
EFFICIENT PERSONALIZED LEARNING TO RANK FROM IMPLICIT

FEEDBACK FOR TIME-SENSITIVE RECOMMENDATIONS

by

Arif Murat Yağcı

B.S., Physics Engineering, Istanbul Technical University, 2000

M.S., Computer Engineering, Bahçeşehir University, 2010

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2019

iii

ACKNOWLEDGEMENTS

With gratitude to my advisor, Prof. Sadık Fikret Gürgen, for believing in me

and supervising my research. He has always been guiding through technical and non-

technical problems with all his knowledge, patience, and kindness. I have learned a lot

from him.

With gratitude to my co-advisor, Prof. Tevfik Aytekin, for advising me while

struggling in a sea of ideas. Numerous discussions with him have been both fruitful

and enjoyable. His constructive criticism as well as his experience at the intersection

of academia and industry have been helpful.

With gratitude to Prof. Albert Ali Salah for his support, constructiveness, and

thought-provoking questions during the progress of this thesis. I also learned a lot from

his lectures. With gratitude to Prof. Yücel Saygın for his support and constructive

criticism during the progress of this thesis. With gratitude to Prof. Tunga Güngör and

Prof. Mehmet Alper Tunga for participating in the defense jury and their construc-

tive criticism. With gratitude to Prof. Bert Arnrich, Prof. Devrim Ünay, and Prof.

Arzucan Özgür for their support in various phases of my Ph.D. studies.

The school of computer engineering at Boğaziçi University is full of smart and

enthusiastic researchers. With gratitude to all my professors, colleagues, and friends

for providing insights into advanced topics and their support.

With gratitude to my family for always being there. This thesis is dedicated to

them and to all the great people who inspired me in life.

The work in this thesis received partial incentives from Boğaziçi University BAP

fund grant no. 17A01P6 and Selçuk Halaç fund.

iv

ABSTRACT

EFFICIENT PERSONALIZED LEARNING TO RANK

FROM IMPLICIT FEEDBACK FOR TIME-SENSITIVE

RECOMMENDATIONS

This thesis focuses on the problems at the intersection of time-sensitive recom-

mendations, implicit user feedback, and learning to rank. Major challenges for achiev-

ing time sensitivity are distinguished, the importance of handling implicit feedback is

emphasized, and an overview of learning to rank methods is presented with an emphasis

on the models that can learn from implicit feedback for time-sensitive recommenda-

tions. Subsequently, novel and improved personalized learning to rank methods are

proposed to handle large-scale implicit feedback datasets and streams as well as to

defeat the different challenges for achieving time-sensitive recommendations. These

proposals comprise: (i) Mining the user feedback stream for collaborative filtering and

the SASCF algorithm, (ii) Parallel personalized pairwise learning to rank and the PLtR

family of algorithms, (iii) Improving the efficiency of top-N predictions from matrix

factorization models and the MMFNN meta-algorithm, (iv) Learning intention in user

sessions and the BRF family of algorithms, and finally (v) Timely push recommenda-

tions in a cold start setting and a hybrid learning to rank approach. Theoretical as

well as extensive empirical analyses of the proposed methods on real-life data show

significant performance and trade-off improvements with respect to ranking accuracy,

adaptivity, diversity, efficiency, and scalability.

v

ÖZET

ZAMAN DUYARLI ÖNERİLER İÇİN

ÖRTÜK GERİ BİLDİRİMDEN VERİMLİ ŞEKİLDE

KİŞİSELLEŞTİRİLMİŞ SIRALAMA ÖĞRENME

Bu tez zaman duyarlı öneriler, örtük kullanıcı geri bildirimi ve sıralama öğrenme

kesişimindeki problemlere odaklanmaktadır. Zaman duyarlılığı sağlamak için başlıca

zorluklara dikkat çekilmekte, örtük geri bildirimi işleyebilmenin önemi belirtilmekte

ve zaman duyarlı öneriler için örtük geri bildirimden öğrenebilen modeller vurgula-

narak sıralama öğrenme yöntemlerine genel bir bakış sunulmaktadır. Daha sonra ise

büyük ölçekli örtük geri bildirim veri kümeleri ve akışlarını işleyebilen ve zaman duyarlı

öneri oluşturmadaki zorlukları aşabilen yeni ve geliştirilmiş kişiselleştirilmiş sıralama

öğrenme yöntemleri önerilmektedir. Bu öneriler şunları kapsamaktadır: (i) İşbirlikçi

filtreleme için kullanıcı geri bildirim verisi akışı madenciliği ve SASCF algoritması,

(ii) Paralel kişiselleştirilmiş çift ögeli sıralama öğrenme ve PLtR algoritma ailesi,

(iii) Matris ayrıştırma modellerinden en üst N öge tahmin etmenin verimliliğini artırma

ve MMFNN meta-algoritması, (iv) Kullanıcı oturumlarında yönelim öğrenme ve BRF

algoritma ailesi, (v) Soğuk başlangıç ortamında doğru zamanlı talep dışı öneriler ve

hibrit bir sıralama öğrenme yaklaşımı. Önerilen yöntemlerin hem teorik hem de gerçek

hayat verileri üzerinde yapılan deneysel analizlerinin sonuçları, sıralama doğruluğu,

uyum sağlayabilme, öge çeşitliliği, verimlilik ve ölçeklenebilirlik kriterleri için önemli

performans ve dengeleme iyileşmeleri göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . x

LIST OF TABLES . xiv

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvi

1. INTRODUCTION . 1

2. BACKGROUND AND FOUNDATIONS . 6

2.1. Recommender Systems Essentials . 6

2.1.1. Common Strategies . 7

2.1.2. Implicit Feedback . 8

2.1.3. Time Sensitivity . 11

2.1.3.1. Efficient and Adaptive Model Learning 11

2.1.3.2. Fast Personalized Predictions 11

2.1.3.3. Session-based Recommendations 12

2.1.3.4. Time Dependency and Time Awareness 13

2.2. Learning to Rank for Recommender Systems 13

2.2.1. Personalized Learning to Rank Framework 13

2.2.2. Learning Similarities . 16

2.2.3. Learning User-Item Models . 17

2.2.3.1. Latent Factor Models 18

2.2.3.2. Other User-Item Models 18

2.2.4. Learning from Data Streams . 19

2.2.4.1. Data Stream Mining 19

2.2.4.2. Reinforcement Learning 20

2.2.5. Evaluation . 20

2.2.5.1. Ranking Accuracy . 21

2.2.5.2. Other Performance Criteria 22

vii

2.2.5.3. Experimental Settings 24

3. MINING USER FEEDBACK STREAM FOR COLLABORATIVE FILTER-

ING . 26

3.1. Introduction . 26

3.2. Neighborhood-based Collaborative Filtering 27

3.3. Frequent Items and Frequent Top-k Items in a Stream 28

3.4. Frequent Co-occurrences and SASCF 31

3.4.1. Effective Personalized Recommendations 36

3.4.2. Complexity and Hyperparameterization 37

3.5. Experiments . 38

3.5.1. Data and Exploratory Analysis 39

3.5.2. Performance Evaluations . 41

3.5.2.1. Experiments Using a Holdout Set 42

3.5.2.2. Sequential Evaluation 44

4. PARALLEL PERSONALIZED PAIRWISE LEARNING TO RANK 49

4.1. Introduction . 49

4.2. Personalized Pairwise LtR . 50

4.3. Base PLtR Algorithms . 52

4.3.1. Block Partitioning and PLtR-B 52

4.3.2. No Partitioning and PLtR-N . 55

4.4. Extensions to PLtR Algorithms . 58

4.4.1. Different Sampling Strategies 58

4.4.2. Adaptive Gradient Updates . 60

4.4.3. Parallel LtR from Streaming Feedback 61

4.5. Experiments . 65

4.5.1. Datasets and Evaluation . 65

4.5.2. Statistics of Dataset Graphs . 66

4.5.3. Evaluation of Ranking Accuracy and Speedup 68

4.5.4. Experiments with Extended Algorithms 70

4.5.4.1. Experiments with Different Sampling Strategies 70

4.5.4.2. Experiments with Adaptive Gradient Updates 73

viii

4.5.4.3. Experiments for Parallel LtR from Streaming Feedback 75

5. EFFICIENT TOP-N PREDICTION FROMMATRIX FACTORIZATIONMOD-

ELS . 77

5.1. Introduction . 77

5.2. MF Models for CF from Implicit Feedback 78

5.3. Approximate NN Search in Metric Spaces 80

5.4. A Meta-algorithm for Efficient Prediction from MF Models 81

5.4.1. Enhancing Incremental CF . 85

5.4.2. Complexity . 87

5.5. Comparison to Related Work . 88

5.6. Experiments . 90

5.6.1. Datasets and Experimental Setup 90

5.6.2. Experimental Results . 92

5.6.2.1. Experiments Using a Random Holdout Set 92

5.6.2.2. Time-split Experiments 96

5.6.2.3. Experimenting with RL Extension 98

6. LEARNING INTENTION IN USER SESSIONS 100

6.1. Introduction . 100

6.2. Problem Representation . 101

6.3. Learning Models . 103

6.3.1. RF for Imbalanced Data . 104

6.3.2. Balanced RF for Imbalanced Streams 105

6.3.2.1. The Base Learner . 106

6.3.2.2. Online Bootstrap Sampling 107

6.3.2.3. The Ensemble . 108

6.3.3. Improving Prediction Efficiency 109

6.4. Experiments . 110

6.4.1. Dataset . 110

6.4.2. Experimental Results for BRF 111

6.4.3. Experimental Results for BRFIS 116

6.4.4. Experiments for Prediction Efficiency 120

ix

7. TIMELY PUSH RECOMMENDATIONS IN A COLD START SETTING . 121

7.1. Introduction . 121

7.2. Problem Definition and Representation 122

7.3. Ranker Ensemble for Push Recommendations 123

7.3.1. Profile-based Rankers . 123

7.3.2. Content-based Rankers . 126

7.3.3. Top-M and Top-N Selection . 126

7.4. Experiments . 127

7.4.1. Data and Experimental Setting 127

7.4.2. Experimental Results . 128

8. CONCLUSIONS . 132

8.1. Mining User Feedback Stream for CF 132

8.2. Parallel Personalized Pairwise LtR . 133

8.3. Efficient Top-N Prediction from MF models 134

8.4. Learning Intention in User Sessions . 136

8.5. Timely Push Recommendations in a Cold Start Setting 136

REFERENCES . 138

x

LIST OF FIGURES

Figure 1.1. An overview of the thesis . 2

Figure 2.1. High-level view of a recommender system 6

Figure 2.2. High-level view of personalized LtR for recommender systems . . . 14

Figure 3.1. Single pass FREQUENT algorithm 29

Figure 3.2. Generic data structure for FREQUENT and SPACESAVING . . . 31

Figure 3.3. Training with SASCF algorithm 34

Figure 3.4. True vs. approximate co-occurrences 35

Figure 3.5. Basic co-occurrence statistics of representative items 40

Figure 3.6. SASCF and ranking accuracy . 43

Figure 3.7. Effect of sampling on ranking accuracy 44

Figure 3.8. Sequential evaluation . 45

Figure 3.9. Comparative sequential evaluation with OFFLINECF 46

Figure 3.10. Comparative sequential evaluation with ISGD 47

Figure 4.1. Personalized pairwise learning to rank 51

xi

Figure 4.2. Block partitioning . 52

Figure 4.3. Deciding the set of chunks in a round 53

Figure 4.4. Parallel personalized pairwise LtR with block partitioning 54

Figure 4.5. Hypergraph representations of LtR methods 56

Figure 4.6. Parallel personalized pairwise LtR with no partitioning 57

Figure 4.7. PLtR-N for streams . 62

Figure 4.8. Comparison of vertex degree distributions 67

Figure 4.9. Comparing ranking accuracy and speedup of PLtR algorithms . . 69

Figure 4.10. Comparing different sampling strategies 71

Figure 4.11. Adaptive vs. uniformly at random sampling for PLtR-N 73

Figure 4.12. Comparing adaptive gradient updates 74

Figure 4.13. Comparing parallel LtR for streaming feedback 75

Figure 5.1. Meta-algorithm for efficient top-N prediction from MF models . . 82

Figure 5.2. Exhaustive top-N prediction from MF models 83

Figure 5.3. Example embeddings and cones in the latent space 84

Figure 5.4. MMFNN prediction stage with a MAB 86

xii

Figure 5.5. MMFNN HR@N results . 93

Figure 5.6. MMFNN MRR results . 94

Figure 5.7. MMFNN AD results . 94

Figure 5.8. MMFNN top-N prediction times 96

Figure 5.9. MMFNN MAP@N results in time-split experiments 97

Figure 5.10. MMFNN with MAB experiment 98

Figure 6.1. Session as a timeline . 103

Figure 6.2. BRF2 algorithm . 105

Figure 6.3. BRFIS algorithm . 106

Figure 6.4. Simulation for online bootstrap sampling 108

Figure 6.5. Correlations among features . 112

Figure 6.6. Normalized mean decrease impurity 112

Figure 6.7. ROC curves for different models 114

Figure 6.8. Precision-recall curves for different models 115

Figure 6.9. Predictions using BRFIS . 117

Figure 6.10. An illustration of BRFIS model hyperparameters 118

xiii

Figure 6.11. Comparison of methods for efficient prediction 119

Figure 7.1. Ranker ensemble for push recommendations 123

Figure 7.2. Multi-objective performance measure 129

Figure 7.3. Comparative performance of different rankers 130

xiv

LIST OF TABLES

Table 1.1. Algorithmic contributions . 4

Table 2.1. Explicit vs. implicit feedback . 10

Table 3.1. Comparative complexity and hyperparameterization of SASCF . . 38

Table 3.2. Datasets for testing SASCF . 39

Table 4.1. Datasets for testing PLtR algorithms 66

Table 4.2. Statistics of dataset graphs for LtR 67

Table 5.1. Datasets for testing MMFNN . 91

Table 5.2. MMFNN learning and prediction times 96

Table 6.1. Representation of a session-item pair 102

Table 6.2. Benchmark dataset for intention learning 111

Table 6.3. A comparison of BRF models . 116

Table 7.1. Representation of a user-item pair 125

xv

LIST OF SYMBOLS

1A(x) Indicator Function

f Number of Features or Factors

I Set of Items

I+u Set of Items Known to Be Relevant to User u

L Loss Function

M Learning Model

pu Vector Representation of User u

qi Vector Representation of Item i

rc(i) Known Rank of Item i under Context c

r̂c(i) Estimated Rank of Item i under Context c

r̂−1
c (n) Estimated Item at Rank n under Context c

S Similarity Matrix

U Set of Users

U+
i Set of Users to Whom Item i is Known to Be Relevant

Y Matrix (Tensor) of Known User-Item Relevances

Ŷ Matrix (Tensor) of Estimated User-Item Relevance Scores

ŷc(i) Estimated Relevance Score of Item i under Context c

γ Learning Rate

λ Regularization Parameter

σ Sigmoid Function

ψ Number of Processing Units

xvi

LIST OF ACRONYMS/ABBREVIATIONS

AD Aggregate Diversity

ALS Alternating Least Squares

AS Adaptive Sampling

AUC Area under Receiver Operating Characteristic Curve

BPR Bayesian Personalized Ranking

BRF Balanced Random Forest

BRFIS Balanced Random Forest for Imbalanced Streams

CBF Content-based Filtering

CF Collaborative Filtering

CTR Click-through Rate

EWMA Exponentially Weighted Moving Average

GBDT Gradient-boosted Decision Tree

GF Graded Relevance Feedback

HR@N Hit Rate in Top-N Recommendations

ICR Item Conversion Rate

KMT K-means Tree

LFM Latent Factor Model

LtR Learning to Rank

MAB Multi-armed Bandit

MAP@N Mean Average Precision at Cut-off N

MBM Maximum Bipartite Matching

MF Matrix Factorization

MMFNN Meta-algorithm for Efficient Prediction from MF Models

MRR Mean Reciprocal Rank

NN Nearest Neighbors

PLtR-B Parallel Pairwise LtR with Block Partitioning

PLtR-N Parallel Pairwise LtR with No Partitioning

PLtR-NS PLtR-N for Streams

xvii

RF Breiman’s Random Forest

RKT Randomized K-d Trees

RL Reinforcement Learning

RS Recommender System

SASCF Scalable and Adaptive Stream-based CF Algorithm

SGD Stochastic Gradient Descent

SLtR Sequential Pairwise LtR

SVD Singular Value Decomposition

WRMF Weighted Regularized Matrix Factorization

1

1. INTRODUCTION

Recommender systems [1, 2] are becoming increasingly more decisive in how we

consume goods, services, and digital content. Consequently, the ever-increasing scale

and diversity of their applications necessitate effective recommender systems which are

based on more efficient ranking models with higher predictive power. Such models are

typically constructed by some form of learning to rank (LtR) [3] using available user

feedback and associated information in the system.

On the contrary to popularized examples [4,5] based on explicit relevance assess-

ments, many real-life recommender systems are based on implicit feedback [6–8] which

is inferred from different types of user behavior and interactions in the system. This is

usually because modeling implicit feedback typically requires no extra effort from the

user and, additionally, it can capture the user-item relevance information in the system

better through time. In this thesis, the recommendation problem is mainly considered

as personalized LtR from such feedback. Novel efficient personalized LtR methods are

proposed to learn from large-scale implicit feedback datasets or streams.

In addition to scale, recommender systems need to handle time from various

aspects. Accordingly, we observe that there are almost always some requirements

imposed by the particular application area for time-sensitive recommendations. In

this thesis, we also emphasize the importance of time-sensitive recommendations and

distinguish the major challenges for achieving them. With each proposed personalized

LtR method, we try to address some of these challenges as well. While we provide a

detailed view in Section 2.1.3, we list these challenges below:

(i) Efficient and adaptive model learning

(ii) Fast personalized predictions

(iii) Session-based recommendations

(iv) Time dependency and time awareness

2

Implicit

Feedback

Time-sensitive

Recommendations

Learning

to Rank

THESIS

Figure 1.1. An overview of the thesis.

Therefore, in general, the contributions in this thesis can be seen at the intersec-

tion depicted in Figure 1.1. Furthermore, in particular, the following contributions are

made and presented in their dedicated chapters:

• Mining user feedback stream for collaborative filtering. We propose SASCF, a

novel scalable and adaptive personalized recommendation algorithm, in which

the underlying neighborhood model can be updated with the streaming user

feedback. The algorithm uses a space-efficient data structure which can also be

used to retrieve an item’s top-k co-occurring items in O(k) time. This enables

finding similar items quickly with respect to various heuristic similarity measures,

and hence, enables fast personalized predictions based on the items known to be

relevant to a user through the user’s feedback history.

• Parallel personalized pairwise learning to rank. Pairwise learning to rank is known

to be suitable for personalized recommendation tasks involving implicit feedback.

Focusing on collaborative filtering, we show that its efficiency can be greatly im-

proved with parallel stochastic gradient descent schemes. Accordingly, we first

propose PLtR-B and PLtR-N algorithms for the pairwise learning to rank problem

setting. We then show the versatility of these proposals by showing the applica-

bility of several important extensions commonly desired in practice. Theoretical

as well as extensive empirical analyses of our proposals show remarkable efficiency

results for pairwise learning to rank in offline and stream learning settings.

3

• Efficient top-N prediction from matrix factorization models. Personalized LtR

based on matrix factorization is a prevailing approach. We propose a meta-

algorithm, MMFNN, which can employ various common matrix factorization

models, drastically improve their prediction efficiency using approximate nearest

neighbor search methods, and still perform comparably to standard prediction

approaches or sometimes even better in terms of predictive power. Using various

batch, online, and incremental matrix factorization models, we present detailed

empirical analysis results on many large implicit feedback datasets from different

application domains.

• Learning intention in user sessions. We propose a way to represent the intention

learning problem by converting session information into feature vectors. Then,

we propose batch and stream versions of an ensemble learning method which can

take into account the high class imbalance due to the rarely occurring purchasing

feedback. We also investigate several ways for efficient prediction from this en-

semble since the prediction of intention needs to be fast enough for time-sensitive

recommendations. We show our experimental results on a recent e-commerce

benchmark dataset.

• Timely push recommendations in a cold start setting. Push recommendations typ-

ically have explicit requirements to satisfy multiple stakeholder objectives while

being time sensitive. We propose an effective hybrid personalized LtR approach

for large-scale push recommendations especially in an item cold start setting.

While the proposed approach can be used for different applications, our case

study is a job recommender system, and we work on a recent real-life benchmark.

Table 1.1 summarizes the algorithms contributed in this thesis. These contribu-

tions are based on publications by the author during his Ph.D. studies, and they are

cited in the first column. The time sensitivity column refers to the four previously

listed challenges and shows that an algorithm provides mechanisms for solving the cor-

responding challenges. Additionally, the table summarizes the types of feedback the

algorithm can handle, the LtR approach used, and the recommendation strategy. The

details of all columns 2-5 can be found in Chapter 2.

4

Table 1.1. Algorithmic contributions.

Algorithm Time

sensitivity

Feedback

type

LtR

methods

Strategy

SASCF [9] (i), (ii), (iv),

useful for (iii)

Implicit or

explicit

Similarity learn-

ing

CF

PLtR fam-

ily [10–12]

(i), (iv), use-

ful for (iii)

Implicit or

explicit

Pairwise LtR.

User-item

model.

CF

MMFNN meta-

algorithm [13]

(ii), (iv), use-

ful for (iii)

Implicit or

explicit

Pointwise, pair-

wise, or listwise

LtR. User-item

model.

CF, user-

item

models

using dot

product

space

BRF family for

intention learn-

ing [14, 15]

(i), (ii), (iii),

(iv)

Implicit Pointwise LtR.

User-item

model.

Supports

all

Ranker

ensemble for

push recommen-

dations [16]

(i), (ii) Implicit Pointwise LtR.

User-item

model.

Hybrid,

CBF

The thesis is organized as follows: In Chapter 2, the essential background is

presented for recommender systems and implicit feedback as well as a clearer view of

the challenges for achieving time-sensitive recommendations. The same chapter also

provides an overview of LtR for recommender systems in offline and stream learning

settings together with the evaluation methods. In Chapter 3, we present our approach

for finding neighborhoods by mining user feedback stream and the SASCF algorithm.

Then, in Chapter 4, we study efficient parallel pairwise LtR in offline and stream

learning settings and present the PLtR-B and PLtR-N algorithms along with their

extensions. The meta-algorithm, MMFNN, for improving top-N prediction efficiency

5

of matrix factorization models is presented in Chapter 5. Our approach for learning

intention in user sessions is presented in Chapter 6 and for timely push recommen-

dations in Chapter 7. Finally, we conclude in Chapter 8 with a general discussion of

findings and future research directions.

6

2. BACKGROUND AND FOUNDATIONS

2.1. Recommender Systems Essentials

Recommender systems [1,2] perform information filtering to find the most suitable

items for system users among a large number of choices. Since they are effective in

dealing with the information overload problem [17], they have become an integral part

of many web-based systems, e-commerce, and social networks due to the ever-increasing

number of users and items in such systems. The term item in a recommender system

defines a general concept which may refer to, for example, an advertisement, a retail

product, or news. Some of these items can be long-standing in the system such as

a book whereas others can be shorter-lived such as a job advertisement, and even

ephemeral such as recent news. Recommender systems can also recommend other

users or a sequence of items instead of individual items.

Data input: users,
items, implicit/explicit

user feedback,
item/user/session fea-
tures, any other con-
text (time, location,

mood, ...), intention, ...

RSmodel

Objectives:
multiple stake-

holder expectations

Prediction query:
user, additional
context, intention

Prediction: a
ranked list of items
for the queried user

Figure 2.1. High-level view of a recommender system.

A high-level view of a recommender system is given in Figure 2.1. At the core

is a recommender system model which learns from the data input to the model. This

learning can be guided with the objectives of multiple stakeholders in the system.

For example, while the common user objectives may refer to effective personalization,

discovery of new serendipitous items, and privacy, the item owner or the service provider

may desire to increase sales from recommendations, push under-explored or new items,

7

and ensure the robustness of the system. Therefore, the ultimate goal of a recommender

system can be thought of as optimizing these objectives by making the most out of

available input to the system. When a recommender system is queried, it outputs

a ranked list of items which attempts to reflect the goal. One or more measures of

performance can be used to monitor the achievement of the goal.

2.1.1. Common Strategies

Most approaches for building recommender systems fall under a few common

strategies. These strategies can be listed as follows:

• Weak personalization: These approaches include recommending items which, for

example, are the most recent, the most popular, or have the highest CTR based on

some relatively simpler statistics. Association rule extraction from user feedback

histories is also popular. Such approaches may impose a weak form of person-

alization, for example, by excluding the popular items with which the user has

already interacted or by finding the most frequently co-purchased items with the

latest interacted item. But, they can still be strong baseline heuristics depending

on the particular application area.

• Content-based filtering (CBF): The common approach is based on building a user

profile from user’s past feedback [18]. This profile often amounts to a sparse fea-

ture vector which contains normalized scores derived from the contents of the

previously interacted items. It can also be mapped to concepts using, for exam-

ple, latent semantic indexing [19]. In some cases, the user profile can contain

demographic features or prespecified features corresponding to some item fea-

tures [20]. Recommendations can be based on the ranked similarity of an item

content with the user profile. Alternatively, user, item, and additional context

information can be merged in a vector which is then mapped to some relevance

score through pointwise or pairwise LtR [16, 21, 22]. We note that CBF may re-

quire extensive application-specific feature selection or extraction, but it is useful

especially in cold start scenarios [23].

8

• Collaborative filtering (CF): This strategy [24] is primarily based on user feed-

back in the system, and it has several flavors: User-based CF finds users with

similar feedback histories and recommends their items to each other based on

some weighted similarity scheme. Item-based CF finds items which receive feed-

back from a similar subset of users, and then the users are recommended similar

items to those in their feedback history. These two methods are commonly called

neighborhood-based CF. Latent factor models (LFMs) are also prevalent in CF,

and they map users and items into a space where users with similar tastes are

recommended similar items. In general, CF can be considered an application-

agnostic strategy which potentially reduces efforts on feature selection and ex-

traction. Apart from user feedback, additional context such as time and location

can also be used in CF models. Furthermore, side information from users and

items can be integrated [25]. On the other hand, CF can suffer from cold start.

One way to alleviate this problem is using incremental algorithms which can

incorporate the newest feedback quickly into the model.

• Hybrids : Different approaches to recommender systems have their own strengths

and weaknesses. Furthermore, the same approach with different hyperparameter-

izations or data can yield different results. Therefore, combining different recom-

menders have been found useful. Common hybridization methods include [26]:

Weighted combination schemes, mixed presentation from different recommenders,

and meta-level hybrids in which a previous recommendation model is the input

of the next. It should be noted that a good trade-off between hybridization and

efficiency is often of concern in large-scale systems. Furthermore, since hybrids

are inevitable in many applications, individual strategies within an hybrid is often

desired to be efficient.

2.1.2. Implicit Feedback

Two commonly distinguished types of user feedback in recommender systems

are explicit and implicit feedback. The former refers to explicit relevance assessments

of items by the users. It is still prominent in RS research as popularized by the

9

historically available benchmark datasets [5] and the Netflix prize challenge [4]. The

latter type of feedback is implicit in the sense that it does not require an explicit

assessment process by the user. Implicit feedback is extracted from user behavior

and any type of user interaction with the system such as a click, view, purchase, or

bookmark [27]. It may be inferred as some sort of binary or graded item relevance for

the user. Here, the grade refers to a confidence value or information based, for example,

on the frequency, duration, or perceived importance of the user feedback [7,28]. Implicit

feedback may also facilitate useful additional information such as dwell times and

various other session-based [14] or longer-term statistics.

Despite the popularity of explicit feedback in research, real-life recommender

systems are often based on implicit feedback [6–8]. One of the main reasons is that

it can be infeasible to collect explicit human assessments in many real-life large-scale

systems. Another is that implicit feedback can reflect more reliable and up-to-date item

relevance to a user [3] when collected over time. In other words, rather than obtaining

explicit user feedback for an item at a fixed point in time, it can be more informative to

track user’s behavior for the item over time. On the other hand, recommender systems

based on implicit feedback have their own difficulties. Table 2.1 presents a comparison

of explicit and implicit feedback for recommender systems.

Typical examples of recommender systems based on implicit feedback include:

video recommendation to users or user groups based on watching behavior, music

recommendation based on listening behavior, job recommendation based on click and

application behavior, news and social media recommendations based on interaction his-

tories with the system, and online retail recommendations based on click and purchase

behavior. Due to dataset scarcity, explicit feedback datasets are sometimes converted

into implicit feedback datasets using binarization or some other form of discretiza-

tion [6, 30]. This is a viable approach since irrespective of the explicit rating, a user’s

interaction with an item may still indicate some sort of relevance.

10

Table 2.1. Explicit vs. implicit feedback in RSs.

Explicit Implicit

Refers to explicit user assessments each

usually collected at a fixed point in time

Refers to unobtrusively collected and

possibly repetitive user behavior and

interactions

Relevance typically expressed on a rat-

ing scale

Binary or graded relevance can be ac-

quired, for example, through frequency,

duration, perceived importance of the

feedback. Modeling unknown or nega-

tive feedback can be more critical.

A single feedback instance may be per-

ceived as a strong signal of relevance.

However, it can also refer to a biased

or even misleading user assessment.

A single feedback instance is often a

weak signal of relevance. However,

since implicit feedback refers to what

the users actually ”do”, accumulating

feedback can become quite reliable.

Models are often evaluated using error

metrics [29]

Models are often evaluated using

ranking-based measures

Harder to collect. People do not tend

to assess items explicitly outside a few

domains.

More abundant. May arrive as huge

log data or massive streams. Algorithm

efficiency and adaptivity can be rela-

tively more important.

More popular in research due to histor-

ical dataset availability

Most real-life applications are based on

implicit feedback. However, availabil-

ity for research purposes is relatively

low.

11

2.1.3. Time Sensitivity

In a broad sense, time-sensitive recommendations can be described as sufficiently

accurate recommendations which have to be delivered in a timely manner. As moti-

vated in Chapter 1, we distinguish major challenges for achieving time-sensitive rec-

ommendations and present a detailed view below.

2.1.3.1. Efficient and Adaptive Model Learning. Efficient model learning with a mini-

mal trade-off of predictive power is a major concern in recommender systems. Further-

more, since many real-life recommender systems are hybrids, individual recommenders

need to be efficient. Such requirements often necessitate faster batch training schemes

or incremental training.

It is also often desired that a model is adaptive so that the changing dynamics

of the system are reflected in the model quickly. Model adaptivity is often handled by

performing periodic retraining with full or windowed historical data. Therefore, to be

able to increase the training frequency, efficient training schemes are desired. Incre-

mental training can also be used to increase adaptivity since it is able to incorporate

the latest data into the model without retraining from the beginning. This also fits the

nature of feedback data in recommender systems which comes in a streaming fashion,

and the learning should naturally be an incremental process. Incremental training can

also enable the model to gradually forget the past data and adapt to the latest.

In general, efficient and adaptive model learning can achieve faster adaptation to

changing temporal dynamics such as incoming cold start users/items, changing user

preferences, and drifting item popularity.

2.1.3.2. Fast Personalized Predictions. Fast predictions from a model are often a key

but underestimated requirement in web-based intelligent systems research. Even though

the number of prediction queries can be massive, it is often cited that practical sys-

tems today should respond to each query well under 100 milliseconds [3]. It should

12

be noted that personalized queries can even be more complex than non-personalized

ones since the predictions are always conditioned on a user. Therefore, apart from

the model learning time, real-time predictions from a model have strict response time

requirements.

Although the RS research usually focuses on training highly accurate models,

costly predictions may prohibit accurate but too complex models. Even linear models

which are often relatively faster to yield useful predictions can be problematic when

the number of items is large and the number of queries is massive.

One solution for faster personalized predictions is to precompute predictions for

each user. The drawback of this approach is that precomputation itself can be costly

and result in decreasing the training frequency. Moreover, the predictions are fixed

until the next precomputation which may not be desired in dynamic recommendation

domains. Therefore, efficient and real-time personalized prediction schemes are always

desired in practice.

2.1.3.3. Session-based Recommendations. Recommendations based on session infor-

mation may pose some specific challenges. If no prior user information is available,

personalized predictions must be based on the ongoing session information only. This

may also necessitate a quick model learning scheme from incoming session feedback.

