
COMMUNITY DETECTION IN COMPLEX NETWORKS USING LOCAL

METHODS AND INFORMATION FLOW

by

Mürsel Taşgın
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ABSTRACT

COMMUNITY DETECTION IN COMPLEX NETWORKS

USING LOCAL METHODS AND INFORMATION FLOW

Many real world systems can be represented using networks or graphs where ele-

ments of system are denoted by nodes and their relations by edges. Complex networks

are special kinds of these networks with their emergent features created by interactions

among nodes. One such emergent feature is the community structure. A community

is a group of nodes where nodes within same community have more connections (i.e.,

edges) with each other than with the nodes in the rest of the network. Identifying such

communities is the task of community detection that can be used to identify nodes

with similar functions or features, densely connected regions in networks, information

flow patterns and spreading of a disease or information in a network.

In this thesis, we work on community detection on complex networks using lo-

cal approach and information diffusion. We investigate current algorithms and try to

understand the limitations of them. We especially focus on high time-complexity of

algorithms because of using global approach, i.e., try to optimize a global metric or

perform computations regarding the whole network repeatedly. We propose new algo-

rithms using local approach (i.e., similarity based on common friends) and information

diffusion (i.e., gossip spreading). Local approach uses locally available or computable

information around a node to identify its community. With this, community detection

task can be seen as a set of distributed and parallel tasks running simultaneously on

different parts of the network. We also propose a variant of label propagation algorithm

which decreases its overall execution time by eliminating unnecessary steps. During

these studies, we develop a community detection framework which simplifies the task

of defining, testing and comparing a new community detection algorithm.
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ÖZET

YEREL YÖNTEMLER VE BİLGİ YAYILIMI

KULLANARAK KARMAŞIK AĞLARDA KÜMELENME

TESPİTİ

Gerçek hayattaki birçok sistem ağ gösterimi kullanılarak temsil edilebilir. Ağ

gösteriminde, sistemi oluşturan bileşenler düğümlerle; bu bileşenlerin arasındaki ilişkiler

ise bağlantılarla gösterilir. Özel bir ağ tipi olan karmaşık ağlar ise sistemin bileşenlerinin

birbiriyle etkileşimi sonucu ortaya çıkan özelliklere sahiptir. Ağlardaki küme yapısı

bu özelliklerden biridir. Bir ağ içindeki kümelenme, birbiriyle daha sıkı bağlarla

bağlanmış düğümlerden oluşur; bu düğümlerin ağ içindeki diğer düğümlerle ise daha az

bağlantısı bulunmaktadır. Bir ağ içinde bu tip kümelenmeleri bulmak, ağ içinde benzer

özellik veya fonksiyona sahip alanların tespiti, bilginin dağılımı veya hastalık yayılımı

gibi birçok alanda önemli kullanım alanına sahiptir. Bu tezde, karmaşık ağlardaki

kümeleri yerel yaklaşımlı algoritmalarla (ör: ortak arkadaşlar üzerinden benzerlik) ve

bilgi yayılımı yöntemleriyle (ör: dedikodu yayılımı) tespit etme üzerinde çalışmalar

yaptık. Mevcutta kullanılan algoritmaları inceleyerek bunların yetersiz kaldığı alanları

tespit ettik. Tüm ağ üzerinde bir değeri iyileştirmeye çalışan küresel yaklaşımlı algorit-

maların uzun çalışma sürelerine sahip olduklarını gördük. Yerel yaklaşım kullanarak,

dügümlerin benzerlikleri ve dedikodu yayılımını baz alan algoritmalar geliştirdik. Yerel

yaklaşımlı algoritmaların çalışması icin, bir düğüm etrafındaki kısıtlı bilgi yeterli ol-

maktadır. Bu sayede, küme işlemi paralel ve dağıtık şekilde ağın farklı yerlerinde

eşzamanlı yapılabilmektedir. Bununla birlikte, bilinen bir küme bulma algoritmasını

baz alarak (etiket yayılım algoritması), algoritmada gereksiz yapılan adımları ortadan

kaldıran bir yaklaşımla, çalışma zamanını kısaltan yeni bir algoritma geliştirdik. Tez

çalışmaları sırasında tanımladığımız bu algoritmaların tanımlanması sürecinde yeni bir

geliştirme altyapısı da oluşturduk.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

1.1. Complex Systems and Networks

Euler’s solution to the puzzle of Konigsberg’s bridges in 1736 is one of the ear-

liest use cases of graph theory for real-world problems [1]. Many researchers have

been working on graphs to understand the theoretical and mathematical foundations

of different systems represented by graphs and also graph theory by itself. In the

last century, graphs are used extensively to represent a wide variety of real-world sys-

tems in various domains, i.e., social, biological, technological, economic or ecological

systems. These systems are consisting of elements and relations between these el-

ements. In graph or network representation, the elements of a system are denoted

by nodes and their relations with each other by edges [2]. We can analyze different

aspects of a system using different methods and tools on graphs. Mobile commu-

nication networks, scientific collaboration networks, patent networks, protein-protein

interaction networks, and brain networks are examples of the network representation

of corresponding systems [3–7]. Complex networks are the graph representations of

the corresponding real-world complex systems ; i.e., the brain network of the human

body, friendship networks of people, airline traffic connection network among cities

and protein-protein interaction networks. The special thing about complex networks

is that the elements of the system interact with each other locally in a decentralized

way and these interactions and positions of elements in the network lead to emergent

behaviors, features and global patterns. The system as a whole exhibits an emergent

behavior without explicit intention of individual elements (i.e., nodes).

We can create a network by creating nodes and wiring edges among them ran-

domly in a simple way. However, this will not create a complex network. A complex

network exhibits a structure or non-trivial property only when there exists some fun-

damental design principal of its formation. In order to understand a complex network

better, one may compare it with its random null model. A null model proposed by

Newman and Girvan [8] consists of a randomized version of the original graph, where
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edges are rewired at random, under the constraint that the expected degree of each

node matches the degree of the node in the original graph. A null model will not have

most of the non-random properties of the original complex network.

1.2. Triangles, Information Diffusion and Gossip Spreading

Complex networks have network motifs as its building blocks and simple redun-

dant connections among the nodes. The network transitivity of the nodes in complex

networks is a clear deviation from the behavior of a random graph [9]. Transitivity can

be defined as the increased probability of having a connection between two nodes when

they are both connected to common node, i.e., when there is an edge between nodes

i,j (i.e., eij) and nodes i,k (i.e., eik); then there is a high probability that j and k will

create an edge (i.e., ejk) and forms a triangle. Triangles or triadic closures are very

common in many complex networks, especially in social networks; there exist many

triangles between closely related groups of nodes while very few or no triangles exist

between nodes of different groups [10]. Triangles are also important for social cohesion

and information diffusion, i.e., when two friends of a person also know each other, then

we can say there is a strong relationship between these three people [11].

Information diffusion is also easy and fast when there are many triangles in a

network. Gossip is a special type of information diffusion. It is one of the oldest and

most common means of information sharing among people. Gossip has been inves-

tigated by various disciplines including behavioral science, anthropology, psychology,

sociology and complex networks [12–30]. Researchers try to figure out the underly-

ing cause of gossip and its effect on society. There are many different definitions of

gossip in society [12]. Unlike rumor [31], gossip is more personal and is assumed to

be spread among people who know the victim, the person who is the subject of the

gossip, in person [12]. Gossip can be spread if the victim, spreader and the receiver

all connected to each other, i.e., they form a triangle. There are positive and negative

gossips [13–15], which may have both positive and negative effects on individuals and

the community [13, 21–23]. Informality and privacy are important conditions for the

spread of the gossip [20]. Gossip is mostly perceived negatively by the victim [12, 13].
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The victim tries to block the flow of the gossip about him [17–20]. Not only the victim

but also his close friends try to stop gossip to protect the interests of both their friend

and their group [16, 23, 24]. A gossipy conversation stops when a victim (or a relative

or close associate of the victim) enters within the earshot.

Gossip can be used as a weapon to enforce social norms, but this will bring social

costs to gossipers as well [22]. It tends to weaken already weak relations [13]. The

victim may be hurt by seeing how other people deal with his personal life and how

they manipulate information about private matters [23]. This may lead to retaliation;

either by counter gossiping or breaking the relationship with the gossiper. People, who

gossip about a person, will both have a bad reputation and harm the relationship with

the victim [12,22,26]. It is less costly when spread by socially distant people [23] than

closer people. As close friends would experience more harm in their relationship in a

gossip situation, they would rather not gossip about their closer friends [13,16,23–25].

Gossip spreading is deeply analyzed in social sciences; however other research

fields such as Computer Science have also some interest. In ad hoc computer networks,

a routing algorithm, called gossip protocol, is inspired by gossip propagation in so-

cial systems [29]. There have been recent studies about gossip spreading in complex

networks [27, 28]. Gossip spreading model, proposed by Lind et al. [27], is based on

information spreading among the 1-neighbors of the victim. The model is based on

the assumption that gossip is personal and people tend to spread gossip about people

(i.e., victims) they know to their acquaintances who also know them (i.e., victims) in

person. A friend who receives the gossip will become spreader and it will further gossip

to its common friends. So, spreading occurs on triangles, and also on triangle cascades

where we define it as a group of adjacent triangles on a vertex (i.e., victim). When the

model is applied to social networks, it is observed that there exists a degree k0 such

that gossip spreading rate becomes minimum if the victim is of degree k0 [27]. Similar

results are obtained for networks generated by the Barabasi-Albert model.
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We introduce a decision mechanism on top of the original gossip algorithm of Lind

et al. and analyze the gossip spreading behavior on weighted complex networks [30].

Details of our work are in Chapter 3. We use gossip spreading and related metrics to

discriminate social networks from other types of networks. A surprising finding is that,

by just looking at gossip spreading behavior, we can group similar types of networks

together, i.e., gossip spreading is more in social networks as they have many triangles

and triangle cascades. We try to define a new metric to classify weighted complex

networks using our model. The new metric is based on gossip spreading activity in

the network, which is correlated with both topology and relative edge weights in the

network. The model gives more insight into the weight distribution and correlation of

topology with edge weights in a network. Gossip propagation is found to be a good

indicator to distinguish co-occurrence and social pattern networks.

1.3. Community Structure and Community Detection in Networks

Gossip spreading or information diffusion is easier when there is clustering in a

network, i.e., communities. Communities are the key emergent structures in complex

networks. A community can be defined as a group of nodes in a network such that

nodes in the same group have more connections with each other than with the nodes

in the rest of the network [32]. It can be seen as a group of nodes sharing common

properties or playing similar roles in a network. A community is also called a cluster

or a module. Community detection is the task of identifying such groups in networks.

It is one of the key areas in complex networks that has attracted great attention in the

last decade and has many practical uses in various domains, i.e., social network anal-

ysis, recommendation systems, anomaly and fraud detection, brain function analysis,

drug discovery, etc. There have been many community detection algorithms proposed

so far [10, 32–45]. There is a comprehensive survey by Fortunato on community de-

tection [46] and we will go into the details of different methods and algorithms in

Chapter 2.
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1.4. Local Approach for Community Detection

Although most of the community detection algorithms perform well on small

networks consisting of hundreds or thousands of nodes; there are only a few of them

that can run on very large networks of millions or billions of nodes, due to their time-

complexity. With the availability of large network datasets, this becomes a critical

challenge. If a community detection algorithm has to deal with the whole network dur-

ing its execution steps or needs to optimize a global value (i.e., network modularity), it

becomes computationally expensive to run this algorithm on large networks. Besides

their large sizes, real-life networks are dynamic and evolve over time, i.e., structure

and size can change while a community detection algorithm is still running on such a

large network. Additionally, processing the whole network data may require storing

and accessing it many times, which is expensive in terms of data storage, too. On

such large networks, local community detection algorithms can perform well, where

most of these algorithms have linear time-complexity with the network size [34–40].

Local community detection algorithms generally break down the community detection

task of the whole network into subtasks, where each subtask handles a node or a small

group of nodes. Subtasks identify the community of each node by using only the local

information available around that node, i.e., its immediate 1-neighborhood. Completed

subtasks are then merged together to get the community structure of the whole net-

work. With the local approach, each subtask uses limited information and performs

limited computation; this leads to overall low time-complexity of the algorithm and

low execution times on very large networks. Note that, when network size gets larger,

computation time for each subtask does not change; one should create more subtasks

on a larger network. This scalability is possible by the distributed and parallel nature

of the local approach where communities computed locally by each subtask. Besides

their practicality, local algorithms may be only viable options on very large networks.

Local community detection is powerful for its speed and scalability. It also pre-

serves the granularity of communities by avoiding the merge of small communities

onto larger ones; locally available information is more important for the community

detection subtasks. This will overcome the resolution limit problem [47] where smaller
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communities are merged to larger ones to attain a global metric, i.e., most of the mod-

ularity optimization techniques have this problem. Being able to detect more granular

structures and using local information, local algorithms can also identify subtle com-

munities in a network; especially when nodes are connected loosely with each other.

Many of the algorithms, that use global approach, tend to find a single large community

on such networks.

1.5. Community Detection Using Preference Networks: A Meta-network

Approach

By the definition of community in a network, nodes inside same the community

have dense connections with each other than nodes in different communities. These

connections are created as a result of underlying relations between these nodes, i.e.,

similarity of nodes, communications between them or their reachability to some fur-

ther nodes, etc. So, the topology of a network reflects more information than simple

connections between nodes. We can assume that connections in a complex network are

formed either by strong connectivity (i.e., social cohesion) or to enable easy and redun-

dant information diffusion. As discussed earlier, complex networks have non-random

structures, building blocks or emergent structures compared to their null model having

similar degree distribution. A simple building block of such structures is a triangle.

Triangles are important especially for establishing strong relations (i.e., social cohesion)

and redundant pathways for communication (i.e., information diffusion). So when we

see triangles in a part of a network, we can assume that there is a clustering of nodes

in there. Triangles are good indicators and building blocks of communities in complex

networks. The number of triangles shared by two nodes shows how many common

friends they have, i.e., triadic closures formed by two nodes and their common friends.

When two nodes share a large number of triangles then it is an indicator of a similarity

between them. Number of shared triangles, which in fact is the number of common

neighbors of two nodes, can be used as a local information for community detection.

Triangles also form triangle cascades, that enables indirect reachability to between

neighbors of a common node who are not neighbors of each other. It may be also
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useful to use number of triangle cascades as a similarity measure or as an indicator

of enabler for information diffusion around a node. Using both triangles and triangle

cascades as a means of clustering, we propose a novel community detection algorithm

using preference networks [41]. Given a network, in order to identify communities, we

ask each node to select their preferred node in their 1-neighborhood to be in same

community with. Then we build a preference network with the same set of nodes of

the original network and create directed edges using the answers of each node; such

that there is a directed edge in preference network from answerer node to its preferred

node. Preference network approach is a good example of emergence of communities

from simple local decisions of each node. Each node makes a preference based on local

information and the aggregated preferences will create connected components in the

preference network, which we interpret as the communities of the original network.

