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listener and mentor.

I worked together with many smart and fun people during my PhD. I would
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ABSTRACT

BAYESIAN METHODS FOR NETWORK TRAFFIC

ANALYSIS

Statistical information about traffic patterns help a service provider to charac-

terize its network resource usage and user behavior, infer future traffic demands, detect

traffic and usage anomalies, and possibly provide insights to improve the performance

of the network. However, the increasingly high volume and speed of data over modern

networks make collecting these statistics difficult. Moreover, smarter network attacks

require sophisticated detection methods that are able to fuse many network and hard-

ware signals. Fortunately, Bayesian statistical methods are powerful tools that can

infer such information under the harsh network environments.

In this thesis we apply two Bayesian methods for two specific network problems.

First, we use the Bayesian multiple change models to detect DDoS attacks in SIP

networks by fusing the observations coming from the network traffic and the networking

hardware. We show that our method is superior to classic DDoS detection methods

and using hardware signals improve the detection rate. For this work, we developed a

probabilistic SIP network simulator and a monitoring system, and published it as an

open-source software.

In our second work, we estimated network statistics from a high speed network

where we can only observe a fraction of the network traffic. For this problem we develop

a generic novel method called ThinNTF, based on non-negative tensor factorization.

This method can work with different network sampling schemes and recovers original

network statistics by detecting the periodic network traffic patterns from the sampled

network data and gives better estimates compared to the state of the art.
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ÖZET

AĞ TRAFİĞİ ANALİZİ İÇİN BAYESÇİ METODLAR

Trafik örüntüleri hakkındaki istatistiksel veriler, ağ sağlayıcılarına ağlarındaki

kaynak kullanımı ve kullanıcı davranışlarını nitelemek, gelecekteki ağ gereksinimlerini

kestirmek, ağ olağandışılıklarını sezmek ve başarımı iyileştirmek konularında yardımcı

olurlar. Bununla birlikte, günümüz ağlarında gittikçe artan yüksek veri hacmi ve

hızı bu istatistiklerin elde edilmesini güçlendirmektedir. Dahası, akıllı ağ saldırıları

ağ trafiği ve ağ donanımından gelen sinyalleri birleştirebilen, ileri tespit yöntemlerine

ihtiyaç duymaktadır. Neyse ki, Bayesçi istatistiksel yöntemler zorlu ağ ortamlarında

bu verileri elde edebilecek araçlardır.

Bu tezde iki farklı Bayesçi yöntemi farklı problemlere uyguladık. İlkinde hem ağ

trafiği hem de ağ donanım verisi kullanan bir Bayesçi çoklu değişim noktası modeli

kullanarak SIP ağlarındaki DDoS saldırılarını yakaladık. Yöntemimizin diğer DDoS

tespit metodlarından daha iyi olduğunu ve ağ donanım bilgisini kullanmanın başarımı

arttırdığını gösterdik. Bu çalışma için olasılıksal bir SIP ağı benzetime ve gözetleme

sistemi geliştirdik ve açık kaynak kodlu olarak yayınladık.

İkinci çalışmamızda sadece bir kesmini gözlemleyebildiğimiz hızlı bir ağ üzerindeki

ağ istatistiklerini kestirdik. Bu problem için ThinNTF adını verdiğimiz, negatif ol-

mayan tensor ayrışımı tabanlı genel bir yöntem geliştirdik. Bu yöntem farklı ağ trafiği

örnekleme şemalarıyla birlikte kullanılabilmekte ve örneklenmiş veriden dönemsel ağ

istatistiklerini çıkartarak asıl istatistikler elde etmekte ve bu ilave bilgiyi kullanmatan

yöntemlerden daha başarılı sonuç vermektedir.
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1. INTRODUCTION

A computer network is a set of computers linked together. Although this simple

definition includes just two entities, computers and their connections, networking is a

complicated branch of computer science and engineering. As this thesis is being written,

there are more than 2 billion personal computers and 2.6 billion smart phones in the

world, all of which are interconnected thanks to the developments on mobile networking

and it is estimated that 3.6 billion people are using the internet. This sheer volume

and complexity introduces many challenges in network management. The network

service providers have to spend tremendous efforts to maintain high quality of service,

improve their infrastructure and provide network security. These services require real

time monitoring of high-speed and high-volume network links, and fast processing of

large amount of data. In this thesis we propose Bayesian methods for several network

traffic analysis problems, which address some of issues.

New generation wireless technologies enable operators to provide broadband cov-

erage. Especially with the introduction of LTE and smart phones, network manage-

ment for data traffic is becoming a harder problem everyday. Data traffic is increasing

rapidly and network operators cannot respond fast enough to demands for the capacity

increase. The expectation is that demands on the infrastructure will be comparable

or even exceed the current utilization of conventional fixed broadband connections.

The trend is already clear, data transmitted in networks for mobile users is increasing

fast and the operators need to find ways to reduce their investment per traffic. It

is therefore more important than ever before to observe the network utilization and

take necessary actions in terms of maintaining QoS per application, hence optimize the

network usage for improved customer satisfaction and still remain profitable.

1.1. Description of the Network Data

In order to better understand the scope of our thesis, we first need to make

a description of the network data that we are dealing with. Since networking is a
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Figure 1.1. Structure of an ethernet frame.

broad term and network data can have different meaning from different perspectives,

we need to narrow down its definition. We simply define the network traffic as data

flowing between communicating devices on the network at a given time. In this thesis,

we are focused on the most famous networking system, the Internet. The Internet

is implemented by the Internet Protocol Stack, where the user data is transferred in

small chunks which are called packets. The connections inside the network is handled

by the packet switching technique, and the packets find their ways between the devices

via routing. In this thesis we are not interesting in the underlying topology of the

network or the routing information of the packets. Instead, we monitor the incoming

and outgoing packets from an observation point, that is mainly a server.

In the internet, the user data is encapsulated by a stack of protocols. Figure 1.1

shows the stacked structure of a IP packet, or more formally, an Ethernet frame. In

this stack structure, the user data is carried inside a transport segment, which is routed

by an IP datagram, inside an Ethernet frame.

As we monitor the network, we extract several information fields from Ethernet

packets, and ignore the rest. We are mainly interested in the information such as the

IP addresses of the sender (source) and receiver (destination) hosts found in the IP

header, and their corresponding port numbers found in the transport header. An IP

address and a port number defines a socket address in the related host. Additionally.

the transport protocol is also of special interest. As transport layer protocols, we will

be dealing only with transport control protocol (TCP) and user datagram protocol
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Table 1.1. Abstraction of a network packet.

Key

Source IP

Source Port

Destination IP

Destination Port

Protocol

Attributes

Arrival Time: a

Length : l

Application Features

(UDP). Other main packet features include the length and the arrival time of the

packet. Depending on the problem we may also extract application level features. For

example in Chapter 3, we will be mainly dealing with Session Initiation Protocol (SIP)

headers. Table 1.1 lists the primary information we extract from a network packet.

While a packet is a first level network entity, we can define a network flow, which

is a collection of packets, as the second level network entity. Network flows are basically

a flow of data between two sockets in the application layer. If we consider a packet

as a message, a network flow can be considered as a communication between two

applications. More formally, we can define a network flow as an ordered set of packets

exchanged between two sockets. The packets in this set share a unique key which is

composed a source IP, source port, destination IP, destination port and the transfer

level protocol. This 5-tuple distinctly identify a network flow.

Since a network flow defines a communication, the packets that belong to flow

can travel in either direction, from source to destination or from destination to source.

When used for network flows, source and destination keywords have slightly different

meanings. The source of a network flow is actually the source that generated the first

packet of the flow. In other words, the source IP and source port of a network flow is

the source IP and source port the first packet. For packets traveling backwards, the

source and destination IP and port pairs would be interchanged. Therefore, in order

to find out whether a packet belongs to a flow, we need to check for both scenarios by



4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (seconds)

60767

61324

F
lo

w
ID
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creating two different keys, one for forward direction, one for backward direction.

Finally, a flow is said to be terminated whenever a timeout period is passed

without any packet generated by the communicating sockets. A typical timeout period

is 1 minute. Additionally, we can detect the termination of a TCP flow by observing

a TCP packet with its BYE flag set. Figure 1.2 shows a representation for 2 network

flows captured from the live traffic. Horizontal axis denotes the arrival time of packets

in seconds. Each vertical line length is proportional to a packet size and the direction

denotes up (dark I) and down (light /) stream packets during the communication. In

the figure, the top flow consists of large packets sent to the destination, and the bottom

flow has mainly large packets received.

Mathematically, we represent a flow fn as the set fn = {tn, cn, an,dn, ln} where tn

is the number of packets in the flow, which we call the flow size and cn is the category of

the application generating the flow. The remaining an,dn and ln are the vectors, each

of length tn. The an vector contains arrival times of packets to the destination socket,

in epoch time format. The dn vector contains the directions of each packet. We define

the packet directions as +1, or up, if the packet send from source to destination socket,
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Table 1.2. Abstraction of a network flow.

Key

Source IP

Source Port

Destination IP

Destination Port

Protocol

Attributes

Size : tn

Length :
∑

i li

Packet Info 1 : (a1, d1, l1)
...

Packet Info tn : (atn , dtn , ltn)

and −1 , or down it is send from destination to the source. The source and destination

hosts are assigned according to the related fields of the first packet. Finally, the ln

vector contains the length of each packet, which is the total number of bits including

all headers in the Ethernet frame. Table 1.2 lists the information we extract from a

network flow.

1.2. Network Measurement and Sampling

Statistical information about traffic patterns help a service provider to character-

ize its network resource usage and user behavior, infer future traffic demands, detect

traffic/usage anomalies, and possibly provide insights to improve the performance of

the network [1]. Passive measurement, where the measuring beacons inactively watch

the traffic passing by [2] is a popular method for collecting network statistics such as

per flow information. However, constantly increasing link speeds and traffic volume

makes passive measurement challenging. While high link speeds restricts the time spent

on processing individual packets, high traffic volume requires larger memory to store

the necessary information. Therefore, additional techniques such as using specialized

hardware [3–5] and/or sampling only a fraction of network packets [6–8] have been

proposed.
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Figure 1.3. Flow size distribution measurement problem.

In this thesis, we focus on real-time tracking of the flow size distribution on a

high speed network of an Internet Service Provider (ISP) on a Commercial-off-the-shelf

(COTS) server. In this set up, without the availability of a dedicated hardware, we

employ random packet sampling technique. We define the number of packets inside

a flow as the flow length and the histogram of flow lengths of the active flows at a

given time instance as the flow length distribution where an active flow is a flow which

has not been terminated yet. The main problem with the packet sampling technique

is that, whenever sampling is applied, the collected statistics differ from their original

values as depicted in Figure 1.3. The figure show real world statistics collected from

the servers of an ISP. The mean length ratios of flows of length up to 10 are presented

when all packets are observed and when random packet sampling applied with sampling

probabilities 0.5 and 0.1. Hence, a post-processing must be done in order to recover

the original statistics after the sampling.

There are several proposed methods for restoring the original flow size distribu-

tions for the random packet sampling scenario. In this thesis, we propose improvements

to the non-parametric flow length models in [6] and [8] where the network traffic is mod-

eled as a mixture of several traffic patterns. We observe that such traffic patterns can

be extracted by employing the nonnegative matrix factorization (NMF) model. Fur-
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thermore, we extract those patterns directly from the sampled data via our modified

version of the NMF algorithm, which we call which we call ThinNTF, and also recover

the original flow size distributions. The Chapter 4 is dedicated to the measurement

problem and includes our methodology as well as the results.

1.3. DDoS Attack Detection in SIP Networks

Voice over IP (VoIP) is the technology of carrying voice and multimedia com-

munications through the internet protocol (IP) networks, such as the internet. Due

to its low infrastructure cost and multimedia support, VoIP systems have been taking

over circuit-switched telephone networks, worldwide. The VoIP systems transfer audio

and multimedia data between communicating parties, through the packet-switched IP

networks via data transfer protocols, such as the Real-time Transport Protocol (RTP).

However, they require signaling protocols for managing their communication sessions.

Due to its lightweight nature, simplicity and ease of implementation, the SIP [9] is one

of the most popular open standard signaling protocols designed for VoIP. SIP provides

signaling functions necessary to register clients, check their locations and availability,

exchange information on their data transmission capabilities, and provide handshake

for their conversations.

Despite all their attractive features, the downside is that VoIP systems are more

vulnerable to security threats compared to their circuit switched predecessors. There

are two basic sources of security threats for VoIP systems. Firstly, VoIP systems are

affected by all the IP network threats. Secondly, they are prone to security threats

specifically designed to exploit the vulnerabilities of the underlying signaling protocols

[10]. These protocol-specific attacks are usually not classified as network attacks, hence

they are not detected by the conventional network security systems. Therefore, VoIP

systems need extra security mechanisms for detecting and preventing VoIP specific

attacks.
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Figure 1.4. A histogram of SIP messages before and after a DDoS attack.

One of the most frequently observed type of cyber-attack is the Distributed Denial

of Servie (DDoS) flooding attack [11], which is typically realized by sending a vast

amount of network messages to a victim. In this thesis, we focus on the detection

of SIP-specific DDoS flooding attacks [10, 12]. Figure 1.4 shows histogram of SIP

messages observed on a SIP server for a duration of 35 seconds. The first 22 seconds

of the histogram shows the ratios of SIP messages under the normal traffic, where the

last 13 seconds show the SIP message ratio under a DDoS attack executed by flooding

the server with INVITE messages.

In our work, we employ a Bayesian change point model to model the normal

behaviour of the SIP network traffic and set alarms where this behaviour deviates

from the normal. We also take into account several other features collected from the

SIP serve such as server resource utilization and histogram of log messages. Chapter 3

includes the details of our DDoS detection system together with the model, experiment

setup and results.
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1.4. Contributions

• We developed a network monitoring system for high speed network traffic [13]

and collected collected large amount of real time traffic from a Global System for

Mobile Communications (GSM) network.

• We developed a novel generic tensor factorization algorithm, called ThinNTF [14]

that can detect periodic traffic behavior from network traffic sampled with any

sampling algorithm, provided that it is expressed as matrix operation.

• We developed a Bayesian change point model [15–17], for detecting SIP-oriented

DDoS attacks. The proposed framework extends and generalizes the previous

change-point based detection methods. Our change point-based DDoS monitor

can be customized with different server parameters and different probabilistic

observation models.

• A real-time SIP network traffic simulator [18, 19] based on social network model-

ing is developed and the software made publicly available. The proposed frame-

work is tested with real-time data generated by the simulator, interleaved with

DDoS attack data generated by a commercial network vulnerability scanning tool.