Such a case is quite common in practice due to anonymous user behavior or when the

recommendation service is outsourced [31]. In other cases, it may be desired to incor-

porate session information into the available user model to merge long- and short-term

interests [32].

Session information can also be actively monitored to predict user context or

intention [14]. This can facilitate more customized recommendations. On the other

hand, modeling context or intention can be challenging due to the limited session

information as well as response time constraints.

13

2.1.3.4. Time Dependency and Time Awareness. Recognizing two concepts, time de-

pendency and time awareness, has been found useful in RS research [25, 33], and they

are also important for time-sensitive recommendations. The former refers to the ability

of a model to consider time order of the user feedback. This aligns with our notion

of adaptive learning in Section 2.1.3.1. Furthermore, it can sometimes be achieved by

filtering recommendations during the prediction phase. The latter refers to taking into

account recurrences in time such as seasonality or periodicity of user preferences. While

handling time dependency can also be useful for time awareness, time-aware models are

often studied under the topic of context-aware recommender systems [34,35]. Common

approaches include incorporating time context as an extra model dimension as well as

filtering the input or output of the model for the context of interest.

2.2. Learning to Rank for Recommender Systems

This section provides preliminaries on LtR for recommender systems. The focus

is on important modeling approaches which can handle implicit feedback and achieve

time sensitivity. We also discuss the evaluation of resulting models.

2.2.1. Personalized Learning to Rank Framework

With appropriate model selection, Figure 2.1 allows us to see the recommendation

problem as an LtR [3, 36, 37] problem. Since the recommendations typically require

some sort of personalization, that is, the user is (or part of) the context [38], the

problem is called personalized learning to rank in this thesis.

LtR is a flourishing area of machine learning [39] in which the generic problem

is to learn a good overall ranking model from available partial rankings or known

relevance information by using suitable objective functions. The problem sometimes

transforms into regression or classification in which case the predicted scores are used

to rank entities. LtR has important applications especially in information retrieval.

Examples include document retrieval for a given query or sentence retrieval for machine

translation [36]. In the case of recommender systems, a ranked list of items is retrieved

14

for a given user or more generally for a given context. Since the number of items are

usually quite large, it is computationally expensive to find the best ranking for a user

over all possible item permutations. Therefore, personalized LtR models often predict

relevance scores for items which are then sorted to find a good ranking.

Training tuples:

(user,

item(s),

relevance of item(s),

additional in-

formation)

LtR model

learning

Learning

objectives

LtR model

predictions
Prediction query:

(queried user,

additional in-

formation)

Prediction:

a ranked list of items

for the queried user

Figure 2.2. High-level view of personalized LtR for recommender systems.

A high-level view of personalized LtR for recommender systems is given in Fig-

ure 2.2. The LtR model learns from the training tuples by considering the learning

objectives typically through some objective function, such as a loss function. As the

training tuples keep coming, the model keeps learning through periodic retraining, in-

cremental learning, or possibly reinforcement learning [39, 40]. In the meantime, the

model supports prediction queries and outputs a ranked list of conceivably relevant

items for each queried user. A useful taxonomy of LtR approaches is proposed in [3]

basically referring to the different types of training tuples and the corresponding objec-

tive functions. We consider this taxonomy in our personalized LtR setting as follows:

• Pointwise LtR: In this approach, each training tuple contains a user and a single

item. The item is known to be relevant to the user with some degree of rele-

vance. The model makes use of a tailored objective function which takes some

feature representation of the user and the item as parameters, and it tries to learn

15

personalized relevance scores for all items by optimizing the associated objective

function.

• Pairwise LtR: The training tuple contains a user and a pair of items for which

the user has a pairwise preference. A pairwise objective function takes this input

and facilitates learning to rank the more relevant items above the less relevant.

In other words, pairwise LtR works with partial rankings between items. The

error is typically based on the number of inversions or how well separated the

pairs are [10].

• Listwise LtR: The training tuple contains a user and an arbitrarily large list of

items with their degree of relevance to the particular user. An objective func-

tion considers the partial ranking implied by this item list. In some cases, the

objective function can be derived explicitly from a suitable information-retrieval-

specific measure, for example, by considering the positional information of items

to optimize directly for top-N recommendations [41]. On the other hand, listwise

LtR can be computationally expensive since each training tuple may involve up-

dates based on many items. This can especially be problematic for incremental

learning. Finding the optimal hyperparameter values for listwise LtR models can

also be more costly.

A personalized LtR model can also be a hybrid of different LtR models. If

the problem can be transformed into classification or regression, common ensemble

methods in machine learning can be used [39]. A hybrid model can also be formed by

considering the special cases in recommender systems [26] or rank aggregation [36].

Although designing good objective functions is at the core of personalized LtR,

efficiency of models with large-scale data should not be overlooked [3] in modern LtR

systems. In Section 2.1.3, the challenges for achieving time-sensitive recommenda-

tions are distinguished which cover model efficiency and beyond. Consequently, in

Sections 2.2.2 to 2.2.4, we discuss some important modeling approaches which can be

suitable for defeating such challenges.

16

2.2.2. Learning Similarities

Many personalized LtR approaches are primarily based on learning a similarity

model for users or items which explicitly or implicitly constructs a similarity matrix,

S. These similarities can then be used to decide nearest neighbors and facilitate rec-

ommendation queries [42]. Examples include:

ŷu(i) =
∑

j∈I+u

wujSij and ŷu(i) =
∑

v∈U+
i

wviSuv, (2.1)

for item-based CF or CBF and user-based CF, respectively, where w. is an application-

specific weighting term.

While the user feedback for items is not missing at random [43], in real-life sys-

tems, it is almost always incomplete. In fact, it is not uncommon that a user-item

feedback matrix is well above 99% sparse. Furthermore, the existing feedback may

become obsolete or imply less relevance over time. Therefore, user or item similarities

based on feedback histories are never exact and rather learned from what is available.

A common objective is to approximate a co-occurrence-based similarity measure

such as cosine similarity or conditional probability from available feedback. For exam-

ple, in the case of item-based CF, for every user, every available co-occurring item pair

can be considered to update a normalized score which eventually results in an item sim-

ilarity matrix through batch or incremental approximation methods. This approach is

relatively straightforward, but it has proven to be very effective in practice [44,45]. We

note that similarities computed this way are not necessarily based on some distance in

a metric space. However, this is not a strict requirement either, since we are usually

trying to obtain a ranking as per Equation 2.1.

Similarity learning can also be seen as a form of pairwise learning. Some notable

approaches are based on maximum margin classifiers with kernel tricks [46,47] and AUC

optimization [48]. These approaches can learn interesting similarity measures from

17

co-occurring item pairs in the pairwise LtR setting. While such similarity measures

increase predictive power, several problems may arise as to learning time efficiency

especially if the metric rules are maintained and space efficiency due to learning a

much denser or full similarity matrix.

Learning item embeddings in latent spaces through specialized listwise loss func-

tions [49,50] is also possible. These approaches have the potential benefit of discovering

interesting similarities while bringing space efficiency due to compact representations.

On the other hand, hyperparameter tuning as well as online updates are usually more

costly due to more complex loss functions. More recently, recurrent neural networks

are extensively researched for predicting the next item for a given sequence of session

items [51]. Such networks have the potential of including side information and pro-

vide a way to model the time. However, the trade-off between accuracy and efficiency

should be justified in different applications [52].

Finally, some methods try to learn highly similar neighbors directly in a less

lazy [39] fashion, that is, they try to learn a sparse representation of the similarity

matrix which maintains only a set of items highly similar to an item (or possibly users

highly similar to a user). For example, elastic net regularization has been used for this

purpose [53] with a constrained optimization scheme. However, such an optimization

scheme can be prohibitively inefficient for large-scale applications. One possible rem-

edy is relaxing the constraints such as non-negative similarities and solving a simpler

problem using SGD [54]. An interesting approach in direct neighborhood learning can

be trying to maintain top-k neighbors using data stream mining techniques [9]. We

discuss this approach in detail in Chapter 3.

2.2.3. Learning User-Item Models

Rather than concentrating on the similarities between users or items, user-item

models try to model users and items in a common feature space using suitable repre-

sentations. In the following, we categorize these models as latent factor models and

others.

18

2.2.3.1. Latent Factor Models. The most common model is based on estimating a

user-item relevance matrix by learning the following low-rank matrix factorization [55],

Ŷui =

f∑

k=1

PkuQki, (2.2)

where P ∈ Rf×|U |, Q ∈ Rf×|I| and typically the number of factors, f ≪ |U |, |I|.
This has its roots in the successful application of SVD to some information retrieval

tasks [19, 56]. On the other hand, a direct application of SVD is problematic in many

personalized LtR scenarios since SVD optimizes a particular type of loss function and

requires a dense input matrix. In the more general case, the matrix factorization model

transforms into learning a relevance tensor [38] with the possible inclusion of additional

contexts in the model,

Ŷc1c2...cmi =

f∑

k=1

Qki

m∏

j=1

Ckcj . (2.3)

LFMs usually fit well under the personalized LtR framework. They have several

obvious advantages including space efficiency due to low-rank representations and ver-

satility for tailoring different loss functions. Unlike learning from explicit feedback, in

the implicit feedback case, the main objective is usually not to complete or approxi-

mate a known preference matrix, but rather learn a relevance scoring matrix for good

personalized rankings of items. Some successful LFM approaches for implicit feed-

back can be considered under the pointwise [7,57], pairwise [48], and listwise [41] LtR

framework, and we cover them more extensively in Chapters 4 and 5.

2.2.3.2. Other User-Item Models. If the user and item vectors are in the same space,

we can simply look at their similarities. This is the typical scenario in CBF where

user profiles are matched with the item content. The vectors can be in the original

space using sparse representations, or we can also map these representations to a latent

space [16] and measure their similarities there.

19

Alternatively, a user and an item (or items) together with additional context can

be represented using a single feature vector, xui. This representation allows us to use

successful classification or regression models [39] for learning ranking scores [16,22] as

well as some hybrid models [21]. Two examples are:

ŷu(i) =
1

1 + e−w⊤xui
and p̂(ru(i) < ru(j)) =

1

1 + e−(w⊤xui−w⊤xuj)
, (2.4)

for the pointwise and the pairwise [58] LtR cases, respectively. On the other hand,

such models typically require an extensive effort for engineering the features of xui.

Furthermore, to be practical for personalized LtR, both the learning and the prediction

efficiency of the models are important. Especially, as the number of items gets larger,

personalized predictions often necessitate a multi-stage pipeline from a simpler to an

increasingly more complex model [16,59]. We discuss these issues further in Chapter 7.

2.2.4. Learning from Data Streams

User feedback naturally arrives at the system as a data stream. Furthermore, to

deal with the challenges for time-sensitive recommendations discussed in Section 2.1.3,

LtR models which learn from streaming feedback can be useful. In the following, we

mention two different research efforts to learn from such streaming data.

2.2.4.1. Data Stream Mining. In this approach, the common assumption is that there

is a massive flow of data into the system so that it is infeasible to maintain all of the

data in a fast memory and also to retrain the model from scratch periodically. Rather,

data stream mining models try to learn in an incremental fashion from the incoming

data and maintain a relatively space-efficient summary of it. This way the model

learning process can also use the available computational resources more effectively [60].

Such models are able to approximate many useful statistics of a theoretically infinite

stream using elaborate sampling, counting, and filtering techniques [61]. Furthermore,

they facilitate incremental versions of common machine learning approaches such as

classification, clustering, and association rule learning [62], and more recently LtR [33].

20

Data stream mining especially considers the time dependency and adaptivity concepts

given in Section 2.1.3, and we provide more detailed discussions in Chapters 3 to 6.

2.2.4.2. Reinforcement Learning. Most personalized LtR methods are based on super-

vised learning. Alternatively, in some applications, user feedback which follows from

a previous recommendation list predicted by the system, can be imagined as a reward

(or penalty). Such a system can implement reinforcement learning [40] and learn from

incoming feedback in a sequential fashion to maximize the total reward.

The state-of-the-art learning approach in this direction is a multi-armed bandit

(MAB) in which an arm typically corresponds to an item, and it has some unknown

payoff distribution to be learned with a sequential explore-and-exploit scheme [39,

40]. To achieve personalized recommendations, this approach has been extended to

contextual bandits [63] in which the expected payoff is a function of both the context

(such as a user) and the item.

In general, while reinforcement learning approaches are promising, it can be hard

to implement them effectively in real-life applications, for example, when the number

of items is large or regarding their prediction efficiency. Furthermore, it is relatively

hard to evaluate reinforcement learning approaches especially in an offline fashion [63].

An extended discussion about these issues is given in Chapter 5.

2.2.5. Evaluation

The primary objective in many RSs is user satisfaction. Yet, there can be ad-

ditional objectives regarding other stakeholders of the system. Given the intricacy

of such system objectives, it is often too hard to evaluate everything using a single

performance criterion. Therefore, breaking system objectives into smaller performance

criteria is found useful for understanding and improving the system [64]. Furthermore,

the experimental setting for evaluations is rather important, and it is affected by the

21

nature of available data. In this section, we introduce important evaluation concepts

which are used throughout this thesis.

2.2.5.1. Ranking Accuracy. A commonly used performance criterion is accuracy. When

explicit ratings are available, this can be based on some convenient error metrics such

as root mean squared error [4] or mean absolute error. In the case of personalized LtR

for implicit feedback, we are rather interested in evaluating the accuracy of ranked

lists for some test users. Although the user feedback in a system is vastly missing and

the number of false positives is prone to overestimation, measures based on precision,

recall, or false positive rate in a limited top-N [29] or fully ranked list of items are

common. One such widely used measure is hit rate [44] and it is defined as,

HR@N =
1

|U⋆|

|U⋆|∑

u=1

|{i⋆u} ∩ {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)}|, (2.5)

where a hit means that a hidden test item for a test user, i⋆u, appears in the user’s

top-N predicted recommendations, and U⋆ ⊆ U is a set of test users. Another is an

estimate of AUC over the test users [38, 65],

ÂUC =
1

|U⋆|
∑

u∈U⋆

1

|I+u ||I \ I+u |
∑

i∈I+u

∑

j∈I\I+u

H(ŷu(i)− ŷu(j)), (2.6)

where H is the Heaviside step function and ŷu(k) is the estimated relevance score

which decides ranking of an item k for a user u. In other words, H(.) = 1 if and only if

r̂u(i) < r̂u(j). This measure can be adapted for various experimental settings and also

turned conveniently into a differentiable objective function for personalized pairwise

LtR [38].

Some other useful accuracy measures are also adapted from Information re-

trieval [56, 66]. Mean reciprocal rank is defined as,

MRR =
1

|U⋆|

|U⋆|∑

u=1

1

r̂u(i⋆u)
, (2.7)

22

and takes the rank information of a hidden item into account in a different way com-

plementing measures like HR@N . A truncated version of mean average precision,

MAP@N [67, 68], can also be suitable to some experimental settings. MAP is a point

estimate of precision and recall [66], and its truncated version is convenient for eval-

uating personalized LtR algorithms when each test user has an arbitrary number of

relevant test items. MAP@N is measured as follows,

P(u, n) =
1

n

n∑

m=1

1I⋆u(r̂
−1
u (m))

AP(u,N) =
1

min(|I⋆u|, N)

N∑

n=1

P(u, n)× 1I⋆u(r̂
−1
u (n))

MAP@N =
1

|U⋆|
∑

u∈U⋆

AP(u,N), (2.8)

where I⋆u is assumed to be a set of relevant test items for a test user u.

2.2.5.2. Other Performance Criteria. There are other performance criteria beyond

ranking accuracy which can be important for different RS applications. These in-

clude diversity, novelty, and serendipity of recommendations, adaptivity to changing

system dynamics, efficiency, and scalability [64].

Increasing diversity, novelty, or serendipity of recommendations can have a trade-

off with accuracy [69]. However, it is still important to be able to evaluate them so

that this trade-off can be controlled, or different LtR algorithms can be compared

for how they handle the trade-off. For example, aggregate diversity [70] can be an

important performance criterion to observe the diversity of items across all top-N

recommendations, and it can be measured as follows,

AD =

−
|I|∑
i=1

p(i) log p(i)

log |I| , p(i) =

|U⋆|∑
u=1

|{i} ∩ {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)}|

|I|∑
k=1

|U⋆|∑
u=1

|{k} ∩ {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)}|

. (2.9)

23

This equation corresponds to a normalized entropy measure having the maximum en-

tropy obtained from the uniform distribution of items as denominator.

As discussed in Section 2.1.3.1, adaptivity is an important challenge for time-

sensitive recommendations. It can be evaluated qualitatively by observing whether the

proposed LtR model provides mechanisms that are, for example, sensitive to changing

user preferences or able to incorporate cold start users/items quickly into the model.

Adaptivity can also be evaluated quantitatively, for example, by measuring accuracy

of recommendations over time.

While accuracy of a personalized LtR model is always desired, a highly accurate

model can be useless if its efficiency is inadequate. Both learning and prediction

efficiency are important as discussed in Section 2.1.3. In addition to the computational

complexity analysis, they can be evaluated by measuring the execution time for the

learning process and the query, respectively. Furthermore, speedup patterns can be

assessed for comparing improved models to a baseline. Besides time efficiency, space

efficiency of an LtR model can also be an important performance criterion regarding

the training data it requires as well as the number of parameters it maintains for a

large number of users and items. We note here that it is important to use the same

experimental setup to be able to compare time and space efficiency of different models.

Efficiency is also related to scalability which refers to the ability of a model to achieve

comparable accuracy and efficiency results with growing number of users, items, and

feedback instances. This can be evaluated qualitatively by observing whether the

model supports useful mechanisms such as sampling or parallelism to handle growth

and quantitatively by comparing accuracy and efficiency results at different scales.

We finally note that different performance criteria or variations of a performance

criterion can be combined to obtain an aggregated performance score, for example, to

evaluate a multi-objective system [20, 71].

24

2.2.5.3. Experimental Settings. General machine learning experiment design princi-

ples [39] such as forming a testable hypothesis and fixing uncontrolled factors are also

valid for personalized LtR models. On the other hand, it is worthwhile to discuss two

important experimental settings: online and offline.

In real-life RS applications, it is always of interest to carry out online experiments

such as A/B testing [72, 73] to evaluate alternative LtR models for the system. Such

experiments typically allow the alternative models to produce recommendations for

different random subsets of users for a certain period of time. During this period, the

user feedback to the models is analyzed comparatively. Since the models are tested on

real users in real time and in an exploratory fashion, comparing many of them can cause

user dissatisfaction. Therefore, online experiments are usually useful after extensive

offline experiments so that only the reasonable candidate models can be tested.

Offline experiments are typically based on logged user feedback in the system.

Such logs can include binary or graded relevance feedback as well as additional context

and content information to form useful datasets for understanding some aspects of the

system. Carefully curated datasets for offline experiments also enable reproducibility

in research. The validation or test sets in an offline experiment are typically obtained

by hiding some of the user-item relevance information. Depending on the particular

application and the available information in the dataset, the hiding process may differ.

One common approach is forming a holdout set by leaving out a random relevant item

for each test user. After training the model with the rest of the data, each test user

is recommended a top-N list which can be used to evaluate many accuracy and other

performance criteria. While being versatile, this approach may not consider the natural

time order of the user feedback. Therefore, when time information is available in the

dataset, it can be complemented by further experiments. A useful approach in this

direction is to use a time-split in which user feedback up until the split is accepted as

training data and the rest is used as test data. This can be used to evaluate accuracy

and efficiency of both offline and stream learning for personalized LtR. A difficulty

with this approach is that we are left with a set of test users having a variable number

of feedback instances after the time split. In the case of accuracy measurements,

25

MAP@N can be used to handle this situation. An extreme evaluation approach in the

case of stream learning can be the first-test-then-train approach [74, 75] in which an

incoming feedback instance or tuple is first used for testing the model and updating

a performance score, and then it is used for updating the model in an incremental

fashion.

26

3. MINING USER FEEDBACK STREAM FOR

COLLABORATIVE FILTERING

3.1. Introduction

This chapter presents a novel scalable and adaptive algorithm for personalized

recommendations in which the underlying neighborhood model can be updated with

the streaming user feedback. The algorithm does not perform an offline search for

finding nearest neighbors in an item similarity matrix. Instead, taking a landmark

window over the user feedback stream, a space-efficient summary structure is main-

tained. This structure corresponds to the result of a standing iceberg query for finding

every item’s top-k frequently co-occurring items over a specified support threshold.

Mining such frequent co-occurrences can facilitate approximate computation of several

useful similarity measures. The algorithm offers space efficiency and scalability thanks

to the neighborhood summary structure. It also offers adaptivity in the sense that

newly arriving users, items, and user feedback on items are quickly integrated into the

model. The up-to-date model can readily be used for efficient personalized predictions

with the most recent information. In particular, this chapter presents the following

contributions:

• Frequent item finding algorithms are extended to efficiently mining top-k frequent

co-occurrences in streams. These co-occurrences are also shown to facilitate com-

putation of several useful similarity measures.

• A novel scalable and adaptive neighborhood-based CF algorithm, SASCF, is pro-

posed. The algorithm can be used for personalized recommendations with the

most up-to-date information in the system.

• Theoretical and empirical analysis results are shown for the usefulness of the

proposed stream summary structure instead of an item similarity matrix. Apart

from space efficiency, the structure can maintain top-k frequently co-occurring

items always in sorted order.

27

• It is shown empirically that the co-occurrence frequency of items in ranked order

exhibit a power-law relationship and that the support thresholds for finding items’

top-k frequent co-occurrences can be fixed to the mode of their distribution.

• Empirical analysis results are reported for comparative accuracy, scalability, and

adaptivity.

The remainder of this chapter is organized as follows: The preliminaries for

neighborhood-based collaborative filtering and finding frequent top-k items in a stream

are discussed in Sections 3.2 and 3.3, respectively. Then, a discussion for mining fre-

quent co-occurrences follows and SASCF is presented in Section 3.4. Experimental

results on real-life data are presented and discussed in detail in Section 3.5.

3.2. Neighborhood-based Collaborative Filtering

As discussed in Section 2.1.1, neighborhood-based CF algorithms typically mea-

sure similarity among users or items in a user-item relevance matrix, Y ∈ R|U |×|I|, with

respect to a similarity function. Our proposal in this chapter is based on a widely used

offline item-based CF approach [44]. We call this approach OFFLINECF and describe

it next.

In the model building phase, OFFLINECF computes the k most similar items

for each item i ∈ I. Exact computation of the similarities typically requires building,

updating, and storing an item similarity matrix, S ∈ R|I|×|I|. The primary goal is top-

N recommendation which corresponds to predicting a personalized ranking of items,

ÎNu = {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)}, such that ÎNu ⊂ I. To solve this problem for a

queried user u, the set C of candidate items are identified by taking the union of the

k most similar items for each i ∈ I+u and by possibly removing from the union the

items that are already in I+u . Then, for each item ic ∈ C, the similarity to the set I+u

is identified as the sum of similarities between all the items i ∈ I+u and ic, using only

the k most similar items to i. Finally, the items in C are sorted in decreasing order

with respect to this sum of similarities, and the first N items are selected as the top-N

recommendations.

28

3.3. Frequent Items and Frequent Top-k Items in a Stream

Discovering frequent and other interesting patterns in sequences of actions is

a core research area in data mining and knowledge discovery [76–78]. We focus on

the problem of maintaining frequent items in streaming data. This is an interesting

problem when the number of items is large, the space is limited, and a single pass

over data is allowed. In this direction, FREQUENT algorithm [79, 80] is proposed for

identifying in a set of items, the items with frequencies above a support threshold, φ.

The space requirement of the algorithm is O(1/φ), and it guarantees to find all true

positives, though some false positives may also be included in the resulting set. To get

rid of false positives and obtain the exact frequency of true positives, a second pass

over the stream is proposed. However, more than a single pass is not always desired

in large-scale problems. SPACESAVING algorithm [81] also offers guarantees on space

complexity. Additionally, it can produce better approximations to exact frequencies

of the top-k frequent items in a single pass, especially if the frequencies of items in

ranked order follow a power-law relationship. Such a relationship is common in many

problem domains. LOSSYCOUNTING algorithm [82] is also proposed for solving the

same problem with controllable error bounds at the cost of increased space complexity.

Since they all conceptually use item counters, these three algorithms are sometimes

unified under the name counter-based algorithms. Extensive comparisons of counter-

based algorithms can be found in [83, 84].

For the completeness of discussion, the single pass FREQUENT algorithm is

illustrated in Figure 3.1. Let I be a set of |I| distinct items and S be a stream of

n item appearances. The frequency count, gi, of an item i ∈ I is the number of

times it appears in the stream S. It is trivial to maintain all exact item frequency

counts if we are allowed to use |I| counters. But, the algorithm in Figure 3.1 can

assure that O(l) space (l = 1/φ) is used in the worst case and all items with gi > φn

are in the output set K ′. Furthermore, ∀i ∈ I, gi − ĝi ≤ n/l are obtained where ĝi

is the approximate frequency count of an item. The key operation in the algorithm

is deleting one appearance of each item in the counters if |K ′| > 1/φ. The update

operations assure that the stream summary is always stored in at most l counters, and

29

ĝi can be a useful approximation to gi even if ĝi = 0. The usefulness of this idea for

finding frequent item co-occurrences is shown in Section 3.4.

Input S: A stream of items, φ: support threshold

Output K ′: {i ∈ I : gi > φn} ⊆ K ′

K ′ ← ∅, counter ← [] ;

for all item s in S do

if s ∈ K ′ then

counter[s]← counter[s] + 1 ;

else

K ′ ← K ′ ∪ {s} ;
counter[s]← 1 ;

end if

if |K ′| > 1/φ then

for all item a ∈ K ′ do

counter[a]← counter[a]− 1 ;

if counter[a] = 0 then

K ′ ← K ′ \ {a} ;
end if

end for

end if

end for

Figure 3.1. Single pass FREQUENT algorithm.

SPACESAVING requires the following modification to the algorithm in Fig-

ure 3.1: If the next item, s, is not in K ′ and |K ′| > 1/φ, instead of decrementing

every counter by 1, it inserts this item with a value min + 1 into the counter having

minimum value, min. This provides a way for not missing frequent items by erring

on the positive side, although the count of a restored item can actually be an integer

in interval [1, min + 1]. As a result, the algorithm guarantees to find all items with

30

gi > min and min ≤ ⌊n/l⌋ [81], but with the side effect of possibly overestimated

frequency counts for some items. Nevertheless, the approach has still some practical

implications such as better approximations to the frequency counts of top-k items in

skewed item distributions, because it always alters the item with the minimum count.

In the rest of this chapter, we continue to work with both FREQUENT and SPACE-

SAVING since they allow strict bounds on space complexity and useful bounds on

approximation errors.

We now show that both FREQUENT and SPACESAVING can be efficiently im-

plemented using the generic data structure illustrated in Figure 3.2. The data structure

also has the useful property that it holds items always in sorted order with respect to

their approximate frequency counts which enables efficient top-k queries. These prop-

erties make the data structure convenient for the collaborative filtering approach pro-

posed in Section 3.4. The data structure uses a hash table which, instead of directly

holding counts, points to a doubly linked list of values. FREQUENT uses a linked

list with a node value showing numeric difference from the left node value, where the

leftmost node shows difference from zero. The item lists attached to nodes facilitate

efficient queries. When a list is empty, the node can be deleted. It can be seen that all

update operations are performed at most on a single node and its neighboring nodes.

The key operation, decrementing every counter, is simply achieved by decrementing

the value of the leftmost node. SPACESAVING can use the same structure with the

exception that a node value directly shows a count. The min value is always kept in

the leftmost node which assures its constant time retrieval and update. Figure 3.2 also

illustrates the following example: Assume l = 4 and the 4 items have counts 2, 3, 2,

3, respectively. In this case, for FREQUENT, the values are v1 = 2 and v2 = 1. To

decrement every counter by 1, v1 is reduced to 1. For SPACESAVING, the values are

v1 = min = 2 and v2 = 3. Two items with the min value are contained in the leftmost

node. If a new item comes from the stream, one of them can be randomly removed

and the new item is inserted into the second node which has value min + 1.

31

item �

item 2

item 3

item 4

�� �2

item �

item 3

item 2

item 4

Figure 3.2. Generic data structure for FREQUENT and SPACESAVING for efficient

updates and top-k queries.

3.4. Frequent Co-occurrences and SASCF

In this section, we extend the ideas in Section 3.3 to finding frequently co-

occurring items. The resulting structure can enable collaborative filtering over the

user feedback stream and render the similarity matrix, S, unnecessary by maintaining

frequently co-occurring items in place of it.

More specifically, we assume a list holding the stream summary structures for

every item seen in a user feedback stream. Each summary structure is based on the

generic data structure given in Figure 3.2 where the counts now refer to an item’s

approximate number of co-occurrences with other items. We call this the item co-

occurrence list, IL and let ILi denote the summary structure of an item i. It can be

shown that the FREQUENT-based implementation of ILi has the following guarantees:

Lemma 3.1. Let K = {j ∈ ILi : gj|i > φni} where gj|i is the co-occurrence frequency

count of an item j with item i and ni is the number of all co-occurrences of item i or

equivalently the size of its co-occurrence stream, Si. Then, |K| < 1/φ = l = |ILi|.

Proof. Otherwise, there would be more than 1/φ × φni co-occurrences of items from

K in Si, which is impossible.

32

Lemma 3.2. Consider an item j /∈ ILi. Then, gj|i < φni.

Proof. Each co-occurrence of j was deleted with l−1 other items. Therefore, gj|il < ni

or gj|i < φni.

Lemma 3.3. The upper bound for approximation error gj|i − ĝj|i ≤ ni/l, where ĝj|i is

the approximate co-occurrence frequency count of item j in ILi.

Proof. Assume that gj|i − ĝj|i ≤ d, where d is the total number of times deletion

condition occurs. Each deletion decrements the count of a distinct item by at most 1

and deletes from l distinct items. Therefore, dl ≤ ni or d ≤ ni/l.

Lemma 3.4. By using the data structure in Figure 3.2, an update operation is constant

time and the top-k retrieval operation is O(k) since the linked list holds items in sorted

order.

Theorem 3.5. FREQUENT-based implementation of ILi assures the following: At

any time, a worst case O(l) space (l = 1/φ) is used and all frequent co-occurrences are

maintained. For all items j ∈ I, the approximation error of co-occurrence frequency

count is bounded by ni/l. Each update to ILi is constant time and the retrieval of top-k

co-occurrences from ILi is O(k).

Proof. Follows from Lemmas 1, 2, 3, and 4.

Lemma 3.4 also holds for SPACESAVING-based implementation of ILi, and we

refer to [81] for similar guarantees to the first two lemmas. On the other hand, as

mentioned in Section 3.3, some items including the false positives may have overesti-

mated co-occurrence frequency counts when SPACESAVING is used. The case of false

positives can be tested using an auxiliary bookkeeping variable and at the expense of

increased time complexity [81]. Nevertheless, SPACESAVING-based implementation

of ILi can also achieve good approximations for the top-k co-occurrences in skewed

33

distributions, and it is still of practical importance. We discuss this situation further

in Figure 3.4 at the end of this section.

Now, we assume a stream of tuples (u, i, t) where u ∈ U , i ∈ I. A tuple implies

that the item is relevant to the user. A timestamp, t, is used to keep track of temporal

order while processing the stream. By making use of the known relevant items to a user

and IL, the stream is processed as follows: With the arrival of each (u, i, t), the stream

summaries of items known to be relevant to the user u are updated by inserting item

i. Furthermore, the stream summary of item i is created or updated by inserting items

known to be relevant to the user u. For this purpose, we allow using a set I++
u ⊆ I+u

for flexibility in different applications. Note that the update operations take O(|I+u |)
time in the worst case and often in practice |I+u | ≪ |I|. Finally, item i is inserted into

I+u . Performing the required updates in IL and I+u corresponds to training a scalable

and adaptive stream collaborative filtering algorithm which we name as SASCF. The

whole procedure is summarized in Figure 3.3.

