|. When accepting w1 and w2, V is in state qa and the value of the vector is

equal to v. After reading w2, V is in the same configuration as it was after reading w1

and this configuration will be repeated inside a loop of |w2|−|w1| = p steps. Therefore,

we can conclude that all strings of the form a|w1|+lp for some positive integer l will be

accepted by qa.

Between consecutive times qa accepts a string, some other strings may be accepted

by some other accept states. Let u be a string accepted by qb with |w1| < |u| < |w2|.

Then all strings of the form a|u|+lp for some positive integer l will be accepted by qb since

every time V enters the accepting configuration at state qa, V will enter the accepting

configuration at state qb after |u|− |w1| steps. The same reasoning applies to any other

accepting configuration inside the loop.
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Now, let us construct a DFA F accepting L. F has |w1|+ 1 + (p− 1) states. The

first |w1| + 1 states correspond to the strings of length at most |w1| and the state q|w|

is an accept state for all w ∈ L that is of length at most |w1|. q|w1| and the next p− 1

states ql2 , . . . , qlp stand for the configuration loop. States corresponding to accepting

configurations inside the loop are labeled as accept states.

The transitions of the F are as follows:

δ(qi, a) = qi+1 for i = 0, . . . , |w1| − 1

δ(q|w1|, a) = ql2

δ(qli , a) = qli+1
for i = 2, . . . , p− 1

δ(qlp , a) = q|w1|

Since L can be recognized by a DFA, L is regular. We conclude that any unary language

accepted by a DHVA(k) is regular.

Theorem 4.13.
⋃
k L(DBHVA(k)) and

⋃
k L(DkCA) are incomparable.

Proof. We know that MPAL2 = {w#wr|w ∈ {0, 1}∗} can be recognized by a DBHVA(2)

by Example 4.6. In [22], it is proven that no deterministic counter machine with k

counters operating in time O(2n/k) can recognize MPAL2. Since we are working with

real-time machines, this result applies to our case.

On the other hand, it is known that the nonregular unary language UGAUSS =

{an2+n|n ∈ N} can be recognized by a D2CA [9]. By Theorem 4.12, we know that

BHVA(k)’s and inherently DBHVA(k)’s can recognize only regular languages in the

unary case. Hence, we conclude that the two models are incomparable.
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For the nondeterministic case we can state the following result.

Theorem 4.14.
⋃
k L(NBHVA(k)) *

⋃
k L(NkBCA).

Proof. It is known that no NkBCA can recognize the language BIN = {wc0e2(w)cwrc|w ∈

1{1, 0}∗} [21] where e2(w) is the integer representation of the binary number repre-

sented by w, for any k. A NBHVA(3) V recognizing the language BIN is given in

Figure 4.5.

Figure 4.5. State transition diagram of V recognizing BIN

The initial vector of V is (1 0 0). The idea is to use base-2 encoding to store

e2(w) in the second and the third entries of the vector with the help of the matrices

A0 and A1. While reading the 0 sequence, the second entry is decremented using

the matrix D. While reading the last sequence between two c’s, the inverses of the

matrices used for base-2 encoding is used to check whether the sequence corresponds

to the string wr.

4.5. Relationship with Extended Finite Automata

In this section, we will exploit a relationship between 1NBHVA(k)’s and the

extended finite automata over free groups to demonstrate the power of homing vector

automata.
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The two models seem to be linked in the case of finite automata over matrix

groups, as the register is multiplied with a matrix at each step of the computation.

Let us emphasize that the two models are different in the following sense. In a homing

vector automaton, there is an initial vector v, and the accepted strings are those which

label a computation path along which the product of the sequence of matrices on the

transitions is a matrix A, such that v = vA. In the most general setting, the set

of transition matrices belongs to the semigroup of rational matrices. In an accepting

computation, the product of the matrices A belongs to the stabilizer subsemigroup

of the set of rational matrices with respect to v. In contrast, in an extended finite

automaton over a matrix group, accepting computations are those in which A = I.

In that sense, one-way nondeterministic blind homing vector automata can be seen

as akin to what someone who wanted to define a version of extended finite automata

associated with general matrix semigroups, rather than groups, would come up with.

In fact, the homing vector automaton can be seen as a special case of the rational

semigroup automaton which is defined in [69] as follows:

Let M be a monoid. An M -automaton is said to be with targets if it is equipped

with two subsets I0, I1 ⊆M called the initial set and the terminal set respectively. An

input string w ∈ Σ∗ is accepted by the automaton if there exists a computation from

the initial state to some accepting state such that x0x ∈ I1, where x0 ∈ I0 and x ∈M

is the content of the register of the machine after the reading of w. In the case that

I0 and I1 are rational subsets of M , the model is called rational monoid automaton

defined by M [35, 69].

Rational semigroup automata are defined analogously by taking M as a semigroup

instead of a monoid.

Note that the family of languages accepted by rational monoid automata where

I0 = I1 = {1} coincides with the set of languages recognized by ordinary M -automata.

Letting I0 = I1 = v where v is the initial vector of a homing vector automaton and M

to be a semigroup of matrices, one obtains homing vector automata.
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We start by looking at the case of 2 × 2 matrices. Recall from Subsection 3.2.2

that F2 admits a representation by 2× 2 matrices. In particular, the group generated

by the matrices

Ma =

 1 2

0 1

 and Mb =

 1 0

2 1


is isomorphic to F2.

Using the matrix representation of F2, any F2-automaton can be simulated by

a suitably defined homing vector automaton that is of dimension 2, blind, nondeter-

ministic, and one-way. The proof is due to Flavio D’Alessandro and can be found

in [16].

Theorem 4.15. L(F2) ⊆ L(1NBHVA(2)).

This allows us to draw the following conclusion about the class of languages

recognized by 1NBHVA(2)’s.

Corollary 4.16. The family of context-free languages is included in L(1NBHVA(2)).

Proof. Since L(F2) = CF by Fact 3.3, the result then follows by Theorem 4.15.

In the proof of Theorem 4.15, the matrices used for the simulation of an F2-

automaton belong to SL(2,Z). In the following theorem, we show that 1NBHVAs

are more powerful than the corresponding monoid automata, when the matrices are

restricted to the monoid M2(Z).

Theorem 4.17. L(M2(Z)) ( L(1NBHVA(2)M2(Z)).

Proof. In Theorem 3.10, it is proven that M2(Z) = CF and by Corollary 4.16, the

inclusion follows.
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Now we are going to prove that the inclusion is proper. Let us construct a

1NBHVA(2)M2(Z) V recognizing the non-context-free language POWr = {a2nbn|n ≥ 0}.

The state diagram of V is given in Figure 4.6.

Figure 4.6. State transition diagram of V recognizing POWr

The initial vector of V is v = (1 1). While reading a in q1, V multiplies its vector

with the matrix Aa. It moves to q1 when it scans the first b and multiplies its vector

with the matrix Ab as it reads each b. V multiplies its vector with the matrix Aε and

moves to q2.

When the vector is multiplied by Aa, the first entry of the vector is increased by 1

and when the vector is multiplied by Ab, the second entry of the vector is multiplied by

2. Hence, after reading an input string of the form aibj, the vector is equal to (i+ 1 2j),

as a result of the multiplication by the matrix product Aa
iAb

j. After multiplication by

Aε, the second entry of the vector is subtracted from the first entry and this value is

stored in both entries of the vector. The value of the final vector is equal to (1 1) iff

i+ 1− 2j = 1. Hence, the accepted strings are those which are of the form a2
j
bj.

For 3 × 3 matrices, we don’t have a comparability result among the classes of

languages recognized by the two models. The major limitation lies in the fact that the

limits of finite automata over 3×3 matrix groups are not known. Furthermore, we don’t

know how to directly simulate a finite automaton overa group of 3× 3 matrices with a

1NBHVA(3). Nevertheless, let us note that 1NBHVA(3)s defined with matrices from

M3(Z) can recognize any language recognized by 1NkBCAs as we showed in Theorem

4.10, whereas it is an open question whether L(M3(Z)) includes the class of languages

recognized by 1N3BCAs.
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Next we are going to demonstrate the power of 1NBHVA(k)s for k ≥ 4. Recall

that L(F2 × F2) = L(SL(4,Z)) by Theorem 3.17. The proof idea of Theorem 3.17 is

to embed two copies of F2 into 4× 4 matrices. Combining this idea with the proof of

Theorem 4.15, one can show that 1NBHVA(4)s recognize any recursively enumerable

language. Since the computation of a 1NBHVA(k) involves vector matrix multiplica-

tions by computable numbers, it can be simulated by a Turing machine and it follows

that any language recognized by a 1NBHVA(k) is recursively enumerable. The proof

details are omitted here and can be found in [16].

Theorem 4.18. RE = L(1NBHVA(k)) for k ≥ 4.

4.6. Real-time Homing Vector Automata

In the previous section, we have seen that allowing one-way access to the input

tape raises nondeterministic blind homing vector automata of small vector dimension

to Turing equivalence. For this reason, we will be focusing on real-time input in this

section.

