
DISTANCE APPROXIMATIONS BETWEEN HIGH AND MULTI–DIMENSIONAL

STRUCTURES

by

Murat Semerci

B.S., Electrical & Electronics Engineering, Boğaziçi University, 2005

B.S., Computer Engineering, Boğaziçi University, 2005

M.S., Computer Engineering, Boğaziçi University, 2007

M.S., Computer Science, Rensselaer Polytechnic Institute, 2010

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2019

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Prof. Ali Taylan Cemgil, for providing

me my “fourth” attempt to pursue a PhD degree. There is no formal way to express my

gratitude. He has always boosted my self-confidence and courage. I consider him not

only as my academic advisor but also as a senior colleague who always points out the

right direction and as a close friend who harshly criticizes me whenever I am wrong.

Prof. Bülent Sankur, inarguably, has a great influence on me. I recognize him as

my step thesis supervisor. He has always been so kind to devote me his precious time

whenever I needed. He has been there to give me the impulse to drive forward whenever

and wherever I got stuck. Prof. Cem Ersoy has also been so polite and understanding

to track my progress throughout all my PhD adventure. He has contributed to my

studies with his valuable comments and feedback. I also thank my thesis committe for

their patience, and feedback they have committed for this thesis.

During this so-long journey (a total of 9 years), I have been lucky to meet great

companions. I can never forget Dr. Doğaç Başaran and Dr. Nazlı Güney for supporting

me at one of the biggest turmoil in my life. At the right time and point, they encouraged

me to hold on and continue to pursue my PhD. I want to thank Barış Kurt, Yusuf

Taha Ceritli and Mehmet Yamaç for their collaboration and cooperation. I would also

announce my thankfulness to all the other members of Perceptual Intelligence and

Media Lab. for their help, support and friendship.

The most significant round is definitely reserved for my family. My parents, Garip

and Nuriye Semerci, have raised me to be the man I am now. They unquestionably

support all my decisions, no matter what I decide to do. Feeling their presence and

support behind me provide me all the power, patience and endurance I need. My sister,

Selma Kalkan, and her esteemed husband, Adem Kalkan, have always been there, even

in the darkest times, being my lighthouse to the exit. Their children, my niece and

nephew, Havva Özge and Umut Efe have proven me the other tastes and enjoyments

of the life. My parents-in-law, Harbiye Yalabuk and Ali Yalabuk, and brother-in-law,

iv

Ufuk Yalabuk, have always believed in me and they never doubt my ability to succeed.

Undisputedly, my beloved wife, Elif Semerci, gets my highest gratitude. She has

been the center of my universe since our marriage and she has been along with me

during all my academic journey. She has always boosted me when I was down and she

had the faith that one day I would be able to accomplish my PhD. She has cooled me

down whenever I was full-charged to explode. The words are unutterable to express

how lucky I feel to have her in my life. I can explicitly say that she has a substantial

moral share on the creation of this thesis. Thanks for just being you!

v

ABSTRACT

DISTANCE APPROXIMATIONS BETWEEN HIGH AND

MULTI–DIMENSIONAL STRUCTURES

In this thesis, we focus on distance approximation methods between high and

multi-dimensional structures and their applications. Two novel methods using distance

approximations are proposed and they are applied to anomaly detection in cyber secu-

rity (Distributed Denial of Service -DDoS- attack and attacker detection) and tensor

decomposition in object retrieval (image and video classification on scarce data). At

first, we consider an autonomous cyber security system that consists of two compo-

nents: A monitor for detection of DDoS attacks and a discriminator for detection of

users in the system with malicious intents. A novel adaptive real time change-point

detection model that tracks the changes in the Mahalanobis distances between sam-

pled feature vectors in the monitored system accounts for possible DDoS attacks. A

clustering model that runs over the similarity scores of behavioral patterns between

the users is used for segregating the malicious from the innocent. Secondly, we propose

a discriminative tensor decomposition with large margin (LMTD), which is a distance

based model that finds the projection directions where the nearest neighbor classifi-

cation accuracy is improved over the projected instances. We experiment the cyber

security system in a simulated SIP communication environment. Both the attack and

attacker detection components are compared with some competitors in the literature.

The tensor decomposition is applied to the image and video retrieval problem, where

the data is scarce, and its performance also is compared with other decomposition

methods. The experimental results are reported for both applications. It is shown that

the proposed methods perform higher accuracy rates than their competitors.

vi

ÖZET

YÜKSEK VE ÇOK BOYUTLU YAPILAR ARASINDAKİ

MESAFE YAKLAŞIMLARI

Bu tezde, yüksek ve çok boyutlu yapılar arasındaki mesafe yakınsama yor-

damlarına ve onların uygulamalarına odaklanıyoruz. İki yeni mesafe yakınsama kul-

lanan yöntem önerilmekte ve onlar siber güvenlikte sıradışılık tespitine (Dağıtılmış

Hizmet Reddi (DHR) saldırı ve saldırgan tespiti) ve nesne geri çağırmada gerey (tensör)

ayrıştırmaya (kıt veride imge ve görüntü sınıflandırma) uygulanmaktadır. İlk olarak, iki

bileşenden oluşan bir özerk (otonom) siber güvenlik sistemi düşünüyoruz: DHR saldırısı

tespiti için bir izleyici ve sistemdeki kötü niyetli kullanıcıların tespiti için bir ayırt

edici. Örneklenmiş öznitelik vektörleri arasındaki Mahalanobis uzaklığının değişimini

takip eden bir özgün uyarlanabilir değişim noktası tespit modeli izlenilen dizgedeki

olası DHR saldırılarının hesabını yapmaktadır. Kullanıcıların davranışsal örüntüleri

arasındaki benzerlik skorları üstünde koşan bir öbekleme modeli kötü niyetlileri ma-

sumlardan ayırmakta kullanılır. İkinci olarak, izdüşülmüş örnekler üzerinde en yakın

komşu sınıflandırma doğruluğunu iyileştiren izdüşüm yönlerini bulan uzaklık tabanlı

bir geniş kenar paylı ayrımcı gerey ayrıştırması (GKAGA) öneriyoruz. Siber güvenlik

dizgesini benzetilmiş SIP haberleşme ortamında deniyoruz. Hem saldırı hem saldırgan

tespiti bileşenleri yazındaki bazı rakipler ile karşılaştırılmaktadır. Gerey ayrıştırma,

kıt veri durumunda, imge ve görüntü geri çağırma sorununa uygulanmakta ve başarımı

diğer ayrıştırma yöntemleri ile karşılaştırılmaktadır. Her iki uygulama için deneysel

sonuçlar rapor edilir. Önerilen metotların rakiplerinden daha yüksek doğruluk oranı

sergiledikleri gösterilmektedir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

LIST OF SYMBOLS . xiv

LIST OF ACRONYMS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

1.1. Related Work . 4

1.2. The Objective and the Contributions of This Dissertation 9

2. MATHEMATICAL BACKGROUND AND DISTANCE FUNCTIONS 12

2.1. Mathematical Notation . 12

2.2. Distance Functions . 14

2.3. Large Margin Distance Models . 15

3. ADAPTIVE DISTANCE BASED CHANGE-POINT DETECTION 17

3.1. Adaptive Distance Based Change-Point Detection Estimator 20

3.1.1. Distance Based Change-Point Model 20

3.1.2. Thresholding of the Moving Distances 23

3.2. Malicious User Discrimination . 24

3.2.1. Sequence Alignment Kernel . 25

3.2.2. User Distance Kernel . 28

3.2.3. Spectral Clustering . 28

3.2.4. Automatic Identification of Malicious Users Cluster 29

4. DISCRIMINATIVE TENSOR DECOMPOSITION WITH LARGE MARGIN 32

4.1. Tensor Decomposition and Distances Between Tensors 32

4.2. Discriminative Tensor Decomposition With Large Margin 36

4.2.1. LMTD-C: Large Margin Tensor Decomposition - Core 37

4.2.2. LMTD-F: Large Margin Tensor Decomposition - Full 44

5. APPLICATIONS, EXPERIMENTS AND RESULTS 48

viii

5.1. DDoS Detection and Attacker Discrimination 48

5.1.1. Simulation Environment . 48

5.1.2. Comparison with a Competitor Algorithm 53

5.1.3. Effect of the Observation Interval Length 56

5.1.4. Effect of Traffic Intensity . 56

5.1.5. Effect of Overlapping Attack Intervals 57

5.1.6. Detection Performance for Time Overlapped Attacks 58

5.1.7. Effects of DCPM Parameters 59

5.1.8. Performance of Attacker Identification Methods 59

5.1.9. Time Comparison of Attacker Identification Methods 61

5.2. Image and Video Retrieval . 65

5.2.1. Feature Extraction Algorithms 66

5.2.2. Data Sets . 68

5.2.3. Experimental Setups . 72

5.2.4. Performance Comparisons of the Methods 73

5.2.5. Sensitivity Analysis over Feature Dimensionality 75

5.2.6. Sensitivity Analysis over Training Set Size 80

6. CONCLUSION . 83

REFERENCES . 88

APPENDIX A: DERIVATIONS OF LOGDET AND LMTD GRADIENT . . . 98

A.1. Derivation of LogDet . 98

A.2. Metric Functions . 100

A.3. Derivation of Gradients for LMTDs . 100

ix

LIST OF FIGURES

Figure 3.1. Definition of user count vector . 18

Figure 3.2. Definition of server state vector 19

Figure 3.3. Definition of timestamped user message vector 19

Figure 3.4. Adaptive online distance based change-point detection algorithm . 22

Figure 3.5. All possible alignments of two sequences 26

Figure 3.6. Normalized Laplacian spectral clustering 30

Figure 3.7. Cluster selection heuristics . 31

Figure 3.8. Attacker detection . 31

Figure 4.1. CP decomposition of a 3-way array 33

Figure 4.2. Truncated Tucker decomposition of a 3-way array 34

Figure 4.3. Large margin tensor decomposition - core 38

Figure 4.4. Algorithm of LMTD-C. 43

Figure 4.5. Large margin tensor decomposition - full 44

Figure 4.6. Algorithm of LMTD-F. 47

x

Figure 5.1. SIP network simulation framework 49

Figure 5.2. Traffic intensities . 50

Figure 5.3. Trafic intensities as a function of observation interval 52

Figure 5.4. Change points and alarms raised by the models 54

Figure 5.5. Incremental register attacks . 58

Figure 5.6. Overlapping mixed types of attacks 58

Figure 5.7. ROC curve of distance based change-point models 60

Figure 5.8. Difference between kernels in malicious user discrimination 62

Figure 5.9. Mapping of spectral clustering . 63

Figure 5.10. USF Gait data set example . 69

Figure 5.11. KTH data set example . 70

Figure 5.12. Feret data set example . 71

Figure 5.13. ETH80 data set example . 71

Figure 5.14. Cambridge Gestures data set example 72

Figure 5.15. Effects of dimension number over accuracy 80

Figure 5.16. Effects of dimension number over mAP 81

xi

Figure 5.17. Effects of number of instances per class over accuracy 81

Figure 5.18. Effects of number of instances per class over mAP 82

xii

LIST OF TABLES

Table 5.1. Performance of change-point detectors for normal traffic for 1 second 55

Table 5.2. Performance of change-point detectors for normal traffic intensity

for different sampling rates . 56

Table 5.3. Performance of change-point detectors for different traffic intensity

levels for 1 second . 57

Table 5.4. Performance of different attacker identifiers 64

Table 5.5. Processing times of attacker identification methods for 1 second

observation interval . 65

Table 5.6. Processing times of attacker identification methods for different ob-

servation intervals . 65

Table 5.7. Details of used data sets . 68

Table 5.8. Details of USF Gait data set . 69

Table 5.9. Reduced dimensions of used data sets 74

Table 5.10. Classification accuracy rates over data sets 76

Table 5.11. Classification accuracy rates over USF Gait data set 77

Table 5.12. mAP scores over data sets . 78

xiii

Table 5.13. mAP scores over USF Gait data set 79

xiv

LIST OF SYMBOLS

c Constant used in thresholding

C Label vector

C Margin value

d Number of dimensions in the input space

dgq Degree of qth active user

D Degree matrix

D(oi, oj) Distance between the objects oi and oj

Dld(A,B) Logarithmic determinant divergence (LogDet) between two

matrices

e Number of dimension in the reduced space

f(M|xn : xn−k−1) Loss function defined on M given vectors from xn−k−1 to xn

I Identity matrix

In Number of dimensions in mode-n

k Time frame size or number of nearest neighbors

K Kernel matrix

K Number of tensor objects in the data set

K(oi, oj) Kernel function of the objects oi and oj

L Laplacian or projection matrix

L Associated loss function

M Number of instances in the data set

M Mahalanobis metric

N Order of tensor X

Nep(o) Set of p-nearest neighbors of object o

P Number of projections

Pr Number of SIP messaging activities of rth active user (ur)

S+ Positive semi-definite metric space

S++ Positive definite metric space

t Timestamp

tr(A) Trace of a matrix

xv

ur Active user with the index value r in an observation interval

Tpq ,pr Alignment score of two sequences with lengths pq and pr

u(n) Projection unit vector in mode-n

U(n) Transformation / projection / factor matrix in mode-n

v Message type count vector

w Message type count vector with the timestamp

x,x(n) Vectors in RIn

X N -way tensor in RI1×I2×...IN

X̂ Reconstructed N -way tensor in RI1×I2×...IN

X Matrix in RI1×I2

X
(n)
i Mode-n matricization of ith tensor X(i)

α Confidence level

β Penalty coefficient for LogDet distance to identity matrix in

DCPM or weight of tensor similarity in LMTD

γ Heat kernel distance component decay parameter in DCPM

or weight of tensor dissimilarity in LMTD or regularization

for within-class scatter in R-UMLDA

∆ Observation interval

εth Threshold value

ζ Within-class scatter rate in TR1DA

κ(oi, oj) Kernel function of the objects oi and oj

λ Penalty coefficient for LogDet distance of two sequential met-

ric matrices

λi ith eigenvalue of a matrix or normalization weight

Λ Diagonal matrix with eigenvalues or normalization weights on

the diagonal

µ Mean vector or weight of reconstruction fidelity in LMTD

ξ Slack variable

ρ Heat kernel time component decay rate

Σ Covariance Matrix

χ2
α,d Chi-square test with d dimensions and α confidence level

xvi

ψi ith eigenvector of a matrix

Ψ Matrix of concatenated eigenvectors

Ω State space

×(n) Mode-n matrix product in RIn

×̄(n) Mode-n vector product in RIn

◦ Outer product

⊗ Kronecker product for matrices and Tensor product for vec-

tors

� Khatri-Rao product

∗ Hadamard product

xvii

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

3G Third Generation of Cellular Mobile Communications

5G Fifth Generation of Cellular Mobile Communications

APK Android Application Packages

ARIMA Autoregressive Integrated Moving Average

CANDECOMP Canonical Decomposition

CP CANDECOMP + PARAFAC

CPU Central Processing Unit

DCPM Distance-based Change Point Method

DNS Domain Name Server

DoS Denial of Service Attack

DDoS Distributed Denial of Service Attack

EFSM Extended Finite State Machine

EMP Elementary Multilinear Projection

GTDA General Tensor Discriminant Analysis

HMM Hidden Markov Model

HOOI Higher Order Orthogonal Iteration

HOSVD Higher Order Singular Value Decomposition

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IDS Intrusion Detection System

IP Internet Protocol

KL Kullback–Leibler Divergence

k-nn k-Nearest Neighbor

LDA Linear Discriminant Analysis

LPP Locality Preserving Projections

LMCA Large Margin Component Analysis

xviii

LMNN Large Margin Nearest Neighbor

LMTD-F Large Margin Tensor Decomposition - Full

LMTD-C Large Margin Tensor Decomposition - Core

LogDet Logarithmic Determinant Divergence

MAC Media Access Control

mAP mean Average Precision

MDA Multilinear Discriminant Analysis

MMS Multimedia Messaging Service

P2P Peer-to-Peer Communication

PARAFAC Parallel Factor Analysis

PBX Private Branch Exchange

PC Personal Computer

PCA Principal Component Analysis

PSD Positive Semi-Definite

R-UMLDA Regularized Uncorrelated Multilinear Discriminant Analysis

SIP Session Initiation Protocol

SMS Short Message Service

SVD Singular Value Decomposition

T2T Tensor-to-Tensor

T2V Tensor-to-Vector

TCP Transmission Control Protocol

TR1DA Discriminant Tensor Rank-1 Decomposition

VoIP Voice over Internet Protocol

1

1. INTRODUCTION

In the age of communication, the security and monitoring of the communication

traffic is a major concern. The high volume and speed of traffic demand a fast comput-

ing model to inspect the packages. It should be easy enough to compute, fast and ac-

curate enough to detect the traffic type. The monitoring system should be autonomous

and intelligent to make decisions rather than applying some fixed rules or thresholds.

Similarly, storage and retrieval of multi-dimensional structures are another challenge

at hand. In case of multi-dimensional structures (tensors), if the data is scarce, a good

feature extractor can improve the performance of retrieval from an archive of objects.

The tensor decomposition technique should extract a set of discriminative features to

retrieve the most similar objects.

Distributed Denial of Service (DDoS) attacks are among the most encountered cy-

ber criminal activities in communication networks that can result in considerable finan-

cial and prestige losses for the corporations or governmental organizations. Therefore,

autonomous detection of a DDoS attack and identification of its sources is essential for

taking counter-measures. For the multi-dimensional structures, in which cases we have

scarce data, a discriminative tensor decomposition can capture the correlation between

multi-dimensions and it can act as a feature extractor and a pre-processor before a

second level processing such as classification and clustering. It can also improve the

storage, memory and running times requirements.

In order to address these two separate but closely related challenges, we propose

two methods as solutions: A novel distance based change-point detection model ap-

plied to a cyber-security system for DDoS detection and attacker discrimination, with

an application to SIP networks, and a novel tensor decomposition applied to object

retrieval for image and video files.

Distributed Denial of Service (DDoS) attacks are one of the major cyber threats

on communication networks. DDoS attacks occur very frequently because they are

2

fairly simple and cheap to initiate while their broad impact on users and service

providers can potentially be severe. Such an attack incapacitates the victim server

and renders it unable to provide services at all or at desired quality of service levels

to its subscribers. With the cost-effective deployment of cloud systems, DDoS attacks

might affect the overall availability of the services by targeting more than one server [1].

They can even be a tool for political struggle on a grander scale; a case in point is the

set of DDoS attacks to Turkey’s domain name servers by hacktivist groups in December

2015 [2]. As a more radical case, they can be exerted over smart power transmission

grids, with potentially more catastrophic consequences [3]. Therefore automatic detec-

tion of DDoS attacks and identification of malicious users are crucial in protecting the

network entities and for non-degraded service continuity.

Telephone service providers follow the trend of changing their circuit-switched

networks to packet-switched ones in view of the cost-effectiveness and maturity of

the Voice-over-IP (VoIP) technology. The most popular protocol for control signal-

ing between communicating parties in VoIP is currently the Session Initiation Protocol

(SIP) [4]. SIP is based on a simple, HTTP-like text-based request-response transaction

model. It provides basic signaling functionalities required for registering clients, check-

ing their presence and online availability, exchanging their communication capabilities,

and overall managing the sessions. With the deployment of 5G, VoIP is expected to

be one of the major instruments for the multimedia communication. The wide deploy-

ment of VoIP networks and the key importance of telephone networks have made the

security issues of SIP servers extremely important.

VoIP networks are under a variety of cyber threats and the intensity of attacks

seems only to be growing [5]. The attacks can be motivated by potential financial

benefits, such as pilfering call charges or causing data leakage masqueraded as a stealth

threat. Conversely, it may be part of a plan to cause financial losses to the service

providers via heavy service disruption [6]. In addition to the session layer attacks,

telecommunication networks are also susceptible to a plethora of other threats below

the session layer [7]. Since these are discussed in detail elsewhere, in this dissertation,

we focus solely on SIP-specific threats.

3

Tensors are multi-dimensional arrays, also called N -way arrays, which represent

complex structures with higher dimensional relationships such as multi-channel signals,

chemical compounds, graphs etc. They have their uses in many application areas

(E.g. chemometrics, neuroscience, signal processing and computer vision). With the

advancement of data storage and acquisition technologies, and the extensive use of IoT

and mobile devices, massive amount of data is collected. Tensor decomposition is a

promising tool to handle and process this overwhelmingly increasing amount of stored

data.

The tensor decomposition plays two crucial roles; first in understanding the intrin-

sic subspaces of multiway data, in discovering implicit relationships between features,

and second, in reducing the massive tensor data volumes. More explicitly, decomposi-

tions that exploit correlations inherent in the tensor data and that extract descriptive

features are useful for various inference tasks such as detection, classification, and re-

gression. Additionally, tensor decomposition can be instrumental in alleviating the

curse of dimensionality inherent in tensor data and in facilitating training of signal

processing and machine learning algorithms.

Distance functions have been extensively studied and the importance of the ju-

dicious selection of a distance function in machine learning has been emphasized in

the literature. Distance learning, i.e., finding an optimal distance function under given

constraints, is a well-understood problem for vectorial data. These methods try ei-

ther to find projection matrices that minimize the Euclidean distance in the projected

space [8–10] or to design a parametrized family of Mahalanobis metrics [11–13] satisfy-

ing certain constraints. A metric matrix over the vectorized tensors has been introduced

in [14]. Two recent surveys in distance metric learning are given in [15] and [16].

In this dissertation, firstly we propose an anomaly detection model based on Ma-

halanobis distances to detect attacks and attackers in SIP-communication. Secondly,

we propose a new method for generative-discriminative tensor decomposition that in-

corporates distance metric learning. We apply it to the image and video retrieval

problems as case studies.

4

1.1. Related Work

SIP DoS and DDoS attacks typically exploit vulnerabilities in the SIP protocol.

Signature-based attacks utilize properties of the SIP grammar, and can be detected by

pattern matching between ongoing traffic and the set of signatures. In other words, this

type of attack can be determined or even prevented by inspecting the steps that the

attacker must follow through. The non-signature based threats, e.g., behavior-based

attacks such as DDoS, are harder to detect. SIP threats can be roughly categorized

into 4 groups [7]:

• Service Abuse Threats: These attacks include commercial abuse of services to

gain some financial benefit such as toll fraud or billing avoidance.