The hash function h(.) and the hyperparameter α/β in Figure 3.3 constitute an

optional scheme to achieve a representative sampling of item co-occurrences. This

scheme can be instrumental in managing scalability of the algorithm especially if the

stream is too massive. Assume first a naive sampling scheme which generates a random

integer in range [0, 9] for each incoming tuple and performs updates with the tuple if the

outcome is 0. With a very large stream, the law of large numbers will assure a sample

in which about 1/10th of the frequency count of each item is observed. However, this

scheme is not very useful for sampling co-occurrences. Assume all users have interacted

exactly with two items resulting in a single co-occurrence. Then, the expectation is

that only 1/100th of co-occurrences will be sampled. Therefore, we must strive to pick

1/10th of users rather than tuples. To achieve this goal efficiently, we can select a hash

function h(u, 10) which maps users in the system randomly to 10 buckets [61]. We

sample all tuples from users mapping to a certain single bucket and ignore all other

users. More generally, we can obtain a representative sample consisting of any rational

fraction α/β of the users by hashing users to β buckets, 0 through β−1, and sampling

a tuple (u, i, t) if the hash value h(u, β) < α. Specifically, if α = β, there will be no

34

Input S: A stream of tuples (u, i, t), l (or φ), α/β: sampling parameter

Output I+u for u ∈ U and IL

IL← [] ;

for all tuple (u, i, t) in stream S do

if u is new then

I+u ← ∅ ;
end if

if there is no ILi in IL then

Initialize ILi using data structure in Figure 3.2 with l counters ;

Add ILi to IL ;

end if

if h(u, β) < α and i /∈ I++
u ⊆ I+u then

for all item j ∈ I++
u do

Update ILj with i ;

Update ILi with j ;

end for

end if

I+u ← I+u ∪ {i} ;
end for

Figure 3.3. Training with SASCF algorithm.

sampling. We note that in practice α and β are not two different hyperparameters,

but together they define a single hyperparameter, that is, the sampling ratio, α/β, for

the stream.

For choosing l (or φ), our key observation is that the frequency counts of item co-

occurrences in ranked order often follow a power-law relationship [85] with respect to

the rank. Both FREQUENT and SPACESAVING are expected to yield good approx-

imations for topmost items using a low number of counters when the co-occurrences

show this behavior. This situation is illustrated in Figure 3.4 for different datasets.

35

We see that the true ranks are captured by both FREQUENT- and SPACESAVING-

based ILi. The former captures a more transient relationship at the expense of in-

creased approximation errors for topmost frequent co-occurrences. The latter captures

better approximations for topmost frequent co-occurrences, but constantly increasing

min count results in a thicker tail. More implications of these observations will be

discussed in Section 3.5.

ML10M MTWT

0 50 100 150 200 250 300 350 400
item rank

0

200

400

600

800

1000

1200

#
 o
f c

o-
oc

cu
rre

nc
es

True co-occurrences

0 50 100 150 200 250 300 350 400
true item rank

0

200

400

600

800

1000

1200

#
 o
f c

o-
oc

cu
rre

nc
es

FREQUENT-based ILi co-occurrences

0 50 100 150 200 250 300 350 400
true item rank

0

200

400

600

800

1000

1200

#
 o
f c

o-
oc

cu
rre

nc
es

SPACESAVING-based ILi co-occurrences

0 50 100 150 200 250 300 350 400
item rank

0

100

200

300

400

500

#
 o
f c
o-
oc
cu
rre

nc
es

True co-occurrences

0 50 100 150 200 250 300 350 400
true item rank

0

100

200

300

400

500

#
 o
f c
o-
oc
cu
rre

nc
es

FREQUENT-based ILi co-occurrences

0 50 100 150 200 250 300 350 400
true item rank

0

100

200

300

400

500

#
 o
f c
o-
oc
cu
rre

nc
es

SPACESAVING-based ILi co-occurrences

Figure 3.4. (Top row) True co-occurrences in ranked order for representative items.

(Middle-Bottom rows) Approximate co-occurrence frequency counts with

FREQUENT- and SPACESAVING-based ILi, respectively.

Finally, we wrap up the potential benefits of using IL instead of a similarity

matrix: First, the full similarity matrix can be large and dense, which complicates the

nearest neighbor search process. This way, we can fix and compress the size in one

dimension keeping interesting co-occurrences only. The expectation is that l ≪ |I|

36

for obtaining a useful set of top-k co-occurrences. Second, many uninteresting co-

occurrences are automatically filtered in the update process which eases finding top-k

frequent co-occurrences, hence the nearest neighbors. Actually, when using the generic

data structure in Figure 3.2, querying for top-k frequent co-occurrences isO(k) since the

co-occurring items are already kept in sorted order with respect to their approximate

frequency counts. Third, counters are always up-to-date with the recent user feedback,

and no offline training is necessary.

3.4.1. Effective Personalized Recommendations

SASCF enables effective personalized recommendations by making use of simi-

larities based on the readily available and up-to-date top-k frequent co-occurrences in

IL. For recommending to a user u, the set of user’s previously known relevant items,

I+u or possibly a subset of it is considered. For each item i ∈ I+u , its top-k frequently

co-occurring items are retrieved from ILi. Typically, if a retrieved item is not already

in I+u , it is assumed to be a candidate item, ic, for recommendation, and its similarity,

s(i, ic), is recorded. Before we carry on, we discuss how such a similarity can be mea-

sured: First, we can directly use the approximate frequency count of co-occurrences

between the two items, count(ILi, ic), as similarity and assume count(ILi, ic) = 0 when

ic is not in ILi. In a way, this can be thought of as approximating the dot product

between two binary column vectors in a user-item relevance matrix, Y ∈ R|U |×|I|,

s(i, ic) = y⊤
i yic ≈ count(ILi, ic). (3.1)

Alternatively, similarity can be based on conditional probability (or confidence) [44].

It is easy to obtain this type of similarity because the denominator term corresponds

to the frequency count of item i in the stream, and a simple accumulator can keep

track of it. Therefore,

s(i, ic) = p(X1 = ic|X2 = i) =
p(X1 = ic, X2 = i)

p(X2 = i)
≈ count(ILi, ic)

count(i)
. (3.2)

37

Yet another similarity measure can be obtained by adding the frequency count of ic in

the denominator to remedy for increased similarity to popular candidate items. One

such measure is cosine similarity,

s(i, ic) =
y⊤
i yic

‖yi‖‖yic‖
≈ count(ILi, ic)√

count(i)× count(ic)
. (3.3)

However, maintaining frequent co-occurrences may not fully capture this last similarity.

The denominator term should also be considered when updating IL which can be costly

in the data stream model. Here, we refer to two stream sampling approaches [86,87] to

approximate such similarities. But, we do not investigate them further in this chapter,

since it is not straightforward to adapt them in SASCF. Furthermore, their space and

time complexities are higher. Instead, we stick to a naive approach and compute cosine

similarities of top-k frequently co-occurring items in an ILi. This is possible since we

already have the nominator, and it is cheap to obtain the denominator terms from

simple accumulators at any point in time.

By using one of the above similarity measures, the relevance of each candidate

item can be predicted as,

ŷu(ic) =

|I+u |∑

i=1

s(i, ic). (3.4)

Then, personalized recommendations are obtained by sorting the candidate items in

descending order with respect to their predicted relevance scores. We note that for

various practical reasons, a queried user’s known relevant items, I+u , can be restricted,

for example, to a few most recent feedback instances or to a few feedback instances

available in a particular session.

3.4.2. Complexity and Hyperparameterization

In general, SASCF is a scalable and adaptive algorithm which provides a way

to work on streaming data. On the other hand, a tidy comparison to its base of-

38

Table 3.1. Comparative complexity and hyperparameterization.

SASCF OFFLINECF

Space complexity IL requires O(|I| × l) space S ∈ R|I|×|I| and a matrix of

|I| × k NN are required

Time complexity

(model building)

For each streaming tuple,

O(|I+u |) updates can be per-

formed in IL. Each update

is constant time.

O(|I|2 × |U |) offline multi-

plications to find S from

Y. Then, O(|I|2 × log(|I|))
operations for sorting and

finding top-k NN for each

item.

Time complexity

(personalized top-

N prediction)

O(k × |I+u |) for a queried

user u

O(k × |I+u |) for a queried

user u with precomputed k

NN

Hyperparameters

(for personalized

top-N prediction)

k, N , l (or φ), α/β k, N

Similarity measures dot product, conditional

probability, cosine (naive)

dot product, conditional

probability, cosine

fline algorithm, OFFLINECF, can still be useful. Table 3.1 presents this comparison

with respect to the worst case time and space complexities as well as differences in

hyperparameterization.

3.5. Experiments

This section presents an empirical analysis of SASCF from various aspects. We

begin with exploratory data analysis and then report detailed performance evaluation

results in various experimental settings.

39

Table 3.2. Basic properties of datasets.

Dataset |U | |I| # of tuples Description

ML10M 71,567 10,681 10,000,054 User feedback on movies over

time [5]

MTWT 35,894 20,419 368,490 Snapshot of MovieTweetings [88]

social media stream containing

user feedback on movies

KOSARAK 990,002 41,270 8,019,015 Session-based click stream data

from an online news portal [89].

Each session is assumed to be a

separate user.

AMAZON 2,146,057 1,230,915 5,838,041 User feedback on online shopping

products over time [90]

3.5.1. Data and Exploratory Analysis

The real-life public data used in the experiments is summarized in Table 3.2. In

all cases, we assume that an item is relevant to a user if the user has feedback for it.

Each feedback instance is considered a tuple, and the time order of tuples is preserved.

At this point, it is useful to carry out an exploratory data analysis considering

the stream processing model of SASCF. Figure 3.5 illustrates the results of this anal-

ysis compactly. The leftmost column shows the frequency counts of co-occurrences in

ranked order for different representative items. Together with the middle column, we

observe that the co-occurrences follow a power-law relationship with respect to the

rank. In accordance with the theoretical analysis [81] for different rank-frequency dis-

tributions, as the distribution has a steeper peak, φ can be increased and, as a result,

l can be smaller. Even if |I| of data is relatively larger, when the frequency counts

of co-occurrences in ranked order show a more transient pattern, still a comparable

or even a smaller l can be enough to assure all frequent co-occurrences. To further

40

M
L
1
0
M

0 200 400 600 800 1000
20

40

60

80

100

120

140

160

180
k=20

k=50

100 101 102 103
101

102

103

0.000 0.001 0.002 0.003 0.004 0.005
0

200

400

600

800

1000

1200

M
T
W
T

0 200 400 600 800 1000
0

10

20

30

40

50
k=20

k=50

100 101 102 103
100

101

102

0.000 0.002 0.004 0.006 0.008 0.010
0

200

400

600

800

1000

K
O
S
A
R
A
K

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400
k=20

k=50

100 101 102 103
101

102

103

104

0.000 0.002 0.004 0.006 0.008 0.010
0

500

1000

1500

2000

2500

3000

A
M
A
Z
O
N

0 200 400 600 800 1000
0

200

400

600

800

1000

1200
k=20

k=50

100 101 102 103
100

101

102

103

104

0.000 0.002 0.004 0.006 0.008 0.010
0

2000

4000

6000

8000

10000

12000

14000

Figure 3.5. (Left column) Rank vs. frequency count of co-occurrences for

representative items. top-k-th frequent co-occurrences are also shown for common

choices of k. (Middle column) log-log plots of the left column (Right column) φk

distribution over all items for k = 20.

41

justify this observation, we define φk as the support threshold to guarantee obtaining

the top-k-th frequently co-occurring item. The rightmost column of Figure 3.5 shows

that the φk distribution over all items has a distinguishing mode. This is important

because it allows usage of a fixed φ in SASCF. For example, when we choose to use

φ =Mo(pmf(φk)), items on the right hand side of the mode are guaranteed to capture

all of their true positive co-occurrences. Furthermore, items on the left hand side of

the mode may not be very interesting since their co-occurrences possibly have a more

flat distribution rather than a power-law relationship. In such cases, finding frequent

co-occurrences is not very meaningful either. Experimental results in Section 3.5.2 sup-

port this further, where we observe that choosing φ around the mode often achieves the

best performance results, and a smaller φ, that is, a larger number of counters, does

not bring much improvement, if any. Therefore, we conclude that a fixed value for

the hyperparameter φ can be estimated through validation or if we have assumptions

about the particular power-law behavior. Furthermore, it can be chosen with respect

to the available system resources as shown in Section 3.5.2.

3.5.2. Performance Evaluations

Two experimental settings are designed to evaluate the performance of SASCF:

(i) The first setting uses a holdout set with two goals: One is to test the effects

of different hyperparameters on a wide range. The tested hyperparameters are

φ (or the corresponding l), the underlying algorithm for IL (FREQUENT or

SPACESAVING), the similarity measure (dot product, conditional probability,

or cosine), and the sampling ratio (α/β). The second goal is to compare SASCF

to OFFLINECF. In this setting, the expectation is to obtain comparable ranking

accuracy results.

(ii) The second setting employs a first-test-then-train sequential scheme which can

be more suitable for evaluating stream algorithms. The algorithms are compared

using the best hyperparameter values obtained from the former experimental

setting. The primary goal is to test the adaptivity of SASCF in comparison to

42

periodically performed OFFLINECF over the stream and also an incremental

single pass matrix factorization algorithm.

3.5.2.1. Experiments Using a Holdout Set. For each user who has feedback for more

than two items, we randomly leave one item out from the user’s feedback history and

put it in a holdout set. If the feedback instances have grade information, the left-out

item is chosen among the ones with the maximum grade for the particular user. Then,

we use HR@N and MRR to evaluate the test results. The details of these evaluation

measures can be found in Section 2.2.5. In the case of MRR, we assume zero reciprocal

rank if r̂u(i
⋆
u) > N where i⋆u refers to the left-out item.

Figure 3.6 presents the experimental results with respect to different similarity

measures as explained in Section 3.4.1 and for a wide range of φ values. We refer

to SASCF-F and SASCF-S as the FREQUENT- and SPACESAVING-based SASCF,

respectively. Comparative results for OFFLINECF are illustrated with dashed hori-

zontal lines since they do not depend on φ. In the first two columns of Figure 3.6,

we observe that the results are often comparable to those of OFFLINECF for a given

range of φ values. Further increasing the φ value enables usage of a smaller number

of counters (l = 1/φ), but HR@N and MRR results may also start to decline. In the

third column, we observe that our naive approach to cosine similarity is effective but

in a narrower range of φ values with a faster decline in HR@N values especially when

SASCF-S is used. On the other hand, it should be noted that cosine similarity is not

always the best choice among others. We observe in all figures except those of ML10M

that SASCF-F is often better than SASCF-S in terms of both HR@N and MRR. Al-

though SPACESAVING offers to maintain better approximations to frequency counts

of the top-k items, FREQUENT’s resulting co-occurrence pattern (as shown in Fig-

ure 3.4) seems to achieve a more useful weighting when calculating similarities. Finally,

AMAZON results are provided for the proof of resource awareness concept where we vary

the number of counters in IL (hence φ) proportional to the available main memory in

our testing machine and still observe acceptable performance results. This observation

43

dot product conditional probability cosine

M
L
1
0
M 0.10

0.15

0.20

0.25

0.30

H
R

0.0010 0.0013 0.0016 0.0019 0.0022 0.0025
φ

0.00
0.02
0.04
0.06
0.08
0.10

M
R
R

0.10

0.15

0.20

0.25

0.30

H
R

0.0010 0.0013 0.0016 0.0019 0.0022 0.0025
φ

0.00
0.02
0.04
0.06
0.08
0.10

M
R
R

0.10

0.15

0.20

0.25

0.30

H
R

0.0010 0.0013 0.0016 0.0019 0.0022 0.0025
φ

0.00
0.02
0.04
0.06
0.08
0.10

M
R
R

M
T
W
T 0.10

0.12
0.14
0.16
0.18
0.20
0.22

H
R

0.0020 0.0030 0.0040 0.0050 0.0060
φ

0.00
0.01
0.02
0.03
0.04
0.05
0.06

M
R
R

0.10
0.12
0.14
0.16
0.18
0.20
0.22

H
R

0.0020 0.0030 0.0040 0.0050 0.0060
φ

0.00
0.01
0.02
0.03
0.04
0.05
0.06

M
R
R

0.10
0.12
0.14
0.16
0.18
0.20
0.22

H
R

0.0020 0.0030 0.0040 0.0050 0.0060
φ

0.00
0.01
0.02
0.03
0.04
0.05
0.06

M
R
R

K
O
S
A
R
A
K

0.35

0.40

0.45

0.50

0.55

H
R

0.0017 0.0027 0.0037 0.0047 0.0057
φ

0.04
0.05
0.06
0.07
0.08
0.09
0.10

M
R
R

0.35

0.40

0.45

0.50

0.55

H
R

0.0017 0.0027 0.0037 0.0047 0.0057
φ

0.04
0.05
0.06
0.07
0.08
0.09
0.10

M
R
R

0.35

0.40

0.45

0.50

0.55

H
R

0.0017 0.0027 0.0037 0.0047 0.0057
φ

0.04
0.05
0.06
0.07
0.08
0.09
0.10

M
R
R

A
M
A
Z
O
N 0.010

0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

H
R

0.0010 0.0015 0.0020
φ

0.000

0.005

0.010

0.015

0.020

M
R
R

0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

H
R

0.0010 0.0015 0.0020
φ

0.000

0.005

0.010

0.015

0.020

M
R
R

0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

H
R

0.0010 0.0015 0.0020
φ

0.000

0.005

0.010

0.015

0.020

M
R
R

SASCF−F SASCF−S OFFLINECF

Figure 3.6. HR@N and MRR results for a broad range of φ values and different

similarity measures. k = 20, N = 10.

is also valid for the other datasets since comparable performance results are obtained

over a wide range of φ values.

Figure 3.7 shows the effect of sampling on ranking accuracy for a wide range of

sampling ratios (α/β) and different similarity measures. For measuring this effect, other

hyperparameter values are fixed to their best and SASCF-F is used. MRR results are

not shown for clarity since they are usually highly correlated with the HR@N results.

The results in Figure 3.7 are interesting since the accuracy trade-off is often small even

when the data streams are heavily sampled. This brings further scalability to SASCF.

44

ML10M MTWT

0.000.200.400.600.80
α/β

0.10

0.15

0.20

0.25

0.30

H
R

0.000.200.400.600.80
α/β

0.00

0.05

0.10

0.15

0.20

0.25

H
R

KOSARAK AMAZON

0.000.200.400.600.80
α/β

0.30

0.35

0.40

0.45

0.50

0.55

H
R

0.200.400.600.80
α/β

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H
R

dot product conditional probability cosine

Figure 3.7. Effect of sampling on ranking accuracy. k = 20, N = 10. Number of

counters, l, are 900, 250, 500, and 1,000 for ML10M, MTWT, KOSARAK, and AMAZON,

respectively.

3.5.2.2. Sequential Evaluation. We use a sequential evaluation scheme similar to [75,

91] and suitable for testing stream algorithms. The procedure is described in Figure 3.8.

This time there are no separate training and test sets. All streaming tuples are used

for incremental updates in a first-test-then-train fashion [74]. Similar to HR@N , we

measure a hit ratio over all streaming tuples whose user has previously provided feed-

back for another item. In case the stream has graded feedback information, only tuples

with a grade above some threshold ρ can be used for testing.

Sequential evaluation results in comparison to OFFLINECF are shown in Fig-

ure 3.9. For each experiment, we report two results. The first one is obtained by using

SASCF directly through the algorithm in Figure 3.8. The second result is obtained

by adapting OFFLINECF to the sequential evaluation setting: Instead of updating

the stream summary structures of SASCF, a full item similarity matrix is sequentially

45

Define a sliding window of size W ;

hits← 0, recommended← 0, w ← 0 ;

for all tuple (u, i, t) in stream S do

w ← w + 1 ;

if I+u 6= ∅ and tuple grade > ρ then

Recommend top-N items, ÎNu ;

recommended← recommended+ 1 ;

if i ∈ ÎNu then

hits← hits + 1 ;

end if

end if

if w =W then

/* Report for the current window */

hit ratio← hits
recommended

;

hits← 0, recommended← 0, w ← 0 ;

end if

Update SASCF model with (u, i, t) (as per Figure 3.3) ;

end for

Figure 3.8. First-test-then-train procedure for sequential evaluation.

updated with the streaming tuples. However, in this case, nearest neighbors of an item

are not immediately available for recommendation purposes. Therefore, periodic offline

nearest neighbor search is performed on the similarity matrix at regular intervals, and

k nearest neighbors of every item are recorded until the next search. The following hy-

perparameters are used for the experiments: For all streams, k = 20 and N = 10. Con-

ditional probability is used as the similarity measure. For ML10M, φ = 0.001̄ (l = 900) is

fixed for SASCF. Periodic retraining for OFFLINECF is performed every 60,000 tuples.

W = 10, 000. For MTWT, φ = 0.004 (l = 250) is fixed for SASCF. Periodic retraining for

OFFLINECF is performed every 2,000 tuples. W = 1, 000. For KOSARAK, φ = 0.002

(l = 500) is fixed for SASCF. Periodic retraining for OFFLINECF is performed every

46

50,000 tuples. W = 10, 000. For AMAZON, φ = 0.001 (l = 1000) is fixed for SASCF.

Periodic retraining for OFFLINECF is performed every 30,000 tuples. W = 10, 000.

M
L
1
0
M

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000
time point

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

h
it
ra
ti
o

SASCF
OFFLINECF

M
T
W
T

0 50000 100000 150000 200000 250000 300000 350000 400000
time point

0.00

0.05

0.10

0.15

0.20

0.25

0.30

h
it
ra
ti
o

SASCF
OFFLINECF

K
O
S
A
R
A
K

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000
time point

0.22

0.24

0.26

0.28

0.30

0.32

0.34

h
it
ra
ti
o

SASCF
OFFLINECF

A
M
A
Z
O
N

0 1000000 2000000 3000000 4000000 5000000
time point

0.006

0.008

0.010

0.012

0.014

0.016

h
it
ra
ti
o

SASCF
OFFLINECF

Figure 3.9. Comparative sequential evaluation with OFFLINECF.

The experimental results in Figure 3.9 suggest that SASCF is at least as good as

OFFLINECF in terms of hit ratio and often significantly better. This result is expected

since SASCF is more adaptive to recent user feedback. OFFLINECF results show

various degrees of degradation with MTWT being the strongest. We note that these results

are sensitive to the length of training intervals, and the degradations tend to increase

even more when the periodic retraining is done less regularly. Although characteristics

of each stream may vary, the results suggest usefulness of SASCF in which the latest

47

user feedback can be more quickly integrated, and the space requirements are more

controllable. The statistical significance of the sequential evaluation results is tested

using a Wilcoxon signed rank test [92] as follows: At each sliding window, the error

of an algorithm is defined as the miss ratio (or 1 − hit ratio). The null hypothesis is

that paired miss ratios from the two algorithms come from the same distribution. For

a significance level of 1%, we fail to reject the null hypothesis for ML10M, but we reject

it for MTWT, KOSARAK, and AMAZON where rejection means there is statistical significance

between the errors of the two algorithms.

We finally compare SASCF to an incremental matrix factorization approach called

ISGD (incremental stochastic gradient descent) [75]. Similar to our work, ISGD tries

to learn from streaming tuples in a single pass and facilitate top-N recommendations.

Figure 3.10 shows comparative results of our experiments. Again, we make use of the

evaluation scheme in Figure 3.8, except this time the ISGD model is updated.

M
L
1
0
M

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000
time point

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

h
it
ra
ti
o

SASCF
ISGD

M
T
W
T

0 50000 100000 150000 200000 250000 300000 350000 400000
time point

0.00

0.05

0.10

0.15

0.20

0.25

0.30

h
it
ra
ti
o

SASCF
ISGD

K
O
S
A
R
A
K

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000
time point

0.00

0.05

0.10

0.15

0.20

0.25

0.30

h
it
ra
ti
o

SASCF
ISGD

Figure 3.10. Comparative sequential evaluation with ISGD.

48

We first observe that ISGD takes some time at the beginning of the stream to

converge before producing comparable hit ratios. For ML10M, we observe that ISGD

hit ratios have an improving trend with γ = 0.005, λ = 0.05, and f = 10. For MTWT,

γ = 0.04, λ = 0.01, and f = 10 produce competitive hit ratios after initial convergence,

but then the results show a degradation trend beginning towards the middle of the

stream as newer users and items are introduced. For KOSARAK, γ = 0.008, λ = 0.002,

and f = 10 produce comparatively low hit ratios on session-based user data. These

hyperparameter values are found by validation in a limited search space but in general,

such values for SGD-based approaches may not be trivial to fine-tune, especially for

single pass stream learning. For example, in the case of AMAZON, we are unable to

observe convergence for ISGD with the hyperparameter values from a limited grid

search (SASCF results are shown in Figure 3.9). In all experiments, we observe that

ISGD and SASCF results are significantly different both visually and statistically.

Overall, we note that the updates of ISGD can be quite fast when single pass updates

and a small number of latent factors are used. As in other MF-based approaches, its

space complexity is attractive when a small number of latent factors is sufficient. On the

other hand, the effect of growing number of items on ISGD needs further investigation

since it both affects the comparative hit ratios and the computational cost of prediction.

The latter may even necessitate offline precomputation of the recommendation lists

although the learning is continuously done from the stream. Since the convergence

with many model parameters takes time, the adaptivity of ISGD also needs further

investigation for streams especially with very dynamic users and items, and in the cases

where users or items have a few feedback instances. While we propose improvements

for incremental MF schemes in Chapters 4 and 5, neighborhood-based methods like

SASCF can clearly be considered as strong competitors for their ability to handle these

situations effectively.

49

4. PARALLEL PERSONALIZED PAIRWISE LEARNING

TO RANK

4.1. Introduction

Pairwise LtR is particularly suitable for learning from implicit feedback. For

example, it differs from the typical pointwise LtR approaches to implicit feedback

where all user-item relevances are given a positive label, and unknown relevances are

either ignored or given a negative class label which may arguably lead to an undesired

learning model [48]. Furthermore, it can allow direct rank optimization based on some

desired information retrieval measures such as AUC. Pairwise LtR can also be more

efficient compared to listwise LtR since it works on item pairs instead of arbitrarily large

lists. Therefore, given the usefulness of pairwise LtR for implicit feedback scenarios,

we investigate methods to further improve its efficiency and adaptivity in offline and

stream learning settings with a focus on collaborative filtering.

As data and model parameters to be learned grow larger, capabilities of machine

learning methods are limited by their time [93] and space efficiencies. Consequently, at

web scale, many LtR models are based on learning a factorized representation of a user-

item relevance matrix. A commonly preferred optimization method for such a matrix

factorization is stochastic gradient descent (SGD) [94] due to its ease of use, efficiency,

and suitability to online learning. However, SGD also has a sequential nature which

can still be problematic due to multiple passes over a large dataset while trying to learn

a large number of model parameters. As a remedy, the idea of lock-free parallel SGD

has been motivated for different machine learning methods and also applied to matrix

completion [95] from sparse input. In this direction, two major approaches are based

on block partitioning [96] and no partitioning [97]. These approaches are especially

interesting for multi-core CPU or GPU processing, and they can be preferable for

intensive large-scale numerical computation.

50

In this chapter, we investigate major lock-free parallel SGD approaches in a per-

sonalized pairwise LtR setting. With the aim of improving its scalability and speeding

up its convergence to a good solution, we first adapt two base schemes to this setting:

the PLtR-B algorithm which applies a block partitioning approach and the PLtR-N al-

gorithm which follows the no partitioning approach. We then analyze useful extensions

of the base schemes to show their versatility and improve their practicality. Such exten-

sions are commonly desired in practice, and they include the following: Using different

sampling strategies for adaptive sampling as well as handling graded relevance feed-

back, incorporating adaptive gradient update methods, and the PLtR-NS algorithm

for efficient learning from streaming user feedback. We show that the applicability

of these extensions bring more versatility to the base schemes as well as potential for

further improvements on convergence results.

The remainder of this chapter is organized as follows: In Section 4.2, an overview

of personalized pairwise LtR is presented. Then, in Section 4.3, the base PLtR-B and

PLtR-N algorithms are presented. Extensions of the base algorithms are presented in

Section 4.4. Finally, in Section 4.5, comparative experimental results are presented for

the ranking accuracy and the speedup patterns of the algorithms.

4.2. Personalized Pairwise LtR

Further elaborating on Section 2.2.1, personalized pairwise LtR methods com-

monly learn from a dataset, D, of triples (u, i, j), where u ∈ U is the (or part of the)

context and i, j ∈ I. A triple commonly implies a partial personalized ranking such

that item i is more relevant to user u than item j. In this analysis, unless otherwise

stated, we assume that i ∈ I+u , and the dataset of all relevant user-item tuples is de-

noted by D+. On the other hand, j can be sampled from a conditional probability

distribution with p(j|u, i). The basic and typical sampling strategy is to draw j uni-

formly at random from I \ I+u . While other sampling strategies are also analyzed in

this chapter, we stick to this basic strategy unless otherwise stated. The ultimate goal

of personalized pairwise LtR is to find a good estimate of full or topmost personalized

rankings from available partial rankings.

51

The typical pairwise error function is in the form:

E (Θ | D) =
∑

(u,i,j)∈D

{
L (ru(i) < ru(j), θu, θi, θj) +

∑

θx∈{θu,θi,θj}

λθx‖θx‖22
}
, (4.1)

where Θ represents all model parameters, and λθx is a regularization coefficient. Dif-

ferent loss functions, L, are possible. In this chapter, we stick to sigmoid-smoothed

pairwise loss and negative log-likelihood described in the seminal work, Bayesian per-

sonalized ranking (BPR) [38, 48]. The same ideas apply to learning from other differ-

entiable pairwise loss functions, for example, based on hinge loss [98].

In the case of BPR with matrix factorization, L = − ln σ(p⊤
u qi − p⊤

u qj) where

pu,qk ∈ Rf are column vectors in the low-rank component matrices of the factorized

user-item relevance matrix, Ŷ = P⊤Q. The resulting error function is differentiable

with respect to the model parameters, and it can be optimized with SGD using a

suitable learning rate, γ. We summarize the typical procedure in Figure 4.1. Note that

due to the typically large number of model parameters and sparsely available feedback,

the algorithm usually requires multiple passes over the dataset prior to convergence.

repeat

Sample a tuple (u, i) from D+ ;

Sample j with p(j|u, i) ;
for all θx ∈ {θu, θi, θj} do
θx ← θx − γ ∂

∂θx
{L (ru(i) < ru(j), θu, θi, θj) + λθx‖θx‖22} ;

end for

until convergence

Figure 4.1. Personalized pairwise learning to rank.

52

4.3. Base PLtR Algorithms

4.3.1. Block Partitioning and PLtR-B

Block partitioning refers to partitioning the input to an algorithm into multiple

sets of ideally non-overlapping chunks (blocks). Then, different processing units can

perform model updates in parallel, each using the available partial input in one of the

blocks of every set and without using locks. This approach has been first applied [96,99]

to personalized pointwise LtR scenarios. In that case, the model updates are based

on (u, i) tuples, and the tuples can be thought to come from a sparsely filled |U | × |I|
matrix of known user-item relevances. In the case of personalized pairwise LtR, the

model updates are based on (u, i, j) triples representing pairwise relevances, and we can

consider a |U |× |I|× |I| tensor instead. Using ψ = 2 processing units and representing

different sets of blocks with different colors, Figure 4.2 illustrates two possible block

partitioning approaches for personalized pairwise LtR and also compares them to the

standard approach for pointwise LtR. While tempting, a closer inspection reveals that

the block partitioning in the middle does not guarantee non-overlapping blocks in every

set of blocks since the same item may appear as both an i and a j item in different blocks

of the same set. Therefore, we concentrate on the rightmost partitioning approach

which excludes the problematic sets of blocks. This restriction guarantees mutually

exclusive updates to the model parameters of both users and items, and it also makes

the partitioning computationally more efficient. We explain its applicability next.

Figure 4.2. (Left) block partitioning for parallel personalized pointwise LtR,

(Middle-Right) two different ideas for the case of personalized pairwise LtR (see

Figure 4.3 for deciding the sets of blocks for the rightmost partitioning).