In our algorithm, each node decides its preferred node based on two alternative

measures it can obtain locally. Firstly, the number of triangles shared by two neighbors,

that is actually the number of common neighbors they have, can be used as a similarity

metric for each connected node pair. If two nodes have a large number of common

neighbors, then we assume that they are highly similar and should be in the same

community. So, if a node can make only one choice from its 1-neighborhood, which is

the case in our algorithm, then it will prefer the neighbor having the largest number

of common neighbors with it; i.e., to maximize the similarity within the community.

Second measure used to decide on the preferred node is based on both triangles

and also triangle cascades shared between neighbors. This measure can be obtained

using gossip spreading around the node who is about to make the preferred node

decision. Gossip spreading rate, which shows the ratio of gossip spread among the

friends of a victim node, is higher around a victim node that has many triangles in its

1-neighborhood. With the existence of triangle cascades around that node, this rate

increases further, i.e., triangle cascades establish gossip pathways for the neighbors

that are not connected directly but via intermediate triangles. In order to evaluate

gossip spread rate around a node, we use gossip algorithm of Lind et al. [28] to spread

gossip around that node and gossip spread rate. However, the selection of neighbor



8

for initiating the gossip, i.e., originator node, can change the spreading rate; i.e., each

neighbor may have different spreading path, different position in 1-neighborhood of

victim and different common neighbors with victim. For this reason, different originator

nodes may result in different gossip spreading rate. So, each neighbor of a victim node

is selected as the originator and we evaluate gossip spreading rate of that selection and

set this value as the spreading capability of the corresponding neighbor in originator

role. A high spreading capability of a neighbor is an indicator of a large number of

common friends between the node and that neighbor, as well as other indirect friends

reachable through triangle cascades. As these values are calculated for each neighbor

of a node, the node makes the decision on its preferred node by choosing the neighbor

having largest spreading capability about it. Details of the algorithm are in Chapter 4.

1.6. Community Detection Using Boundary Nodes

We investigate other local algorithms that have low time-complexity. One of these

algorithms is the label propagation algorithm, denoted by LPA, that is proposed by

Raghavan et al. [35]. It is a linear-time algorithm with iterations of label propagation

among neighbors. In the initial state of the network, nodes have their unique commu-

nity labels showing their community memberships. Then label propagation iteration

starts, where at each step a node is selected at random and update its community

label with the most common (i.e., popular) community label in its 1-neighborhood.

Label propagation process is asynchronous, i.e., when a node is to decide its label in

1-neighborhood, those neighbors do not change their labels simultaneously. The algo-

rithm terminates after a fixed number of iterations or when there are no possible label

updates for any node in the network. In LPA, after a few iterations, as nodes update

their labels many of the neighboring nodes start to have the same labels and this leads

to clustering of nodes. Especially when there is a community structure in the network,

these clusters enlarge and most of the nodes within these clusters are surrounded by

nodes having the same labels. In such a situation, there is no chance of label change for

these nodes if one intends to perform label propagation for them, i.e., the node and all

of its neighbors have the same label. However, in LPA, the algorithm tries to perform
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label change or update for all the nodes, including the ones inside clustered regions.

So, there is a potential performance improvement in the algorithm by reducing these

unnecessary operations.

We propose a new local community detection algorithm, that finds communities

by identifying borderlines between them using boundary nodes [42]. A node is de-

fined as an interior node if all of its neighbors belong to the same community with

the node. A node that is not an interior node is called a boundary node, i.e., hav-

ing one or more neighbors from a different community. Initially, all the nodes in the

network have unique labels and form communities of size one, i.e., they are the only

members. There may be methods to decrease this number i.e., initially putting similar

neighbors into the same community, in order to eliminate unnecessary operations on

merging of microclusters. The network will initially have many boundary nodes. Com-

munity detection process naturally decreases their numbers by identifying communities

of them. In the final situation, only the actual boundary nodes remain, and they con-

stitute the borderlines between communities. Our algorithm eliminates unnecessary

label propagations in LPA and decreases the overall execution time. As the second

enhancement over LPA, it introduces a more comprehensive decision mechanism on

which label to take during label propagation, i.e., each node decides among the options

in its 1-neighborhood according to the largest “benefit score” exhibited by neighbors to

attract the node to their communities. The measures used to calculate “benefit scores”

and decisions based on these scores should lead to good community structure. We try

different measures as benefit and approaches to calculate the “benefit scores” based on

these benefits. We compare the results and conclude that using number of common

neighbors in 1-neighborhood as benefits and making label update decisions accordingly

yield the best results for community detection. Similar to other local algorithms, our

algorithm preserves small communities as well as big ones and can outperform other

algorithms in terms of quality of the identified communities. Especially when the com-

munity structure is subtle, it is better than the original LPA and other algorithms,

where LPA generally puts all the nodes in a single community. Our algorithm has

a distributed and parallel nature and can be used on large networks. Details of the

algorithm are in Chapter 5.
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1.7. A Framework and Toolset for Community Detection

During the process of defining new community detection algorithms, we have to

deal with many tasks, that take a lot of our time and distract our attention from

the main task of defining new community detection algorithm, i.e., trying to find

network datasets, implementing or integrating the known algorithms, comparison of

different algorithms, generating network datasets, unifying input formats for different

algorithms, consistent outputs from different algorithms and comparison of partitions,

etc. Most of these tasks are repeated many times and they are error-prone because of

the manual processing. When a researcher is working on defining a new community

detection algorithm, with each small change in the code or a change in a parameter in

the algorithm, he needs to perform many of the repetitive tasks over and over again.

In order to speed up the development and testing process of defining a new com-

munity algorithm and make these tasks automated and error-free, we build a software

framework, where a researcher can use many existing network datasets, generate new

datasets, compare his newly developed algorithm with some of the known algorithms

and compare partitions using known metrics. Our work provides a structured, end-

to-end and robust framework, with necessary toolset and software, for everyone who

needs to focus on his own algorithm, but also needs other facilities of network anal-

ysis and community detection. We provide modular tools so that different network

formats can be ingested for the use of different algorithms. A new algorithm can be

incorporated into the framework easily. Different metrics and methods are provided for

network analysis as well as the comparison of community detection algorithms within

the framework. This framework saves time during the development and testing of our

new algorithms and we provide it freely to other interested researchers working in this

area. Details of the framework are in Chapter 6.
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2. COMMUNITY DETECTION IN COMPLEX

NETWORKS

2.1. Introduction

Community detection is one of the key areas in complex network research to un-

derstand the structure of complex networks. Researchers extensively work in this field

and many algorithms have been proposed so far. There is a comprehensive literature

survey by Fortunato [46] on community detection in complex networks. Most of the

clustering problems are NP-hard [46], as there are many possible combinations for the

defining a partition that represents the community structure of a network. It is pri-

marily an optimization task in a large search space, where the objective is to find the

“best” partition of the community structure. In general, the number of communities

or the boundaries among communities is unknown in advance.

A community can be seen as a dense group of nodes in terms of connectivity. One

should expect to see communities in a network if its connections are not wired with

a random process. However, there are other views on the definition of a community,

i.e., nodes having similar functions, nodes with more similarities or blocks of nodes

with similar connection patterns, etc. Different aspects and purposes of community

detection are analyzed in a recent work by Schaub et al. [48]. They discuss that under-

standing the motivation of community detection for a specific problem is important to

select the most suitable algorithm or approach since there are many facets of community

detection. It is also important to understand the motivations behind the community

detection task when a researcher proposes a new community detection algorithm, i.e.,

a hierarchical system like human body may be better analyzed using a hierarchical

community detection algorithm. The problem domain, size and the structure of the

network are also important in community detection. In large dynamic peer-to-peer

networks, dynamic routing is important and there is no centrally maintained routing

table. In such a case, the grouping of nodes into clusters locally around each computer
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will do the job and enables efficient routing, while a global approach will not be a

good fit for this purpose, i.e., processing the entire network to produce results will be

time-consuming and computationally expensive. Community detection is important

not only for identifying the groups, but also finding the boundaries between them; as

these boundaries play an important role in exchanging ideas in a group, diffusion of

information in a social network or spreading of a disease in the human body. It is also

critical to protect a module, community or cluster from a damage from outsiders using

this boundary information, i.e., nodes on these boundaries constitute the frontlines. In

social networks, an inter-modular node, who is sitting in a critical position in terms of

connecting many nodes from different communities, is defined as a “stranger” by Sim-

mel, a century ago [49]. A stranger is sitting between different groups and it is critical

in communication between them; it does not belong to any group. The stranger can

benefit from its in-between position by controlling the communication passing on it.

Burt [50] defines “structural holes” as the non-redundantly positioned nodes between

different groups, who enjoy being in a central position in the communication. He argues

that innovators and successful managers occupy the structural holes in their networks.

Additionally, he states that a strong relationship indicates the absence of structural

holes, that is consistent with the assumption that social cohesion needs redundant

connections, i.e., there exists many triangles and triadic closures in communities. Us-

ing similar approach, Csermely [51] works on identifying active protein centers using

a network-based approach and argues that behavior of creative persons in networks

corresponds to the behavior of amino acids of active centers, which are called “creative

elements”.

2.2. A Brief History

Community detection in complex networks is popular in recent years, however

researchers started working on it several decades ago. One of the early efforts of com-

munity detection was carried out by Rice [52] in 1927, by looking for blocs or clusters

of people in small legislative bodies based on their voting patterns. Later on, in 1941,

Davis et al. [53] carried a study, named as Deep South, that investigates the social
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activities of people in a small city and its surrounding of county of Mississippi in or-

der to understand the corresponding communities. They introduced the concept of

caste, where a person is assigned a caste at birth, maintains that status throughout

his life and passes it to his children. They showed that, caste is a discriminative fea-

ture to identify communities, but they need further subdivisions inside communities

using social classes. Then, in 1947, Homans [54] showed that social groups should be

identified by rearranging the rows and columns of matrix describing the social ties,

i.e., adjacency matrices of nodes in a network, until the matrix is in an approximate

block-diagonal form. This procedure can be seen as the first attempt of block-model

approaches for community detection. In 1955, Weiss and Jacobson [55] looked for the

communities of individuals in a government agency, by analyzing the data gathered

with private interviews of 196 members of that agency. They analyzed the matrix of

working relations, built by the answers of interviews; i.e., frequency of their contacts

with each other, reason for contact, subject matter discussed and the relative impor-

tance of contact. Workgroups were identified by removing the members working with

different groups in the network data, i.e., liaison persons, who play central role in con-

necting different workgroups. The idea of separating networks by cutting inter-group

nodes is the basis of many recent community detection algorithms. This approach also

uses the notion of betweenness centrality for cut decisions. The karate club study by

anthropologist Zachary [56] is one of the most popular community detection analysis,

which identifies the communities in a network of 34 nodes representing the members of

a karate club. The members of the club is divided into two over a dispute and network

dataset contains the ground-truth communities, which makes the network a popular

benchmark dataset for community detection algorithms. There are other studies on

various networks. Bech and Atalay [57] worked on network analysis of loans among

financial institutions to understand how system health is affected by the communities

and their members. Social behavior of bottlenose dolphins of the New Zealand is stud-

ied by Lusseau et al. [58] and the network dataset of 62 dolphins is famously known

as dolphin network. In their study, authors observe stable small groups of dolphins,

i.e., communities, which contains members from different sexes and members in same

community are seen together more often than expected by random chance.
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2.3. Use Cases of Community Detection

With the advent of the Internet and high adoption of mobile devices, there are

many social and technological networks that are being investigated with community

detection approach. In World Wide Web context, a practical use case for community

detection is to identify users with similar interests and are geographically near to each

other so that they get better web experience with a dedicated proxy server. Identifying

cores or border nodes of communities is critical for routing protocols in ad-hoc networks

or peer-to-peer networks. With the explosively increasing amount of content generated

by connected users or devices, there is a need to understand such a huge amount of

data using different techniques. Especially, on the networks of blogs, user reviews,

recommendations and multimedia sharing sites, community detection can be used to

enable new insights and actions. Identification of influential nodes can give an idea on

how to diffuse a commercial or a sample product with a limited budget, i.e., selecting

only influential ones. Community detection can be used as a basis to increase the

spread of an idea to as many nodes and communities as possible. Conversely, it can

be used for containment of a disease within a restricted group or area. Identifying

groups or communities can also lead to more insights revealed by the similarity or

functioning of nodes in the same community. Many social platforms try to find the

best method to suggest new connections to its users, i.e., new friends on a social

network, new connections on a job network, etc., in order to increase the strength of

the network on their platform with more connections among people. With the help of

these additional connections, people may possibly spend more time on these platforms.

Using community detection, one can identify the missing links between nodes in a

community and suggest it to the user [59, 60]. Link prediction of link suggestion is

somehow similar to product recommender systems of various online platforms. Using

the same principle of friend or link suggestions in social networks, community detection

can be used to group similar products or users to make recommendations about new

products to existing users [61, 62], i.e., collaborative filtering. Sahebi and Cohen [63]

proposed a community detection based approach to overcome the cold start problem of

a recommender system by finding latent communities of users. Recommender systems

can also target the groups or communities with similar tastes [64]. There are many other
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recommender systems based on community detection in various application areas [65–

67].

Community detection has practical use cases in identifying similar functioning

elements in a system. Given the community structure of a network and a known

member from a community, identification of other existing or latent members of the

community can be useful in drug discovery or protein-protein interactions. Udrescu

et al. [68] used network analysis and community detection on drug-drug interaction

networks to group similar drugs. Using only the in-silico analysis, they successfully

identified groups of interacting drugs and the related types of diseases. Their results

are useful in better understanding the drug-drug interactions and drug repurposing,

i.e., using existing drugs for new purposes. Drugs that topologically lie at the border

between two communities may have pharmacological properties of both neighboring

communities, so one can further analyze the usage of that drug with a new purpose.

Predicting possible drug-drug interactions is also crucial, as it can happen unexpect-

edly in the human body when more than one drugs are co-prescribed, causing serious

side effects. Zhang et al. [69] used community detection with label propagation (LPA)

in order to identify possible drug-drug interactions. Nacher and Schwartz [70] analyzed

the modular structures in the network of the protein complex and their drug interac-

tions, that potentially uncovers the relationship between protein complexes in human

body and diseases. Proteins interact with each other and define protein complexes;

these complexes have a rich variety of functions in cells and play a key role in many

human disorders. Their analysis unveils new associations between diseases and protein

complexes and potential discovery of new drugs that need to combat complex diseases.