1.5. Organization of the Thesis

The thesis is organized as follows. In Chapter 2 we give background information

on Bayesian machine learning methods that will be employed for the solutions to the

problems defined in subsequent chapters. In Chapter 3 we solve the DDoS detection

problem in SIP networks using Bayesian change point model. In Chapter 4 we employ

our ThinNTF model for the real-time network statistic recovery from sampled network

data. In Chapter 5 we conclude the thesis.
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2. METHODOLOGY

In this chapter we provide the basic Bayesian methodology and models used

throughout the thesis. While we give general descriptions for the algorithms and mod-

els, how these model are tailored for network problems is going to be explained in later

chapters. Before going further, we should explain our mathematical notation.

For a clear notation, the scalar values are denoted by lightface letters, such as the

index variable j and its maximum value J . The vectors are represented by boldface

lower case letters, such as vector x. Boldface upper case letters represent matrices, such

as F,H and D, and the tensors are represented with calligraphic upper case letters i.e

X . The individual entries in matrices and tensors are written like scalars, i.e. fi,r and

xi,j,k. The index : denotes all the entries in the given dimension. For example si,: is the

ith row of the S matrix and Xi,:,: is the ith slice of the tensor X in the first dimension.

We use superscripts to denote the index of an object inside a list. For example x(1:N)

presents a list of N vectors and x(n) shows the nth vector in the list.

2.1. Expectation-Maximization and Variational Inference

Suppose a probabilistic generative model M with parameters θ generates obser-

vations X, such that an observation x depends on some other random but unobserved

variable z which has also been sampled during the generative process. We call these

variables the latent variables, denoted as Z. Then the likelihood of an observed set X

can be written as

p(X|θ) =

∫
Z

p(X|Z, θ)p(Z|θ)dZ

The introduction of the latent variables makes the calculation of the likelihood cum-

bersome, or sometime practically impossible. For example, for discrete latent variables,

the integration requires considering all combinations of latent variables, which may be

in exponential numbers. For continuous variables, the overall integral may not be well
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formed. In such cases, a general framework called Expected-Maximization (EM) can

be utilized to maximize the likelihood with respect to the parameters θ.

The EM [20] is an iterative algorithm that maximizes a lower bound of the log-

likelihood of parameters. The lower bound is defined by the help of the Jensen’s

Inequality which states the following

For λi ∈ [0, 1] and
∑

i λi = 1, and a convex function f , the following holds

f

(∑
i

λixi

)
≤
∑
i

λif(xi) (2.1)

In probability terms, we can write this inequality as

f(E[x]) ≤ E[f(x)] (2.2)

We bound the log-likelihood log p(X|θ), using the Jensen’s inequality, since − log is a

convex function, as follows

log p(X|θ) = log

∫
Z

p(X,Z|θ)dZ (2.3)

= log

∫
Z

q(Z)
p(X,Z|θ)
q(Z)

dZ (2.4)

≥
∫
Z

q(Z) log p(X,Z|θ)dZ−
∫
Z

q(Z) log q(Z)dZ (2.5)

where q(Z) is an instrumental distribution and Hq(Z) is its entropy. This bound is a

function of q(Z) and is maximum when

q(Z) = p(Z|X, θ) (2.6)
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The EM iterative updates θ, where at each iteration θnew is calculated by setting

q(Z) = p(Z|X, θold). Therefore, we can re-write the lower bound as

L(q, θ) =

∫
Z

log p(Z|X, θold)p(X,Z|θ)dZ︸ ︷︷ ︸
Q(θ,θold)

−
∫
Z

p(Z|X, θold) log p(Z|X, θold)dZ︸ ︷︷ ︸
−Hq(Z)

(2.7)

where Q(θ, θold) is the expectation of the complete log likelihood under the posterior

distribution q(Z) evaluated for a general θ and Hq(Z) is the entropy of the posterior

distribution. Maximizing this lower bound gives a new parameter set θnew and process

continues by calculating a new lower bound using the updated parameters. In order to

maximize the lower bound for θ, we can omit the entropy term since it’s not a function

of θ, but θold. We can write the E and M steps as

(i) E -step: Evaluate p(Z|X, θold)
(ii) M -Step: θnew ← argmaxθQ(θ, θold)

In some cases the calculation of the posterior distribution p(Z|X, θold) or its ex-

pected value may also be infeasible. This leads us to use a approximate distribution

which results in approximate inference of the parameters. A common deterministic ap-

proximation scheme is variational approximation, where Z is partitioned into disjoint

groups Zi and the posterior distribution is factorized as

q(Z) =
∏
k

qk(Zk) (2.8)

In this setting we iteratively calculate qk(Zk) as

qk(Zk) ∝ exp(〈log(p(X,Z|θ)〉q−k(Z) (2.9)

where q−k(Z) =
∏

i 6=k qi(Zi).
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Table 2.1. BCPM variables and parameters.

Variable Description

s(1:T ) Reset switches

h(0:T ) Hidden state vectors

v(1:T ) Observation vectors

π Reset probability

Θ Prior distribution of hidden states

w Parameters of the Θ distribution

Ω Observation model

2.2. Multiple Change Point Models

Modeling a time series data in order to detect anomalies and making exact in-

ference to detect change point in time which starts those abnormal behaviors is an

excellent example of the Bayesian approach.Multiple change point models are a special

form of hierarchical Markov models [21], where the observations conditionally depend

on latent states, and the states either follow the previous regime or jump to a new

one, randomly. As far as network monitoring is concerned, these regime changes imply

anomalous events, and which may be related to some security threats. The generative

equations of the multiple change point model can be given as

h(0) ∼ Ω(h(0); w) (2.10)

s(t) ∼ [s(t) = 0]π + [s(t) = 1](1− π) (2.11)

h(t)|s(t),h(t−1) ∼ [s(t) = 0]δ(h(t) − h(t−1)) + [s(t) = 1]Ω(h(t); w) (2.12)

v(t)|h(t) ∼ Θ(v(t); h(t)) (2.13)

where δ is Dirac delta function.

The observation v(t) at time t, is assumed to be a random variable sampled from

a Θ(v; h). The model allows h(t) to change as many times as required during the run

of the algorithm. Initially, h(0) is drawn from a Ω(h(0); w) distribution. Afterwards, at
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Figure 2.1. Graphical representation of the BCPM.

each time instance t, h(t) is either re-drawn from the same initial distribution or set

to the previous value h(t−1). The decision for change is given by a Bernoulli random

variable s(t). The graphical representation of the multiple change point model is given

in Figure 2.1.

The observation model Θ distribution and its prior distribution Ω can be selected

according the data where this model is fitted. The details on data features and the

distributions used in the change point model for DDoS attack detection are given in

Section 3.2.4. At this stage, it suffices to know that Ω distribution is the conjugate

prior of the Θ distribution.

The prior probability of change, π, and the parameters w of the prior distribution

Ω(h(t); w) are the hyperparameters of our model. Provided that these hyperparameters

are known, and the system is fully observable, meaning that the change points s(1:T ),

hidden states h(0:T ) and observations v(1:T ) are known, we can calculate the full joint

likelihood as

p(s(1:T ),h(0:T ),v(1:T )) = p(h(0))
T∏
t=1

p(s(t))p(h(t)|h(t−1), s(t))p(v(t)|h(t)) (2.14)
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In reality, the change switches s(t) and the hidden states h(t) are not observed,

and the problem of detecting a change point event at time t is formulated as calculating

the posterior probability that p(s(t) = 1|v(1:T )). From the Bayes rule, we can write

p(s(t)|v(1:T )) =
p(v(1:T ), s(t))

p(v(1:T ))
∝ p(v(1:T ), s(t)) (2.15)

The probability of change at time t can be inferred online by calculating the

filtering distribution p(s(t)|v(1:t)), or in an offline manner by the smoothing distribu-

tion p(s(t)|v(1:T )). The calculations can be done efficiently via the recursive forward-

backward algorithm [22]. The filtering density is calculated by the forward recursion

of the α messages:

α(s(t),h(t)) ≡ p(s(t),h(t),v(1:t)) (2.16)

=
∑
s(t−1)

∫
h(t−1)

p(h(t)|h(t−1), s(t))α(s(t−1),h(t−1))dh(t−1)

× p(v(t)|h(t))× p(s(t)) (2.17)

Then, the change probability is calculated as

p(s(t)|v(1:t)) ∝ p(s(t),v(1:t)) =

∫
h(t)

α(s(t),h(t))dh(t) (2.18)

In an offline setting, where we can calculate decisions using the full observations of the

time series v(1:T ), we can smooth the filtering distribution with backward recursions to

get a stronger estimate p(s(t)|v(1:T )). The backward recursion can be written as

β(s(t),h(t)) ≡ p(v(t+1:T )|s(t),h(t)) (2.19)

=
∑
s(t+1)

∫
h(t+1)

p(h(t+1)|h(t), s(t+1))β(s(t+1),h(t+1))dh(t+1)

× p(v(t)|h(t))× p(s(t)) (2.20)
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The smoothed density is calculated as

p(s(t)|v(1:T )) ∝
∫
h(t)

p(s(t),h(t),v(1:t))p(v(t+1:T )|s(t),h(t)) (2.21)

=

∫
h(t)

α(s(t),h(t))β(s(t),h(t))dh(t) (2.22)

Real-time anomaly detection tracks streaming data, so that the v1:T is not a

practical expression, since T is not bounded. Furthermore, anomaly detection is a

time-critical task, which implies that the change points must be recognized as soon as

possible. Therefore, calculating a smoothing density is feasible only if the system is

allowed to make deferred change point decisions for a fixed amount of time L, which is

called the lag. In such a case, the process is called fixed-lag smoothing, where the change

point inference for st is done at time t+L by calculating the density p(s(t)|v(1:t+L)). It

is important to note that this process requires calculating a backward recursion for L

steps starting at each time t+ L, and this increases the processing complexity.
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2.3. Nonnegative Tensor Factorization

Nonnegative tensor factorization (NTF) is the generalization of the 2-dimensional

NMF model to multiple dimensions. In NTF, an N-dimensional tensor is approximated

by the multiplication of lower dimensional factors. Unlike NMF, tensor factorization

can be done in multiple ways. In this work, we are going to use the PARAFAC [23–25]

factorization scheme.

X

j

i

k

f:,1

h:,1

d:,1

≈ + +

f:,2

h:,2

d:,2

+. . .

f:,R

h:,R

d:,R

Figure 2.2. PARAFAC factorization.

In PARAFAC, an I1 × I2 × . . . × IN tensor is approximated by In × R matrices

for n ∈ [1, N ]. Here, R is the number of components, i.e. the number of clusters in

the data. Figure 2.2 shows the PARAFAC factorization of our flow length distribution

(FLD) tensor X , into 3 factors: an I × R factor F for representing the flow length

clusters, a J × R factor H for representing hourly behavior and a K × R factor D

for representing the daily behavior of the data. Every single entry of the X tensor is

approximated by

xi,j,k ≈ x̂i,j,k =
∑
r

fi,rhj,rdk,r (2.23)

Bro [26] explains that the PARAFAC factorization is unique under certain cir-

cumstances, where uniqueness is defined as begin unable to rotate the factorization

without loss of fit. NMF and NTF are statistical models that imposes nonnegativity

constraint without uniqueness property. The uniqueness may be important if individ-

ual factors are of special interest. In our case, we are concerned with the estimation of

the original data tensor X from sampled tensor Y , but not the individual factors for
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Figure 2.3. Graphical models for NTF and ThinNTF in PARAFAC scheme.

any interpretation. Our problem is more close to a missing value imputation problem,

hence uniqueness is not a requirement.

2.4. Thin Nonnegative Tensor Factorization

Thin nonnegative tensor factorization (ThinNTF) is basically an NTF with an

additional constant factor, which in our case is the sampling matrix S. Figure 2.3 shows

the graphical models of the NTF and the ThinNTF models for factorizing original and

sampled flow length observations. In the graphical models, the shaded nodes are the

observed entities, and the unshaded ones are the latent entities.

In Section 4.4, we have described the sampling process as a matrix multiplication

operation with a sampling matrix S. In ThinNTF, this sampling matrix operates on

the original tensor X and creates a thinned version of it, which we call Y , by down-

sampling its entries according to a sampling scheme, as shown in Figure 2.4. The

entries of Y tensor yν,j,k presents the number of flows of sampled-length ν, at hour j

at day k. The ⊗1 operation denotes the 1-mode product of matrix ST and tensor X ,

which corresponds to the set of matrix multiplications Y:,:,k = STX:,:,k for k ∈ [1, K].

j i

k

≈Y
XSTνν ⊗1

Figure 2.4. ThinNTF factorization.
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In this scheme, one can immediately suspect that X can be estimated by (ST )−1⊗1

Y . However, this solution is not feasible for several reasons. First, the S matrix is not

square, hence not invertible. Instead its pseudo-inverse can be calculated but this does

not impose nonnegativity. Moreover, the top slice of the Y tensor, which stores the

number of flows with zero-sampled size is never observed, hence must be estimated.

Therefore we need a solid statistical model and an inference method to estimate X
under this model.

In ThinNTF, we observe the Y tensor, but try to factorize the X tensor, which is

latent (Figure 2.3(b)). In the end, the factors of X are going to provide us an approx-

imation X̂ which solves the original flow length distribution reconstruction problem.

We mathematically express this approximation as

yν,j,k ≈ ŷν,j,k =
∑
i,r

sν,ifi,rhj,rdk,r (2.24)

where F,H and D are described in exactly the same way in the original NTF case.

In subsections 4.4.1 and 4.4.2, we described two different S matrices for two different

schemes. The ThinNTF model can be employed with any sampling method as long as

it is described with a sampling matrix.

2.4.1. Generative Model

Taking Bayesian approach, we first provide a generative model for the ThinNTF,

then describe how we can estimate the posterior probabilities of model parameters (in

this case, the factor matrices) conditioned on the sampled flow length observations Y
and the sampling matrix S using the well known Bayes rule. Table 2.2 contains all

tensors and matrices used in the model together with their index sets.
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Table 2.2. Tensors in the model and their corresponding index sets.