53

By extending the pointwise scheme [96], the following is possible for personalized

pairwise LtR: Suppose we have ψ processing units. At each training epoch, first a

random permutation of users (permU) and items (permI) are generated by shuffling

their indexes in place. We then partition (u, i, j) triples into ψ2 blocks, Babc, where

a, b, c = 1, . . . , ψ such that,

a =
⌊ ψ

|U | (permU (u)− 1)
⌋
+ 1, b =

⌊ ψ
|I| (permI (i)− 1)

⌋
+ 1,

c =
⌊ ψ
|I| (permI (j)− 1)

⌋
+ 1, (4.2)

with the requirement that c = b. To achieve this, our proposal is to simply sample

an item j with p(j|u, i) such that p(j|u, i) = 0 if c 6= b. Since each sampled (u, i, j)

within a block, Babc, is used to perform a sequential SGD update, this is acceptable.

Furthermore, due to random permutations, users and items corresponding to a block

are different at each training epoch, which makes this restrictive approach viable.

Updates based on each set of blocks are performed in a single round, and each

update round in a training epoch can be decided simply by the algorithm in Fig-

ure 4.3. Consequently, personalized pairwise learning to rank can be parallelized as

in Figure 4.4. We call the resulting algorithm PLtR-B. The algorithm is designed to

perform multiple training epochs efficiently by parallelizing its update stage. The par-

titioning stage can actually be considered as a preprocessing stage. As commented in

Figure 4.4, if this stage is not performed in dedicated processing units, the sampling of

for z = 1 to ψ do

for a = 1 to ψ do

c← b← (a+ z − 1) mod ψ ; /* set b← ψ if b = 0 */

Add Babc to Round[z] ;

end for

end for

Figure 4.3. Deciding the set of blocks for each round for arbitrary ψ ≥ 1.

54

for all training epochs do

— PARTITIONING STAGE —

Generate permU and permI ;

for all (u, i) in D+ do

Get a and b w.r.t. Equation 4.2 ;

Sample j with p(j|u, i) and place (u, i, j) in corresponding Babc ;

/* p(j|u, i) ← 0, if c 6= b w.r.t. Equation 4.2. Note that sampling of j

can be postponed until after line 10, if partitioning stage is not performed in

dedicated processing units. */

end for

Assign all Babc to rounds w.r.t. Figure 4.3 ;

— UPDATE STAGE —

for all Rounds do

for all Babc in current round in parallel do

for all (u, i, j) ∈ Babc do /* line 10 */

for all θx ∈ {θu, θi, θj} do
θx ← θx − γ ∂

∂θx
{L (ru(i) < ru(j), θu, θi, θj) + λθx‖θx‖22} ;

end for

end for

end for

Synchronize processing units ;

end for

end for

Figure 4.4. Parallel personalized pairwise LtR with block partitioning (PLtR-B).

55

j can be postponed until the update stage for further efficiency. This can also enable

the algorithm to sample j more adaptively during the course of actual updates.

Block partitioning can guarantee mutually exclusive updates to the model pa-

rameters, but a few practical concerns should be noted: First, the blocks in each round

need to have a balanced number of training triples in order to fully benefit from par-

allelism. Random shuffling as well as a few other tricks [100] for scheduling and better

use of memory hierarchy can be useful for improving efficiency in this regard. Second,

the partitioning stage can bring some extra computation time overhead which can op-

tionally be overcome at the cost of dedicating separate processing units [96]. Space

overhead is also increased due to auxiliary structures. Third, and importantly, block

partitioning imposes a slightly restrictive scheme for sampling (u, i, j) triples. There-

fore, in the next section, we also investigate the no partitioning approach which can

be more versatile for extended pairwise LtR tasks (see Section 4.4), for example, with

custom sampling schemes as well as for dynamic stream learning environments.

4.3.2. No Partitioning and PLtR-N

In this approach, parallel processing units can access and update any portion of a

shared memory at any time and in a lock-free fashion [97]. Nevertheless, this extreme

approach still provides some theoretical guarantees for convergence when the optimized

function can be defined as sparse summations, typical of SGD-based personalized LtR.

In the case of personalized pairwise LtR, the summation has the sparse form given in

Equation 4.1. This summation induces a hypergraph, G = (V,E). However, unlike a

bipartite graph for pointwise LtR, we now have a hypergraph which reflects personal-

ized pairwise item relationships. An example of this new hypergraph is illustrated in

Figure 4.5.

Both |V | and |E| are typically very large with the latter being especially large in

the case of personalized pairwise LtR. However, as seen in Equation 4.1, each summa-

tion acts on a single e ∈ E, that is, a very small subset of V , which suggests intuitively

56

u1

u2

u3

i1

i2

i3

i4

i3

i1 i2

i4

u1

Figure 4.5. Hypergraphs showing user-item relevances for pointwise and pairwise LtR,

respectively. For clarity, the latter is shown for a single user only, where the colored

hyperedges capture all possible pairwise item relationships for u1. Here, i1, i2 ∈ I+u1 .

that lock-free parallel updates without any partitioning are viable. This notion can be

formalized [97] using the following statistics of a hypergraph, G:

Ω = max
e∈E
|e|,

∆ =
max1≤v≤|V | |{e ∈ E : v ∈ e}|

|E| ,

ρ =
maxe∈E |{e′ ∈ E : e′ ∩ e 6= ∅}|

|E| ,

(4.3)

where ∆ and ρ are measures of vertex regularity and hypergraph sparsity, respectively.

When these values are relatively small, the staleness between parallel access and update

of model parameters can be compensated, and the parallel updates can bring a highly

effective speedup for convergence. In personalized pairwise LtR, Ω = 3, since each

e ∈ E is made up of a (u, i, j) triple. On the other hand, ∆ is very much dependent

on the dataset. Under realistic but worst case assumptions, we note the following:

|E| ≈ ζ × |U | × |I|2 where ζ denotes the density of the known user-item relevances. In

many datasets, ζ is typically well under 0.01. Since we have (u, i, j) triples, there can

be user and item vertices in the hypergraph. Assuming a user has m relevant items,

there can be m× (|I| −m) edges in which the user exists. This quantity is maximized

when m = |I|/2. Therefore, it can be that ∆ ≈ 1/(4×ζ×|U |) with respect to the user

vertices. An item, on the other hand, can occur in approximately |U |× |I| edges in the

57

worst case. Therefore, it can be that ∆ ≈ 1/(ζ ×|I|) with respect to the item vertices.

Since |I| < |U | in typical real-life applications, we conclude that the item vertices often

determine ∆. We also see that ∆ for pairwise LtR is on the same order with ∆ for

pointwise LtR under similar assumptions. Finally, we can say ρ ≤ 3∆, since Ω = 3.

In real-life applications, the lock-free parallel approach without any partitioning

is effective even when the values of ∆ and ρ are high and close to the worst case,

as shown experimentally for different machine learning problems [97] including matrix

completion in a pointwise LtR setting. We observe in our experiments that in the

personalized LtR problem setting, a possible reason behind this situation is that user

and item vertex degrees often follow a power-law distribution, that is, ∆ (maximum

normalized vertex degree) can be significantly higher than the values in the modal

interval of the normalized vertex degree distribution. In Section 4.5.2, we compute

these statistics for various datasets and also show that the statistics in the case of

pairwise LtR are quite similar to those in the case of pointwise LtR.

/* Perform the following loop in ψ parallel processing units */

for local epoch = 1 to ⌈# of training epochs
ψ

⌉ do
for all iterations do

Sample a tuple (u, i) from D+ ;

Sample j with p(j|u, i) ;
for all θx ∈ {θu, θi, θj} do
θx ← θx − γ ∂

∂θx
{L (ru(i) < ru(j), θu, θi, θj) + λθx‖θx‖22} ;

end for

end for

Synchronize processing unit if the learning rate, γ, changes ;

end for

Figure 4.6. Parallel personalized pairwise LtR with no partitioning (PLtR-N).

Therefore, we propose to parallelize personalized pairwise LtR without partition-

ing as given in Figure 4.6. We call the resulting algorithm PLtR-N. As an illustrative

58

example, if 2ψ training epochs of the learning algorithm are desired, then we see that

every parallel processing unit will perform 2 local epochs instead of a single processing

unit performing all 2ψ epochs in a sequential algorithm. We note that, in general, there

is no need for synchronization among parallel processing units while access and update

operations of the model parameters are being performed. Nevertheless, the algorithm

provides a piecewise-defined process when there is a need to change the globally-set

learning rate over time.

4.4. Extensions to PLtR Algorithms

In this section, we analyze the PLtR-B and PLtR-N algorithms in combination

with various important strategies, the applicability of which can bring more versatility

to the algorithms as well as potential for further improvements on convergence results.

Accordingly, we propose several extensions to the algorithms for offline and stream

learning settings.

4.4.1. Different Sampling Strategies

The basic strategy in personalized pairwise LtR in Figure 4.1 is to draw (u, i)

uniformly at random from D+. Then, p(j|u, i) is chosen such that j is drawn uniformly

at random from I \ I+u . This simulates an unbiased (u, i, j) sample [68, 101]. More

recently, there are some proposals which alter this sampling strategy for various reasons.

Many of these fall into one of the two categories below:

(i) Adaptive Sampling. This refers to biased sampling in an attempt to choose a rel-

atively more suitable (u, i, j) triple adaptively for each consecutive model update.

The common approach is trying to obtain a biased j sample efficiently given the

model parameters for u and i at the point of update. In an important follow-

up research [68] for BPR (see Section 4.2), p(j|u, i) is biased in a way that j is

sampled with a higher probability from top ranking irrelevant items for u at the

point of update. It is argued that this approach uses more informative (u, i, j)

triples and avoids wasteful gradient computations resulting in faster convergence.

59

A related approach [102] is to sample j from a random subset of irrelevant items

which have higher ranking scores than i with a margin. Yet, in another related

approach [98], j is sampled from a random but fixed-sized subset, S−
u , of irrel-

evant items for user u. p(j|u, i) ∝ |puqi − puqj |−1 if j ∈ S−
u , and 0 otherwise.

This means that the closer an item j ∈ S−
u to i, the higher its probability of

being sampled. It turns out that choosing |S−
u | ≪ |I| still enables potentially

good candidates [103]. Furthermore, a closer i and j pair enables large and use-

ful gradient updates similar to the first proposal [68]. We will refer to this final

adaptive sampling strategy for our empirical analysis in Section 4.5. In general,

although adaptive sampling strategies can improve convergence speed, it is not

hard to see that complex sampling schemes themselves can be costly.

(ii) Handling Graded Relevance Feedback. User feedback, whether implicit or ex-

plicit, can imply some grade of relevance. This grade can be based, for example,

on recency or number of interactions as well as some perceived importance of

the feedback, or a rating scale. To handle graded relevance feedback, a viable

proposal [28] is to switch between two distributions for p(j|u, i) using a biased

coin toss. With this scheme, j is sampled from either irrelevant items, I \ I+u ,
or relevant items with a lower grade than i. We experiment with this scheme in

Section 4.5. More complicated sampling schemes are also possible which, for ex-

ample [104], enable the usage of information from different types of user feedback

more finely. In general, biased sampling for handling graded relevance feedback is

shown to improve predictive power of pairwise LtR. However, as the complexity

of sampling increases, the computational cost of LtR also increases.

To benefit from different sampling strategies, it can be useful to combine them

with parallel SGD to compensate for their efficiency problems. It is usually straightfor-

ward to extend PLtR-B with these strategies. The only reservation is that the sampling

process is restricted to the items available in each block. PLtR-N can be more versa-

tile in this regard. On the other hand, the effect of not drawing (u, i, j) uniformly at

random needs further investigation, and it will be discussed in Section 4.5.4.

60

4.4.2. Adaptive Gradient Updates

In theory, SGD results in convergence to a minimum almost surely when the

learning rate is decreased over time [94]. However, some additional tweaks can be

instrumental in achieving faster convergence. More recently, it is often cited, especially

in the neural networks literature, that adaptive gradient computations which borrow

ideas from second order methods and using momentum terms [105] can bring superior

convergence results [106, 107]. Since, some neural networks can be seen as universal

approximators [39], and many CF models can be expressed as neural networks [108,109],

such computations can also be useful in the general LtR setting for CF. Example

applications [110–112] are also supportive of this.

Adaptive gradient methods consider the geometry of the optimized function for

each parameter and affect the computation of updates at every iteration. A seminal

method is AdaGrad [113] which accumulates squared gradients from previous updates

of each parameter and scales a new parameter update with the corresponding accu-

mulated sum. This approach potentially works well with sparse input enabling larger

updates for infrequent parameters and smaller updates for the frequent ones. Fur-

thermore, the need for extensive validation for choosing a good learning rate is often

eliminated, since the learning process is actually guided by the adaptive gradients.

The main drawback is that constantly accumulating the previous gradients can cause

the gradient updates to diminish through time. Among various alternatives to solving

this problem [106], Root mean square propagation (RMSProp) keeps an exponentially

weighted moving average (EWMA) of the squared gradient updates by slightly increas-

ing time complexity and without increasing space complexity compared to AdaGrad.

RMSProp can also be useful when learning from streams since its averaging scheme

can provide some sort of adaptivity to non-stationary distributions [114].

Adaptive gradient methods can be used within PLtR-B and PLtR-N. We con-

centrate on AdaGrad and RMSProp which both scale the x′-th individual parameter

update with 1/
√

Gt
x′x′ + ǫ, where G is a diagonal matrix containing the sum of squared

gradients at a time point t. Moreover, ǫ is a fixed smoothing term. While in AdaGrad

61

the sums are exact, RMSProp uses EWMA with a typical weight around 0.1. In the

following, we note two important points regarding a possible extension to the PLtR

algorithms using adaptive gradients:

(i) Space complexity. In pairwise LtR for CF, we have a minimum of |U | × f +

|I| × f individual model parameters. In the case of extensions with AdaGrad

or RMSProp, maintaining accumulators (G) for adaptive gradient computations

normally requires the same amount of extra space. Therefore, whether we extend

the PLtR versions or their sequential counterpart, such an extra space is required.

(ii) Parallelism. In the case of PLtR-B, since the block partitioning scheme guar-

antees mutually exclusive model updates, accumulators are also guaranteed to

be updated mutually exclusively. Therefore, adaptive gradient methods are di-

rectly applicable. In the case of PLtR-N, parallel processing units may try to

update the same parameters, although with very low probability as discussed in

Section 4.3.2. Therefore, accumulator updates can also be affected with a similar

probability. We provide empirical analysis results for the effectiveness of PLtR-N

with AdaGrad and RMSProp in Section 4.5.4.

4.4.3. Parallel LtR from Streaming Feedback

In this section, we revisit the stream learning perspective introduced in Sec-

tion 2.2.4 and further discussed in Chapter 3. From this perspective, latent factor

models, which we investigate in this chapter, can be considered to offer relatively space-

efficient representations for LtR. Furthermore, each SGD update to such a model often

conveniently involves a small number of model parameters. These updates can also be

incremental and in parallel which we detail next.

A first idea is to perform a single update to the model with every captured

streaming user feedback instance [75]. However, even if applicable, this can yield a

poor factorization mainly due to the large number of parameters in such models and

the sparsely available feedback (see also Section 3.5.2.2). A larger learning rate can be

useful but then the convergence is not guaranteed. Adaptive gradient update methods

62

discussed in Section 4.4.2 can also be useful, but need to acquire enough feedback for

each parameter. Rather than single updates, we propose incremental parallel SGD

updates for the stream learning setting which potentially enables faster convergence

and makes better use of computational resources in modern systems.

/* Perform the following procedure in the stream producing system process */

procedure PRODUCESTREAM

for all feedback instance t = (u, i, t, . . .) from stream do

Insert t into a buffer, B ;

if u is new then Insert u into a buffer, Bu ;

if i is new then Insert i into a buffer, Bi ;
if B is full or training is timed then

Serialize B,Bu,Bi ;
Initiate new buffers, B,Bu,Bi ;

end if

end for

end procedure

/* Perform the following procedure in the stream consuming system process */

procedure INCREMENTALPARALLELUPDATE

Deserialize B,Bu,Bi ;
Initialize model parameter, θu, for all u in Bu ;

Initialize model parameter, θi, for all i in Bi ;
Apply PLtR-N in Figure 4.6 using B instead of D+ and ψ parallel processing

units (stream consumers) ;

end procedure

Figure 4.7. PLtR-N for streams (PLtR-NS).

Our proposal is an extension to PLtR-N in Figure 4.6, and we define it in Fig-

ure 4.7. The PLtR-NS algorithm requires maintaining a buffer, B, over the streaming

feedback in the system. This buffer is filled with the incoming feedback by a stream

63

producing system process. When it is full, or the training is timed, the buffer is seri-

alized. Then, whenever available, a stream consuming system process deserializes the

buffer, performs model updates using parallel processing units (stream consumers), and

then waits for the next buffer. Each such update session warm starts with the model

parameter values learned in the previous session, and then the incremental updates are

performed. Each stream consumer can perform up to ⌈#of training epochs
ψ

⌉ epochs over the
buffer. For example, if we choose to perform one epoch in each consumer, we still per-

form ψ parallel epochs in a single pass over the streaming data which is equivalent to

ψ sequential epochs. Therefore, the convergence is expected to be faster with parallel

updates. We note that, depending on the application, if the PRODUCESTREAM and

INCREMENTALPARALLELUPDATE procedures of PLtR-NS work in the same sys-

tem process, the former procedure can directly invoke the latter instead of performing

serialization/deserialization operations.

Theoretical and empirical analyses show that the following strategies can be useful

for maintaining a buffer, B:

(i) Reservoir sampling with exponential time decay. A possible approach for main-

taining a buffer is reservoir sampling [98] which forms a uniformly random sub-

set of the whole stream incrementally. However, this typically requires quite

a large buffer, and it is prone to losing valuable feedback information anyway.

The latter is because every incoming feedback instance is held with a probability

lB
length of stream

where lB is the length of the buffer [115]. While this assures that

every feedback instance has equal probability of existing in the buffer, the proba-

bility value keeps decreasing with increasing stream length resulting in a possibly

reduced number of recent feedback instances in the model updates. Therefore, in

applications in which the recent feedback is more important, it can be more appro-

priate to use reservoir sampling with an exponential time decay function [116,117].

We also adopt this strategy as follows: Similar to the former proposal, once the

buffer is full, a new incoming feedback instance is placed in the buffer with a

probability 1 − lB/t where t is time order of the feedback instance. The new

feedback instance can be efficiently replaced with a randomly drawn feedback

64

instance already existing in the buffer using rejection sampling [118]. We assume

the probability of drawing such an existing feedback instance is proportional to

1−e−α(t−t
′) where t′ is the time order of that feedback instance, and α is a scaling

term. We sequentially draw samples from this distribution by first sampling a

position in the buffer and then accepting the feedback instance at this position

using uniform distribution as our proposal distribution.

(ii) Sliding windows. Alternatively, we propose to apply non-overlapping sliding win-

dows over the stream and use these windows as buffers. This approach imposes

a more strict time order for model updates by always keeping the most recent

feedback in the buffer. Furthermore, the probability of never using a buffered

feedback instance for model update only depends on sampling the buffer with

replacement during training, and it is quite low even with a few processing units

each performing a single epoch over the buffer, (1−1/lB)
ψ×lB ≈ e−ψ. Experimen-

tal results in Section 4.5 also point to the effectiveness of this approach.

In general, the chosen buffering strategies have potential benefits: First is to keep a

predictably-sized space for the incoming streaming feedback. Second is considering

the temporal order of feedback while still enabling stochastic optimization. In other

words, not all data is treated equally and recently arriving feedback keeps updating

the parameters which may enable better adaptation to changing temporal dynamics.

Considering the temporal order also changes p(j|u, i) dynamically and in a meaningful

way since the user feedback keeps building up through time.

Stream learning also requires incorporating the new users and items incrementally

into the model [119]. As seen in Figure 4.7, this can be done by first buffering the

new users and items and then initializing the corresponding model parameters. The

updates to the new parameters start right away with the processing of the buffered

feedback.

PLtR-N in Figure 4.6 provides a mechanism to change the learning rate in a

piecewise fashion. However, since a stream is theoretically infinite, it may not be

65

straightforward how to set the initial learning rate. For PLtR-NS, one possible option

is validation using a portion of the stream so that the chosen learning rate is not very

large or small. Another is incorporating an adaptive gradient update method into

PLtR-N as discussed in Section 4.4.2.

The effectiveness of our proposal in Figure 4.7 is further discussed in Section 4.5.4.

4.5. Experiments

4.5.1. Datasets and Evaluation

We make use of four datasets to present detailed experimental results from vari-

ous aspects. Basic properties of the datasets are given in Table 4.1. Apart from binary

user-item relevance information, the raw datasets contain graded relevance feedback

information in the form of ratings, interaction counts, or different feedback types. We

use this information to build holdout sets by leaving one random item out with maxi-

mum grade for every test user. In time-split-based experiments, we use the timestamp

information attached to every feedback instance in the ML20M and XING datasets. In the

ML20M and LASTFM datasets, every user has feedback for at least 10 items, and in the

latter an item is interacted by a user at least twice. XING dataset is relatively sparse,

and we use it mainly for testing the stream learning algorithms. Furthermore, since it

contains much rarer bookmark and reply types of feedback, we oversample each such

feedback instance with a factor given in the parenthesis as shown in Table 4.1.

We measure the ranking accuracy of the algorithms using AUC or MAP@N .

While we observe that AUC and MAP@N measurements show a correlated pattern,

the latter is preferred for time-split-based evaluations since it can handle arbitrarily

large lists of relevant items after a time split. Besides evaluation of ranking accuracy, we

illustrate speedup achieved by the proposed algorithms graphically. For this purpose,

we use execution times divided by the execution time of a single epoch in the sequential

counterpart of the algorithm in question.

66

Table 4.1. Basic properties of datasets.

Dataset |U | |I| # of feedback

instances or

tuples

Description

ML20M 138,493 27,278 20,000,263 User feedback on movies

over time [5]

LASTFM 359,208 159,000 17,177,350 User-item interaction

counts for music recommen-

dations [120]

MSD 1,019,318 384,546 48,373,586 Yet a larger dataset of inter-

action counts for music rec-

ommendations [121]

XING 770,858 1,002,161 8,861,498 Different feedback types:

Click (1), Bookmark (2),

Reply (3) as well as times-

tamp for job recommenda-

tions [20]

We use a virtual cloud machine having a multi-core Intel Xeon CPU with 12 phys-

ical cores, enough main memory, and a 64-bit Linux operating system with the latest

kernel [10]. We implement shared memory parallelism (SMP) to exploit the available

cores. There are many ways to implement SMP, but our primary setting is C++11

with OpenMP [122] threads through GCC. We also replicate the experiments using

Java 1.7 threads and observe similar comparative results. We monitor the effectiveness

of our implementations by diagnostic tools. We leave the atomicity of operations to

what is available in the system.

4.5.2. Statistics of Dataset Graphs

To complement analysis of the PLtR-N algorithm in Section 4.3.2, we consider the

graph representations (see Figure 4.5) of the datasets and collect statistics for vertices

67

Table 4.2. Statistics of dataset graphs for LtR.

Dataset LtR approach ∆ ρ

ML20M
Pointwise 0.0035 ≤ 2∆

Pairwise 0.0036 ≤ 3∆

LASTFM
Pointwise 0.0045 ≤ 2∆

Pairwise 0.0046 ≤ 3∆

MSD
Pointwise 0.0023 ≤ 2∆

Pairwise 0.0023 ≤ 3∆

XING
Pointwise 0.0011 ≤ 2∆

Pairwise 0.0015 ≤ 3∆

0.0000
0.0005

0.0010
0.0015

0.0020
0.0025

0.0030
0.0035

0.0040

d / |E|

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
v
e
rt

ic
e
s

∆pointwise

∆pairwise

Pointwise LtR

Pairwise LtR

0.000
0.001

0.002
0.003

0.004
0.005

d / |E|

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
v
e
rt

ic
e
s

∆pointwise

∆pairwise

Pointwise LtR

Pairwise LtR

0.0000
0.0005

0.0010
0.0015

0.0020
0.0025

d / |E|

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
v
e
rt

ic
e
s

∆pointwise

∆pairwise

Pointwise LtR

Pairwise LtR

Figure 4.8. Vertex degree (d) distributions in comparison to ∆ values for ML20M,

LASTFM, and MSD, respectively. Note that, for clarity, only item vertices are shown.

68

and hyperedges. We first observe that ∆ and ρ statistics in the case of pairwise LtR are

quite similar to those in the case of pointwise LtR. Table 4.2 shows these comparative

statistics which imply similar convergence properties for pointwise and pairwise LtR.

We also investigate vertex degree distributions in graph representations of the

datasets. In Figure 4.8, we illustrate a comparison of these distributions together

with the ∆ values. We observe that although the ∆ values define an upper bound

for normalized vertex degree distributions, the modal intervals of the distributions

correspond to much lower values which further support parallel methods like PLtR-N.

4.5.3. Evaluation of Ranking Accuracy and Speedup

Experimental results for PLtR-N up to 12 training epochs are obtained by per-

forming a single epoch in each processing unit. Since we have 12 available processing

units in our experimental setup, we then obtain results for 24 and 48 training epochs by

running 2 and 4 epochs at each processing unit, respectively. The results are illustrated

in Figure 4.9. The important comparison here is to the algorithm in Figure 4.1 which

performs the corresponding number of training epochs sequentially. In our experiments,

we call this algorithm SLtR (sequential pairwise LtR). For both SLtR and PLtR-N, the

following model hyperparameter values are found by validation: For ML20M, γ = 0.01

and the number of factors, f = 20. For LASTFM, γ = 0.05 and f = 40. For MSD and

XING, γ = 0.05 and f = 50. Regularization hyperparameter values are found by using

a search space around λθu = λθi = 0.0025 and λθj = 0.00025. Initial values in matri-

ces P and Q are sampled from N (0, 0.01). These hyperparameter values also achieve

numerical stability across various algorithms, and they are used as default values for

experiments with the extended algorithms in Section 4.5.4.

We observe in all datasets that the difference between the accuracy of SLtR and

PLtR-N is not statistically significant which clearly shows the effectiveness of lock-free

parallelism with no partitioning. Furthermore, the speedup patterns show that PLtR-

N scales quite well whereas, as expected, SLtR has linearly increasing execution time

with the number of training epochs. These results suggest that PLtR-N can converge

69

M
L
2
0
M

2 4 8 12 (24) (48)

Number of epochs

0.96

0.97

0.98

0.99

1.00
A

U
C

SLtR

PLtR-N

PLtR-B

2 4 8 12

Number of epochs

0

2

4

6

8

10

12

T
im

e

SLtR

PLtR-N

PLtR-B

L
A
S
T
F
M

2 4 8 12 (24) (48)

Number of epochs

0.95

0.96

0.97

0.98

0.99

1.00

A
U

C

SLtR

PLtR-N

PLtR-B

2 4 8 12

Number of epochs

0

2

4

6

8

10

12

T
im

e

SLtR

PLtR-N

PLtR-B

M
S
D

2 4 8 12 (24) (48)

Number of epochs

0.93

0.94

0.95

0.96

0.97

0.98

A
U

C

SLtR

PLtR-N

PLtR-B

2 4 8 12

Number of epochs

0

2

4

6

8

10

12

T
im

e

SLtR

PLtR-N

PLtR-B

X
I
N
G

2 4 8 12 (24) (48)

Number of epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C

SLtR

PLtR-N

PLtR-B

2 4 8 12

Number of epochs

0

2

4

6

8

10

12

T
im

e

SLtR

PLtR-N

PLtR-B

Figure 4.9. Comparing ranking accuracy and speedup of PLtR algorithms.

70

much faster without loss of accuracy and by making better use of the resources at

hand.

Experimental results for PLtR-B up to 12 training epochs are obtained by per-

forming ψ parallel block updates in each round where ψ is equal to the number of

training epochs. For 24 and 48 training epochs, ψ = 12 due to the experimental setup.

The partitioning stage of PLtR-B is performed at the master processing unit and the

update stage at all ψ parallel processing units. The rest of the hyperparameter values

are the same as those for SLtR and PLtR-N. The AUC pattern shows that the accu-

racy of PLtR-B is comparable to that of SLtR and PLtR-N. On the other hand, while

PLtR-B offers considerable speedup compared to SLtR, its speedup pattern is some-

what worse than that of PLtR-N. The major reason is the partitioning stage performed

at the master processing unit. Using separate dedicated processing units for this stage

has a potential to improve this speedup.

4.5.4. Experiments with Extended Algorithms

In this section, we present detailed experimental results for the extensions to the

PLtR algorithms discussed in Section 4.4.

4.5.4.1. Experiments with Different Sampling Strategies. We begin with illustrating

the experimental results for different sampling strategies in Figure 4.10. For all datasets,

the adaptive sampling (AS) strategy affects the convergence speed in a positive way.

This can be seen by comparing to the SLtR algorithm which draws j uniformly at

random from I \ I+u . For adaptive sampling, we choose |S−
u | = ⌈log 0.10/ log 0.90⌉ = 22

and pick with 90% probability at least one candidate item j among the top 10% closest

items to i [103]. We observe that both PLtR-B-AS and PLtR-N-AS produce an AUC

pattern very similar to their sequential counterpart with adaptive sampling, SLtR-AS,

which shows that they can readily be used for efficient adaptive sampling. The com-

parative speedup patterns of the extended algorithms are similar to those in Figure 4.9

and therefore not illustrated. On the other hand, compared to SLtR which performs

71

2 4 8 12 (24)

Number of epochs

0.96

0.97

0.98

0.99

1.00

A
U

C

SLtR

SLtR-AS

PLtR-N-AS

PLtR-B-AS

2 4 8 12 (24)

Number of epochs

0.95

0.96

0.97

0.98

0.99

1.00

A
U

C

SLtR

SLtR-AS

PLtR-N-AS

PLtR-B-AS

2 4 8 12 (24)

Number of epochs

0.93

0.94

0.95

0.96

0.97

A
U

C

SLtR

SLtR-AS

PLtR-N-AS

PLtR-B-AS

2 4 8 12 (24)

Number of epochs

0.96

0.97

0.98

0.99

1.00

A
U

C

SLtR

SLtR-GF

PLtR-N-GF

2 4 8 12 (24)

Number of epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C

SLtR

SLtR-GF

PLtR-N-GF

Figure 4.10. Comparing different sampling strategies. (Top-Middle rows) Adaptive

sampling results for ML20M, LASTFM, and MSD, respectively. (Bottom row) Handling

graded relevance feedback in ML20M and XING, respectively.

72

sampling uniformly at random, one epoch of SLtR-AS has more than twice the ex-

ecution time in our experimental setup. This makes combination of PLtR family of

algorithms with adaptive sampling a valuable approach.

As pointed out in Section 4.4.1, PLtR-B can incorporate adaptive sampling with

a single restriction, that is, j is sampled from the items available in each block. On the

other hand, it is useful to further analyze the effect of such biased sampling schemes

when incorporated into PLtR-N. Figure 4.11 shows that PLtR-N-AS produces a skewed

distribution of item j samples while PLtR-N, which samples uniformly at random,

produces a steep peak centered around true uniform distribution over all items. We

see in Figure 4.10 that this shift in the distribution does not decrease predictive power

of PLtR-N-AS with the chosen level of parallelism. For further analysis, we design

and make yet another experiment: First, we observe the rank-frequency distribution of

items in D+ as well as that of j after adaptive sampling in real datasets. It turns out

that both distributions can be well approximated with the Zipf-Mandelbrot law [123,

124]. Then, we simulate various scenarios each with a different number of items, |I|,
while we keep the number of processing units, ψ, fixed. For each scenario, we fit

items the two rank-frequency distributions with similar shape characteristics to what

is observed in the real-life datasets. We also initialize counters for each item and set

them to zero. Parallel counter updates are done at each processing unit by sampling

an i and a j from corresponding rank-frequency distributions, reading their counters

at the time of sampling, waiting for a short random period to achieve some staleness,

and then incrementing their counters. After sufficiently large number of iterations, the

percentage of update losses can be decided by comparing the sum of item counters

to the true number of updates. We compare each scenario to the case in which j is

sampled uniformly at random rather than from the fitted distribution. The result of this

experiment is also illustrated in Figure 4.11. It turns out that the comparative update

losses quickly converge for even relatively small |I|/ψ hinting us that the negative effect

of biased sampling on PLtR-N can be quite limited in many practical scenarios.

In Figure 4.10, we also present experimental results for the sampling strategy

described in Section 4.4.1 for handling graded relevance feedback (GF). When used

73

2000 4000 6000 8000 10000
Number of samples

0

5000

10000

15000

20000

25000

Nu
m
be

r o
f i
te
m
s

Uniform
PLtR-N
PLtR-N-AS

16 32 64 128
|I|/ψ

0%

1%

2%

3%

4%

5%

6%

7%

8%

Pe
rc
en

ta
ge

 o
f u

pd
at
e
lo
ss

Uniform
Adaptive

Figure 4.11. Effect of sampling j adaptively vs. uniformly at random for PLtR-N.