• Eavesdropping, Interception and Modification Threats: These attacks concen-

trate on illegally intervening to the call with the goal of capturing sensitive in-

formation.

• Social Threats: These attacks use protocol shortcomings, misconfigurations or

bugs of SIP server implementation and use these weaknesses to misrepresent the

identity of malicious parties to the subscribers.

• (Distributed) Denial of Service ((D)DoS): These attacks focus on the SIP server to

prevent it from giving service to the subscribers or to cause significant degradation

in the quality of network services. An attacker can achieve this by flooding the

server with SIP messages and depleting the network and server resources, such

as CPU, memory, bandwidth. In the DoS attack, only one machine is involved to

mount the attack on the SIP server. If the attacks are simultaneously performed

by many machines, possibly coordinated, the attack becomes a DDoS attack.

The botnet attack, where the attack is staged by many zombie machines that are

controlled by a master node, is a well-known instance of DDoS.

There is a large variety of possible DDoS attacks, such as Domain Name Server

(DNS) attack and fuzzing attack [17, 18]. The DNS flooding attack wastes the band-

width resources by injecting fake addresses, tying up the call during address resolution,

5

and causing unnecessary messaging traffic between DNS and SIP server. The fuzzing

attack, on the other hand, wastes CPU time by forcing it to parse invalid SIP messages.

DDoS attacks in SIP networks can be grouped into four classes: SIP message payload

tampering, SIP message flow tampering, SIP message flooding, and finally exploiting

SIP vulnerabilities, e.g., for toll fraud [19].

Many methods have been proposed to detect and prevent DDoS attacks in VoIP

networks. For example, for the SIP message flooding varieties, an extended finite state

machines (EFSM) can be designed for SIP transactions in order to monitor transac-

tion anomalies [20]. Selected network traffic variables are tracked and if an undefined

transaction occurs or any traffic variable count exceeds a pre-determined threshold, a

preventive action is triggered. A full protocol stack intrusion detection and prevention

system for VoIP systems is proposed in [21]. This is a table-based system that collects,

correlates and tuples data from different protocols on the communication stack, e.g.,

MAC addresses, IP addresses, subscriber IDs, packet timestamps. The decisions, such

as dropping packets, are given by certain rules applied over these tuples.

In [22], the packets are labeled with respect to their transmission control protocol

(TCP) flags. An alarm is raised if the packet counts in a time window deviates from

the distribution fitted for the normal traffic. In an alternate research, a naive Bayesian

classifier has been constructed as a DDoS detector based on network traffic variables.

In [23, 24], a Bayesian change point model that detects traffic surges or dips, which

possibly correspond to DDoS attacks is proposed. The model is a hierarchical hidden

Markov model that links the features extracted from SIP network traffic and server

load to latent variables. One set of these variables tracks the hidden dynamics of the

system and the others serve as change point indicators. The output of the model is the

posterior probability of a change indication, which is calculated at fixed time intervals.

As for SIP message payload tampering variety, an N -gram technique has been

considered to detect the fuzzing attacks exploiting malformed SIP messages. In this

case, based on a corpus of SIP messages, which contains both valid and malformed

messages, 4-grams, i.e., sequential 4-byte blocks in SIP messages, are extracted. The

6

4-grams which exceed a given frequency threshold are designated as significant fea-

tures and their occurrence count vectors are used as features to train classifiers [25].

An experimental study of applying 5 different machine learning models to detect DDoS

attacks in SIP-deployed networks have been conducted [26]. The authors have imple-

mented a simulation environment in order to train and evaluate the performance of

the models. The classifiers are trained with pre-generated training data collected from

SIP message headers, which contain both attacks and normal traffic. The models are

required to be re-trained whenever the network or service operating conditions are

changed. The trained classifiers are evaluated in terms of accuracy and time overhead

required to run them online for each message. A recent research proposes using an

autoregressive integrated moving average (ARIMA) time series model to classify the

normal traffic, DoS and DDoS attacks [27] for IP networks. The number of packets and

the number of IP sources are tracked for each time unit and their ratios are stored. The

local Lyapunov exponents are calculated for these ratios and these values are compared

with a threshold to discriminate malicious from non-malicious traffic type.

A statistical anomaly detection model, to which our method has resemblances,

was proposed in [28, 29]. This method detects significant deviations in the 3G mobile

network traffic patterns based on a variant of Kullback-Liebler (KL) divergence between

two empirical distributions. The collected data samples for each observed feature within

time window are fitted into respective univariate histograms. Then, these empirical

distributions are compared with reference distributions of the observed features based

on the proposed divergence metric. If the distance of any of the inspected feature

distributions to that of its corresponding reference exceeds an empirically set threshold,

then an alarm is raised to declare a detected anomaly. A human expert gives the final

decision about the detected anomaly as to whether it is an attack or not.

The spread of intelligent mobile devices has resulted in a new facet of mobile

botnets. The distributed characteristics of the mobile network (capability to change

IP addresses frequently) and huge number of easily-hacked zombie devices by malwares

make it hard to prevent the DDoS attacks with conventional PC-centric solutions. Be-

sides using the Internet for command propagation, the bot master can coordinate the

7

zombies in some exceptional ways such as Bluetooth communication or SMS/MMS

messaging. Three different command and control architectures (coordination of zom-

bies by the master) to start a mobile botnet DDoS attack are discussed in [30]. A

recent study uses machine learning techniques to discriminate applications that are

malwares used in mobile botnets. The manifest files of Android Application Packages

(APK) are processed to extract features. After some pre-processing steps, the selected

features are used in training classifiers to detect the malwares [31].

A detailed survey on historical evolution of Botnets is provided in [32]. A detailed

review of network intrusion systems which are capable of detecting DDoS attacks and

the specific methods used for detection can be found in [33].

Analysis of time series for classification, prediction, change and outlier detection

has been active research topics for decades with particular focus on financial mar-

kets [34]. Among the plethora of methods proposed one can mention: i) methods that

map the time series into a new feature space, such as spectral entropy, autocorrelation

etc. [35]; ii) kernel methods for time-series classification with emphasis on sequence

alignment [36–38]; iii) clustering time series with a combined distance function satisfy-

ing the triangle similarity, which is the cosine value between two vector, and dynamic

time warping distance [39]; iv) approaches fitting the data to a number of possible

models, such as a hidden Markov model with dynamic time warping, or an autoregres-

sive moving average model with dynamic time warping, and clustering the data based

on model instance with the best fit [40,41]; v) singular spectral analysis where data is

embedded, the embedding matrix decomposed and reconstructed into trend, noise and

oscillatory components.

Metrics, which are functions to calculate distances between two entities in a set,

can be used to detect anomalies in the network traffic and in [42] two such information

metrics have been proposed for DDoS attacks. Similarly, a DDoS detector which

uses the Tsallis entropy has been proposed [43]. The Mahalanobis distance, based on

inverse covariance matrix, has been previously used in the detection of abnormal callers

(outliers) by inspecting their SIP message flows [44]. In this dissertation, however, we

8

use an adaptively online trained variety of the Mahalanobis distance for a time series.

We use the time series of Mahalanobis distances accompanying the input time series

to detect DDoS attacks as well as to identify the malicious user from their messaging

behavior analysis.

One of the first intrusion detection system (IDS) system architectures that uses

behavioral analysis to detect DDoS attacks and the malicious attackers was proposed

in [45]. The attacking entities aiming for a distributed DoS attack are characterized

by a common messaging pattern. However, this cannot be represented by a rule-based

system. We propose a system that consists of three components: A sniffer to capture

the packets, a preprocessor to extract informative features from the packets and a

classifier to detect the anomalies in the traffic.

Tensor decomposition has been an increasingly active research topic in recent

decades and related literature is already quite rich in algorithms and application cases.

A few highlights related to discriminative tensor decompositions and their distance

functions are as follows. In [46], a measure for tensor sparsity, called Kronecker-basis-

representation is used to compute individual sparse representations that minimize the

reconstruction error. In this work a loss function is defined that balances the trade-off

between sparsity and reconstruction error and a set of rank-1 tensors that minimize

this loss function is obtained. Finding a set of mutually uncorrelated rank-1 tensors

with unit vectors in each way (tensor-to-vector projections, each called an elementary

multilinear projection: EMP) is presented in [47, 48]. Here, the input tensors are rep-

resented as P -dimensional feature vectors that store dot product results between the

input tensors and the EMPs, where P is the number of EMPs. Multilinear discrim-

inant analysis (MDA) is a version of linear discriminant analysis (LDA) for tensors

that aims to find mutual discriminative projection matrices [49]. A method proposed

in [50] extracts a mutual set of projection matrices which preserves the neighborhood

relationships of the input space in the projected space. In a similar vein, [51] uses the

neighborhood relationships to find discriminative projections from the so-called local

tensor descriptor representation of the data. In [52], a face verification system has

been designed that uses multilinear whitened principal component analysis to enhance

9

multilinear PCA and tensor exponential discriminant analysis. General tensor discrim-

inant analysis (GTDA) [53], is one of the earliest tensor-to-tensor projection methods.

This method uses the weighted difference of between-scatter and within-scatter matri-

ces in each mode to project a tensor into a discriminative feature space. Another tensor

subspace analysis that uses heat kernels to embed the sub-manifold structures inherent

in the input space into a feature space is presented in [54]. The method of tensor

locally linear discriminative analysis, which can be regarded as a hybrid of local LDA

and locality preserving projections (LPP) for tensors, which also uses heat kernels to

embed similarities into the projection matrices is introduced in [39]. A low-rank tensor

approximation to learn a dictionary for a tensor is proposed in [55]. A loss function

is defined over the norm of the projection matrices and of the reconstruction error,

and a zero-norm constraint is used to enforce sparsity in dictionaries of predetermined

modes. A convex tensor decomposition that uses the norm of singular values as the

regularization term finds the set of optimal lower rank tensors to approximate the in-

put tensor is elaborated in [56]. Recent detailed reviews of the tensor factorization

methods and their applications can be found in [57–59] and [60].

1.2. The Objective and the Contributions of This Dissertation

In this dissertation, we mainly focus on how to approximate distances between

the high and dimensional structures and how to apply them into some solutions. We

use distances either in the objective function or in the constraints and we find an

optimal solution for the problem at hand, which can be local or global depending on

the formulation. We propose two novel distance learning models and apply them to

two real-life problems.

As our first contribution, we introduce a novel real-time online distance based

change-point detector which is applied to an intrusion detection and prevention system

for communication networks, particularly for networks with Session Initiation Protocol

(SIP) traffic. The proposed system both detects the presence of an attack and identifies

the attackers. The system focuses on the DDoS attacks that flood and suffocate a server

with excessive amount of requests. One clue for the occurrence of a DDoS attack is

10

a marked change in the messaging traffic patterns in the network. To this effect, we

develop a change detection algorithm which monitors the network traffic intensities

at the server side. Significant changes in the characteristics of messaging flows are

interpreted as the onset or offset of a potential DDoS attack. We assume tacitly that

in a DDoS attack, the attackers are always acting in a coordinated manner.

A novel aspect of the proposed change-point detection method is that it relies on

the adaptive tracking of Mahalanobis distances between successive state vectors as a

way to monitor abnormal changes in messaging traffic. This enables the monitor to

adapt itself to the normal traffic regime and/or to the diurnal or seasonal variations

while at the same time remaining sensitive to abnormal changes. The second novelty

of our system is that the algorithm beside detecting the occurrence of an attack, can

also pinpoint the set of attackers. In other words, under certain realistic assumptions,

it can discriminate between messaging patterns of the attackers and those of the non-

malicious, i.e., normal users. Similarly, the attacker identification model runs in an

unsupervised mode and it is independent of underlying attack model except for the

assumption of attacker coordination. Performance results of the algorithm are studied

under extensive network traffic and attack traffic simulations.

As our second contribution, we propose a new method that combines distance

learning with tensor decomposition and we apply it to the object retrieval problem. A

novel tensor decomposition, we call it Discriminative Tensor Decomposition with Large

Margin (shortly, LMTD), that uses the distances and pairwise relationships between

tensor objects to find a discriminative tensor-to-tensor mapping, is introduced. The

pairwise relationships are enforced as distance constraints and the resulting tensor

mapping scheme achieves a higher classification performance. We actually present

two different versions of the large-margin tensor decomposition algorithm under on

neighborhood constraints, one working over the reconstructed tensors, and the other the

core tensors. The proposed method straddles generative and discriminative methods

in that reconstruction error is also taken into the account. In other words, while the

projection matrices are designed to be discriminative, the reconstructed tensor is also

forced to be as similar as possible to the input tensor. In this sense our method enables

11

a trade-off between classification accuracy and reconstruction error. Thus, for example,

if discrimination is of prime importance, the corresponding penalty function weight is

set to a higher value; if denoising and/or good fidelity shape reconstruction of the

detected objects then the weight of the reconstruction error term is boosted. LMTD

can also be viewed as a feature extractor. We show that problems at hand, such as

data retrieval within a scarce archive, can be solved better over the core tensors instead

of the raw input tensors, i.e., with higher precision and better classification accuracy.

This thesis is organized as follows. In Chapter 2, we provide our mathetical no-

tation and background used throughout the thesis in details. Chapter 3 introduces the

novel adaptive distance based change-point model, which basically tracks the changes

in Mahalanobis distances between the sampled feature vectors and raises an alarm in

case of a detected change. Chapter 4 presents the discriminative tensor decomposition

with large margin that searches for a set of global projection matrices embedding the

similarity (neighborhood) constraints between the multi-dimensional structures into

the core tensors. A collection of experimental applications and their results are given

in Chapter 5. Finally, in Chapter 6 we conclude this thesis and share the learnings for

future studies.

12

2. MATHEMATICAL BACKGROUND AND DISTANCE

FUNCTIONS

This chapter introduces the mutual notation and mathematical background used

throughout the dissertation.

2.1. Mathematical Notation

A tensor is a multi-dimensional array and the order (or the ways) of a tensor is

its number of dimensions. In this respect, vectors and matrices are 1-way and 2-ways

tensors. The basic component of a tensor is called a fiber, which is obtained by fixing

all but one of its indices. An unfolding of a tensor at mode-n is represented by a matrix

whose columns are constituted by its fibers at the nth mode.

Let x ∈ RIn represent an In-dimensional vector, X a matrix in RIn×In′ , and

X ∈ RI1×I2×...×IN an N -ways tensor, respectively. The unfolding of a tensor X in

mode-n is represented as the matrix X(n) ∈ RIn×(
∏N

k 6=n Ik)

The inner (dot) product of two conformable tensors is analogous to the inner

product of matrices:

〈X,Y〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IN∑
in=1

xi1i2...inyi1i2...in (2.1)

where xi1i2...in represents elements of the N -way tensor. The Frobenius norm can be

used in calculating the norm of a tensor as follows:

||X||F =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .

IN∑
in=1

x2
i1i2...in

(2.2)

13

An N -way tensor is called a rank-1 tensor if it can be represented as an outer

product of N vectors, as follows:

X = x(1) ◦ x(2) ◦ . . .x(N)

xi1i2...in = x
(1)
i1
x

(2)
i2
. . . x

(N)
in

(2.3)

where x(n) is a vector in RIn dimensions and xi1,i2...in denotes one of the elements of

the tensor X. Note that an elementary multilinear projection (EMP), which reduces

each way of the tensor to a scalar is a rank-1 tensor where unit vectors, ||x(n)|| = 1,

are used.

A tensor can be multiplied with a matrix at mode-n as follows:

Y = X×n U(n) ⇐⇒ Y(n) = U(n)X(n) (2.4)

The Kronecker product of two matrices, X ∈ RI×J and Y ∈ RK×L, denoted as

X ⊗ Y where ⊗ is the Kronecker product operator, is defined as a matrix with size

(IK)× (JL):

X⊗Y =


x11Y x12Y . . . x1JY

x21Y x22Y . . . x2JY
...

...
. . .

...

xJ1Y xJ2Y . . . xIJY


=

(
x1 ⊗ y1 x1 ⊗ y2 . . . xJ ⊗ yL−1 xJ ⊗ yL

)
(2.5)

The Khatri-Rao product is defined over matrices that have the same number of

columns, X ∈ RI×K and Y ∈ RJ×K . The resulting matrix has size (IJ) × K and is

obtained as:

14

X�Y =
(
x1 ⊗ y1 x2 ⊗ y2 . . . xK ⊗ yK

)
(2.6)

The elementwise matrix product of two equal-sized matrices is called the Hadamard

product (also called Schur product or entrywise product) and defined as:

X ∗Y =


x11y11 x12y12 . . . x1Jy1J

x21y21 x22y22 . . . x2Jy2J

...
...

. . .
...

xJ1yJ1 xJ2yJ2 . . . xIJyIJ

 (2.7)

2.2. Distance Functions

Design and selection of distance functions, alternatively called metrics, are of

paramount importance in inference and signal modeling problems such as k-nn classi-

fication, k-means clustering, kernel smoothing etc. The performance of the algorithm

depends significantly on how well the metric captures similarities and hidden underly-

ing associations between data instances. The distance function should be conceived so

that objects from the same class, i.e., with features from the same region of the feature

subspace should be mapped close to each other while objects of different classes in the

data set should be as distant as possible.

Given two In-dimensional feature vectors xi,xj ∈ RIn , the squared Euclidean

distance is:

DE(xi,xj) = ‖xi − xj‖2
2 = (xi − xj)

>(xi − xj) (2.8)

15

Let’s assume we have a transformation vi = Lxi, where L is an In′ × In transfor-

mation matrix, then we have:

DE(vi, vj) = ‖vi − vj‖2
2

= (Lxi − Lxj)
>(Lxi − Lxj)

= (L(xi − xj))
>L(xi − xj)

= (xi − xj)
>L>L(xi − xj)

= DL(xi,xj) (2.9)

Equation 2.9 shows that if the transformation matrix, L, is given, then the

squared Euclidean distance between the feature vectors, (vi, vj), can be calculated

in terms of input vectors, (xi,xj).

A useful property is that the squared Frobenius norm of the difference of any two

N -way tensors can be computed as the squared Frobenius norm of the difference of the

matricized forms of the tensors, or as the squared Euclidean norm of the difference of

their vectorized forms, i.e.:

||Xi − Xj||2F = ||X(n)
i −X

(n)
j ||2F

= tr
(

(X
(n)
i −X

(n)
j)>(X

(n)
i −X

(n)
j)
)

= ||vec(Xi)− vec(Xj)||22 (2.10)

where n can be any mode and tr(•) is the trace operator.

2.3. Large Margin Distance Models

Our proposed methods use concepts from the large margin algorithms [61], [9],

hence a brief outline of these methods is in order. The large margin nearest neighbor

algorithm (LMNN) [61] was proposed to learn the optimal distance metric from data

in order to enhance the classification performance of the k-nn method. It defines a

16

semi-definite programming problem over the squared Mahalanobis distances of in-class

and impostor sets. Here an impostor is defined as a neighborhood case with ”other”

class label, and a in-class is a neighborhood case with the correct label, that is, the

same class label as that of the data instance. The algorithm minimizes distances of

the in-class neighbors while distances to impostors are penalized if they are within

a margin. These neighbors must be kept at a safe distance away from the in-class

neighbors. This is formulated as a convex programming problem, hence it possesses a

unique solution.

Consider the k neighbors of each data instance i in the training set which may be

in-class tensors or impostors. Also consider a positive semi-definite matrix, M, where

M = L>L that induces Mahalanobis distance metric. Henceforth, with some abuse of

terminology, we call M the Mahalanobis matrix. This weighting matrix is learned in

solving the optimization problem,

min
M

(1− µ)
∑
i,j i

(xi − xj)
>M(xi − xj) + µ

∑
i,j i,l

(1− yil)ξijl

s.t. (xi − xl)
>M(xi − xl)− (xi − xj)

>M(xi − xj) ≥ 1− ξijl

ξijl ≥ 0

M � 0 (2.11)

where j i (j leads to i) means the jth object, oj, is one of the in-class k-nearest

neighbors of the ith object, oi in the training set, that is (oj ∈ Nek(oi)). The slack

variable, ξijl, is the penalty we pay when an impostor is closer to the instance than

an in-class case, and yil = 1 if yi = yl, which are the labels of oi and ol, and yil = 0

otherwise.

Large Margin Component Analysis (LMCA) [9] is a variant of LMNN and finds

a lower dimensional rectangular projection matrix, L, instead of a square Mahalanobis

matrix, M. Both methods share the same objective function but since LMCA defines

the squared distance in terms of the projection matrix, this is no longer a convex

optimization problem and LMCA can only converge to a local optimum.

17

3. ADAPTIVE DISTANCE BASED CHANGE-POINT

DETECTION

We first introduce the notation specific to the communication control, e.g., SIP,

messaging. Time is discrete, represented by the instants t = i∆ at which user behavior

data is collected and then processed to output a feature vector. ∆ is an observation

interval, e.g., 1 second long, within which user messaging activities are monitored. A

messaging activity observed at the server side is the arrival of one of the SIP messages

(invite, bye, 200 etc.) from a user or the transmission of such a message to a user.

At the end of this interval, the rth user’s activity is denoted by the d-dimensional

vector vr, where d is the number of different SIP request or response message types

taken into consideration. The vector v is an integer vector whose components corre-

spond to the number of times each one of the d message types has occurred within

the ith time frame ((i − 1)∆ < t < i∆). Not all users are active in each observation

interval. An active user, for example the rth one, is a registered user that has sent

and/or received at least one SIP message within the given observation interval, and it

is indicated by ur, r = 1, . . . , |U |, where |U | is the cardinal of this set.

Next, let’s look into the details of the user’s count vectors. A count vector results

from the sum of individual messaging activities of an active user. The rth active user

is assumed to run Pr > 0 messaging activities within the observation interval. Each

messaging activity is represented vpr , p = 1, . . . , Pr, which is a unit vector with one

component being 1, and the rest 0. Let’s call this as a message indicator vector,

because it indicates which one of the d-messages has occurred. Then vr =
∑Pr

p=1 vpr , vr

is simply the count vector of messages sent by the rth user, as shown in Figure 3.1.