Let us start with an example. We show that by allowing nondeterminism, it is

possible to recognize an NP-complete language in real-time and with matrices belonging

to set S5(1). SUBSETSUM is the NP-complete language which is the collection of all

strings of the form t#a1#...#an#, such that t and the ai’s are numbers in binary

notation (1 ≤ i ≤ n), and there exists a set I ⊆ {1, ..., n} satisfying
∑

i∈I ai = t, where

n > 0. We define

SUBSETSUMr = {tr#ar1#...#arn# |∃I ⊆ {1, ..., n} s.t.
∑
i∈I

ai = t}

in which the binary numbers appear in reverse order. It is obvious that SUBSETSUMr ∈

NP, since SUBSETSUM ∈ NP. It is possible to reduce SUBSETSUM to SUBSETSUMr in

polynomial time by reversing the binary numbers that appear in the input. Therefore,

we can conclude that SUBSETSUMr is NP-complete.

Example 4.19. SUBSETSUMr ∈ L(NBHVA(5)).
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We construct a NBHVA(5)M5(1) V recognizing SUBSETSUMr. The state transition

diagram of V recognizing SUBSETSUMr is given in Figure 4.7.

Figure 4.7. State transition diagram of V recognizing SUBSETSUMr

The idea of this construction is to read the binary numbers in the string to entries

of the vector, and to nondeterministically select the set of numbers that add up to t.

We let the initial vector equal (0 0 1 1 1). We first encode t to the first entry of

the vector as follows: While scanning the symbols of t, V multiplies the vector with

the matrix AT0 (resp. AT1) for each scanned 0 (resp. 1). The powers of 2 required

for the encoding are obtained by adding the third and fourth entries, which always

contain identical numbers, to each other, creating the effect of multiplication by 2.
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When V reads a #, V multiplies the vector with the matrix A# which subtracts the

second entry from the first entry and resets the second entry back to 0, and the third

and fourth entries back to 1. In the rest of the computation, V nondeterministically

decides which ai’s to subtract from the first entry. Each selected ai is encoded using

the same technique into the second entry of the vector. While scanning the symbols of

ai, V multiplies the vector with the matrix A0 (resp. A1) for each scanned 0 (resp. 1).

V chooses another aj if it wishes, and the same procedure is applied. At the end

of the input, V accepts if the vector is equal to (0 0 1 1 1), which requires that the

first entry of the vector is equal to 0. This is possible iff there exists a set of ai’s whose

sum add up to t.

4.6.1. Comparisons Among the Different Versions

We start by comparing the deterministic blind and non-blind versions of our

model.

Theorem 4.20.
⋃
k L(DBHVA(k)) (

⋃
k L(DHVA(k)).

Proof. It is obvious that any DBHVA(k) can be simulated by a DHVA(k). We are

going to prove that the inclusion is proper by the witness language SUM = {anba1aa2|n =

a1 or n = a1 + a2, a1 ≥ 1, a2 ≥ 1}. Let us first construct a DHVA(2)S2(1) V recognizing

SUM. The state transition diagram of V is given in Figure 4.8. The idea is to simulate

a counter with the help of the matrices. Starting with the initial vector (1 1), V

multiplies the vector with the matrix A+ for each a it reads before the b’s, incrementing

the first entry of the vector with each such multiplication. After finishing reading the

first segment of a’s, V multiplies the vector with the matrix A−, decrementing the first

entry of the vector for each b.

V checks the current value of the vector for equality to (1 1) when reading the

first a. If the equality is detected, it is the case that n = a1, and V multiplies the

vector with the identity matrix at each step for the rest of the computation. If that is
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Figure 4.8. State transition diagram of V recognizing SUM

not the case, V continues to multiply the vector with matrix A− for each a after the

b’s. The value of the vector will be equal to (1 1) at the end of the computation if and

only if n = a1 or n = a1 + a2.

Note that SUM can be also recognized by a DHVA(1) by using the one-dimensional

matrices A+ = (2) and A− = (1
2
).

Now we are going to show that SUM cannot be recognized by any DBHVA(k).

Suppose for a contradiction that L is recognized by some DBHVA(k) V ′. After reading

a prefix of a’s, the computation of V ′ on a sufficiently long suffix of b’s will go through

a sequence of states, followed by a state loop. Suppose that V ′ is in the same state

after reading two different strings anbm and anbn, m < n. Now consider the strings

u = anbman−m ∈ SUM and w = anbnan−m ∈ SUM. After reading any one of these

strings, V ′ should be in the same accept state, and the vector should be at its initial

value. Assume that the strings in question are both extended with one more a. Since

the same vector is being multiplied with the same matrix associated with the same

state during the processing of that last a, it is not possible for V ′ to give different

responses to anbnan−m+1 and anbman−m+1. Noting that anbnan−m+1 ∈ SUM, whereas

anbman−m+1 /∈ SUM, we conclude that SUM cannot be recognized by any DBHVA(k).
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In the following theorem, we show that nondeterministic real-time homing vector

automata are more powerful than their deterministic versions, both in the blind and

nonblind cases.

Theorem 4.21. (i)
⋃
k L(DBHVA(k)) (

⋃
k L(NBHVA(k)).

(ii)
⋃
k L(DHVA(k)) (

⋃
k L(NHVA(k)).

Proof. It is obvious that the deterministic models can be simulated by the nondeter-

ministic models. The inclusion is proper since UPOW′ can be recognized by a NBHVA(2)

by Theorem 4.9 and every unary language recognized by a DHVA(k) is regular by The-

orem 4.12.

A language L is in class TISP(t(n), s(n)) if there is a deterministic Turing ma-

chine that decides L within t(n) time and s(n) space where n is the length of the

input. Since the numbers in the vector can grow by at most a fixed number of bits

in each multiplication, a Turing machine simulating a DHVA(k) requires only linear

space [9]. Since the numbers in the vector can have length O(n), whereas the matrix

dimensions and entries are independent of the input length n, multiplication of a vec-

tor and a matrix requires O(n) time for each input symbol. We can conclude that⋃
k L(DHVA(k))⊆ TISP(n2, n).

4.6.2. A Hierarchy Result

We will now establish a hierarchy result on real-time deterministic homing vector

automata based on the dimension of the vector, when the matrix entries belong to a

restricted set.

Theorem 4.22. Then L(DHVA(k))Sk(m) ( L(DHVA(l))Sl(m) for l > (km)k.

Proof. Using the generalized Stern-Brocot encoding, we showed that it is possible to

recognize MPALl = {w#wr|w ∈ {a1, a2, . . . , al}∗} by a DBHVA(l)Sl(1) in Exercise 4.6.
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We are now going to show that MPALl /∈ L(DHVA(k))Sk(m) for l > (km)k. We

first note that the value of any entry of a vector of size k can be at most mn+1kn

after reading n symbols. This is possible by letting the initial vector have m in all

entries, and multiplying the vector with the matrix with all entries equal to m at

each step. Similarly, the smallest possible value of an entry is −mn+1kn, and so the

number of possible different values for a single entry is 2mn+1kn + 1. If the machine

has s states, s(2mn+1kn + 1)k is an upper bound for the number of different reachable

configurations after reading n symbols. Since there are ln strings of length n when the

alphabet consists of l symbols, for large n and l > (km)k, the machine will end up

in the same configuration after reading two different strings u and w. This will cause

the strings u#wr and w#ur which are not in MPALl to be accepted by the machine.

Therefore, we conclude that MPALl /∈ L(DHVA(k))Sk(m).

Since a vector automaton with a larger vector size can trivially simulate a vector

automaton with a smaller vector size, this result applies to our case.

4.6.3. Closure Properties

In this section, we examine the closure properties of the class of languages rec-

ognized by real-time homing vector automata. We start with a lemma which will be

useful in our proofs. The languages mentioned below are from [6].

Lemma 4.23. (i) UNION = {anbn|n ≥ 0} ∪ {anb2n|n ≥ 0} /∈
⋃
k L(DHVA(k)).

(ii) Lbab = {bn(anbn)k|n, k ≥ 1} /∈
⋃
k L(DHVA(k)) .

(iii) IJK = {aibjck|i 6= j or j > k} /∈
⋃
k L(DHVA(k)) .

(iv) UNIONc = {anbn|n ≥ 0} ∪ {anb2nc|n ≥ 0} /∈
⋃
k L(DHVA(k)) .

Proof. We can show all these languages to be unrecognizable by DHVAs by applying

the following common reasoning. Assume that the language L in question is recognized

by some DHVA(k) V . Since there are finitely many states, one of the states of V will

end up accepting more than one member of the language. For each language, we will

focus on two such members u and v. Note that V is in the same configuration (since
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it has also returned to its initial vector) after reading both u and v. We then append

another string x to both strings, selected so that ux ∈ L and vx /∈ L. The responses

of V to the ux and vx has to be identical, since it will have returned to the same

configuration after processing both strings. We conclude that V cannot distinguish

between these two strings, and therefore that L /∈
⋃
k L(DHVA(k)). All that remains

is to provide the strings u, v, and x for the languages in the statement of the lemma.

In the following, i, j > 1 and i 6= j.

(i) u = aibi, v = ajbj, and x = bi.

(ii) u = biaibi, v = bjajbj and x = aibi.

(iii) u = aibic, v = ajbjc, and x = cj−1 for i > j.

(iv) u = aibi, v = ajbj, and x = bic.

Let us note that it is possible to recognize the languages mentioned in the proofs

with DHVA(k)’s of smaller vector size when the vector entries are not restricted to be

integers.