(Left) Distribution of sampled items j in LASTFM after applying the different sampling

strategies. (Right) A simulation of comparative update loss.

with PLtR-B, this strategy is applicable but slightly more restrictive since it requires

sampling both relevant and irrelevant items from what is available in each block. On

the other hand, PLtR-N-GF results compared to its sequential counterpart, SLtR-

GF, show that PLtR-N can be conveniently coupled with this sampling strategy. We

provide experimental results for ML20M using its rating information as grades and XING

using its different types of feedback given in Table 4.1. The probability of choosing j

from relevant items is set to 0.10. To be suitable for this type of sampling, LASTFM and

MSD require some preprocessing for handling their grade information (item interaction

counts), and their results are not reported. It turns out that this sampling strategy is

computationally less costly compared to adaptive sampling, and the samples are more

uniformly distributed. Therefore, the analysis for adaptive sampling is also valid here,

and it can be considered as the worst case.

4.5.4.2. Experiments with Adaptive Gradient Updates. Experimental results for the

extensions with AdaGrad and RMSProp adaptive gradient update methods are re-

ported in Figure 4.12. We fix the learning rate, γ, to 0.1 for AdaGrad extensions and

to 0.01 for RMSProp extensions. We also set ǫ = 10−8, and for RMSProp, EWMA

weight is 0.1. Then, we let the adaptive gradient updates guide the learning process.

We only report results for the PLtR-N versions since adaptive gradient updates do not

74

2 4 8 12 (24)

Number of epochs

0.96

0.97

0.98

0.99

1.00

A
U

C

PLtR-N γ=0.010

SLtR+AdaGrad γ=0.100

PLtR-N+AdaGrad γ=0.100

SLtR+RMSProp γ=0.010

PLtR-N+RMSProp γ=0.010

2 4 8 12 (24)

Number of epochs

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
U

C

PLtR-N γ=0.050

SLtR+AdaGrad γ=0.100

PLtR-N+AdaGrad γ=0.100

SLtR+RMSProp γ=0.010

PLtR-N+RMSProp γ=0.010

2 4 8 12 (24)

Number of epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
U

C

PLtR-N γ=0.050

SLtR+AdaGrad γ=0.100

PLtR-N+AdaGrad γ=0.100

SLtR+RMSProp γ=0.010

PLtR-N+RMSProp γ=0.010

Figure 4.12. Comparative results for PLtR-N extensions with adaptive gradient

updates on ML20M, LASTFM, and MSD, respectively.

really pose a challenge for the PLtR-B algorithm which performs mutually exclusive

parameter updates. We first observe that PLtR-N extended with adaptive gradient up-

date methods can have an increase in convergence speed compared to the non-adaptive

PLtR-N with the best learning rate. Furthermore, SLtR and PLtR-N combined with

the same adaptive gradient method have very similar AUC patterns which shows that

the parallelism preserves the ranking accuracy. We also note that the comparative

speedup patterns of the extended algorithms with adaptive gradient update methods

are similar to those in Figure 4.9. On the other hand, in our experimental setting, the

execution time for one epoch with adaptive gradient updates is about twice to three

times the execution time with non-adaptive updates. Therefore, the efficiency obtained

by combining adaptive gradient update methods with PLtR can be quite valuable in

practice.

75

12 4 8 12 (24) (48)

Number of epochs

0.00

0.02

0.04

0.06

0.08

0.10

M
A

P
@

N
PLtR-N

PLtR-NS (Exponential decay)

PLtR-NS (Sliding windows)

12 4 8 12 (24) (48)

Number of epochs

0.000

0.005

0.010

0.015

0.020

M
A

P
@

N

PLtR-N

PLtR-NS (Exponential decay)

PLtR-NS (Sliding windows)

0
100

000
0
200

000
0
300

000
0
400

000
0
500

000
0
600

000
0
700

000
0
800

000
0

t

0.0

0.2

0.4

0.6

0.8

1.0

1−
e−

(t
−t

′)
/l

′

Figure 4.13. (Top row) Comparing ranking accuracy of PLtR-NS on ML20M and XING,

respectively. (Bottom row) Shape of exponential decay at various time points.

4.5.4.3. Experiments for Parallel LtR from Streaming Feedback. We finally report ex-

perimental results for variations of the PLtR-NS algorithm proposed in Section 4.4.3

for LtR from streaming feedback. In Figure 4.13, we compare the ranking accuracy of

the algorithms on ML20M and XING datasets which contain timestamp information for

every feedback instance. We use a time split where the first 99.5% of a time-ordered

dataset is used for training the model, and the last portion is for testing. Since the

number of relevant items for each user can be different in the test set, we use MAP@N

as our evaluation measure with N = 50. Varying N does not change the comparative

results. While PLtR-N performs learning using all the training data at once, the PLtR-

NS variations implement incremental learning using the different buffering approaches

discussed in Section 4.4.3. For ML20M, PLtR-NS uses a buffer length, lB = 500, 000,

and performs incremental learning after every 500,000-th incoming feedback instance.

For XING, both values are fixed to 100,000. When exponential decay is used, α = 1/lB.

76

In general, the PLtR-NS variations produce superior results by taking time order

of the user feedback into account. It is also observed that the sliding windows buffering

approach outperforms the exponential time decay approach in both experiments. In

Figure 4.13, we can see the shape of exponential decay for various points in time by

choosing α = 1/lB = 1/500, 000 and observe that the probability of eliminating an

older feedback instance from the buffer is always higher. For potential improvements,

it is possible to modify the shape of decay function by further tuning the scaling term,

α. Finally, we observe that performing a single pass (one epoch) over the stream yields

poorer convergence results compared to performing multiple parallel epochs. This

clearly shows the usefulness of the parallelism achieved by the PLtR-NS algorithm.

77

5. EFFICIENT TOP-N PREDICTION FROM MATRIX

FACTORIZATION MODELS

5.1. Introduction

As discussed in Section 2.2.3, latent factor models, and in particular, matrix

factorization (MF) models [24] are a major line of research in CF. They allow using

versatile loss functions and often produce good low-dimensional latent representations

of users and items. In this latent space, the curse of dimensionality is reduced and

the nonlinearities can be approximated so that the simpler dot product of a user and

an item vector often yields a good predictive score for personalized relevance. Op-

timizations based on stochastic gradient descent (SGD) or alternating least squares

(ALS) [48, 125] as well as their parallel versions [10, 96] are shown to do a good job of

training MF models on large user feedback datasets. However, when the item repository

is large, personalized prediction queries for finding the top-N items with the highest

dot products can still be costly due to dense matrix multiplications and further sorting

operations. This may raise practical concerns about MF models such as adaptivity

due to longer computation times when the top-N predictions are precomputed for a

large number of users or fast retrieval when there is a need for top-N predictions in

real time.

Finding nearest neighbors (NN) is a common task in pattern recognition and

machine learning [39]. Yet, many large-scale applications enforce approximate nearest

neighbor search methods [126] due to the computational cost of exact search. This can

bring considerable speedup for a slight loss of precision.

In this chapter, we combine MF with approximate NN search methods to improve

the efficiency of top-N prediction queries. Our efforts result in a meta-algorithm,

MMFNN, for MF models and the following main contributions:

78

• The problem of finding the top-N highest dot products is relaxed to finding

the highest dot products in an approximate proximity of the items known to be

relevant to the user. We show that this is a viable heuristic approach since many

MF models try inherently to perform some sort of dot product maximization for

these items, and searching their neighborhoods is useful for discovering new top-N

items. This approach also allows the proposed meta-algorithm to employ various

common MF models without requiring a modification to their loss functions.

• We show that the meta-algorithm can highly improve the time efficiency of top-N

prediction queries in the first place. Furthermore, it still performs comparably

to standard exhaustive prediction methods or sometimes even better in terms of

important performance criteria such as ranking accuracy and diversity.

• We show that the meta-algorithm can also be used to facilitate incremental CF

which can learn from streaming user feedback.

• Although the ideas here can be adapted to learning from explicit user feedback

as well, we focus on implicit user feedback. We present a detailed analysis of

our approach for learning from implicit user feedback together with experimental

results on large implicit feedback datasets from different application domains.

The remainder of this chapter is organized as follows: In Section 5.2, we present

more background about the MF models for CF from implicit feedback. Then, in Sec-

tion 5.3, we present preliminaries about approximate nearest neighbor search in metric

spaces with a focus on the methods used in this chapter. In Section 5.4, we propose the

meta-algorithm, MMFNN, to improve the efficiency of top-N prediction queries and

analyze it from various aspects. We also show that it can enhance incremental CF. We

present a comparison to the related work in Section 5.5. Detailed empirical analysis

results are presented in Section 5.6.

5.2. MF Models for CF from Implicit Feedback

Let U be the set of users and I be the set of items in a CF system. Each user,

u ∈ U , is assumed to have provided some feedback to the system and therefore has a

79

set of relevant items, I+u ⊆ I. Typically, |I+u | ≪ |I|. As discussed in Section 2.1.2, the

relevance can be binary or graded.

A matrix factorization model, MMF , tries to minimize an error function in the

typical form,

E (P,Q | D) =
∑

t∈D

{
L (t,P,Q) + regularization term

}
, (5.1)

where t is a tuple in a personalized relevance dataset, D, consisting of a user, u ∈ U ,
and at least one item, i ∈ I. Depending on the personalized LtR approach (see

Section 2.2.1), t may also contain additional items as well as grade and extra context

information such as time. In general, the model parameters correspond to fixed-sized

column vectors pu,qi ∈ Rf in the low-rank component matrices of the factorized

user-item relevance matrix, Ŷ = P⊤Q. Therefore, the number of factors, f ≪ |I|.
Different loss functions, L, are possible for learning from implicit feedback which will

be detailed next. The resulting error function is differentiable with respect to the model

parameters, and it can be optimized with numerical optimization techniques such as

SGD or ALS.

Without loss of generality, in this chapter, we stick to two seminal MF models

for implicit feedback and their extensions:

(i) Weighted regularized matrix factorization (WRMF) [7, 57] is a pointwise LtR

model. The loss function is in the form,

L = wui
(
zui − p⊤

u qi
)2
. (5.2)

Following [7], given some confidence value, cui, corresponding to a grade of rel-

evance, each training tuple performs updates by selecting zui = 1R>0
(cui) using

an indicator function, and wui = 1 + acui where a is a constant scaling factor.

80

(ii) Bayesian personalized ranking matrix factorization (BPRMF) [48] is a pairwise

LtR model. The loss function is based on sigmoid-smoothed pairwise loss and

negative log-likelihood,

L = − ln σ(p⊤
u qi − p⊤

u qj), (5.3)

where basically i ∈ I+u and j ∈ I \ I+u . Many improvements and extensions for

such pairwise models are covered in Chapter 4.

When an MMF is learned, a common prediction task is finding a set of top-N

items, {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)}, suitable for each queried user, u ∈ U . In general,

a top-N query first requires predicting relevance scores by computing the dot product,

ŷu(i) = p⊤
u qi, for all i ∈ I. Then, for obtaining the N items, these scores are sorted. In

practice, the item repositories can be quite large and these queries can become costly

due to practical constraints.

5.3. Approximate NN Search in Metric Spaces

In this chapter, we are interested in finding approximate k nearest neighbors of

items in metric spaces which can be formalized as follows:

kNN(iq, I, k) = K, |K| = k, K ⊆ I, (5.4)

where iq ∈ I is a queried item. In exact nearest neighbor search, ∀i+ ∈ K, i− ∈ I \K,

d(iq, i+) ≤ d(iq, i−), where d : I×I → R≥0 is a metric distance. In approximate search,

this is relaxed up to some precision by potentially allowing false positive items in the

neighborhood.

There are many methods for finding approximate nearest neighbors in metric

spaces. A useful taxonomy [126] is dividing these methods into partitioning trees,

hashing-based, and nearest neighbor graph techniques. We carry on with two effective

partitioning tree techniques reported to outperform others in the same reference in

81

terms of efficiency. We briefly describe these techniques below and provide additional

details in Sections 5.4.2 and 5.6.

(i) Randomized k-d trees (RKT) : k-d tree is a well-known data structure for space

partitioning. RKT approach builds multiple independent k-d trees, each parti-

tioning the space recursively into two on randomly chosen dimensions. A modest-

sized ensemble of randomized trees improves the precision of a single tree with

little computational overhead.

(ii) K-means tree (KMT) : This partitioning technique builds a tree by performing

recursive k-means clustering in the metric space using all dimensions and a chosen

distance measure.

The construction of both partitioning trees is quite efficient when we have a

large number of entities with a modest number of features which is typical of low-rank

matrices from matrix factorization for CF. Furthermore, both partitioning trees allow

efficient tree traversal to find approximate kNN for a given query among a predefined

number of candidate neighbors.

Throughout this chapter, we refer to a nearest neighbor search model asMNN .

5.4. A Meta-algorithm for Efficient Prediction from MF Models

In this section, we propose a meta-algorithm, MMFNN, to improve the efficiency

of top-N predictions by combining matrix factorization models with approximate near-

est neighbor search. To start our discussion, we first present the high-level view of our

approach in Algorithm 5.1. We then carry on with the analysis and potential benefits

of the proposed algorithm.

The meta-algorithm in Figure 5.1 begins with learning parameters of an MF

model,MMF . At this stage, many MF models including those discussed in Section 5.2

are pluggable into the algorithm, and no custom loss functions are applied. Then,

82

— LEARNING STAGE —

Learn P and Q usingMMF ;

Learn a partitioning of I in Q space usingMNN ;

for all item i ∈ I do

Query and store kNN(i, I, k) fromMNN ;

end for

— PREDICTION STAGE —

for all queried user u do

Choose I++
u ⊆ I+u ;

S ← ⋃
i∈I++

u

kNN(i, I, k) ;

Output {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)} with the highest ŷu(i)← p⊤

u qi, i ∈ S ;

end for

Figure 5.1. MMFNN(MMF ,MNN) : Meta-algorithm for efficient top-N prediction

from matrix factorization models.

the approximate NN search model, MNN , is learned using the factorized representa-

tion of items, Q, from MMF . This means that we learn an MNN in a latent space

rather than the original item space where the item vector size is reduced to a modest

number (typically f ∈ [10, 100] in practical CF tasks). Learning and querying MNN

for obtaining kNN sets are extra preprocessing steps compared to the state-of-the-art

exhaustive prediction (EP) given in Figure 5.2 for clarity. However, this is done once

and efficiently, and then we are able to perform every top-N prediction using an ex-

pectedly much smaller and refined union set, S, rather than the whole set of items, I.

For obtaining S, we refer to a set, I++
u ⊆ I+u , which may include all known relevant

items to a user or just a smaller subset, for example, based on the most recent user

feedback.

Interestingly, learning and querying MNN often have negligible computational

cost for common k, f , and |I| values in large-scale CF tasks. Furthermore, since typ-

83

Require: P and Q from an MF model,MMF

for all queried user u do

Output {r̂−1
u (1), r̂−1

u (2), . . . , r̂−1
u (N)} with the highest ŷu(i)← p⊤

u qi, i ∈ I ;

end for

Figure 5.2. EP: Exhaustive top-N prediction from matrix factorization models.

ically |S| ≪ |I|, a remarkable speedup can be observed for top-N queries which deal

with a reduced set of items. The selection strategy of S is based on the heuristic

idea that relevant unexplored items for a user, u, can be in close proximity to user’s

previously known relevant items, I+u , in the latent space. To put in another way, at

least some items from I+u are actually expected to have high dot products with pu due

to the dot product optimization procedure in anMMF . Therefore, their neighboring

items are also expected to have high dot products. A closer inspection of Equations 5.2

and 5.3 supports these assumptions: In the former, previously known relevant items

are expected to have higher dot products, and a penalty is applied if the dot product

diverges, depending on the weighted confidence, wui, in the relevance. In the latter,

the loss function penalizes more obviously in a way that AUC is directly optimized [48]

to rank previously known relevant items above the rest. Therefore, searching neigh-

borhoods of the items in I+u is useful to find unexplored items with high dot products

for top-N prediction. This strategy seems to work well and even impose useful addi-

tional filtering which results in improved performance with respect to various important

performance criteria as shown in Section 5.6.

Figure 5.3 shows example user and item embeddings in the latent space learned

from anMMF . For illustrative purposes, three dimensions are given where item factor

values have the highest variance. Note that a dot product can be written as p⊤
u qi =

‖pu‖‖qi‖ cos(αpu,qi
), and given a specific user, u, its maximization can be simplified

to the maximization of ‖qi‖ cos(αpu,qi
) by normalizing the user vector. The latter is

possible since the recommendations are personalized and the direction of pu suffices

for predictions. Therefore, it can be imagined that the most relevant items should

84

Factor 1

−0.2
0.0

0.2
0.4

0.6

Factor 2

−0.2
0.0

0.2
0.4

0.6

Factor 3

−0.6

−0.4

−0.2

0.0

0.2

i∈I
i∈I +u
u

Factor 1

−0.6−0.4−0.20.00.20.40.6

Factor 2

−0.5
0.0

0.5

Factor 3

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

i∈I
i∈I +u
u

Figure 5.3. Example embeddings and cones in the latent space for LASTFM2 and XING

datasets, respectively (i ∈ I are downsampled).

85

lie within an open cone around the user vector and as far as possible from the origin

maximizing the terms cos(αpu,qi
) and ‖qi‖, respectively [127, 128]. In Figure 5.3, we

observe that the items i ∈ I+u are often around such a cone and relatively far from the

origin. As a result, their neighbors in a metric space, such as the Euclidean space, are

likely to have high dot products.

Therefore, we reason that the proposed meta-algorithm is an efficient heuristic

approach for finding top-N items with high dot products. We point to some additional

potential benefits of our proposal as follows:

• We provide a way to look for items with high dot products while, at the same time,

taking into account useful neighborhood constraints. As supported by the experi-

mental results in Section 5.6, this can bring additional performance improvements

compared to finding the top-N highest dot products among all items.

• For predicting the top-N items, a subset of user’s known relevant items can

be selected, for example, to emphasize recent feedback or to further improve

efficiency by sampling a small representative subset.

• When the user is cold start by having a few feedback instances, we can still rely

on the neighborhoods of the items in these instances.

• Incremental CF can be facilitated which is detailed next in Section 5.4.1.

5.4.1. Enhancing Incremental CF

While incremental learning offers efficiency and adaptivity, it can be crucial for

practicality that the predictions from the associated models are also efficient. In this

sense, MMFNN can enhance incremental CF algorithms based on matrix factorization.

For example, the PLtR-NS algorithm proposed in Chapter 4 can constitute anMMF

so that the learned model parameters P and Q can be used by MMFNN for faster

retrieval from the most up-to-date model. In general, by incorporating incremental

matrix factorization, MMFNN can make LtR from streams more practical especially

with large item repositories. In Section 5.6, we present experimental results towards

this direction.

86

— MODIFIED PREDICTION STAGE —

for all queried user u at a specific time point t do

Choose I++
u ⊆ I+u ;

S ← ⋃
i∈I++

u

kNN(i, I, k) ;

A′ ← top-N ′ items with the highest p⊤
u qi, i ∈ S,N < N ′ ≤ |S| ;

for all item i ∈ A′ do

if gti = 0 then

pi ← +∞ ;

else

pi ← θ̂i
MAB

+
√

2 ln t
gti

;

end if

end for

A← top-N items with the highest pi, i ∈ A′ ; /* Break ties arbitrarily */

for all item i ∈ A do

gti ← gti + 1 ;

Observe a reward ρi in range [0, 1] ;

Update θ̂i
MAB ← gt−1

i

gti
θ̂i
MAB

+ 1
gti
ρi;

end for

end for

Figure 5.4. MMFNN prediction stage with UCB-type multi-armed bandit.

87

In this section, we also investigate a proof of concept extension in which MMFNN

adopts an additional reinforcement learning model,MRL. The resulting procedure can

be considered as a contextual multi-armed bandit based on UCB-type approaches [129,

130] where UCB refers to an upper confidence bound. We present the extension in

Figure 5.4 which modifies the prediction stage of MMFNN. The core idea is reranking

the best candidate arms (items) for a certain context (user) with respect to their

expected payoff taking into account the confidence in this payoff. Each arm (or item),

i ∈ I, is modeled with a payoff distribution, Bernoulli(θMAB
i). These distributions

are unknown at the beginning and learned over time. Arm selection is subject to the

expected payoff at a time point t = 1, 2, . . . , T aggregated with an upper confidence

bound. This bound can be thought to add a bonus term if an item is under-explored.

gti refers to the frequency count of an item i in top-N predictions at time t. The best

N ′ predictions from an MMF at time t are reranked by the aggregated score. Since

MMF is a personalized model, the MRL can be thought to consider personalization

by handling only the available set of candidate items fromMMF . This approach also

brings efficiency for arm selection since we deal with a reduced and quickly retrieved set

of items. Finally, the arms are updated with the weighted average of previous payoff

expectation and the current reward at an interval [0,1]. An example reward mechanism

can be ρi = 1 if a predicted item for the user u is relevant, and ρi = 0 otherwise. In

Section 5.6, we also present experimental results for this extension.

5.4.2. Complexity

Referring to [126], whenMNN = KMT, the time complexity of tree construction

is O(|I| × f × κ × ι × (log |I|/ logκ)) where ι is the number of k-means iterations,

and κ is the branching factor (or number of clusters) in recursive k-means. Finding

nearest neighbors of a query item requires finding leaf nodes containing potentially

good neighboring items. Such leaf nodes are reached by holding a priority queue of

the promising branches. The overall search complexity is O(ν × f × (log |I|/ logκ))
where ν is a predefined number of leaf node items to examine for finding the k nearest

neighbors. On the other hand,MNN = RKT [131] requires building τ independent k-d

88

trees, each with a time complexity of O(|I|× log |I|). The trees can be built in parallel.

To find the nearest neighbors, a common priority queue is maintained across all trees

so that the most promising branches are explored first. The search stops after reaching

a predefined number, ν ′, of leaf nodes across the trees, and the k nearest neighbors are

retrieved.

Using the algorithm in Figure 5.2, each top-N query requires computing a dot

product with a complexity of O(|I| × f) for finding the predictive scores and O(|I| ×
log |I|) for sorting them. Using a min-heap of size N is effective when |I| is large in

which case the sorting operation becomes O(|I| × logN) by feeding each scored item

to the heap. Using the algorithm in Figure 5.1, each top-N query requires computing

the set S. Inserting a single item to S or checking its existence has O(1) average time

complexity, and a total of |I++
u | × k of such operations are done. Computing the dot

products has a complexity of O(|S| × f) whereas sorting them is O(|S| × log |S|) or

O(|S| × logN) depending on the sorting strategy.

We note that the top-N queries can also be parallelized for different users or

different i ∈ S which are comparable to possible parallel processing options for exhaus-

tive top-N search over I. However, parallel prediction is not always a desired option

in practice [128].

5.5. Comparison to Related Work

Compared to the training task, prediction from an MF model has less research

focus. However, due to increasingly larger datasets used in practice, leading industrial

research points to its importance, for example, for top-N prediction [132] and deciding

item similarities [133].

In [134], the authors formulate a custom loss function for MF which yields user

and item embeddings directly in the Euclidean space. This enables search for poten-

tially relevant items in this space rather than using dot product optimization. In other

words, given a queried user’s embedding, the most relevant item embeddings are ex-

89

pected to have the smallest Euclidean distance to it. The authors apply brute-force

nearest neighbor search and report improved results on explicit feedback datasets with

relatively small number of items. A good formalization of dot product optimization for

MF is provided in [128]. The authors then propose a metric tree for partitioning the

item vectors in the Euclidean space. For retrieving items for a queried user with the

highest dot products, their proposal is a branch-and-bound algorithm which traverses

the tree in a specialized way. To further improve the efficiency, they propose to cluster

the user vectors with respect to their angular similarity and decide the items for each

cluster based on highest dot products with the representative user of the cluster. This

proposal is viable since user vectors with similar directions are likely to have similar

taste profiles. Using large-scale explicit feedback datasets, the authors report useful

speedup with various degrees of precision loss compared to exhaustive prediction. An-

other seminal tree-based approach is reported in [132]. The authors first propose a

simple but elegant reduction of the retrieval problem in the dot product space to a

problem in the Euclidean space. Then, they propose to use a PCA-tree which par-

titions the items and enables direct user queries to find relevant items. The authors

report useful speedup patterns against acceptable losses in prediction quality as well

as improvements over [128]. We name this reduce-and-partition approach R-PCA and

present comparative results in Section 5.6.

Another recent and interesting approach is LEMP [135,136] in which the authors

propose to partition the item vectors according to their lengths. For finding higher dot

products above a threshold, each partition is treated differently: Given a queried user,

many partitions are often automatically neglected due to the threshold. For others,

their algorithm solves smaller cosine similarity search problems. For finding the top-N

items, they also propose a way to adjust the threshold adaptively. The authors report

good speedup patterns on different variations of their algorithm and also provide an

efficient implementation of their ideas. In Section 5.6, we provide a comparison to this

approach as well.

90

Other notable approaches include: a directly indexable probabilistic MF model

for efficient prediction [137] and a locality-sensitive hashing scheme [138] which can

enable efficient retrieval in the dot product space with tight guarantees.

All in all, there is growing interest in improving efficiency of predictions from

MF models. Differently from the above-mentioned approaches, our approach brings

together the following properties: It defines a meta-algorithm which can combine var-

ious common matrix factorization models with various approximate nearest neighbor

search methods. This offers the ability to use different well-established models without

any modifications. The meta-algorithm is based on a low-cost but powerful heuristic

for finding top-N items with high dot products within an intuitively preselected neigh-

borhood. Therefore, it offers the potential benefits pointed out in Section 5.4, works

well with implicit user feedback, and facilitates non-incremental and incremental CF.

5.6. Experiments

We perform extensive experiments to test the effectiveness of MMFNN. We begin

with describing the datasets used in this study and the experimental setup. We then

present comparative experimental results with respect to various performance criteria

in multiple experimental settings.

5.6.1. Datasets and Experimental Setup

Throughout our experiments, we make use of five real-life datasets from various

recommender system application domains. These datasets are summarized in Table 5.1,

and further details are provided in [13] and throughout the rest of this section.

Our experimental setup is a commodity PC having an Intel Ivy Bridge Pentium

processor with 2 cores each at 2.40 GHz, 8-GB main memory, and 64-bit Linux operat-

ing system with the latest kernel [13]. Our results are obtained using C++11 through

GCC.

91

Table 5.1. Basic properties of datasets.

Dataset |U | |I| # of feedback

instances or

tuples

Description

XING 770,858 1,002,161 8,861,498 Different feedback types:

Click (1), Bookmark (2),

Reply (3) as well as times-

tamp for job recommenda-

tions [20]

LASTFM2 359,349 268,772 17,559,127 User-item interaction

counts for music recommen-

dations [120]

MSD 1,019,318 384,546 48,373,586 Yet a larger dataset of inter-

action counts for music rec-

ommendations [121]

TMALL 424,170 1,090,390 54,925,330 Different feedback types:

Click (1), Add-to-cart (2),

Purchase (3), and Add-to-

favorite (4) as well as times-

tamp for online retail rec-

ommendations [52]

AMZBK 8,026,324 2,330,066 22,507,155 User feedback on

books [139]

92

5.6.2. Experimental Results

5.6.2.1. Experiments Using a Random Holdout Set. In this set of experiments, we

leave one item out for every test user. These items are chosen randomly from the users’

known relevant items among those with the maximum confidence value or grade. For

example, the confidence value of a purchase is higher than a click, or a higher inter-

action count implies higher confidence in relevance. The remaining feedback forms a

training set.

We experiment with both WRMF and BPRMF as an MF model, MMF . Our

implementations are based on [7] and [10], respectively. In all experiments, we com-

pare five different predictive models over an MMF : MMF+EP uses the exhaus-

tive top-N prediction in Figure 5.2 with min-heap-based sorting, MMF+R-PCA and

MMF+LEMP-LI follow from Section 5.5, and two versions of MMFNN(MMF ,MNN)

use KMT and RKT, respectively. We observe that, with proper choice of hyperparam-

eter values through validation, WRMF and BPRMF often produce comparable results

with respect to the tested performance criteria. Therefore, we only report the results

of the slightly better MMF for each dataset, that is, MMF = WRMF for LASTFM2,

MSD, TMALL andMMF = BPRMF for XING, AMZBK. We choose the number of factors,

f = 50, for eachMMF . To show the results are far from trivial, we also compare to a

most popular (MP) baseline in which the most popular items not existing in a user’s

feedback history are recommended as top-N predictions.

For training the neighborhood model, MNN , in an MMFNN(MMF ,MNN), we

refer to [126] and its accompanying C++ implementations [140] for KMT and RKT

which are also integrated into our implementation. To decide the nearest neighbor

search approximation level for each dataset, we try to achieve predictive power at least

as good as that of MMF+EP. For this purpose, we first find the best hyperparame-

ter values for KMT and RKT to achieve on the order of 80-90% precision in nearest

neighbor search on latent item vectors, Q. We further refine these hyperparameter val-

ues through validation for finding a good speedup trade-off for the top-N performance

criteria used in this chapter. In general, we find using ι = 5 and κ = 32 for KMT

93

and τ = 8 kd-trees for RKT adequate, and we fix these hyperparameter values for all

experiments. We also choose ν and ν ′ from {64, 128, 256, 512}.

In principle, the accuracies of R-PCA and LEMP are upper-bounded by that of

EP since their primary aim is to find the exact highest dot products. For R-PCA,

we obtain the results by setting the tree depth hyperparameter value to 3. For some

datasets, a more shallow tree slightly improves the accuracy, but then the prediction

time becomes almost the same as EP. LEMP-LI is often the best performing variation

of LEMP as reported in [135]. We find its suggested default hyperparameter values

suitable for our datasets as well. We adapt the efficient C++ implementations [141] of

R-PCA and LEMP-LI to our experimental setup.

We first measure HR@N and present the results in Figure 5.5 for N = 10. In our

experiments, selecting N between 5 and 50 does not change the general trend in the

results. For all datasets, we observe that HR@N for MMFNN versions is equivalent or

better compared to exhaustive prediction. We also observe that MMFNN with RKT

is slightly better than the KMT version. As expected, the HR@N results for R-PCA

and LEMP-LI are comparable to that of exhaustive prediction with the former being

sometimes slightly worse in order to benefit from some speedup.

XING LASTFM2 MSD TMALL AMZBK
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

HR
@
10

MP
MF + EP
MF + R−PCA

MF + LEMP−LI
MMFNN(MF, KMT)
MMFNN(MF, RKT)

Figure 5.5. HR@N results for different datasets.

To quantify the positions of the holdout set items in the top-N predictions, we

also measure the mean reciprocal rank (MRR). We assume zero reciprocal rank if

94

r̂u(i
⋆
u) > N where i⋆u refers to an item in the holdout set. MRR results are presented

in Figure 5.6. We observe that MMFNN versions have an effect towards improving

the ranks of items in the holdout set compared to exhaustive prediction. On the other

hand, R-PCA and LEMP-LI results are aligned similarly with the exhaustive prediction

results as in the HR@N experiments.

XING LASTFM2 MSD TMALL AMZBK
0.00

0.05

0.10

0.15

0.20

M
RR

MP
MF + EP
MF + R−PCA

MF + LEMP−LI
MMFNN(MF, KMT)
MMFNN(MF, RKT)

Figure 5.6. MRR results for different datasets.

XING LASTFM2 MSD TMALL AMZBK
0.0

0.2

0.4

0.6

0.8

1.0

AD

MP
MF + EP
MF + R−PCA

MF + LEMP−LI
MMFNN(MF, KMT)
MMFNN(MF, RKT)

Figure 5.7. AD results for different datasets.

As mentioned in Section 2.2.5, ranking accuracy can have a trade-off with diver-

sity of predictions. Therefore, we also measure aggregate diversity (AD) across top-N

predictions and present the results in Figure 5.7. We observe that the level of AD

usually persists and even increases when MMFNN versions are used. This is especially

observable for the datasets with a larger number of items, |I|. Therefore, MMFNN

95

versions do not necessarily suppress AD while maintaining or improving HR@N and

MRR.