Tensor Index Set Description

X i, j, k Original flow length tensor

Y ν, j, k Sampled flow length tensor

M ν, j, k Mask tensor

W ν, i, j, k, r Latent variable tensor

F i, r Flow length factor

H j, r Hour of day factor

D k, r Day of week factor

S i, ν Sampling matrix

AF ,BF i, r Gamma priors for F

AH ,BH j, r Gamma priors for H

AD,BD k, r Gamma priors for D

The original and latent data tensor X , and the sampled and observed data tensor

Y have nonnegative integer entries. The natural probability distribution for this type

of count data is the Poisson distribution. We assume that each entry of a latent

5-dimensional tensor W is drawn from a Poisson distribution whose parameters are

functions of sampling matrix S and factors F,H and, D, such as

wν,i,j,k,r ∼ PO(wν,i,j,k,r; sν,ifi,rhj,rdk,r) (2.25)

We choose the prior distributions for the factor entries as the Gamma distribution

since it is the conjugate prior of Poisson distribution [27]. For each entry of factor F,

we write

fi,r ∼ G
(
fi,r; a

f
i,r,

bfi,r

afi,r

)
(2.26)

with shape parameter κ and scale parameter θ. In our generative model, the parameters

for Gamma distributions are κ = afi,r and Θ = bfi,r/a
f
i,r respectively. This means that
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the mean of fi,r is κΘ = bfi,r, which is independent of afi,r. The variance of fi,r becomes

κΘ2 = (bfi,r)
2/afi,r, which means that as afi,r gets smaller, the factors gets sparser. In

order to avoid repetition, we are going to omit the equations regarding the factors H

and D throughout the paper. These factors behave exactly like factor F and it’s easy

to derive equations related to these factors once their corresponding equation for F is

given.

Finally, we generate X and Y tensor from W . Each entry wν,i,j,k,r of W can be

interpreted as the number of original flows of length i, generated on hour j, day k, by

cluster r and observed as length ν. By summing W over dimensions cluster (r) and

original lengths (i), we get the sampled observations tensor Y . Similarly, by summing

W over dimensions cluster (r) and sampled lengths (ν), we get the original flow length

tensor X . The whole generative process is summarized in Figure 2.5. The set of all

indexes and tensors in the model are summarized in Table 2.2.

2.4.2. Variational Bayes for ThinNTF

After defining the generative model, we can inter the factors F,H, and D of a

sampled flow length observation tensor Y . In the original NMF paper, Lee and Seung

[28] provide fixed-point update equations for inferring the factors. Bro [26] gives similar

fixed-point equations for updating the factors in PARAFAC factorization. Cemgil [29]

shows that these updates correspond to the Kullback-Leibler minimization between the

original matrix (or tensor X ) and the approximated one (X̂ ), and also provides a full

Bayesian variational algorithm for the matrix factorization. Ermis et. al. [30] provide

a similar variational algorithm for the Gamma-Poisson tensor factorization.

We start our Bayesian inference by calculating the posterior distributions over

the factors F,H and D conditioned on observed tensor Y . For notational clarity, we

introduce θ = (AF ,BF ,AH ,BH ,AD,BD) as the list of model hyper-parameters. The
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1: function RandInit(S,AF ,BF ,AH ,BH ,AD,BD)

// Sample factor F from Gamma(AF ,BF )

2: for all i ∈ [1, I], r ∈ [1, R] do

3: fi,r ∼ G
(
fi,r; a

f
i,r,

bfi,r

afi,r

)
// Sample factor H from Gamma(AH ,BH)

4: for all k ∈ [1, K], r ∈ [1, R] do

5: hj,r ∼ G
(
hj,r; a

h
j,r,

bhj,r
ahj,r

)
// Sample factor D from Gamma(AD,BD)

6: for all j ∈ [1, J ], r ∈ [1, R] do

7: dk,r ∼ G
(
dk,r; a

d
k,r,

bdk,r
adk,r

)
// Sample latent tensor W from Poisson distributions

8: for all ν ∈ [1, I + 1], i ∈ [1, I], j ∈ [1, J ], k ∈ [1, K], r ∈ [1, R] do

9: wν,i,j,k,r ∼ PO(wν,i,j,k,r; sν,ifi,rhj,rdk,r)

10: return {F, H, D, W}

11: function GenerateData(S,AF ,BF ,AH ,BH ,AD,BD)

// Randomly initialize factors and latent tensor

12: {F,H,D,W} ← RandInit(S,AF ,BF ,AH ,BH ,AD,BD)

// Generate original tensor X
13: for all i ∈ [1, I], j ∈ [1, J ], k ∈ [1, K] do

14: xi,j,k =
∑

ν,r wν,i,j,k,r

// Generate sampled tensor Y
15: for all ν ∈ [1, I + 1], j ∈ [1, J ], k ∈ [1, K] do

16: yν,j,k =
∑

i,r wν,i,j,k,r

17: return {F, H, D, W , X , Y}

Figure 2.5. ThinNTF generative model.
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log-likelihood observing Y under the model parameters θ is written as

log p(Y|θ,S) = log

∫
F,H,D

dF dH dD
∑
W

p(Y ,W ,F,H,D|θ,S) (2.27)

This log-likelihood is intractable due to the integration over the latent factors, but it

is lower bounded as

log p(Y|θ,S) ≤ Lθ (2.28)

= 〈log p(Y ,W ,F,H,D|θ,S)〉q(W,F,H,D) +Hq(W,F,H,D) (2.29)

where q is an auxiliary joint distribution of latent factors. This bound is tight when

q(W ,F,H,D) = p(W ,F,H,D|Y , θ,S). However, this is also intractable to calculate.

Instead, we use a variational approximation [31] for q such that

q(W) ∝ exp
(
〈log p(Y ,W ,F,H,D|θ)〉q(F,H,D)

)
(2.30)

q(F) ∝ exp
(
〈log p(Y ,W ,F,H,D|θ)〉q(W,H,D)

)
(2.31)

q(H) ∝ exp (〈log p(Y ,W ,F,H,D|θ)〉q(W ,F,D)) (2.32)

q(D) ∝ exp
(
〈log p(Y ,W ,F,H,D|θ)〉q(W,F,H)

)
(2.33)

where we iteratively update the posterior distribution of each factor by calculating the

expectation of the logarithm of the full joint likelihood p(Y ,W ,F,H,D) under the

posteriors of all other latent factors.

2.4.3. Update Equations

Here we provide the update equations for q(W) and q(F). The updates of q(H)

and q(D) can be easily deduced from the update equations of q(F). The full joint
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likelihood whose expectation will be calculated at each step is

Jθ = log p(Y ,W ,F,H,D|θ) (2.34)

= log p(Y|W) + log p(W|F,H,D)

+ log p(F|θ) + log p(H|θ) + log p(D|θ) (2.35)

where Y|W is a degenerate distribution (δ()) to make sure the summation of
∑

i,rW
equals Y . By inserting the necessary Poisson and Gamma distributions given in the

generative model into the Equation 2.35 we get the following expression

Jθ =
∑
ν,j,k

mν,j,k log δ

(
yν,j,k −

∑
i,r

wν,i,j,k,r

)

+
∑
i,r

∑
ν,j,k

mν,j,k

(
wν,i,j,k,r log sν,ifi,rhj,rdk,r

− sν,ifi,rhj,rdk,r − log Γ(wν,i,j,k,r + 1)
)

+
∑
i,r

(
(afi,r − 1) log fi,r − fi,r

afi,r

bfi,r
− afi,r log

bfi,r

afi,r
− log Γ(afi,r)

)

+
∑
j,r

(
(ahj,r − 1) log hj,r − hj,r

ahj,r
bhj,r
− ahj,r log

bhj,r
ahj,r
− log Γ(ahj,r)

)

+
∑
k,r

(
(adk,r − 1) log dk,r − dk,r

adk,r
bdk,r
− adk,r log

bdk,r
adk,r
− log Γ(adk,r)

)
(2.36)

Considering the terms in the log-likelihood expression in Equation 2.36, that only

includes wν,i,j,k,r, we find that

q(wv,:,j,k,:) ∝ exp

(
mν,j,k log δ

(
yν,j,k −

∑
i,r

wν,i,j,k,r

)

+
∑
i,r

mν,j,k

(
wν,i,j,k,r log sν,ifi,rhj,rdk,r − log Γ(wν,i,j,k,r + 1)

))

∝ Multinomial(wν,j,k,:, xi,j,k, pν,i,j,k,r)
mν,j,k (2.37)
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where, wν,j,k,:,: becomes multinomial distributed. The expectation of W is calculated

as

pν,i,j,k,r =
exp (sν,i + 〈log fi,r〉+ 〈log hj,r〉+ 〈log dk,r〉)∑
i,r exp (sν,i + 〈log fi,r〉+ 〈log hj,r〉+ 〈log dk,r〉)

(2.38)

〈wν,i,j,k,r〉 = yν,j,kpν,i,j,k,r (2.39)

Similarly, considering the terms in log-likelihood Equation 2.36 that only includes fi,r,

we find that

q(fi,r) ∝
(∑
ν,j,k

mν,j,k〈wν,i,j,k,r〉+ afi,r − 1

)
log fi,r

−
(∑
ν,j,k

mν,j,ksν,i〈hj,r〉〈dk,r〉+
afi,r

bfi,r

)
fi,r (2.40)

∝ Gamma(fi,r;α
f
i,r, β

f
i,r) (2.41)

where fi,r becomes Gamma distributed with shape and scale parameters

αfi,r = afi,r +
∑
ν,j,k

mν,j,k〈wν,i,j,k,r〉 (2.42)

βfi,r =

(
afi,r

bfi,r
+
∑
ν,j,k

mν,j,ksν,i〈hj,r〉〈dk,r〉
)−1

(2.43)

We calculate the expectation of fi,r and the logarithm of fi,r as

〈fi,r〉 = αfi,rβ
f
i,r (2.44)

〈log fi,r〉 = Ψ(αfi,r) + log βfi,r (2.45)

The variational Bayes algorithm that uses the above equations is given in Fig-

ure 2.6. The calculation of the lower bound is given in Appendix 1. The exact deriva-

tions of all equations can be found in [15].
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1: function ThinNTF VB(Y , S, AF ,BF ,AH ,BH ,AD,BD)

// Randomly initialize factors and latent tensor

2: {F,H,D,W} ← RandInit(S,AF ,BF ,AH ,BH ,AD,BD)

3: repeat

4: Calculate αfi,r, β
f
i,r and 〈fi,r〉 as in Equations 2.42, 2.43 and 2.44.

5: Calculate αhj,r, β
h
k,r and 〈hj,r〉 similarly.

6: Calculate αdk,r, β
d
k,r and 〈dk,r〉 similarly.

7: Calculate 〈log fi,r〉 as in Equation 2.45.

8: Calculate 〈log fi,r〉 similarly.

9: Calculate 〈log fi,r〉 similarly.

10: Calculate 〈wν,i,j,k,r〉 as in Equation 2.39.

11: Calculate lower bound

12: until Max iterations are reached or lower bound converged

13: return F, H, D, X

Figure 2.6. Variational Bayes algorithm.

2.4.4. Computational Complexity

The nonnegative tensor factorization is an NP-hard problem [32]. The variational

Bayes algorithm we introduced in Figure 2.6 is an iterative solution that converges to

a local maximum solution. The complexity of each iteration is determined by the

leading term, which is the Equation 2.39. In general, calculating a ThinNTF model

with R components for a κ dimensional tensor with all dimensions of length N has

O(κN (κ+1)R) complexity for a single iteration.
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3. NETWORK SECURITY: DDOS ATTACK DETECTION

VoIP is the technology of carrying voice and multimedia communications through

the IP networks. Due to its multimedia support and low infrastructure cost VoIP sys-

tems are worldwide taking over circuit-switched telephone networks. With the intro-

duction of 5G, the VoIP is predicted to become the dominant methodology for voice

and multimedia communications.

The VoIP systems transfer voice and multimedia data between communicating

parties through the packet-switched IP networks based on data transfer protocols, such

as the RTP. In addition, they require session-level signaling protocols for managing

their communication sessions. Considering its lightweight nature, simplicity and ease

of implementation, the SIP [9] is one of the most popular open standard signaling pro-

tocols designed for VoIP. SIP provides signaling functions necessary to register clients,

check their locations and availability, exchange information on their data transmission

capabilities, and provide handshakes necessary for connection setups.

Despite all their attractive features, the downside is that VoIP systems are more

vulnerable to security threats compared to their circuit switched predecessors. There

are two basic sources of security threats for VoIP systems. Firstly, VoIP systems are af-

fected by all the lower protocol layer threats, e.g., the host of IP layer threats. Secondly,

being an open standards protocol, suffers from many protocols-specific vulnerabilities,

in other words, they are prone to security threats specifically designed to exploit the

vulnerabilities of the underlying signaling protocols [33], [10]. These protocol-specific

attacks are usually not classified as network attacks by the conventional network-level

security systems. Therefore, VoIP systems need extra security mechanisms for detect-

ing and preventing VoIP specific attacks.

One of the most frequently observed type of cyber-attack is the DDoS flooding

attack [11], which is typically realized by sending a vast amount of network protocol

messages to a victim. These types of attacks aim to exploit the weaknesses in the SIP
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protocol or faults due to some poor implementation. An example of such DDoS flooding

attack is the INVITE attack. In this case, the attacker tries to set up communication

with many SIP users by sending INVITE requests to the SIP proxy server. The server,

which maintains a table for each SIP session, holds an entry for each INVITE request

and awaits response from the call receiver for a fixed amount of time. Eventually, the

server reaches its memory capacity while trying to keep track of an excessive amount

of connections. Another typical DDoS attack is the SYN-flooding [34], where a target

network proxy is forced to maintain a barrage of TCP sessions, and eventually becomes

unresponsive due to over-utilization of its resources. Thus DDoS flooding attacks aim

to cripple a target system by overusing and eventually depleting its resources, such as

bandwidth, CPU or memory, and making it unable to respond to the requests of its

legitimate subscribers.

DDoS attacks can have negative impact on business since a target system cannot

provide services to its customers during attacks. The downtime of servers creates

revenue loss and reputation damage, which in turn leads to loss of revenue as well, for

service providers. Furthermore, the productivity of workforce is reduced as employees

cannot use affected systems for operations. Among victims of DDoS attacks, well-

known companies can be found. For instance, GitHub was under attack for six days

[35]. Another victim of such attacks was BBC where an online DDoS tool named

BangStresser, which delivers attacks as a service, might be used [36].

A recent survey reports an increase in DDoS attacks, arguing that it might be

a possible result of the proliferation of cheap and easy-to-launch attack tools [37].

According to another report [38], the number of attacks decreases whist the average

peak attack size increases. For attacks targeting SIP based VoIP systems, there has

been an upward trend as well [39]. Defense strategies for these common DDoS attacks

have been studied extensively [40, 41].