Theorem 4.24. (i)
⋃
k L(DHVA(k)) is closed under the following operations:

(a) intersection with a regular set

(ii)
⋃
k L(DHVA(k)) is not closed under the following operations:

(a) union

(b) concatenation

(c) intersection

(d) star

(e) homomorphism

(f) reversal

(g) complementation
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Proof.

(i) (a) Let LV be recognized by a DHVA(k) V = (Q1,Σ1,M, δ1, q1, Qa1 , v) and LF be

a language recognized by a finite state automaton F = (Q2,Σ2, δ2, q2, Qa2).

Let us construct a DHVA(k) V ′ = (Q,Σ,M, δ, q1, Qa, v) recognizing L =

LV∩LM. V ′ keeps track of the vector and the current state of V as well as the

current state of F . Let Q′ = Q1×Q2 be the state set of V ′ and Σ = Σ1∪Σ2.

For each (qi, qj) ∈ Q, σ ∈ Σ and ω ∈ Ω, δ((qi, qj), σ, ω) = ((q′i, q
′
j), A) where

δ1(qi, σ, ω) = (q′i, A) and δ2(qj, σ) = q′j. q1 is the pair (q1, q2) and Qa is the

set of pairs of states where both of the states are accept states of V or F .

We obtain a DHVA(k) V ′ recognizing L.

(ii) (a) Let L1 = {anbn|n ≥ 0} and L2 = {anb2n|n ≥ 0}. L1 and L2 can be rec-

ognized by a DBHVA(2) which simulates a deterministic blind one-counter

automaton whereas L1∪L2 = UNION cannot be recognized by any DHVA(k)

for any k by Lemma 4.23.

(b) For the languages L1 = {anbn|n ≥ 0} and L2 = {anb2n|n ≥ 0}, L1L2∩a∗b∗ =

UNION, which cannot be recognized by any DHVA(k) for any k by Lemma

4.23 and Part i.a) of this theorem.

(c) Let L1 = {b+(anbn)∗|n ≥ 1} and L2 = {(bnan)∗b+|n ≥ 1}. Both L1 and L2

can be recognized by DHVA(2)s which simulate deterministic one-counter

automata, whereas L1 ∩ L2 = Lbab = {bn(anbn)k|n, k ≥ 1} cannot be recog-

nized by any DHVA(k) for any k by Lemma 4.23.

(d) Let L = {anbn|n ≥ 0} ∪ {canb2n|n ≥ 0}. A DBHVA(2) V recogniz-

ing L branches into one of two computation paths depending on the first

scanned symbol σ1. If σ1 = a, V simulates a deterministic blind one-

counter automaton recognizing {an−1bn|n ≥ 0} and if σ1 = c, V sim-

ulates a deterministic blind one-counter automaton recognizing {anb2n}.

Now suppose L∗ ∈
⋃
k L(DHVA(k)). Then L′ = L∗ ∩ {caibj|i, j ≥ 0} =

{canbn|n ≥ 0} ∪ {canb2n|n ≥ 0} ∈
⋃
k L(DHVA(k)). A DHVA(k) recogniz-

ing L′ can be easily modified to obtain a DHVA(k) recognizing the language

UNION = {anbn|n ≥ 0} ∪ {anb2n|n ≥ 0}, which is not in L(DHVA(k)) by

Lemma 4.23.
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(e) Let L = {anbn|n ≥ 0}∪{can−1b2n|n ≥ 0}. A DBHVA(k) recognizing L works

similarly to the one in part d). Now consider the homomorphism h such that

h(a) = a, h(b) = b and h(c) = a. h(L) = {anbn|n ≥ 0} ∪ {anb2n} = UNION,

which cannot be recognized by any DHVA(k) for any k by Lemma 4.23.

(f) Let L = {bnan|n ≥ 0} ∪ {cb2nan|n ≥ 0}. A DBHVA(k) recognizing L works

similarly to the one in part d). Now consider the reverse of L, UNIONc =

{anbn|n ≥ 0}∪{anb2nc|n ≥ 0}, which cannot be recognized by any DHVA(k)

for any k by Lemma 4.23.

(g) Consider L = {ambmcn|0 ≤ m ≤ n}, which can be recognized by a DHVA(3).

L̄∩{aibjck|i, j, k ≥ 0} = {aibjck|i 6= j or j > k} = IJK cannot be recognized

by any DHVA(k) by Lemma 4.23.

The set of languages recognized by real-time nondeterministic homing vector

automata is closed under union, star and concatenation The constructions are fairly

simple and omitted.

Theorem 4.25. (i)
⋃
k L(DBHVA(k)) is closed under the following operations:

(a) intersection

(ii)
⋃
k L(DBHVA(k)) is not closed under the following operations:

(a) union

(b) concatenation

(c) star

(d) homomorphism

(e) reversal

(f) complementation

Proof.

(i) (a) Let LV1 and LV2 be recognized by DBHVA(k1) V1 = (Q1,Σ1, δ1, q1, Qa1 , v1)

and DBHVA(k2) V2 = (Q2,Σ2, δ2, q2, Qa2 , v2), respectively. Let us construct
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a DBHVA(k) V = (Q,Σ, δ, q1, Qa, v) recognizing L = LV1 ∩ LV2 where k =

k1 + k2. Let Q = Q1 ×Q2 be the state set of V and Σ = Σ1 ∪ Σ2. For each

(qi, qj) ∈ Q and σ ∈ Σ, δ((qi, qj), σ) = ((q′i, q
′
j), A), where δ1(qi, σ) = (q′i, A1),

δ2(qj, σ, ω) = (q′j, A2) and A is a k × k block diagonal matrix with A1 and

A2 on its diagonal. q1 is the pair (q1, q2), and Qa is the set of pairs of states

where both of the states are accept states of V1 or V2. The initial vector v of

V is of the form (v1 v2) and has dimension k. V keeps track of the current

states and the current values of both vectors by simultaneously multiplying

its vector with the appropriate matrices. Since the computation is blind,

the value of the vector is checked only at the end of the computation, and

an input string is accepted if the vector is equal to its initial value.

(ii) The proofs for the non-blind version also apply here. The proof for part (f) follows

from the fact that
⋃
k L(DBHVA(k)) is closed under intersection but not union.

The set of languages recognized by real-time nondeterministic blind homing vec-

tor automata is closed under union and intersection. The construction for union is

straightforward, and the construction for intersection is identical to the deterministic

case.

4.6.4. Stateless computation

Given two strings, a finite automaton is said to separate them if it accepts one

and rejects the other. Introduced by Goralč́ık and Koubek [70], the string separation

problem asks for the minimum number of states needed for accomplishing this task.

String separation by homing vector automata and vector automata have been investi-

gated in [17]. It turns out that a homing vector automaton needs at least two states to

separate any pair of strings, regardless of the dimension of the vector. We are there-

fore motivated to examine the limitations imposed by statelessness on homing vector

automata in more detail.
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Stateless machines [71–73] have been investigated by many researchers, motivated

by their relation to membrane computing and P systems [74], which are stateless models

inspired from biology. While vector automata can simulate their classical states in their

vectors by using longer vectors, this is not the case for homing vector automata.

Our study on stateless homing vector automata yields a characterization for the

class of languages recognized by stateless real-time deterministic FAMs without equal-

ity (0-DFAMW) [6]. It turns out that a language is recognized by a 0-DFAMW iff it

is commutative and its Parikh image is the set of nonnegative solutions to a system

of linear homogeneous Diophantine equations. When the computation is nondeter-

ministic, then any language recognized by a stateless real-time nondeterministic FAM

without equality is commutative. We conclude by providing some further examples and

observations about language recognition power of stateless homing vector automata.

4.6.4.1. Observations. The limitation of having a single state for homing vector au-

tomata leads to the acceptance of the string xx, whenever the string x is accepted. This

is true since further repetition of the same input naturally carries the vector through a

trajectory that ends up in its initial value. Based on this observation, we can list the

following consequences:

For X ∈ {DB,D,NB,N},

• If string x is accepted by a 0-XHVA V , then any member of {x}∗ is also accepted

by V .

• If all members of a language L are accepted by a 0-XHVA V , then any string in

L∗ is also accepted by V .

• If language L is recognized by a 0-XHVA, then L = L∗.

• 0-XHVAs cannot recognize any finite language except Lε.

We can further make the following observation for deterministic models.
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Lemma 4.26. If the strings w1 and w1w2 are accepted by a 0-XHVA V where X ∈

{DB,D}, then the string w2 is also accepted by V.

Proof. After reading w1, the value of the vector is equal to its initial value. Since w1w2

is also accepted by V , reading w2 results in acceptance when started with the initial

vector.

For the unary case we have the following.

Theorem 4.27. If the strings ai and aj (1 < i < j) are accepted by a 0-XHVA V

where X ∈ {DB,D}, then the string agcd(i,j) is also accepted by V.

Proof. It is well known that for any positive integers i, j, there are two integers li and

lj such that ili + jlj = gcd(i, j). Assume that li is positive and lj is non-positive.

(The other case is symmetric.) Note that ili ≥ j(−lj). The strings aj(−lj) and aili are

accepted by H. By Lemma 4.26, the string aili−j(−lj), which is agcd(i,j), is also accepted

by V .

Corollary 4.28. If the strings ai and aj (1 < i < j) are accepted by a 0-XHVA H

where X ∈ {DB,D} and gcd(i, j) = 1, then V recognizes a∗.

Let us now investigate the case where the set of matrices is commutative.