Finally, let us introduce the d-dimensional count vector, x, called the state vector,

that represents the collective activities of all |U | active users within a time frame. The

state vector, which is the total message count vector from all users at the server side

18

0 1 · · · 0 · · · 0

0 0 · · · 0 · · · 1

0 0 · · · 1 · · · 0
...

...
. . .

...
. . . · · ·

0 0 · · · 0 · · · 0

1︸︷︷︸
v1
r

0︸︷︷︸
v2
r

· · · 0︸︷︷︸
vp
r

· · · 0︸︷︷︸
vPr
r︸ ︷︷ ︸

Observation interval between (i− 1) ∗∆ and i ∗∆

, →

v1,r

v2,r

v3,r

...

vd−1,r

vd,r︸︷︷︸
vr

Figure 3.1. The rth user count vector resulting from the accumulation of message

indicator vectors (vr =
∑Pr

p=1 vpr) in an observation interval.

is simply the sum of the active user count vectors, x =
∑|U |

r=1 vr, and this is illustrated

in Figure 3.2.

We have so far omitted any specific index to denote the time frames to avoid

notational clutter. However, we will use the notation xi,xj ∈ Rd to denote server state

vectors at the ith and jth observation intervals. These feature vectors or server state

vectors can be used to monitor the traffic regime changes in a network.

Let M be a d× d positive (semi) definite matrix (M ∈ S+ or M ∈ S++).

DM(xi,xj) is the distance between the feature vectors xi and xj calculated over metric

matrix M. f(M|xn : xn−k−1) is a function of M defined over the time window of length

k tracked between feature vectors from xn−k−1 to xn: From the time index n−k−1 to

time index n. Dld(A,B) is a function defined over any two same dimension matrices,

A and B.

Notice that up to this point we have neglected the stamp information, that is,

the actual time instances t1r, ..., t
Pr
r within a generic ∆-long time frame, at which the

Pr messaging activities, say, of the rth user, are occuring. We can incorporate this

information by augmenting the dimensionality of the message indicator vector, vpr , by

one, as follows: (wp
r)
> = ((vpr)

>, tpr). Thus, wp
r is the timestamp-enriched version of

19

v1,1 v1,2 · · · v1,r · · · v1,|U |

v2,1 v2,2 · · · v2,r · · · v2,|U |

v3,1 v3,2 · · · v3,r · · · v3,|U |
...

...
. . .

...
. . . · · ·

vd−1,1 vd−1,2 · · · vd−1,r · · · vd−1,|U |

vd,1︸︷︷︸
v1

vd,2︸︷︷︸
v2

· · · vd,r︸︷︷︸
vr

· · · vd,|U |︸︷︷︸
v|U|︸ ︷︷ ︸

Observation interval between (i− 1) ∗∆ and i ∗∆

→

x1

x2

x3

...

xd−1

xd︸︷︷︸
x

Figure 3.2. The server state vector is the sum of user count vectors (x =
∑|U |

r=1 vr).

wp
r=

vpr

tpr

Figure 3.3. The timestamped user message vector is the concatenation of user unit

message vector and the time it is sent (wp
r ∈ Rd+1).

the message indicator vector vpr . Notice that wp
r ∈ Rd+1 consists of the concatenation

of message indicator vector vpr and the time instance at which the message occurs, tpr,

as given in Figure 3.3.

Given the definitions above, any user ur, can be mapped to a time series, which

can be represented as one of these two matrices: Vr = [v1
r |v2

r | . . . |vPr
r] or Wr =

[w1
r |w2

r | . . . |wPr
r]. The kernel function that measures the similarity of any two users

pair (uq, ur), is represented as K(uq, ur). κ(wpr
r ,w

pq
q) is defined as the heat kernel to

calculate the similarity between timestamped message vectors of any two users in the

same interval: pthr message of rth user and pthq message of qth user. Using the user pair

kernel functions, for that time interval, we can calculate the kernel matrix K of size

|U | × |U |.

20

3.1. Adaptive Distance Based Change-Point Detection Estimator

Feature instances extracted from adjacent intervals within the correlation length

of a stationary process tend to have high statistical similarity. On the other hand,

features originating from different generative processes or from different sections of a

non-stationary process can be expected to have large pairwise distances. Based on this

premise, a significant change in the distances between consecutive feature vectors in

a time series can be interpreted as an indicator of a change in the data generating

process. The Hidden Markov Model (HMM) can capture these regime changes as a

switching variable from one generator to another in the hidden layer. In the context of

communication networks, such an abrupt change in feature vectors corresponding to

traffic intensity patterns and/or of server resource utilization rates can be conjectured

to signal a DDoS attack. A Distance based Change-Point Method (DCPM), as used

in our work, first tracks the distances between sequential feature vectors and then

computes the statistics of these distances to decide for a change or not. Judicious

choice of a distance function can prove critical in the performance of machine learning

algorithms. To this effect, one can use one of the well-known distance functions or

attempt to learn a distance function specific to the problem at hand. In this work, we

have opted to use a learning scheme for the Mahalanobis distance.

3.1.1. Distance Based Change-Point Model

The distance-based change detection is achieved by inspecting sum of distances

over a sliding window, called moving distance, where distances between the current

feature vector and its immediate predecessors in a time-frame of size k are summed.

The result of the sliding window sum is compared with a threshold value, εth, and an

alarm is raised for the potential occurrence of a regime change. This step is followed

by the malicious user discrimination algorithm, as detailed in Section 3.2. The main

novelty of this method is that we learn the weight matrix M (called the Mahalanobis

metric from now on) under a loss function so that the detection algorithm is adapted

to inlier variations and trends in the traffic intensity to avoid false alarms. The inlier

variations can be due to diurnal or week-day based changes or to short-lived sporadic

21

flurry of call activities.

The moving distance over a k-sized time frame can be defined as a function of

the symmetric positive definite matrix, M ∈ S++, as follows:

f(M|xn : xn−k−1) =
n−1∑

j=n−k−1

(xn − xj)
>M(xn − xj) (3.1)

If the moving distance computed using the current Mahalanobis metric is above

the threshold, f(Mn−1|xn : xn−k−1) > εth, then an alarm is raised. The Mahalanobis

metric is updated periodically at each time interval under the loss function given below:

min
M∈S++

f(M|xn : xn−k−1) + λDld(M,Mn−1) + βDld(M, I) (3.2)

In Equation 3.2, the second and the third terms, λDld(M,Mn−1) and βDld(M, I),

respectively, are regularization functions based on the logarithmic determinant diver-

gence (LogDet) [12]. LogDet function is a pseudo-metric that measures the distance

between two matrices and is defined in Equation 3.3. Detailed information about the

LogDet function can be found in the Appendix section. The former regularizer im-

poses the updated matrix to be as similar as possible to its predecessor. The latter one

forces it to be as close as possible to the identity matrix to prevent it from converging

to an irrelevant matrix and at the same time to induce sparsity. Thus, their relative

weights can be gauged to trade-off the update rate of the Mahalanobis metric and the

aging of the effect of the past measurements. The four parameters to be set are the

sliding window size k (time frame size), the two regularization cost weights, λ and β,

and the parameter α for thresholding. At the start of the algorithm, M0 is initialized

as the identity matrix, M0 = I. Since the LogDet is a convex function of M, we are

guaranteed to find the optimal positive definite matrix, that minimizes the criterion in

Equation 3.3.

22

Require k, λ, β and α (for εth).

Initialize M0 (default I).

repeat

Inspect the SIP traffic in the time window of size k, and compute the count

vector.

if f(Mn−1|xn : xn−k−1) > εth then

Raise alarm.

Run the malicious user detection algorithm given in Figure 3.8.

end if

Evaluate M∗.

Set Mn−1 = M∗.

until the traffic ends

Figure 3.4. Adaptive Online Distance Based Change-Point Detection Algorithm.

Dld(M,Mt−1) = tr(MM−1
t−1)− log det(MM−1

t−1)− d (3.3)

where tr(•) is the trace function for the matrices.

The optimal Mahalanobis metric (M∗) can be found by taking the derivative of

Equation 3.2 and setting it to zero.

M∗ =

(
λ

λ+ β
M−1

n−1 +
β

λ+ β
I +

1

λ+ β

n−1∑
j=n−k−1

(xn − xj)(xn − xj)
>
)−1

(3.4)

This Mahalanobis metric update is repeated at each time index. The change

detection algorithm is given in Figure 3.4.

23

3.1.2. Thresholding of the Moving Distances

The characteristics of the moving average of distances depend on the traffic vol-

ume intensity, the dimension of the feature vector, the size of the time frame etc., and

hence it becomes critical to set a threshold value judiciously to detect regime anomalies

or abrupt changes. In this dissertation we test comparatively two different threshold

functions.

Experimental evidence has shown that we can approximate the distribution of

the moving sum of distances as a Chi-squared distribution. It is then assumed that

Mahalanobis distances are obtained from a Gaussian distribution such that µ = xn

in the immediate past observation interval, and Σ = M−1. If y, which is the set of

observations in the current sliding window, is a d-dimensional random vector drawn

from a Gaussian distribution with a mean vector µ and a d-rank covariance matrix Σ,

then z = (y−xn)>M(y−xn) = (y−µ)>Σ−1(y−µ) becomes Chi-Squared distributed

with d-degrees of freedom.

Let zi denote one of k independent, identically distributed random variables that

follow a chi-square distribution such as z1 ∼ χ2
α,d1

, z2 ∼ χ2
α,d2

, . . ., zk ∼ χ2
α,dk

. Due

to the additive property of independent chi-squared variables, the sum of the random

variables follows a chi-square distribution with d1 + d2 + . . . + dk degrees of freedom.

That is,

Z = z1 + z2 + . . .+ zk

Z ∼ χ2
α,d1+d2+...+dk

(3.5)

Thus, the threshold of our anomaly detection model becomes εth = χ2
α,k∗d. The α

parameter is the probability of accepting a chance fluctuation as an anomaly. In other

words, in the absence of an attack the score of the moving average of distances, denoted

by Z above, has a probability less than α to exceed the threshold εth. The converse

24

event of Z exceeding the threshold can be accepted as an anomaly with probability

1 − α. The value of α depends on the requirements of the system and it is typically

set by an human expert to some such value as α ∈ {0.1, 0.05, 0.02, 0.01}. This is a

statistical approach that is based on the sum of observed distances.

An alternate, empirically found constant threshold, which is a function of two

system parameters is given below:

εth = c k

(
d

2

)2

(3.6)

and is found to work equally well. This fixed threshold value only depends on the

time frame size (k), the number of dimensions (d) and a constant c. As a plausible

argument for the fact that the constant thresholding function works equally well, we

observe that the same parameters (k and d) are also inherent in the χ2 thresholding.

Notice also that there is some liberty in adjusting this threshold by setting the constant

c according to the requirements of the deployed system. A case in point could be to

make the constant indexed by time periods cn, e.g., to account for seasonal trends.

More importantly, even though the threshold is set to a constant, the system is

still an adaptive model due to the adaptation inherent in the updates of the Maha-

lanobis metric. At each observation interval, the Mahalanobis metric is updated to

accommodate the new distances between the observations. Therefore whenever the

threshold is exceeded, it means that the quadratic smoother could not smooth out the

new measurement digressions, and therefore it is very likely to be an anomaly.

3.2. Malicious User Discrimination

If a detected anomaly is in fact a DDoS attack, the next task is to identify the

set of malicious users that are presumably coordinating to mount a distributed attack.

For this analysis, each subscriber’s behavior history in the observation interval is rep-

resented as a time-series, as given in Figure 3.1. We process the time series using a

similarity functions so that the subscribers with similar behavior patterns are clustered

25

into the same group. We have proposed and evaluated two different attacker discrim-

ination methods. The first one is based on a global time series alignment kernel that

makes use of both epoch differences and feature distances between message sequences.

The second one uses the user message count vectors at the end of periodic observa-

tion intervals, i.e., the information on message time instants are ignored. The pairwise

similarity of any two users is calculated using their count vectors.

3.2.1. Sequence Alignment Kernel

We consider the ensemble of the timestamped messages sent by a user within a

time frame of k units, say (n− k − 1), . . . , (n− 1), as message sequences. Each user’s

sequence can have a different number of messaging events, each event occuring at a

different time instant. In other words, a user’s message sequence or time series corre-

sponds to the ensemble of messages sent by a registered terminal within the designated

observation interval, each event being characterized by the type of SIP message and its

timestamp. Our goal is to estimate the similarity of messaging activities of the users

via a kernel-based scheme. For this purpose, the message sequences must be aligned

without pair repetition. The similarity between two sequences of possibly different

lengths, i.e, number of messaging events, can be determined as the sum of similarities

of all their feasible alignments. Thus two sequences are more similar as a pair if their

messaging types, e.g., invite or bye, and their occurrences in time resemble each other.

Let us assume the user time series, i.e., timestamped message sequences, (Wq,Wr)

of the user pair (uq, ur), Wq = [w1
q |w2

q |w3
q] and Wr = [w1

r |w2
r] with three and two mes-

saging events, respectively. Figure 3.5 shows an example of all possible alignments

for these two sequences. In this specific example, there are 5 possible alignments, as

follows:

• (w1
q ,w

1
r), (w

1
q ,w

2
r), (w

2
q ,w

2
r), (w

3
q ,w

2
r)

• (w1
q ,w

1
r), (w

2
q ,w

2
r), (w

3
q ,w

2
r)

• (w1
q ,w

1
r), (w

2
q ,w

1
r), (w

2
q ,w

2
r), (w

3
q ,w

2
r)

• (w1
q ,w

1
r), (w

2
q ,w

1
r), (w

3
q ,w

2
r)

26

• (w1
q ,w

1
r), (w

2
q ,w

1
r), (w

3
q ,w

1
r), (w

3
q ,w

2
r)

Figure 3.5. All possible alignments for Wq = [w1
q |w2

q |w3
q] and Wr = [w1

r |w2
r].

A global alignment kernel has been proposed in [62], which uses dynamic pro-

gramming to compute the similarity of all possible alignments of two sequences. We

use a variation of this algorithm, where we employ a pairwise heat kernel that is based

on the Mahalanobis distance and differences of time stamps.

Global Sequence Alignment Kernel: Given the two message sequences such that Wq =

[w1
q |w2

q | . . . |w
Pq
q] and Wr = [w1

r |w2
r | . . . |wPr

r] for the user pair (uq, ur) in a state space

Ω, we set the doubly-indexed series Tpq ,pr as Tpq ,0 = 0 for pq = 1, ..., Pq, T0,pr = 0 for

pr = 1, ..., Pr, and T0,0 = 1. We also assume that there is a function to measure the

similarity between the pthq signaling event of user uq and the pthr signaling event of other

user ur, κ(w
pq
q ,wpr

r). Computing recursively (pq, pr) ∈ {1, ..., Pq} × {1, ..., Pr}, for the

terms, one has:

Tpq ,pr = (Tpq ,pr−1 + Tpq−1,pr−1 + Tpq−1,pr)κ(wpq
q ,w

pr
r) (3.7)

27

Finally, the unnormalized similarity between two users (uq, ur) is measured when

the recursion has considered all possible alignments, that is:

Kunnormed(uq, ur) = TPq ,Pr (3.8)

After that the kernel matrix for all user pairs has been obtained, we unit-diagonal

normalize the |U | × |U | kernel matrix, where |U | is the number of active users in the

system, in order to eliminate any scaling issues:

K(uq, ur) =
Kunnormed(uq, ur)√

Kunnormed(uq, uq)
√
Kunnormed(ur, ur)

, q, r = 1, ..., |U |

K(uq, ur) → [0, 1] (3.9)

We will call this kernel as the time series kernel.

Pairwise Heat Kernel: Each user in a time window can be represented in terms of her

ordered timestamped message sequence. Recall that user sequences can have differing

lengths and can consist of different types of messages.

A kernel function (pairwise heat function) for any two timestamped vectors,

(w
pq
q)> = ((v

pq
q)>, t

pq
q) and (wpr

r)> = ((vprr)>, tprr) is evaluated as:

κ(wpq
q ,w

pr
r) = exp(−γDM(vpqq ,v

pr
r)− ρ|tpqq − tprr |) (3.10)

DM(vpqq ,v
pr
r) = (vpqq − vprr)>M(vpqq − vprr)

where M is the Mahalanobis metric evaluated at that observation interval as in Equa-

tion 3.4. Note that κ(w
pq
q ,wpr

r) = 1 iff v
pq
q = vprr and t

pq
q = tprr . The coefficients γ and

ρ determine the weights of message type distance and timing distance, respectively. In

this study we have assumed γ = ρ = 1.

28

3.2.2. User Distance Kernel

A kernel matrix of pairwise user-to-user similarities can be created based on their

Mahalanobis distances. User pairs would have high similarity (close to 1) if their

Mahalanobis distance is close to 0; conversely, if the pair similarity is small (close to

0), then their distance is large. The Mahalanobis distance kernel can be regarded as a

variant of Gaussian kernel.

Any two users, uq and ur, can be compared based on their messaging count vectors

vq,vr ∈ Rd, as follows:

K(uq, ur) = exp(−(vq − vr)
>M(vq − vr)) (3.11)

We will call this kernel simply as distance kernel. K(uq, ur) is 1 iff vq = vr

Note that this feature vector does not take into account the occurrence timing of the

messages, but it averages the messaging traffic in that interval. We would like to point

out again the difference between the two ways of measuring user behavior differences.

In Equation 3.11, we consider the messaging events integrated over the observation

interval, which is represented by the d-dimensional count vector of messaging events

according to their types. In Equations 3.9 and 3.10, we calculate the difference of user

behaviors by comparing and measuring distances, messaging event by messaging event,

as they occur during the observation interval.

3.2.3. Spectral Clustering

A matrix of pairwise user-to-user similarities is created from the users’ messages

as in Equations 3.9 or 3.11. The kernel matrix, K, then corresponds to a fully con-

nected weighted adjacency graph, where the users are the vertices and the similarities

are the edge costs. The adjacency matrix is expected to consists of two sub-graphs:

One representing the malicious users characterized by similar behavior patterns and

the other representing the non-malicious users with random-like behavior patterns. In

29

order to partition this graph into these two sub-graphs, we have used the normalized

Laplacian spectral clustering algorithm. Such algorithms are conceived to find graph

partitioning solutions in clustering problems. In the literature there are various spec-

tral clustering algorithms. We have preferred to use normalized Laplacian spectral

clustering because we want not only to have the similar nodes to be closely projected

to each other, but also to have the dissimilar nodes to be projected far from each other.

The normalized spectral methods satisfy both of these criteria, as discussed in [63].

The degree of qth active user in the kernel matrix, which is the sum of all the

weight entries related the qth active user, at a given time frame is evaluated as:

dgq =

|U |∑
r=1

Kq,r (3.12)

where Kq,r = K(uq, ur).

The degree matrix D is a diagonal matrix whose diagonal elements contain the

degree values, dg1, dg2, . . . , dg|U |. The Laplacian matrix, L, is evaluated as in Equation

3.13 and the spectral clustering algorithm is given in Figure 3.6.

L = D−K (3.13)

where K is the |U | × |U | is kernel matrix whose entries, K(uq, ur), are calculated as in

Equations 3.9 or 3.11.

3.2.4. Automatic Identification of Malicious Users Cluster

The malicious users are conjectured to be characterized by repetitive and corre-

lated behaviors, while the rest of users are characterized by uncoordinated and diverse

behaviors. Once the two clusters are obtained, then the final task would be that of

distinguishing the attacker set.

30

Require K ∈ R|U |×|U |.

Evaluate D and L.

Compute the first two eigenvectors, ψ1 and ψ2, of the two smallest eigenvalues

0 = λ1 < λ2 for the generalized eigenproblem Lψ = ΛDψ, where Λ is the diagonal

matrix of eigenvalues λ1, . . . , λ|U |.

Matricize ψ1 and ψ2 vectors to obtain Ψ ∈ R|U |×2. Use the rows of Ψ as the new

feature vectors in the mapped space, y ∈ R2.

Apply 2-means clustering.

return the cluster label vector C from 2-means clustering.

Figure 3.6. Normalized Laplacian Spectral Clustering.

For each of the two clusters, we compute the sample covariance matrix of the user

message sequence vectors in that cluster. Since the malicious user cluster is assumed

to consist of similar messaging behaviors, such message vectors are expected to be

more strongly aligned along a few particular axes. In fact, in the extreme case when

all messages in the cluster are of the same type, the sample covariance matrix would

be the 0 matrix. Therefore, we assign the cluster with significantly higher eigenvalue

concentration to malicious users. This algorithm, based on the heuristics that malicious

users must be somewhat coordinated to mount an attack, and therefore that the data

vectors must concentrate along a few eigenvectors as given in Figure 3.7. Each cluster

is assumed to contain at least two subscribers.

Putting all of these steps together, the algorithm to detect the attackers is sum-

marized in Figure 3.8.

31

Require the cluster label vector C

Determine the two clusters, C1 and C2.

For the two clusters, evaluate the sample covariance matrix of the projected mes-

sage vectors.

if a cluster has a covariance matrix = 0 then

Return this cluster.

else

Evaluate the eigenvalues of the cluster covariance matrices.

Return the cluster with the highest eigenvalue

end if

Figure 3.7. Cluster Selection Heuristics.

if Global Sequence Kernel is used then

Set the weight parameters γ and ρ of the pairwise heat kernel.

Evaluate the kernel matrix K such that ∀ (uq, ur) ∈ U × U , we have Kq,r =

K(uq, ur), where we use the timestamped message sequences Wq, Wr of the qth

and rth users in the given time interval, respectively with the alignment kernel,

and U is the set of active users.

Unit-diagonal normalize Kunnormed to obtain K.

end if

if User Distance Kernel is used then

Evaluate the kernel matrix K such that ∀ (uq, ur) ∈ U × U , we have Kq,r =

K(uq, ur), where we use the total message count vectors vq, vr of the qth and

rth users in the given time interval, respectively with the distance kernel, and

U is the set of active users.

end if

Apply the normalized Laplacian spectral clustering algorithm over K such that

clusters = 2, as defined in Figure 3.6.

Use the cluster label vector C returned by the spectral clustering in cluster selec-

tion heuristics as defined in Figure 3.7.

return The selected cluster members as the set of attackers.

Figure 3.8. Attacker Detection.