Another practical use of community detection in health domain is to predict

mutated or risky genes, i.e., latent damaged genes appear in the same community as

some other known risky genes. Genes causing the same or similar diseases often lie

close to one another in a protein-protein interaction network [71]. Shen et al. [72]

use community detection approach to discover similar proteins in protein complexes.

Cantini et al. [73] used multiple networks, i.e., protein-protein interaction networks,

gene co-expression, microRNA co-targeting, etc. and analyzed their corresponding
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communities to uncover new cancer driver genes.

Identifying members of a community gives an idea about the similarity between

these members. As it is useful to use it in protein or drug discovery in biological

networks, same principle can be applied to financial risks of companies or banks by

looking at their community relationships with other risky companies or individuals;

where the network is consisting of corporations and individuals and their relations, i.e.,

corporations having shares of another corporation, individuals taking roles in different

corporations, etc. Bargigli and Gallegati [74] identified the communities in financial

networks to better understand the potential source of a systemic risk in the financial

sector. Guerra et al. [75] analyze the systemic risk with network analysis of multiple

factors and clusters of banks and different entities in a financial network. Their method

helps to identify “important” banks in the system in terms of the risk they can cause

and gives the insight to avoid a systemic risk in the financial system.

Fraudulent activities in several domains can also be identified using community

detection on graphs. A fraud is actually an anomaly, that is an unexpected event or

behavior by an element or a group of elements in the system. Anomaly detection tech-

niques can be used to detect anomalies or frauds in complex environments. Compared

to anomaly detection methods focusing on the attributes of individuals, studying the

relational aspects of individuals with the help of networks and communities, provides

a more comprehensive perspective for anomaly detection. One can use community

detection as an outlier detection method, i.e., nodes outside communities can be seen

as anomalous; or it can be used to identify normal or anomalous nodes or instances,

according to the community they belong, i.e., first identify anomalous communities

and then mark a node or instance as anomalous if they belong to these communities.

Liu et al. [76] use network analysis to detect fraud activities on healthcare data based

on communities. They identify anomalous communities based on community size, fea-

tures of nodes inside those communities and interaction between communities. There

is an extensive survey by Akoglu et al. [77] on the use of networks and communities

for anomaly detection.
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2.4. Approaches in Community Detection

We investigate the examples from various domains to understand how commu-

nity detection can be used to better understand a system and its structure with a

comprehensive view. Many community detection algorithms are proposed to enable

such analysis. We now give an overview of different approaches and methods for com-

munity detection algorithms. There are various community detection algorithms using

different approaches. Some of them are divisive/cut-based clustering, modularity op-

timization, statistical inference, label propagation, spectral clustering, evolutionary

methods, information theoretic approaches, topology related methods, and artificial

intelligence.

2.4.1. Community Detection in Static and Dynamic Networks

In most of the early examples of community detection algorithms, networks are

seen as static structures; i.e., nodes and edges do not evolve over time. This simplistic

view is the basis of many community detection algorithms which have successful results.

Some examples are [10, 32–37, 43–45]. As long as there are no changes in the network

structure, these algorithms on static networks can be used effectively. However, most

of the social and real-life networks are dynamic, i.e., nodes and edges inserted, deleted

over time. With the high adoption of mobile devices, computers and many other

connected devices, there are many new dynamic social and technological networks,

that are very large and change rapidly. Many researchers investigate the dynamic

changes in networks and how it affects the community structure [78–85].

Communities in a dynamic or evolving network can be analyzed by slicing the

network into many snapshots at different timestamps, where each slice is a static net-

work representing the dynamic network as of the snapshot time. Algorithms using this

approach [78–82], first analyze the slices of different snapshots and then monitor the

evolution of each community. These algorithms can be very time-consuming on the

networks changing rapidly and when time slices are very small. It is also possible that

they are not able to capture the evolution of community structure over time, as it is
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hard to match the same community from two different snapshots of the network. A bet-

ter approach should be to adaptively update community structure, only on the parts of

the network where modifications occur. Nguyen et al. [83] use a local modularity-based

approach that is working on the parts of the network where changes happen. Cazabet

et al. [84] propose the iLCD algorithm, that uses the succession of structural changes

in a dynamic network. Han et al. [85] use an adaptive label propagation algorithm on

small portions of the network, where changes take place. Their approach is local and

needs less computation time.

2.4.2. Overlapping Communities

Community detection algorithms have differences on how they handle the edge

weights or direction of edges of the network they are working on. At the minimum,

most of the algorithms work on unweighted and undirected networks. However, some

algorithms may need edge weights or directed edges to uncover the communities. The

uniqueness of community membership is also treated differently by some algorithms.

A community detection algorithm is defined as overlapping when it allows a node to

be members of multiple communities and non-overlapping otherwise. Many real-life

social networks are overlapping; i.e., a personal contact can be both a friend from school

and a colleague in a workplace. On such networks, overlapping community detection

algorithms [86–89] can produce better results.

2.5. Community Detection Techniques

Community detection is not a well-defined problem and there is not a univer-

sally accepted definition of a community. Therefore, different algorithms use different

heuristics and approaches. It is possible to structurally identify the clusters or com-

munities if the network is sparse. However, if the number of edges is larger than the

number of nodes in a network, then data clustering [90] techniques may help. In data

clustering, communities are seen as sets of nodes, that are close to each other according

to some similarity metric. Some classical techniques in data clustering are hierarchical,

partitional and spectral clustering. Other data clustering techniques include techniques
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like self-organizing maps and singular value decomposition and principal component

analysis.

2.5.1. Traditional Methods

The problem of graph partitioning consists of dividing the nodes into g groups of

predefined size, such that the number of edges between groups is minimum. Though

it needs prior knowledge of the number of communities or clusters, it has practical

use cases in areas like parallel computing, circuit layout design, etc. Kernighan-Lin

algorithm [91] is one of the earliest and most used algorithms for graph partitioning,

that is devised for partitioning electronic circuits on boards with the least possible

connection between different boards. Another popular technique is the spectral bi-

section method [92], that is based on the properties of the spectrum of the Laplacian

matrix. Max-flow min-cut theorem, proposed by Ford and Fulkerson [93], investigates

the minimum set of edges, that will cut the maximum flow by their removals. In this

context, edges can be seen as carriers of a flow; i.e., water, electricity, etc., and they

have a capacity. There are several efficient routines to compute maximum flows in

networks [94, 95]. Algorithms for graph partitioning is not a good fit for community

detection, because it is necessary to provide as input the size or number of groups. It

is practically not possible for most of the cases in community detection.

2.5.2. Divisive Approach

One of the early examples of community detection algorithms, Girvan-Newman

(GN) algorithm [32], is based on a divisive approach. It is a hierarchical divisive

algorithm, that tries to maximize the segregation of network with the removal of edges.

The algorithm iteratively computes shortest paths between each pair of nodes in the

network and identifies how many shortest paths pass on each edge in the network,

that defines the edge betweenness of the edge. Iteratively, the GN algorithm cuts the

edge with largest edge betweenness; i.e., this cut will disconnect as many nodes as

possible in the network. After each cut, algorithm re-evaluates all the shortest paths

in the new configuration and identifies the next edge to cut in the same way, until
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it cuts all the edges. In the end, the algorithm builds a hierarchical structure, a

dendrogram, regarding the order of edge cuts. Communities can be obtained by using

the dendrogram, by cutting it at a proper level. It is intuitive that intercommunity

edges have a large value of the edge betweenness because of the fact that they are part of

many shortest paths, that connect vertices from different communities. GN algorithm

can successfully identify hierarchical communities in networks, however, with its O(n3)

time-complexity, GN algorithm is not a good fit for large networks, where the number

of nodes, n, is very large. Rattigan et al. [96] proposed a faster version of GN algorithm

with a quick approximation of the edge betweenness, where the network is divided into

regions and each node’s distance to these regions are computed. Holme et al. [97]

use a different divisive approach for community detection; they remove nodes rather

than edges. A centrality measure for the nodes proportional to their site betweenness

and inverse proportional to their indegree is used to identify boundary nodes and they

are removed iteratively. Their algorithm is applied to biochemical networks to get a

hierarchical view of the underlying system.

Another divisive approach [10], that is based on finding intercommunity edges,

uses the triangles of triadic closures in networks. Communities are characterized by

dense connections between its members, so one should expect many redundant connec-

tions between the pair of nodes, i.e., triangles. Contrarily, a node sitting in between

different communities will not have many triangles compared to a node inside a com-

munity. Radicchi et al. [10] proposed a new measure, edge clustering coefficient, such

that low values of the measure indicates intercommunity edges.

2.5.3. Modularity Optimization

Communities or modules are hard to define and quantify. Network modularity,

proposed by Newman and Girvan [8], is one measure to understand the strength of

the division of a network into modules. Modularity is the fraction of edges, that fall

within the given communities, minus the expected fraction if edges were distributed

at random. It reflects how good a community partition represents actual community

structure compared to the null model. The null model of the network consists of
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a randomized version of the original network, where edges are rewired at random

under the constraint that the expected degree of each vertex matches the degree of

the vertex in the original graph. The value of modularity lies between -1.0 and 1.0,

a positive modularity is expected when there is clustering in a network. There are

many algorithms based on modularity optimization; i.e., they try to find the optimum

partition that provides the highest modularity. Finding the desired partition is an

optimization process, where many different techniques can be used. For modularity

optimization, one of the well-known approaches is the hierarchical or agglomerative

approach.

2.5.4. Agglomerative Approach

Newman [33] proposed a community detection algorithm that tries to find com-

munities by optimizing the network modularity and it builds a hierarchical community

structure (i.e., dendrogram) in bottom-up fashion using an agglomerative approach.

Starting with an initial state, where each node is in its community, algorithm re-

peatedly joins communities together in pairs by choosing the “best” join, that yields

highest gain in network modularity. When all joins are completed and dendrogram is

built, communities can be obtained by cutting it at an ideal point where modularity

is maximum. Although this algorithm has better time-complexity compared to GN

algorithm, its time-complexity is still high due to its global community detection ap-

proach; it has very long execution times on large networks. Clauset et al. [98] proposed

an improvement over the algorithm in ref [33] by eliminating a large number of unnec-

essary operations on sparse matrices with the introduction of max-heaps as the data

structure in the algorithm. This greedy optimization is one of the few algorithms that

can be used for modularity optimization on large networks; we call this version of the

algorithm as Newman’s algorithm (NM). Modularity optimization tends to form large

communities at the expense of small ones. The greedy optimization of modularity is

the cause of the problem known as resolution limit [47]. Danon et al. [99] suggested

normalizing modularity gain produced by the join of two communities, by the fraction

of edges incident to one of the two communities with the purpose of favoring small
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communities. Their approach yields better results on networks formed by communities

of very different sizes. Modularity maximization method of Clauset et al. may create

unbalanced dendrograms. Wakita and Tsurumi [100] proposed a method to balance

the gain of modularity during the merge of communities with the consolidation ratio,

that favors equal size communities. Their method both improved the speed of method

proposed by Clauset et al. and the accuracy of the communities found on large social

networks. The hierarchical agglomerative approach can be improved if the procedure

starts from some reasonable intermediate configuration, rather than individual nodes.

Proposed improvements [101, 102] suggest configurations based on initially grouping

nodes into subgraphs using similarities of nodes and topology.

Blondel et al. [36] proposed a different greedy approach, known as Louvain (Lvn) al-

gorithm, that identifies the communities in a hierarchical manner by iteratively replac-

ing the nodes in the original network by supernodes created by merging nodes into

supernodes with highest modularity gain. Although it has speed improvement, it still

has a resolution limit problem. In general, methods based on greedy optimization of

modularity have low accuracy in identifying the correct community structure. Espe-

cially in networks consisting of communities of different sizes, these methods have less

accurate results.

2.5.5. Partitional Clustering

Partitional clustering algorithms try to find the preassigned k number of clusters,

such that dissimilar nodes are separated as much as possible according to the given dis-

tance metric. The most popular partitioning algorithm is the k-means clustering [103],

which tries to find k centroids, such that they are as far as possible from each other

and nodes are assigned to the nearest centroid. There are many other routines using

different approaches like k-nn, k-median, k-center, etc.
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2.5.6. Spectral Clustering

In spectral clustering, the data points of a network, i.e., nodes, are represented in a

similarity matrix, that is used to embed the nodes to a low-dimensional space (spectral

embedding) using eigenvectors of the similarity matrix. Graph Laplacian matrix, L, is

used as the similarity matrix of nodes, that can be obtained by L = D − A, where D

is the degree matrix of nodes and A is the adjacency matrix. First k eigenvectors of

Laplacian matrix L, corresponding to k smallest eigenvalues, will give the k possible

centroids for clusters, i.e., spectral embedding. With a clustering algorithm like k-

means, this embedding is used to partition the network. There are various spectral

clustering algorithms; recursive bi-partitioning of Hagen and Kahng [104], clustering

with multiple eigenvectors of Shi and Malik [105], etc.

2.5.7. Evolutionary Algorithms

One possible community detection approach can be to propose many solution al-

ternatives, i.e., many different partitions of the network as community representations.

Then, one can evaluate a fitness value of each of the proposed partition, that measures

how well the partition represents the actual community structure of the given network.

This process can be implemented using an evolutionary algorithm, namely genetic al-

gorithm. It was proposed in our early work during Master Thesis, that is, community

detection in complex networks using genetic algorithms [45]. In this approach, we

propose many solution candidates, i.e., different community partitions, evaluate their

fitness for the solution and try to create better solutions by reproduction of them in

next generations. Let us assume the solutions candidates as individuals in a popula-

tion. Our purpose is to create better and better individuals for each new generation

and stop reproduction when we have a sufficiently good solution candidate in the popu-

lation. This is similar to reproduction in nature and we use chromosome representation

for expression each solution candidate, i.e., each proposed partition of the network is

encoded in a chromosome. Initially, proposed solutions can be random partitions or

partitions proposed by using some heuristic or taken from another algorithm’s interme-

diate results, so we initialize chromosomes accordingly. General practice is to initialize
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them randomly. We need a fitness function to evaluate how good a chromosome (i.e.,

its proposed solution encoded within), can solve the community detection problem. We

decide to use network modularity as fitness function, i.e., given a chromosome c, we

calculate the network modularity of the partition it encodes and set this value, fc, as its

fitness value. The members of the population (i.e., chromosomes) are sorted by their

fitness values, fi, and they mate with each other accordingly, i.e., chromosomes with

higher fitness values will mate each other. With this mating, the algorithm performs

reproduction by creating new chromosomes (i.e., children) from existing ones (i.e., par-

ents) with the aim of improving the quality (i.e., fitness value) of the population for

the next generation. To achieve this, genetic functions like cross-over and mutation are

used during reproduction, that are mechanisms of biology creating diversity in nature.

The reproduction process should be repeated many times to have better quality chro-

mosomes in the population for the next generations and this will improve the proposed

solutions. We use different techniques of genetic operations as detailed in [45] and have

successful results in identifying community structure with this evolutionary approach

of artificial intelligence.