Let L ∈ Σ∗ be a language. The commutative closure of L is defined as com(L) =

{x ∈ Σ∗|φ(x) ∈ φ(L)}. A language is commutative if com(L) = L.

Theorem 4.29. If a language L is recognized by a 0-XBHVA V where X ∈ {D,N}

with a commutative set of matrices, then L is commutative.
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Proof. Let w ∈ L and suppose that the string w = w[1]w[2] · · ·w[n] is accepted by V .

Let A1A2 · · ·An be the product of the matrices labeling the computation such that

vA1A2 · · ·An = v

where v is the initial vector of V . Since the matrices are commutative, then for any

permutation τ ,

A1A2 · · ·An = Aτ(1)Aτ(2) · · ·Aτ(n).

This leads to the acceptance of the string w′ = w[τ(1)]w[τ(2)] · · ·w[τ(n)] since

vAτ(1)Aτ(2) · · ·Aτ(n) = v.

Hence, if w is accepted by V , then any string obtained from w by permuting its letters

is also accepted by V . Any string x with φ(x) = φ(w) is in L and we conclude that L

is commutative.

When the computation is not blind, then the class of languages recognized is

no longer commutative. The language of balanced strings of brackets DYCK can be

recognized by 0-DHVA(1) as follows. Starting with the initial vector (1), for each left

bracket the vector is multiplied by (2). As long as the vector is not equal to (1), for

each right bracket, the vector is multiplied by (1
2
). If the vector is equal to (1) and the

next symbol is a right bracket, then the vector is set to (0).

Corollary 4.30. If a language L is recognized by a 0-XBHVA V where X ∈ {D,N}

with a commutative set of matrices, then L = Lr.

Proof. Suppose that w ∈ L. Then it is clear that wr will be also accepted by V by

Theorem 4.29 and wr ∈ L. Since for every string w it is true that w ∈ L if and only if

wr ∈ L, we conclude that L = Lr.
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4.6.4.2. Regular languages. Let F be an n-state deterministic finite automaton. With-

out loss of generality, we can enumerate its states as q1, . . . , qn where q1 is the initial

state. Moreover we can denote qi by ei, which is the basis vector in dimension n having

1 in its i’th entry, and 0 otherwise. Besides, for each symbol σ, we can design a zero-one

matrix, say Aσ, that represents the transitions between the states, i.e. Aσ[i, j] = 1 if

and only if F switches from qi to qj when reading symbol σ. Thus, the computation

of F on an input, say w, can be traced by matrix-vector multiplication:

ej = e1Aw[1]Aw[2] · · ·Aw[|w|]

if and only if F ends its computation in qj after reading w.

Based on this representation, we can easily observe that if a language L is recog-

nized by an n-DFA whose initial state is the single accept state, then L is recognized

by a 0-DBHVA(n).

Let us give some examples of stateless HVAs recognizing regular languages.

Example 4.31. For k > 1, ABk
∗ = {akbk}∗ ∈ L(0-DBHVA(2k)).

Let us construct a 0-DBHVA(2k) Vk recognizing ABk
∗. The initial vector of Vk is

v = (1 0 · · · 0). For each a, the value in the i’th entry of the vector is transferred

to the (i + 1)’st entry when 1 ≤ i ≤ k, and, the rest of the entries are set to 0. For

each b, the value in the (i + k)’th entry of the vector is transferred to the (i + k + 1

mod 2k)’th entry, and the rest of the entries are set to 0, (1 ≤ i ≤ k). Thus, we return

to the initial vector if and only if after some number of (akbk) blocks have been read.

Example 4.32. MODm = {ai | i mod m ≡ 0} ∈ L(0-DBHVA(m)).

It is easy to observe that any unary n-state DFA whose initial state is the single

accept state can recognize either Lε or MODm for some m ≤ n. Hence, for any m > 0,

the language MODm is recognized by a 0-DBHVA(m).
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Note that if it is allowed to use arbitrary algebraic numbers in the transition

matrices, then for every m > 0, the language MODm is recognized by a 0-DBHVA(2)

with initial vector v = (1 0) that multiplies its vector with the matrix

Am =

 cos 2π
m
− sin 2π

m

sin 2π
m

cos 2π
m


for each scanned symbol. (The entries of Am are algebraic for any m [75].)

One may ask whether all regular languages L satisfying L = L∗ can be recognized

by stateless HVAs. We provide a negative answer for the deterministic model. The

language MOD23 is defined as {a2, a3}∗ = a∗ \ {a}, satisfying that MOD23 = MOD23∗.

MOD23 cannot be recognized by any 0-DHVA since a 0-DHVA which accepts a2 and a3,

also accepts a by Lemma 4.26.

4.6.4.3. Stateless 1-dimensional HVAs. We now focus on stateless HVAs whose vec-

tors have dimension 1 and demonstrate some results on stateless FAMWs. Note that

stateless FAMs do not process the end-marker $ by definition, since their single state

is also an accept state and the computation ends once $ is scanned in an accept state.

We start by comparing the class of languages recognized by stateless versions

of kBCAs, FAMWs, and BHVA(1)s. The equivalence between kBCA and FAMWs

and BHVA(1)s does not hold immediately in the stateless case. The reason is that the

counters can only be updated by the set {−1, 0, 1} in a single step since additional states

are needed to update the counters by arbitrary integers (see Fact 2.1). Furthermore,

the capability of multiplication with negative rational numbers brings additional power

to the stateless DBHVA(1)s.

Theorem 4.33. L(0-XFAMW) ( L(0-XBHVA(1)) where X ∈ {D,N}.

Proof. Let EVENAB = {anbn| n = 2k for some k ≥ 0}. The following 0-DBHVA(1)

recognizes EVENAB: The register is multiplied by (−2) and (1/2) when the machine
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reads an a and b respectively.

Suppose that there exists some 0-XFAMW recognizing EVENAB. Let ma and mb

be the positive rational numbers that are multiplied by the register upon reading a and

b. Since aabb ∈ EVENAB, it is true that m2
am

2
b = 1. Since both ma and mb are positive,

it is not possible that mamb = −1. It follows that mamb = 1, in which case the string

ab is accepted and we get a contradiction. Hence we conclude that EVENAB cannot be

recognized by any 0-XFAMW.

When the register is multiplied with only positive rational numbers, then we have

L(0-XFAMW)=L(0-XBHVA(1))Q+ .

For real-time and blind machines, we can state the following result.

Corollary 4.34. If L ∈ L(0-XFAMW) where X ∈ {D,N}, then L is commutative.

Proof. By Theorem 4.33, L is accepted by a 0-XBHVA(1). Since multiplication in

dimension 1 is commutative, the result follows by Theorem 4.29.

Let us recall Fact 2.3, which states that a bounded language is accepted by a

1NFAMW iff it is semilinear [6]. In the next theorem, we prove a similar result and

characterize the class of languages recognized by 0-DFAMWs. We show that any

language recognized by a 0-DFAMW is commutative and semilinear. Furthermore,

any commutative language whose Parikh image is the set of nonnegative solutions to a

system of linear homogenous Diophantine equations can be recognized by a 0-DFAMW.

Theorem 4.35. L ∈ L(0-DFAMW) iff L is commutative and φ(L) is the set of non-

negative integer solutions to a system of linear homogeneous Diophantine equations.

Proof. Let L be a language over the alphabet Σ = {σ1, . . . , σn} recognized by a 0-

DFAMW V . Let A = {a1, a2, . . . , an} be the set of rational numbers such that the
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register is multiplied with ai upon reading σi. Let {p1, p2, . . . , pk} be the set of prime

factors of the denominators and the numerators of the rational numbers in A. Then

each ai can be expressed as

ai =
p
x1i
1 p

x2i
2 · · · p

xki
k

p
y1i
1 p

y2i
2 · · · p

yki
k

.

If a string w is accepted by V , then the value of the register should be equal to

1 after reading w, which is possible only if

a
w|σ1|
1 a

w|σ2|
2 · · · aw|σn|

n = 1.

This leads to the following system of linear Diophantine equations in n variables.

(x11 − y11)w|σ1| + (x12 − y12)w|σ2| + · · ·+ (x1n − y1n)w|σn| = 0

(x21 − y21)w|σ1| + (x22 − y22)w|σ2| + · · ·+ (x2n − y2n)w|σn| = 0

...

(xk1 − yk1)w|σ1| + (xk2 − yk2)w|σ2| + · · ·+ (xkn − ykn)w|σn| = 0

For j = 1, . . . , k, the j’th equation is stating that the exponent of pj is equal to

0 after reading w.

Hence, we can conclude that the Parikh images of the accepted strings are the

nonnegative solutions to a system of linear homogeneous Diophantine equations. L is

commutative by Theorem 4.34. (One can further conclude that L is semilinear.)
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For the converse, suppose that we are given a commutative language L over the

alphabet Σ = {σ1, . . . , σn}. Let T be the set of Parikh images of the strings in L. T is

the set of nonnegative solutions to a system of, say, k linear homogeneous Diophantine

equations in n unknowns,

b11t1 + b12t2 + · · ·+ b1ntn = 0

b21t2 + b22t2 + · · ·+ b2ntn = 0

...

bk1t1 + bk2t2 + · · ·+ bkntn = 0

where (t1 t2 . . . tn) ∈ T .

We construct a 0-DFAMW V recognizing L as follows. We choose a set of k

distinct prime numbers, {p1, p2, . . . , pk}. When V reads σi, the register is multiplied

by

ai = pb1i1 pb2i2 · · · p
bki
k .