32

4. DISCRIMINATIVE TENSOR DECOMPOSITION WITH

LARGE MARGIN

Before introducing the proposed tensor decomposition, we provide the notation

followed throughout this chapter and a brief mathematical background on tensor de-

composition.

4.1. Tensor Decomposition and Distances Between Tensors

The most popular decomposition method consists of decomposing a tensor in a

sum of rank-1 tensors. The CANDECOMP (canonical decomposition) and PARAFAC

(parallel factor analyis) are the two methods, pioneered independently, that accom-

plish the same rank-1 factor decomposition of a tensor [57]. For example, the CP

decomposition of a third-order tensor, X ∈ RI×J×K can be written as:

X =
P∑
p=1

ap ◦ bp ◦ cp (4.1)

where P is some positive integer, ap ∈ RI , bp ∈ RJ , and cp ∈ RK for p = 1, . . . , P .

Figure 4.1 illustrates the CP decomposition of a 3-way tensor. For an Nth-order tensor,

X ∈ RI1×I2×...×IN , the decomposition expression becomes:

X ≈ JΛ; A(1),A(2), . . . ,A(N)K

≡
P∑
p=1

λpa
(1)
p ◦ a(2)

p ◦ . . . ◦ a(N)
p (4.2)

where a
(n)
p is a unit normalized fiber, A(n) ∈ RIn×P ,A(n) = [a

(n)
1 |a

(n)
2 | . . . |a

(n)
P] and

Λ ∈ RP×P is a diagonal matrix that stores normalization weights. The rank of a tensor

is defined as the minimum number of rank-1 tensors required to exactly reconstruct it

in PARAFAC.

33

Figure 4.1. CP decomposition of a 3-way array.

The mode-n matricization in terms of the Khatri-Rao products of the remaining

modes is given as:

X(n) ≈ A(n)Λ
(
A(N) �A(N−1) � . . .�

A(n+1) �A(n−1) � . . .�A(1)
)>

(4.3)

An alternate popular tensor decomposition is the Tucker decomposition, which

can be regarded as the extension of principal component analysis (PCA) to tensors.

Its N -way generalization can be written as:

X = G×1 U(1) ×2 U(2) . . .×N U(N)

= JG; U(1),U(2), . . . ,U(N)K (4.4)

or

xi1i2...iN =

P1∑
p1=1

. . .

PN∑
pN=1

gp1p2...pNu
(1)
i1p1

. . . u
(N)
iNpN

(4.5)

for in = 1, . . . , In, n = 1, . . . , N and where G denotes the core tensor, gp1p2...pN ∈ G.

34

Figure 4.2. Truncated Tucker decomposition of a 3-way array.

The two best known versions of the Tucker decomposition are higher order or-

thogonal iteration (HOOI) and higher order singular value decomposition (HOSVD),

both of which compute projection matrices with orthogonal columns. Since U(n) ma-

trices are orthonormal, for these two versions of the Tucker decomposition the following

also holds:

G = X×1 U(1)> ×2 U(2)> . . .×N U(N)> (4.6)

It is possible to compress a tensor by representing it as a core tensor multi-

plied by a projection matrix in each mode, where the projection matrices have ranks

(P1, P2, . . . , PN) and Pn ≤ rank(X(n)). Note that in the case of strict inequality in one

or more of the modes, that is for a truncated Tucker decomposition, Equation 4.4 does

not hold anymore, and we obtain an approximation to the tensor. Figure 4.2 illustrates

the truncated Tucker decomposition of a 3-way tensor.

X̂ ≈ G×1 U(1) ×2 U(2) . . .×N U(N)

≈ JG; U(1),U(2), . . . ,U(N)K (4.7)

The details of distance functions and metrics are already discussed in Subsection

2.2. Here we refocus on Frobenius norm. The squared Frobenius norm of the difference

35

of two matrices or tensors (we call it Frobenius distance from now on) is a tractable

and popular metric in machine learning algorithms. In the sequel we will use Frobenius

distance as a measure of goodness of approximation in tensor decompositions. More

specifically, while any tensor can be decomposed in terms of a core tensor and its

projection matrices, we will design tensor projection matrices to maximize classification

accuracy in the projected space.

We can further manipulate the Frobenius distance in Equation 2.10 using their

joint Tucker decompositions, as given in Equation 4.4:

||Xi − Xj||2F = ||Gi ×1 U(1) . . .×N U(N) −

Gj ×1 U(1) . . .×N U(N)||2F (4.8)

If we define X(−n) as follows,

X = X(−n) ×n U(n)

X(−n) = G×1 U(1) ×2 U(2) . . .×n−1 U(n−1)

×n+1U
(n+1) . . .×N U(N) (4.9)

then, we can rewrite Equation 4.8:

||Xi − Xj||2F = ||X(−n)
i ×n U(n) − X

(−n)
j ×n U(n)||2F

= ||U(n)(X
(−n)
i −X

(−n)
j)||2F

= tr
(

(X
(−n)
i −X

(−n)
j)>U(n)>U(n)

(X
(−n)
i −X

(−n)
j)

)
(4.10)

Equation 4.10 implies that if we continue the Tucker decomposition with or-

thonormal matrices for all modes, than we will be able to compute the Frobenius

distance of two tensors in terms of their core tensors and mutual projections matrices.

36

4.2. Discriminative Tensor Decomposition With Large Margin

We propose a new method to estimate the joint projection matrices that map a set

of tensors into a more discriminative feature subspace, in the same vein as the LMNN

and LMCA methods. The latter two methods [61], [9] actually focus on improving the

k-nn classification accuracy by mapping the data into a new feature space. Our method

differs from these two works in that it is a hybrid of the LMCA method and the Tucker

decomposition. More specifically, it uses distances to project the multi-dimensional

input data into a multi-dimensional feature space as in LMCA meanwhile preserving

the orthogonality of the projection matrices and the low reconstruction error as in

Tucker decomposition. In other words, we try to achieve simultaneously both good

classification and high fidelity reconstruction of the data. To put into evidence the

merit of the proposed method, we consider the case of tensor data retrieval with very

limited training data. Collected data can be limited due to rare occurrence of events

or to the cost/limitations of data acquisition. Thus a new tensor instance is queried

when only very few sample tensors are available. The paucity of training data will

hopefully be compensated for by the inherent noise filtering and stabilization in the

subspace of core tensors. Pattern analysis and tensor retrieval could thus be more

reliably conducted in the core tensors space.

In essence our methodology provides trade-offs between generality and locality,

and more importantly between classification error and reconstruction error. To make

this trade-off clear, we point out that locality is preserved in the sense that the nearest

neighbors are forced to be close to each other in the projected space while generality

is provided in the sense that the projection matrices are evaluated jointly over all the

data set. We find projection matrices U(n), n = 1, ...N for every mode such that for

each class each tensor is projected into a subspace where in-class tensor cores stand

closer to each other while all other-classes tensor cores are forced to be as distant as

possible from core instances of the target class. In addition, the projection subspace

vies concomitantly to have as faithful a reconstruction of each tensor as possible from

its core. In other words, the average reconstruction error of the tensors is minimized

under the constraint of good class discrimination. Note that we do not execute Tucker

37

decomposition on individual tensors; instead we find N projection matrices, one for

each mode, learned jointly by the training set tensors.

Although there are several distance function options for embedding pairwise sim-

ilarities of tensor objects, in this study we have opted for the squared Frobenius norm

since it is intuitive and easier to optimize.

We actually develop two versions of the method according to the evaluation cri-

teria, and we call them the Core and the Full versions. The LMTD-C (Core) version

finds the projection matrices that optimizes the classification performance relying on

the core (reduced) tensors, while the LMTD-F (Full) version tries to find the projection

matrices that optimize the performance using the reconstructed tensors. The LMTD-C

focuses on improving discrimination over the core tensors while the reconstruction is

its second concern. On the other hand, the LMTD-F targets aligning the tensors in the

input spaces such that tensors could be better discriminated in the input space while

the separation in the feature space is a concomitant benefit.

4.2.1. LMTD-C: Large Margin Tensor Decomposition - Core

The LMTD-C decomposition method is illustrated in Figure 4.3. As shown in the

figure, the larger dimensional N -way tensors are reduced to lower dimensional N -way

tensors via a set of joint projection matrices. Note that these smaller objects are not

anymore the core tensors of a Tucker decomposition.

Thus each N -way core tensor Gi for a generic tensor Xi can be extracted as:

Gi = Xi ×1 (U(1))> ×2 (U(2))> ×3 . . .

×N(U(N))> (4.11)

where U(n), n = 1, . . . , N are the projection matrices per modes as obtained via the

algorithm in Figure 4.4 (to be derived in the sequel) as in Equation 4.6. One should

38

Figure 4.3. Large Margin Tensor Decomposition - Core version, illustrated for N = 3.

Ties between tensor cubes are for illustrative purposes to show class memberships.

note that while U>U = I, UU> is not guaranteed to be I.

The matricized version of this transformation for any one, say n, mode is:

G
(n)
i = (U(n))>X

(n)
i H(−n)

H(−n) =

(
(U(N))> ⊗ (U(N−1))> ⊗ . . .⊗ (U(n+1))> ⊗

(U(n−1))> ⊗ . . .⊗ (U(1))>
)>

(4.12)

Conversely, any tensor, Xi, can be reconstructed approximately from its core and

the joint projection matrices:

X̂i ≈ Gi ×1 U(1) ×2 U(2) . . .×N U(N) (4.13)

39

If we substitute Equation 4.11 in Equation 4.13, we can express the approximate

reconstruction X̂i of a tensor from its projections:

X̂i ≈ Xi ×1 (U(1))> ×2 (U(2))> . . .×N (U(N))>

×1U
(1) ×2 U(2) . . .×N U(N)

= Xi ×1 (U(1)(U(1))>)×2 (U(2)(U(2))>)

×3 . . .×N (U(N)(U(N))>) (4.14)

We can see better the reconstruction of the tensor per mode if we matricize the

transformation for some selected mode n:

X̂
(n)
i ≈ (U(n)(U(n))>)W

(−n)
i

W
(−n)
i = X

(n)
i

(
(U(N)(U(N))>)⊗

(U(N−1)(U(N−1))>)⊗

. . .⊗ (U(n+1)(U(n+1))>)⊗

(U(n−1)(U(n−1))>)⊗

. . .⊗ (U(1)(U(1))>)

)>
(4.15)

Given a set ofK tensors with class labels the LMTD-C algorithm can be expressed

as:

min
U(1),...,U(N)

µ
K∑
i=1

||Xi − X̂i||2F + β
K∑

i=1,j i

||Gi − Gj||2F

+γ
K∑

i=1,j i,l

(1− yil)ξijl

s.t |Gi − Gl||2F − ||Gi − Gj||2F ≥ C − ξijl

ξijl ≥ 0, ∀i,∀j,∀l

U(n)(U(n))> = I,∀n (4.16)

40

where C is an assigned margin value, which determines the safety region between an

in-class and an impostor. Note that during the evaluation of the impostor distance

constraints third row of Equation 4.16, each instance is compared within in its own

k-nn neighborhood set, ol ∈ Nek(oi).

It will be instructive the consider the three terms of the objective function sepa-

rately. The first term with weight µ accounts for the reconstruction fidelity. Obviously

the higher the value of the weight coefficient µ the lower the reconstruction error, but

potentially at the detriment of classification accuracy. The second term corresponds

to the sum of distances between core tensors and those of their targets. The weight

coefficient β enforces the closeness of in-class core tensors for a more accurate k-nn

classification. The third term penalizes impostors violating the margin condition, that

is, tensors that appear closer to the target object than in-class neighbors. It consists

of the sum of distances to the margin and its weight is adjusted with the coefficient γ.

If we had U(n)(U(n))> = IIn×In , ∀n, we would have X̂i = Xi. But this might not

be the case, since rank(U(n)) ≤ In. Since U(n) is a projection operation, we reduce

the dimensions and the equality definitely does not hold (rank(U(n)) < In). Thus

U(n)(U(n))> = I spans the space of reconstruction errors and uncorrelated projection

directions.

Let’s manipulate the objective function and convert it to an unconstrained opti-

mization problem. It will be more convenient to proceed with the n-mode expansion

of the tensors.

41

L(C) = µ

K∑
i=1

tr
(

(X
(n)
i − X̂

(n)
i)>(X

(n)
i − X̂

(n)
i)
)

+

β

K∑
i=1,j i

tr
(

(G
(n)
i −G

(n)
j)>(G

(n)
i −G

(n)
j)
)

+

γ
K∑

i=1,j i,l

(1− yil)
[
C +

tr
(

(G
(n)
i −G

(n)
j)>(G

(n)
i −G

(n)
j)
)
−

tr
(

(G
(n)
i −G

(n)
l)>(G

(n)
i −G

(n)
l)
)]

+
(4.17)

where [a]+ is the hinge loss, which yields a when a > 0 and is 0 otherwise. The

superscript (C) in L(C) denotes the “Core” version of the LMTD algorithm.

Let’s consider the individual terms of the loss function and define Υ
(n)
ij = (G

(n)
i −

G
(n)
j)>(G

(n)
i −G

(n)
j):

L1 =
K∑
i=1

tr
(

(X
(n)
i − X̂

(n)
i)>(X

(n)
i − X̂

(n)
i)
)

L
(C)
2 =

K∑
i=1,j i

tr(Υ
(n)
ij)

L
(C)
3 =

M∑
i=1,j i,l

(1− yil)
[
C + tr(Υ

(n)
ij)− tr(Υ

(n)
il)
]

+

L(C) = µL1 + βL
(C)
2 + γL

(C)
3 (4.18)

Note that the loss function is non-convex due to the lower rank projection matrices

in multi-ways, hence it does not have a closed form solution and search algorithms

may not always reach the global optimum. We search for an iterative solution, so

that in each iteration we fix the projection matrices except for U(n) and solve for it,

∀n = 1, ..., N . To this effect, we first use the gradient descent algorithm and then

42

we apply QR decomposition to project the solution back onto the unit sphere. The

gradient for U(n) can be computed as follows:

∂L(C)

∂U(n)
= µ

∂L1

∂U(n)
+ β

∂L
(C)
2

∂U(n)
+ γ

∂L
(C)
3

∂U(n)
(4.19)

We define the following shorthand notations: P
(−n)
ij = X

(n)
i H(−n)(H(−n))>(X

(n)
j)>,

where H(−n) is defined in Equation 4.12, T(n) = U(n)(U(n))>, V
(−n)
ij = W

(−n)
i (W

(−n)
j)>,

Φ
(−n)
ij = P

(−n)
ii −P

(−n)
ji −P

(−n)
ij +P

(−n)
jj and W

(−n)
i is as in Equation 4.15. The expression

for the gradient of the loss function vis-à-vis U(n) becomes:

∂L(C)

∂U(n)
= 2µ

K∑
i=1

[
−W

(−n)
i (X

(n)
i)> −X

(n)
i (W

(−n)
i)> +

V
(−n)
ii T(n) + T(n)V

(−n)
ii

]
U(n) +

2β
K∑

i=1,j i

[
Φ

(−n)
ij

]
U(n) +

2γ
K∑

i=1,j i,l

(1− yil)

[
Φ

(−n)
ij −Φ

(−n)
il

]
U(n) (4.20)

The LMTD-C algorithm is sketched in Figure 4.4. Note that the max norm

(‖U‖max = maxij |Uij|) is used for preventing numerical instabilities and scaling the

gradient such that its entries are guaranteed to be between −1 and 1.

The number of nearest neighbors and the margin C play critical roles in the

number of impostors that we have to deal. The higher the value of k and/or of C,

the more impostors there are. As the margin goes wider, the algorithm searches over

a bigger hypersphere, hence potentially one can find more impostors. Similarly, the

bigger the number k of nearest neighbors we search for, the higher the likelihood of

encountering impostors. One has to check for impostors in every iteration since an

update in the projection matrices may cause some impostors to vanish and new ones

to emerge.

43

Require the set of tensor objects, {X(m)}Mm=1, their class labels cm ∈

{1, 2, . . . , Nc}, the reduced dimensions I ′1× I ′2× . . .× I ′N , the number of neighbors

(by default, k = 3), the weight parameters (by default, µ = 1, β = 1, γ = 1, α =∏N
n=1 In, C =

∏N
n=1 I

′
n) and the learning rate (by default, ρ = 0.01).

Determine the target neighbors in the input space and fix them.

Initialize {U(n)}Nn=1

for t = 1 to Tmax do

for n = 1 to N do

Determine the impostors for each reduced instance, G(m)

Calculate ∂L(C)

∂U(n)

U(n) ← U(n) − ρ
(∥∥∥ ∂L(C)

∂U(n)

∥∥∥
max

)−1
∂L(C)

∂U(n)

Q,R = QRDecomposition(U(n))

U(n) ← Q

end for

end for

return {U(n)}Nn=1.

Figure 4.4. Algorithm of LMTD-C.

44

Figure 4.5. Tensors reconstructed to original dimensions from core tensors as in

Figure 4.3 to be used in Large Margin Tensor Decomposition - Full.

Any rule can be used in the initialization of the projection matrices {U(n)}Nn=1;

in fact, they can even be assigned randomly. But to have a consistent and sensible

starting point, we have calculated the individual Tucker decompositions of tensors and

averaged over the individual projection matrices. Thus the initial projection matri-

ces are derived from the singular vectors of the averaged Tucker projection matrices

obtained by singular value decomposition (SVD).

4.2.2. LMTD-F: Large Margin Tensor Decomposition - Full

An alternative adaptation of the LMTD approach emphasizes the similarity be-

tween in-class reconstructed tensors and their original versions in the k-nearest neigh-

borhood and similarity the dissimilarity between reconstructed impostors and in-class

neighbor, while paying tribute as well to the classification accuracy. LMTD-F distills

tensors so that both reconstruction and discriminant qualities are directly guaranteed;

LMTD-C distills tensors for good discrimination while similarity of reconstructed ten-

sors is indirectly provided for based on the similarity of the core tensors. In essence,

both are approaches to improve the accuracy of the k-nn classifier thanks to the large

margin constraints embedded. The LMTD-F algorithm is visualized in Figure 4.5.

45

The formulation of LMTD-F is given below:

min
U(1),...,U(N)

µ
K∑
i=1

||Xi − X̂i||2F + β
K∑

i=1,j i

||X̂i − X̂j||2F

+γ
K∑

i=1,j i,l

(1− yil)ξijl

s.t ||X̂i − X̂l||2F − ||X̂i − X̂j||2F ≥ C − ξijl

ξijl ≥ 0, ∀i,∀j,∀l

U(n)(U(n))> = I,∀n. (4.21)

Similar to LMTD-C, let’s manipulate the objective function and convert it to an

unconstrained optimization problem, which is legitimate for any mode (any n).

L(F) = µ
K∑
i=1

tr
(

(X
(n)
i − X̂

(n)
i)>(X

(n)
i − X̂

(n)
i)
)

+

β
K∑

i=1,j i

tr
(

(X̂
(n)
i − X̂

(n)
j)>(X̂

(n)
i − X̂

(n)
j)
)

+

γ
K∑

i=1,j i,l

(1− yil)
[
C +

tr
(

(X̂
(n)
i − X̂

(n)
j)>(X̂

(n)
i − X̂

(n)
j)
)
−

tr
(

(X̂
(n)
i − X̂

(n)
l)>(X̂

(n)
i − X̂

(n)
l)
)]

+
(4.22)

46

The three components of the LMTD-F objective function read as follows:

L1 =
K∑
i=1

tr
(

(X
(n)
i − X̂

(n)
i)>(X

(n)
i − X̂

(n)
i)
)

L
(F)
2 =

K∑
i=1,j i

tr
(

(X̂
(n)
i − X̂

(n)
j)>(X̂

(n)
i − X̂

(n)
j)
)

L
(F)
3 =

K∑
i=1,j i,l

(1− yil)
[
C +

tr
(

(X̂
(n)
i − X̂

(n)
j)>(X̂

(n)
i − X̂

(n)
j)
)
−

tr
(

(X̂
(n)
i − X̂

(n)
l)>(X̂

(n)
i − X̂

(n)
l)
)]

+
(4.23)

This loss function is similarly non-convex and a reasonable locally optimum solu-

tion can be obtained via gradient descent optimization. The gradient of the objective

function is the sum of the gradients of the three loss components.

∂L(F)

∂U(n)
= µ

∂L1

∂U(n)
+ β

∂L
(F)
2

∂U(n)
+ γ

∂L
(F)
3

∂U(n)
(4.24)

The complete gradient of the loss function is evaluated as follows, where V
(−n)
ij ,

W
(−n)
i and T(n) have been defined in LMTD-C and Ψ

(−n)
ij = V

(−n)
ii −V

(−n)
ji −V

(−n)
ij +

V
(−n)
jj :

∂L(F)

∂U(n)
= 2µ

K∑
i=1

[
−W

(−n)
i (X

(n)
i)> −X

(n)
i (W

(−n)
i)> +

V
(−n)
ii T(n) + T(n)V

(−n)
ii

]
U(n) +

2β
K∑

i=1,j i

[(
Ψ

(−n)
ij

)>
T(n) + T(n)

(
Ψ

(−n)
ij

)>]
U(n) +

2γ
K∑

i=1,j i,l

(1− yil)

[((
Ψ

(−n)
ij

)>
T(n) + T(n)

(
Ψ

(−n)
ij

)>)
U(n) −((

Ψ
(−n)
il

)>
T(n) + T(n)

(
Ψ

(−n)
il

)>)
U(n)

]
+

(4.25)

47

Require the set of tensor objects, {X(m)}Mm=1, their class labels cm ∈

{1, 2, . . . , Nc}, the reduced dimensions I ′1 × I ′2 × . . . × I ′N , the weight parame-

ters (by default, µ = 1, β = 1, γ = 1, α =
∏N

n=1 In, C =
∏N

n=1 In) and the learning

rate (by default, ρ = 0.01).

Determine the target neighbors in the input space and fix them.

Initialize {U(n)}Nn=1

for t = 1 to Tmax do

for n = 1 to N do

Determine the impostors for each reconstructed instance, X̂(m)

Calculate ∂L(F)

∂U(n)

U(n) ← U(n) − ρ
(∥∥∥ ∂L(F)

∂U(n)

∥∥∥
max

)−1
∂L(F)

∂U(n)

Q,R = QRDecomposition(U(n))

U(n) ← Q

end for

end for

return {U(n)}Nn=1.