The experimental results for ranking accuracy and diversity show that MMFNN

can perform comparably and even better than exhaustive top-N prediction. They also

show that both R-PCA and LEMP-LI can match the results of exhaustive prediction.

We now present efficiency comparisons between different approaches to have a better

idea of their effectiveness. We refer to TMNN

learn as the time to learn anMNN on Q and

TMNN

predict to find kNN(i, I, k) for all i ∈ I. We also refer to T top-N
predict as the average time

for top-N prediction for a single queried user. The time comparisons for training and

predicting from an MNN are given in Table 5.2. We apply no parallelism for TMNN

learn

while we apply 2-core parallelism for TMNN

predict. We first observe in Table 5.2 that RKT

has a better TMNN

learn than KMT. While TMNN

predict for KMT and RKT are comparable, we

observe that KMT can spend more time for finding nearest neighbors as |I| gets very
large. As seen in Section 5.4.2, this can be further improved by selecting a larger κ

at the expense of increased TMNN

learn or by selecting a smaller ν. Nevertheless, the time

spent for TMNN

learn and TMNN

predict can often be considered negligible since these operations

are done only once in a training session, and given how they later facilitate top-N

predictions. For R-PCA, TMNN

learn is quite short since it builds a single tree efficiently. For

LEMP-LI, we do not have TMNN

learn , but an efficient partitioning of items by their lengths

which takes well under one minute. TMNN

predict applies to neither R-PCA nor LEMP-LI.

Finally, the time comparisons for top-N prediction queries are given in Figure 5.8.

We apply no parallelism for obtaining T top-N
predict results. The main observation here is

that both MMFNN variants can bring a time efficiency improvement on the order of

hundreds of times compared to exhaustive prediction. This clearly facilitates faster

computation times when the top-N predictions are precomputed and fast retrieval

when there is a need for top-N computations in real time. We also observe that

both R-PCA and LEMP-LI methods are quite promising for top-N prediction. On

the other hand, we find that despite the somewhat increased precomputation times

given in Table 5.2, MMFNN variants can bring a more remarkable speedup while

preserving and even improving the results with respect to various other performance

criteria such as ranking accuracy and diversity. This makes the MMFNN approach a

96

highly considerable solution for improving prediction efficiency of matrix factorization

models.

Table 5.2. TMNN

learn and TMNN

predict in minutes for different datasets.

Dataset R-PCA MNN = KMT MNN = RKT

TMNN

learn TMNN

predict TMNN

learn TMNN

predict TMNN

learn TMNN

predict

XING 0.1 - 0.7 1.7 0.3 1.9

LASTFM2 0.1 - 0.2 0.3 0.1 0.3

MSD 0.1 - 0.3 0.8 0.1 0.7

TMALL 0.1 - 0.9 1.6 0.3 1.5

AMZBK 0.3 - 1.9 8.8 0.7 3.4

XING LASTFM2 MSD TMALL AMZBK
10−5

10−4

10−3

10−2

10−1

100

tim
e (
se
co
nd
)

MF + EP
MF + R PCA

MF + LEMP LI
MMFNN(MF, KMT)

MMFNN(MF, RKT)

Figure 5.8. Log plot of top-N prediction times for a single user, T top-N
predict.

5.6.2.2. Time-split Experiments. In this type of experiment, we use the time infor-

mation available in XING and TMALL datasets. We make a time split for each dataset

such that the user feedback before the split constitutes a training set whereas the user

feedback after the split constitutes a test set. This allows us to experiment with various

matrix factorization models including the incremental ones.

We compare four algorithms for each dataset: We first look at the performances

of BPRMF+EP and MMFNN(BPRMF,RKT). Then, we look at incremental learning

97

performance using two algorithms: PLtR-NS+EP and MMFNN(PLtR-NS,RKT). All

algorithms including the incremental PLtR-NS algorithm are based on BPRMF so

that they are comparable. All MNN are based on RKT due to its slightly superior

performance in the experiments with a random holdout set.

The experimental results are given in Figure 5.9. We use MAP@N to compare

performance of the algorithms. For the reported results, a time split is made at about

99.5% of each time-ordered dataset so that a portion of the last day user feedback is

used as the test set. The buffer (B) size in the incremental algorithms is fixed to 100,000

for each dataset, and sliding windows are used. All other hyperparameter values are

the same as those validated for the random holdout set experiments. We first observe

that BPRMF+EP and MMFNN(BPRMF,RKT) are comparable to each other with the

latter having slightly better results. These results are also in accordance with those

in the random holdout set experiments. Similarly, the results for the two incremental

algorithms are also comparable with MMFNN having somewhat better accuracy for the

second dataset. These results imply that the meta-algorithm is effective in all learning

settings by preserving the ranking accuracy while producing the top-N predictions

faster. Additionally, we observe that the incremental algorithms perform better than

the non-incremental ones. Therefore, MMFNN can be very useful for their practicality

by improving their prediction efficiency.

XING TMALL
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
AP

@
50

BPRMF + EP
MMFNN(BPRMF, RKT)

PLtR-NS + EP
MMFNN(PLtR-NS, RKT)

Figure 5.9. MAP@N results of time-split experiments with non-incremental and

incremental algorithms.

98

5.6.2.3. Experimenting with RL Extension. In this section, we present an experiment

with the MMFNN extension given in Figure 5.4. Unfortunately, it is not always easy

to design robust offline experiments for MAB algorithms [63]. Online experiments

are needed but usually not accessible for academic research. The difficulty in offline

experiments is because the offline data is the result of another policy or algorithm,

and how this policy exploits and explores is often unknown. An unbiased off-policy

evaluation scheme is proposed in [142]. However, it is based on reject sampling and

ignores many input tuples, which poses problems in MF models where every user is a

distinct context and data is already sparse.

0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
AD

0.000

0.001

0.002

0.003

0.004

0.005

Av
er
ag
e h

it
ra
tio

MMFNN(PLtR-NS,RKT)
MMFNN(PLtR-NS,RKT,MAB)
MMFNN(PLtR-NS,RKT,LP)
MMFNN(PLtR-NS,RKT,RANDOM)

Figure 5.10. MMFNN with MAB on XING.

Therefore, rather than a regret analysis, we present an experiment on how the

extension affects ranking accuracy and, at the same time, diversity through rerank-

ing [70]. Although, in this experiment, the upper bound of ranking accuracy results

is expected to be comparable to the ranking accuracy of MMFNN(MMF ,MNN), it

can still be interesting to observe how MAB can increase aggregate diversity through

exploration when incorporated into MMFNN. The results are given in Figure 5.10. We

compare the MAB extension to two other possible extensions for increasing aggregate

diversity: LP reranks the N ′ items with respect to popularity in ascending order, and

RANDOM takes a random subset of size N from the N ′ items. We report the average

hit ratio based on the sliding windows of PLtR-NS in comparison to achieved aggregate

diversity. We use N = 1 and test for N ′ within range (1, 20]. We observe that the MAB

99

approach has a much better accuracy-diversity trade-off. Consequently, we see that N ′

can be used as a convenient exploration hyperparameter, and it can be fine-tuned to

increase diversity effectively while maintaining comparable ranking accuracy.

100

6. LEARNING INTENTION IN USER SESSIONS

6.1. Introduction

Learning and predicting user intention in a session can be a challenging task due

to limited available information as well as response time constraints. In this chapter, we

propose powerful and efficient methods for learning users’ purchasing intention from

session-based implicit feedback. Our proposal fits the personalized learning to rank

setting in two ways:

(i) Using a pointwise scheme, we estimate a probability of purchase for session items

similar to a ranking score.

(ii) Good estimates may facilitate better recommendations using this extra piece of

information about the session. For example, if session indicates a high probability

of purchase, we can narrow down diversity of recommendations to a specific set of

items [45]. Similarly, if there is low purchasing intention, we can switch between

recommendation algorithms.

In particular, we first propose a way to represent the intention learning problem

by converting session information into feature vectors. Then, we propose batch and

stream versions of an ensemble learning method which can take into account the high

class imbalance due to the rarely occurring purchasing feedback. We also propose

several ways for efficient prediction from this ensemble since the prediction of intention

can be time sensitive. We show our experimental results on a recent e-commerce

challenge benchmark dataset.

The remainder of this chapter is organized as follows: In Section 6.2, we represent

the intention learning problem in a feature vector space. Then, we propose suitable

models in Section 6.3 for learning from this representation as well as methods for

improving model prediction efficiency. In Section 6.4, we present experimental results

for the predictive power of the proposed models.

101

6.2. Problem Representation

Let I be the set of items in the system. A session can be formalized as a sequence

of events, s = (e1, e2, . . . , eℓ), with arbitrary length. At a minimum, each event is

represented by a feedback instance e = (i, t, a) where i ∈ I, t is a timestamp, and a is

an event action such as a click, view, or purchase. Notice that a session brings context

to a sequence of events happening in the system. If the session user is unknown to the

system, personalization can only rely on the session information. Otherwise, known

user information can also be incorporated into the context.

Given a dataset of sessions, Ds, the ultimate goal of an intention model is to

predict the intentions of interest in each session accurately and efficiently. That said,

an important predictive goal in an RS is to assess the purchasing intention in a session

and possibly which items in the session are likely to be purchased [31]. Then, effective

predictions may enable better personalized recommendations. While the discussed

models in this chapter can also be useful in other similar problems, we carry on with

this predictive goal.

We observe that even without using specific user or item content features, Ds
contains plenty of information which can be inferred from implicit feedback and used

to formulate the problem as a pointwise learning task. Accordingly, we propose to

represent each session-item pair with a feature vector based on temporal features as well

as additional session- and item-based statistics inferred mainly from implicit feedback.

For the benchmark dataset used in this chapter, we summarize these features [14] in

Table 6.1 with further clarifications in Figure 6.1. While most of the features are

self-evident, simple exploratory data analysis on individual features helps to reveal

significant differences between session-item pairs which result in a purchase or not.

We provide more detail on the benchmark dataset in Section 6.4. Nevertheless, we

note that similar features can be derived in many typical intention learning scenarios.

Furthermore, the choice of such a feature vector space model enables inclusion of user

and item content features whenever they are available.

102

Table 6.1. Representation of a session-item pair.

Explanation of feature

Fs Session ID

Fi Item ID

F1 Weekday when first click to item with Item ID happened during that session

F2 Hour when first click to item with Item ID happened during that session

F3 Duration in seconds the session lasts

F4 Duration in seconds between the item with Item ID is first clicked and last clicked in that

session

F5 Total number of clicks in the session

F6 Number of clicks to item with Item ID in the session

F7 Number of distinct categories session items belong to

F8 Category that the item with Item ID belongs to

F9 Average of purchases of distinct items in the session

F10 Number of purchases of item with Item ID

F11 Average of ICRs of distinct items in the session. Item conversion rate (ICR): Ratio of the

number of sessions in which an item is purchased to the number of sessions in which it is

clicked.

F12 ICR of item with Item ID

F13 Average of intervals between clicks to the item with Item ID in the session

F14 Composite feature: F4/F3

F15 Composite feature: F6/F5

F16 Composite feature: F10/F9

F17 Composite feature: F12/F11

F18 Number of different subsequent items in click sequence divided by number of all subsequent

item pairs. (This is some sort of energy measurement to see how clicks in the session

alternate)

F19 Sum of durations in seconds spent on the item with Item ID until a different item is clicked

F20 True if the item with Item ID is the first clicked item in session

F21 True if the item with Item ID is the last clicked item in session

F22 Number of distinct items in the session

F23 Composite feature: F19/F3

103

i1 i2 i1 i3 i1

�t1 �t2 �t3 �t4 �t5

F1

F2

F3 = �t1 +�t2 +�t3 +�t4 +�t5 , F4 = �t1 +�t2 +�t3 +�t4,

F5 = 5, F6 = 3, F13 = ((�t1 +�t2) + (�t3 +�t4))=2, F18 = 1�0,

F19 = �t1 +�t3 +�t5, F2	 = true, F21 = true, F22 = 3.

Figure 6.1. Session as a timeline. Dots represent click events involving certain items.

Some features for the session item i1 are computed as an example.

Therefore, our intention learning model uses a suitable feature representation and

tries to find a good estimate of the probability, p(purchase|s, i,Ds). In principle, it is

possible to obtain a prediction for any (s, i) where i ∈ I. More practically, we perform

predictions for i ∈ I+s where I+s is the set of items interacted during the session s.

Then, for each session, the predictions can be thought to result in a set, Ŷs, of items

with a p(purchase|s, i,Ds) higher than a given threshold. Oftentimes, the expectation

is that Ŷs = ∅.

6.3. Learning Models

Estimation of p(purchase|s, i,Ds) can be modeled with a binary classifier [39].

Here we note that a more general intention model can be based on multi-label classifi-

cation which can still be learned using multiple binary classifiers [143]. Therefore, we

assume a training set of (x, y) where x is an f -dimensional feature vector representing

a pair (s, i) and y ∈ {0, 1} is a class label. Among various alternatives for solving the

classification problem, we focus on Breiman’s random forest (RF) [144] and propose

suitable extensions for learning and prediction tasks. These extensions are detailed in

the rest of this section.

The basic RF is an ensemble of decision trees which offers various sources of

randomness to break correlations among the features and also the trees in the ensemble.

104

Typically, each tree works on a bagged version of the input dataset. Furthermore, each

node split in each tree is decided by considering a random subset of features rather than

the whole feature set. The expectation is that the variance of the final learner is lower

than individual learners while its bias is compensated. Besides being a powerful non-

linear classifier and regressor, RF also has additional benefits in our case: First, it can

directly handle a mixture of categorical and real features without necessitating extra

encoding schemes. Furthermore, feature selection is inherent. Second, the training of

the ensemble is embarrassingly parallel which facilitates working with large datasets.

Third, it can output class posterior probabilities which can be used for post-processing

the results.

6.3.1. RF for Imbalanced Data

Typically, the number of sessions with a purchase is much smaller which indicates

a high class imbalance problem for the learner. Often, a proper strategy should be

selected to balance the majority and minority class examples in the learning process to

achieve useful predictions. To this end, several strategies are proposed in the machine

learning and data mining literatures as a preprocessing step or embedded logic in

the classifier ensemble [145]. Accordingly, we observe that the approaches based on

downsampling the majority class are quite suitable for handling the class imbalance

problem in RFs compared to oversampling and hybrid approaches in terms of predictive

power and efficiency with large datasets [14]. Downsampling the majority class for RF

is also proposed in [146] and tested on smaller datasets from different application areas.

For our problem, we propose to use the following approaches which combine RF

with downsampling to handle imbalanced data:

(i) Before training an RF, preprocess the dataset by keeping all the minority class

examples, X+, and a proportional number, η × |X+|, of majority class examples

by random downsampling. For example, when η = 1, the classes are equally

balanced. Merge the two sets as a fixed training set. Each tree in the RF takes a

105

Initialize an ensemble of M trees ;

for all learner hm, m = 1 . . .M (in parallel) do

X++ ← Choose a bootstrap sample of size n+ from minority class ;

X−− ← Draw η × n+ examples from majority class with replacement ;

X ′ ← merge(X++, X−−) ;

Learn hm on X ′ by deciding each node split through f ′ < f random features ;

end for

Figure 6.2. BRF2 algorithm.

bootstrap sample from this training set. We call the resulting balanced random

forest BRF1.

(ii) Differently from BRF1, before training each tree in an RF, first take a bootstrap

sample of size n+ ≤ |X+| from the set of all minority class examples. Then, take a

proportional number of majority class examples using sampling with replacement.

This approach assumes access to a larger portion of the entire dataset. However,

it can gather useful extra information while providing more randomness for the

RF. We call the resulting random forest BRF2 and show it in Figure 6.2 for clarity.

In the next section, we also propose an RF which makes use of this scheme and

tries to learn directly from streaming data.

6.3.2. Balanced RF for Imbalanced Streams

In this chapter, we also propose [15] a variation of BRF2 which can learn in an

incremental fashion. Such an algorithm can sometimes be preferred for learning user

intention since it can efficiently and adaptively learn from streaming data. The BRFIS

algorithm given in Figure 6.3 performs online sampling for balancing examples from

every class as well as online bootstrap sampling for each learner in the ensemble. Each

learner is a Hoeffding (or VFDT) tree [147] which can learn from continuously incoming

data without the need for periodic retraining. We allow each decision node in each tree

to work on a random subset of the features with a cardinality f ′ < f . The trees are

106

independent, and they can learn in parallel. In the following, we explain the building

blocks of the BRFIS algorithm in more detail.

Initialize M Hoeffding trees with hyperparameters δ, τ , nmin, and such that each

decision node can choose f ′ < f random features ;

for all (x, y) from stream do

for all learner hm, m = 1 . . .M (in parallel) do

Draw a ∼ U (0, 1) ;

if a < ρy then

Accept example (x, y) ;

end if

if (x, y) is an accepted example then

Draw k ∼ Poisson(1) ;

Update hm with k instances of (x, y) or (x, y) weighted by k ;

end if

end for

end for

Figure 6.3. BRFIS algorithm.

6.3.2.1. The Base Learner. The main problem of incrementally-learning trees is to

decide when to split a decision node since we do not have all the data at the beginning

of the learning process. A Hoeffding tree is based on the observation that a relatively

small number of data examples which arrive at a node often bear enough statistics for

a split decision. This observation enables a family of algorithms which can learn from

massive streams using fewer computational resources and with a performance similar to

batch decision trees given enough examples. The basic Hoeffding tree algorithm works

as follows: When a new labeled example from the stream arrives, it traverses the tree

down to a leaf node with respect to its feature values, and the required statistics at

that node are updated. If there is enough support in favor of a split, the leaf node

is transformed into a decision node. The Hoeffding bound is useful to determine the

sample size to observe before this transformation is made. Assume n independent

107

observations of a random variable Z with range R. The Hoeffding bound states with

confidence 1−δ that the true mean of Z is at least z̄−ǫ without making any assumptions

about the probability distribution. In this case,

ǫ =

√
R2 ln(1/δ)

2n
, (6.1)

and z̄ is the sample mean. Let I be a function which can evaluate the difference before

and after a node split by a feature. Suppose after observing n examples in a leaf node,

FA and FB represent the features with the first and second best results with respect to

I. Let ∆Ī = Ī(FA)− Ī(FB) represent a random variable for the observed difference.

In case I is information gain, R = log2 (c) where c is the number of classes. Then, if

∆Ī > ǫ holds for a given δ, because the difference is greater than zero, we can choose

FA as the splitting feature with δ confidence according to the Hoeffding bound. If the

leaf node is not pure enough, the algorithm frequently checks the value ǫ to decide for

a split. For efficiency, the checks are performed every time when (n mod nmin) = 0 for

a given nmin. If the top features continuously exhibit a similar behavior preventing the

split decision, then the algorithm declares a tie condition. This situation is handled by

choosing the best feature for split when ǫ < τ for a given threshold τ . Other variations

of this basic learning algorithm can be found in [62,147]. We note that Hoeffding trees

are unstable which make them good candidates for ensemble approaches [74].

6.3.2.2. Online Bootstrap Sampling. Given a dataset of |X| examples, a bootstrap

sample for each learner in an ensemble is created by drawing |X| examples with re-

placement. Then, every learner’s training set contains k copies of each of the original

training examples, where k is binomially distributed with k ∼ B(|X|, 1/|X|). In the

stream learning setting, a practical and useful assumption is that |X| → ∞. In this

case, the distribution of k tends to Poisson(1) distribution [148],

P (k = κ) =
e−1

κ!
(6.2)

108

as also shown in Figure 6.4. Therefore, every learner in the ensemble can simply accept

k ∼ Poisson(1) copies of every example coming from the stream irrespective of |X|.

0 1 2 3 4 5 6 7 8 9
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
(k

)

B(|X|,1/|X|)
k∼Poisson(1)

Figure 6.4. Simulation of distribution of k for |X| = 5, 000.

6.3.2.3. The Ensemble. The BRFIS algorithm in Figure 6.3 can learn an RF from

streaming data as follows: For each learner in the ensemble, a balanced number of

different class examples are randomly sampled using a class-based sampling ratio, ρy.

For instance, in binary classification (y ∈ {0, 1}), if we observe 1000 majority and 50

minority class examples, we can expect that choosing ρ0 = 0.05 and ρ1 = 1.00 yields

roughly the same number of examples from each class. While these values can be

decided by observing the stream, they can also be changed adaptively as the stream

flows. Subsequently, online bootstrap sampling is used to decide how many copies

from each example are to be taken. For instance, the probability of resampling 0

copies is approximately 0.368 and equals that of a single copy as also illustrated in

Figure 6.4. Then, the examples are fed into the learner which works on f ′ random

features. Choosing f ′ =
√
f or f ′ = log2 f is often practical [144]. The learners

can work in parallel. While the algorithm in Figure 6.3 passes streaming examples

to learners one by one, it is also possible that the learners work on moderately-sized

buffers of streaming examples.

109

Incremental learning from streams incorporates the latest examples fast into the

model. To make the model even more adaptive, some helper mechanisms can be useful.

One obvious mechanism is to discard the ensemble periodically and start training a new

one. It is possible that the subsequent ensembles are allowed to have some overlapping

examples. Another mechanism is to monitor accuracy of the learners. For example, it

is proposed [149] to monitor the out-of-bag (OOB) error in each tree through time and

discard a tree with a probability proportional to its age and OOB error. Notice that

the OOB error comes from the misclassified examples that are not in the bootstrap

sample (bag) for that tree and it can be decided online. In our case, online bootstrap

sampling assures that approximately 1/3 of the balanced examples are out of bag.

6.3.3. Improving Prediction Efficiency

After training an RF model, predicting p(purchase|s, i,Ds) for a single (s, i) re-

quires O(M × dmax) worst-case computations where M is the number of trees, and

dmax is depth of the deepest tree in the ensemble. This suggests that the RF algo-

rithm should be carefully implemented and parameterized to find a balance between

predictive power and the allowed dmax. It is shown that increasing M does not cause

overfitting [144], and it is usually useful for improving predictive power. On the other

hand, as M becomes larger, the prediction time becomes longer which may be prob-

lematic when predictions are time sensitive.

One solution to deal with a large M in prediction tasks, is to use a subset of

trees in the ensemble with respect to the available computational budget. To this

end, a straightforward and viable approach is to use a random subset with as many

trees as the budget allows. Moreover, greedy forward and backward tree selection

approaches are proposed [150]. The former adds sequentially to the subset the next

tree which brings the best performance improvement while the latter excludes the next

tree whose exclusion causes the least performance loss. These approaches are shown

to potentially improve over random subset selection at the cost of extra computation

time.

110

Another solution can be based on the idea of distilling or compressing a complex

model into a much simpler model [151] for prediction. The main idea is concentrating

on the output of the complex model rather than its learned parameters and transferring

this information into the simpler model. In our case, the complex model is an RF with

an output of class probabilities. Assuming binary classification, our approach is to

first train a single decision tree regressor (DT1) using the minority class probabilities,

p(yRF = 1|x), obtained from the RF as target variables. Similar to the suggestions

in [151], we find it useful to further soften the output probabilities by a scalar, β, in

[0, 1], that is, we use β × p(yRF = 1|x) as the target variable. Then, we also train

a separate decision tree classifier (DT2) based on the hard class labels available in

the dataset. The final prediction using the distilled model is given by the following

combination:

p(ydistilled = 1|x) = α× p(yDT1 = 1|x) + (1− α)× p(yDT2 = 1|x), (6.3)

where α is a weighting term. Another motivation for using the distillation idea is that

it produces compact models which can greatly improve space requirements.

6.4. Experiments

6.4.1. Dataset

We experiment with a challenge benchmark dataset [31]. The dataset contains

6-month session-based event data (between months 4-9) from a large consumer goods e-

commerce platform. Each session has a session ID corresponding to a single anonymized

user. Each session event has an item ID, a timestamp, and an event action. The event

actions mainly refer to user clicks in a session while some relatively fewer sessions

contain a purchasing action as well. Table 6.2 shows basic properties of the benchmark

dataset. We note that the same item can be clicked multiple times in a session. Overall,

the dataset statistics indicate that the sessions with and without purchases are highly

imbalanced.

111

Table 6.2. Basic properties of the benchmark dataset.

Action Number of events Number of sessions Number of items

Click 33,033,944 9,249,729 52,739

Purchase 1,150,753 509,696 19,949

Exploratory data analysis reveals that some feedback characteristics such as dis-

tributions of clicks, ICRs, and associated temporal information demonstrate distin-

guishing patterns for sessions with and without purchases. This analysis leads us to

derive a mixture of categorical and numeric features [14] for every item interacted in a

session as illustrated in Table 6.1. Global session features are highlighted with italics,

and we also clarify some of the features in Figure 6.1.

We use the original data without any cleaning. We do not perform feature dis-

cretization or variable transformation. It is usually unclear when a session ends after

the last item click. Therefore, we perform a single imputation for the duration after

the last click (∆t5 in Figure 6.1): If in a session, there are click intervals greater than

zero second, we take the average of click intervals and accept it as ∆t5. Otherwise, we

sample this duration from the distribution of all intervals in the dataset using inversion

sampling [118].

6.4.2. Experimental Results for BRF

We apply monthly time windows over the dataset. This approach is somewhat

superior to handling the entire dataset at once since, for example, it can capture

transient feature values such as item purchases and ICR at a finer granularity.

Typical correlations among features and with the response variable are illustrated

in Figure 6.5. We rely on our RF-based approaches to compensate for the effects of

higher correlations.

112

F1 F2 F3 F4 F5 F6 F7 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 y

F1

F2

F3

F4

F5

F6

F7

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

y
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.5. Correlations among features and with the response variable for month 8.

Figure 6.6 illustrates mean decrease impurity [152] for each feature which is one

way to measure feature importance in an RF. In each tree, importance of a feature is

evaluated by adding up the weighted impurity decreases for all nodes where the feature

is used for splitting the node. This is averaged over all trees in the ensemble and then

normalized over all features for visualization. We see a similar pattern except for the

first month. We also observe that ICR-related features are often very important which

validates working within a time window to catch important items in that particular

time period.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

0.00

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

0.23

0.25

Figure 6.6. Normalized mean decrease impurity for each feature and over the 6

months, respectively. Results are based on BRF1.

113

To evaluate our models, we use session-based performance criteria [31]. If a

given session contains a purchased item, it is assumed to have a positive (or minority)

class label. When a dataset is highly imbalanced, measuring classifier accuracy is

usually not very informative since classifying most of the examples as a majority class

example will produce high accuracy anyway. Furthermore, classifying every example

as a minority class example achieves a perfect recall (true positive rate) suggesting

that we should also compare to other measures like precision and false positive rate.

Therefore, we apply the following evaluation scheme: We handle the sessions on a

monthly basis. We make a time split such that the sessions in the last day of the

month constitutes a test set whereas the rest constitutes a training set. This way, we

preserve the natural time order of the data, the integrity of the sessions, and the actual

class imbalance. All our models are trained and tested on the same datasets through

which we observe comparative predictive power in terms of ROC and precision-recall

curves. Additionally, we observe two point estimates: The first is the F1 score which

is the harmonic mean of precision and recall. The second is the Jaccard similarity,

J(s) = |Ys ∩ Ŷs|/|Ys ∪ Ŷs|, between the set of predicted item purchases, Ŷs, and the set

of true item purchases, Ys, averaged over all true positive sessions in the test set. A

preliminary version of this evaluation scheme using 2-fold cross-validation is reported

in our previous work [14].

We show experimental comparisons of the algorithms in Figures 6.7 and 6.8 as

well as in Table 6.3. Our baseline is a single decision tree (DT) which works on the

same set of features but decides the best split over all features rather than a subset.

BRF1 and BRF2 decide each split on a random subset of
√
f features. As explained in

Section 6.3.1, each tree in BRF1 takes a bootstrap sample from a fixed set of examples

while in BRF2 each tree is able to take a bootstrap sample from the whole dataset.

For BRF2, we choose n+ = |X+|. When creating the ROC and precision-recall curves,

we use the downsampling ratio, η, as decision thresholds. The chosen thresholds are

1/8, 1/4, 1/2, 1, 2, 4. DT also uses the same downsampling scheme. However, it uses

the sampled data directly without bootstrap sampling. We base our implementations

on the scikit-learn [153] package. In all implementations, we use a base CART tree and

Gini index as the splitting criterion. The trees are fully grown and not pruned. Positive

114

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it

iv
e

ra
te

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it

iv
e

ra
te

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it

iv
e

ra
te

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it

iv
e

ra
te

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it

iv
e

ra
te

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
p

o
s
it

iv
e

ra
te

BRF2

BRF1

DT

Figure 6.7. ROC curves for different models regarding (Top row) months 4 and 5,

(Middle row) months 6 and 7, and (Bottom row) months 8 and 9.

115

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
r
e
c
is

io
n

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
r
e
c
is

io
n

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
r
e
c
is

io
n

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
r
e
c
is

io
n

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
r
e
c
is

io
n

BRF2

BRF1

DT

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
r
e
c
is

io
n

BRF2

BRF1

DT

Figure 6.8. Precision-recall curves for different models regarding (Top row) months 4

and 5, (Middle row) months 6 and 7, and (Bottom row) months 8 and 9.

116

class posterior probability cut-off is chosen to be 0.50. Unless otherwise stated, we use

50 trees in both BRF1 and BRF2. It should be noted that if the number of trees in

BRF1 and BRF2 is increased proportional to the available computational resources,

the results are expected to improve.

Table 6.3. F1 scores and average Jaccard similarities for different models.

F1 score Jaccard similarity

Timeline DT BRF1 BRF2 DT BRF1 BRF2

Month 4 0.140 0.158 0.159 0.567 0.689 0.688

Month 5 0.180 0.232 0.261 0.616 0.707 0.712

Month 6 0.141 0.204 0.240 0.575 0.667 0.670

Month 7 0.140 0.213 0.241 0.594 0.682 0.683

Month 8 0.204 0.264 0.298 0.589 0.657 0.663

Month 9 0.078 0.119 0.138 0.563 0.655 0.647

In terms of the area under ROC and precision-recall curves, both Figures 6.7

and 6.8 show that BRF versions have a superior predictive power compared to a single

DT model. Furthermore, compared to BRF1, BRF2 results are at least as good and

usually better. Our first proposal [14] is based on BRF1 with η ≈ 1 and positive class

posterior probability cut-off at 0.50. Accordingly, in Table 6.3, we show the results of

different models with η = 1 and a cut-off at 0.50 using F1 score and Jaccard similarity.

6.4.3. Experimental Results for BRFIS

We also experiment with the dataset using the BRFIS algorithm for imbalanced

streams. We choose to exclude item popularity features F9, F10, and F16 since they are

updated unboundedly as the stream flows. We apply a practical variation of the first-

test-then-train procedure mentioned in Sections 2.2.5 and 3.5.2 as follows: The data

arrives on a timeline according to the timestamp information. After a short warmup

training period, we start testing the incoming (x, y) pairs from the sessions. Rather

than immediately training the model with a tested pair, we buffer the pair within a

117

time window and perform the training when the buffer is ready. The time windows are

roughly the same size and preserve integrity of the sessions in it. We report F1 scores

for every time window. Figure 6.9 shows the experimental results.

0 5 10 15 20 25 30 35 40

Time window

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
1

sc
o
re

BRFIS

Single Hoeffding tree

0 5 10 15 20 25 30 35

Time window

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
1

sc
o
re

BRFIS

Single Hoeffding tree

0 10 20 30 40 50 60

Time window

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
1

sc
o
re

BRFIS

Single Hoeffding tree

Figure 6.9. Predictions using BRFIS. Rows show months 6, 7, and 8, respectively.

In our experimental setting, the warmup period and the time windows are set

to a maximum of 100,000 pairs. We use ρ0 = 0.05 and ρ1 = 1.00. f ′ =
√
f . We

compare BRFIS to a single Hoeffding tree which learns from the same downsampled

stream. However, it uses all f features to decide a split and does not perform bootstrap

sampling. All trees use the values δ = 10−7, τ = 0.05, and nmin = 200. We use a

118

separate ensemble for each month, but we do not apply any other pruning or discard

procedure within a month. Our Java-based BRFIS implementation uses the MOA

framework [154] API for the robust Hoeffding tree implementation.