Many network security systems have been developed for the detection of SIP-

based DDoS attacks [42]. The majority of these systems uses supervised methods, such

as thresholding [43] and rule-based pattern matching, as in [44, 45]. The supervised
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methods require a training phase for learning patterns for each type of attack and for

building a dictionary of known attacks. Attack detection is based on finding matching

patterns between the current network state with one of the known attack patterns in

the training set. However, when an unprecedented attack occurs, a supervised system

can easily fail to detect it, since the pattern of the new attack will possibly be different

than all the learned attack patterns. It becomes imperative then to re-train the system

by an extended training data set which includes samples from the new attack traffic.

In this paper, we focus on the detection of SIP-specific DDoS flooding attacks

[10, 12]. We aim therefore to develop a more robust and generalizable DDoS monitor

based on anomaly detection principles. Anomaly detection [46] is an unsupervised

methodology where the system is programmed to recognize significant deviations from

its learned data patterns, and mark them as anomalous events. In our case, anomalous

events are interpreted and marked, subject to further analysis, as security threats.

We assume that the SIP server state has a stationary behavior under the so-called

normal, ”non-attack” SIP traffic, but that these statistics will change noticeably under

a DDoS flooding attack. To sense these attacks, we have designed our feature vectors

as consisting of a combination of incoming and outgoing SIP message counts plus the

vector of resource usage measurements of the SIP proxy software. Our DDoS monitor

is based on the Bayesian change point model [21] which models the normal SIP server

behavior and infers changes that are possibly due to the DDoS attacks.

Collecting real-world VoIP network traces and annotating them without violating

the privacy of the users is a tedious task. Therefore, for the proof of our concept, we

conducted our experiments in a simulated environment. We developed a real-time SIP

network simulator system, which models a social network for a group of users. The

simulator generates actual voice conversation calls by setting up SIP sessions between

users through a SIP proxy server. Our DDoS detection mechanism is deployed next to

the SIP proxy server, so that it does not track RTP traffic between users. Therefore,

the simulated SIP sessions are silent communications, i.e., actual data transfer via RTP

is not generated. We generate DDoS attacks with the help of a commercial network

vulnerability scanning tool Nova-VSpy [47], simultaneously with the VoIP simulation.
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3.1. Related Work

There are comprehensive literature surveys on vulnerabilities of the SIP protocol

[33], VoIP security research [10], DoS attacks targeting SIP networks [12] and security

systems to counter SIP-based DoS attacks [42]. One of the earliest and simplest at-

tempts to prevent single-source DoS flooding attacks in SIP systems was proposed by

[43] where a rate limiter is deployed at the server to limit per-host SIP traffic. More

elaborate methods were proposed to detect both single and distributed DoS attacks

employing rule-based schemes, statistical methods, anomaly detection approaches, and

machine learning tools.

Rule-based methods maintain a list of rules, or protocol finite state machines,

and check the current server state against consistent patterns described in the rule

set [44, 48–50]. [51] propose a large scale SIP firewall solution by combining several

rule-based filters and attack mitigation mechanisms. While such rule-based systems

are useful in detecting DoS attacks, they require carefully designed and perpetually

updated rule books, and fine-tuned thresholds. Since these systems can easily miss a

novel attack whose descriptive rule has not yet been learned, they need to be reinforced

with additional tools based on statistical approaches.

Machine learning methods were proposed as an alternative to rule-based and

statistical methods for DDoS flooding detection, including support vector machines

[52], evolutionary algorithms [53], naive Bayes and decision trees [54]. [55], [56] give a

comparison of 5 supervised classifiers and conclude that these methods provide good

results on low-rate DoS attacks with little classification time overhead. Inherently, the

success of supervised algorithms depends on the quality of the data set used during

their training. For example in [56], authors employ different training sets for different

basic scenarios. Obtaining such high quality training data can be difficult in a real

world implementation of a supervised system. In contrast, we propose an unsupervised

system, with an optional training phase to optimize its parameters. We show that

setting those parameters empirically with the help of domain expertise is sufficient.
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[57] were the first to propose applying change point detection in SIP networks.

They present a cumulative sum (CUMSUM) algorithm in order to detect INVITE

flooding. Later, [58] have developed a parametric version of this algorithm. [59] pro-

posed to use additional features to enhance the accuracy of CUMSUM. [60] propose

bloom filters to efficiently track incomplete SIP sessions and to raise an alarm if these

exceed a certain threshold. The major disadvantage of these algorithms is that one

needs to engineer different sets of features in order to detect different types of flooding

attacks.

The works closest to our approach are the distance-based anomaly detection

methods [61, 62], where a distance metric is used to measure the dissimilarity between

the distributions of normal and observed traffic features. If the distance between the

normal and observed distributions is above a threshold, an alarm is generated. Simi-

lar to our approach, these methods can be used to detect any type of network attack

provided that full SIP message histogram is included in the feature set. Our method

extends and generalizes these anomaly detection methods by introducing Bayesian

framework, which models the SIP server state with a set of features that incorpo-

rates both network traffic and SIP server resource usage data. In our method, the

attack decision relies on a robust posterior probability calculation rather than simple

thresholding. To our best knowledge, this work presents the first Bayesian framework

tailored specifically to model a SIP server in order to detect SIP anomalies, hence fills

an important gap in the literature.

3.2. SIP Network Traffic

3.2.1. SIP Terminology

SIP is designed to initiate, modify and terminate communication sessions among

agents. Four general types of SIP entities are defined in RFC 3261 [9] : user agents,

proxy servers, redirect servers and registrars. A user agent (UA) is the endpoint entity

that generate and receive SIP messages. In a typical SIP session, UA’s communicate

with by sending request and response messages to each other. The registrar is respon-
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sible for registering the UA’s, and storing their location information. The registered

UA’s communicate with each other through the proxy servers. The proxy servers de-

livers the request and response messages between UA’s. Finally, the redirect servers

allow proxy servers to communicate with other servers from external domains.

The SIP messages are basically divided into two categories: SIP requests and

SIP responses. Each SIP request sent by a UA is answered by a corresponding SIP

response. For examples, a UA can make a REGISTER request to the registrar in order

to get online, make an INVITE request to another UA to start a call, or make a BYE

request to terminate an ongoing conversation. A SIP response message generated for a

request can be from one of the 6 SIP response categories: 1xx-provisional, 2xx-success,

3xx-redirection, 4xx-client, 5xx-server error or 6xx-global failure. For example, a UA

may response with a 200-OK message for accepting an incoming request.

3.2.2. An Example Flow

An illustrative example of SIP message communication is given in Figure 3.1.

It shows the flow of exchanged messages between a server and two users during a

normal call. In this scenario, Alice initiates a call to Bob by sending an INVITE

packet to the SIP Server. After authentication, the SIP server forwards this request to

Bob. Similarly, the response of Bob, in this case ACK packet showing that the call is

accepted, is transmitted to Alice through the SIP server. At the end, BYE messages

terminate the conversation between Alice and Bob.

Once a SIP session is established, two endpoints start exchanging multimedia

data such as audio conversations, video streams, etc. Recall that SIP, being a signaling

protocol, is not involved in the multimedia data exchange between agents. Handshake

on the kind, encoding, address and ports to be used for transfer and other details

regarding the data exchange is usually achieved using Session Description Protocol

(SDP)[63]. Additionally, real-time media delivery relies on RTP[64].
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Alice SIP Server Bob

RTP Media

INVITE

407 Unauthorized

INVITE
INVITE

180 Ringing
180 Ringing

200 OK
200 OK

ACK
ACK

BYE
BYE

200 OK
200 OK

Figure 3.1. A call scenario in SIP network.

Real-world SIP packet exchange scenarios usually involve more than two servers

and two agents. The above call setup case is illustrative but simplistic. For example,

it does not specify how the server reaches out the caller. A setup in which Alice and

Bob are not registered to the same server would require a location server and the re-

transmission of the INVITE message. Similarly, other features supported by SIP -

such as call transfer, call park, conference - lead to distinct call flows. In summary,

SIP message traffic data can be quite complex.

3.2.3. DDoS Attacks in SIP Networks

DDoS flooding attacks could rapidly affect network traffic characteristics and

cause service degradation. Their impact is contingent on the attack parameters and

differs substantially from one attack to another. A DDoS detection method is expected

to signal an attack practically independent of its configuration. Therefore, DDoS de-

tector must be robust, with high detection rate and low probability of false alarm under

a wide range of realistic network conditions.

Mirkovic et al. [11] classified DDoS attack mechanisms on the basis of its impact

on the victim. First, one would expect an increase in the incoming network traffic -

even beyond the server’s bandwidth - as a result of a flooding attack. The severity of

this increase, however, is directly related to the resources the attacker possesses and
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cannot be forecast beforehand. Second, the flooding rate does not necessarily stay the

same throughout the attack. The authors also note that slow rate boosts, i.e. creeping

attacks typically results in detection latency.

Another significant parameter is the SIP packet type used in the flooding. Typi-

cal DDoS scenarios consider a SIP server being flooded by one type of packet such as

INVITE, SUBSCRIBE, or BYE. Nevertheless, DDoS attacks can also be performed us-

ing a judiciously selected mixture of SIP requests. Thus, intelligently mounted schemes

such as slow boost attacks, multi-SIP packet attacks, multi-agent attacks that try to

obfuscate their synchronism by time jittering require more advanced defense mecha-

nisms and concomitantly more computation time and power. On the other hand, the

DDoS shield must have low latency in order to timely initiate attack prevention.

3.2.4. DDoS detection via Multiple Change Point Model

The first step in Bayesian approach is to provide a probabilistic generative model

for the observations collected from the system. However, before going into the math-

ematical details of our generative model, it’s important to provide a clear definition

of the observations. As we continuously monitor our SIP server, we collect real time

statistics for a period of ∆t and compile an observation vector vt as a summary of

statistics collected during that period. The vt is an N dimensional vector composed of

number of SIP request and response messages, number of server log messages, server

statistics such as number of TCP connections observed during the period, together

with the CPU and memory usage measured at the end. The complete list of the fea-

tures collected from the system is given in Table 3.2 and explained in further detail in

Section 3.4.

Our DDoS detection system includes a monitoring unit for observing and collect-

ing network traffic data as well as SIP server activities. The monitoring unit collects

and compiles network and server statistics into an observation vector, i.e., a feature

vector, vt at each ∼ ∆t (1 second) time interval, as the resume of events that have

occurred in the SIP server during that last observation interval. For each such feature
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vector, the model infers whether the observation vector is generated by the previous

regime, that is st = 0 and ht = ht−1, or whether the server state has jumped to a new

regime, which means st = 1 and ht ∼ Ω(ht;w).

We described a multiple change point model with arbitrary hidden state distri-

bution Θ and observation model Ω, with the assumption that Θ is the conjugate prior

of Ω for computational simplicity. Here we assign actual probability distributions for

the hidden state and observation models.

We let the observation model Θbe a coupled distribution of multinomial and

Poisson distributions, for modeling both the ratios and magnitudes of selected features

from the observations. Without loss of generality, we assume that the features whose

ratios will be modeled is stored in the first M positions of the observation vector v,

denoted as v1:M and the remaining N − M positions are filled with features whose

magnitudes are modeled. Then, we can write the observation model as

Θ(v) =M(v1:M ; π)×
N∏

i=M+1

P(vi;λi) (3.1)

where Multinomial and Poisson distributions are defined as

M(x; π) =
Γ(
∑

i xi + 1)∏
i Γ(xi + 1)

∏
i

πxii (3.2)

P(x;λ) =
λxe−λ

Γ(x+ 1)
(3.3)

In this setup, the hidden states h = (π;λ) are the respective parameters for the

Multinomial and Poisson distributions. The prior distribution for our state vector h is

the product of conjugate priors of these distributions, namely Dirichlet and Gamma.

Ω(π, λ) = Dir(π;α)×
N∏

i=M+1

G(λi; ai, bi) (3.4)
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The Dirichlet and Gamma distributions are given as

Dir(π;α) =
Γ
(∑M

i=1 αk

)
∑M

i=1 Γ(αi)

M∏
i=1

παi−1i (3.5)

G(λi; ai, bi) =
bi
ai

Γ(ai)
λai−1e−biλ (3.6)

where α is an M dimensional vector and a and b are N dimensional vectors such

that each {ai, bi} is a hyper-parameter for a Gamma distribution. Hence, the hyper-

parameters w of the model is the set w = (α, a, b). The complete set of model variables

and parameters are given in Table 2.1.

We conducted experiments to find the best observation model by enumerating all

possible input feature combinations to the coupled observation model and comparing

their inference results. The details of this experiment is given in Section 3.4.

3.2.5. Implementation Details and Complexity Analysis

The inference for the change point model requires calculating the α(st, ht) and

β(st, ht) message at the end of each time period. For discrete distributions, the memory

required for storing α messages is twice the size of the discrete domain. We simply

need to store a table of probabilities for each α(st = i, ht = j), such that i ∈ {0, 1} and

j ∈ Dom(Ω) and update this table according to the Equation 2.17. The same is true

for the β messages.

When the hidden state distribution has continuous domain, we can no longer

have to express the α and β messages as mixtures Ω potentials. An Ω potential is

described as

φ(π, λ) = exp(l)Ω(π, λ; z, a, b) (3.7)

We use the quadruple (z, a, b, l) to denote an Ω potential, where l is the logarithm of

the normalizing constant.
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α(ht, st = 0)

α(ht, st = 1)

t = 0 t = 1 t = 2 t = 3

Figure 3.2. Expansion in the forward variable messages.

At each time step, the switching variable attains one of the two values, therefore,

an additional Ω potential is added to the α and β messages to indicate the change

potential. At each time t, the α(ht, st = 1) is a single potential and α(ht, st = 0) is a

mixture of t potentials transferred from the previous state. This linear growth of the

α messages for the forward recursion is illustrated in Figure 3.2.

This linear growth is not sustainable for online continuous tracking of the server

state. One has to limit, then, the number of mixture potentials in the forward message

by K, indicating the maximum number of components. Once a message reaches the

maximum number of allowed components, at each subsequent step, the component

with the minimum normalizing constant is pruned. Therefore, in the worst case, an α

message will have K components and a β message L components, since we had decided

to run the backward-recursion for only L steps. It follows then that, during filtering, at

most K observation updates are required and during the smoothing operations, where

we multiply an α message with a β message, K × L multiplications are performed.

Therefore, the number of operations at any time instance is O(KL). We empirically

set K = 100, and the lag parameter L = 5. In our experiment setup, using more than

100 potentials had no significant contribution, and using a lag value of 5 significantly

increased the accuracy of the system and gave as good performance as using longer lag

values.