Figure 4.6. Algorithm of LMTD-F.

The full algorithm to apply LMTD-F is given in Figure 4.6.

48

5. APPLICATIONS, EXPERIMENTS AND RESULTS

We experiment the proposed methods with the simulated data for the cyber-

security system and with image and video data for the tensor decomposition. Both of

them are compared with their competitors from the literature. The experimentation

and comparison setup of each method are given in separate sections.

5.1. DDoS Detection and Attacker Discrimination

This section focuses on experimentation of the proposed DDoS detection and

attacker discrimination system. Besides the performance comparison with the com-

petitors, different setups are experimented to determine the performance of the pro-

posed system under different influences such as the effects of traffic intensity and the

observation window length, or overlapping attacks.

5.1.1. Simulation Environment

As it is often reported in the literature, we have also found that obtaining and get-

ting the permission to use VoIP server data sets proves to be very problematic, mostly

due to privacy concerns of the subscribers and the commercial secrecy concerns of the

telecommunication operators. Therefore, we have used simulated data sets to analyze

the performance of the change point detection model, detailed in Section 3.1, and of

the malicious user identification algorithm, given in Section 3.2. An Asterisk-based

PBX software, named Trixbox, is deployed as the SIP server in a virtual machine [64].

To mimic the traffic on a SIP server, we have built a probabilistic SIP network simula-

tion system, which initiates calls between a number of probabilistically chosen users in

real-time [65, 66]. An application that creates the user agents is deployed on another

virtual machine. We have used PJSIP open source library [67] and implemented it in

Python language. Lastly NOVA V-Spy, a vulnerability scanning tool, is installed on a

final virtual machine and is used to simulate DDoS attacks targeting the server [68].

An overview of the simulation environment is provided in Figure 5.1. The proposed

49

Figure 5.1. SIP Network Simulation Framework.

security system runs on the same machine with the SIP server, as represented with a

gray box in Figure 5.1.

The traffic simulator, based on a probabilistic model, generates real-time SIP

messaging traffic among registered subscribers [65]. The probabilistic model is basi-

cally a library that initiates all permitted actions of subscribers in generating real-life

SIP messaging traffic through a SIP server. Instances of subscriber actions are: The po-

tential callees and callers (the social network), how likely to call a certain contact (the

phone book), how often to become active (registration frequency to the SIP server),

how long to wait before the next call (the call frequency), how likely to make a call

(the call probability), how likely to answer an incoming call (the response probability),

and how long to talk on the phone (the call duration). The parameters provided to the

simulator determine the behavior of probabilistic model and therefore statistically the

actions of subscribers. The environmental parameters of the simulator are the total

number of subscribers in the SIP server can serve and the number of social groups,

where a social group is defined as the subset of subscribers that are more likely to in-

teract with each other as compared to the rest. All subscribers are created as bots on

the simulation machine and they all follow legitimate messaging rules of the protocol.

An existing subscriber bot is active as long as its registration on the SIP server has

not expired; therefore only active bots can interact with each other.

50

Figure 5.2. Illustration of traffic intensities generated by the simulator.

Data are collected by inspecting each SIP packet that arrives to or is sent by the

server. Counts of 14 SIP request and 14 SIP response packets are recorded periodically

for each time unit (which is assumed to be 1 second in our experiments) and the 28-

dimensional vector, made up of packet counts per unit interval, constitutes the input

data. The SIP message types, which are described in details in RFC 3261 [4], for which

we record periodically the counts are as follows:

• Requests: Register, Invite, Subscribe, Notify, Options, Ack, Bye, Cancel, Prack,

Publish, Info, Refer, Message, Update

• Responses: 100, 180, 183, 200, 400, 401, 403, 404, 405, 481, 486, 487, 500, 603

The experimental environment is controlled by two parameters: the intensity

of the background traffic, that is, the normal-user traffic and the intensity of DDoS

attack traffic. In our simulation system at any time there are 200 active registered

subscribers. There are 5 levels of preset normal traffic intensity created collectively by

the subscriber bots. The normal subscriber bots, on the average generate a total of

5, 10, 20, 40 and 80 call attempts among themselves (0.025 to 0.4 message/bot), in

any observation (1 sec) interval. We grade these background traffic intensities as levels

51

from 1 to 5. Figure 5.2 exhibits these traffic intensities for a simulation setting. Note

that the gray tones in the plots are proportional to the message counts so that the

darker a region in the plot, the higher the number of that type messages observed in

that interval. White represents intervals with no messages and intervals with a count

higher than 200 messages are shown in pitch black.

During a DDoS attack, for a given setup, as long as not explicitly stated oth-

erwise, 10 randomly selected users, that is 5 percent of the subscribers, play the role

of attackers. During attacks, the attackers start sending messages more intensely to

the SIP server. In the low-level attack setting, each attacker sends on the average 50

messages, while in a high-level attack, their rate becomes 100 messages per second. In

each run, 10 DDoS attack sessions are simulated, consisting of attacks using the five

types of messages (Invite, Register, Options, Cancel and Bye) and each carried out

once with low intensity and once with high intensity. The runs are repeated ten folds,

such that in each fold attacks occur in a different order and a different set registered

subscribers are selected to act as attackers. In Figure 5.2 the darker regions correspond

to attacks.

The experiments are executed in a 10-fold cross-validation setup. One dataset is

used for determining the parameters of the distance change point model, and the re-

maining nine datasets are run with the estimated parameters. Recall that the distance-

based change-point detector had three different parameters; we apply a grid search to

find the best parameters (k = {5, 7, 9, 11}, λ = {1.0, 2.0, 4.0}, β = {1.0, 2.0, 4.0} and

an additional fourth one for χ2 thresholding α = {0.01, 0.02}). The default values are

set for the parameters of the time series alignment kernel as (γ = 1.0 and ρ = 1.0). For

the ARIMA model, we perform an exhaustive search to find its optimal parameters

p = {1, 2, 3, 5, 10}, d = {0, 1, 2} and q = {0, 1, 2, 3, 5, 10}.

Since we know the labels (the attack times and the identity of attackers) in the

simulated data, we can evaluate the performance of the proposed system in terms of

the F-measure. In the ideal case the F-measure would be 1, which can be obtained

only when there are no falsely accused users (i.e., precision P = 1), all the attackers are

52

Figure 5.3. Illustration of traffic intensities as a function of observation interval. All

traffic is generated at level 3.

identified correctly (i.e., recall R = 1), and all the change points are identified by the

change point detector. The precision, recall and F-measure are evaluated as follows,

for the case of malicious users:

Precision (P) =
detected true malicious users

all detected malicious users
(5.1)

Recall (R) =
detected true malicious users

all true malicious users
(5.2)

F-measure (F) = 2
PR

P +R
(5.3)

For change point detection performance, we can replace the arguments of P and R with

detected true change points, all detected change points, and all true change points.

We have experimented with the duration of the observation interval. Figure 5.3

shows the effect of the length of the observation interval for the normal traffic setting.

Not surprisingly, as the sampling interval increases, the messaging counts also go higher.

A few words are in order to explain Figure 5.3: The abscissa represents real time in

53

seconds while an observation in taken every T seconds, T = 1, 2, ..., 10. We used in

the graphic, the same gray tone is used to represent the observed count vector, hence

the appearance of stretched bars. Furthermore, the longer the observation interval, the

more the number of messages seen for any type, and consequently the plots become

have darker areas.

5.1.2. Comparison with a Competitor Algorithm

Figure 5.4 shows the performance of our algorithm in detecting the onset and

offset instants of the DDoS attacks. This figure is illustrative in that for the each

simulation traffic setting, the best parameters are chosen for the models found via

grid search. These parameters used for performance comparisons are given in each

table. The ordinate lists the 28 types of SIP messages, the abscissa shows the time in

seconds, and the levels of gray show the intensity of messages. The red lines indicate

the change point instants found by the algorithms. The experiments demonstrate that

both proposed methods of thresholding are successful in detecting the onset of attacks,

but they may sometimes fail to detect the offset. The possible reason is that an attack

causes an abrupt change against the background of normal user traffic; however, after

that the incoming message intensity subsides at the end of an attack, its aftershock

effects linger on at the server side with server response messages. The ARIMA model

often fails to raise alarms at the correct instances and it is also affected by the short-

time small fluctuations in the counts. Therefore, it gives incorrect onset and offset

indications.

Attack Onset and Offset Determination: In our evaluations, we consider detecting

the start and end instants of the attacks. Therefore, we measure the number of attacks

for which the onset and offset are correctly detected as well the miss and false alarm

probabilities (errors of the first type and of the second type). For the ARIMA model,

we look at the start and end point of a contingent period which is detected as an

anomaly. Since an attack engenders a different behavior in the network (anomaly), the

anomaly detector should be able to detect the start and the end of an attack. During

the comparison, we use the start and end times of continuous intervals detected as the

54

a) The ground-truth change points.

b) The change points detected by the constant thresholding DCPM

(k = 5, λ = 4.0, β = 4.0, c = 1).

c) The change points detected by the χ2 thresholding DCPM

(k = 11, λ = 4.0, β = 4.0, α = 0.02).

d) The alarms raised by the ARIMA model (p = 2, d = 1, q = 1).

Figure 5.4. The change points and alarms raised by the models. The first five attacks

are low-level (50 messages per attacker), while the last five attacks are high-level (100

messages per attacker).

55

Table 5.1. The performance of the change-point detectors for normal traffic for 1

second (For constant thresholding k = 5, λ = 1, β = 4, c = 1, for χ2 thresholding

k = 5, λ = 2, β = 2, α = 0.02, for ARIMA p = 2, d = 1, q = 0).

Change-Point Detector Precision Recall F-Score

Constant-Thresholding DCPM 0.70 ± 0.04 0.88 ± 0.07 0.79 ± 0.04

χ2 - Thresholding DCPM 0.81 ± 0.07 0.73 ± 0.10 0.77 ± 0.03

ARIMA 0.25 ± 0.11 0.15 ± 0.09 0.25 ± 0.04

change-points for a fair comparison.

The 10-fold cross-validation performance scores of the distance change-point de-

tector and the ARIMA based DDoS detector are given in Table 5.1. Both thresholding

functions are deployed. The onset and offset times of the attacks are known and they

are compared with the change-point times returned by the models. For the ARIMA

model, the change points are assumed to correspond to the time instances where the

alarms are raised (onset) and the alarms are silenced (offset).

To assess the attack detection performance of the DCPM (Distance based Change-

Point Method) algorithm vis-a-vis to an alternative method, we have run simulation

experiments methods with a method from the literature, an ARIMA-based DDoS de-

tector [27]. The rationale for the choice of this competitor algorithm is that it was

the only model we could find in the literature operating in an online and unsuper-

vised mode. At this stage we use only one of the thresholding methods, namely χ2

thresholding as in Equation 3.5, since the two methods yield comparable results. Their

comparative performance are given in Table 5.1 The proposed methods have higher

performance scores than ARIMA. The main reason is that the ARIMA detector fails

to behave consistently in the attack interval. It gives false onsets and offsets during an

ongoing attack. The DCPM methods give comparably close scores, but it should be

noted that the parameters should be set with respect to system characteristics such as

tolerance to false alarms or traffic intensity.

56

Table 5.2. The performance of the change-point detectors for normal traffic intensity

for different sampling rates (For constant thresholding k = 5, λ = 1, β = 4, c = 1, for

χ2 thresholding k = 5, λ = 2, β = 2, α = 0.02).

Detector Score 1 sec 2 secs 3 secs 5 secs 10 secs

Constant

Precision 0.70±0.04 0.72± 0.04 0.73±0.04 0.74±0.02 0.77±0.01

Recall 0.88±0.07 0.92±0.04 0.97±0.02 0.98±0.01 0.99±0.01

F-Score 0.79±0.04 0.81±0.04 0.83±0.02 0.84±0.01 0.87±0.01

χ2

Precision 0.81±0.07 0.83±0.05 0.85±0.04 0.87±0.03 0.92±0.02

Recall 0.73±0.10 0.75±0.04 0.76±0.03 0.80±0.04 0.84±0.02

F-Score 0.77±0.04 0.79±0.04 0.81±0.05 0.84±0.02 0.88±0.01

5.1.3. Effect of the Observation Interval Length

Table 5.2 shows that increasing observation interval improves the accuracy of the

system; in fact the F-score increases by 10 points when the interval is augmented from

1 to 10 seconds. The obvious reason is that the longer observation interval makes the

attack traffic statistics increasingly more distinct from the background. However this

improvement comes at the price of reduced time resolution, where the onset and offset

instances of the attack become proportionally blurred.

5.1.4. Effect of Traffic Intensity

Table 5.3 shows the effect of traffic intensity over the performance of the change

point detector. Even though the F -scores of the detector running with empirical and

statistical thresholds are similar, their precision and recall scores differ. The χ2 thresh-

old detector has higher precision resulting in lesser false alarms, but it might miss more

frequently an attack. On the other hand, the constant thresholding is more success-

ful in detecting an attack but it results in more false alarms. Not surprisingly as the

background traffic intensity increases, the detection performance decreases. Obviously

the fluctuations in the normal traffic confound the attack traffic, which becomes less

57

Table 5.3. The performance of the change-point detectors for different traffic intensity

levels for 1 second (For constant thresholding k = 5, λ = 1, β = 4, c = 1, for χ2

thresholding k = 5, λ = 2, β = 2, α = 0.02).

Detector Score level 1 level 2 level 3 level 4 level 5

Constant

Precision 0.77±0.03 0.73±0.05 0.70±0.04 0.69±0.06 0.68±0.08

Recall 0.90±0.03 0.88±0.04 0.88±0.07 0.85±0.06 0.83±0.07

F-Score 0.82±0.04 0.8±0.07 0.79±0.04 0.77±0.07 0.75±0.07

χ2

Precision 0.88±0.06 0.85±0.04 0.81±0.07 0.81±0.08 0.79±0.06

Recall 0.79±0.03 0.78±0.03 0.73±0.10 0.72±0.06 0.7±0.08

F-Score 0.83±0.05 0.81±0.05 0.77±0.04 0.76±0.06 0.74±0.08

distinctive. Conversely, when the background traffic is low, the abrupt changes caused

by the attacks are easier to detect. The optimal set of parameters should be sought

for each traffic intensity.

5.1.5. Effect of Overlapping Attack Intervals

Figure 5.5 illustrates the flexibility of the proposed model. In this instance, the

register attack is applied incrementally such that at events distanced in time by 80-90

seconds. A new set of 10 attackers starts an attack and at the same time the intensity

of their attack is increased by additional steps of 5 messages. For example, a set of 10

attackers starts at the 175th second with 5 register messages per second, resulting in a

total of 50 register messages per second; then a different set of 10 attackers starts at the

255th second with 10 register messages per second, resulting in a total of 100 messages

per second etc. The final set of attackers sends 50 register messages per second per

attacker. When we set λ = β = 1, for the fixed threshold model, the algorithm is

able to detect the start and the end of the attacks when c ≤ 3. For the chi-square

thresholding, the algorithm is able to detect the onset and offsets when α > 0.005.

58

Figure 5.5. Register attacks increasing at incremental steps of 5.

Figure 5.6. Overlapping mixed types of attack increasing at incremental steps of 5.

5.1.6. Detection Performance for Time Overlapped Attacks

Figure 5.6 shows the performance of the detector when the attacks are overlap-

ping. The vertical bars in the figure indicate the detected onsets and offsets of the

anomalous traffic when a fixed threshold is used k = 5, λ = β = 1 and c = 1. The χ2

thresholding for α = 0.02 shows very similar performance. Each attack type is executed

twice with 10 different attackers each time. The first occurrences are with 5 messages

per second and the second ones are with 10 messages per second. For example, the first

cancel attack starts with 50 messages (5 cancel messages * 10 attackers) per second

around 400th second and the second cancel attack starts with 100 messages per second

around 850th second.

59

5.1.7. Effects of DCPM Parameters

The λ and β parameters provide the trade-off between aging and agility of the

system. If the aging parameter λ is set to a value higher than β, the system is more

resistive to the current change in the system and it is biased to keep its status quo.

On the contrary, a higher β value means the system is unbiased to any change and its

effects to the system will be eliminated sooner.

In the case of χ2 thresholding, the α parameter determines the tolerance to false

alarms. If it is set to a high value (e.g α = 0.1), the algorithm is more likely to

raise an alarm in case of an abrupt change even though it may not be caused by an

attack. If it has a low value (e.g., α = 0.01), then the number of false alarm decreases.

The c parameter plays a role similar to the α parameter of χ2 thresholding, in that c

determines the tolerance for the false alarms. Setting it to low values (e.g. c = 0.5)

may cause even a fluctuation of the normal traffic to raise an alarm. Conversely, for

its high values (e.g., c = 5), the attacks might go undetected.

Figure 5.7 shows the Receiver Operating Characteristic (ROC) curve for the

DCPMs for all other parameters fixed other than c and α, which are the constant

threshold coefficient and the significance level, respectively. Both c and α decrease

while we traverse along the curves.

5.1.8. Performance of Attacker Identification Methods

To assess attacker identification performance, we experiment the two proposed

spectral clustering methods, the one based on the time series kernel and the other on

the distance kernel. As a competitor method for attacker identification, we use the

time series clustering method proposed in [39]. In the latter method, dynamic time

warping distance is used for calculating the distances between time series having differ-

ent lengths, and a one-nearest neighbor network is thus extracted. The performances

of these three attacker identification methods are given in Table 5.4. Notice that the

attacker identification methods are run in an unsupervised setting. This is a viable ap-

60

0.00 0.02 0.04 0.06 0.08 0.10
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

ROC of DCPM

Chi-Square Threshold
Constant Threshold

Figure 5.7. The Receiver Operating Characteristics curve of Distance based

Change-Point Models as α goes from 0.1 to 0.01 by 0.01 decrease and c goes from 1.0

to 0.65 by 0.05 decrease.

proach since most of the time, in reality, labeled training data would not be available.

This is due to either the changing characteristics of attack models, e.g. a zeroth day

attack, or privacy and prestige concerns of the service providers.

Figure 5.8 shows the normalized kernel matrices, calculated according to the

time series kernel and the distance kernel, respectively, as in Equations 3.9-3.10 and

Equation 3.11. These matrices represent the messaging behavior similarity of the set of

200 users, as it is set in this experiment: In Figure 5.8 however, we plot the behavioral

similarity of a subset of 25 users for clarity of illustration. 10 of the 200 users (though

only the behaviour of only 25 - 10 = 15 of the normal users are plotted) mount a

DDoS attack, as shown in Figures 5.8a and 5.8b. The users with similar behavior

patterns have kernel values close to 1 (dark cells), while the uncorrelated users have

kernel values close to 0 (white cells). Note that for the similarity values between the

attackers (the attacker-attacker cells), there are some gray shades implying a modest

similarity. But the attacker-normal user cells are almost all completely white (close to

61

0) because malicious and innocent users have totally different behaviors. In summary,

the attackers are closer to each other than to the normal users.

Figure 5.8c shows the attacker group labeled according to the 2-means clustering

and malicious-user differentiation heuristics in Figure 3.7. The dark red cells cor-

respond to attacker pairs; Kq,r is 1 (dark red) if (uq, ur) is an attacker pair. Both

detectors correctly segregate the 10 malicious users from the remaining 15 innocent

users.

Figure 5.9 shows how the same subscribers in Figure 5.8 are mapped by the

spectral clustering. Note that in the plots, the number of points are less than 25. The

reason is that some users overlap in the reduced 2-dimensional space.

The performance of the attacker identification algorithms are given in Table 5.4.

The identities of the attackers and of the normal users are known since we are using

simulation data. The labels of the attackers returned by the models are compared

with true labels of the users, and performance scores are computed accordingly. The

three attacker identifiers, two of which are the models proposed in this work (distance

and time series kernels) and the third one is the time series clustering model [39], are

comparatively evaluated. The time series kernel algorithm yields the best performance

scores. The time series clustering model [39] has the worst performance. The most

likely reason for the lower performance of the latter is that this model uses Euclidean

distance, hence does not use any data-driven weighting, for the calculation of dynamic

time warping distance. The experimental results, in Table 5.4, show that the two

proposed methods have almost the same F -score values.

5.1.9. Time Comparison of Attacker Identification Methods

The time series kernel approach used in attacker detection is more accurate than

the distance kernel, but requires longer run times. The run-times of times-series clus-

tering model are between the other two models, but it has significantly lower accuracy.

Similar conclusions can be drawn for other traffic intensities and observation intervals.

62

0 5 10 15 20 25
0

5

10

15

20

25
Evaluated Time Series Kernel

a) The evaluated time series kernel matrix (γ = ρ = 1).

0 5 10 15 20 25
0

5

10

15

20

25
Evaluated Distance Kernel

b) The evaluated distance kernel matrix.

0 5 10 15 20 25
0

5

10

15

20

25
Spectral Labeled Kernel

c) Both kernels result in the same spectral label matrix.

Figure 5.8. The difference between kernels in discriminating the malicious users. Note

that the plots show only 25 of the 200 users for clarity purposes. In the bottom

figure, the dark red cells correspond to the attacker pairs.

63

0.0 0.1 0.2 0.3 0.4 0.5 0.6
s1

0.2

0.1

0.0

0.1

0.2

0.3

0.4
s2

Time Series Kernel Mapping

a) The time series alignment kernel mapping.

0.70 0.75 0.80 0.85 0.90 0.95
s1

1.0

0.5

0.0

0.5

1.0

1.5

s2

Distance Kernel Mapping

b) The distance kernel mapping.

Figure 5.9. The mapping of the two kernel matrices in the projected 2D space (s1, s2)

after spectral clustering. The blue squares are the attackers and the red circles are the

innocent users for the level 4 intensity traffic with the observation interval of 1 second.

64

Table 5.4. The performance of different attacker identifiers. Constant and χ2 stand

for DCPMs run with constant and χ2 thresholding, respectively. Distance, Time

Series and Clustering represent the distance kernel, the time-series kernel and the

time-series clustering, respectively, for the sampling interval of 1 second and level 4

traffic and where the DCPM parameters are the same with Table 5.1.