2.5.8. Information Theoretic Approach

For community detection task, researchers use different approaches; one such ap-

proach is using information theory for community detection. Infomap algorithm (Inf),

which is proposed by Rosvall and Bergstrom [34], identifies the modules of the network

by finding the optimal compression of its topology using the regularities in its struc-

ture. The algorithm tries to find the best community partition among many possible

ones, based on the information theory. Given a network X, the algorithm tries to find

a simpler description Y , that maximizes the mutual information, I(X;Y ), between the

description and the network. Since it tries to find the communities, it will enumerate

communities of X in Y using encoders. Idea is to represent the largest group of nodes

with the minimum number of bits, where each group has its own bit string. It uses

random walks to discover the optimum coding and using this coding; it performs loss-

less compression for describing the communities in the network, where a decoder can
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reveal the actual network. It is a very efficient algorithm with good results in com-

munity detection. Especially, on the networks consisting of communities with different

sizes, it performs better than modularity based approaches, i.e., in modularity based

algorithms, the size of the module depends on the network size.

2.5.9. Block Models

Block modeling is the decomposition of a graph into classes of vertices with com-

mon properties. Nodes are generally grouped in classes of topological equivalence,

i.e., structural or regular equivalence. Structural equivalence forms classes of nodes

such that nodes within a class have same neighbors. In a more relaxed way, regular

equivalence defines the classes such that nodes within a class have similar connection

patterns to nodes of other classes. Structural equivalence can be used to group nodes

in a probabilistic model such that linking probabilities of a node to all other nodes are

same for nodes in the same class, i.e., stochastically equivalent. A stochastic block-

model (SBM) [106] is a generative model for random graphs, that aims to produce the

communities for the given particular edge densities. In SBM, nodes are partitioned

into K < n disjoint communities according to some latent random mechanism. The

edges occur independently with probabilities, depending only on the community mem-

berships of the nodes, such that, nodes within same community or block will have a

high density of connections compared to other nodes in other blocks. The goal of com-

munity detection using stochastic block model is to recover latent community structure

of a given network. Once the model variables are known, it is easy to build the net-

work with blocks. However, in community detection, we have the network dataset and

need to infer the parameters that generated it; that is basically a parameter optimiza-

tion. Algorithms based on SBM uses different machine learning techniques for such

an optimization, i.e., Monte-Carlo Markov Chain (MCMC), belief propagation, cavity

method, expectation maximization, etc. Spectral clustering is also used to identify

communities in SBM [107]. There are several community detection algorithms that

use SBM [108–110].
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2.5.10. Local Approach

Community formation is something local by nature. But algorithms to detect

communities may use global information rather than local information. For example,

GN algorithm [32] iterates over the network. In each iteration, it calculates the number

of shortest paths passing through each edge and removes the edge with the largest

number. Such calculations require information of the entire network. This global

approach, which is fine for networks of small sizes, is not feasible for very large networks.

With the introduction of many large and dynamic networks in real life in recent

years, time-complexity of community detection algorithms becomes more critical. In

order to work on such large and dynamic networks, we need distributed and scalable

community detection algorithms. Community detection algorithms with local approach

can be good candidates to satisfy the needs. These algorithms generally divide the

community detection task into subtasks and perform each subtask on different parts

of the network in a distributed and parallel fashion. In recent years several local

community detection algorithms have been proposed [34,35,37–43].

To be able to run in parallel on different parts of the network, subtasks should not

enqueue on a global resource, i.e., a global metric or information, to carry their task.

For this reason, each subtask should use only locally available information around a

node or a group of nodes to identify their communities. Information used by local com-

munity detection algorithms is generally easy to obtain or compute, i.e., 1-neighborhood

of a node. Some algorithms merge nodes into communities based on the optimization

of a local metric [40]. This is the real advantage of local algorithms, that makes them

distributed and scalable.

Raghavan et al. [35] proposed label propagation algorithm, denoted by LPA,

which updates community label of a node with the most common label in its 1-

neighborhood, i.e., majority rule of labels. Labels of all nodes in the network are

updated asynchronously and the algorithm terminates when there are no possible label

updates in the network. It is a linear-time algorithm, that can identify communities
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in a fast way. However, it tends to find a single large community, especially when

community structure is subtle.

Xie and Szymanski [43] proposed an enhancement over LPA, which we denote

by LPAc, using neighborhood-strength driven approach. LPAc improves the quality

of identified communities by incorporating the number of common neighbors to the

majority rule of labels in LPA, i.e., a node decides which label to take based on scores

of communities in its 1-neighborhood. The score of a community is calculated by its

population size in node’s 1-neighborhood as well as the number of common friends its

members have with the node multiplied with a constant, c < 1. Another major dif-

ference is that the algorithm does not perform label propagation for all the nodes but

only for active boundary nodes. A node who has one or more neighbors from different

communities is called a boundary node, otherwise, it is an interior node. The algorithm

defines a passive node as a node that would not change its label if there is an attempt

to update it, and a node that is not passive is called active. It keeps a list of these nodes

and performs label propagation only on active boundary nodes. Algorithm iteratively

selects a node i from the active boundary list and updates its label, L(i). After the

label update, status of node i is checked and if it becomes a passive or interior node,

it is removed from active boundary list. After label update, neighbors of i are checked

for a change of status, i.e., if they become active boundary nodes, they are inserted

into the list, if they change from active to passive, they are removed from the list. The

algorithm iteratively identifies the labels of nodes in active boundary list and main-

tains the list with removals and insertions of nodes during label updates. Algorithm

completes when the active boundary list is empty. The algorithm has improvements

over LPA, in terms of the quality of identified communities. However, it has longer

execution times; in some cases, it has also a convergence problem, i.e., some nodes are

removed from and reinserted to active boundary list and algorithm could not finish due

to the non-empty list. LPAc still has the issue of finding a single community, which is

a drawback of LPA, too.
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We also propose an enhancement over LPA, namely, community detection using

boundary nodes in complex networks [42]. Our approach also performs label propaga-

tion only on boundary nodes but with a major difference. When we pick a boundary

node from boundary list and perform label propagation for it, we immediately remove

it, regardless of its status after label propagation. This eliminates the convergence

problem and saves many control routines during label propagation. Overall time-

complexity is better in our algorithm. We also incorporate a new decision mechanism

based on the number of common neighbors, that leads to improved quality of identified

communities. Details of our proposed algorithm are in Chapter 5.

In recent years, many other local algorithms are proposed using different ap-

proaches. As mentioned earlier, real-world networks become very large and dynamic.

On such networks, global approaches cannot perform due to their high time-complexity.

Most of these algorithms are also incapable of analyzing the dynamic structure of these

networks. Even if we overcome the long running time of a global community detection

algorithm, computation of a global metric is difficult as the network is dynamic and

evolves over time. In such a situation, a distributed and parallel community detection

approach can be the solution, i.e., community detection is distributed as parallel sub-

tasks on different parts of the network that can be run on dynamic, large networks.

Such an algorithm can use local information available around a node, i.e., algorithm

can handle what it already has (i.e., a portion of the network at a certain time) and

can continue with what will come later; it does not need the snapshot of the whole

network at once.

We propose a local algorithm, namely, community detection using preference

networks [41]. In our algorithm, each node decides its community according to the

neighbor with the highest number of common friends or highest gossip spreading ca-

pability. In the algorithm, community memberships are not represented by labels;

instead, a preference network built by the preference of each node for being in the

same community with. Then the connected components in the preference network are

treated as communities of the original network. Details of the algorithm are provided

in Chapter 4.
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Figure 2.1. Clustering coefficient, common neighbors and triangle cascades.

2.6. Triangles, Communities and Gossip Spreading

In his book, Simmel [11] argued that a strong social tie could not exist without

being part of a triangle in a relation, i.e., relation among three people where all know

each other. People who have common friends are more likely to create friendships;

they form triangles. There is a correlation between triangles and communities in social

networks; there exist many triangles within communities while very few or no triangle

exists between nodes of different communities [10]. Triangle is the smallest cycle of

size three. There are studies that investigate cycles of size four or more [111] but we

focus on triangles in our studies.

Clustering coefficient (CC ), is equal to the probability that two nodes that are

both neighbors of the same third node will be neighbors of one another [112]. This

metric shows the number of existing triangles around a node compared to the all

possible triangles. A high clustering coefficient will mean many triangles and clustering

around a node;

CC(i) =
4i

∧i

where 4i is the number of triangles around node i and ∧i is the number of triplets

where i is in the center. A triplet is formed by three nodes and two edges [112] . For

example, in Figure 2.1, i, r, s form a triangle where s, i, n make a triplet.
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Radicchi et al. [10] proposed a community detection algorithm based on tri-

angles and clustering coefficient. In recent years, local community detection algo-

rithms are more focused on the similarity of nodes; especially on the local level,

i.e., 1-neighborhood of nodes. A node similarity-based approach is applied to several

known community detection algorithms by Xiang et al. [113], where they presented the

achieved improvements on those algorithms by using various node similarity metrics.

Some examples of those similarity metrics are the number of common neighbors and

Jaccard similarity [114].

The number of common neighbors of nodes i and j is given as

∩ij = |Γ(i) ∩ Γ(j)| (2.1)

where Γ(i) is the 1-neighborhood of i, i.e., the set of nodes whose distances to i are one.

The number of common neighbors shows the number of triangles formed on two nodes,

i.e., in Figure 2.1, four triangles are formed on i and j by their common neighbors k,

`, m, and u.

Jaccard similarity is the fraction of common neighbors of i and j to the union of

their 1-neighborhoods given as

J(i, j) =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

. (2.2)

All of these metrics are related to friendship transitivity and triangles.

A new metric, spread capability, is proposed as a similarity metric in our work [41].

This metric is calculated by using the gossip algorithm of Lind et al. [28]. A gossip

about a victim node i is initiated by one of its neighbors, node j (originator), and

j spreads the gossip to common friends with i, i.e., gossip about i is meaningful to

friends of i only. Nodes hearing the gossip from j behave the same way and propagate

it further in the 1-neighborhood of i until no further spread is possible. To measure

how effectively the gossip is spread, they calculate spread factor of the victim i by
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originator j as

σi,j =
|Γj(i)|
|Γ(i)|

(2.3)

where Γj(i) is the set of neighbors of i who heard the gossip originated by j. Lind et

al. calculated the spread factors of each originator j ∈ Γ(i) and averaged them to get

spread factor of i, i.e.,

σi =
1

|Γ(i)|
∑
j∈Γ(i)

σi,j. (2.4)

We use the spread factor in a different way in our algorithm; instead of average

gossip spread factor of a node, i.e., σi, we focus on σi,j values, which show the contri-

bution of each originator j to that average. We call σi,j as spread capability of j around

i. Spread capability is directly related with the connectivity of j and its position in

the neighborhood of i. So, each j ∈ Γ(i) can have a different spread capability around

i and they can be used as a similarity measure between i and j from the perspective

of node i. Note that σi,j 6= σj,i.

Spread capability metric has similarity with the number of common neighbors

and clustering coefficient, but has additional information, see Figure 2.2. It contains

the number of common neighbors (triangles) between i and j; moreover, it has the

number of other triangles around i with its neighbors along the spreading pathway of

gossip originated by j. We call such adjacent group of triangles as a triangle cascade,

where all triangles are cornered at the same node (i.e., i) and are adjacent to each

other through common edges.

In Figure 2.1, j, u, v, z ∈ Γ(i) form a triangle cascade cornered at i. On this

triangle cascade, gossip about i originated by j is spread to k, l,m, u directly. By using

the cascade, gossip is propagated to v by u and then to z by v. Although v, z /∈ Γ(j),

j still has a role in spreading gossip to v and z by means of triangle cascades. Hence
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Figure 2.2. Difference between spread factor and clustering coefficient. Networks (a)

and (b) have 7 nodes and 9 edges. Degree of i is 6 and clustering coefficient of i is 0.2

in both cases. But spread factors are 0.5 in (a) and 0.33 in (b).

we have Γj(i) = {k, `,m, u, v, z}. Note that for all a ∈ Γj(i), we have Γa(i) = Γj(i).

This property becomes very useful to reduce the computation of gossip spread factor

on a cascade. Once σi,j is calculated, then σi,j = σi,a for all a ∈ Γj(i). See further

discussion in 4.4.

2.6.1. Method for Comparing Two Partitions

The success of a community detection algorithm lies in finding communities of

ground-truth. A non-overlapping community detection algorithm outputs a partition

such that every node belongs to exactly one community. Being in the same community

is an equivalence relation. Hence, the community structure of a network is a parti-

tion of a set of nodes. Suppose we have the partition of the ground-truth. When our

community detection algorithm produces its partition, we need to compare these two

partitions to understand how similar they are. For comparison of two partitions, Nor-

malized Mutual Information (NMI) can be used [115]. NMI is a metric to understand

how far (close) two partitions are; if NMI of two partitions is close to 1.0, then they

are very similar, i.e., number of communities and the members of communities in two

partitions are similar; and when it is close to zero, two partitions are different from

each other.
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2.6.2. Method for Testing of Algorithms

A newly proposed community detection algorithm needs to be run on network

datasets to understand its performance in finding correct community structures and

also its execution times. The first option can be to use computer-generated networks.

The LFR benchmark networks [116], with the planted community structure, can be

used for testing of community detection algorithms. They are generated with a pa-

rameter vector of [N, 〈k〉, kmax, Cmin, Cmax, µ], where N is the number of nodes and µ

is the mixing parameter controlling the rate of intra-community edges to all edges of

nodes in the generated network. Community structure of an LFR network is related

to the mixing parameter it is generated with. As µ increases the community struc-

ture becomes more blurry and difficult to detect. One should investigate the response

of community detection algorithms to datasets generated with various mixing values.

Being non-deterministic, LFR can generate different networks for the same parame-

ter vector. In order to avoid potential bias of an algorithm to a single network, one

can generate a set of LFR networks instead of a single network, i.e., 100 networks for

each parameter set, and run the algorithm on all of these networks, and results of the

algorithm are averaged for each parameter set.

As the second group of testing, one can use real-life networks with ground-truth

community structure, i.e., DBLP dataset, Amazon co-purchase network, YouTube net-

work and European-email network datasets provided by SNAP [117] and Zachary karate

club network [56]. There are more real-life networks publicly available. The main issue

with real-life networks is that provided ground-truth communities may not reflect the

actual community structure of the network. It is due to the fact that, ground-truths

created for these networks are generally obtained using some metadata; however, meta-

data may not reflect the ground-truth or can show different aspects of the network as

discussed in the work of Peel et al. [118]. When an algorithm fails to find communities

in a real-life network, this situation should be handled carefully; as it may not be the

failure of the community detection algorithm.
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A benchmark can also be done between the newly proposed algorithm and some

of other known community detection algorithms; i.e., Newman’s algorithm (NM) [98],

Infomap (Inf) [34], Louvain (Lvn) [36] and Label Propagation (LPA) [35] on both

generated and real-life network datasets. Partitions identified by each algorithm can

be compared with the ground-truth using NMI. Execution times of all the algorithms

should also be reported.