3.3. Real Time Analysis

Figure 3.3 presents the offline version of the main detection loop of our algorithm.

Her offline is in the sense that the whole data set is available at the beginning of the
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Table 3.1. Average run time of the BCPM algorithm.

Routine Time (µs)

PREDICT 35

UPDATE 648

BACKWARD FILTER 17

SMOOTH 1400

COMPUTE CPP 7

Total 2107

algorithm. In the online version, the single loop in the algorithm will be run exactly

once after each observation period. We time the individual functions of the algorithm

whose descriptions are also given in Appendix C. The actual run time of the algorithm

depends on the number of features used, the value of the lag L, and maximum number

of components K. In this measurement we set L = 5, K = 100 and used all available

features. The experiment is run offline, on an INTEL i7 CPU @2.7 GHz on a data

sequence of 2000 observations. We can see from Table 3.1 that one iteration of the

main loop executes in 2 ms (2107 µs) on the average, which allows online deployment

of our algorithm.

3.3.1. Parameter Learning

During the inference stage, we had assumed that the hyper-parameters of our

multiple change point model, namely the reset probability π and the latent state prior

parameters w were given. In practice, these parameters must be set to appropriate

values for accurate change point estimation. For a small number of parameters, a grid

search method can give good parameter estimates; however for large models, i.e., for

large dimensional w, the search method is not applicable. We have used a maximum

likelihood approach to find the best hyper-parameters as a function of observations.
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1: function BCPM(π, w, v1:T ,LAG,THRESHOLD)

2: alpha ← [ ]

3: for t = 1 . . . T do

4: alpha p = Predict(alpha, π, w)

5: alpha = Update(alpha p, vt)

6: if LAG > 0 then

7: beta = BackwardFilter(π,w, vt+1−LAG:t)

8: gamma = Smooth(alpha, beta)

9: cpp = ComputeCPP (gamma, len(beta))

10: else

11: cpp = ComputeCPP (alpha, 1)

12: if cpp > THRESHOLD then

13: Alarm()

Figure 3.3. Bayesian change point detection algorithm.

Given observations v1:T , we maximize the log likelihood

Lπ,w(v1:T ) ≡ log p(v1:T |π,w) (3.8)

= log
∑
s1:T

∫
h0:T

p(s1:T , h0:T , v1:T , |π,w)dh0:T (3.9)

Since this log likelihood expression is intractable due to the summation over latent

parameters, we employ an iterative EM scheme to find the {π,w} estimates. By

Jensen’s inequality, the log likelihood is lower bounded as

Lπ,w(v1:T ) ≥ 〈log p(s1:T , h0:T , v1:T , |π,w)〉q(z)

− 〈log q(x)〉q(z) (3.10)
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This bound is tight for q(z) = p(s1:T , h0:T |v1:T , π, w). The log-likelihood can be maxi-

mized iteratively calculating the following equations:

q(z)new = p(s1:T , h0:T |v1:T , πold, wold) (3.11)

(πnew, wnew) = arg max
π,w

〈
p(s1:T , h0:T |v1:T , πold, wold)

〉
q(z)new (3.12)

The detailed derivations of the EM algorithm for Dirichlet-Multinomial and Gamma-

Poisson change point potentials are given in Equation B.

3.4. Experimental Setup

3.4.1. Data Generation

Our data generator, detailed in [19], is made up of four distinct modules: (1)

a SIP server, (2) a traffic simulator, (3) a DDoS attack generator and (4) a network

traffic monitor. As a registrar and SIP proxy server, we have used an Asterisk-based

PBX software named Trixbox [65]. To mimic the normal message traffic on a SIP

server, we have built Boun-Sim [19], a probabilistic SIP network simulation tool that

initiates calls between a number of SIP endpoint entities in real-time. Concurrently

with normal traffic simulation, a rich variety of DDoS attacks were generated by a

commercial vulnerability scanning tool, called NOVA V-Spy [47]. The fourth and

final component in the setup is the network monitor, a module that tracks the server,

extracts and delivers features to the change point monitor.

Our simulation tool is driven by a probabilistic generative model to recreate typ-

ical user behaviors, such as making calls, answering, rejecting or ignoring an incoming

call, and holding on an ongoing call. User actions generated by the Simulator are real-

ized as actual SIP communications, where SIP messages are exchanged between UA’s

and Trixbox. Simulator omits the RTP messages carrying the actual conversational

data between users, since these do not pass through the SIP server, and are not relevant

to the outcome of the simulation. Details of the simulator is presented in Appendix D.
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3.4.2. Data Traces

We have conducted our experiments on simulated data sets adjusted to four

different network traffic and attack intensity scenarios. The generated network and

attack message streams are controlled by two bi-level variables, one for network, the

other for attacks, and each can be either low or high. To set the network traffic

intensity, we tune the call rate parameters of the users since phone calls constitute the

main source of the network traffic. To set the flood rate, we change the number of

network packets delivered from V-Spy to the server per second. In the sequel, we refer

to these data sets as LOW-LOW, LOW-HIGH, HIGH-LOW and HIGH-HIGH, where

the two adjectives qualify, in order, the network traffic intensity and the flood rate.

All simulations are realized by assuming 500 active users registered to the server.

Each data set contains 40 random DDoS attacks. The attacks last for about 20 seconds.

and there is an interval of at least 25 seconds between two consecutive attacks; this

results in a simulation sequence of around half an hour duration. IP addresses and the

user id’s of attackers were randomly chosen. The four parameters that modulate the

attacks are listed below:

• Attack Type: We flood the server with five different SIP request packets, namely

REGISTER, INVITE, OPTIONS, CANCEL and BYE requests. Each type of

attack generates different types of changes in SIP server state.

• Transport Protocol: Since SIP operates independent of the transport protocol,

we generated attacks over both TCP and UDP.

• Fluctuation: Nova V-Spy can generate floods with both constant and fluctuating

rates. In half of our experiments, we generated floods with fluctuating rates.

• Content Size: Nova V-Spy can optionally insert dummy strings to the end of SIP

messages, which is relevant to attack detection task since it affects the bandwidth

consumption.
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3.4.3. Data Features

Table 3.2 shows the features monitored for DDoS attack detection. We can divide

the feature space roughly into five categories, the first two categories collected from

server’s network connection side, and the last three categories collected from server’s

resource management side. The first two categories consist of a variety the packet

types in a SIP network: SIP Requests and SIP Responses ; these packet types have

different well-defined roles [9]. Notice that the actual features used in the detection

model are the count statistics or histogram of these message type occurrences within an

observation interval (e.g., 1 sec). The underlying assumption here is that a significant

change in the pattern of SIP message histograms is a direct reflection of messaging

traffic behavior, indicating possibly an anomaly i.e., an attack.

The other three feature categories are entitled as Resource Usage, Asterisk Stats

and Asterisk Logs. The first of these consists of the pair of CPU usage and memory

usage of the virtual machine in which Trixbox is installed. The second one is made

up of features that reflect the load created by Asterisk. The last category counts

the keywords in the log files generated by Asterisk. We conjecture that all these

features would diverge from their their average values in the case of an attack and

hence potentially qualify as anomaly indicators.

3.4.4. Evaluation

We measure the performance of our DDoS monitor on the basis of the F1-score,

which is defined as the harmonic mean of the precision (P) and recall (R) measures. The

F1-score gets closer to 1 when both precision and recall are close to 1, and indicating

good performance; on the other hand, the F1-score diminishes to 0, when the system

performs poorly either due to low precision or low recall or both.
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Table 3.2. Features collected at the SIP server.

Category Feature Description

SIP Requests

REGISTER Num. of ”register” requests
INVITE Num. of ”invite” requests
SUBSCRIBE Num. of ”subscription” requests
NOTIFY Num. of ”notification” requests
OPTIONS Num. of ”options” requests
ACK Num. of ”acknowledgment” requests
BYE Num. of ”bye” requests
CANCEL Num. of ”cancellation” requests
PRACK Num. of ”provisional acknowledgement” requests
PUBLISH Num. of ”event publish” requests
INFO Num. of ”information update” requests
REFER Num. of ”call transfer” requests
MESSAGE Num. of ”instant message” requests
UPDATE Num. of ”session state update” requests

SIP Responses

100 Num. of trying responses
180 Num. of ”ringing” responses
183 Num. of ”session progress” responses
200 Num. of ”success” responses
400 Num. of ”bad request” errors
401 Num. of ”unauthorized” errors
403 Num. of ”forbidden” errors
404 Num. of ”not found” errors
405 Num. of ”not allowed” errors
481 Num. of ”dialog does not exist” errors
486 Num. of ”busy” errors
487 Num. of ”request terminated” errors
500 Num. of ”server internal” errors
603 Num. of ”decline” errors

Resource Usage
TOT CPU Percentage of total CPU usage
TOT MEM Percentage of total virtual memory usage

Asterisk Stats

A CPU Percentage of CPU used by Asterisk
MEM Percentage of memory utilized by Asterisk
FH Num. of Asterisk file descriptors
THREADS Num. of Asterisk threads
TCP CONN Num. of Asterisk TCP connections
UDP CONN Num. of Asterisk UDP connections

Asterisk Logs

A WARNING Num. of Asterisk ”warning” log messages
NOTICE Num. of Asterisk ”notice” log messages
VERBOSE Num. of Asterisk ”verbose” log messages
ERROR Num. of Asterisk ”error” log messages
DEBUG Num. of Asterisk ”debug” log messages
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Figure 3.4. A sample histogram of features in the BCPM data.

F1-score = 2× P ×R
P +R

(3.13)

Precision (P) =
# true alarms

# alarms
=

Ta
Ta + Fa

(3.14)

Recall (R) =
# true alarms

# ground truth
=
Ta
Ga

(3.15)

where Ta and Fa are the true alarms (true positive) and false alarms (false positive),

and Ga is the true number of change points. An alarm gt means signaling of a change

event, and it is triggered whenever the change point probability in Eq. 14 at time t

exceeds a certain threshold λa.
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gt =

 0 if p(st|v1:t+L) > λa

1 otherwise
(3.16)

The true and false alarms are calculated by matching the alarms g1:T , with the ground

truth of change events ĝ1:T . In the design of our experiment, the time stamps for the

beginning of attacks are manually set, but the actual effect of an attack is observed

with some delay due to the combined emergent behavior of the SIP server, simulation

and the vulnerability scanning tool Nova V-Spy. Therefore we set the ground truths

as attack time stamps which are initially set and adjust them manually afterwards.

We declare a correct detection if the alarm gi is within a tolerance vicinity of the

corresponding ground truth event ĝj, that’s |i− j| < w, and increment the number of

true alarms. Alarms not matched with any ground truth are regarded as false positives.

3.5. Results

We evaluated the performance of our proposed DDoS monitor with model simu-

lation data generated by various input feature combinations. We have tested exhaus-

tively each of the 5 feature categories by including them or not into the into the, as

appropriate, Poisson and Multinomial observation models. This resulted in a total of

35 − 1 = 242 observation models.

The hyper-parameters for each observation model need to be adjusted for getting

best F-scores. For this purpose, we first did a grid search inside the parameter space.

Since grid search is feasible for only a limited number of parameters, we used shared

parameters for the priors of the Dirichlet and Gamma distributions. In this setup, we

assign a single parameter α for the Dirichlet priors by setting wD = [α, α, . . . , α] and a

single parameter a for all Gamma priors. We also set the scale parameter of Gamma

priors, b = 1. The search space is given in Table 3.3.
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Table 3.3. Grid search space for BCPM parameters.

Parameter Search values

α 1, 10, 100

a 1, 10, 100

π 10−2, 10−4, 10−8

The configurations with the best average F1-scores on 4 different traces after the

grid search are reported in Table 3.4. It’s has been observed that the SIP Requests

contribute to the feature set for all cases, hence they seem to be the most important

features collected from data. Secondly, the Resource Usage features helps improving

the accuracy of our system. We also observe that the Dirichlet-Multinomial (DM)

model, which only tracks the ratios of the features usually gives better accuracy than

the Poisson-Gamma model, which tracks the magnitude of the tracked signals. We

observe that the accuracy of change estimations increase provided we allow deferred

change point decision by employing online smoothing with a lag value of 5 seconds, as

shown in Table 3.5.



Table 3.4. BCPM filtering results.

Configurations F-Scores

SIP

Requests

SIP

Responses

Resource

Usage

Asterisk

Stats

Asterisk

Logs
Low-Low Low-High High-Low High-High Average

DM DM 0.85 0.94 0.89 0.96 0.91

PG DM 0.91 0.94 0.79 0.98 0.90

PG 0.90 0.93 0.79 0.98 0.90

PG DM 0.87 0.92 0.79 0.98 0.89

PG DM 0.88 0.92 0.76 0.98 0.88

PG DM DM 0.87 0.93 0.75 0.98 0.88

DM 0.83 0.90 0.83 0.95 0.88

DM DM 0.83 0.93 0.74 0.98 0.87

DM DM DM 0.82 0.91 0.83 0.92 0.87

Average 0.86 0.93 0.80 0.97 0.89



Table 3.5. BCPM online smoothing results.

Configurations F-Scores

SIP

Requests

SIP

Responses

Resource

Usage

Asterisk

Stats

Asterisk

Logs
Low-Low Low-High High-Low High-High Average

DM PG DM 0.94 0.95 0.93 0.99 0.95

PG DM 0.95 0.96 0.91 0.99 0.95

PG DM 0.94 0.95 0.92 0.99 0.95

PG PG DM 0.94 0.96 0.91 0.99 0.95

PG DM DM 0.93 0.96 0.91 0.99 0.95

PG PG DM 0.94 0.95 0.89 0.99 0.94

PG DM PG 0.94 0.94 0.90 0.99 0.94

PG DM 0.93 0.94 0.90 0.99 0.94

PG PG 0.94 0.94 0.89 0.99 0.94

Average 0.94 0.95 0.91 0.99 0.95
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Since the grid search may not be feasible for bigger dimensional vectors, we have

also developed a maximum likelihood scheme for estimating the hyper-parameters. To

this effect, we have employed the EM algorithm described in Section 3.3.1 for the case

of models that attained the highest F-scores according to the grid search. We observe

that the maximization of the hyper-parameters with respect to their likelihood under

the proposed models does not necessarily maximize the F-scores; in other words, the

F-scores obtained after the maximum likelihood estimation of hyper-parameter values

are below the scores obtained by the grid search. We conjecture that this may be due

to the mismatch between the model and the actual data, and will be the subject of

future research.