Model Precision Recall F-Score

Constant - Distance 0.64 ± 0.13 0.5 ± 0.08 0.55 ± 0.1

Constant - Time Series 0.68 ± 0.1 0.51 ± 0.1 0.57 ± 0.1

Constant - Clustering 0.49 ± 0.12 0.37 ± 0.07 0.4 ± 0.08

χ2 - Distance 0.72 ± 0.07 0.57 ± 0.04 0.62 ± 0.05

χ2 - Time Series 0.77 ± 0.05 0.60 ± 0.06 0.66 ± 0.06

χ2 - Clustering 0.5 ± 0.19 0.36 ± 0.13 0.4 ± 0.15

The average running times of the attacker identification methods are given in Table 5.5,

where γ = ρ = 1 for the time series kernel, the order, which is the number of nearest

neighbors to process during cluster member candidate selection, is set to 1 for time

series clustering. The observation interval is taken as 1 second. The distance kernel

does not have any parameters to be set. For each method, the number of clusters to

be found is set to 2. This table shows that as the traffic rate goes high, the running

times of the identification methods also increase. Note that the running time of the

time series method is much higher than that of the other two models. The reason is

that the computational load of pairwise similarities in the time-series kernel increases

proportionally to the number of active users and the number of messages sent by the

users.

Table 5.6 shows the run times of the models with respect to the observation

interval. The longer the interval, the longer the models take to identify the objects. The

running time of time series kernel increases exponentially since the kernel is evaluated

by the pairwise similarity calculation of each messages sent by the subscribers. The

longer the interval, the more messages the subscribers send. Also there are more

65

Table 5.5. The processing times of attacker identification methods in seconds, for the

observation interval of 1 second with setting in Table 5.1.

Intensity Distance Kernel Time Series Clustering

Level 1 0.11±0.07 19.81±26.46 0.91±1.03

Level 2 0.11±0.07 21.20±26.7 0.93±1.05

Level 3 0.12±0.07 22.02±28.5 0.94±1.12

Level 4 0.12±0.08 26.89±29.72 0.96±1.45

Level 5 0.12±0.08 29.4±37.21 1.03±1.94

Table 5.6. The processing times of attacker identification methods in seconds, for the

different observation intervals.

Sampling Distance Kernel Time Series Clustering

1 second 0.12±0.07 22.02±28.5 0.94±1.12

2 seconds 0.16±0.12 126.33±144.30 5.06±7.84

3 seconds 0.16±0.08 326.55±446.37 20.38±31.66

5 seconds 0.24±0.13 - 72.00±95.23

10 seconds 0.76±0.45 - 162.30±286.62

number of active subscribers. The running time of time series kernel is not evaluated

for 5 and 10 seconds interval since it takes so much time.

5.2. Image and Video Retrieval

In order to assess the performance of the proposed discriminative tensor decom-

position methods, we have tested our two proposed methods and compared them with

5 other tensor decomposition methods. For all methods we have run experiments on

publicly available four popular image and one video data sets. Performance compar-

isons are obtained with competitor tensor decomposition/factorization methods in the

current literature. The training samples in each data set consist of a randomly se-

66

lected subset of instances while the remaining ones being used for testing purposes.

Experiments are repeated 20 fold for all data sets and performance results are aver-

aged over the folds. The k-nn classifier and mean Average Precision (mAP) are used

in all experiments.

5.2.1. Feature Extraction Algorithms

The features used for the competitor methods in the literature are detailed in

the sequel. The baseline classifier uses simply raw tensor data, hence does not execute

any feature extraction. As for the proposed method, recall that LMTD-C uses the core

tensor for features. On the other hand, the LMTD-F algorithm uses the back-projected

tensor from the core space, that is, the tensors reconstructed into their original dimen-

sions. Overall seven different methods take place in the performance competition, and

five of the seven tensor decomposition methods result in lower dimensional features.

k-nn (k-Nearest Neighbor): The k-nn classifier is applied directly to the input tensors

without any preprocessing such as dimension reduction and subspace projection. This

method forms the base classifier against which the improvements, if any, provided by

the decomposition methods will be assessed.

LDA (Linear Discriminant Analysis): The LDA is applied to the vectorized input

tensors. The vectorized tensors are reduced to C−1 dimensional feature vectors where

C is the number of classes.

PCA (Principal Component Analysis): The PCA is applied to the vectorized input

tensors to reduce their dimensions to C − 1.

MDA (Multilinear Discriminant Analysis): An extended version of the linear discrimi-

nant analysis (LDA), proposed in [49], is applied to tensors. In this method a sequence

of eigendecompositions are executed iteratively to find directions in each way to shrink

the intraclass scatter while widening the interclass scatter, much as in the spirit of

LDA. This algorithm consists of two loops: The outer loop determines the number

67

of times the set of eigendecomposition problems are solved to generate the projection

matrices, e.g., until convergence, that is, until the change between two successive iter-

ations become smaller then a margin. The inner loop solves the LDA problem in each

way. In any n-th iteration of the inner loop, the tensors are first multiplied with all

the projection matrices except U(n), then LDA is solved over the n-mode fibers of core

tensors to find U(∗n). Note that MDA does not guarantee convergence, thus a stopping

criterion needs to be applied. Our experimental study shows however that, mostly, the

algorithm converges within less than 20 iterations. Nevertheless a maximum number

of 500 iterations is set to mitigate the cases of no convergence and the solution set

which has the smallest total change of Frobenius distances for the projection matrices

between two sequential iterations is assumed as the best solution.

TR1DA (Discriminant Tensor Rank-1 Decomposition): TR1DA [47], is a tensor-to-

vector mapping method. This algorithm decomposes higher-order tensors into elemen-

tary multilinear projections (EMPs), which consist of a unit vector in each way. It

finds a collection of discriminating EMPs to map an input tensor into a feature vector

such that iteratively each EMP reduces the total reconstruction error. The set of P

EMPs transforms the tensor into a P -dimensional feature vector. Similar to MDA,

in any iteration of the inner loop, the error tensors, defined as the difference between

the reconstructed tensors and the input tensors, are first multiplied with all the unit

projection vectors except u
(n)
p , then a LDA-like eigendecomposition problem is solved

over the projected n-mode fibers to find u
(∗n)
p . As in the MDA method, the iterations

continue until the convergence of the EMPs or the maximum number of iterations. In

effect, TR1DA is a feature extractor for the solution of classification problems.

R-UMLDA (Regularized Uncorrelated Multilinear Discriminant Analysis): R-UMLDA

[48] can be regarded as an updated version of TR1DA. Unlike TR1DA, in each outer

iteration it focuses on finding uncorrelated EMPs so that ways the unit vectors in EMPs

belonging to one of the N ways are orthonormal to each other. When a new EMP is

derived from the error tensors, the unit vectora are added to the current solution set

only after their direction are made uncorrelated to unit vectors in other EMPs.

68

Table 5.7. The details of data sets used in the experiments.

Data Set Classes Training Test Dimensions

FERET 80 400 845 32× 32× 16

ETH80 8 40 40 32× 32× 41

KTH Human Act. 6 30 2361 32× 24× 24

Cambridge Gest. 9 45 855 32× 24× 32

LMTD-F (Large Margin Tensor Decomposition - Full): LMTD-F focuses on mini-

mizing the reconstruction error while trying to maximize the k-nn accuracy over the

reconstructed instances. With appropriate weight assignments, LMTD-F can sway

from a reconstruction optimization problem to a classification accuracy maximization

problem.

LMTD-C (Large Margin Tensor Decomposition - Core): LMTD-C, a variation of the

above LMTD-F algorithm but working with core tensors, pursues similar reconstruction

error, k-nn accuracy trade-offs.

5.2.2. Data Sets

The above tensor decomposition methods are tested on a number of publicly avail-

able data sets whose details are given in their corresponding subsections. Whenever

parameters had to be set, as in the case of, e.g., Gabor bank filtering for data prepro-

cessing or deciding for a parameter value (e.g. resizing the tensors) we have selected

values either to be compatible with the literature or according to the requirements of

the algorithms.

The details of the data sets (except USF Gait) are summarized in Table 5.7 while

those of the USF Gait data set is given in Table 5.8 shows. As mentioned before, it

consists of 4 different data sets recorded with different probes. The one with the highest

number of instances is used for the training, while the others are used for testing.

69

Table 5.8. The details of USF Gait data set.

Sets (32× 22× 10) Training Probe A Probe B Probe C

Classes / Size 71 / 731 71 / 727 41 / 423 42 / 420

Figure 5.10. An example gait from USF Gait data set.

USF Gait: USF (The University of South Florida) Gait challenge data set V1.7 contains

452 sequences from 74 individuals. The subjects are recorded walking in elliptical paths

with two different viewpoints, with two different shoe types (A and B) and over two

different surface types (grass and concrete) [69,70]. A subset containing only over the

grass recordings are used in our experiments. The training data consists of gaits filmed

from the right viewpoint with shoe type A. The remaining gaits forming the testing

sets are collected under three probes: Probe A (shoe type A, left viewpoint), B (shoe

type B, right viewpoint) and C (shoe type B, left viewpoint). The original data set

used in [70], which are the binary masked gait silhouette sequences already naturally

in 3D, consist of 128 × 88 × 20 tensors: 20 video frames of 128 × 88 pixels. We use

the version resized to 32 × 22 × 10 in [48], which is publicly available in the authors’

webpage [71]. A tensor unfolded along the time index is shown in Figure 5.10 as an

example.

KTH Human Action: KTH (Kungliga Tekniska Högskolan - KTH Royal Institute of

Technology) human action database contains 600 videos [72]. There are six action

classes: boxing, hand clapping, hand waving, jogging, running, and walking. Every

class consists of 100 videos performed by 25 individuals under four different scenarios,

which are outdoors, outdoors with scale variation, outdoors with different clothes, and

indoors. The original video frames have 160×120 resolution and video sequences differ

70

Figure 5.11. Some example frames from different actions in KTH data set.

in the number of frames. The actions are repeated multiple times by each subject under

each condition yielding 2391 video sequences, providing almost 400 repeats for every

action. The sequences are size normalized to 32× 24 pixel frames and time normalized

by picking 24 frames from the middle of sequences. Therefore, each action is packed

into a tensor of size 32× 24× 24 where the third dimension represents the time axis.

FERET: The FERET is a well-known face recognition database used in [73]. The

original data set contains more than 14K images collected from 1199 people. In our

study, we have used a subset of 1145 images belonging to 80 individuals. The selection

has been made so that there are at least 10 images per person. We have 4 images per

person in the training stage in each fold, and overall 320 images were used for training

while the remaining 825 images were kept for testing purposes. The face images are

aligned, cropped and normalized to 32×32 pixels with 256 gray levels per pixel, which

is publicly available at [71]. We tensorize the image using a bank of Gabor filters, as

in [49]. We use the orientations (θ) of 0, 45, 90 and 135 degrees and wavelengths (λ)

of 2, 4, 8 and 16 pixels. An example image and its Gabor filtered versions are given in

Figure 5.12.

ETH80: The multi-view image database ETH80 [74] includes object images from eight

categories. There are ten objects from each category and every object is captured from

71

Figure 5.12. An image in the Feret database and its gabor filters with θ = 0 degrees

and λ = {2, 4, 8, 16}.

Figure 5.13. Some of the frontal slices from objects in ETH80 data set.

41 different viewpoints. The original images are of 128 × 128 pixels and for analysis

purposes they are normalized to 32 × 32 size and 256 gray levels. Thus, each object

is represented as a 32× 32× 41 tensor, and we get 80 such kind of tensor objects per

pose. In other words, the 3rd dimension of the tensor represents the view angle, while

the other two correspond to pixel coordinates. In each fold, the data set is splitted into

two halves, 5 tensors for training and 5 tensors for test for each object.

Cambridge Gestures: The Cambridge gesture database is made up of 900 varying length

image sequences with nine different hand gesture types performed by two subjects [75],

and recorded under five different illuminations. Frames have 320 × 240 pixels and

each video clip consists of 100 image frames. The sequences are pre-processed and

transformed into 32 × 24 × 32 tensors with 256 grayscale levels. The sequences are

length normalized by picking 32 consecutive frames from the middle of the sequences.

72

Figure 5.14. Some example frames from different actions in Cambridge Gestures data

set.

The video clip database is thus reduced to 900 tensor objects where 40 tensors per

class are used for training and the remaining 60 tensors for testing.

5.2.3. Experimental Setups

We address the scarce data problem in the experiments, that is retrieval and

classification problems when there is a very limited quantity of training data. The

retrieval to the query is based on the smallest Frobenius distance between matrices

or between tensors depending on the data representation used. The performance is

measured in terms of both classification (k-nn) accuracy, whether the query will be

classified correctly within its nearest neighborhood, and mean average precision (mAP),

whether the returned objects reflect the relevance in response to a query.

In all experiments, we assume that we have only 5 (k = 5) instances for training

from each class. In each of the 20 folds, 5 instances are selected randomly and all

the remaining database instances are used for testing. For each dataset and for each

method we find the corresponding optimum parameters, which are yielding the highest

accuracy result using a grid search. The maximum number of iterations is set to 500

for each one of iterative feature selection algorithms.

73

The early stopping threshold for TR1DA and R-UMLDA is set to ε = 0.01. Thus

these algorithms stop iterating if the Frobenius distance of each vector’s update in

every iteration falls below the threshold. The ζ parameters is searched for {1, 10, 100}

for TR1DA. For R-UMLDA, we search over γ = {0.001, 0.01, 0.1}. For LMTD-F

and LMTD-C, during training the number of targets for each instance, which is also

represented by k in the LMTD formulations, is 4, since it is the maximum possible

number of neighbors in our experimental setup. We set β = γ = 1 and we select µ =

{0, 1/64, 1/8, 1}. The margin parameter, C, search set depends on the characteristics

of the data set, roughly such as C = {
∑N=3

n=1 cI
′
n,
∑N=3

n=1 cIn,
∏N=3

n=1 cI
′
n,
∏N=3

n=1 cIn} for

different c values. If there is a draw in the class votes when a test instance is classified,

it is assigned to the class of the closest tying up neighbor.

The tensor dimensions quoted in Tables 5.8 and 5.7 represent the raw data di-

mensions given as input to the feature extraction and classification algorithms listed in

Section 5.2.1, as Feature Extraction Algorithms. Recall that in some methods as LDA,

the tensor is reduced into a feature vector and in other methods as MDA, the tensor is

reduced to a smaller sized feature tensor. The feature dimensions used in each case, as

used in the algorithms irrespective of the input data size are listed in Table 5.9. The

Tensor-to-Vector (T2V) group contains LDA, PCA, TR1DA and R-UMLDA methods

while the Tensor-to-Tensor (T2T) group consists of MDA, LMTD-F and LMTD-C

methods. Since TR1DA and R-UMLDA find EMPs and the tensor object is reduced

to a coefficient vector of these EMPs, these methods take place in the T2V group.

The feature dimensions listed Table 5.9 are determined by one of the following criteria:

1) #classes − 1 (as in LDA in ETH80, and KTH Human Action); 2) The smallest

dimension in a way (USF Gait); 3) A common divisor for all dimensions (Cambridge

Gestures) or 4) A common scaling in all dimensions (0.25 in Ferets).

5.2.4. Performance Comparisons of the Methods

To have a fair comparison of the decomposition methods, the number of pa-

rameters to be estimated in the projection matrices must be taken into the account.

Thus when the input tensor data is reduced into an d-dimensional feature, the num-

74

Table 5.9. The reduced dimensions for each data set.

Data Set Tensor-to-Vector Tensor-to-Tensor

FERET 8 8× 8× 4

ETH80 7 7× 7× 7

KTH Human Act. 5 5× 5× 5

Cambridge Gest. 8 8× 8× 8

USF Gait 10 10× 10× 10

ber of free parameters list as follows: for PCA and LDA, d ·
∏N

n=1 In parameters; for

TR1DA and R-UMLDA, d · (
∑N

n=1 In) parameters; for MDA, LMTD-F and LMTD-C,

d · (
∑N

n=1 In) parameters when the latter two are reduced to (d × d . . . × d) N -way

tensors. For example, for the KTH Human Action data set, PCA and LDA require

5×32××24×24 = 92160 parameters, while the others require 5×(32+24+24) = 400.

Tables 5.10 and 5.11 show the 5-nn classification results for different feature

extractors over the five datasets while Tables 5.12 and 5.13 list their mean average

precision (mAP). The classification scores show how accurately a new tensor test in-

stance is labeled with respect to its closest neighbors, while the mAP scores show how

relevant/similar the returned instances are for a query. These performance figures and

their standard deviations result from averaging the scores over 20 folds. Finally the

simulations are run under the optimal parameters for each data set and each algorithm.

The proposed algorithms outperform their six competitors TR1DA, R-UMLDA, k-NN,

LDA, PCA, MDA over the FERET, ETH80, KTH and Cambridge data sets, but are

slightly inferior in the case of USF dataset.

FERET: Both of the LMTD varieties outperform their competitors with LMTD-C

slightly better in both classification accuracy and mAP score. They have the same

best parameter set, µ = 1 and C = 2. An interesting outcome for this data set is

that though LDA has a much lower accuracy rate than LTMD methods, it has a mAP

value close theirs. It means that LDA also maps the targets closer than their input

75

space versions, but it fails to map them close enough to improve the accuracy. For the

TR1DA, ζ is 10 and for the R-UMLDA γ is 0.01.

ETH80: The LTMD-F and LMTD-C have the parameter of µ = 0.0, C = 32 and

µ = 1/8, C = 32, respectively. For the TR1DA, ζ is 1 and for the R-UMLDA γ is 0.01.

The LMTD-F has the highest accuracy and mAP.

KTH: In KTH data set, the methods almost perform the same, but LMTD-F and

LMTD-C are only marginally better than TR1DA in terms of mAP and accuracy. The

parameters of the LMTD methods are the same µ = 1/64 and C = 16. For the TR1DA

ζ is 1 and for the R-UMLDA γ is 0.01.

Cambridge Gestures: The LMTD-F and LMTD-C perform very close to each other

both in terms of accuracy and mAP, but otherwise obtain higher scores than their

competitors. Their optimal parameters are set to µ = 1/64 and C = 12, while ζ = 10

is for TR1DA and γ = 0.001 for R-UMLDA.

USF Gait: In USF Gait data set, the two LMTD methods surprisingly do not achieve

the highest performance, though the performance gap with the nearest competitor is

not major. R-UMLDA has the highest mAP scores for all the three test sets and also

the highest accuracy on two of the test sets. The best parameter settings for LMTD

methods are µ = 1/8 and C = 8, while for the TR1DA ζ is 1 and for the R-UMLDA

γ is 0.01.

5.2.5. Sensitivity Analysis over Feature Dimensionality

We investigate the sensitivity of the performance of the tensor decomposition to

the feature dimension D. Fixing the training set size, i.e., the number of instances

(k = 5) and using the best parameter settings for each algorithm, we have evaluated

accuracy and mAP scores for different reduced dimensions D over the ETH80 dataset.

Note that for LDA and PCA the dimensions vary from 1 to 7, and for the tensor

decomposition methods the dimensions vary from 1× 1× 1 to 7× 7× 7, since 7 is the

T
ab

le
5.

10
.

T
h
e

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

ov
er

th
e

d
at

a
se

ts
fo

r
k

=
5.

5-
n
n

L
D

A
P

C
A

M
D

A
T

R
1D

A
R

-U
M

L
D

A
L

M
T

D
-F

L
M

T
D

-C

F
E

R
E

T
35

.6
5
±

1.
67

48
.6

6
±

1.
78

14
.6

9
±

1.
23

61
.9

7
±

2.
27

37
.5

4
±

1.
94

28
.9

3
±

2.
64

64
.0

9
±

2.
20

6
6
.0

7
±

2
.6

2

E
T

H
80

70
.3

8
±

4.
49

73
.2

5
±

5.
6

67
.5
±

4.
03

82
.5
±

4.
03

63
.6

3
±

7
79

.6
3
±

6.
19

8
4
.1

3
±

5
.0

2
83

.8
8
±

5.
27

K
T

H
25

.1
6
±

1.
92

29
.2

3
±

1.
59

25
.7

8
±

1.
67

19
.5

5
±

2.
25

30
.9

3
±

1.
75

30
.5

4
±

2.
89

31
.3

0
±

2.
16

3
1
.5

9
±

1
.8

2

C
am

b
ri

d
ge

18
.0

9
±

2.
07

25
.4

4
±

2.
28

16
.5

6
±

1.
6

19
.4

9
±

4.
75

33
.3

6
±

4.
11

30
.4

6
±

4.
26

3
4
.5

8
±

4
.1

6
34

.5
5
±

4.
18

T
ab

le
5.

11
.

T
h
e

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

ov
er

U
S
F

G
ai

t
d
at

a
se

t
fo

r
k

=
5.

5-
n
n

L
D

A
P

C
A

M
D

A
T

R
1D

A
R

-U
M

L
D

A
L

M
T

D
-F

L
M

T
D

-C

P
ro

b
e

A
29

.8
8
±

1.
6

27
.2

7
±

6.
27

17
.5

2
±

1.
45

3
7
.2

8
±

2
.9

8
33

.6
7
±

2.
54

35
.8

9
±

2.
20

33
.9

7
±

2.
25

34
.8

8
±

1.
79

P
ro

b
e

B
20

.3
4
±

1.
94

19
.3

1
±

4.
44

11
.9

4
±

1.
69

22
.9

7
±

2.
29

24
.5

0
±

2.
45

3
0
.0

4
±

2
.6

8
23

.8
5
±

2.
26

24
.7

4
±

2.
33

P
ro

b
e

C
11

.7
5
±

1.
63

13
.4

8
±

3.
10

7.
68
±

1.
42

15
.2

3
±

2.
79

15
.7

1
±

2.
24

1
7
.3

7
±

2
.6

2
14

.5
8
±

1.
74

15
.2

9
±

2.
05

T
ab

le
5.

12
.

T
h
e

m
A

P
sc

or
es

ov
er

th
e

d
at

a
se

ts
w

h
er

e
ea

ch
cl

as
s

h
as

5
in

st
an

ce
s.

5-
n
n

L
D

A
P

C
A

M
D

A
T

R
1D

A
R

-U
M

L
D

A
L

M
T

D
-F

L
M

T
D

-C

F
E

R
E

T
0.