When we do not have the ground-truth community structure for real-life networks

that reflects the actual communities, we can not benchmark the results of a newly

proposed community detection algorithm on these networks. One can try a comparative

analysis by running a set of algorithms on a network dataset and make a pairwise

comparison between identified partitions of these algorithms. This is not a good way

of quality testing for an algorithm because there is not a universally “best” community

detection algorithm that can be used as gold standard. Such a comparative analysis

can only see how close or far each algorithm to any other algorithm in terms of the

number of identified communities or NMI values.
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3. GOSSIP ON WEIGHTED NETWORKS

3.1. Introduction

We analyze gossip spreading on weighted networks and try to define a new met-

ric to classify weighted complex networks using our newly proposed gossip spreading

model [30]. The model proposed here is based on the gossip spreading model intro-

duced by Lind et al. [28]. Our model gives more insight into the weight distribution and

correlation of topology with edge weights in a network. The proposed metric is based

on gossip spreading activity in the network, that is correlated with both topology and

relative edge weights in the network. The metric enables us to distinguish networks

from each other, i.e., social networks have different values compared to co-occurrence

networks. It also measures how suitable a weighted network is for gossip spreading.

3.2. Gossip Spreading

3.2.1. Definitions

Let G(V,E) be a network where V and E are the sets of nodes and edges, respec-

tively. N = |V | and M = |E|. The 1-neighborhood of node i, denoted by Γ(i), is the

set of nodes directly connected to i by an edge. The degree of i is ki = |Γ(i)|.

A victim i is a node who is the subject of a gossip and will suffer from the spread

of the gossip. The node which originates the gossip is called the originator j, where

j ∈ Γ(i). A spreader s is a node who hears the gossip and furthers it. A target t is

a node that is connected to both the victim i and the spreader s. Then, gossip about

a victim is spread in the network from spreader to target which in turn becomes a

spreader.
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3.2.2. Observations

Note that victim-spreader-target form a triangle, i.e., triangle formed by nodes

i, s, t. Triangles in network topology have a huge effect on how far a gossip would spread

in a network. Consider the following extreme cases: If the network is a complete graph,

all the nodes in Γ(i) “know” each other and i. Hence any two nodes in 1-neighborhood

of i and i itself form a triangle. Therefore all the nodes in V \{i} would get the gossip,

independent of who the originator node is. On the other hand, in a star connected

network, where there is no triangle, there will be no gossip spreading about any node.

Given a network, gossip propagation depends on both victim and originator.

Let node v be the victim in the sample network given in Figure 3.1. When f is the

originator, there won’t be any gossip about v. However when g is the originator, h can

get the gossip but due to its limited neighborhood, it cannot spread gossip to any other

node. In the v-g-h triangle, as h has similar connectivity with g (i.e., connected to v

and h only), similar gossip behavior will take place if h is the originator. Finally, let’s

consider one of the remaining nodes as originator: {a, b, c, d, e}. If any node in this

group is selected as the originator, all the nodes in the group will get gossip eventually.

Suppose b is the originator. a, c, d get it immediately since each forms a triangle with

the common edge (v, b), i.e., a, c, d ∈ Γ(v) ∩ Γ(b). Although a and c cannot propagate

it any further, d can. Once d gets it, it propagates to e. Here a gossip cascade occurs

since the common edge changes from (v, b) to (v, d). As a summary, (i) a triangle is

required for a single gossip, (ii) a sequence of triangles with a pair-wise common edge

is necessary for gossip cascades.

3.2.3. σ-metrics

Note that given a network, the size and the duration of the gossip propagation

depend on who the victim is and who originates the gossip. When the propagation

ends, two metrics are investigated [27]. Let Γj(i) ⊆ Γ(i) be the set of friends of victim

i those received the gossip originated by j. Spreading time τij is the largest distance

between the originator and the nodes in Γj(i). As already defined in Eq. 2.3, spread-
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Figure 3.1. A sample network for gossip propagation. For unweighted case

σva = σvb = σve = 5/8, σvf = 1/8, σvg = 2/8 and σv = 30/64. For weighted case

βvf = βvb = 1/8, βva = βvg = 2/8, βvd = βve = 3/8 and βv = 16/64 when all the

weights wij = 1 except wvb = 2.

factor σij is the fraction the friends of i who received the gossip originated by j, that

is

σi,j =
|Γj(i)|
|Γ(i)|

(3.1)

where Γj(i) is the set of neighbors of i who heard the gossip originated by j. Then,

one can define the following average spread factor of a node i (as defined in Eq. 2.4)

σi =
1

|Γ(i)|
∑
j∈Γ(i)

σi,j (3.2)

and average spread factor for the whole network as [27]

σ =
1

N

∑
i∈V

σi. (3.3)

Spread factors are also averaged by the degree of victim nodes as

σkα =
1

|Vkα|
∑
i∈Vkα

σi (3.4)
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where Vkα is the set of vertices with degree kα. Note that σij, σi, σ ∈ [0, 1] since

0 ≤ |Γj(i)| ≤ |Γ(i)|. This can be used to check whether there exists a degree, i.e., k0,

in the network where gossip spread factor hits minimum.

3.3. The Model

The base model of Lind et al. [27] is defined on unweighted networks. Once a

node gets a gossip, it must propagate it immediately. In the base model, a node does

not have any decision on propagation, therefore gossip can spread as far as the network

topology permits. So, the connectivity and topology determine the spreading. Lind et

al. [28] extend their model with a probabilistic gossip spreading.

In our work, we assume that the receiver of gossip neither directly propagates it

nor has a probabilistic behavior for propagation [30]. Spread or stop decision is based

on how closely related the spreader and the victim is [13,16,24]. If the victim is a close

friend of the spreader, he prefers not to propagate the gossip. With this motivation,

we propose a gossip spreading model that extends the original model in ref [27] in

two ways: (i) The network is a weighted network where edge weight wij represents

the strength of the “friendship” between nodes i and j. Higher edge weight indicates

a closer friendship. (ii) Based on the strength or closeness of “friendship” with the

victim, spreader decides whether to stop or to propagate the gossip.

The spreading is based on triangle cascades as in [27] running on the correspond-

ing unweighted network. The difference in our model is that spreader may choose

to stop propagation if he perceives the victim as a close friend. We define the close

friendship as being closer than the average ws, that is, node i is a close friend of node

s if

wsi > ws =
1

|Γ(s)|
∑
`∈Γ(s)

ws`. (3.5)
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Note that decision of node s to propagate a gossip about i depends not only on

their friendship wsi, but also other edge weights in 1-neighborhood of s. Node s will

gossip about i if s has closer friends than i, i.e., average edge weights of s with its

friends in its 1-neighborhood exceeds its edge weight with i.

3.3.1. β-metrics

In order to quantify the spread of gossip, we extend σ-metrics to corresponding

β-metrics as follows

βij =
|mij|
|Γ(i)|

(3.6)

βi =
1

|Γ(i)|
∑
j∈Γ(i)

βij (3.7)

β =
1

N

∑
i∈V

βi (3.8)

where mij is the set of friends of i who receives the gossip originated by j on the

weighted network.

Consider a weighted network and its corresponding unweighted network. Note

that some nodes in Γ(i) in the weighted network prefer not to propagate the gossip

while the corresponding nodes in the unweighted network always propagate. Hence,

we have 0 ≤ mij ≤ |Γi| for all victim-originator pair. Therefore βij, βi, β ∈ [0, 1].

For Vkα being the set of vertices with degree kα

βkα =
1

|Vkα|
∑
i∈Vkα

βi. (3.9)



40

30 20

10 1

1

25
2525

41

41
41 41

i

j

k

m s t v ws wsv effective (s, t)

k i j 8 20 0

k j i 8 10 0

j i k 25 20 1

j k i 25 30 0

i j k 34 10 1

i k j 34 30 1

Figure 3.2. Gossip is not symmetric. Using the table that lists effective spreading

behavior, we can see that node j spreads gossip about i to k through the edge, while

k does not spread gossip about i to j on the same edge.

3.3.2. Effective Network

Gossip propagation uses different paths depending on the victim-spreader pair.

Note that the “close friendship” relation defined on V × V is not symmetric. Suppose

node i usually makes strong ties with its friends, and node k tends to make weak ties,

i.e., a high wi and a low wk. Let wk < wik < wi. Then node i spreads gossip about

node k while k does not about i.

The contribution of an edge to gossip propagation is not trivial. A segment of a

larger network is given in Figure 3.2. Consider nodes i, j and k and their neighborhoods.

The average friendship of i, j and k are wi = 204/6 = 34, wj = 125/5 = 25 and

wk = 32/4 = 8, respectively. All spreader-target-victim cases are listed in Figure 3.2.

Note that whether or not gossip reaches to target from the spreader, depends on the

configuration of spreader-target-victim. For example let i be the victim and consider

edge ej,k. If the spreader is j, the edge is used (i.e., j tells gossip about i to k through

this edge), but if the spreader is k, the edge is not used (i.e., k does not tell gossip

about i to j). This behavior is given in the effective (s, t) column of table in Figure 3.2.

A “0” (zero) means that the edge is not used.
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Furthermore, suppose there was a node m which is connected to both j and k.

Then, depending on the victim being i or m, the edge ej,k becomes effective or not.

So for each victim-spreader pair, the underlying network behaves differently. The flow

of gossip uses different paths as if there were different networks. Gossip spread has to

be evaluated for each spreader-target-victim configuration separately. Note that the

dynamics cannot be translated by means of preprocessing to dynamics of gossip on

unweighted networks. Note also that the proposed model is actually defined on both

directed and undirected weighted networks.

3.4. Data Sets

The proposed model can be applied to both directed and undirected weighted

networks, but we focus on undirected weighted networks and leave the directed case

for another study. Since gossip spreading is the focus of this work, we select the

datasets related to human interactions. Datasets are from two basic domains, i.e.,

co-occurrence networks and social pattern networks. Generated network datasets and

other real-life network datasets which are not based on human interactions are also

used for comparison.

3.4.1. Co-occurrence Networks

Co-occurrence networks are based on bipartite graphs G(A∪B,E), where the set

of nodes are in dichotomy of A and B. The nodes of the corresponding co-occurrence

graph are vertices in A. Nodes vi, vj ∈ A are connected whenever there is b ∈ B such

that vi and vj are connected to b in the bipartite graph G.

Reuters-21578 corpus is well-known in Computer Science literature [119]. It is

composed of 21,578 Reuters news articles in 1987. In Reuters co-occurrence network,

denoted by C-REU, nodes are the persons that appear in the news articles [120, 121].

Two persons are connected if they appear in the same article. Edge weight between i

and j, i.e., wij, is defined as the number of times two persons appeared in the same

article together. Note that each article contributes n to the sum of weights, i.e.,
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1
2

∑
i,j wij, where n is the number of persons occur in the article.

In co-authorship networks, authors are represented by nodes. Two authors are

connected if they have a common paper. Every paper with n author contributes 1/(n−

1) to the weight associated with an edge between two of its authors. Note that each

paper has a total contribution of n/(n−1) to the sum of weights. We investigate the co-

authorship networks of High-Energy Physics Theory, Condensed Matter collaborations

2005, Astrophysics [122] and co-authorship in Network Science [44], denoted by C-PHE,

C-PCM, C-PA, C-NS, respectively.

Our final co-occurrence data set is from quite a different domain [123]. The

network is based on Victor Hugo’s novel Les Miserables. The nodes represent the key

characters and two nodes are connected if they co-appear on the same stage. The

weights on edges represent frequencies of their co-appearance.

3.4.2. Social Pattern Networks

The SocioPatterns project [124] collects data on socially interacting people in

different settings. Nodes are the individuals and two nodes are connected by a weighted

edge if they happen to be in “closed-range face-to-face proximity”. Each edge has a

weight that gives the duration of contact as the number of 20-seconds intervals.

The datasets that are used in this work are collected in various environments;

namely, a long-running museum exhibition, a scientific conference and a school. There

are many days of recordings in the museum set; we use data recorded on dates April

28, May 03, Jun 04 and July 07, 2009, denoted by S-M0428, S-M0503, S-M0604, and

S-M0707, respectively [125]. The conference data is represented by S-CON [125]. For

the school dataset, we use two different days, i.e., first day denoted by S-CH01 and

second day by S-CH02 [126].
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3.4.3. Miscellaneous Networks

In order to compare co-occurrence and social pattern networks, we use real net-

works originated from dynamics other than human interactions. We investigate three

weighted networks from very different domains; namely, linguistics, neuroscience and

air transportation. Note that they are comparable in size to the human interaction

networks that are investigated.

We use the dataset known as the Edinburgh Associative Thesaurus, denoted by

M-EAT, which is an example of an association network [127]. In this network, the

nodes are the words. A subject is given a word and asked to provide the first word that

comes to her mind. These two words are connected by an edge. In a multi-subject test,

the frequency of association between two words is the weight of the edge connecting

the two.

US airport network, denoted by M-USAIR, is the network of the 500 busiest

commercial airports in the US. Two airports are connected if a flight was scheduled

between them in 2002 [128]. Edge weights show the total number of available seats

between two airports in the corresponding year.

The neural network, denoted by M-NCE, is the nervous system of C. Elegans

that has 302 neurons and edges connect the neurons with each other [129, 130]. Two

neurons are connected if at least one synapse or gap junction exists between them.

Edge weights are set by the number of synapses and gap junctions.

3.4.4. Generated Networks

Finally, synthetic networks generated by means of well-known models of Erdős-

Renyi (ER), Barabasi-Albert (BA) and Watts-Strogatz (WS) are used [130–132]. Since

the models generate unweighted networks, edge weights are assigned using a distribu-

tion. The details are discussed in Section 3.5.5.
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Table 3.1. Network gossip coefficients on various datasets (N : number of nodes, M :

number of edges, k0: critical degree, kw0 : critical degree in weighted networks, CC:

clustering coefficient, σ: spread factor in unweighted networks, β: spread factor in

weighted networks).