Suppose that a string w is accepted by V . Then

a
w|σ1|
1 a

w|σ2|
2 · · · aw|σn|

n = 1.

The product is equal to 1 if all of the exponents of the prime factors are equal to 0,

that is when
(
w|σ1| w|σ2| . . . w|σn|

)
∈ T . Hence we see that the set of accepted

strings are those with Parikh image in T . Since L is commutative, any string w with

φ(w) ∈ T belongs to L and we conclude that V recognizes L.
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Note that L(0-DFAMW)=L(0-1DFAMW), since a 0-1DFAMW that has an in-

struction to stay on some input symbol cannot read the rest of the string. The reasoning

of Lemma 4.8 applies.

4.6.4.4. Additional Results on Stateless Homing Vector Automata. One sees that the

nonregular language AB = {anbn|n ≥ 0} cannot be recognized by any 0-NHVA(k) for

any k, since AB 6= AB∗. On the other hand, EQ = {x ∈ {a, b}∗ | |x|a = |x|b} can be

recognized by a 0-DBHVA(1) with initial vector (1), and transition matrices Aa = (2)

and Ab = (1/2). It is possible to recognize the star of AB, even in the deterministic

and blind computation mode with a stateless homing vector automaton. Note that AB∗

cannot be recognized by any 1NFAMW [6]. The proof is due to Abuzer Yakaryılmaz

and can be found in [17].

Theorem 4.36. The language AB∗ = {{anbn}∗ | n ≥ 0} is recognized by a 0-DBHVA(10).

Nondeterministic HVAs are more powerful than their deterministic variants in

terms of language recognition in general. In the next theorem, we show that this is

also true for the stateless models.

Theorem 4.37. (i) L(0-DBHVA) ( L(0-NBHVA).

(ii) L(0-DHVA) ( L(0-NHVA).

Proof. Let us construct a 0-NBHVA(1) V recognizing LEQ = {x ∈ {a, b}∗ | |x|a ≤ |x|b}.

Starting with the initial vector (1), V multiplies its vector with A = (2) for each a and

with B1 = (1/2) or B2 = (1) for each b nondeterministically.

Suppose that LEQ can be recognized by a 0-DHVA(k) V ′. The strings w1 = b and

w2 = ba are accepted by V ′. By Lemma 4.26, the string w3 = a is also accepted by

V ′. We obtain a contradiction, and conclude that LEQ cannot be recognized by any

0-DHVA(k).
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Now let us compare the language recognition power of 1 and 2 dimensional state-

less HVAs.

Theorem 4.38. (i) L(0-DBHVA(1)) ( L(0-DBHVA(2)).

(ii) L(0-NBHVA(1)) ( L(0-NBHVA(2)).

Proof. Note that the language AB1
∗ = (ab)∗ can be recognized by a 0-DBHVA(2) by

Example 4.32. Assume that AB1
∗ is recognized by a 0-NBHVA(1). Since AB1

∗ is not

equal to its reverse, by Corollary 4.30 we get a contradiction. We conclude that AB1
∗

cannot be recognized by any 0-NBHVA(1).

Now, we compare the blind and non-blind versions of one dimensional HVAs.

Theorem 4.39. (i) L(0-DBHVA(1)) ( L(0-DHVA(1)).

(ii) L(0-NBHVA(1)) ( L(0-NHVA(1)).

Proof. Let us construct a 0-DHVA(1) V recognizing AB1
∗ = (ab)∗. The initial vector is

equal to (1). For each scanned a, V multiplies its vector with A= = (2) if it is equal

to its initial value, and with A 6= = (0) otherwise. For each scanned b, V multiplies its

vector with B= = (0) if it is equal to its initial value, and with B6= = (1/2) otherwise.

AB1
∗ cannot be recognized by any 0-NBHVA(1) as we saw in the proof of Theorem

4.38.

Let us look at some closure properties for the stateless models. All of the classes

associated with the stateless models are closed under the star operation since for any

language recognized by a stateless homing vector automaton, it is true that L = L∗.

Theorem 4.40. (i)
⋃
k L(0-DBHVA(k)) is closed under the following operation:

(a) intersection

(ii)
⋃
k L(0-DBHVA(k)) and L(0-DHVA) are not closed under the following opera-

tions:

(a) union
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(b) complement

(c) concatenation

Proof.

(i) (a) The proof of Theorem 4.25 that
⋃
k L(DBHVA(k)) is closed under intersec-

tion is also valid for stateless models.

(ii) (a) The languages MOD2 and MOD3 are recognized by 0-DBHVA(2) and 0-DBHVA(3)

respectively, by Example 4.32. Their union cannot be recognized by any 0-

DHVA(k), since a 0-DHVA(k) accepting the strings a2 and a3 should also

accept the non-member string a by Lemma 4.26.

(b) The complement of the language MODm (m > 1)is not recognized by any 0-

NHVA(k), since MODm contains a and any 0-NHVA(k) accepting a accepts

any member of a∗.

(c) The concatenation of MOD2 and MOD3, MOD23, cannot be recognized by any

0-DHVA.

⋃
k L(0-NBHVA(k)) and

⋃
k L(0-NHVA(k)) are not closed under complement.⋃

k L(0-NBHVA(k)) is closed under intersection. The proofs are identical.

4.7. Open Questions

What can we say about the relationship between real-time homing vector au-

tomata and one-way homing vector automata? We conjecture that one-way nonde-

terministic blind homing vector automata are more powerful than their real-time ver-

sions. Our candidate language is UPOW = {a2n|n ≥ 0}, which can be recognized by a

1NBHVA(2). Note that when the machine in consideration is deterministic and blind,

the real-time and one-way versions are equivalent in power.
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Can we show a separation result between the class of languages recognized based

on the set of matrices used during the transitions of a homing vector automaton?

Can we show a hierarchy result between the classes of languages recognized by

deterministic homing vector automata of dimensions k and k+1 for some k > 1, maybe

when the matrix entries are restricted to the set {−1, 0, 1}? Consider the family of

languages POW(k) = {anbkn|n ≥ 0}. We conjecture that it is not possible to recognize

POW(k) with a homing vector automaton of dimension less than k+1 with the restricted

set of matrices.

Let G be a group of k × k matrices. Can we always construct a 1NBHVA(k)G

recognizing the same language as a given G-automaton? (Note that we have proven

that this is the case for 1NBHVA(2)F2
and F2-automaton.)

Suppose that one can always find a suitable initial vector v such that for every

A ∈ G except the identity matrix, vA 6= v. Then one could construct the required

1NBHVA(k)G from the given G-automaton directly. For which groups G is it always

possible to find such a vector?

What can we say about the reverse direction? For instance, is every language

recognized by some 1NBHVA(2)F2
context-free?

We proved that 1NBHVA(k)s are more powerful than extended finite automata

when both are defined over 2 × 2 integer matrices. Is this result still true when both

models are defined over 3× 3 integer matrices?

Do 0-NHVA(k)s recognize every regular language L satisfying L = L∗? Is there

any nonregular language L satisfying L = L∗ that cannot be recognized by any stateless

HVA?

We proved that any language recognized by a 0-NFAMW is commutative. What

can we say about the non-blind case?
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We gave a characterization for the class of languages recognized by 0-DFAMWs.

Can we give a similar characterization for the non-blind and nondeterministic models?
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5. VALENCE GRAMMARS AND VALENCE AUTOMATA

In this chapter, we are going to focus on context-free valence grammars, valence

automata and valence pushdown automata.

We start by stating the formal definitions in Section 5.1. In Section 5.2, we show

that valence pushdown automata and finite valence automata are equivalent in terms

of language recognition power, using the well known equivalence between pushdown

automata and finite automata over polycyclic monoids. Then, we extend some results

proven for valence automata in [35] to context-free valence grammars and give the

properties of the set of languages generated by context-free valence grammars in Section

5.3. We state some open questions in Section 5.4.

5.1. Definitions

Let G = (N, T, P, S) be a context-free grammar where N is the set of variables,

T is the terminal alphabet, P ⊆ N × (N ∪ T )∗ is the set of rules or productions, and

S ∈ N is the start symbol. We will denote by ⇒ and ⇒∗ the step derivation relation

and its regular closure respectively. L(G) denotes the language {w ∈ T ∗ : S ⇒∗ w} of

words generated by G.

Given a monoid M , a context-free valence grammar over M [8] is a five-tuple

G = (N, T, P, S,M), where N, T, S are defined as before and P ⊆ N × (N ∪ T )∗ ×M

is a finite set of objects called valence rules. Every valence rule can be thus described

as an ordered pair p = (A→ α,m), where (A→ α) ∈ N × (N ∪ T )∗ and m ∈M . The

element m is called the valence of p.

The step derivation (⇒) of the valence grammar is defined as follows: (w,m)⇒

(w′,m′) if there exists a valence rule (A→ α, n) such that w = w1Aw2 and w′ = w1αw2

and m′ = mn. The regular closure of⇒ will be denoted by⇒∗. A derivation of G will

be said successful or valid if it is of the form (S, 1)⇒∗ (w, 1), that is, it transforms the
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pair (S, 1) into the pair (w, 1), after finitely many applications of the step derivation

relation. The language generated by G is the set of all the words w of T ∗ such that

(S, 1)⇒∗ (w, 1).