We use BRFIS with M = 20 trees which can be a practical setting for parallel

stream processing. We first observe a statistically significant increase in the compar-

ative F1 scores compared to the single Hoeffding tree. Second, we observe that the

results are comparable to batch learning BRF2 in Section 6.4.2. This suggests that

incremental learning can be preferred for time and space efficiency. Our problem rep-

resentation enables inclusion of more session and item features as well as personalized

features whenever available. This has a potential to further improve the predictive

power of the incremental model.

0 2000 4000 6000 8000 10000
n

0.00

0.05

0.10

0.15

0.20

ε

ǫ=10−5

ǫ=10−7

ǫ=10−9

τ

Figure 6.10. Relation of some model hyperparameters to ǫ.

Finally, in Figure 6.10, we clarify some of the hyperparameters tuned in the

experiments. We show the change in ǫ of the Hoeffding bound with respect to the

change in the number of examples, n, in a decision node. Since, we perform binary

classification, R = 1. The expansion of a Hoeffding tree also depends on δ and τ . When

δ changes, the transiency of the function changes with respect to n and the choice of

τ affects the node split slightly differently. On the other hand, our validation results

within this range of hyperparameter values show that the BRFIS model is not overly

sensitive to small changes in δ given the current experimental setting.

119

0 20 40 60 80 100

Number of trees

0.05

0.10

0.15

0.20

0.25

0.30

F
1

s
c
o
r
e

BRF2 BRF2-D DT

0 20 40 60 80 100

Number of trees

0.05

0.10

0.15

0.20

0.25

0.30

F
1

s
c
o
r
e

BRF2 BRF2-D DT

0 20 40 60 80 100

Number of trees

0.10

0.15

0.20

0.25

0.30

0.35

F
1

s
c
o
r
e

BRF2 BRF2-D DT

Figure 6.11. Comparison of methods for efficient prediction for months 6, 7, and 8,

respectively.

120

6.4.4. Experiments for Prediction Efficiency

In this section, we experiment with the two different approaches discussed in

Section 6.3.3 to improve prediction efficiency of the proposed models. This can be an

important concern when predictions are sensitive to time as in the intention learning

problem.

We begin with the random subset selection method. We first train a BRF2 model

with 100 trees, and then perform predictions using random subsets of trees having 1 to

100 trees. Figure 6.11 shows that selecting a random subset with respect to the available

computational budget is a practical approach. Even if we can allow a relatively small

number of trees with respect to the full ensemble, the predictive power is still useful.

We also observe that selecting even a few trees quickly outperforms the baseline single

DT model.

We secondly experiment with the distillation idea. Following our discussion in

Section 6.3.3, we distill the 100-tree BRF2 model into a simpler DT regression model

using its output probabilities. We find the values β = 0.7 and α = 0.8 useful for

deciding the final predictions. In Figure 6.11, we call this predictive model BRF2-D.

We observe, in the current experimental setting, that the model is comparable to using

about 15 to 20 random trees by using 2 trees only. Furthermore, it outperforms the

baseline single DT model significantly. Therefore, we conclude that the distillation

idea is a promising alternative in practical situations.

121

7. TIMELY PUSH RECOMMENDATIONS IN A COLD

START SETTING

7.1. Introduction

The delivery of recommendations can have a pull or push nature [155]. In the

former, the user can be thought to make a specific request to ”pull” recommendations.

While this may refer to submitting a query, in today’s large-scale applications, the

user’s interactions and behavior in the system may also be perceived as a request for

possibly immediate personalized recommendations so that a wide range of choices can

be narrowed down. On the other hand, ”push” recommendations are delivered even if

a user does not make a request for recommendations, and they are especially popular

with relatively recent forms of human-computer interaction such as in mobile com-

puting [71, 156, 157]. While the pull and push nature can sometimes be intermingled,

push recommendations typically have more explicit requirements to satisfy multiple

stakeholder objectives in the system. These include being timely and diverse regarding

the shared interests of the stakeholders while being useful and minimally disturbing

for the targeted users.

In this chapter, we propose a hybrid personalized LtR approach for large-scale

push recommendations especially in an item cold start setting. While the proposed

approach can be used for different applications, our case study is a job recommender

system, and we work on a recent real-life challenge benchmark [71]. The cold start

items are the job postings which enter the system and previously received no user feed-

back. The goal is to predict effective push recommendations for job seekers considering

expectations of the multiple stakeholders, that is, job seekers, recruiters, and service

providers. The push recommendations are time sensitive in the sense that the cold

start items are to be recommended to a sufficient number of appropriate job seekers

within a short period of time so that they are better disseminated to the system.

122

Our proposal works on user and item content information as well as different

types of implicit feedback from users and other stakeholders. We perform offline ex-

periments on historical data using a combined multi-objective performance criterion.

With suitable adaptations, our proposal is also tested with online experiments in real

time.

The remainder of this chapter is organized as follows: In Section 7.2, we define

the problem and present a high-level view of our hybrid solution. The details of this

solution are presented in Section 7.3 referring to the component rankers and different

top-M and top-N selection strategies. We present the offline and online experimental

results in Section 7.4.

7.2. Problem Definition and Representation

Assume a set of users, U , and a set of items, I, in a recommender system. Let

M,N ∈ Z>0. Given a target subset of users U ′ ⊆ U for push recommendations and

(typically cold start) target items I ′ ⊆ I, the problem can be defined as finding a

Û ′M
i ⊆ U ′ subject to 0 ≤ |Û ′M

i | ≤ M for each i ∈ I ′, and finding a Î ′Nu ⊆ I ′ subject

to 0 ≤ |Î ′Nu | ≤ N for each u ∈ U ′ to maximize a suitable multi-objective performance

criterion (see Section 2.2.5 for a discussion of performance evaluations).

A solution to this problem can be based on modeling user and item content

features as well as the available feedback in the system. Given the multi-objective

nature of such problems, the solution is typically a hybrid ensemble of rankers each

estimating a relevance score for a given user-item pair considering different aspects of

the multi-objective performance criterion. Two groups of rankers can especially be

useful: The first group is based on user profiles obtained from user’s past feedback and

item content. The second group can be based on user and item content only. This

type of ranker can be suitable if the user is also cold start with no or very limited

feedback in the system. For push recommendations in a job RS, we propose such an

ensemble in Figure 7.1 which blends rankers from both groups [16]. Then, the best

recommendations from the rankers are further refined through different top-M and top-

123

N selection strategies to predict the final push recommendations. In the next section,

we discuss the details of this hybrid ensemble.

∑

Profile-based

top-M and top-N selection

ranker Content

-based

ranker

Push recommendations

+

Job seeker
feedback

Profile-based

ranker
+

Recruiter
feedback

Candidate pruning

Figure 7.1. High-level view of ranker ensemble for push recommendations in a job RS.

7.3. Ranker Ensemble for Push Recommendations

7.3.1. Profile-based Rankers

In case it exists, user feedback data can often be more reliable for building models

than user content features. For example, in the case of job recommendations, content

features based on a résumé or form-based data can be misleading due to several reasons

like being outdated or incomplete. On the other hand, job posting content is often

more elaborate and reliable. Based on this observation, a job seeker’s feedback data

can be used to build a user profile. More specifically, the items for which the user

provides feedback can contribute their content to the user profile. Consequently, each

item content feature can have a weight proportional to its presence in user’s feedback

124

history. For example, if a job seeker has positive feedback for 5 distinct job postings,

and 3 of these have the career level feature ”Professional”, then the weight of this

feature in the user’s profile can be accepted as 3/5.

The user feedback can often be considered positive with varying degrees of con-

fidence. However, some feedback types should be carefully handled. For example, if a

user deletes a push recommendation, this may have negative semantics and a consider-

able impact on the system performance. On the other hand, when training a ranking

model, we observe that labeling delete feedback as negative examples is not always

helpful either, since deleted items may not usually have discriminative content. In-

stead, delete feedback can be used to decide, for example, if a user is prone to deleting

push recommendations, and the negative class examples can be chosen by pairing the

user with random items not existing in the user’s feedback history.

We consider each profile-based ranker in Figure 7.1 as a pointwise LtR model

(see Section 2.2.3.2). Therefore, the rankers take training input in the form of (u, i)

pairs where u ∈ U , and i ∈ I. A pair may refer to a relevant or an irrelevant item

for the user depending on the existing user feedback. Regarding job recommendations,

each pair can be represented with a feature vector combining a job seeker profile with

the content of a job posting. In this case, we highlight relatively important features

in these vectors in Table 7.1. Each match-based and latent semantic feature refers

to a similarity between a corresponding job seeker profile and a job posting content,

and more detail can be found in our work [16]. Then, to obtain a relevance score,

ŷu(i), from this model, one straightforward option is logistic regression. However,

in this chapter, we adhere to a more powerful alternative, gradient boosted decision

trees (GBDT) [158, 159], since they are able to show superior performance in various

ranking problems [160, 161] with a moderate number of shallow trees, and they can

handle mixed-type and unscaled features without the need for preprocessing.

Since user and item repositories can be quite large, a general issue in web-scale

ranking problems is the computational cost of predicting ŷu(i) for all possible (u, i) pairs

and typically sorting them to find the topmost rankings. As mentioned in Section 2.2.3,

125

Table 7.1. Features representing a job seeker and a job posting pair (see Section 7.4.2

for explanation on feature importances).

Feature Importance

Match-based features

Job title 0.322

Career level 0.041

Discipline 0.116

Industry 0.041

Country 0.028

Region 0.104

Employment 0.028

Tags 0.082

Latent semantic features

SVD-based similarity using job title/tags 0.118

Job seeker features

Number of positive feedback instances 0.052

Number of negative feedback instances 0.002

Is willing to change job 0.001

Last feedback time 0.041

Has feedback last week 0.001

a multi-stage pipeline of simpler to more complex models can be used to narrow down

candidate pairs. Therefore, we find the following strategies useful for candidate pruning

prior to prediction with rankers:

(i) Rule-based pruning. This requires using domain knowledge. For example, it is

usually inappropriate to recommend student jobs to managers, and vice versa.

Similarly, a (u, i) pair can be ignored if u ∈ U ′ and i ∈ I ′ have no match on some

important features like job title and/or discipline. However, extensive rule-based

pruning may also cause losing less obviously suitable pairs.

126

(ii) Target item similarity. This strategy refers to finding content-based similarity

between I ′ and I \I ′ items, and then pairing an i ∈ I ′ with U ′ users who provided

positive feedback to the topmost similar I \ I ′ items to it. This is quite effective,

but it can become costly with very large |I ′|.

Finally, to incorporate some sort of reciprocity [162], the rankers can be trained

based on feedback data from different stakeholders. In the ranker ensemble in Fig-

ure 7.1, this is performed by considering job seeker and recruiter feedback separately.

Since the predicted relevance scores are compatible, given a new (u, i) pair for predic-

tion, scores from different rankers can be blended using simple aggregation methods

like weighted average or harmonic mean.

7.3.2. Content-based Rankers

Despite the usage of less informative user content features, content-based rankers

can compensate for the cold start users in U ′ with no or very limited feedback. In the

case of job recommendations, this ranker is similar to the profile-based ranker except the

match-based features and latent semantic features in Table 7.1 now depend on bilateral

content features instead of user feedback profiles. Furthermore, the feedback-based job

seeker features are not always applicable. It is also possible to consider reciprocity

in content-based rankers by training separate rankers for different stakeholders of the

system. However, this alternative is not further investigated in this chapter.

7.3.3. Top-M and Top-N Selection

Irrelevant push recommendations may be disturbing for users and lead to dissat-

isfaction for all stakeholders. Therefore, an i ∈ I ′ should be recommended to a u ∈ U ′,

if, for example, the relevance score, ŷu(i), is above some predefined threshold. Fur-

thermore, we need strategies for top-M and top-N selection since the budgets M and

N are limited as defined in Section 7.2. In the following, we discuss several effective

strategies for this purpose:

127

(i) Simple aggregation. Select top-M users for each i ∈ I ′ by aggregating topmost

predictions from rankers in the ensemble. Each ranker can equally contribute or

stronger rankers can be favored. Push all top-M recommendations. While it can

still be practical, this strategy implicitly assumes that N ≤ |I ′|.

(ii) Round robin. For each i ∈ I ′, select top-αM users from each ranker in the

ensemble where α ≥ 0 and can be different for each ranker. Concatenate all

selections to a list starting from the strongest ranker. Iterate through the resulting

lists for all i ∈ I ′ in a round robin fashion. Accept the next push recommendation

if the budgets N andM for the corresponding user and item are not yet exhausted.

(iii) Improving aggregate diversity. This strategy is a more sophisticated alternative

to round robin. Given the concatenated user lists for all i ∈ I ′, this time we

assume an unweighted bipartite graph where there is an edge between each user

in the item’s list and the item. Each edge can be thought to represent relevance

of an item to a user. Then, we iteratively find maximum bipartite matchings

(MBMs) [163] each time excluding the users and items from the graph whose

budgets N and M are exhausted. The MBMs found at each iteration can be

immediately used as push recommendations. Finding an MBM can be efficiently

implemented, and it is also proposed in [164] for improving diversity of top-N

recommendations. In the case of push recommendations, several iterations are

performed while monitoring both N and M . This can be effective in increasing

diversity of push recommendations in practical situations where, for example, N

is small.

7.4. Experiments

7.4.1. Data and Experimental Setting

We present experimental results on a recent job recommendation challenge bench-

mark data [71]. This consists of an offline part for ideation and developing solutions and

another part for online experiments. The offline dataset spans a period of 3 months. It

contains about 1.5 million job seekers and 1.3 million job postings with content infor-

128

mation, of which 74,840 job seekers and 46,559 cold start job postings are targets for

push recommendations. Furthermore, the dataset contains different types of job seeker

feedback in the form of a click, bookmark, or reply which are assumed to have positive

semantics, and also delete feedback. In addition, there is relatively sparse feedback

showing recruiter interest on job seekers for a certain job posting. About 70% of target

job seekers have positive feedback while the rest are cold start. About 23% of target

job seekers are premium and 27% of target job postings are paid. The online part

involves 5-week A/B/n testing of competitive proposals from qualified participants.

Again, a long-term dataset is provided with comparable descriptive statistics to the

offline version. However, new target cold start job postings (up to about 13,000) and

new target job seekers (about 50,000) are given to each participant daily. Incremental

updates to the long-term dataset are also made during the course of online testing.

In both offline and online parts, the same multi-objective performance mea-

sure [16] is used. This measure is summarized in Figure 7.2. While it is pretty much

self-explanatory, the measure expresses different expectations of the stakeholders as a

single score by aggregating two core components: user success and item success. It can

be observed that positive feedback on push recommendations is quite valuable, and the

score is further boosted if there is reciprocal interest. On the other hand, pushing irrel-

evant recommendations may incur high costs if user deletes a push recommendation or

stops giving positive feedback. As an additional performance criterion, the online part

has a time limit for receiving daily predicted push recommendations and submitting

them to the system.

Our experimental setup is a commodity computer with a 4-core CPU, 8-GB main

memory, and 64-bit Linux operating system. The implementations are based on the

Python ecosystem and scikit-learn [153].

7.4.2. Experimental Results

We split the offline training dataset into two using a time split at the beginning

of the last week. Cold start items of that last week together with their associated

129

score =
∑

i∈I′

itemSuccess

(
Û ′M
i

)
+

∑

u∈Û ′M
i

userSuccess (i, u)

userSuccess(i, u) = (

1 if (u clicked i) else 0

+5 if (u bookmarked or replied i) else 0

+20 if (recruiter of i is interested in u) else 0

−10 if (u only deleted i) else 0

) ×2 if (u is premium)

itemSuccess(Û ′M
i) = (

50 if (userSuccess(i, u) > 0 for some u ∈ Û ′M
i and i is paid)

25 if (userSuccess(i, u) > 0 for some u ∈ Û ′M
i and i is not paid)

0 otherwise

)

Figure 7.2. Multi-objective performance measure.

feedback constitute a validation set which allows us to tune hyperparameters and finally

experiment with the provided test set. The following hyperparameter values achieve the

results in this chapter: All rankers use a GBDT with 100 trees, cross entropy loss, and

a learning rate of 0.10. For training, we use all available positive user-item examples

and a balanced number of negative examples as discussed in Section 7.3.1. The number

of latent dimensions is 50 for SVD-based similarity feature. Relevance score thresholds

are chosen in a range between 0.80-0.95 before top-M and top-N selection, and they

are the same irrespective of a user being premium or not, or an item being paid or

not. As discussed in Section 7.3.3, the top-M and top-N selection strategy is task

dependent and further explained below for offline and online experiments.

130

The importance of chosen features for the profile-based ranker is reported in Ta-

ble 7.1 in Section 7.3.1. These values correspond to how much each feature contributes

to the reduction of impurity in all nodes across all trees in GBDT. Similar feature

importance values are also observed for the content-based ranker.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Comparative performance score

Baseline

Content-based

Profile-based (User feedback only)

Profile-based (Reciprocal)

Full ensemble

Figure 7.3. Comparative performance of different rankers.

Comparative performance of different ranking options in offline experiments are

given in Figure 7.3. In the offline part, M = 100 whereas N is unrestricted, and we

use the simple aggregation strategy in Section 7.3.3 in all rankers. The performances

are based on the multi-objective measure in Figure 7.2, and they are relative to the

performance of the baseline content-based ranker [71] which is scaled to 1. We experi-

ment with the ranker ensemble in Figure 7.1 componentwise and as a whole. We first

observe that the performance of the content-based ranker can be slightly improved with

respect to the baseline, but it is still limited. In accordance with the discussion in Sec-

tion 7.3.1, the actual significant performance increase is observed by using profile-based

rankers which are based on user feedback profiles. Combined profile-based rankers for

reciprocity are observed to improve this performance even further by up to 10%. Since

there are also a significant number of complete cold start target job seekers (about 30%)

and those with very few feedback, the final ensemble combines profile-based rankers

131

with a content-based ranker as illustrated in Figure 7.1. It is observed that the fi-

nal ensemble can quadruple the baseline performance given the current features and

experimental setup.

After offline performance evaluations, 25 out of 103 active participants with com-

petitive solutions are invited to take part in an online experiment in real time [71] which

is a rare setting for academic research. We use some of the best hyperparameter values

found in the offline experiments also for online experiments. However, in the online

part, M = 250 and N = 1, that is, each target user can be more realistically pushed

at most one recommendation. In this case, we opt for improving aggregate diversity in

top-M and top-N selection as follows: For every target job posting, we first pick the

topmost ranked job seekers from each ranker (αM ≈ 2 − 10) and improve the aggre-

gate diversity by applying a few iterations (typically 2-5) to find MBMs as described

in Section 7.3.3. We then use the round robin strategy with a larger αM to enrich the

final set of push recommendations. In the end, the online testing performance of our

proposal shows up to 30% increase in aggregate diversity compared to using only the

round-robin strategy, 10% improvement compared to the offline part with respect to

the topmost performance score, and gets the 8th position. Furthermore, our available

experimental setup is able to produce predictions in about an hour for the daily online

testing using the proposed ensemble of rankers, low-cost blending schemes, and effec-

tive strategies for top-M and top-N selection. This makes our proposal scalable to

millions of users and items in the training phase and able to serve daily load of target

users and items in the prediction phase. We note that a more extensive feature selec-

tion and extraction as well as adding more rankers to the ensemble have a potential to

further improve the performance.

132

8. CONCLUSIONS

In many real-life recommender systems, the user feedback is implicit meaning

that it is inferred from different types of user behavior and interactions in the system.

This is usually because implicit feedback can be collected unobtrusively, and it can

capture the user-item relevance information better through time. Furthermore, there

are almost always some requirements imposed by the particular application area for

time-sensitive recommendations, and we distinguish four major challenges for achieving

them: (i) Efficient and adaptive model learning, (ii) Fast personalized predictions, (iii)

Session-based recommendations, and (iv) Time dependency and time awareness.

From the perspective above, we present an overview of LtR models which can

learn from implicit feedback effectively and support time-sensitive recommendations.

We then propose novel efficient personalized LtR methods to learn from large-scale im-

plicit feedback datasets and streams while trying to address the challenges for achieving

time-sensitive recommendations. In the following, we present our conclusions about

these proposals including a discussion of our findings and highlighting some open re-

search directions.

8.1. Mining User Feedback Stream for CF

In Chapter 3, we propose a novel scalable and adaptive personalized recom-

mendation algorithm, SASCF. The algorithm works on streaming implicit feedback

and provides mechanisms to solve different challenges for time-sensitive recommenda-

tions. The core idea is continuously maintaining a compact summary of frequently

co-occurring items instead of computing an offline item similarity matrix. For this

purpose, SASCF extends two frequent item finding algorithms from streams and main-

tains co-occurrences in sorted order with respect to their approximate frequency counts.

This enables efficient top-k queries which subsequently facilitates finding similar items

quickly with respect to various heuristic similarity measures. In this sense, the approach

can be considered as direct neighborhood learning. The algorithm is also combined with

133

an efficient sampling scheme for further efficiency. All these properties enable scalable

and adaptive learning and fast personalized predictions based on a user’s past feedback

also taking into account time dependency. Furthermore, they make SASCF useful for

session-based recommendations.

We perform an empirical analysis of SASCF on real-life datasets. First, our ex-

ploratory data analysis shows that the power-law behavior of rank-frequency distribu-

tions of item co-occurrences supports SASCF and its hyperparameterization. Second,

experimental results using an offline holdout set are reported. Given the selection of hy-

perparameters in a broad range, the results comply with offline collaborative filtering in

terms of ranking accuracy. Third, we perform experiments using a first-test-then-train

sequential scheme. The sequential evaluation results show adaptivity of the proposed

approach in comparison to offline NN search and a single pass MF approach.

We note some possible future research directions as follows: First, various strate-

gies for finding frequent items in streams [83, 84, 165, 166] can be further investigated

for applicability to the SASCF framework. Second, while the mechanisms provided in

SASCF can be effective in RS applications, efficiently and accurately finding nearest

neighbors in streaming data with respect to an arbitrary similarity measure [86, 87] is

an underexplored problem. Third, in addition to the built-in sampling scheme, cou-

pling of SASCF with parallel processing schemes such as map-reduce [61] is a promising

direction and deserves further investigation.

8.2. Parallel Personalized Pairwise LtR

Pairwise LtR is especially suitable for CF from implicit feedback. In Chapter 4,

we show that its efficiency can be greatly improved using state-of-the-art parallel SGD

schemes. In this direction, we first propose two base algorithms: PLtR-B and PLtR-

N. The former follows a block partitioning scheme which enables mutually exclusive

model parameter updates. The latter applies no particular partitioning and relies on

random sampling from a hypergraph. Our analysis as well as extensive comparative

experimental results show that both PLtR-B and PLtR-N can preserve the ranking

134

accuracy of their sequential counterpart without any significant loss due to parallel

learning. Furthermore, their speedup patterns indicate a very good exploitation of the

available processing units in the system, and hence remarkable learning efficiency. They

are also lightweight with minimal extra space requirements and easy to implement. All

these qualities can make them desirable for efficient LtR in web-scale applications.

We then discuss and propose some important extensions to PLtR-B and PLtR-N

algorithms. We first show that the algorithms can be combined with various biased

sampling strategies. These strategies include adaptive sampling to further improve

the convergence speed and sampling to handle available graded relevance feedback

information. Second, we show that the algorithms can also be combined with adaptive

gradient update methods which can bring advantages like faster convergence as well as

enabling easier selection of the learning rate. Finally, we propose an extension, PLtR-

NS, which builds upon PLtR-N and learns from streaming user feedback efficiently.

This extended algorithm considers the time order of the incoming user feedback and

provides a mechanism to adapt to the changing temporal dynamics of the system more

quickly. We present detailed experimental results for all extensions which both show

their usefulness and the versatility of the PLtR-B and PLtR-N algorithms.

We note some possible future research directions as follows: To extend our guid-

ing empirical analysis, experiments with more processing units can be performed, for

example, using GPU-based parallel processing. Furthermore, our separate preliminary

analysis hints that the proposed algorithms can be useful even when additional context

apart from the user and time are used.

8.3. Efficient Top-N Prediction from MF models

MF models are commonly used in personalized LtR, especially in CF scenarios.

They usually attempt to map a large number of users and items into a low-dimensional

latent space where relevant items for a user are expected to have high dot products.

Then, a very common prediction task is to find the top-N items in this space having the

highest dot products with a queried user. In Chapter 5, we propose a meta-algorithm,

135

MMFNN, which can combine various common MF models with approximate NN search

methods to improve their top-N prediction efficiency. Our approach is based on an

efficient heuristic which searches top-N items among the nearest neighbors of items

known to be relevant to the queried user. We show that this is a viable approach since

such relevant items are expected to have high dot products and so are their neighbors

in a latent metric space. Furthermore, we show that finding the highest dot products

in such a preselected neighborhood has the potential effect of improving various other

performance results compared to highest dot product search among all items.

Intensive top-N queries from large item repositories are not uncommon in RSs.

Reducing the query time is often of concern since it can improve the system’s adaptiv-

ity by increasing training frequency when the top-N predictions are precomputed, or

it can facilitate fast retrieval when there is a need for top-N predictions in real time.

Furthermore, in practice, the top-N predictions are often produced by a hybrid of sev-

eral models and efficient retrieval from individual models is always desired. Therefore,

MMFNN can be a valuable meta-algorithm in many different scenarios requiring more

efficient predictions.

The effectiveness of MMFNN is tested using various state-of-the-art batch, online,

and incremental MF models and two approximate NN search methods based on par-

titioning trees. Extensive empirical analysis on large implicit feedback datasets shows

that the proposed approach can bring a drastic time efficiency compared to exhaus-

tive top-N queries, while, at the same time, preserving or sometimes even improving

ranking accuracy and diversity.

A possible future research direction can be using MMFNN on top of other spe-

cialized approximate NN search methods [126,167] and comparing their effects on the

efficiency of predictions from MF models. Additionally, the practicality of the proof of

concept RL extension as well as its evaluation can be further investigated.

136

8.4. Learning Intention in User Sessions

Prediction of user intention in a session can enable better recommendations dur-

ing or short after the session ends. In Chapter 6, we propose a way to represent the

intention learning problem by turning implicit user feedback in a session into a feature

vector. The vector can also incorporate conveniently the user and item content features

in case they are available. We then propose powerful and efficient ensemble methods

based on RFs which can learn in batch or incremental fashion and handle class imbal-

ance due to the rarely occurring event of interest. We also investigate several ways for

efficient prediction from such an ensemble since the prediction of intention needs to be

fast enough for time-sensitive recommendations.

We work on a recent challenge benchmark dataset for predicting purchasing in-

tention in a session. Extensive experimental results show usefulness of our proposals

in terms of predictive power and efficiency.

We note that learning intention in user sessions is a relatively underexplored area

in academic research. Beyond their practicality, our proposals can serve as strong

baselines for further research.

8.5. Timely Push Recommendations in a Cold Start Setting

Push recommendations typically have explicit requirements to satisfy multiple

stakeholder objectives while being time sensitive. In Chapter 7, we work on large-

scale push recommendations especially in an item cold start setting. We first formalize

the problem and then propose an effective hybrid personalized LtR approach which

leverages both implicit feedback and content information through different component

rankers and effective top-M and top-N selection strategies.

While the proposed approach can be used for different applications, our case

study is a job recommender system, and we work on a recent real-life benchmark.

We first experiment with the proposed ensemble in an offline setting using a multi-

137

objective performance measure and obtain much superior ranking accuracy compared

to the baseline as well as the component rankers. Especially, the usage of profile-based

rankers based on implicit user feedback are observed to bring a huge improvement in

the results. Then, we justify these results in an online experimental setting with further

improvements in ranking accuracy, diversity, and competitive efficiency.

Push recommendations are an underexplored area in academic research. There-

fore, our formalization and proposals can be useful for future research especially when

there is increased dataset availability.

138

REFERENCES

1. Ricci, F., L. Rokach and B. Shapira, Recommender Systems Handbook , Springer,

2nd edn., 2015.

2. Bobadilla, J., F. Ortega, A. Hernando and A. Gutierrez, “Recommender Systems

Survey”, Knowledge-based Systems , Vol. 46, pp. 109–132, 2013.

3. Liu, T.-Y., Learning to Rank for Information Retrieval , Springer, 2011.

4. Koren, Y., The BellKor Solution to the Netflix Grand Prize, 2009, https://

www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf, accessed

at October 2018.

5. Harper, F. M. and J. A. Konstan, “The MovieLens Datasets: History and Con-

text”, ACM Transactions on Interactive Intelligent Systems , Vol. 5, No. 4, pp.

1–19, 2015.

6. Hidasi, B. and D. Tikk, “Fast ALS-Based Tensor Factorization for Context-

aware Recommendation from Implicit Feedback”, Proceedings of the European

Conference on Machine Learning and Knowledge Discovery in Databases , ECML

PKDD’12, pp. 67–82, 2012.

7. Hu, Y., Y. Koren and C. Volinsky, “Collaborative Filtering for Implicit Feedback

Datasets”, Proceedings of the 8th IEEE International Conference on Data Mining ,

ICDM ’08, pp. 263–272, 2008.

8. Pilaszy, I., A. Sereny, G. Dozsa, B. Hidasi, A. Sari and J. Gub, “Neighbor Meth-

ods vs Matrix Factorization - Case Studies of Real-life Recommendations”, ACM

Recsys Workshop on Large-scale Recommender Systems , 2015.

9. Yağcı, A. M., T. Aytekin and F. S. Gürgen, “Scalable and Adaptive Collaborative

139

Filtering by Mining Frequent Item Co-occurrences in a User Feedback Stream”,

Engineering Applications of Artificial Intelligence, Vol. 58, pp. 171–184, 2017.

10. Yağcı, A. M., T. Aytekin and F. S. Gürgen, “Parallel Pairwise Learning to Rank

for Collaborative Filtering”, Concurrency and Computation: Practice and Expe-

rience, (Accepted and Published Online) 2019.

11. Yağcı, M., T. Aytekin and F. Gürgen, “On Parallelizing SGD for Pairwise Learn-

ing to Rank in Collaborative Filtering Recommender Systems”, Proceedings of the

11th ACM Conference on Recommender Systems , RecSys ’17, pp. 37–41, 2017.

12. Yağcı, M., T. Aytekin, H. Türen and F. Gürgen, “Parallel Personalized Pairwise

Learning to Rank”, Proceedings of the 3rd EURO Mini Conference: From Multiple

Criteria Decision Aid to Preference Learning , DA2PL ’16, pp. 53–58, 2016.

13. Yağcı, A. M., T. Aytekin and F. S. Gürgen, “A Meta-algorithm for Improving

Top-N Prediction Efficiency of Matrix Factorization Models in Collaborative Fil-

tering”, International Journal of Pattern Recognition and Artificial Intelligence,

(Accepted) 2019.

14. Yağcı, A. M., T. Aytekin and F. S. Gürgen, “An Ensemble Approach for Multi-

label Classification of Item Click Sequences”, Proceedings of the 9th ACM Con-

ference on Recommender Systems Challenge, RecSys ’15, 2015.

15. Yağcı, A. M., T. Aytekin and F. S. Gürgen, “Balanced Random Forest for Im-

balanced Data Streams”, Proceedings of the IEEE 24th Signal Processing and

Communication Applications Conference, pp. 1065–1068, 2016.

16. Yağcı, M. and F. Gürgen, “A Ranker Ensemble for Multi-objective Job Recom-

mendation in an Item Cold Start Setting”, Proceedings of the 11th ACM Confer-

ence on Recommender Systems Challenge, RecSys ’17, 2017.

17. Aljukhadar, M., S. Senecal and C.-E. Daoust, “Using Recommendation Agents to

140

Cope with Information Overload”, International Journal of Electronic Commerce,

Vol. 17, No. 2, pp. 41–70, 2012.

18. de Gemmis, M., P. Lops, C. Musto, F. Narducci and G. Semeraro, “Semantics-

Aware Content-Based Recommender Systems”, F. Ricci, L. Rokach and

B. Shapira (Editors), Recommender Systems Handbook , pp. 119–159, Springer,

2015.

19. McCarey, F., M. Ó. Cinnéide and N. Kushmerick, “Recommending Library Meth-

ods: An Evaluation of the Vector Space Model (VSM) and Latent Semantic Index-

ing (LSI)”, M. Morisio (Editor), Reuse of Off-the-shelf Components , pp. 217–230,

Springer, 2006.