Table 3.6. BCPM maximum likelihood parameter estimation results.

Configurations F-Scores

SIP

Requests

SIP

Responses

Resource

Usage

Asterisk

Stats

Asterisk

Logs
Low-Low Low-High High-Low High-High Average

DM PG DM 0.80 0.78 0.85 0.81 0.82

PG DM 0.89 0.87 0.86 0.91 0.89

PG DM 0.79 0.77 0.81 0.83 0.80

PG PG DM 0.84 0.87 0.86 0.89 0.87

PG PG DM 0.69 0.77 0.80 0.80 0.76

PG DM PG 0.65 0.80 0.81 0.79 0.75

PG DM 0.80 0.83 0.85 0.87 0.83

PG PG 0.68 0.81 0.82 0.83 0.78

Average 0.77 0.81 0.83 0.84 0.82
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4. NETWORK TRAFFIC SAMPLING AND

RECONSTRUCTION

Monitoring network statistics is crucial for the maintenance and infrastructure

planning for the network service providers. Statistical information about traffic pat-

terns help a service provider to characterize its network resource usage and user behav-

ior, infer future traffic demands, detect traffic/usage anomalies, and possibly provide

insights to improve the performance of the network [1]. However, the increasingly high

volume and speed of data over modern networks make measurement a difficult task,

and in most cases requires specialized hardware. Sampling [2] has became a viable

approach for extracting statistics from networks when data volume is huge.

In this work, we are concerned with one of the most important network statistics,

the flow length distribution (FLD). A network flow is defined as a set of IP packets with

the same signature, which we call the key, observed within a period of time. A flow key

is defined as the IP and port pairs of both source and destination nodes together with

level-3 protocol type such as TCP or UDP. A flow starts with the arrival of the first

packet with the specific key and terminated when the inter-packet timeout is exceeded.

The total number of packets in a flow is referred as the flow length and the length

distribution of a set of flows that are terminated in a time window is called flow length

distribution.

Passive measurement, where the measuring beacons inactively watch the traffic

passing by, is a popular method for collecting per flow information, and our method of

choice. In this method, network packets are processed at a measurement beacon, i.e

a router or a dedicated hardware box and the beacon keeps a look up table for flow

statistics. Whenever a packet arrives, its key is hashed and a lookup operation to the

table is performed. If there is already a flow entry with the same key, its statistics is

updated, otherwise a new flow is created. Once a flow is terminated, its statistics such

as the number of packets, total size in bytes, the arrival of the first and last packet are
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transferred to statistics collector.

The brute force direct counting method for maintaining a flow length histogram

requires processing every packet that pass through the measurement beacon. In order

to implement such a direct method, the network monitoring system needs to maintain

a very large table to hold all the flow information. Each packet needs to be associated

with a particular flow by hashing its packet signature and creating or updating its

table entry accordingly. However, a very large amount of concurrent flows with very

short packet inter-arrival times of current high speed networks (on the order of 10Gbs

to 100Gbs inside carrier’s network today) make this brute-force counting method very

costly to implement. First of all, this method would need a huge amount of memory to

record a flow table for each active flow. Secondly, in a high speed link, the inter-arrival

times between packets, which may be as small as 8 ns in an OC-768 link, are smaller

than the time required to process flow hash operations such as identifying the packet

and updating the flow the statistics.

The characteristics of the network traffic data inevitably leads to the development

of alternative methods for measurement such as random sampling, where a fraction of

the network traffic is randomly selected and processed. The simplest sampling method

is the uniform packet sampling [6–8, 66], used in commercial systems [67] and [68].

In uniform sampling, each packet is selected with a predefined constant probability.

This approach is easy to implement, since it does not require flow identification of

each packet. However, recovering the true flow length distribution from the random

packet sampled traffic is a challenging problem. The unbiased estimator of the original

length n of a flow for sampling probability π is n̂(m) = m/π where m is the number

of observed packets for a given flow. The relative error of this estimator, calculated as√
1/(π − 1)/n [6], grows unbounded for short flows as the sampling rate gets smaller.

This high error on the small flows are due to the fact that most of the samples are

collected from longer flows.

Flow-based adaptive sampling methods [3–5] were proposed for more accurate

flow length estimation. In these methods, each incoming packet is processed and then
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sampled with probability that is a function of the current sampled length of the flow

that it belongs to. The main idea is to use a smaller memory by compressing the flow

statistics counters in the router. However, these methods needs to be implemented on

specialized -and expensive- hardware due to the mandatory packet identification and

lookup step.

Both unified and flow-based adaptive sampling methods rely on numerical meth-

ods to recover the true flow length distribution. In this work, we propose an improve-

ment to the non-parametric flow length models in [6] and [8] using a novel NTF based

technique, which we call ThinNTF. In our method, the network traffic is modeled as a

mixture of traffic patterns. We learn those patterns directly from the sampled traffic

and reconstruct original flow length distributions. We apply our method with both

unified and flow-based sampling schemes. We make the following contributions for this

problem:

• We model one week of flow length observations as a 3-dimensional tensor and

observe the periodic behaviour.

• We propose a novel tensor factorization scheme, ThinNTF, which is able to find

the factors of a latent tensor from its sampled counterpart. By doing so, we also

solve the reconstruction problem.

• We apply ThinNTF to real world data sampled with two different sampling meth-

ods: unified random packet sampling and flow-based adaptive sampling.

4.1. Related Works

Sampling methods have long been applied to network traffic monitoring. A survey

on fundamental network sampling strategies is given in [2]. Uniform packet sampling is

extensively studied by various authors. Duffield et al. [6] proposes first non-parametric

model for flow length distribution and provides a maximum likelihood estimation to

recover the flow lengths. Riberio et al. [7] shows that using protocol specific information

gives better flow length distribution estimates in TCP flows. Yang et al. [8] adopts the

maximum likelihood approach to estimate both flow length and flow volume (number
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of bytes in a flow) distributions. They also propose a mixture model for the network

traffic, where they model the traffic as a combination of two patterns: the pattern of

small flows, and the large flows.

Alternative methods to uniform packet sampling has been proposed, since packet

sampling has theoretical limitations for recovering flow statistics [66]. Kumar et al.

[69, 70] proposed two different counter update algorithms while processing every packet.

They also propose a non-uniform packet sampling algorithm based on sketch count-

ing [71]. Hu et al. [4, 72] proposes another non-uniform packet sampling algorithm,

called ANLS for estimating flow lengths per each flow, and then adopts this method

to flow volume [5]. We are going to use ANLS as an example non-uniform packet sam-

pling methods in our experiments, since it is the current state-of-the-art non-uniform

sampling method.

Nonnegative tensor factorization is the generalization of the NMF [28] to the

multiway arrays. In NMF, a nonnegative matrix is approximated with a multiplication

of two nonnegative matrices. Minimizing the Kullback-Leibler divergence between the

initial matrix and multiplied factors is a popular formulation of this method, and can

be solved with fixed-point iterations [73] or full Bayesian methods [29]. NMF has been

used in many applications such as spectral data analysis [74], face recognition [28] and

document clustering [75].

Modeling the flow length distribution as a mixture of distributions is first pro-

posed by [8] However, according to our knowledge, modeling a large volume of flow

length data as a tensor has not been experimented previously. In this thesis, we fill a

gap in literature by introducing tensor factorization methodology to network monitor-

ing.
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4.2. Real World Data Collection

4.2.1. Network Flow Extraction

The method for keeping the flow records from a live network interface requires

processing each packet inside the traffic. In order to extract the flow information, the

network monitoring system maintain a large table to hold the flow records with data

fields listed in Table 1.2. Whenever a packet is observed, its key should pass though a

hash function and a table lookup must be performed. If the table already contains a

flow with the packet’s key, the attributes of the flow is updated, otherwise a new flow

record should be generated and the packet should be registered as its first packet. The

key hashing must be done independent of the order of the source and destination socket

information. If a flow whose key contains source and destination socket information

reversed with respect to the packet’s key exits in the flow table, the packet should be

registered to that flow with the direction flag set to −1.

The flow record table that we implemented for monitoring an ISP server in real

time is given in Figure 4.1. This record table also has a time out mechanism to make

garbage collection periodically by storing the actual flow information in a separate

double linked nodes. The list keep flow records sorted according to the arrival of their

last packets by constantly moving the most recently updated flow to the front of the

list. The garbage collector starts removing the timed out flows starting from the end

of the list. In this setting find, insert, update and delete operations are executed in

amortized O(1) time.

We implemented a network sniffer that observes a live network interface and

extract and save the information that is necessary to identify the flows afterwards.

This network sniffer was deployed on a server of a mobile network provider in Turkey

and 10 days of continuous packet information was collected. We used this data set to

validate our proposed sampling recovery methods. In this section, we first give details

of data extraction process and present our preliminary observations on the data.
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Figure 4.1. The flow table design with time-out mechanism.

4.2.2. System Architecture

The system architecture of a mobile operator’s general packet radio service (GPRS)

network infrastructure, including radio access and core network elements, is illustrated

in Figure 4.2. IP traffic generated or received by mobile devices between mobile sta-

tion (MS) and packet data network (PDN), e.g. IP Multimedia Subsystem (IMS), is

tunneled in the core network of mobile operators through serving GPRS support node

(SGSN) and gateway GPRS support node (GGSN) via the user data part of the GPRS

tunneling protocol (GTP) [76]. The GTP message exchanges include information such

as the size of the traffic, IP session start and end time, device and user identifiers.

The Gn interface 1 carries user packets to be transferred between the mobile

users and the internet together with control packets necessary for the universal mobile

telecommunications service (UMTS) core network [77]. All packets in this channel are

carried by the GTP, which is an IP based protocol for carrying GPRS data within

UMTS networks, used for data encapsulation to keep the core network independent of

the protocols that are being used between MS and the packet-switched network.

1Gn is an interface between SGSN and GGSN where GTP is the main protocol for network packets
flowing through.
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Figure 4.2. FLD server architecture.

The Gn interface carries mainly two types of GTP message structures or packets:

GTP-C and GTP-U. GTP-C is used for signaling between SGSN and GGSN in core

network which carries packet data protocol (PDP) Context messages such as activating

and deactivating user session, configuring service parameters or updating the session.

GTP-U is used for transmitting user data between the radio access network and core

network. In our experiments, we filtered out GTP-C packets (since they are not con-

sidered to be part of a flow due to flow definition), which makes 10% of the total Gn

traffic. Therefore, the sampling is applied to GTP-U packets only. GTP is carried

mainly over UDP.

4.2.3. Data Extraction process

The mobile operator’s network consists of several districts with more than 10

regional core areas through-out Turkey. The average total traffic over all regional areas

consists of approximately over 15 billion packets in uplink direction and over 20 billion

packets in the downlink direction daily. This corresponds to approximately over 80

terabytes of total data flowing in uplink and downlink daily inside mobile operator’s

core network as a whole. In this work, the Gn interface which connects the SGSN

and GGSN nodes is mirrored and the network traffic is transferred into a FLD server

located at mobile operator’s technology center in the core network. A fast speed of
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Figure 4.3. Network data collection statistics.

200Mbit/sec at peak hours can be observed through one of the mirrored interface in

the core network.

We monitored the network traffic in one of the servers of a mobile operator con-

tinuously for 10 days and collected the packet information necessary for identifying the

flow of each packet. Note that based on the mirrored interface, the size of raw data

is more than 2 terabytes for observed duration of one day. If offline processing is per-

formed on this huge amount of data, it can take several days of processing to extract

the relevant headers for analysis using a single server. Therefore, this is infeasible for

analyzing 10 days of traffic data both from computation and storage point of view. For

this reason, in order to be able to perform analysis for long periods of days, we have

devised a data collector tool inside FLD server which stores the necessary information
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from each packet that is sufficient to identify the flows in the data offline. This infor-

mation consists of the 5-tuple key together with the arrival time of the packet and its

length, as described in Table 1.1. At the end of data extraction process, the total num-

ber of packets collected are approximately 4× 1011, which make up around 2.5× 1010

flows. The total disk space required to store the packet information in compressed

binary files is 389 Gigabytes. Figure 4.3 shows the number of packets collected at 15

minute intervals together with the number of packets lost during each interval. There

is only a single glitch in the data collection process where 107 packets are lost for an

unknown reason.

4.3. Data Tensor

The original flow length data is represented in an I × J × K tensor X , with

individual elements xi,j,k, regarded as the number of flows that has length i measured

at the hour j of the day k. In this setup, I is the maximum flow length value, J is

the hours of the day and K is the days of the week. For our real-world data, collected

continuously for 1 week, these values are I = 2000000, J = 24 and K = 7.

Working with large maximum flow size is not feasible for two reasons. First,

learning a mixture model where each flow component has 2 million parameters is not a

good formulation for this problem. Secondly, 99.9% of flows in our data have less than

100 packets, which means the tensor X will be very sparse for i > 100. The clamping

process can be defined as

x̄i,j,k =

 xi,j,k for i < Imax∑
l≥Imax xl,j,k for i = Imax

(4.1)

where X̄ is the clamped tensor. The clamping does not require any change in the

model and inference equations that are given in Section 2.3. Therefore, for notational
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Figure 4.4. Slices of the original flow length tensor.

clarity we only use X as the generic original data tensor.

Figure 4.4 shows the vertical slices of our unsampled real-world data tensor X ,

collected at the backbone of a mobile operator during a one week period, from Monday

to Sunday, and clamped at Imax = 50. The intensity images are generated from

the logarithm of the flow length counts. The daily and hourly patterns are easily

recognizable in the original FLD data.

4.4. Sampling Methods

Independent of the sampling method, we can define an I × (I + 1) size S matrix,

where I is the maximum flow length with entries si,ν interpreted as the probability of

sampling ν packets from an original flow of length i. Naturally, S is a lower diagonal

matrix of the form

S =


s1,0 s1,1 0 0 . . . 0

s2,0 s2,1 s2,2 0 . . . 0
...

...
...

...
. . .

...

sI,0 sI,1 sI,2 sI,3 . . . sI,I

 (4.2)

where its lth row defines a probability distribution for the sampled flow length

of a flow of size l. Given a flow size distribution x ∈ Z≥I , where Z≥ is the set of

nonnegative integers, the expected sampled flow length distribution would be given by
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ŷ = STx. It immediately follows that the sampled flow size distribution y has length

I + 1, with y0 is the proportion of sampled flows with none of their packets sampled.

During the sampling process, this value will never be observed naturally since the flow

identification is performed only on selected packets. In all experiments throughout this

paper, the y vector (or Y tensor, which will be described later on) will be element-wise

multiplied with a binary mask vector m (or binary mask tensor M), whose entries

are set to 1 except the ones corresponding to zero sampled flow lengths, in order to

simulate the real life scenario.