22
±

0.
01

0.
42
±

0.
02

0.
10
±

0.
01

0.
44
±

0.
01

0.
28
±

0.
01

0.
21
±

0.
02

0.
45
±

0.
01

0
.4

7
±

0
.0

2

E
T

H
80

0.
67
±

0.
02

0.
67
±

0.
03

0.
65
±

0.
02

0.
81
±

0.
03

0.
65
±

0.
02

0.
78
±

0.
04

0
.8

4
±

0
.0

3
0.

83
±

0.
03

K
T

H
0.

30
±

0.
01

0.
35
±

0.
02

0.
30
±

0.
01

0.
33
±

0.
02

0.
41
±

0.
02

0.
39
±

0.
04

0.
41
±

0.
01

0
.4

1
±

0
.0

1

C
am

b
ri

d
ge

0.
23
±

0.
01

0.
28
±

0.
02

0.
21
±

0.
01

0.
28
±

0.
03

0.
36
±

0.
04

0.
33
±

0.
03

0.
38
±

0.
04

0
.3

8
±

0
.0

4

T
ab

le
5.

13
.

T
h
e

m
A

P
sc

or
es

ov
er

U
S
F

G
ai

t
d
at

a
se

t
w

h
er

e
ea

ch
cl

as
s

h
as

5
in

st
an

ce
s.

5-
n
n

L
D

A
P

C
A

M
D

A
T

R
1D

A
R

-U
M

L
D

A
L

M
T

D
-F

L
M

T
D

-C

P
ro

b
e

A
0.

22
±

0.
01

0.
24
±

0.
05

0.
15
±

0.
01

0.
28
±

0.
02

0.
28
±

0.
02

0
.3

0
±

0
.0

2
0.

26
±

0.
01

0.
27
±

0.
01

P
ro

b
e

B
0.

17
±

0.
01

0.
19
±

0.
03

0.
12
±

0.
01

0.
19
±

0.
02

0.
22
±

0.
02

0
.2

7
±

0
.0

2
0.

20
±

0.
01

0.
21
±

0.
01

P
ro

b
e

C
0.

12
±

0.
01

0.
15
±

0.
02

0.
09
±

0.
01

0.
14
±

0.
01

0.
16
±

0.
01

0
.1

8
±

0
.0

2
0.

14
±

0.
01

0.
15
±

0.
01

80

Figure 5.15. Effects of dimension number over accuracy on ETH80 data set.

maximum number of reduced dimensions for LDA.

Figure 5.15 shows the accuracy results with various feature dimensions. Note that

both LTMD methods already get the highest accuracy results with only 2 dimensions.

Almost all methods reach a saturation plateau beyond D = 3.

Figure 5.16 shows the mean average precision results over the dimensions. In-

terestingly, MDA has almost the same mAP scores with LMTD methods though its

has lower accuracy. Similar to the accuracy plot, after d = 3, any increase in the

dimensions does not affect the mAP scores significantly.

5.2.6. Sensitivity Analysis over Training Set Size

We investigate the effects of the number of instances provided per class over the

performance scores in the KTH data set. We use the optimized parameter settings, the

best ones obtained when feature dimensionality was set at D = 5, for each method.

Figure 5.17 shows that the accuracy is improving slowly with increasing number of

instances. LDA seems to benefit the most with increasing number of instances. Figure

5.18 shows that mAP decreases with the increasing training set size. The performance

81

Figure 5.16. Effects of dimension number over mean average precision on ETH80

data set.

Figure 5.17. Effects of # Instances per Class over accuracy on KTH data set.

82

Figure 5.18. Effects of # Instances per Class over mean average precision on KTH

data set.

of the methods seem to converge to the similar values.

83

6. CONCLUSION

In this concluding chapter, we summarize the contributions of this dissertation

and give some leads for possible future directions. We present solutions for two main

challenges addressed in this thesis: Attack detection and object retrieval. We compare

them with some competitors in the literature. We also point out how to improve the

proposed solutions.

As our first contribution, we have focused on the detection of DDoS attacks in

SIP networks and on the identification of users coordinated in an attack. An adaptive

cyber security monitor is developed consisting of two basic components: a change-point

detector to alert the system of an ongoing attack and an identifier for the malicious

user set.

The proposed change-point model tracks the Mahalanobis distance between the

messaging counts in successive observation intervals. The rationale is that a marked

(dis)similarity of sequential message count vectors can uncover abrupt changes in the

traffic pattern. High dissimilarity instances, i.e., the Mahalanobis distance above a

threshold, is labeled as a candidate attack. The threshold value is critical to differen-

tiate DDoS attacks from random fluctuations of the traffic. The proposed DCPM is

capable to adapt to the traffic variations due to the online estimation of the Maha-

lanobis metric and, consequently yields significantly better performance as compared

to the literature results.

Identification of DDoS attackers is based on behavioral similarity in messaging

sequences. Based on the premise that attackers act in a coordinated way while nor-

mal users show a much less structured messaging pattern, two corresponding clusters

are conceived. The user-to-user similarity is measured by kernelizing their messaging

time series. In the time-series kernel function we explicitly use the timestamps of the

messaging events; in the distance kernel, we collapse the messaging activities within

an observation interval into a cumulative count vector. The behavioral clusters are

84

extracted using normalized Laplacian spectral clustering.

The performance of the proposed system is tested over a simulated SIP network

environment, which simulates transactions of ordinary subscribers and attackers. De-

pending on the intensity of the normal network traffic, observation interval and attack

magnitude, our F-scores are more than 0.70 for the distance-based change point models,

which is much higher than that of the ARIMA model.

The effects of observation window length, background traffic intensity and pa-

rameter settings for the proposed DCPM methods are discussed in detail. The longer

observation windows result in more accurate attack detectors, but they come with a

price of reduced onset/offset resolution. As one should expect, the intensity of back-

ground traffic has a diminishing effect on the performance of the proposed methods:

The more fluctuations the traffic has, the lower the F -scores are, which are still higher

than 0.70. Also the parameters of the models should be calibrated to account for the

seasonal changes.

The attacker identification algorithms are also compared in detail. The time-

series kernel has higher F -scores but also has a considerable running time. Longer

observation intervals form longer time-series and the running times increase almost

exponentially. Similarly, the higher intensity of traffic causes an increase in the running

time. Even though the distance kernel has lower accuracy values, its running time is

almost unaffected by the observation window interval or the traffic intensity. The reason

for it is that each user is represented as a vector and the number of the operations are

not affected by the window interval or the intensity.

The proposed solution can be advanced in several ways. First, in addition to

observed message traffic, one can use additional data sources, such as SIP server log

registers or its resource usage, e.g., CPU load. Second, the distance based change-point

model compares only the last observation interval with the immediately preceding k

frames to detect changes in the traffic. This can be extended to consider the most

currentm frames and the k frames in its past. We conjecture that the comparison of two

85

group-of-frames might diminish false alarms, that is, changes detected which are not

DDoS attacks. Thirdly, though the time-series kernel has slightly higher performance,

it takes longer time to respond due to the cost of kernel matrix computation. The

distance kernel is faster but it does not benefit from the occurrence time information

of the messages. An hybrid kernel might provide a more accurate detector than the

distance kernel and a faster detector than the sequence alignment kernel. Finally, so far

we have considered the cost of false negatives and false positives to be equal. From the

point of view of operators that deploy SIP servers, these two costs are not equal and

this should be taken into consideration in setting the threshold for attacker detection.

Delayed response to a DDoS attack and suffering degradation of service quality should

be weighted against taking preventive action toward subscribers that may not all be

malicious users.

DDoS attacks may look deceptively simple, but they have proved to be hard to

prevent, and they will be one of the major cyber security concerns with the spread

of Internet-of-Things (IoT) devices. The capabilities of IoT devices and their security

vulnerabilities (e.g. weak passwords or no protection mechanisms at all) make them

easy victims as zombies for botnet applications, such as Mirai [76]. The botnets are also

evolving and subsequently adapting against deployed counter-measures. Thus, more

research should be carried over particular in detection of attack sources to overcome

the possible outages and network congestion on the horizon with the wide spread of

IoT devices.

As our second contribution, a novel tensor decomposition method with two ver-

sions is introduced. They use the Frobenius distances to the target neighbors to capture

the local manifold structure, while training the global projection matrices. The near-

est neighbor classification is improved: The targets are projected closer to the instance

while its impostors are swept away. The reduced version focuses on higher accuracy

in the feature space, while the full version aims improved accuracy in the input space

over the reconstructed tensors.

86

We have investigated their performance with respect to five other non-tensor

methods, i.e., methods that rely on the matricized or vectorized version of the tensor

data. The method vies to improve the k-nn classification and/or retrieval performance

by designing transformation matrices to warp the feature space such that, for all classes,

in-class samples fall closer to each other while becoming more distinguishable from

other-class samples. The proposed LMTD-Core version focuses on good classification

accuracy, while reconstruction quality is indirectly guaranteed through core tensor-to-

core tensor similarity. The second proposed algorithm, LMTD-Full, targets faithful

reconstruction as well as good discrimination. In all work, tensor similarity is based

on Frobenius distance.

The essence of our method is to explore the performance of the subspace methods

while maintaining the tensor form in order not to incur the information loss, if any, when

the tensor structure is discarded in favor of the matricized or vectorized versions. We

conjecture that information loss incurred disregarding tensorial structure will have less

impact in data rich problems; on the contrary, when the training data set is very limited,

that is, for the scarce data problem, information in the tensorial structure will play a

more prominent role. The experimental results have proved our conjecture in that the

proposed methods perform with higher accuracy and higher mAP scores in four of the

five datasets. The reason is that LMTD methods are able to capture the correlation

between the projection matrices. Thus, LMTD can capture more information in the

core tensors.

The effects of the feature dimensions and of the training set size on the perfor-

mance have been investigated. The experiments show, in fact that while the two LTMD

methods have higher performance scores for all feature dimensions, as the number of

instances per class increases the performance of the methods seem to converge.

The proposed models contain a trade-off between the nearest neighbor accuracy

and the reconstruction error. The coefficients in the loss function should be assigned

with respect to the requirements of the application. In case minimizing the reconstruc-

tion error is significant, then µ parameter should be set to a high value. If the accuracy

87

is the main concern, then β and γ parameters should be set accordingly.

The future directions for LMTD include their extensions to tensor completion and

use of different distance functions other than Frobenius norm distance, for example the

angles between the fibers. An experimental study on the effects of the noise over tensor

decomposition methods can be considered. As an improvement, an iterative version

of the large margin tensor decomposition can be studied. The proposed methods find

projection matrices in such a way that many projection vectors in the same mode are

found simultaneously. As an alternative, an iterative and additive version can calculate

new projection vectors in each mode, then append them to the existing projection

matrices.

88

REFERENCES

1. Raza, N., I. Rashid and F. A. Awan, “Security and Management Framework for an

Organization Operating in Cloud Environment”, Annals of Telecommunications ,

Vol. 72, No. 5, pp. 325–333, June 2017.

2. Bolton, D., Anonymous ‘Declares War’ on Turkey, Claims

Responsibility for Recent Massive Cyberattacks , 2015,

http://www.independent.co.uk/life-style/gadgets-and-tech/news/

anonymous-declares-war-on-turkey-opsis-russia-cyberattack-erdogan

-a6784026.html, accessed at June 2019.

3. Gupta, B. B. and T. Akhtar, “A Survey on Smart Power Grid: Frameworks, Tools,

Security Issues, and Solutions”, Annals of Telecommunications , Vol. 72, No. 9, pp.

517–549, September 2017.

4. Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley and E. Schooler, SIP: Session Initiation Protocol , RFC 3261, June,

https://www.ietf.org/rfc/rfc3261.txt, accessed at June 2019.

5. Cooney, M., IBM Warns of Rising VoIP Cyber-Attacks , 2016,

http://www.networkworld.com/article/3146095/security/ibm-warns-of-

rising-voip-cyber-attacks.html, accessed at June 2019.

6. Wilson, C., DDoS Attacks Targeting Traditional Telecom Systems , 2012,

https://asert.arbornetworks.com/ddos-attacks-targeting-traditional-

telecom-systems/, accessed at June 2019.

7. Keromytis, A., “A Comprehensive Survey of Voice over IP Security Research”,

IEEE Communications Surveys & Tutorials , Vol. 14, No. 2, pp. 514–537, April

2012.

89

8. Goldberger, J., G. E. Hinton, S. T. Roweis and R. R. Salakhutdinov, “Neigh-

bourhood Components Analysis”, L. K. Saul, Y. Weiss and L. Bottou (Editors),

Advances in Neural Information Processing Systems 17 , pp. 513–520, MIT Press,

2005.

9. Torresani, L. and K.-c. Lee, “Large Margin Component Analysis”, B. Schölkopf,

J. C. Platt and T. Hoffman (Editors), Advances in Neural Information Processing

Systems 19 , pp. 1385–1392, MIT Press, 2007.

10. Bunte, K., P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann and M. Biehl,

“Limited Rank Matrix Learning, Discriminative Dimension Reduction and Visu-

alization”, Neural Networks , Vol. 26, pp. 159–173, 2012.

11. Xing, E. P., M. I. Jordan, S. J. Russell and A. Y. Ng, “Distance Metric Learning

with Application to Clustering with Side-Information”, S. Becker, S. Thrun and

K. Obermayer (Editors), Advances in Neural Information Processing Systems 15 ,

pp. 521–528, MIT Press, 2003.

12. Davis, J. V., B. Kulis, P. Jain, S. Sra and I. S. Dhillon, “Information-Theoretic

Metric Learning”, Proceedings of the 24th International Conference on Machine

Learning , pp. 209–216, New York, NY, USA, 2007.

13. kyun Noh, Y., B. tak Zhang and D. D. Lee, “Generative Local Metric Learning

for Nearest Neighbor Classification”, J. D. Lafferty, C. K. I. Williams, J. Shawe-

Taylor, R. S. Zemel and A. Culotta (Editors), Advances in Neural Information

Processing Systems 23 , pp. 1822–1830, Curran Associates, Inc., 2010.

14. Liu, Y., Y. Liu and K. C. C. Chan, “Tensor Distance Based Multilinear Locality-

Preserved Maximum Information Embedding”, IEEE Transactions on Neural Net-

works , Vol. 21, No. 11, pp. 1848–1854, November 2010.

15. Kulis, B., Metric Learning: A Survey , Now, 2013.

90

16. Wang, F. and J. Sun, “Survey on Distance Metric Learning and Dimensionality

Reduction in Data Mining”, Data Mining and Knowledge Discovery , Vol. 29, No. 2,

pp. 534–564, March 2015.

17. Sisalem, D., J. Kuthan and S. Ehlert, “Denial of Service Attacks Targeting a

SIP VoIP Infrastructure: Attack Scenarios and Prevention Mechanisms”, IEEE

Network , Vol. 20, No. 5, pp. 26–31, October 2006.

18. Chen, E. and M. Itoh, “Scalable Detection of SIP Fuzzing Attacks”, Second Inter-

national Conference on Emerging Security Information, Systems and Technologies,

SECURWARE’08 , pp. 114–119, August 2008.

19. Ehlert, S., D. Geneiatakis and T. Magedanz, “Survey of Network Security Systems

to Counter SIP-Based Denial-of-Service Attacks”, Computers & Security , Vol. 29,

No. 2, pp. 225–243, March 2010.

20. Chen, Z. and R. Duan, “The Formal Analyse of DoS Attack to SIP Based on the

SIP Extended Finite State Machines”, 2010 International Conference on Compu-

tational Intelligence and Software Engineering (CiSE), pp. 1–4, December 2010.

21. Vrakas, N. and C. Lambrinoudakis, “An Intrusion Detection and Prevention Sys-

tem for IMS and VoIP Services”, International Journal of Information Security ,

Vol. 12, No. 3, pp. 201–217, January 2013.

22. Vijayasarathy, R., S. V. Raghavan and B. Ravindran, “A System Approach to

Network Modeling for DDoS Detection Using a Naive Bayesian Classifier”, The

Third International Conference on Communication Systems and Networks (COM-

SNETS), pp. 1–10, IEEE, February 2011.

23. Yildiz, C., T. Y. Ceritli, B. Kurt, B. Sankur and A. T. Cemgil, “Attack Detection in

VOIP Networks Using Bayesian Multiple Change-Point Models”, 24th Conference

on Signal Processing and its Applications (SIU), pp. 1301–1304, May 2016.

91

24. Yildiz, C., M. Semerci, T. Y. Ceritli, B. Kurt, B. Sankur and A. T. Cemgil, “Change

Point Detection for Monitoring SIP Networks”, European Conference on Networks

and Communications (EuCNC2016), June 2016.

25. Nassar, M., R. State and O. Festor, “A Framework for Monitoring SIP Enterprise

Networks”, 4th International Conference on Network and System Security (NSS),

pp. 1–8, September 2010.

26. Tsiatsikas, Z., D. Geneiatakis, G. Kambourakis and S. Gritzalis, “Realtime DDoS

Detection in SIP Ecosystems: Machine Learning Tools of the Trade”, 10th In-

ternational Conference on Network and System Security, NSS 2016 , pp. 126–139,

Springer International Publishing, Cham, September 2016.

27. Nezhad, S. M. T., M. Nazari and E. A. Gharavol, “A Novel DoS and DDoS Attacks

Detection Algorithm Using ARIMA Time Series Model and Chaotic System in

Computer Networks”, IEEE Communications Letters , Vol. 20, No. 4, pp. 700–703,

January 2016.

28. D’Alconzo, A., A. Coluccia and P. Romirer-Maierhofer, “Distribution-Based

Anomaly Detection in 3G Mobile Networks: from Theory to Practice”, Inter-

national Journal of Network Management , Vol. 20, No. 5, pp. 245–269, August

2010.

29. D’Alconzo, A., A. Coluccia, F. Ricciato and P. Romirer-Maierhofer, “A

Distribution-Based Approach to Anomaly Detection and Application to 3G Mobile

Traffic”, IEEE Global Telecommunications Conference 2009, GLOBECOM 2009 ,

pp. 1–8, November 2009.

30. Anagnostopoulos, M., G. Kambourakis and S. Gritzalis, “New Facets of Mobile

Botnet: Architecture and Evaluation”, International Journal of Information Secu-

rity , Vol. 15, No. 5, pp. 455–473, October 2016.

31. Kirubavathi, G. and R. Anitha, “Structural Analysis and Detection of Android

92

Botnets Using Machine Learning Techniques”, International Journal of Informa-

tion Security , Vol. 17, No. 2, pp. 153–167, April 2018.

32. Silva, S. S., R. M. Silva, R. C. Pinto and R. M. Salles, “Botnets: A Survey”,

Computer Networks , Vol. 57, No. 2, pp. 378–403, February 2013.

33. Garćıa-Teodoro, P., J. Dı́az-Verdejo, G. Maciá-Fernández and E. Vázquez,

“Anomaly-Based Network Intrusion Detection: Techniques, Systems and Chal-

lenges”, Computers & Security , Vol. 28, No. 1–2, pp. 18–28, February-March 2009.

34. Gupta, M., J. Gao, C. C. Aggarwal and J. Han, “Outlier Detection for Temporal

Data: A Survey”, IEEE Transactions on Knowledge and Data Engineering , Vol. 26,

No. 9, pp. 2250–2267, September 2014.

35. Hyndman, R. J., E. Wang and N. Laptev, “Large-Scale Unusual Time Series Detec-

tion”, IEEE International Conference on Data Mining Workshop, ICDMW 2015 ,

pp. 1616–1619, November 2015.

36. Cuturi, M., “Fast Global Alignment Kernels”, Proceedings of the 28th International

Conference on Machine Learning, ICML 2011 , pp. 929–936, June 2011.

37. Sivaramakrishnan, K. R., K. Karthik and C. Bhattacharyya, “Kernels for Large

Margin Time-Series Classification”, International Joint Conference on Neural Net-

works, IJCNN 2007 , pp. 2746–2751, August 2007.

38. Chen, H., F. Tang, P. Tino and X. Yao, “Model-Based Kernel for Efficient Time

Series Analysis”, Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining , KDD’13, pp. 392–400, ACM, New

York, NY, USA, August 2013.

39. Zhang, X., J. Liu, Y. Du and T. Lv, “A Novel Clustering Method on Time Se-

ries Data”, Expert Systems with Applications , Vol. 38, No. 9, pp. 11891–11900,

September 2011.

93

40. Oates, T., L. Firoiu and P. Cohen, “Clustering Time Series with Hidden Markov

Models and Dynamic Time Warping”, Proceedings of the IJCAI-99 Workshop on

Neural, Symbolic, and Reinforcement Learning Methods for Sequence Learning ,

1999.

41. Xiong, Y. and D.-Y. Yeung, “Mixtures of ARMA Models for Model-Based Time

Series Clustering”, Proceedings of the IEEE International Conference on Data Min-

ing , March 2002.

42. Behal, S. and K. Kumar, “Detection of DDoS Attacks and Flash Events Using

Novel Information Theory Metrics”, Computer Networks , Vol. 116, pp. 96–110,

April 2017.

43. Tellenbach, B., M. Burkhart, D. Schatzmann, D. Gugelmann and D. Sornette,

“Accurate Network Anomaly Classification with Generalized Entropy Metrics”,

Computer Networks , Vol. 55, No. 15, pp. 3485–3502, October 2011.

44. Heo, J., E. Y. Chen, T. Kusumoto and M. Itoh, “Statistical SIP Traffic Model-

ing and Analysis System”, 10th International Symposium on Communications and

Information Technologies , pp. 1223–1228, October 2010.

45. D’Antonio, S., M. Esposito, F. Oliviero, S. P. Romano and D. Salvi, “Behavioral

Network Engineering: Making Intrusion Detection Become Autonomic”, Annales

Des Télécommunications , Vol. 61, No. 9, pp. 1136–1148, October 2006.

46. Xie, Q., Q. Zhao, D. Meng and Z. Xu, “Kronecker-Basis-Representation Based

Tensor Sparsity and Its Applications to Tensor Recovery”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 40, No. 8, pp. 1888–1902, Aug

2018.

47. Wang, Y. and S. Gong, “Tensor Discriminant Analysis for View-based Object

Recognition”, 18th International Conference on Pattern Recognition, ICPR’06 ,

Vol. 3, pp. 33–36, 2006.