A context-free valence grammar is said to be regular if all of its rules are right-

linear, that is, every valence rule (A → α, n) is such that α = uX, where u ∈ T ∗ and

X ∈ N . The language families generated by context-free and regular valence grammars

over M are denoted by L(Val,CF,M) and L(Val,REG,M), respectively.

Let A = (Q,Σ,Γ, δ, q1, Qa) be a one-way nondeterministic pushdown automaton.

Given a monoid M , the nondeterministic valence pushdown automaton (valence PDA)

overM is the model of computation obtained fromA as follows: with every transition of

A is assigned an element of M , called the valence of the transition. Then the valence of

an arbitrary computation is defined as the product of the valences of all the transitions

of the computation (taken in the obvious order). A word of Σ∗ is said to be accepted by

the model if there exists an accepting computation for the word whose valence is the

identity of M . The set of all the accepted words is defined as the language accepted by

the valence pushdown automaton. The family of languages accepted by valence PDA

over M is denoted L(Val,PDA,M). It is worth noticing that the equivalence between

valence pushdown automata and valence context-free grammars does not hold for an

arbitrary monoid. However a result of [8] shows that the equivalence is true if M is a

commutative monoid.

In the case that pushdown automaton A is a finite state automaton, the cor-

responding valence model is called the valence automaton over M . This model coin-

cides with the M -automaton, and the family L(Val,NFA,M) of languages accepted

by valence automata is exactly L(M). The equivalence between valence automata and

regular valence grammars is proven in [8].

Introduced by [7], the valence grammars have been studied by various authors

including [8,76,77]. A through study of several remarkable structural properties of the

languages generated by the corresponding valence grammars has been done in [8], over
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arbitrary monoids and in particular over commutative groups. In [8], the following fact

is proven.

Fact 5.1. [8] Context-free valence grammars over finite or commutative monoids are

not stronger than context-free valence grammars over finite or commutative groups.

It is left open in [8] whether context-free grammars with valences from finite

monoids are more powerful than ordinary context-free grammars and the question is

answered in [78].

Fact 5.2. [78] Context-free grammars over finite monoids recognize exactly the class

of context-free languages.

Now we are going to present some definitions about monoids and semigroups.

Let S be a semigroup. Given subsets A and B of semigroups S, AB is the set

{ab|a ∈ A, b ∈ B}. An ideal I of a semigroup S is a subset of S with the property that

SIS ⊆ I.

The binary relation ρI defined by

aρIb ⇐⇒ either a = b or both a and b belong to I

is a congruence. The equivalence classes of S mod ρI are I itself and every one-element

set {x} with x ∈ S \ I. The quotient semigroup S/ρI is written as S/I and is called

the Rees quotient semigroup [79].

S/I = {I} ∪ {{x}|x ∈ S \ I}

A semigroup is called simple if it contains no proper ideal. A semigroup S with

a zero element is called 0-simple if the only ideals of S are {0} and S itself, and

SS 6= {0}.
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5.2. Equivalence of Finite and Pushdown Automata with Valences

In this section, we are going to prove that valence pushdown automata are only

as powerful as valence automata.

Let us recall the definition of polycyclic monoid which we have introduced in

Subsection 3.3.3. Let X be a finite alphabet and let X∗ be the free monoid of words

over X. For each symbol x ∈ X, let Px and Qx be functions from X∗ into X∗ defined

as follows: for every u ∈ X∗,

Px(u) = ux, Qx(ux) = u.

The monoid of all partial functions on X∗ generated by the set of functions {Px, Qx |x ∈

X} is called the polycyclic monoid on X. We will focus on the polycyclic monoid of

rank 2, which will be denoted by P2, since it contains every polycyclic monoid of

countable rank.

Theorem 5.3. For any monoid M , L(Val,PDA,M) = L(Val,NFA, P2 ×M).

Proof. Let L ∈ L(Val,PDA,M) and P = {Q,Σ, X, δ, q1, Qa,M} be a valence PDA

recognizing L. We know that a PDA with stack alphabet X is equivalent to a valence

automaton over P (X). Hence, P can be seen as an NFA where two distinct valences

(one in P (X) and one in M) are assigned to each transition. An equivalent valence

automaton E = {Q,Σ, P (X)×M, δ′, q1, Qa} can be constructed, where a valence from

the monoid P (X)×M is assigned to each transition. Recall that the partial functions

Qa and Pb model the operations of popping a and pushing b respectively. A transition

of P of the form (q′, b,m) ∈ δ(q, σ, a) where a, b ∈ Xε, q, q
′ ∈ Q, σ ∈ Σε and m ∈M can

be expressed equivalently as (q′, (QaPb,m)) ∈ δ′(q, σ) where (QaPb,m) ∈ P (X)×M .

A string is accepted by E if and only if the product of the valences labeling the

transitions in E is equal to (1, 1), equivalently when the product of the valences labeling

the transitions in P is equal to the identity element of M and the stack is empty. Since
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any polycyclic monoid is embedded in P2, we conclude that L ∈ L(Val,NFA,P2×M).

Conversely, let L ∈ L(Val,NFA,P2×M) and let E = {Q,Σ,P2×M, δ, q1, Qa} be

a valence automaton over P2 ×M recognizing L. Suppose that (p,m) ∈ P2 ×M is a

valence labeling a transition of E . The product of the labels of a computation which

involves a transition labeled by the zero element of P2 cannot be equal to the identity

element. Hence we can remove such transitions. Any nonzero element p of P2 can be

written as

Qx1Qx2 . . . QxnPy1Py2 . . . Pyo

for some n, o ∈ N and xi, yi ∈ Xε, after canceling out elements of the form PaQa and

PbQb, where X = {a, b} is the generator set for P2. The product can be interpreted

as a series of pop operations followed by a series of push operations performed by

a PDA, without consuming any input symbol. Hence, an equivalent valence PDA

P = {Q′,Σ, X, δ′, q1, Qa,M} can be constructed where a valence from M is assigned to

each transition. Let (q′, (p,m)) ∈ δ(q, σ) where q, q′ ∈ Q, σ ∈ Σε, (p,m) ∈ P2×M and

p = Qx1Qx2 . . . QxnPy1Py2 . . . Pyo be a transition in E . In P, we need additional n + o

states {q1, . . . , qn+o} /∈ Q and the following transitions to mimic that specific transition

of E .

(q1, ε,m) ∈ δ′(q, σ, x1)

(q2, ε, 1) ∈ δ′(q1, ε, x2)
...

(qn+1, ε, 1) ∈ δ′(qn, ε, xn)

(qn+2, y1, 1) ∈ δ′(qn+1, ε, ε)

(qn+3, y2, 1) ∈ δ′(qn+2, ε, ε)

...

(q′, yo, 1) ∈ δ′(qn+o, ε, ε)
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A string is accepted by P if and only if the product of the valences labeling

the transitions in P is equal to the identity element of M and the stack is empty,

equivalently when the product of the valences labeling the transitions in E is equal to

(1, 1). We conclude that L ∈ L(Val,PDA,M).

Note that whenM is commutative, the equality L(Val,CF,M) = L(Val,NFA,P2×

M) also holds.

Corollary 5.4. Let M be a polycyclic monoid of rank 2 or more. Then L(Val,PDA,M)

is the class of recursively enumerable languages.

Proof. It is known that L(Val,NFA,M×M) is the class of recursively enumerable lan-

guages [33] when M is a polycyclic monoid of rank 2 or more. Since L(Val,PDA,M) =

L(Val,NFA,P2 ×M), by Theorem 5.3, the result follows.

5.3. Context-free Valence Languages

It is known that the class of languages generated by regular valence grammars

and the class of languages recognized by valence automata coincide [8]. In this section,

we are going to prove that the results proven in [35] which hold for valence automata

and therefore regular valence grammars, also hold for context-free valence grammars.

Although the proofs are almost identical, they are presented here for completeness.

Note that the same proofs can be also adapted to valence PDA.

In [35] Proposition 4.1.1, it is shown that the elements belonging to a proper ideal

of a monoid do not have any use in the corresponding monoid automaton. We show

that the same result holds for context-free valence grammars.

Proposition 5.5. Let I be a proper ideal of a monoid M . Then L(Val,CF,M) =

L(Val,CF,M/I).
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Proof. Let L ∈ L(Val,CF,M) and let G be a context-free valence grammar over the

monoid M such that L(G) = L. The product of the valences which appear in a deriva-

tion containing a rule with valence x ∈ I, will itself belong to I. Since I is a proper ideal

and 1 /∈ I, such a derivation is not valid. Hence any such rules can be removed from the

grammar and we can assume that G has no such rules. For any x1, x2, . . . , xn ∈M \ I,

it follows that x1 . . . xn = 1 in M if and only if {x1}{x2} . . . {xn} = {1} in M/I. Let

G′ be the context-free grammar with valences in M/I, obtained from G by replacing

each valence x ∈ M with {x}. It follows that a string w has a valid derivation in G if

and only if the product of the valences is mapped to {1} in G′. Hence L(G′) = L.

Conversely let L ∈ L(Val,CF,M/I) and let G′ be a context-free grammar over

the monoid M/I such that L(G′) = L. Suppose that there exists a valid derivation

consisting of a rule with I as the valence. Then the product of the valences of the

whole derivation will be I, which is not possible. Let G be the context-free grammar

with valences in M , obtained from G′ by replacing each valence {x} ∈ M/I with x.