For any given sampling method, we can calculate the S matrix directly if a

closed-form expression is available. Otherwise, it can be approximated by simulating

the sampling process and counting the sampling statistics. In this paper, both uniform

random sampling and the adaptive nonlinear sampling (ANLS) provide closed-form

expressions for the calculation of S matrix.

An important practical issue is that, if the original tensor X is clamped at Imax,

the S matrix must also be clamped. In that case a last row entry sImax,ν must present

the probability of selecting ν packets from a flow of length greater or equal to Imax.

This clamping operation can be done by calculating a full size S matrix first, and

setting s̄Imax,ν ∝
∑I

i=Imax
si,ν with a naive assumption that after Imax the original flow

sizes are uniformly distributed.

4.4.1. Uniform Sampling Method

In uniform sampling, each packet is processed with a fixed probability of π, irre-

spective of the flow it belongs to. In this method, the sampling matrix entries si,ν are

calculated directly through Binomial distribution with i trials and π success probability,

i.e.,
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1: function SampleUniformlyRandom(π, flow table, packet)

2: if π > rand double(0, 1) then

3: flow = flow table.lookup(packet)

4: if flow is null then

5: flow = new Flow(packet)

6: else

7: flow.length += 1

8: flow table.insert or update(flow)

Figure 4.5. Uniform packet sampling algorithm.
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Figure 4.6. Uniform sampling.

si,ν =


(
i
ν

)
πν(1− π)i−ν for ν ≤ i

0 otherwise
(4.3)

Figure 4.5 describes how the flow table is updated with uniform sampling upon

the arrival of a new packet. The algorithm uniformly draws a random number in



63

interval [0, 1] and if it is less than π, processes the packet, otherwise the packet is

discarded. For processing the packet, a look-up operation is performed on the flow

table to find and update the flow that the packet belongs to. If no such flow is found,

a new flow is created using the packet’s signature.

Figure 4.6(a) shows the top 10× 11 entries of the lower diagonal S matrices with

different sampling probabilities. As the sampling probability π gets smaller, fewer

packets from a flow gets observed, and the flow may even be missed when none of its

packets are observed. The rightmost sampling matrix shows the case when π = 1/64,

where the matrix has a very high concentration of zero-length sampled flows.

Figure 4.6(b) shows the original Monday data (the leftmost matrix) and its sam-

pled versions under uniform sampling with the probabilities shown on the top sampling

matrices. Here we see that for π = 1/64, the observed flow lengths are mostly less than

10, while the majority are not observed at all.

4.4.2. ANLS Sampling Method

The ANLS [4] will be used as the representative of the flow-based adaptive sam-

pling methods. In ANLS, each packet is sampled according to the number of packets

previously sampled from its corresponding flow. If a sampled flow has length x, the

probability of its next packet to be sampled (p(x;u)) is calculated as

f(x;u) = [(1 + u)x − 1]/u (4.4)

p(x;u) = 1/[f(x− 1;u)− f(x;u)] (4.5)

Here, f(x;u) is a monotonically increasing function of flow length x, parametrized

with u, which makes p(x;u) monotonically decreasing. The u parameter determines
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1: function SetupANLS(u)

2: f[0] = 0

3: for i ∈ [1, I] do

4: f [i] = ((1 + u)i − 1)/u

5: p[i] = 1/(f [i− 1]− f [i])

6: return f, p

7: function SampleWithANLS(p, flow table, packet)

8: flow = flow table.lookup(packet)

9: if flow is null then

10: flow = new Flow(packet)

11: else if p[flow.length] > rand double(0, 1) then

12: flow.length += 1

13: flow table.insert or update(flow)

Figure 4.7. ANLS sampling algorithm.

the tendency of sampling packets. As u gets smaller, more packets are sampled and

estimating original flow lengths gets easier.

The ANLS method is described in details in Figure 4.7. Prior to the sampling, the

f and p vectors are calculated in the SetupANLS function, according to equations 4.4

and 4.5. During sampling, for each incoming packet a look-up operation is performed

unconditionally. If the corresponding flow is found, it is updated with probability

relative to its current observed size. Otherwise, a new flow is created, ensuring that

every flow is observed with at least one packet.

We calculate the sampling matrix S recursively for ANLS. In this method, the first

packet is always sampled since p(1, u) = 1 independent of u. We start by assigning

all zero sampling probabilities as s:,0 = 0 and s1,1 = 1. The recursive equation for

calculating the sampling matrix can be deduced as

si,ν ∝ si−1,ν−1p(i− 1, u) + si−1,ν(1− p(i− 1, u)) (4.6)
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(a) ANLS sampling matrices.
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Figure 4.8. ANLS sampling.

Figure 4.8 shows the ANLS sampling matrices for first 10 flow lengths and the

Monday data sampled with them respectively, similarly to Figure 4.6. First, we can

see that when u is small, the S matrix looks like identity and as u gets larger, the

sampling probability of large flows decreases. Secondly, compared to uniform sampling,

the ANLS method has much higher sampling ratios than uniform sampling. However,

operating with such high sampling ratios would require specialized hardware in real

time.

4.5. Experiments and Results

We designed two sets of experiments in order to verify our model: synthetic and

real-world experiments. In each set, we sampled the original data with both uniform

and ANLS models with different sampling parameters. Then we tried to recover the

original tensor with ThinNTF models. The ThinNTF model takes a single parameter

R which is the number of components in each factor. Additionally, we also represented

data as I × JK matrix by unfolding the X tensor in the first dimension as described

in [15], and applied the 2-dimensional version of the ThinNTF, which we simply call
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thin nonnegative matrix factorization (TNMF). For Uniform sampling, we used the

maximum likelihood estimation (MLE) defined in [6] as the baseline. For ANLS, we

used both MLE and its own unbiased estimator of the model as baselines.

Both ThinNMF and ThinNTF models explain the data as a linear combination

of R flow length distributions, stored in the columns of F matrix. In the ThinNMF

model, we have JK coefficient sets for this combination. On the other hand, in Thin-

NTF, we have J coefficients for hour-of-day and K coefficients for day-of-week. The

Cartesian product of these coefficient sets make a total of JK coefficients and creates a

dependency between the hour and day attributes. Therefore, we expect that ThinNTF

captures the periodicity and give better estimates.

During the experiments, we always run the stochastic algorithms, i.e. ThinNMF,

ThinNTF, and MLE, for 10 times and keep the parameters of the model with the

highest lower bound value. Then we reported the success of our algorithm with the

weighted mean relative distance (WMRD) metric as this was used in all previous flow

size estimation works. The WMRD is a metric which gives more weights to the relative

differences that occur with larger frequency. It is formulated as

wmrd(x, x̂) =

∑
i |xi − x̂i|∑

i(xi + x̂i)/2
(4.7)

where x is an original flow size distribution measured at the end of the hour and

x̂ is its estimated version. For the whole tensor X , we calculate the average WMRD

value.

Additionally, we report the Kullback-Leibler divergence between the original and

the estimated tensors, since this is the metric minimized during the variational Bayes

algorithm. The KL divergence between two distributions x and x̂ is calculated as

KL(x, x̂) =
∑
i

xi log

(
x̂i
xi

)
(4.8)



67

Table 4.1. Uniform sampling results on synthetic data.

Period ThinNMF-R3 ThinNTF-R3 MLE

2 0.53 0.49 0.88

4 0.63 0.59 1.20

8 0.65 0.61 1.29

16 0.68 0.61 1.41

32 0.74 0.61 1.37

64 0.85 0.61 1.50

4.5.1. Experiments on Synthetic Data

We prepared our synthetic experiments to test the validity of our models. In this

experiment set, we used the generative model of the ThinNTF model as described in

Figure 2.5 to generate a small network with maximum flow size I = 10, J = 24 and

K = 7. The original synthetic flow length distribution X is generated by a generative

model with 3 components, where each component is a column in the F factor. We

selected these 3 components as exponential, inverted exponential, and uniform random

distributions. Therefore, in experiments, we used ThinNMF-R3 and ThinNTF-R3

models, where the suffix R3 shows that the model has 3 components.

We sampled the synthetic data with uniform and ANLS sampling methods with

different sampling parameters. The sampling was done simply by randomly drawing

a sampled size for each flow according to the sampling probabilities in the S matrix.

By this way, we ignored the flow splitting problem and this gave us an ideal data for

the ThinNTF model. We report and compare the mean standard deviation of these

WMRD values for all experiments.

The ThinNTF model always performed best with the uniform sampling model,

as shown in Table 4.1 as expected. On ANLS sampling, the MLE and the ANLS esti-

mators performed better with high sampling probabilities, when u ∈ (0.01, 0.02, 0.05),

as shown in Table 4.2. On the other hand, when the sampling probability of the ANLS

model decreases, the ThinNMF helped with better estimations. From the initial re-
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Table 4.2. ANLS sampling results on synthetic data.

U ThinNMF-R3 ThinNTF-R3 MLE ANLS

0.01 0.29 0.27 0.09 0.15

0.02 0.31 0.29 0.17 0.27

0.05 0.33 0.32 0.36 0.28

0.1 0.35 0.34 0.51 0.38

0.2 0.38 0.36 0.59 0.67

0.5 0.48 0.47 0.72 0.70

(a) Uniform Sampling. (b) ANLS Sampling.

Figure 4.9. Synthetic experiment results.

sults, we conclude that the factorization is definitely helpful for more difficult uniform

sampling method and helps lower the sampling probabilities in flow-based packet sam-

pling. The results are also visible in Figure 4.9.

4.5.2. Experiments on Real World Data

The original data collected from a mobile network provider as we described in

Section 4.2, is sampled with both sampling methods. However, this time we simulated

the real network offline by feeding the packets one by one to the monitoring server,

as described in Section 4.2, This way, we were able to create the actual conditions

on a sampler installed at a network provider’s backbone. This also created the flow

splitting problem, since we applied a 30 seconds time-out in our flow hash. We set the

maximum flow length as I = 100, meaning that X100,:,: entries show the count of flows

that have more than 99 packets. This clamping decision was made according to the
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Table 4.3. Uniform sampling results on real data.

Period
ThinNMF ThinNTF

MLE
R=2 R=3 R=4 R=2 R=3 R=4

2 0.23 0.24 0.23 0.21 0.25 0.22 0.41

4 0.55 0.52 0.53 0.50 0.48 0.49 0.69

8 0.94 0.93 0.94 0.91 0.90 0.87 0.97

16 1.15 1.11 1.11 1.09 1.05 1.04 1.05

32 1.25 1.24 1.24 1.16 1.13 1.10 1.22

64 1.31 1.29 1.30 1.09 1.06 1.04 1.22

cumulative distribution of flow lengths as shown in Figure 4.10 We also clamped the

sampling matrices S so that they exactly match the model.

Figure 4.10. Cumulative flow lengths in the real world data.

Since the number of components in the original flow distribution is unknown, we

run our experiments with R ∈ [2, 3, 4] components for ThinNMF and ThinNTF. The

rest of the experiment is similar to the synthetic one. The sampled Y matrix with

shape 100× 24× 7 is factorized and X̂ is reconstructed with the estimated factors. We

reported the mean and standard deviation of 24× 7 WMRD and KL values.

The factorization models, both ThinNMF and ThinNTF helped lower the WMRD

score in both uniform and ANLS sampling methods. ThinNTF-R4 model consistently

gave lower error than the MLE baseline for uniform model as shown in Table 4.3

and Figure 4.11. Indeed, our factorization framework improved results overall for

uniform sampling. However, since recovering true estimates in uniform sampling is

quite difficult, we see less impact of the factorization as the sampling ratio increases.
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Table 4.4. ANLS sampling results on real data.

U
ThinNMF ThinNTF

MLE ANLS
R=2 R=3 R=4 R=2 R=3 R=4

0.01 0.03 0.02 0.01 0.05 0.04 0.03 0.05 0.12

0.02 0.04 0.03 0.02 0.06 0.04 0.03 0.08 0.21

0.05 0.04 0.03 0.02 0.07 0.05 0.04 0.13 0.39

0.1 0.06 0.05 0.04 0.08 0.07 0.05 0.17 0.61

0.2 0.08 0.08 0.08 0.10 0.09 0.07 0.21 0.70

0.5 0.13 0.13 0.11 0.16 0.15 0.13 0.33 0.94

Figure 4.11 also gives the KL values between the true and estimated flow length

distributions. While the scale of this metric is different, it gives consistent results with

the WMRD. This shows that our model, which minimizes the KL metric also minimizes

the commonly used WMRD metric, hence the model is suitable for this problem.

Another important issue is that for uniform sampling, 3-way factorization is more

successful than the 2-way factorization. The periodicity information which is captured

by the ThinNTF model help improve the estimates and makes it a more successful

model for this sampling method.

In ANLS, all our factorization models gave lower error values than the MLE and

unbiased estimator of ANLS as shown in Table 4.4 and Figure 4.12. Since ANLS is a

more powerful sampling method than uniform sampling, our the effect framework is

slightly less for small sampling parameter u. However, both ThinNMF and ThinNTF

gave better result while sampling smaller number of packets (when u is large). Fur-

thermore, since we are trying to recover the same original data in both experiments,

we can compare our ThinNMF and ThinNTF models under two sampling methods.

We see that in both methods as the number of components increases, the models gave

lower error rates. However, with the uniform sampling method, 3-dimensional methods

give better results, while with ANLS, 2-dimensional models perform slightly better.
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(a) WMRD metrics. (b) WMRD metrics wrt. R.

(c) KL metrics. (d) KL metrics wrt. R.

Figure 4.11. Real world data results with uniform sampling.

4.5.3. Effect of Clamping

The choice of where to clamp the data can be given by multiple factors. First

of all, one can set the clamping value Imax according to a value of special interest.

Otherwise, we would like to choose a small Imax so that we deal with a dense tensor

and we deal with less parameters. On the other hand, we would like to set Imax as high

as possible so that the clamped portion of the data is as small as possible.

We run the best algorithms found in previous section for uniform and ANLS

sampling methods with Imax ∈ {25, 50, 75, 100}. The WMRD values are given in

Figure 4.13. In both methods, Imax = 25 gave relatively poor performance and Imax =

100 was generally the best choice. Also the results with Imax ≥ 50 are closer to each

other. This is consistent with the graph in Figure 4.10, where the cumulative flow

lengths do not change much after Imax = 50. A final remark from this experiment is
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(a) WMRD metrics. (b) WMRD metrics wrt. R.