94

48. Lu, H., K. N. Plataniotis and A. N. Venetsanopoulos, “Uncorrelated Multilinear

Discriminant Analysis With Regularization and Aggregation for Tensor Object

Recognition”, IEEE Transactions on Neural Networks , Vol. 20, No. 1, pp. 103–

123, January 2009.

49. Yan, S., D. Xu, Q. Yang, L. Zhang, X. Tang and H.-J. Zhang, “Multilinear Dis-

criminant Analysis for Face Recognition”, IEEE Transactions on Image Processing ,

Vol. 16, No. 1, pp. 212–220, January 2007.

50. Li, X., M. K. Ng, G. Cong, Y. Ye and Q. Wu, “MR-NTD: Manifold Regularization

Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and

Representation”, IEEE Transactions on Neural Networks and Learning Systems ,

Vol. 28, No. 8, pp. 1787–1800, August 2017.

51. Han, X.-H., Y.-W. Chen and X. Ruan, “Multilinear Supervised Neighborhood

Embedding of a Local Descriptor Tensor for Scene/Object Recognition”, IEEE

Transactions on Image Processing , Vol. 21, No. 3, pp. 1314–1326, March 2012.

52. Ouamane, A., A. Chouchane, E. Boutellaa, M. Belahcene, S. Bourennane and

A. Hadid, “Efficient Tensor-Based 2D+3D Face Verification”, IEEE Transactions

on Information Forensics and Security , Vol. 12, No. 11, pp. 2751–2762, November

2017.

53. Tao, D., X. Li, X. Wu and S. J. Maybank, “General Tensor Discriminant Analysis

and Gabor Features for Gait Recognition”, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 29, No. 10, pp. 1700–1715, October 2007.

54. He, X., D. Cai and P. Niyogi, “Tensor Subspace Analysis”, Y. Weiss, B. Schölkopf

and J. C. Platt (Editors), Advances in Neural Information Processing Systems 18 ,

pp. 499–506, MIT Press, 2006.

55. Fu, Y., J. Gao, D. Tien, Z. Lin and X. Hong, “Tensor LRR and Sparse Coding-

Based Subspace Clustering”, IEEE Transactions on Neural Networks and Learning

95

Systems , Vol. 27, No. 10, pp. 2120–2133, October 2016.

56. Tomioka, R. and T. Suzuki, “Convex Tensor Decomposition via Structured Schat-

ten Norm Regularization”, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani

and K. Q. Weinberger (Editors), Advances in Neural Information Processing Sys-

tems 26 , pp. 1331–1339, Curran Associates, Inc., 2013.

57. Kolda, T. G. and B. W. Bader, “Tensor Decompositions and Applications”, SIAM

Review , Vol. 51, No. 3, pp. 455–500, August 2009.

58. Lu, H., K. N. Plataniotis and A. N. Venetsanopoulos, “A Survey of Multilinear

Subspace Learning for Tensor Data”, Pattern Recognition, Vol. 44, No. 7, pp.

1540–1551, 2011.

59. Rabanser, S., O. Shchur and S. Günnemann, “Introduction to Tensor Decompo-

sitions and their Applications in Machine Learning”, ArXiv e-prints , November

2017.

60. Sidiropoulos, N. D., L. D. Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and

C. Faloutsos, “Tensor Decomposition for Signal Processing and Machine Learning”,

IEEE Transactions on Signal Processing , Vol. 65, No. 13, pp. 3551–3582, July 2017.

61. Weinberger, K. Q. and L. K. Saul, “Distance Metric Learning for Large Margin

Nearest Neighbor Classification”, Journal of Machine Learning Research, Vol. 10,

pp. 207–244, February 2009.

62. Cuturi, M., J. P. Vert, O. Birkenes and T. Matsui, “A Kernel For Time Series

Based On Global Alignment”, Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing 2007, ICASSP’07 , Vol. 2, pp. 413–416,

April 2007.

63. Luxburg, U., “A Tutorial on Spectral Clustering”, Statistics and Computing ,

Vol. 17, No. 4, pp. 395–416, August 2007.

96

64. Fonality, Trixbox Business Phone Solutions , 2016,

https://www.netfortris.com/trixbox, accessed at June 2019.

65. Kurt, B., C. Yildiz, T. Y. Ceritli, M. Yamac, M. Semerci, B. Sankur and A. T.

Cemgil, “A Probabilistic SIP Network Simulation System”, 24th Conference on

Signal Processing and its Applications (SIU), pp. 1049–1052, IEEE, June 2016.

66. Yildiz, C., B. Kurt, T. Y. Ceritli, A. T. Cemgil and B. Sankur, BOUN-SIM API

Reference, Tech. rep., Department of Computer Engineering, Bogazici Univer-

sity, December 2016, https://github.com/cagatayyildiz/boun-sim/, accessed

at June 2019.

67. Teluu, PJSIP , 2005, http://www.pjsip.org/, accessed at June 2019.

68. NETAS, Nova V-SPY , 2016, http://novacybersecurity.com/products/

nova vspy, accessed at June 2019.

69. Phillips, P. J., S. Sarkar, I. Robledo, P. Grother and K. Bowyer, “The Gait Identifi-

cation Challenge Problem: Data Sets and Baseline Algorithm”, Object Recognition

Supported by User Interaction for Service Robots , Vol. 1, pp. 385–388, August 2002.

70. Lu, H., K. N. Plataniotis and A. N. Venetsanopoulos, “MPCA: Multilinear Prin-

cipal Component Analysis of Tensor Objects”, IEEE Transactions on Neural Net-

works , Vol. 19, No. 1, pp. 18–39, January 2008.

71. Lu, H., Code & Data, 2019, http://www.dsp.utoronto.ca/~haiping/index.php?

page=code, accessed at June 2019.

72. Schuldt, C., I. Laptev and B. Caputo, “Recognizing Human Actions: A Local SVM

Approach”, Proceedings of the Pattern Recognition, 17th International Conference

on (ICPR’04), Vol. 3, pp. 32–36, IEEE Computer Society, Washington, DC, USA,

2004.

97

73. Phillips, P. J., H. Moon, S. A. Rizvi and P. J. Rauss, “The FERET Evaluation

Methodology for Face-Recognition Algorithms”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 22, No. 10, pp. 1090–1104, October 2000.

74. Leibe, B. and B. Schiele, “Analyzing appearance and contour based methods for

object categorization”, Proceedings of IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, Vol. 2, pp. II–409, June 2003.

75. Kim, T.-K. and R. Cipolla, “Canonical Correlation Analysis of Video Volume

Tensors for Action Categorization and Detection”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 31, No. 8, pp. 1415–1428, August 2009.

76. Gamblin, J., Mirai Source Code, 2016, https://github.com/jgamblin/Mirai-

Source-Code, accessed at June 2019.

98

APPENDIX A: DERIVATIONS OF LOGDET AND LMTD

GRADIENT

A.1. Derivation of LogDet

The Kullback-Leibler (KL) divergence from distribution Q to distribution P ,

where p(x) and q(x) are their respective probability density functions, and x ∈ Rd, is

calculated as:

DKL(P ‖ Q) =

∫
p(x) log(

p(x)

q(x)
)dx (A.1)

= EP

[
log
(P
Q

)]
(A.2)

Assuming that both p and q are multivariate Gaussian distributions with mean vectors

µp and µq and covariance matrices Σp and Σq, respectively, one has:

p(x) =
1

(2π)d/2 det(Σp)1/2
exp

(
− 1

2
(x− µp)>Σp

−1(x− µp)

)
(A.3)

q(x) =
1

(2π)d/2 det(Σq)1/2
exp

(
− 1

2
(x− µq)>Σq

−1(x− µq)

)
(A.4)

Using definitions A.3 and A.4 in Equation A.1, one obtains:

DKL(P ‖ Q) = EP
[

logP − logQ
]

(A.5)

=
1

2
EP
[
− log det Σp − (x− µp)>Σp

−1(x− µp)

+ log det Σq + (x− µq)>Σq
−1(x− µq)

]
(A.6)

=
1

2
log

det Σq

det Σp

+
1

2
EP
[
− (x− µp)>Σp

−1(x− µp)

+(x− µq)>Σq
−1(x− µq)

]
(A.7)

=
1

2
log

det Σq

det Σp

+
1

2
EP
[
− tr(Σp

−1(x− µp)(x− µp)>)

+tr(Σq
−1(x− µq)(x− µq)>)

]
(A.8)

99

Here we use the identity a>Bc = tr(Bca>) for any a, c ∈ Rd and B ∈ Rd×d.

Since both the trace and integration are linear operators, we can proceed as follows:

DKL(P ‖ Q) =
1

2
log

det Σq

det Σp

− 1

2
tr(Σp

−1EP
[
(x− µp)(x− µp)>

]
)

+
1

2
tr(Σq

−1EP
[
(x− µq)(x− µq)>

]
) (A.9)

=
1

2
log

det Σq

det Σp

− 1

2
tr(Σp

−1Σp)

+
1

2
tr(Σq

−1EP
[
xx> − µqx> − xµq

> + µqµq
>]) (A.10)

= −1

2
log

det Σp

det Σq

− 1

2
tr(I)

+
1

2
tr(Σq

−1EP
[
(xx> − µqx> − xµq

> + µqµq
>]) (A.11)

Note that one has, det Σp

det Σq
= det ΣpΣq

−1, tr(I) = d and EP
[
xx>

]
= Σp + µpµp

>.

The Kullback-Leibler divergence becomes:

DKL(P ‖ Q) = −1

2
log det ΣpΣq

−1 − 1

2
d

+
1

2
tr

(
Σq
−1(Σp + µpµp

> − µqµp
> − µpµq

> + µqµq
>)

)
(A.12)

= −1

2
log det ΣpΣq

−1 − 1

2
d+

1

2
tr(Σq

−1Σp)

+
1

2
tr

(
Σq
−1(µpµp

> − µqµp
> − µpµq

> + µqµq
>)

)
(A.13)

= −1

2
log det ΣpΣq

−1 − 1

2
d+

1

2
tr(Σq

−1Σp)

+
1

2
(µp − µq)>Σq

−1(µp − µq) (A.14)

100

Now, let’s assume that the means vectors of p and of q are identical, µp = µq,

then we can conclude that:

DKL(P ‖ Q) =
1

2

(
tr(Σq

−1Σp)− log det ΣpΣq
−1 − d

)
(A.15)

=
1

2

(
tr(ΣpΣq

−1)− log det ΣpΣq
−1 − d

)
(A.16)

=
1

2
Dld(Σp,Σq) (A.17)

A.2. Metric Functions

A metric function D : S × S → [0,∞) defined on a set X must hold three basic

conditions, as below, for any a, b, c ∈ S:

(i) D(a, b) ≥ 0 and D(a, b) = 0 iff a = b (non-negativity and positive-definiteness)

(ii) D(a, b) = D(b, a) (symmetry)

(iii) D(a, c) ≤ D(a, b) +D(b, c) (triangle inequality)

Dld(Σp,Σq) is a pseudo-metric defined over positive-definite matrices, Σp,Σq ∈

Rd×d, since it only guarantees non-negativity, and the other two rules do not necessarily

hold true.

A.3. Derivation of Gradients for LMTDs

Let’s define the following shorthand notations: T(n) = U(n)(U(n))> and V
(−n)
(ij) =

W
(−n)
(i) (W

(−n)
(j))>. Note that T(n) = (T(n))> and V

(−n)
(ii) = (V

(−n)
(ii))> since they are

symmetric.

The loss function for LMTD-F is defined as follows:

L(F) = µL1 + βL
(F)
2 + γL

(F)
3

101

The first term, L1, is responsible for the reconstruction error.

L1 =
M∑
i=1

tr
(

(X
(n)
(i) − X̂

(n)
(i))>(X

(n)
(i) − X̂

(n)
(i))
)

=
M∑
i=1

tr
(

(X
(n)
(i))>X

(n)
(i)

)
− tr

(
(X

(n)
(i))>X̂

(n)
(i)

)
−

tr
(

(X̂
(n)
(i))>X

(n)
(i)

)
+ tr

(
(X̂

(n)
(i))>X̂

(n)
(i)

)
(A.18)

Using the approximation in Equation 4.15, we rewrite the total reconstruction

error and take its derivative with respect to any n-mode projection matrix, U(n), as

below:

∂L1

∂U(n)
=

M∑
i=1

− ∂

∂U(n)
tr
(

(X
(n)
(i))>X̂

(n)
(i)

)
−

∂

∂U(n)
tr
(

(X̂
(n)
(i))>X

(n)
(i)

)
+

∂

∂U(n)
tr
(

(X̂
(n)
(i))>X̂

(n)
(i)

)
(A.19)

∂L1

∂U(n)
=

M∑
i=1

− ∂

∂U(n)
tr
(

(X
(n)
(i))>U(n)(U(n))>W

(−n)
(i)

)
−

M∑
i=1

∂

∂U(n)
tr
(

(U(n)(U(n))>W
(−n)
(i))>X

(n)
(i)

)
+

M∑
i=1

∂

∂U(n)
tr
(

(U(n)(U(n))>W
(−n)
(i))>(U(n)(U(n))>)W

(−n)
(i)

)
(A.20)

∂L1

∂U(n)
=

M∑
i=1

− ∂

∂U(n)
tr
(
U(n)(U(n))>W

(−n)
(i) (X

(n)
(i))>

)
−

M∑
i=1

∂

∂U(n)
tr
(
U(n)(U(n))>X

(n)
(i) (W

(−n)
(i))>

)
+

M∑
i=1

∂

∂U(n)
tr
(
U(n)(U(n))>U(n)(U(n))>W

(−n)
(i) (W

(−n)
(i))>

)
(A.21)

102

∂L1

∂U(n)
= −

M∑
i=1

W
(−n)
(i) (X

(n)
(i))>U(n) −

M∑
i=1

X
(n)
(i) (W

(−n)
(i))>U(n)

−
M∑
i=1

X
(n)
(i) (W

(−n)
(i))>U(n) −

M∑
i=1

W
(−n)
(i) (X

(n)
(i))>U(n)

+
M∑
i=1

2
(
V

(−n)
(ii) T(n) + T(n)V

(−n)
(ii)

)
U(n) (A.22)

∂L1

∂U(n)
= 2

M∑
i=1

(
−W

(−n)
(i) (X

(n)
(i))> −X

(n)
(i) (W

(−n)
(i))>

+V
(−n)
(ii) T(n) + T(n)V

(−n)
(ii)

)
U(n) (A.23)

The second term, L
(F)
2 , represents the total distance between each instance and

its targets.

L
(F)
2 =

M∑
i=1,j i

tr
(

(X̂
(n)
(i) − X̂

(n)
(j))>(X̂

(n)
(i) − X̂

(n)
(j))
)

=
M∑

i=1,j i

tr
(

(X̂
(n)
(i))>X̂

(n)
(i)

)
− tr

(
(X̂

(n)
(i))>X̂

(n)
(j)

)
−tr
(

(X̂
(n)
(j))>X̂

(n)
(i)

)
+ tr

(
(X̂

(n)
(j))>X̂

(n)
(j)

)
(A.24)

103

Using the approximations and shorthand notations, we can calculate its gradient

for any U(n).

∂L
(F)
2

∂U(n)
=

∂

∂U(n)(
M∑

i=1,j i

tr
(

(U(n)(U(n))>W
(−n)
(i))>(U(n)(U(n))>)W

(−n)
(i)

)
−

M∑
i=1,j i

tr
(

(U(n)(U(n))>W
(−n)
(i))>(U(n)(U(n))>)W

(−n)
(j)

)
−

M∑
i=1,j i

tr
(

(U(n)(U(n))>W
(−n)
(j))>(U(n)(U(n))>)W

(−n)
(i)

)
+

M∑
i=1,j i

tr
(

(U(n)(U(n))>W
(−n)
(j))>(U(n)(U(n))>)W

(−n)
(j)

))
(A.25)

∂L
(F)
2

∂U(n)
=

M∑
i=1,j i

∂

∂U(n)
tr

(
U(n)(U(n))>U(n)(U(n))>(

W
(−n)
(i) (W

(−n)
(i))> −W

(−n)
(j) (W

(−n)
(i))> −

W
(−n)
(i) (W

(−n)
(j))> + W

(−n)
(j) (W

(−n)
(j))>

))
(A.26)

∂L
(F)
2

∂U(n)
=

M∑
i=1,j i

∂

∂U(n)
tr

(
U(n)(U(n))>U(n)(U(n))>

(
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

))

= 2
M∑

i=1,j i

((
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>
U(n)(U(n))> +

U(n)(U(n))>
(

V
(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>)
U(n) (A.27)

104

∂L
(F)
2

∂U(n)
= 2

M∑
i=1,j i

((
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>
T(n)

+T(n)

(
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>)
U(n) (A.28)

The third term, L
(F)
3 , accounts for the penalty paid to the close distance impos-

tors. The closer the impostors to the instance, the more probably to make a k-nn

misclassification.

L
(F)
3 =

M∑
i=1,j i,l

(1− yil)
[
C +

tr
(

(X̂
(n)
(i) − X̂

(n)
(j))>(X̂

(n)
(i) − X̂

(n)
(j))
)

−tr
(

(X̂
(n)
(i) − X̂

(n)
(l))>(X̂

(n)
(i) − X̂

(n)
(l))
)]

+

=
M∑

i=1,j i

(1− yil)
[
C +

tr
(

(X̂
(n)
(i))>X̂

(n)
(i)

)
− tr

(
(X̂

(n)
(i))>X̂

(n)
(j)

)
−

tr
(

(X̂
(n)
(j))>X̂

(n)
(i)

)
+ tr

(
(X̂

(n)
(j))>X̂

(n)
(j)

)
−

tr
(

(X̂
(n)
(i))>X̂

(n)
(i)

)
+ tr

(
(X̂

(n)
(i))>X̂

(n)
(l)

)
+

tr
(

(X̂
(n)
(l))>X̂

(n)
(i)

)
− tr

(
(X̂

(n)
(l))>X̂

(n)
(l)

)]
+

(A.29)

105

Using the derivation of gradient of L
(F)
2 , one can easily get:

∂L
(F)
3

∂U(n)
= 2

M∑
i=1,j i,l

(1− yil)[((
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>
U(n)(U(n))> + U(n)(U(n))>(

V
(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>)
U(n)

−

((
V

(−n)
(ii) −V

(−n)
(li) −V

(−n)
(il) + V

(−n)
(ll)

)>
U(n)(U(n))> + U(n)(U(n))>(

V
(−n)
(ii) −V

(−n)
(li) −V

(−n)
(il) + V

(−n)
(ll)

)>)
U(n)

]
+

(A.30)

∂L
(F)
3

∂U(n)
= 2

M∑
i=1,j i,l

(1− yil)[((
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>
T(n) +

T(n)

(
V

(−n)
(ii) −V

(−n)
(ji) −V

(−n)
(ij) + V

(−n)
(jj)

)>)
U(n) −((

V
(−n)
(ii) −V

(−n)
(li) −V

(−n)
(il) + V

(−n)
(ll)

)>
T(n) +

T(n)

(
V

(−n)
(ii) −V

(−n)
(li) −V

(−n)
(il) + V

(−n)
(ll)

)>)
U(n)

]
+

(A.31)

The loss function for LMTD-C is defined as follows:

L(C) = µL1 + βL
(C)
2 + γL

(C)
3

106

The first term, L1, is the same as in LMTD-F. The second term, L
(C)
2 , stands for

the total distances between the instance and its targets in the reduced space (over the

core tensors).

L
(C)
2 =

M∑
i=1,j i

tr
(

(G
(n)
(i) −G

(n)
(j))>(G

(n)
(i) −G

(n)
(j))
)

(A.32)

Let’s define P
(−n)
(ij) = X

(n)
i R(−n)(R(−n))>(X

(n)
j)>. Then the gradient of L

(C)
2 is

calculated as below,

∂L
(C)
2

∂U(n)
=

M∑
i=1,j i

∂

∂U(n)
tr

(
U(n)(U(n))>(

X
(n)
(i) R(−n)(R(−n))>(X

(n)
(i))> −X

(n)
(j) R

(−n)(R(−n))>(X
(n)
(i))> −

X
(n)
(i) R(−n)(R(−n))>(X

(n)
(j))> + X

(n)
(j) R

(−n)(R(−n))>(X
(n)
(j))>

))

=
M∑

i=1,j i

∂

∂U(n)
tr

(
U(n)(U(n))>

(
P

(−n)
ii −P

(−n)
ji −P

(−n)
ij + P

(−n)
jj

))

= 2
M∑

i=1,j i

(
P

(−n)
ii −P

(−n)
ji −P

(−n)
ij + P

(−n)
jj

)
U(n) (A.33)

107

The total distances to the impostors in the reduced space, L
(C)
3 , is calculated as

follows:

L
(C)
3 =

M∑
i=1,j i,l

(1− yil)
[
C +

tr
(

(G
(n)
(i) −G

(n)
(j))>(G

(n)
(i) −G

(n)
(j))
)
−

tr
(

(G
(n)
(i) −G

(n)
(l))>(G

(n)
(i) −G

(n)
(l))
)]

+

=
M∑

i=1,j i

(1− yil)
[
C +

tr
(

(G
(n)
(i))>G

(n)
(i)

)
− tr

(
(G

(n)
(i))>G

(n)
(j)

)
−

tr
(

(G
(n)
(j))>G

(n)
(i)

)
+ tr

(
(G

(n)
(j))>G

(n)
(j)

)
−

tr
(

(G
(n)
(i))>G

(n)
(i)

)
+ tr

(
(G

(n)
(i))>G

(n)
(l)

)
+

tr
(

(G
(n)
(l))>G

(n)
(i)

)
− tr

(
(G

(n)
(l))>G

(n)
(l)

)]
+

(A.34)

Using the derivation of gradient of L
(C)
2 , one can easily get:

∂L
(C)
3

∂U(n)
= 2

M∑
i=1,j i,l

(1− yil)[(
P

(−n)
ii −P

(−n)
ji −P

(−n)
ij + P

(−n)
jj

)
−

(
P

(−n)
ii −P

(−n)
li −P

(−n)
il + P

(−n)
ll

)]
U(n) (A.35)