Type Data Set N M k0 kw0
kw0
k0

CC σ β σ
CC

β
CC

β
σ

β
σ CC

Ref

Co-occurrence C-NS 1,589 2,742 12 34 2.83 0.64 0.68 0.35 1.06 0.55 0.51 0.80 [44]

Co-occurrence C-PHE 8,361 15,751 15 34 2.27 0.44 0.55 0.37 1.25 0.84 0.67 1.52 [122]

Co-occurrence C-PA 16,706 121,251 11 37 3.36 0.64 0.79 0.48 1.23 0.75 0.61 0.95 [122]

Co-occurrence C-PCM 40,421 175,691 27 69 2.56 0.64 0.78 0.49 1.22 0.77 0.63 0.98 [122]

Co-occurrence C-LM 77 254 4 15 3.75 0.57 0.72 0.48 1.26 0.84 0.67 1.18 [123]

Co-occurrence C-REU 5,249 7,528 21 34 1.62 0.44 0.47 0.24 1.07 0.55 0.51 1.16 [120]

Social Pattern S-CON 113 2,196 NA 30 NA 0.53 0.99 0.82 1.87 1.55 0.83 1.57 [125]

Social Pattern S-M0604 133 580 7 6 0.86 0.50 0.72 0.51 1.44 1.02 0.71 1.42 [125]

Social Pattern S-M0428 206 714 4 6 1.50 0.41 0.71 0.49 1.73 1.20 0.69 1.68 [125]

Social Pattern S-M0503 309 1,924 3 7 2.33 0.36 0.86 0.61 2.39 1.69 0.71 1.97 [125]

Social Pattern S-M0707 422 2,841 5 5 1.00 0.45 0.82 0.52 1.82 1.16 0.63 1.40 [125]

Social Pattern S-CH01 236 5,899 32 36 1.13 0.50 1.00 0.77 2.00 1.54 0.77 1.54 [126]

Social Pattern S-CH02 238 5,539 21 36 1.71 0.56 1.00 0.74 1.79 1.32 0.74 1.32 [126]

Miscellaneous M-EAT 23,219 304,934 14 17 1.21 0.10 0.48 0.37 4.80 3.70 0.77 7.70 [127]

Miscellaneous M-NCE 297 2,148 5 32 6.40 0.29 0.81 0.50 2.79 1.72 0.62 2.14 [130]

Miscellaneous M-USAIR 500 2980 34 46 1.35 0.62 0.79 0.66 1.27 1.06 0.84 1.35 [128]

Generated G-ER 1,000 10,492 30 34 1.13 0.02 0.08 0.07 4.00 3.50 0.88 44.00 [131]

Generated G-BA 1,000 10,380 37 46 1.24 0.13 0.42 0.26 3.23 2.00 0.62 4.77 [132]

Generated G-WS 1,000 10,000 27 24 0.89 0.54 0.85 0.50 1.57 0.93 0.59 1.09 [130]

3.5. Discussion

We use weighted networks for our model, for comparative analysis, the underlying

unweighted network is analyzed by the model of Lind et al. [27]. There are similarities

as well as differences between our weighted model and model of Lind et al. as sum-

marized in Table 3.1. Data is organized in four groups in Table 3.1. The first group

contains six data sets of co-occurrence networks. The second contains seven data sets

of social pattern networks. The other two groups are miscellaneous real networks and

generated networks.
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In Table 3.1, the first two columns are the data sets. N and M columns are the

number of nodes and edges, respectively. CC is the clustering coefficient [130]. σ and

β are defined in Eq. 3.3 and Eq. 3.8, respectively. k0 and kw0 are the degrees where the

gossip spread becomes a minimum.

3.5.1. Degree with Minimum Gossip Spread

With the introduction of the decision mechanism in our model, some gossip

spreading actions are blocked in the weighted network although they were possible

in the corresponding unweighted network using the model of Lind et al. [27]. This is

the result of the decision function introduced in our model where spreader evaluates

that the victim is a “close friend” and stops spreading. Therefore, the spread factor

of a weighted network is always smaller in value than the spread factor of the corre-

sponding unweighted network, that is, βkv ≤ σkv for all k. This can be observed in all

graphs of Figure 3.3 which provides σkv and βkv values as a function of the degree of

the victim kv.

One of the unexpected findings in [27] is the existence of a degree k0 where

gossip spreading gets to a minimum. First, we want to check this observation on

the networks that we worked with. Our model is defined on weighted networks. The

corresponding unweighted networks are obtained by removing the weights while keeping

the connectivity. In the unweighted network, the spread factor σkv decreases as kv

increases from 0 to some critical value k0. As kv further increases, σkv starts to increase

again as seen in networks C-PCM, C-REU in Figure 3.3. All the networks that we have

investigated have such k0 values. The social pattern network S-CON in Figure 3.3 is

the only exception.

Then, we consider the weighted networks. We observe the similar pattern for the

spread factor βkv in weighted networks. That is, we observe a degree kw0 where gossip

spread is a minimum. We can see a subtle kw0 in S-CON network for the weighted case,

although unweighted counterpart does not have one. kw0 values in C-REU and S-CON

networks follow similar patterns for higher degrees. This is due to the reductionist
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Figure 3.3. Average gossip spread factors versus kv. Spread factors σk and βk as a

function of kv where kv shows the degree of set of victim nodes having k neighbors.
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effect of the weight distribution of highly connected nodes in these networks (i.e.,

having strong connections with other nodes such that they decide not to spread a

gossip about a highly connected node).

It is also observed that this degree is always higher in the weighted networks,

i.e., k0 < kw0 as seen in Table 3.1. The ration kw0 /k0 gives an indication of the network

type. For co-occurrence networks, the ratio is high, i.e., larger than 2.0. With 1.62,

the Reuters network C-REU is the only exception. On the contrary, for social pattern

networks, it is low, around 1. S-M0503 network with 2.33 is an exception.

3.5.2. Discriminating Co-occurrence and Social Pattern Networks

Network type plays a key role in gossip spreading. For example, co-authorship

networks are formed by people coauthored in the same paper, and for this reason,

authors of a paper are all connected to each other. Hence it is locally clique-like.

So gossips spread mostly through on small paths, i.e., more dense connectivity inside

small groups. This is a characteristic property of co-occurrence networks. This can be

verified with the parallelism of the clustering coefficient and gossip spread rates in the

undirected case, i.e., σ/CC.

However face-to-face proximity networks are generally formed by a person in

the center and other people know each other through him. The components of these

networks are like cascades, that is one person passes to another, rather than fully

connected cliques where one person has access to almost all. Although gossip spread

rates are very high (i.e., around 0.9), clustering coefficient values are lower than ones

in co-authorship networks.

Table 3.1 has the coefficients of the overall networks. The co-occurrence group has

CC in the range of 0.44−0.64 whereas that of social patterns group is much smaller and

in a range of 0.36−0.56. The ratio σ/CC of gossip spread to the clustering coefficient is

also an indicator. Networks in co-occurrence group have smaller values than networks

in social patterns. More interestingly, gossip propagation in the weighted model has
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σk

and βk
σkCCk

(inset) where k is the degree of

the victim.
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more differential power. β/CC values of the co-occurrence group are all below 1.0. On

the other hand, those of the social pattern group are all above 1.0. Just a comparison,

miscellaneous networks happen to have much higher σ/CC and β/CC values than the

two groups.

3.5.3. Variation by the Degree

After investigating the clustering coefficient and gossip spread factors on the

average, we can analyze their correlation for each degree in the network. Figure 3.4

provides finer resolution to the degrees. The rations of βkv/σkv and βkv/(σkvCCkv)

are given as a function of degree kv where βkv , σkv ,CCkv are the average clustering

coefficient and spread factors of vertices of degree kv in weighted and corresponding

unweighted networks, respectively.

The clustering coefficient CCkv decreases as degree increases as in Figure 3.4.

β/σ follows the pattern of decrease to a minimum first, then increase as in the case of

σ and β in Figure 3.3.

A node with a smaller degree has relatively higher spread factor which shows

that gossip about it spreads to most of its neighbors. The reason for this result is

that such a node is generally a friend of a highly connected node and its small degree

friends are also connected to the same highly connected node. This leads to a high

clustering coefficient for the node and yields higher spreading possibility as seen in the

base model [27]. This kind of connectivity is due to the power-law degree distribution

frequently observed in real life networks where many nodes have fewer connections

while very few nodes have many connections [132].

When we introduce the effect of edge weights, spread factor for a low degree node

is close to the value in the unweighted base model. Suppose a low degree node i is

connected to a high degree node j. Generally, the connection is relatively important

to i. It is highly probable that this connection is one of the few connections that i has.

On the other hand, i is not that important to j, because of the fact that the average
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weight of j is generally larger than the weight of the connection with i. This situation

leads to the concept of being popular or important in the network. The nodes with

small connectivity generally have low average strength. When they are connected to

a highly connected node which has greater average strength, the weight of the edge

is not important to highly connected one as highly connected nodes have fewer close

friends. As a result of this situation, highly connected nodes have a tendency to spread

the gossips about “weak” nodes. This is an important feature of the networks that has

roots in social sciences.

3.5.4. Strategies to Avoid Gossip

Some network structures have superior properties in terms of gossip avoidance.

Star-like network structure, where the victim is in the center is the best topology for

gossip avoidance. Because of the structure, no friend of the victim can communicate

with each other without reaching the victim. For this structure, edge weights are not

important: since the topology does not contain any triangles, there is no possibility of

gossip.

At the other extreme, fully-connected graphs can be too gossipy. Because the

topology fully enables gossip spread, the only mechanism to reduce spread is the rel-

ative edge weights in the network. A change of an edge weight in the network may

affect all the other nodes in terms of gossip spreading. This is because of the fact that,

decision function takes the relative importance of connections into considerations. So

change of an edge value does not solely affect itself but plays an important role on

other edges due to the relative evaluation of edge weights. Think about a scenario in

real life; if you are the closest friend of two persons, who know each other, you will not

be gossiped by them. However, if they get closer to each other and become the closest

friend of each other, then you will lose your position as the closest friend, although

you did nothing wrong. When this occurs, your connection becomes less important for

them and they can gossip about you to each other.
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According to our model, one can avoid gossip by applying some strategies:

(i) Elimination of triangles reduces the number of friends that can gossip about a

victim.

(ii) Elimination of triangle cascades can also reduce the spread. This can be achieved

by having friends from different domains such that a friend from one domain does

not know anybody from another domain. Therefore, gossip can spread as far as

all the friends of that domain but cannot jump to another domain. As a general

rule, it helps to have islands of friends such that no inter-group communication

is possible. In real life, we are members of different communities such as friends

from high school, from college, from work. As long as the communities do not

overlap, the spread of gossip is relatively under control. The observations (i) and

(ii) are valid for both unweighted and weighted networks.

(iii) In weighted networks, one can control the spread by means of the weights. Gossip

does not spread if victim v has a close friendships to his friends i and j than their

friendships to each other, i.e., wiv > wij and wjv > wji. In a directed weighted

network, this has an interesting consequence: what your friends think of you is

more important than what you think of them, i.e., wiv vs wvi.

3.5.5. Generated Weighted Networks

So far, we analyze the weighted networks empirically obtained from real life.

We also analyze gossip spread on the networks generated by using well-known models,

namely, Erdős-Renyi (ER), Barabasi-Albert (BA), and Watts-Strogatz (WS) [130–132].

These networks are unweighted, in order obtain edge weights, we first assign node

weights to all nodes (i.e., wi for node i) using a Gaussian distribution with mean 1.0

and variance 1.0. Then we assign the edge weights wij using the node weights con-

nected to the edges, i.e., wij = 0.5(wi + wj).
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All generated networks have N = 1, 000 nodes and their generation parameters

are set such that the number of edges is around M = 10, 000. These values of N and M

are selected arbitrarily. For each model 50 networks are generated. The results of the

average of these 50 realizations are reported in Table 3.1 and Figure 3.5. The small-

world networks of Watts-Strogatz (WS), denoted as G-WS, are investigated first [130].

N = 1, 000, M = 10, 000, k = 20, and rewiring probability p = 0.1 are used. These

networks are regular networks with some re-wired links. As these networks have very

few triangles, their gossip spread factor is not high. Even we increased the number of

re-wiring, overall gossip spread is not large due to topology.

Power-law degree distribution networks generated by Barabasi-Albert (BA) model,

are denoted by G-BA [132]. Network size isN = 1, 000 and initial clique size ism0 = 40.

Each newly added node is connected to 10 existing nodes in the network (i.e., each node

increases the number of edges by 10). The total number of edges is M = 10, 380. We

observe a large amount of gossip spreading on these networks. This is due to the

topology of BA network, where the core of the network is a fully connected graph and

newly inserted nodes have a high preferential attachment, i.e., they tend to connect

to highly connected nodes. Network generation process creates highly connected hubs,

each having many connections who know each other. Although weights play an impor-

tant role in the decision of gossip spreading, the overall gossip spread is greater due to

the topology.

Finally, random networks of Erdős-Renyi, denoted by G-ER, are investigated [131].

N = 1, 000 with connection probability p = 0.021 are used. The total number of edges

is M = 10, 492. As random networks do not have scale-free property, they do not have

a high clustering coefficient and preferential attachment. For this reason, the topology

of random networks is not suitable for gossip spreading, i.e., there are very few triangles

in these networks. This agrees with our finding that WS model with extensive rewiring

decreases the gossip spread since a large number of rewiring operations on the network

makes it similar to random networks. Gossip spread rates for both unweighted and

weighted models are very close to each other. This is because of the lack of triangles

in the network and using the random distribution for assigning edge weights.



54

4. COMMUNITY DETECTION USING PREFERENCE

NETWORKS

4.1. Introduction

We propose a new community detection algorithm which uses a novel local ap-

proach [41]. We construct a preference network, using the same set of nodes of the

original network and each node has a single (directed) outgoing edge to another node

showing its preference. We try different measures to identify the preferred node of

each node, but keep our focus only on the locally available information for a node,

i.e., 1-neighborhood of nodes. The connected components in the preference network

represent the communities of the original network. Interestingly, individual decisions

of preferred nodes that are represented in the preference network collectively give the

community structure of the whole network. This result is an example of emergence in

complex networks.

4.2. Our Approach

Our approach is based on building a preference network where each connected

component is a community [41]. Given a network, we build its corresponding preference

network using the preference of each node for other nodes to be in the same community

with. Every node prefers to be in the same community with certain nodes and we

simply try to satisfy these requests. In this study, we implement the case where each

node is allowed to select only one node, which is the most preferred node to be with.

It is relatively easy to extend this approach such that nodes prefer two, three or more

nodes, too. First, we describe how to satisfy such requests by means of preference

network. Then we investigate ways to decide which node or nodes to be with.
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Figure 4.1. Preference network: A meta-network approach for community detection.

4.2.1. Preference Network

Let G = (V,E) be an undirected network, where V and E are the sets of nodes

and of edges, respectively. Define a prefer function p : V → V such that p(i) = j iff

node i prefers to be in the same community with node j. If we connect i to p(i), clearly

p induces a new directed network on V , but we will use the corresponding undirected

network. Using p, we define a new undirected network Gp = (V,Ep) such that nodes

i and j are connected, i.e., (i, j) ∈ Ep, iff either p(i) = j or p(j) = i. We call this

network as the preference network. We consider the components of Gp as communities.