(c) KL metrics. (d) KL metrics wrt. R.

Figure 4.12. Real world data results with ANLS sampling.

that as the clamping value increases estimation becomes harder with small sampling

rates. This explains the results in uniform sampling with sampling rate 1/64.
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Figure 4.13. Clamping experiment results.
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An important issue left as future work is the online execution of the ThinNTF

model. Theoretically, the ThinNTF model can be used online once sufficient data from

the target network is collected and the flow length distribution components, ie. the F

factor, are inferred. The power of our model is that this inference can be done directly

from the sampled observations. Once the F factor is estimated, for each incoming

observation the corresponding entries in other factors can be inferred by keeping F

constant during the inference. Moreover, F can be updated periodically, say weekly, in

a sliding window fashion and kept up to date with the networks flow length behavior.
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5. CONCLUSIONS

In this thesıs, we proposed a Bayesian multiple change point model for detecting

DDoS flooding attacks in VoIP networks using SIP as their signaling mechanism. We

provided a framework that can work with different types of input features monitored at

a SIP proxy server. The framework tracks the network traffic and SIP server behavior

and raises an alarm whenever a change in those behaviors is detected.

Additionally, we propose a probabilistic SIP network simulation system, which

can generate real-time SIP conversations in a community. The simulation system

provides a realistic test environment for SIP security tools, in case of the absence of

real world test data. This simulation system is also made available in open source.

We tested our proposed system with traffic generated by the SIP network simulator

together with DDoS attacks generated by a commercial network vulnerability scanning

tool, Nova-VSpy.

We introduced a novel nonnegative tensor factorization model called ThinNTF,

which extends the classic nonnegative tensor factorization with an additional constant

factor that can represent a network packet sampling method. We showed that this

model can be employed to improve the current reconstruction algorithms in recovering

the original flow length distributions. We tested our model with two different type

of sampling methods: the uniform packet sampling method and the ANLS, which is

a flow-based packet sampling method. We described how to use these methods by

showing how to build their sampling matrices.

In order to test ThinNTF model, we collected high-volume data from a mobile

network provider for a long period in order to observe the periodical behavior of the

flow length distribution. In experiments on synthetic and real-world data, our models

gave promising results by lowering the estimation errors compared to the baselines of

each sampling method. We conclude that our model can be used to decrease estimation

errors or to decrease the sampling probabilities without increasing the estimation error.
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APPENDIX A: STANDARD DISTRIBUTIONS

The probability mass or density functions and sufficient statistics of the standard

distributions used in this thesis are listed below.

Binomial.

B(x;n, p) =

(
x

n

)
px(1− p)n−x (A.1)

E(x) = np (A.2)

V ar(x) = np(1− p) (A.3)

Multinomial.

M(x;n,p) =

(
n

x1, . . . xK

) K∏
k=1

pxkk (A.4)

E[xk] = npk (A.5)

V ar[xk] = npk(1− pk) (A.6)

Beta.

Be(x; a, b) =
Γ(a+ b)

Γ(a) + Γ(b)
xa−1(1− x)b−1 (A.7)

E[x] =
a

a+ b
(A.8)

E[lnx] = ψ(a)− ψ(a+ b) (A.9)
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Dirichlet.

D(x;α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

xαk−1k (A.10)

E[xi] =
αi∑K
k=1 αk

(A.11)

E[lnxi] = ψ(αi)− ψ(
K∑
k=1

αk) (A.12)

Poisson.

P(x;λ) =
λxe−λ

x!
(A.13)

E[x] = x (A.14)

Gamma.

G(x; a, b) =
1

Γ(a)ba
xa−1e−

x
b (A.15)

E[x] = ab (A.16)

E[lnx] = ψ(a) + ln(b) (A.17)
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APPENDIX B: BCPM PARAMETER ESTIMATION

Here we present the detailed equations of the Expectation-Maximization method

for estimating model parameters.

B.1. E-Step

At the E-step, we calculate the expectation of the complete data log-likelihood

as follows

Lπ,w = log p(s(1:T ),h(0:T ),v(1:T ), |π,w) (B.1)

=
T∑
t=1

[
[s(t) = 0]

(
log(1− π) + log δ(h(t) − h(t−1))

)
+ [s(t) = 1]

(
log π + log Ω(h(t); w)

)
+ log Θ(v(t); h(t))

]
+ log Ω(h(0); w) (B.2)

We can write the expectation of this complete likelihood under the auxiliary distribu-

tion q(z) = p(s(1:T ),h(0:T )|v(1:T ), π, w) as follows, by letting p(s(0) = 1|v(1:T ), π,w) = 1

in a compact way as

〈Lπ,w〉q(z) =
T∑
t=0

[〈
s(t) = 1

〉
q(z)

(
log π +

〈
log Ω(h(t); w)

〉
q(z)

)
+
〈
s(t) = 0

〉
q(z) log(1− π) +

〈
log Θ(v(t); h(t))

〉
q(z)

]
(B.3)
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B.2. M-Step

We maximize the expectation of the complete data log-likelihood with respect to

the parameters π and w.

B.2.1. Maximizing for π

Maximizing the expectation of the complete data log likelihood for π is the same

for all prior and observation models.

0 =
∂〈Lπ,w〉q(z)

∂π
(B.4)

=
∂

∂π

T∑
t=1

(〈
s(t) = 1

〉
q(z) log π +

〈
s(t) = 0

〉
q(z) log(1− π)

)
(B.5)

π =
1

T

T∑
t=1

〈
s(t) = 1

〉
q(z) (B.6)

B.2.2. Maximizing for w

Maximizing the expectation of the complete data log likelihood for w depends on

the observation and prior distributions. We begin by taking the derivative

0 =
∂〈Lπ,w〉q(z)

∂w
(B.7)

=
∂

∂w

T∑
t=1

〈
s(t) = 1

〉
q(z)

〈
log Ω(h(t); w)

〉
q(z) (B.8)

In this work, we used a coupled model where the signals are assumed to be generated by

a Poisson-Gamma or Multinomial-Dirichlet models, hence in our case w = [α1:M , a1:N , b1:N ],

where α1:M is the parameter of the Dirichlet prior and each {ai, bi} pair is the parameter

for a Gamma prior. For Dirichlet priors,
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0 =
∂

∂αk

T∑
t=0

〈
s(t) = 1

〉
q(z)

〈
logDir(s(t);α)

〉
q(z) (B.9)

=
∂

∂αk

T∑
t=0

〈
s(t) = 1

〉
q(z)

[∑
k

(αk − 1)
〈

log h
(t)
k

〉
q(z)

+ log Γ(
∑
k

αk)−
∑
k

log Γ(αk)

]
(B.10)

=
T∑
t=0

〈
s(t) = 1

〉
q(z)

(〈
log h

(t)
k

〉
q(z) + ψ(

∑
k

αk)− ψ(αk)

)
(B.11)

We can solve the above equation for αk with fixed-point iterations [78]:

αnewk = ψ−1
( 1

C

T∑
t=0

〈
s(t) = 1

〉
q(z)

〈
log h

(t)
k

〉
q(z) + ψ(

∑
k

αoldk )
)

(B.12)

where C =
∑

t

〈
s(t) = 1

〉
q(z). We calculate the

〈
log h

(t)
k

〉
q(z) from the mixture of

Dirichlet potentials as

〈
log h

(t)
k

〉
q(z) =

1

Z

R∑
r=1

c(r)
(
ψ(α

(r)
k )− ψ(α

(r)
0 )
)

(B.13)

where R is the number of potentials and Z =
∑

r c
(r) is the sum of their normalizing

constants.

For the Gamma distribution, the maximization leads to the following fixed-point

iteration for a and equation for b [79]:

anew = ψ−1

(
1

C

T∑
t=0

〈
s(t) = 1

〉
q(z)

(〈
log h

(t)
k

〉
q(z)− log

〈
h
(t)
k

〉
q(z)

)
+ log aold

)
(B.14)

b =
1

anew

T∑
t=0

〈
s(t) = 1

〉
q(z)

〈
h(t)
〉
q(z) (B.15)
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The expected sufficient statistics for the Gamma parameters are calculated from

mixtures of Gamma potentials by:

〈
h(t)
〉
q(z) =

1

Z

R∑
r=1

c(r)(a(r)b(r))

〈
log h(t)

〉
q(z) =

1

Z

R∑
r=1

c(r)
(
ψ(a(r))− log(b(r))

)
(B.16)

again, R is the number of potentials and Z =
∑

r c
(r) is the sum of their normalizing

constants.
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APPENDIX C: BCPM FORWARD-BACKWARD HELPER

ROUTINES

C.1. Backward Filtering Loop

1: function BackwardFilter(π, w, v1:T )

2: beta ← [ ]

3: prior ← [w, 0]

4: for t = T . . . 1 do

5: obs pot ← Obs2Pot(vt)

6: // Change case

7: tmp msg ← [ prior*pot for pot in beta[end] ]

8: new msg ← [ obs pot.w, log π + LogLikelihood(tmp msg) ]

9: // No change case

10: no change ← [ obs pot*pot for pot in beta[end] ]

11: for pot in no change: pot[2]+=log(1− π) do

12: // Update beta

13: for pot in no change: new msg.append(pot) do

14: beta.append(new msg)

15: return beta

Figure C.1. BCPM backward filtering loop.
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C.2. Forward Backward Recursion Functions

1: function Predict(alpha, π, w)

2: alpha p ← [ ]

3: alpha p.append(w,LogLikelihood(alpha) + log(π))

4: for pot in alpha: alpha p.append(pot[1], pot[2]+log(1− π))

5: return alpha p

6: function Update(msg, vt)

7: msg u ← [ ]

8: obs pot = ← Obs2Pot(vt)

9: msg u = [pot*obs pot for pot in msg]

10: return msg u

11: function ComputeCPP(msg, d)

12: // Change case is represented by the mixture of first d potentials

13: p1 = exp(LogLikelihood(msg[1 : d])

14: p0 = exp(LogLikelihood(msg[d+ 1 :])

15: return p1 /(p0 + p1)

16: function Smooth(alpha, beta)

17: gamma ← [ ]

18: for i = 1 . . . len(alpha) do

19: for j = 1 . . . len(beta) do

20: gamma.append(alpha[i] * beta[j])

21: return gamma

Figure C.2. BCPM forward-backward recursion functions.
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APPENDIX D: SIP NETWORK SIMULATION

Here we describe the generative process underlying the Boun-Sim network simu-

lator.

D.1. Social Network of SIP Users

In order to simulate a realistic network, we modeled the relationships between

users by a stochastic block model [80]. In a stochastic graph model, graph nodes

are distributed over groups and the probability of having an between two nodes are

governed by inner and between group connection parameters. Similarly we distributed

N SIP users over K social groups. Whenever a user decides to make a call, they pick

a callee within their group or from other groups with different probabilities. As a

concrete example, we can think of SIP users inside a company, divided into different

departments. A user may talk to their teammates more often then people from other

teams.

At the beginning of the simulation, the generative model first generates the social

network. The probability that a user belongs to a certain group, π is drawn from a

Dirichlet distribution with a parameter α. Relative group sizes can be adjusted by

the alpha parameter. We represent the group assignments of users by an N × K

dimensional binary G matrix, where each row Gn,: represents a user such that gn,k = 1

if and only if user n belongs to group k.

π ∼ Dir(π;α) (D.1)

Then each user is assigned to a group from a categorical distribution.

Gn,: ∼ K(Gn,:; π) for each n ∈ [1, N ] (D.2)
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Every stochastic block model has aK×K parameter matrix B, such that bi,j is the

probability of having an edge between a node from group i to some other node in group

j. We created the B matrix such that inner group communications are more probable

than between group communications by setting the Beta distribution parameters as

a > b:

bi,i ∼ Beta(bi,i; a, b) ∀i ∈ [1, K] (D.3)

bi,j ∼ Beta(bi,j; b, a) ∀i 6= j (D.4)

D.2. Phone Book of SIP Users

After the social network is constructed, the simulator creates a phone book for

each user, according to the users social behavior. Let P be an N × N phone book

matrix, such that pm,n denotes the probability that user m calls user nm whenever m

decides to call someone.

pm,n ∝
∏
i,j

b
gm,ign,j
i,j (D.5)

or, in compact matrix notation,

P ∝ GBGT (D.6)

D.3. Registration of Users

The simulation starts with all users offline. A user becomes online by sending

a REGISTER request to the SIP server. Each user waits a random amount of time

before registering to the server. Let rn denote the amount of time user n waits offline.
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We generate this waiting time from a Gamma distribution:

rn ∼ G(βi; ρ, φ) (D.7)

D.3.1. Call Rates

A users call rate is governed by the time they wait idle after communications.

Whenever user n becomes idle, that is after registration or end of a call, a random

waiting time tn is sampled from an exponential distribution, and makes a random call

at the end of this time period. However, they can choose to answer an incoming call

during this period.

tn|βn ∼ E(tn; βn) (D.8)

Here, βn is the call rate parameter of user N , is sampled for every user from a Gamma

distribution

βi ∼ G(βi; k, θ) (D.9)

Hence, in addition to their social behavior, each user has a different personal behavior.

D.4. Making a Call

At the end of their waiting time, a user initiates a call by randomly selecting

another user from their phone book. Let cn denote the callee that user n is about to

call We draw cn from a categorical distribution

cn|Pn,: ∝ K(cn; Pn,:) (D.10)
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such that Pn,: ∝ {pn,1, . . . pn,N} is the normalized probability vector for user n, where

pn,m is the probability that user n calls m. When the user n selects the callee, they

send INVITE request to start a conversation.

D.5. Responding to a Call

Whenever a user receives a call, they can accept or reject the call, and as a third

option, may not notice the call at all. Each user has three call response parameters,

fn, an and hn, such that fn is the call notice parameter, an call accepting parameter

and hn is the call hold parameter.

fn ∼ U(fn; fmin, fmax) (D.11)

an ∼ U(an; amin, amax) (D.12)

hn ∼ U(hn;hmin, hmax) (D.13)

Whenever a user receives a call, they notice the call with probability fn and, if they

do notice, accepts the call with probability an. If the user is already on another call,

they can put their ongoing call on hold with probability hn and accepts the call.

D.6. Call Durations

If a call is successfully established, both participants draw their own call duration,

and at the end of this duration, terminate the call.

dn|δn ∼ E(dn; δn) (D.14)

dm|δm ∼ E(dm; δm) (D.15)

dc = min(dn, dm) (D.16)

Here, dn and dm denotes the call durations sampled by call participants n and m and

dc is the actual call duration.