Since {x1}{x2} . . . {xn} = {1} in M/I if and only if x1 . . . xn = 1 in M , a string w has

a valid derivation in G if and only if the product of the valences is mapped to {1} in

G′. Hence L(G) = L.

Let S be a semigroup. S is the null semigroup if it has an absorbing element zero

and if the product of any two elements in S is equal to zero. A null semigroup with

two elements is denoted by O2.

The following corollary is analogous to [35] Cor. 4.1.2.

Corollary 5.6. For every monoid M , there is a simple or 0-simple monoid N such

that L(Val,CF,M) = L(Val,CF, N).

Proof. If M has no proper ideals then it is simple. Otherwise, let I be the union

of all proper ideals of M and let N = M/I. We can conclude from the proof of

Cor. 4.1.2 [35] that N2 = 0 or N is 0-simple. If N2 = 0, then N is O2 and the

semigroup O2 does not add any power to the grammar since it does not even contain



127

the identity element. Hence, L(Val,CF,O2) = L(Val,CF, {1}) where {1} is the trivial

monoid which is simple. In the latter case N is 0-simple and by Proposition 5.5,

L(Val,CF,M) = L(Val,CF,M/I) = L(Val,CF, N).

Proposition 4.1.3 of [35] states that a finite automaton over a monoid with a zero

element is no more powerful then a finite automaton over a version of the same monoid

from which the zero element has been removed, in terms of language recognition. The

result is still true for context-free valence grammars since the same proof idea applies.

The following notation is used: M0 = M ∪{0} if M has no zero element and M0 = M

otherwise.

Proposition 5.7. Let M be a monoid. Then L(Val,CF,M0) = L(Val,CF,M).

Proof. Since M ⊆ M0, it follows that L(Val,CF,M) ⊆ L(Val,CF,M0). Suppose

L ∈ L(Val,CF,M0) and let G be a context-free valence grammar with valences in M0

and L(G) = L. Note that a valid derivation cannot contain a rule with a zero valence

since otherwise the product of the valences would be equal to zero. Any such rules can

be removed from G to obtain G′, a context-free grammar with valences in M , without

changing the language, and L ∈ L(G′).

In the case |X| = 1, the monoid P (X) coincides with the well-known structure

of bicyclic monoid which will be denoted by B.

Fact 5.8. [35] A simple (0-simple) monoid with identity 1 is either a group (respec-

tively, a group with 0 adjoined) or contains a copy of the bicyclic monoid as a submonoid

having 1 as its identity element.

Theorem 5.9. Let M be a monoid. Then either L(Val,CF,M) = L(Val,CF, G) for

some group G, or L(Val,CF, N) ⊆ L(Val,CF,B).

Proof. Let M be a monoid. By Corollary 5.6, then L(Val,CF,M) = L(Val,CF, N)

for some simple or 0-simple monoid. By Fact 5.8, N is either a group (or a group
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with zero adjoined) or contains a copy of the bicyclic monoid. If N is a group, then

the result follows. If N is a group with zero adjoined, then by 5.7, L(Val,CF, N) =

L(Val,CF, G) for some group G. Otherwise, it should be the case that L(Val,CF, N) ⊆

L(Val,CF,B).

Now we are ready to prove the main theorem of the section which will allow

us to determine the properties of the set of languages generated by context-free va-

lence grammars. We need the following proposition which is the grammar analogue of

Proposition 1 of [37].

Proposition 5.10. Let M be a monoid, and suppose that L is accepted by a context-

free valence grammar over M . Then there exists a finitely generated submonoid N of

M such that L is accepted by a context-free valence grammar over N .

Proof. There are only finitely many valences appearing in the rules of a grammar since

the set of rules of a grammar is finite. Hence, the valences appearing in derivations

are from the submonoid N of M generated by those elements. So the grammar can be

viewed as a context-free valence grammar over N .

Recall that a group G is locally finite if every finitely generated subgroup of G is

finite and periodic if every element of the group has finite order.

Theorem 5.11. Let M be a monoid. Then L(Val,CF,M) either

(i) equals CF,

(ii) contains L(Val,CF,Z) ,

(iii) contains L(Val,CF,B) or

(iv) is equal to L(Val,CF, G) for G an infinite periodic group which is not locally

finite.
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Proof. Let M be a monoid. Then either L(Val,CF,M) = L(Val,CF, G) for some group

G, or L(Val,CF, N) ⊆ L(Val,CF,B). Then in the former case (iii) holds. In the latter

case L(Val,CF,M) = L(Val,CF, G) for some group N .

In the latter case, if N is a group with zero adjoined, then by Proposition 5.7 we

know that L(Val,CF, N) = L(Val,CF, G) for some group G. If G is not periodic, then

it has an element of infinite order which generates a subgroup isomorphic to Z and

hence (iii) follows. Otherwise, suppose that G is locally finite. By Proposition 5.10,

every language in L(Val,CF, G) belongs to L(Val,CF, H) for some finitely generated

subgroup H of G. Since G is locally finite, H is finite. Any language L(Val,CF, H) is

context-free by a result from [78] and hence (i) holds. The only remaining case is that

G is a periodic group which is not locally finite, in which case (iv) holds.

The result about valence grammars over commutative monoids which we have

stated in Fact 5.1, now follows as a corollary of Theorem 5.11.

Corollary 5.12. Let M be a commutative monoid. Then L(Val,CF,M) = L(Val,CF, G)

for some group G.

Proof. Since no commutative monoid M can contain a copy of the bicyclic monoid as

a submonoid, the result follows by the proof of Theorem 5.11.

5.4. Open Questions

We proved that a valence PDA over M is equivalent to a valence automaton over

P2×M . Can we prove a similar equivalence result for context-free valence grammars?

In Theorem 5.11, we conclude that L(Val,CF,M) contains the class L(Val,CF,B)

when M is a monoid that contains B. Since B is not commutative, no correspondence

with valence PDA exists, and little is known about the class L(Val,CF,B), except that

it contains the set of partially blind one counter languages. What can we say further

about L(Val,CF,B)?
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6. CONCLUSION

The main purpose of this thesis is to explore various computational models with

storage. We mainly examine extended finite automata and homing vector automata, in-

vestigating the language recognition power of these models under different restrictions.

We also present several results about valence pushdown automata and context-free

valence grammars.

Matrices have a fundamental role in this study. Focusing on finite automata over

matrix groups, both models can be regarded as a finite automaton equipped with a

storage mechanism that is modified through matrix multiplications.

We first examine the class of languages recognized by finite automata over rational

and integer matrix groups and compare them with the previously known language

classes. Our findings can be summarized as follows:

• Finite automata over the group of 2 × 2 integer matrices recognize exactly the

class of context-free languages.

• Finite automata over the group of 2×2 rational matrices with determinant 1 can

recognize some non-context-free languages.

Together with the previous results, the overall picture is given in Figure 6.1. The

question mark indicates that the existence of a language in the particular subset is

unknown.

Next we analyze the language recognition power of extended finite automata

under time restriction. We prove that the growth rate of the group is effective in the

language recognition power of the corresponding group automaton, when a time bound

is imposed on the machine. Using this result we prove that there exists a context-free

language which cannot be recognized by any G-automata in polynomial time if the

group G has polynomial growth. Furthermore, we investigate the class of languages
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Figure 6.1. The hierarchy of the classes of languages recognized by extended finite

automata over integer and rational matrix groups

recognized by group automata in linear-time and obtain the following results:

• Free group automata recognize exactly the class of context-free languages in linear

time.

• Heisenberg group automata cannot recognize some context-free languages in lin-

ear time.

• The class of languages recognized by finite automata over the group of 3 × 3

integer matrices is a proper superclass of the class of languages recognized by

Heisenberg group automata under the restriction of linear time.

We investigate the link between the decidability problems for matrix groups and

the corresponding group automata. We provide alternative proofs for the decidability

of the subsemigroup membership problem for the group of 2× 2 integer matrices and
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the identity problem for the monoid of 2 × 2 matrices with integer entries. We also

prove the undecidability of the emptiness problem for finite automata over 4×4 integer

matrix groups.

Another way we focus on matrices is through the study of the homing vector

automaton model, a finite automaton equipped with a vector. Like in many classical

models where the acceptance condition is ending with the initial register value, a string

is accepted by a homing vector automaton if the vector is equal to its initial value after

a series of multiplications with some rational valued matrices. We define different

variants of the machine such as real-time, one-way, deterministic, nondeterministic,

blind, and non-blind and we add further restrictions on the machine by restricting the

matrices multiplied with the register to a specific set. We investigate the relationship

between homing vector automata and counter automata, proving that one-dimensional

homing vector automata are equivalent to blind counter automata and the two models

are incomparable when the computation is not blind. One-way nondeterministic blind

homing vector automata are closely linked to extended finite automata over matrix

groups and this link extends our knowledge on homing vector automata. We visualize

our findings in Figure 6.2 and summarize our findings as follows:

• The class of languages recognized by one-way nondeterministic blind homing

vector automata over the group of 2 × 2 integer matrices with determinant 1

contains the class of context-free languages.

• Over the monoid of 2 × 2 integer matrices, the class of languages recognized by

one-way nondeterministic blind homing vector automata is a proper superset of

the class of languages recognized by extended finite automata.