Hence we satisfy the rule that every node is in the same community with its preferred

node. Note that preference network is not a tree since it may have cycles as in the

case of node a prefers node b, b prefers node c, c prefers a. A sample network and

its corresponding preference network can be seen in Figure 4.1. See the algorithm of

extracting communities using preference network in Section 4.4.
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4.2.2. Deciding Which Node to be With

Now we can investigate a selection method of the preferred node. First of all,

with the given definition, there is nothing that restricts a node to prefer any other node

in the network even if the preferred node is not connected to the node. For example,

a node could prefer the node with the largest betweenness centrality. This view is too

general and requires global information.

We restrict the selection of the preferred node to the local neighborhood of every

node. We calculate a score for each node in the local neighborhood A(i) around i,

with respect to i. Then select the node with the highest score (detailed later) as the

preferred node. That is, we define the function p as

p(i) = arg max
j∈A(i)

si(j)

where si(j) being the score of node j with respect to i. In tie situations, i.e., when two

or more neighbors having the highest score, the node selects one of them randomly.

Note that the score si(j) of j depends on the node i. We can interpret the score as a

measure of how “important” node j is for i. If node j is the only connection of i, it has

to have very big value. If i has many neighbors, then j may not be very important for

i. Hence, the very same node j usually has different scores with respect to some other

nodes, i.e., si(j) 6= sk(j).

We can define the local neighborhood in a number of ways. One can define it as

the nodes whose distance is not more than ` to i. It can be the nodes whose distances

to i are exactly `. We can also include node i itself to the local neighborhood. In this

case, i may prefer to be in the same community with itself. For this study, we take

A(i) as the 1-neighborhood of i, i.e., the set of nodes whose distance to i is exactly

one, which is denoted by Γ(i).
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4.2.3. Candidates of Score Metric

There are a number of candidates for score si(j) calculation of j with respect to

i.

(i) The simplest one is to assign a random number for each neighbor of i as its

score. Probably, this is not a good choice since the random function will decide

independently of node j and node i; and their relations with each other.

(ii) Nodes with more connections are usually considered to be more important in

a network. So, as a second choice, we can use the degree of the nodes, i.e.,

si(j) = |Γ(j)|. The degree of node j is also independent of i. So we do not

incorporate what i thinks of j in the score si(j).

(iii) A third candidate is the clustering coefficient of j, which is an indication of how

densely connected its immediate neighborhood, i.e., si(j) = CCj. This is again a

value, which does not directly depend on i but may have a meaning to j and i,

i.e., there is a chance that high clustering coefficient of j is at least partly because

of triangles shared by j and i.

(iv) Having common neighbors is an important feature in social networks. From

the definition of community, members of the community should have more edges

among themselves which leads to more common neighbors of nodes inside a com-

munity. The number of common neighbors i and j is the number of triangles

having i and j as two corners. For this reason, as a fourth candidate, we can use

the number of common neighbors of i and j, i.e., si(j) = ∩ij, defined in Eq. 2.1.

(v) As a fifth candidate, we can use the spreading capability of a neighbor j around

node i defined in Eq. 2.3, i.e., si(j) = σi,j. It both contains the number of common

neighbors and triangle cascades as discussed earlier.

(vi) And as the sixth candidate, we can use Jaccard similarity of i and j as score,

i.e., si(j) = J(i, j), defined in Eq. 2.2.
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4.3. Results and Discussion

4.3.1. Test Datasets and Benchmark Algorithms

We first use the real-life networks for testing, i.e., Zachary karate club net-

work [56], DBLP dataset, Amazon co-purchase network, YouTube network, and Eu-

ropean email network provided by SNAP [117]. We compare the performance of

our algorithm with the other algorithms, i.e., Newman’s algorithm (NM) [98], In-

fomap (Inf) [34], Louvain (Lvn) [36] and Label Propagation (LPA) [35] on these network

datasets excluding the Zachary karate club network. We also measure the execution

times of all the algorithms (we use a standard laptop computer having a 2.2 GHz Intel

Core i7 processor with 4-cores).

We also use the generated LFR networks for testing. In order to avoid the poten-

tial bias of an algorithm to a single network we generate 100 LFR networks for each

vector and report the averages.

4.3.2. Selection of Best Score Metric

We first analyze alternative score metrics in our algorithm and try to find which

one performs better in community detection. We run our algorithm on generated LFR

networks [116] of 1, 000 nodes using all the score metrics, si(j), as the method of

preferred node selection. NMI values and execution times are measured. The results

of our algorithm using six different score metrics on LFR networks generated with

increasing mixing values (µ) are in Figure 4.2. We observe that number of common

neighbors is the best score metric among six alternatives; it has the best NMI values

and can identify exact community structure on networks generated with µ = 0.1 and

µ = 0.2. Spread capability score metric has the second best results; it is better than

the Jaccard similarity where Jaccard similarity metric finds 4-5 times more number of

communities compared to ground-truth of LFR networks. Other three metrics; namely

random score assignment, degree, and clustering coefficient can identify communities

to a degree but not as successful as the ones mentioned above. In the second group of
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Figure 4.2. NMI comparison and execution times of different score metrics on LFR

benchmark network datasets. [N, 〈k〉, kmax, Cmin, Cmax] = [1000, 15, 50, 10, 50].

metrics, the clustering coefficient is the best one and our algorithm using the clustering

coefficient score can find communities on networks generated with low µ. Interestingly,

the random score metric can identify a group of communities successfully on these

networks. In general, our algorithm using random score and degree-based score metrics

find less number of communities compared to ground-truth.

It is trivial that calculation of simple score metrics requires less computation time

compared to the calculation of other score metrics, i.e., the execution time of our algo-

rithm using the random score, degree and clustering coefficient all have fewer execution

times as given in Figure 4.2b. On the other hand, calculation of the number of com-

mon neighbors, spreading capability and Jaccard similarity require more computation

time, as these metrics are calculated for each pair of nodes (i.e., the number of edges),

however, these metrics have better results in terms of community detection. Hence,

we select the two best performing score metrics for our algorithm, namely, common

neighbors and spread capability, denoted as PCN and PSC, respectively. We use these

score metrics in our algorithm for comparative analysis with other known algorithms

on generated and real-life networks.
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Figure 4.3. Zachary karate club: Identified communities by our PCN algorithm.

4.3.3. Result on Zachary Karate Club Network

We run our algorithm on Zachary karate club network and compare the identified

communities with those of ground-truth. Our algorithm with common neighbors score

metric, namely PCN, identifies two communities as seen in Figure 4.3. Only node 9 is

misidentified by our algorithm. Node 9 actually has more connections in its identified

community and the ground-truth metadata may not reflect the actual community. All

the other nodes are identified correctly.

4.3.4. Results on Large Real-life Networks

We run our algorithm with both score metrics, PCN and PSC, on large networks

with ground-truth communities provided by SNAP [117]. For comparative analysis,

Infomap, Louvain, LPA and Newman’s algorithm are also run on these networks. We

omit Newman’s algorithm on YouTube network dataset since it could not finish due to

long execution time. Results are presented in Table 4.1 and Table 4.2. On all of the

four real-life networks, the number of communities found by PCN, PSC, Infomap and

LPA are close to each other and not far from the ground-truth (one exception is the

YouTube network). On all of these networks, our algorithm finds a higher number of



61

communities because of its local nature.

In general, the performance of Louvain and Newman’s algorithm on large real-

life networks is low. Their NMI scores are very low and the number of identified

communities by these algorithms are far from those of ground-truth. They find a very

few number of communities compared to ground-truth. These two algorithms perform

better on European-email network. Infomap and LPA algorithms generally have better

NMI values compared to other algorithms, however, LPA finds only two communities in

European-email network where there are 42 ground-truth communities. Our algorithm,

with both score metrics (PCN and PSC), performs well on most of the networks with

good NMI values. However, it performs poorly on YouTube network where all the

other algorithms have similar bad results. This may be due to very small clustering

coefficient of YouTube network, i.e., no trivial community structure is available.

Table 4.1. Comparison of algorithms on large real-life networks: number of

communities.

Network |V | |E| CC
# communities

GT PCN PSC Inf LPA Lvn NM

European-email 1,005 16,064 0.40 42 35 32 38 2 25 28

DBLP 317,080 1,049,866 0.63 13,477 28,799 28,798 30,811 36,291 565 3,165

Amazon 334,863 925,872 0.40 75,149 36,514 36,519 35,139 23,869 248 1,474

YouTube 1,134,890 2,987,624 0.08 8,385 78,021 78,053 102,125 83,256 9,616 N/A

Table 4.2. Comparison of algorithms on large real-life networks: NMI and execution

times.

Network
NMI execution time (ms)

PCN PSC Inf LPA Lvn NM PCN PSC Inf LPA Lvn NM

European-email 0.34 0.17 0.62 0.01 0.54 0.46 192 133 133 40 69 187

DBLP 0.58 0.57 0.65 0.64 0.13 0.16 4,652 3,879 35,753 106,410 8,217 4,362,272

Amazon 0.58 0.59 0.60 0.54 0.11 0.11 2,911 3,453 43,253 83,532 8,017 1,422,590

YouTube 0.07 0.08 0.13 0.07 0.06 N/A 105,528 421,593 188,037 1,362,241 52,798 N/A
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4.3.5. Results on Generated Networks

We perform the similar comparative analysis on generated LFR networks of 1, 000

and 5, 000 nodes as reported in Figure 4.4a and Figure 4.5a, respectively. We present

the detailed results of algorithms on LFR networks of 5, 000 nodes in Table 4.3 and

Table 4.4. As described earlier, we generate 100 LFR networks per µ value and run the

algorithms on all 100 generated datasets and averaged the results for each algorithm.

On LFR networks with 1, 000 nodes, our algorithm with common neighbors (PCN)

is among the top three best-performing algorithms according to the NMI values; on

most of the networks, Infomap and our algorithm find the best results and LPA is in

the third place. Our algorithm with spread capability (PSC) has lower NMI values

but still performs better than Newman’s algorithm. On the networks generated with

higher mixing values (i.e., µ > 0.5), Infomap and LPA tend to find a small number of

communities and sometimes they group all the nodes into a single community. Louvain

and Newman’s algorithm also find very few number of communities on these networks.

However, our algorithms PSC and PCN can still find communities successfully. NMI

values of our algorithm are better than those of other algorithms and the number

of communities found by our method does not differ much from the ground-truth

compared to other algorithms.

On LFR networks of 5, 000 nodes, our algorithm has better results compared to

its performance on the previous set of LFR networks of 1, 000 nodes. However, with

the spread capability score metric, it finds more granular communities, which leads

to a greater number of communities compared to ground-truth. Newman’s algorithm

and Louvain algorithm find very few number of communities; they tend to merge

communities which may lead to a resolution limit [47].

Infomap and LPA are both successful on large networks when mixing parameter

is low, however, their quality degrades with increasing mixing parameter where our

algorithm can still identify communities successfully.
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Figure 4.4. Comparison of our method and known algorithms on LFR benchmark

network datasets (NMI and execution times).

[N, 〈k〉, kmax, Cmin, Cmax] = [1000, 15, 50, 10, 50].
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Figure 4.5. Comparison of our method and known algorithms on LFR benchmark

network datasets (NMI and execution times).

[N, 〈k〉, kmax, Cmin, Cmax] = [5000, 15, 75, 20, 100].
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One of the main differences between our algorithm and LPA is that we do not

assign community labels to nodes but keep the information of who prefers whom to

be in the same community using a preference network. During execution steps of

LPA a node updates its community label according to the majority of labels of its

neighbors. However, when all or part of those neighbors update their labels to be in a

different community, then the node will fall apart from them, it will be in a different

community (however it wanted to be in same community with them and updated its

label accordingly). Using a preference network, we preserve all the preferences made

by each node throughout the execution of the algorithm (because we do not update

any label). And aggregation of all these preferences will eventually lead to a good

community structure.

4.3.6. Performance of the Algorithm

In this section, we discuss the performance and time-complexity of our algorithm.

The details are given in subsection 4.4. We use common neighbors as edge weights for

PCN and spread capability for PSC. Given a network G = (V,E), where maximum de-

gree of nodes is kmax, calculating edge weights has O(|E|) and O(|V |) time-complexity,

for PCN and PSC, respectively.

As obtaining communities on preference network requires O(|V |) time-complexity,

the overall time-complexity of our algorithm is O(|E|+|V |) for PCN and O(|V |+|V |) =

O(|V |) for PSC.

Our algorithm is fast and suitable for very large networks on a single processor

environment where calculations are done in a sequential manner. Its speed can be

improved further by parallel execution. As multiprocessors become available, how well

an algorithm can be distributed over parallel processors becomes an important topic.

Our algorithm requires calculations such as the number of common neighbors or spread

capability, which can be related to edges around a node. It can be distributed to as

many as N processors easily. In this case, each processor handles the local calculations

around each node in the network. Then each node will have scores to decide its preferred
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node in such a parallel and fast way. Network data can be redundantly replicated to

all processors in order to avoid the computation overhead of data splitting process.

Note that obtaining components is not easily distributed in a parallel fashion since

component discovery in preference network cannot be split into independent tasks.

However, this step needs fewer steps of computation and has less impact on overall

performance.

Table 4.3. Comparison of algorithms on LFR benchmark networks of 5,000 nodes:

number of identified communities.

Network |V | µ |E| CC
# communities

GT PCN PSC Inf LPA Lvn NM

LFR-1 5,000 0.1 38,868 0.51 101 105 240 101 100 89 64

LFR-2 5,000 0.2 38,955 0.37 101 108 254 101 100 81 31

LFR-3 5,000 0.3 38,871 0.25 101 111 266 101 98 73 18

LFR-4 5,000 0.4 38,930 0.16 101 121 283 101 96 64 12

LFR-5 5,000 0.5 38,973 0.10 100 142 294 100 91 53 9

LFR-6 5,000 0.6 38,973 0.05 100 185 300 103 74 41 11

LFR-7 5,000 0.7 38,969 0.02 101 243 280 159 1 25 14

LFR-8 5,000 0.8 38,923 0.01 100 269 243 227 1 12 13

LFR-9 5,000 0.9 38,986 0.01 102 278 238 76 1 12 13

LFR-10 5,000 1.0 38,947 0.01 101 285 242 81 1 12 13

Table 4.4. Comparison of algorithms on LFR benchmark networks of 5,000 nodes:

NMI comparison and execution times.