20. Abel, F., A. Benczúr, D. Kohlsdorf, M. Larson and R. Pálovics, “RecSys Chal-

lenge 2016: Job Recommendations”, Proceedings of the 10th ACM Conference on

Recommender Systems , RecSys ’16, pp. 425–426, 2016.

21. Rendle, S., “Factorization Machines with libFM”, ACM Transactions on Intelli-

gent Systems and Technology , Vol. 3, No. 3, pp. 57:1–57:22, 2012.

22. Freno, A., “Practical Lessons from Developing a Large-Scale Recommender Sys-

tem at Zalando”, Proceedings of the 11th ACM Conference on Recommender Sys-

tems , RecSys ’17, pp. 251–259, 2017.

23. Park, S.-T., D. Pennock, O. Madani, N. Good and D. DeCoste, “Näıve Filterbots

for Robust Cold-start Recommendations”, Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining , KDD ’06,

pp. 699–705, 2006.

24. Koren, Y. and R. Bell, “Advances in Collaborative Filtering”, F. Ricci, L. Rokach

and B. Shapira (Editors), Recommender Systems Handbook , pp. 77–118, Springer,

2015.

141

25. Shi, Y., M. Larson and A. Hanjalic, “Collaborative Filtering Beyond the User-

Item Matrix: A Survey of the State of the Art and Future Challenges”, ACM

Computing Surveys , Vol. 47, No. 1, pp. 1–45, 2014.

26. Burke, R., “Hybrid Web Recommender Systems”, P. Brusilovsky, A. Kobsa and

W. Nejdl (Editors), The Adaptive Web: Methods and Strategies of Web Person-

alization, pp. 377–408, Springer, 2007.

27. Kelly, D. and J. Teevan, “Implicit Feedback for Inferring User Preference: A

Bibliography”, SIGIR Forum, Vol. 37, No. 2, pp. 18–28, 2003.

28. Lerche, L. and D. Jannach, “Using Graded Implicit Feedback for Bayesian Per-

sonalized Ranking”, Proceedings of the 8th ACM Conference on Recommender

Systems , RecSys ’14, pp. 353–356, 2014.

29. Cremonesi, P., Y. Koren and R. Turrin, “Performance of Recommender Algo-

rithms on Top-N Recommendation Tasks”, Proceedings of the 4th ACM Confer-

ence on Recommender Systems , RecSys ’10, pp. 39–46, 2010.

30. Koren, Y., “Factorization Meets the Neighborhood: A Multifaceted Collaborative

Filtering Model”, Proceedings of the 14th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining , KDD ’08, pp. 426–434, 2008.

31. Ben-Shimon, D., A. Tsikinovsky, M. Friedmann, B. Shapira, L. Rokach and J. Ho-

erle, “RecSys Challenge 2015 and the YOOCHOOSE Dataset”, Proceedings of the

9th ACM Conference on Recommender Systems , RecSys ’15, pp. 357–358, 2015.

32. Jannach, D., L. Lerche and M. Jugovac, “Adaptation and Evaluation of Recom-

mendations for Short-term Shopping Goals”, Proceedings of the 9th ACM Con-

ference on Recommender Systems , RecSys ’15, pp. 211–218, 2015.

33. Vinagre, J., A. M. Jorge and J. Gama, “An Overview on the Exploitation of

Time in Collaborative Filtering”, Wiley Interdisciplinary Reviews: Data Mining

142

and Knowledge Discovery , Vol. 5, No. 5, pp. 195–215, 2015.

34. Adomavicius, G. and A. Tuzhilin, “Context-aware Recommender Systems”,

F. Ricci, L. Rokach and B. Shapira (Editors), Recommender Systems Handbook ,

pp. 191–226, Springer, 2015.

35. Campos, P. G., F. Diez and I. Cantador, “Time-aware Recommender Systems:

A Comprehensive Survey and Analysis of Existing Evaluation Protocols”, User

Modeling and User-Adapted Interaction, Vol. 24, No. 1, pp. 67–119, 2014.

36. Li, H., Learning to Rank for Information Retrieval and Natural Language Process-

ing , Synthesis Lectures on Human Language Technologies, Morgan & Claypool

Publishers, 2nd edn., 2014.

37. Karatzoglou, A., L. Baltrunas and Y. Shi, “Learning to Rank for Recommender

Systems”, Proceedings of the 7th ACM Conference on Recommender Systems ,

RecSys ’13, pp. 493–494, 2013.

38. Rendle, S., Context-Aware Ranking with Factorization Models , Vol. 330 of Studies

in Computational Intelligence, Springer, 2011.

39. Alpaydin, E., Introduction to Machine Learning , The MIT Press, 3rd edn., 2014.

40. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, The

MIT Press, 2nd edn., 2018.

41. Shi, Y., A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver and A. Hanjalic,

“CLiMF: Learning to Maximize Reciprocal Rank with Collaborative Less-is-more

Filtering”, Proceedings of the 6th ACM Conference on Recommender Systems ,

RecSys ’12, pp. 139–146, 2012.

42. Ning, X., C. Desrosiers and G. Karypis, “A Comprehensive Survey of

Neighborhood-Based Recommendation Methods”, F. Ricci, L. Rokach and

143

B. Shapira (Editors), Recommender Systems Handbook , pp. 37–76, Springer, 2015.

43. Marlin, B. M., R. S. Zemel, S. Roweis and M. Slaney, “Collaborative Filtering

and the Missing at Random Assumption”, Proceedings of the 23rd Conference on

Uncertainty in Artificial Intelligence, UAI’07, pp. 267–275, 2007.

44. Deshpande, M. and G. Karypis, “Item-based Top-n Recommendation Algo-

rithms”, ACM Transactions on Information Systems , Vol. 22, No. 1, pp. 143–177,

2004.

45. Smith, B. and G. Linden, “Two Decades of Recommender Systems at Ama-

zon.com”, IEEE Internet Computing , Vol. 21, No. 3, pp. 12–18, 2017.

46. McFee, B. and G. Lanckriet, “Metric Learning to Rank”, Proceedings of the 27th

International Conference on Machine Learning , ICML’10, pp. 775–782, 2010.

47. Hsieh, C.-K., L. Yang, Y. Cui, T.-Y. Lin, S. Belongie and D. Estrin, “Collabora-

tive Metric Learning”, Proceedings of the 26th International Conference on World

Wide Web, WWW ’17, pp. 193–201, 2017.

48. Rendle, S., C. Freudenthaler, Z. Gantner and L. Schmidt-Thieme, “BPR: Bayesian

Personalized Ranking from Implicit Feedback”, Proceedings of the 25th Conference

on Uncertainty in Artificial Intelligence, UAI ’09, pp. 452–461, 2009.

49. Barkan, O. and N. Koenigstein, “Item2Vec: Neural Item Embedding for Collab-

orative Filtering”, arXiv , Vol. 1603.04259, 2016.

50. Koenigstein, N. and Y. Koren, “Towards Scalable and Accurate Item-oriented

Recommendations”, Proceedings of the 7th ACM Conference on Recommender

Systems , RecSys ’13, pp. 419–422, 2013.

51. Hidasi, B., A. Karatzoglou, L. Baltrunas and D. Tikk, “Session-based Recommen-

dations with Recurrent Neural Networks”, CoRR, Vol. abs/1511.06939, 2016.

144

52. Jannach, D. and M. Ludewig, “When Recurrent Neural Networks Meet the Neigh-

borhood for Session-Based Recommendation”, Proceedings of the 11th ACM Con-

ference on Recommender Systems , RecSys ’17, pp. 306–310, 2017.

53. Ning, X. and G. Karypis, “SLIM: Sparse Linear Methods for Top-N Recommender

Systems”, Proceedings of the IEEE 11th International Conference on Data Min-

ing , ICDM’11, pp. 497–506, 2011.

54. Levy, M. and K. Jack, “Efficient Top-n Recommendation by Linear Regression”,

Proceedings of the ACM RecSys Large Scale Recommender Systems Workshop,

Recsys ’13, 2013.

55. Markovsky, I., Low Rank Approximation: Algorithms, Implementation, Applica-

tions , Springer, 2011.

56. Baeza-Yates, R. and B. Ribeiro-Neto, Modern Information Retrieval , Addison-

Wesley Publishing Company, 2nd edn., 2011.

57. Pan, R., Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz and Q. Yang, “One-

Class Collaborative Filtering”, Proceedings of the 8th IEEE International Con-

ference on Data Mining , ICDM ’08, pp. 502–511, 2008.

58. Burges, C. J., From RankNet to LambdaRank to LambdaMART: An Overview ,

Tech. Rep. MSR-TR-2010-82, Microsoft Research, 2010.

59. Covington, P., J. Adams and E. Sargin, “Deep Neural Networks for YouTube

Recommendations”, Proceedings of the 10th ACM Conference on Recommender

Systems , RecSys ’16, pp. 191–198, 2016.

60. Miner, D. and A. Shook, MapReduce Design Patterns: Building Effective Algo-

rithms and Analytics for Hadoop and Other Systems , O’Reilly, 1st edn., 2012.

61. Leskovec, J., A. Rajaraman and J. D. Ullman, Mining of Massive Datasets , Cam-

145

bridge University Press, 2nd edn., 2014.

62. Gama, J., Knowledge Discovery from Data Streams , Chapman & Hall/CRC, 2010.

63. Li, L., W. Chu, J. Langford and R. E. Schapire, “A Contextual-bandit Approach

to Personalized News Article Recommendation”, Proceedings of the 19th Interna-

tional Conference on World Wide Web, WWW ’10, pp. 661–670, 2010.

64. Gunawardana, A. and G. Shani, “Evaluating Recommender Systems”, F. Ricci,

L. Rokach and B. Shapira (Editors), Recommender Systems Handbook , pp. 265–

308, Springer, 2015.

65. Herschtal, A. and B. Raskutti, “Optimising Area Under the ROC Curve Using

Gradient Descent”, Proceedings of the 21st International Conference on Machine

Learning , ICML ’04, pp. 49–56, 2004.

66. Manning, C. D., P. Raghavan and H. Schütze, Introduction to Information Re-

trieval , Cambridge University Press, 2008.

67. McFee, B., T. Bertin-Mahieux, D. P. Ellis and G. R. Lanckriet, “The Million Song

Dataset Challenge”, Proceedings of the 21st International Conference on World

Wide Web, WWW ’12 Companion, pp. 909–916, 2012.

68. Rendle, S. and C. Freudenthaler, “Improving Pairwise Learning for Item Recom-

mendation from Implicit Feedback”, Proceedings of the 7th ACM International

Conference on Web Search and Data Mining , WSDM ’14, pp. 273–282, 2014.

69. Ge, M., C. Delgado-Battenfeld and D. Jannach, “Beyond Accuracy: Evaluating

Recommender Systems by Coverage and Serendipity”, Proceedings of the 4th ACM

Conference on Recommender Systems , RecSys ’10, pp. 257–260, 2010.

70. Adomavicius, G. and Y. Kwon, “Improving Aggregate Recommendation Diversity

Using Ranking-Based Techniques”, IEEE Transactions on Knowledge and Data

146

Engineering , Vol. 24, No. 5, pp. 896–911, 2012.

71. Abel, F., Y. Deldjoo, M. Elahi and D. Kohlsdorf, “RecSys Challenge 2017: Of-

fline and Online Evaluation”, Proceedings of the 11th ACM Conference on Rec-

ommender Systems , RecSys ’17, pp. 372–373, 2017.

72. Kohavi, R., R. Longbotham, D. Sommerfield and R. M. Henne, “Controlled Ex-

periments on the Web: Survey and Practical Guide”, Data Mining and Knowledge

Discovery , Vol. 18, No. 1, pp. 140–181, 2009.

73. Kohavi, R., “Online Controlled Experiments: Lessons from Running A/B/n Tests

for 12 Years”, Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining , KDD ’15, 2015.

74. Bifet, A., G. Holmes, R. Kirkby and B. Fahringer, Data Stream Mining, A Prac-

tical Approach, 2011, https://moa.cms.waikato.ac.nz/, accessed at October

2018.

75. Vinagre, J., A. M. Jorge and J. Gama, “Fast Incremental Matrix Factorization for

Recommendation with Positive-only Feedback”, User Modeling, Adaptation, and

Personalization, Vol. 8538 of Lecture Notes in Computer Science, pp. 459–470,

Springer, 2014.

76. Han, J., M. Kamber and J. Pei, Data Mining: Concepts and Techniques , Morgan

Kaufmann Publishers, 3rd edn., 2011.

77. Moens, S., E. Aksehirli and B. Goethals, “Frequent Itemset Mining for Big Data”,

Proceedings of the IEEE International Conference on Big Data, pp. 111–118, 2013.

78. Lin, J. C.-W., W. Gan, P. Fournier-Viger and T.-P. Hong, “RWFIM: Recent

Weighted-Frequent Itemsets Mining”, Engineering Applications of Artificial In-

telligence, Vol. 45, pp. 18–32, 2015.

147

79. Karp, R. M., S. Shenker and C. H. Papadimitriou, “A Simple Algorithm for Find-

ing Frequent Elements in Streams and Bags”, ACM Transactions on Database

Systems , Vol. 28, No. 1, pp. 51–55, 2003.

80. Liberty, E., “Simple and Deterministic Matrix Sketching”, Proceedings of 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing , KDD ’13, pp. 581–588, 2013.

81. Metwally, A., D. Agrawal and A. El Abbadi, “Efficient Computation of Frequent

and Top-k Elements in Data Streams”, Proceedings of 10th International Confer-

ence on Database Theory , ICDT’05, pp. 398–412, 2005.

82. Manku, G. S. and R. Motwani, “Approximate Frequency Counts over Data

Streams”, Proceedings of 28th International Conference on Very Large Databases ,

VLDB ’02, pp. 346–357, 2002.

83. Cormode, G. and M. Hadjieleftheriou, “Finding Frequent Items in Data Streams”,

Proceedings of VLDB Endowment , Vol. 1, No. 2, pp. 1530–1541, 2008.

84. Liu, H., Y. Lin and J. Han, “Methods for Mining Frequent Items in Data Streams:

An Overview”, Knowledge and Information Systems , Vol. 26, No. 1, pp. 1–30,

2011.

85. Adamic, L. A., Zipf, Power-laws, and Pareto - A Ranking Tutorial , 2000, http:

//www.hpl.hp.com/research/idl/papers/ranking/ranking.html, accessed at

October 2018.

86. Campagna, A. and R. Pagh, “Finding Associations and Computing Similarity via

Biased Pair Sampling”, Knowledge and Information Systems , Vol. 31, No. 3, pp.

505–526, 2012.

87. Zadeh, R. B. and A. Goel, “Dimension Independent Similarity Computation”,

Journal of Machine Learning Research, Vol. 14, No. 1, pp. 1605–1626, 2013.

148

88. Dooms, S., T. De Pessemier and L. Martens, “MovieTweetings: A Movie Rating

Dataset Collected from Twitter”, Proceedings of the ACM Recsys Workshop on

Crowdsourcing and Human Computation for Recommender Systems , RecSys ’13,

2013.

89. Bodon, F., Kosarak Online News Dataset , http://fimi.ua.ac.be/data/, ac-

cessed at October 2018.

90. Liu, B., Amazon Ratings Dataset , http://konect.uni-koblenz.de/networks/

amazon-ratings, accessed at October 2018.

91. Gama, J., R. Sebastiao and P. P. Rodrigues, “On Evaluating Stream Learning

Algorithms”, Machine Learning , Vol. 90, No. 3, pp. 317–346, 2013.

92. Lowry, R., Concepts and Applications of Inferential Statistics , 2015, http://www.

vassarstats.net/textbook, accessed at October 2018.

93. Bottou, L., F. E. Curtis and J. Nocedal, “Optimization Methods for Large-Scale

Machine Learning”, arXiv , Vol. 1606.04838, 2016.

94. Bottou, L., “Stochastic Gradient Descent Tricks”, G. Montavon, G. B. Orr and

K.-R. Müller (Editors), Neural Networks: Tricks of the Trade: Second Edition,

pp. 421–436, Springer, 2012.

95. Candes, E. J. and B. Recht, “Exact Matrix Completion via Convex Optimiza-

tion”, Foundations of Computational Mathematics , Vol. 9, No. 6, pp. 717–772,

2009.

96. Recht, B. and C. Re, “Parallel Stochastic Gradient Algorithms for Large-scale

Matrix Completion”, Mathematical Programming Computation, Vol. 5, No. 2,

pp. 201–226, 2013.

97. Niu, F., B. Recht, C. Ré and S. J. Wright, “Hogwild: A Lock-Free Approach to

149

Parallelizing Stochastic Gradient Descent”, J. Shawe-Taylor, R. S. Zemel, P. L.

Bartlett, F. Pereira and K. Q. Weinberger (Editors), Advances in Neural Infor-

mation Processing Systems , NIPS, pp. 693–701, 2011.

98. Diaz-Aviles, E., L. Drumond, L. Schmidt-Thieme and W. Nejdl, “Real-time Top-

n Recommendation in Social Streams”, Proceedings of the 6th ACM Conference

on Recommender Systems , RecSys ’12, pp. 59–66, 2012.

99. Gemulla, R., E. Nijkamp, P. J. Haas and Y. Sismanis, “Large-scale Matrix Fac-

torization with Distributed Stochastic Gradient Descent”, Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing , KDD ’11, pp. 69–77, 2011.

100. Zhuang, Y., W.-S. Chin, Y.-C. Juan and C.-J. Lin, “A Fast Parallel SGD for

Matrix Factorization in Shared Memory Systems”, Proceedings of the 7th ACM

Conference on Recommender Systems , RecSys ’13, pp. 249–256, 2013.

101. Zhao, P. and T. Zhang, “Stochastic Optimization with Importance Sampling for

Regularized Loss Minimization”, Proceedings of the 32nd International Confer-

ence on Machine Learning - Volume 37 , ICML’15, pp. 1–9, 2015.

102. Weston, J., H. Yee and R. J. Weiss, “Learning to Rank Recommendations with the

K-order Statistic Loss”, Proceedings of the 7th ACM Conference on Recommender

Systems , RecSys ’13, pp. 245–248, 2013.

103. Ertekin, S., J. Huang, L. Bottou and L. Giles, “Learning on the Border: Active

Learning in Imbalanced Data Classification”, Proceedings of the 16th ACM Con-

ference on Conference on Information and Knowledge Management , CIKM ’07,

pp. 127–136, 2007.

104. Loni, B., R. Pagano, M. Larson and A. Hanjalic, “Bayesian Personalized Ranking

with Multi-Channel User Feedback”, Proceedings of the 10th ACM Conference on

Recommender Systems , RecSys ’16, pp. 361–364, 2016.

150

105. Qian, N., “On the Momentum Term in Gradient Descent Learning Algorithms”,

Neural Networks , Vol. 12, No. 1, pp. 145–151, 1999.

106. Ruder, S., “An Overview of Gradient Descent Optimization Algorithms”, arXiv ,

Vol. 1609.04747, 2016.

107. Dean, J., G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,

M. Ranzato, A. Senior, P. Tucker, K. Yang and A. Y. Ng, “Large Scale Distributed

Deep Networks”, Proceedings of the 25th International Conference on Neural In-

formation Processing Systems - Volume 1 , NIPS’12, pp. 1223–1231, 2012.

108. He, X., L. Liao, H. Zhang, L. Nie, X. Hu and T.-S. Chua, “Neural Collaborative

Filtering”, Proceedings of the 26th International Conference on World Wide Web,

WWW ’17, pp. 173–182, 2017.

109. Yi-Lei, W., T. Wen-Zhe, Y. Xian-Jun, W. Ying-Jie and C. Fu-Ji, “An Efficient

Method for Autoencoder-based Collaborative Filtering”, Concurrency and Com-

putation: Practice and Experience, Vol. Online, pp. 1–7, 2018.

110. Johnson, C. C., “Logistic Matrix Factorization for Implicit Feedback Data”, Pro-

ceedings of the NIPS 2014 Workshop on Distributed Machine Learning and Matrix

Computations , 2014.

111. Chin, W.-S., Y. Zhuang, Y.-C. Juan and C.-J. Lin, “A Learning-Rate Schedule for

Stochastic Gradient Methods to Matrix Factorization”, T. Cao, E.-P. Lim, Z.-H.

Zhou, T.-B. Ho, D. Cheung and H. Motoda (Editors), Advances in Knowledge

Discovery and Data Mining , pp. 442–455, Springer, 2015.

112. Li, D., C. Chen, Q. Lv, H. Gu, T. Lu, L. Shang, N. Gu and S. M. Chu, “AdaError:

An Adaptive Learning Rate Method for Matrix Approximation-based Collabora-

tive Filtering”, Proceedings of the 27th International Conference on World Wide

Web, WWW ’18, 2018.

151

113. Duchi, J., E. Hazan and Y. Singer, “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”, Journal of Machine Learning Research,

Vol. 12, pp. 2121–2159, 2011.

114. Kingma, D. P. and J. Ba, “Adam: A Method for Stochastic Optimization”, arXiv ,

Vol. 1412.6980, 2014.

115. Vitter, J. S., “Random Sampling with a Reservoir”, ACM Transactions on Math-

ematical Software, Vol. 11, No. 1, pp. 37–57, 1985.

116. Chen, C., H. Yin, J. Yao and B. Cui, “TeRec: A Temporal Recommender System

over Tweet Stream”, Proceedings of the VLDB Endowment , Vol. 6, No. 12, pp.

1254–1257, 2013.

117. Osborne, M., A. Lall and B. Van Durme, “Exponential Reservoir Sampling for

Streaming Language Models”, Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics , Vol. 2, pp. 687–692, 2014.

118. Cemgil, A. T., “A Tutorial Introduction to Monte Carlo Methods, Markov Chain

Monte Carlo and Particle Filtering”, P. S. Diniz, J. A. Suykens, R. Chellappa and

S. Theodoridis (Editors), Academic Press Library in Signal Processing , Vol. 1, pp.

1065 – 1114, Elsevier, 2014.

119. Rendle, S. and L. Schmidt-Thieme, “Online-updating Regularized Kernel Matrix

Factorization Models for Large-scale Recommender Systems”, Proceedings of the

2nd ACM Conference on Recommender Systems , RecSys ’08, pp. 251–258, 2008.

120. Celma, O., Music Recommendation and Discovery in the Long Tail , Springer,

2010.

121. Aiolli, F., “Efficient Top-n Recommendation for Very Large Scale Binary Rated

Datasets”, Proceedings of the 7th ACM Conference on Recommender Systems ,

RecSys ’13, pp. 273–280, 2013.

152

122. OpenMP Architecture Review Board, OpenMP Application Program Interface

Version 4.0 , 2013, www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf,

accessed at October 2018.

123. Mouillot, D. and A. Lepretre, “Introduction of Relative Abundance Distribution

(RAD) Indices, Estimated from the Rank-Frequency Diagrams (RFD), to Assess

Changes in Community Diversity”, Environmental Monitoring and Assessment ,

Vol. 63, No. 2, pp. 279–295, 2000.

124. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, 1982.

125. Koren, Y., R. Bell and C. Volinsky, “Matrix Factorization Techniques for Recom-

mender Systems”, Computer , Vol. 42, No. 8, pp. 30–37, 2009.

126. Muja, M. and D. G. Lowe, “Scalable Nearest Neighbor Algorithms for High Di-

mensional Data”, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, Vol. 36, No. 11, pp. 2227–2240, 2014.

127. Ram, P. and A. G. Gray, “Maximum Inner-product Search Using Cone Trees”,

Proceedings of the 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining , KDD ’12, pp. 931–939, 2012.

128. Koenigstein, N., P. Ram and Y. Shavitt, “Efficient Retrieval of Recommendations

in a Matrix Factorization Framework”, Proceedings of the 21st ACM International

Conference on Information and Knowledge Management , CIKM ’12, pp. 535–544,

2012.

129. Auer, P., N. Cesa-Bianchi and P. Fischer, “Finite-time Analysis of the Multiarmed

Bandit Problem”, Machine Learning , Vol. 47, No. 2, pp. 235–256, 2002.

130. Wang, Y., J.-Y. Audibert and R. Munos, “Algorithms for Infinitely Many-Armed

Bandits”, D. Koller, D. Schuurmans, Y. Bengio and L. Bottou (Editors), Advances

in Neural Information Processing Systems 21 , pp. 1729–1736, 2009.

153

131. Silpa-Anan, C. and R. Hartley, “Optimised KD-trees for Fast Image Descriptor

Matching”, Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1–8, 2008.

132. Bachrach, Y., Y. Finkelstein, R. Gilad-Bachrach, L. Katzir, N. Koenigstein,

N. Nice and U. Paquet, “Speeding Up the Xbox Recommender System Using

a Euclidean Transformation for Inner-product Spaces”, Proceedings of the 8th

ACM Conference on Recommender Systems , RecSys ’14, pp. 257–264, 2014.

133. Bernhardsson, E., Annoy Software, Spotify, https://github.com/spotify/

annoy, accessed at October 2018.

134. Khoshneshin, M. and W. N. Street, “Collaborative Filtering via Euclidean Em-

bedding”, Proceedings of the 4th ACM Conference on Recommender Systems ,

RecSys ’10, pp. 87–94, 2010.

135. Teflioudi, C., R. Gemulla and O. Mykytiuk, “LEMP: Fast Retrieval of Large En-

tries in a Matrix Product”, Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pp. 107–122, 2015.

136. Teflioudi, C. and R. Gemulla, “Exact and Approximate Maximum Inner Product

Search with LEMP”, ACM Transactions on Database Systems , Vol. 42, No. 1,

pp. 5:1–5:49, 2017.

137. Fraccaro, M., U. Paquet and O. Winther, “Indexable Probabilistic Matrix Fac-

torization for Maximum Inner Product Search”, Proceedings of the 30th AAAI

Conference on Artificial Intelligence, AAAI’16, pp. 1554–1560, 2016.

138. Neyshabur, B. and N. Srebro, “On Symmetric and Asymmetric LSHs for Inner

Product Search”, Proceedings of the 32nd International Conference on Interna-

tional Conference on Machine Learning - Volume 37 , ICML’15, pp. 1926–1934,

2015.

154

139. McAuley, J., C. Targett, Q. Shi and A. van den Hengel, “Image-Based Rec-

ommendations on Styles and Substitutes”, Proceedings of the 38th International

ACM SIGIR Conference on Research and Development in Information Retrieval ,

SIGIR ’15, pp. 43–52, 2015.

140. Muja, M. and D. G. Lowe, Flann Software, https://www.cs.ubc.ca/research/

flann/, accessed at October 2018.

141. Teflioudi, C., R. Gemulla and O. Mykytiuk, “LEMP Software”, https://dws.

informatik.uni-mannheim.de/en/resources/software/lemp, accessed at Oc-

tober 2018.

142. Li, L., W. Chu, J. Langford and X. Wang, “Unbiased Offline Evaluation of

Contextual-bandit-based News Article Recommendation Algorithms”, Proceed-

ings of the 4th ACM International Conference on Web Search and Data Mining ,

WSDM’11, pp. 297–306, 2011.

143. Tsoumakas, G., I. Katakis and I. Vlahavas, “Mining Multi-label Data”, R. L.

Maimon O. (Editor), Data Mining and Knowledge Discovery Handbook , pp. 667–

685, Springer, 2009.

144. Breiman, L., “Random Forests”, Machine Learning , Vol. 45, No. 1, pp. 5–32,

2001.

145. Galar, M., A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, “A Review

on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-

Based Approaches”, IEEE Transactions on Systems, Man, and Cybernetics, Part

C: Applications and Reviews , Vol. 42, No. 4, pp. 463–484, 2012.

146. Chen, C., A. Liaw and L. Breiman, Using Random Forest to Learn Imbalanced

Data, Tech. Rep. 666, Department of Statistics, University of Berkeley, 2004,

https://statistics.berkeley.edu/tech-reports/666.

155

147. Hulten, G., L. Spencer and P. Domingos, “Mining Time-changing Data Streams”,

Proceedings of the 7th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining , KDD ’01, pp. 97–106, 2001.

148. Oza, N., “Online Bagging and Boosting”, Proceedings of the IEEE Conference on

Systems, Man and Cybernetics , Vol. 3, pp. 2340–2345, 2005.

149. Saffari, A., C. Leistner, J. Santner, M. Godec and H. Bischof, “On-line Random

Forests”, Proceedings of the 12th IEEE International Conference on Computer

Vision (ICCV) Workshops , pp. 1393–1400, 2009.

150. Heutte, L., S. Adam and S. Bernard, “On the Selection of Decision Trees in Ran-

dom Forests”, IEEE - INNS - ENNS International Joint Conference on Neural

Networks , IJCNN ’09, pp. 302–307, 2009.

151. Hinton, G., O. Vinyals and J. Dean, “Distilling the Knowledge in a Neural Net-

work”, arXiv , Vol. 1503.02531, 2015.

152. Louppe, G., L. Wehenkel, A. Sutera and P. Geurts, “Understanding Variable

Importances in Forests of Randomized Trees”, Advances in Neural Information

Processing Systems , NIPS, pp. 431–439, 2013.

153. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, “Scikit-learn: Machine

Learning in Python”, Journal of Machine Learning Research, Vol. 12, pp. 2825–

2830, 2011.

154. Bifet, A., G. Holmes, B. Pfahringer, H. Kremer, T. Jansen and T. Seidl, “MOA:

Massive Online Analysis, A Framework for Stream Classification and Clustering”,

Journal of Machine Learning Research - Proceedings Track , Vol. 11, pp. 44–50,

2010.

156

155. Garcia-Molina, H., G. Koutrika and A. Parameswaran, “Information Seeking:

Convergence of Search, Recommendations, and Advertising”, Communications of

the ACM , Vol. 54, No. 11, pp. 121–130, 2011.

156. Zhao, H., L. Si, X. Li and Q. Zhang, “Recommending Complementary Products

in E-Commerce Push Notifications with a Mixture Model Approach”, Proceed-

ings of the 40th International ACM Conference on Research and Development in

Information Retrieval , SIGIR ’17, pp. 909–912, 2017.

157. Tan, L., A. Roegiest, J. Lin and C. L. Clarke, “An Exploration of Evaluation Met-

rics for Mobile Push Notifications”, Proceedings of the 39th International ACM

Conference on Research and Development in Information Retrieval , SIGIR ’16,

pp. 741–744, 2016.

158. Hastie, T., R. Tibshirani and J. Friedman, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, Springer, 2nd edn., 2009.

159. Friedman, J. H., “Greedy Function Approximation: A Gradient Boosting Ma-

chine”, The Annals of Statistics , Vol. 29, No. 5, pp. 1189–1232, 2001.

160. Burges, C. J. C., K. M. Svore, P. N. Bennett, A. Pastusiak and Q. Wu, “Learn-

ing to Rank Using an Ensemble of Lambda-gradient Models”, Proceedings of the

International Conference on Yahoo! Learning to Rank Challenge, YLRC’10, pp.

25–35, JMLR.org, 2010.

161. Pacuk, A., P. Sankowski, K. Wkegrzycki, A. Witkowski and P. Wygocki, “Rec-

Sys Challenge 2016: Job Recommendations Based on Preselection of Offers and

Gradient Boosting”, Proceedings of the ACM Recsys ’16 Challenge, RecSys ’16,

pp. 10:1–10:4, 2016.

162. Li, L. and T. Li, “MEET: A Generalized Framework for Reciprocal Recommender

Systems”, Proceedings of 21st ACM International Conference on Information and

Knowledge Management , CIKM ’12, pp. 35–44, 2012.

157

163. Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algo-

rithms , The MIT Press, 3rd edn., 2009.

164. Adomavicius, G. and Y. O. Kwon, “Maximizing Aggregate Recommendation Di-

versity: A Graph-theoretic Approach”, Proceedings of the ACM Rescys Workshop

on Novelty and Diversity in Recommender Systems , RecSys ’11, pp. 3–10, 2011.

165. Cormode, G., F. Korn and S. Tirthapura, “Exponentially Decayed Aggregates

on Data Streams”, Proceedings of IEEE 24th International Conference on Data

Engineering , pp. 1379–1381, 2008.

166. Woodruff, D. P., “New Algorithms for Heavy Hitters in Data Streams”, ArXiv ,

Vol. arXiv:1603.01733, 2016.

167. Wang, J., T. Zhang, J. Song, N. Sebe and H. T. Shen, “A Survey on Learning to

Hash”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13,

No. 9, pp. 1–21, 2017.