• Over the monoid of 3 × 3 integer matrices, the class of languages recognized

by one-way nondeterministic blind homing vector automata is a proper superset

of the class of languages recognized by one-way nondeterministic blind counter

automata.

• The class of languages recognized by one-way nondeterministic blind homing

vector automata over the group of 4 × 4 integer matrices with determinant 1 is
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Figure 6.2. The hierarchy of languages recognized by one-way nondeterministic blind

homing vector automata with rational and integer entries

the class of recursively enumerable languages.

We propose a new method called the generalized Stern-Brocot encoding, which

enables encoding any string over an alphabet of size k into a k-dimensional vector.

The encoding can be carried out in real-time with k× k matrices whose entries belong

to the set {−1, 0, 1}. We further explore real-time homing vector automata, by estab-

lishing some separation results among the various variants and discussing some closure

properties. We prove that any unary language recognized by a real-time deterministic

homing vector automaton is regular. Continuing our study on real-time homing vector

automata, we investigate their stateless versions. We examine the language recognition

power of different versions of these machines and make some observations. Our study

of the stateless real-time deterministic blind one-dimensional homing vector automata

yields the following characterization for the class of languages recognized by stateless

deterministic finite automata with multiplication without equality.
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• A language is recognized by a stateless deterministic finite automata with mul-

tiplication without equality iff it is commutative and its Parikh image is the set

of nonnegative integer solutions to a system of linear homogeneous Diophantine

equations.

Finally we look at the problem of string separation by homing vector automata and

vector automata, observing that these models can separate any pair of words by using

2-dimensional vectors in the real-time, deterministic and blind computation mode.

Other computational models we investigate are the valence pushdown automata

and context-free valence grammars. We prove that valence pushdown automata are

equivalent to valence automata defined over some specific monoid. We generalize some

results proven in the context of extended finite automata to context-free valence gram-

mars.

To conclude, this research opens up a new perspective for analyzing the decision

problems of matrix groups and various automaton models, and any computational

model than can be traced by matrix multiplications. The study of extended finite

automata over matrix groups and under time restriction contributes to the current

literature on the topic. The classes of languages recognized by extended finite automata

and homing vector automata over integer matrices of dimensions 2, 3, and 4 provides

a different point of view for classifying languages.

Many questions in need of further investigation are presented throughout the the-

sis. The future research on the subject should concentrate on the language recognition

power of extended finite automata and homing vector automata over 3 × 3 integer

matrices. We conjecture that these classes are the proper subsets of the class of re-

cursively enumerable languages. Note that for the group of 3× 3 integer matrices, the

decidability of the membership problem is also open.
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18. Salehi, Ö., F. D’Alessandro and A. C. C. Say, “Generalized results on monoids

as memory”, Proceedings of the 15th International Conference on Automata and



137

Formal Languages,AFL’17 , Vol. 252 of EPTCS , pp. 234–247, 2017.

19. Minsky, M., Recursive Unsolvability of Post’s Problem of “tag”: And Other Topics

in Theory of Truing Machines , Massachusetts Institute of Technology, Lincoln

Laboratory, 1960.

20. Fischer, P. C., A. R. Meyer and A. L. Rosenberg, “Counter machines and counter

languages”, Mathematical Systems Theory , Vol. 2, No. 3, pp. 265–283, 1968.

21. Greibach, S. A., “Remarks on the complexity of nondeterministic counter lan-

guages”, Theoretical Computer Science, Vol. 1, No. 4, pp. 269 – 288, 1976.

22. Petersen, H., “Simulations by time-bounded counter machines”, International

Journal of Foundations of Computer Science, Vol. 22, pp. 395–409, 2011.

23. Greibach, S. A., “Remarks on blind and partially blind one-way multicounter ma-

chines”, Theoretical Computer Science, Vol. 7, pp. 311–324, 1978.

24. Fraleigh, J. and V. Katz, A First Course in Abstract Algebra, Addison-Wesley

world student series, Addison-Wesley, 2003.

25. Lyndon, R. C. and P. E. Schupp, Combinatorial Group Theory , Springer-Verlag,

1977.

26. Schreier, O., “Die Untergruppen der freien Gruppen”, Abhandlungen aus dem

Mathematischen Seminar der Universität Hamburg , Vol. 5, No. 1, pp. 161–183,

1927.

27. Nielsen, J., “Om Regning med ikke-kommutative Faktorer og dens Anvendelse i

Gruppeteorien”, Matematisk Tidsskrift. B , pp. 77–94, 1921.

28. Gilman, R., “Formal languages and infinite groups”, Geometric and computational

perspectives on infinite groups , pp. 27–51, 1996.



138

29. Eilenberg, S. and M. Schützenberger, “Rational sets in commutative monoids”,

Journal of Algebra, Vol. 13, No. 2, pp. 173 – 191, 1969.

30. Corson, J. M., “Extended finite automata and word problems”, International Jour-

nal of Algebra and Computation, Vol. 15, No. 03, pp. 455–466, 2005.

31. Dassow, J. and V. Mitrana, “Finite automata over free groups”, International

Journal of Algebra and Computation, Vol. 10, No. 06, pp. 725–737, 2000.

32. Mitrana, V. and R. Stiebe, “Extended finite automata over groups”, Discrete Ap-

plied Mathematics , Vol. 108, No. 3, pp. 287–300, 2001.

33. Kambites, M., “Formal languages and groups as memory”, Communications in

Algebra, Vol. 37, No. 1, pp. 193–208, 2009.

34. Render, E. and M. Kambites, “Rational subsets of polycyclic monoids and valence

automata”, Inf. Comput., Vol. 207, No. 11, pp. 1329–1339, 2009.

35. Render, E., Rational Monoid and Semigroup Automata, Ph.D. Thesis, University

of Manchester, 2010.

36. Elston, G. Z. and G. Ostheimer, “On groups whose word problem is solved by

a counter automaton”, Theoretical Computer Science, Vol. 320, No. 2–3, pp. 175

– 185, 2004.

37. Kambites, M., “Word problems recognisable by deterministic blind monoid au-

tomata”, Theoretical Computer Science, Vol. 362, No. 1, pp. 232–237, 2006.

38. Elder, M., M. and G. Ostheimer, “On groups and counter automata”, International

Journal of Algebra and Computation, Vol. 18, No. 08, pp. 1345–1364, 2008.

39. Corson, J. M. and L. L. Ross, “Automata with counters that recognize word prob-

lems of free products”, International Journal of Foundations of Computer Science,

Vol. 26, No. 01, pp. 79–98, 2015.



139

40. Bishop-Ross, R., J. M. Corson and J. L. Ross, “Context-sensitive languages and

G-automata”, International Journal of Algebra and Computation, Vol. 27, No. 02,

pp. 237–249, 2017.

41. Zetzsche, G., Monoids as Storage Mechanisms , Phd thesis, Technische Universität

Kaiserslautern, 2016.

42. Cleary, S., M. Elder and G. Ostheimer, “The word problem distinguishes counter

languages”, arXiv preprint math/0606415 , 2006.

43. Kargapolov, M. I. and J. I. Merzljakov, Fundamentals of the Theory of Groups ,

Springer-Verlag, 1979.

44. Brown, N. P. and N. Ozawa, C*-Algebras and Finite-Dimensional Approximations ,

Vol. 88, American Mathematical Soc., 2008.

45. Grigorchuk, R. I., “On growth in group theory”, Proceedings of the International

Congress of Mathematicians , Vol. 1, pp. 325–338, 1990.

46. Nivat, M. and J. F. Perrot, “Une généralisation du monöıde bicyclique”, Comptes
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56. Choffrut, C. and J. Karhumäki, “Some decision problems on integer matrices”,

RAIRO-Theoretical Informatics and Applications , Vol. 39, No. 1, pp. 125–131,

2005.

57. Potapov, I. and P. Semukhin, “Membership problem in GL(2, Z) extended by sin-

gular matrices”, LIPIcs-Leibniz International Proceedings in Informatics , Vol. 83,

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

58. Potapov, I. and P. Semukhin, “Decidability of the membership problem for 2× 2 in-

teger matrices”, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium

on Discrete Algorithms , pp. 170–186, SIAM, 2017.

59. Ko, S.-K., R. Niskanen and I. Potapov, “On the identity problem for the spe-

cial linear group and the Heisenberg group”, 45th International Colloquium on

Automata, Languages, and Programming (ICALP 2018), Vol. 107 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs), pp. 132:1–132:15, 2018.



141

60. Bell, P. C. and I. Potapov, “On the undecidability of the identity correspondence

problem and its applications for word and matrix semigroups”, International Jour-

nal of Foundations of Computer Science, Vol. 21, No. 06, pp. 963–978, 2010.

61. Kambites, M., P. V. Silva and B. Steinberg, “On the rational subset problem for

groups”, Journal of Algebra, Vol. 309, No. 2, pp. 622–639, 2007.

62. Lohrey, M., “The rational subset membership problem for groups: a survey”,

Groups St Andrews , Vol. 422, pp. 368–389, 2013.

63. Zetzsche, G., “The emptiness problem for valence automata or: Another decidable

extension of Petri nets”, International Workshop on Reachability Problems , pp.

166–178, Springer, 2015.

64. Baumslag, G. and J. E. Roseblade, “Subgroups of direct products of free groups”,

Journal of the London Mathematical Society , Vol. 2, No. 1, pp. 44–52, 1984.
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