Network
NMI execution time (ms)

PCN PSC Inf LPA NM Lvn PCN PSC Inf LPA Lvn NM

LFR-1 0.99 0.94 0.99 0.99 0.93 0.99 127 77 256 66 127 493

LFR-2 0.99 0.92 0.99 0.99 0.78 0.98 125 78 263 66 136 879

LFR-3 0.99 0.90 0.99 0.99 0.64 0.97 132 83 288 79 153 1,453

LFR-4 0.97 0.86 0.99 0.99 0.55 0.95 123 85 299 88 165 2,028

LFR-5 0.93 0.80 0.99 0.98 0.46 0.93 130 86 357 115 194 2,609

LFR-6 0.81 0.69 0.99 0.81 0.30 0.87 147 94 483 186 252 3,628

LFR-7 0.62 0.52 0.88 0.00 0.14 0.47 130 92 781 104 281 3,101

LFR-8 0.40 0.33 0.35 0.00 0.06 0.10 131 105 1,165 91 274 2,491

LFR-9 0.30 0.25 0.09 0.00 0.04 0.04 134 107 921 89 309 2,388

LFR-10 0.27 0.23 0.18 0.00 0.03 0.03 145 102 982 90 323 2,451
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4.4. Details of the Algorithm and Time-complexity

The performance of the algorithm is discussed in two ways. The single proces-

sor approach deals with O(·) complexity. Another possibility is the scalability of the

algorithm to multiprocessor running in parallel.

4.4.1. Complexity on Single Processor

In this section, we approximate the time-complexity of the algorithm for real-life

networks, which are sparse networks. The algorithm is composed of three steps:

(i) For every edge (i, j) in the network, we assign a weight wij. We use two metrics

for wij, namely the number of common neighbors and spread capability.

(ii) Then we construct a directed network, where each node is connected to exactly

one neighbor, for which the weight is maximum.

(iii) Finally, we group the nodes into communities using the directed network. First,

we investigate the complexity of calculating edge weights. Then, the complexity

of obtaining communities from the directed network is investigated.

4.4.2. The Complexity of Obtaining the Number of Common Neighbors

Let (i, j) ∈ E be the edge connecting i and j, and ki, kj be the degrees of i and

j, respectively. In order to find out if a neighbor ` of i is also a neighbor of j, we need

to search ` in the neighbors of j. Comparing ` with each neighbor of j would require

kj comparisons. If we keep the neighbors of j in a hash, which provides direct access,

then the complexity of searching of ` in the hash would be O(1). Since there are ki

neighbors of i, finding the common neighbors of i and j requires ki searches in the

hash. Note that if ki ≥ kj, then it is better to search neighbors of j in the neighbors

of i in this situation. Then the complexity finding the common neighbors of i and j

is O(min{ki, kj}). This is the complexity of calculating the weight of a single edge

(i, j) in the network. Then the total number of comparisons required for all common
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neighbors can be obtained if we consider all the edges. That is,

∑
(i,j)∈E

min{ki, kj} <
∑

(i,j)∈E

min{kmax, kmax}

<
∑

(i,j)∈E

kmax

< kmax

∑
(i,j)∈E

1

< kmax|E|

where kmax is the maximum degree in the network. We get the worst case complexity

of O(|V |3) if the network is a complete graph, where we have kmax = |V | − 1 and

|E| =
(|V |

2

)
≈ |V |2. This is not a problem for a community detection algorithm,

since there is no community structure in a complete graph. Fortunately, real-life large

networks are far from complete graphs. Although the number of nodes is very large,

real-life networks are highly sparse, i.e., |E| � |V |2, and their nodes are connected to

a very small fraction of the nodes, i.e., kmax � |V |. Note also that for networks with

power-law degree distribution, kmax is extremely high compared to the degree of the

majority of the nodes. So for real networks, we can consider kmax as constant, and the

complexity becomes O(|E|).

4.4.3. The Complexity of Obtaining Spread Capability

Suppose we want to calculate the spread capability σi,j of gossip originator j

around victim i, which is given as σi,j = |Γj(i)|/|Γ(i)|. The denominator |Γ(i)| is simply

the degree ki of the victim node i. The numerator |Γj(i)| needs to be calculated. We

use the common neighbor algorithm to obtain spread capability as follows. In the first

wave, all common neighbors of i and j will receive the gossip from j. If node ` is in

the common neighbors of i and j, it will receive the gossip. Now ` starts its wave, i.e.,

a triangular cascade, which passes gossip to all the nodes in the common neighbors of

i and `. Any node that receives gossip, will start its own wave. As seen, we repeatedly

use of common neighbors algorithm to propagate gossip from one node to another.
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Figure 4.6. Effect of initiator selection in gossip spreading. There are three different

sets of 1-neighbors of i in terms of gossip propagation, that are,

Γk(i) = Γl(i) = Γm(i) = Γj(i) = Γu(i) = Γv(i) = Γz(i) = {k, l,m, j, u, v, z},

Γr(i) = Γs(i) = {r, s}, and Γn(i) = {n}.

The following observation of triangular cascades will enable us to do the calcu-

lation once and reuse it. Note that selection of originator makes no difference for a

given cascade. As visualized in Figure 4.6, if ` receives gossip initiated by j, then, in

return, j receives gossip initiated by `. Therefore we have Γj(i) = Γ`(i), which implies

σi,` = σi,j. Hence we do the calculation of σi,j only once for the entire cascade, and

use it for the remaining nodes in the cascade. This observation drastically reduces the

number of calculations around i if there are triangular cascades, which is the case in

networks with community structure.

Either all neighbors of i are in one cascade, or there are multiple cascades, every

edge that is incident to i, has to be checked for common neighbors once, and we repeat

that for ki times. Hence the complexity is ki ·min{ki, kj} < k2
max. We need to do this

for every node. Then the complexity becomes O(|V |) if we consider kmax as a constant

of real networks.

4.4.4. The Complexity of Obtaining Communities

Now we investigate the complexity of extraction of the communities once the

preferred function p is given. We assume that nodes have aunique ID. Initially,

we put all nodes in a list, mark as unvisited and label them with their unique ID,

i.e., community(i) = i. We process unvisited nodes in the list one by one and ter-

minate when all the nodes become visited as follows (See algorithm Community-
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Community-Extraction(V, p)

1 // Parameters set of vertices V

2 // and preferred function p : V → V

3 // Uses initially empty stack

4

5 // Set all nodes in V as “unvisited”

6 // and label with unique node ID

7 while i in V

8 visited(i) = false

9 community(i) = i

10

11 while there is i in V with visited(i) = false

12 // push the nodes on the path into stack

13 while visited(i) = false

14 visited(i) = true

15 push(i)

16 i = p(i)

17

18 // put nodes in stack to community of i

19 C = community(i)

20 while stack not empty

21 j = pop()

22 community(j) = C

Figure 4.7. Community-Extraction(V, p) Algorithm.
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Extraction and Figure 4.8). We get an unvisited node i from the list, mark it as

visited and push it into a stack. Then set the preferred node of i as i, i.e., i ← p(i),

and repeat the process. Eventually, i becomes a node that is already visited. Preserve

the community of it in C, i.e., C ← community(i). Label all the nodes in the stack

with C while popping out nodes from the stack. Then repeat the process with a new

unvisited node, if there is any.

Note that the algorithm passes every node twice. Once unvisited nodes are visited

and push into the stack. Then once more when they are popped from the stack. So

the complexity is O(|V |).
1

1

2

3

45

67

89

101112

Figure 4.8. Obtaining communities from preference network. Initially, all nodes have

their IDs as labels, i.e., C1 =“1”, C2 =“2” and so on. Start with node 1 and C1= “1”,

mark it as visited. Follow the arcs until arriving at an already visited node.

In Figure 4.8, there is an example of community label identification. Initially, all

nodes have their IDs as labels, i.e., C1 =“1”, C2 =“2” and so on. We start with node 1

and C1= “1”, mark it as visited. Then, we follow the arcs until arriving at an already

visited node. Arc (5, 2) arrives at already visited node 2, so the label of community is

C2=“2”, backtracking resets 5, 4, 3, 2, 1 to “2” again in this order. Then, get the next

unvisited node in the list, which is node 6. Set it as visited and visit the nodes 7, 8, 9

until Arc (9, 7) arrives at already visited node 7. Community labels of 9, 8, 7, 6 are set

to “7”. The next unvisited node is node 10. Following the arcs, the arc of (12, 3) will

arrive at already visited node 3. Backtrack labeling is triggered, which relabels 12, 11,

and 10 as “2” and the labels of all the nodes are identified.
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4.4.5. The Overall Complexity on Single Processor

Considering all the major parts of our algorithm, the overall complexity of the

algorithm will include edge weight calculation and obtaining communities using the

preference network. We use two methods as edge weights which require a different

number of calculations, i.e., calculating the number of common neighbors used in PCN

and has O(|E|) time-complexity, while calculating spread capability used in PSC has

O(|V |) time-complexity.

As obtaining communities using preference network regardless of weight method

has O(|V |) time-complexity, the overall time-complexity of PCN algorithm is O(|E|+

|V |) and overall time-complexity of PSC algorithm is O(|V |+ |V |) = O(|V |).

4.4.6. The Complexity on Parallel Processors

Using local information for community detection is a good candidate for parallel

execution. Let’s consider the case of using common neighbors as edge weights in the

network. Our algorithm has three steps of operation:

(i) Calculate the edge weights either as the number of common neighbors or as

spread capability.

(ii) Connect the node to the node with the highest edge weight as the preferred node.

(iii) Identify communities using the preference network.

Step (iii) is not a good candidate for parallel execution but steps (i) and (ii) are perfect

candidates since each processor can do its calculations without exchanging data with

another processor.

Suppose we have P number of processors which can run in parallel. We can get

P fold speed up. We dispatch entire network data to processors and each processor

calculates one edge weight, then it calculates the preferred node for each node.
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5. COMMUNITY DETECTION USING BOUNDARY

NODES IN COMPLEX NETWORKS

5.1. Introduction

We propose a new community detection algorithm that has a local approach

and tries to find communities by identifying borderlines between them using boundary

nodes [42]. It is based on label propagation algorithm (LPA) [35], and it uses addi-

tional local information around each node in the network to uncover local similarities

of the node with its neighbors. Using the boundary nodes approach, our algorithm

also eliminates many unnecessary steps of label updates in the original label propaga-

tion algorithm, which leads to detection of more stable and accurate communities in

networks. Initially, every node is considered to be a boundary node. Our algorithm

naturally decreases their numbers by identifying communities of them. In the final

situation, only the actual boundary nodes remain in the network and they constitute

the borderlines between communities.

5.2. Background

5.2.1. Notation

Let G = (V,E) be an unweighted and undirected graph, where V is the set of

nodes and E is the set of edges. A community structure is a partition of V . We label

each block in the partition using a symbol in the set of labels L = {1, . . . , |V |}. We

define function L : V → L which maps each node in V to a community label in L.

That is, the community of node i ∈ V is given as L(i). If two nodes i and j are in the

same community, then we have L(i) = L(j).
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We use the concepts of Xie and Szymanski [43] to mark the nodes. A node i is

called an interior node if it is in the same community with all of its 1-neighbors. If

it is not an interior node, it is called a boundary node. Note that boundary nodes are

positioned between nodes from different communities.

5.2.2. Network Datasets and Algorithms Used for Benchmarking

We start testing our algorithm with real-life networks with known community

structure. The first network is the small network of Zachary karate club network [56].

Then we use larger networks provided by SNAP [117], namely; DBLP network, Amazon

co-purchase network, YouTube network and European-email network, which all have

known ground-truth communities.

On these networks, we also run some of the known community detection algo-

rithms, namely Newman’s algorithm (NM) [33], Infomap (Inf) [34], Louvain (Lvn) [36],

Label Propagation Algorithm of Raghavan et al. (LPA) [35], and Xie and Syzmanski’s

algorithm (LPAc) [43] and compare their results with the ground-truth. Execution

times of the algorithms are also measured and reported.

We use LFR generated networks for testing of the proposed algorithm. In order

to avoid the potential bias of an algorithm to a single network, we generate 100 LFR

networks for each vector and report the averages.

5.3. Our Approach

We propose a new community detection algorithm that finds communities by

identifying borderlines between communities based on boundary nodes [42]. We first

provide an overview of the algorithm, then we discuss the details.

The algorithm Community-By-BoundryNodes is given in Figure 5.1. The

algorithm keeps track of a set S of boundary nodes. We start with |V | communities of

size one, i.e., each node is a community by itself. Since each node is a boundary node,
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Community-By-BoundryNodes

1 // V = {1, · · · , |V |}: set of nodes

2 // S: set of boundary nodes

3 // L[i]: the community of i ∈ V

4 // Initial-Heuristic(): an initial heuristic

5 // isBoundryNode(i): true if i ∈ V is a boundary node

6 // bestCommunity(i): best community for i ∈ V

7

8 // initialization

9 while i in V

10 L[i] = i

11 Initial-Heuristic()

12 while i in V

13 if isBoundryNode(i)

14 S = S ∪ {i}

15

16 // iteration

17 while S 6= ∅

18 i = randomly selected node in S

19 S = S r {i}

20 communityOld = L[i]

21 L[i] = bestCommunity(i)

22 if communityOld 6= L[i]

23 while j in Γ(i)

24 if isBoundryNode(j)

25 S = S ∪ {j}

Figure 5.1. Community-By-BoundryNodes Algorithm.
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the set initially would have all the nodes in it.

Set S with |V |-elements is too large. We apply a heuristic, Initial-Heuristic

in Figure 5.2, to reduce the initial number of communities, hence, the initial number of

boundary nodes. For each connected pair of nodes i, j ∈ V , we calculate the “benefit

score”, bi(j), if i assumes the community of j ∈ Γ(i). Note that bi(j) is calculated

synchronously. We set the community of i to that of j with the maximum benefit

score. Then, using procedure isBoundryNode in Figure 5.3, we identify the bound-

ary nodes and insert them into the set S.

Initial-Heuristic

1 // bi(j): benefit score if i assumes the community of j

2

3 while i in V

4 maxBenefit = 0

5 maxNode = 0

6 while j in Γ(i)

7 if bi(j) > maxBenefit

8 maxBenefit = bi(j)

9 maxNode = j

10 L[i] = L[maxNode]

Figure 5.2. Initial-Heuristic Procedure.

isBoundryNode(i)

1 while j in Γ(i)

2 if L[j] 6= L[i]

3 return true

4 return false

Figure 5.3. isBoundryNode Procedure.
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As long as the set is not empty, the algorithm repeats the following steps. A

node i in the set is selected at random and removed from the set. We reconsider

the community of the selected node based on its 1-neighborhood. A new community

assignment, which produces the largest “benefit score”, is made. If the old and the

new communities of i are the same, i.e., no effective change, then we are done with this

pass. If the community of i is changed, then this may cause some of its 1-neighbors to

become boundary nodes. In this case, the new boundary nodes are inserted into the

set. Note that the selected node is not added to the set during this iteration even if

it is still a boundary node. It is possible that it may be inserted into the set in some

other iteration, in which one of its 1-neighbors is processed. Boundary node check is

done with procedure isBoundryNode.

This iteration process terminates when the set S becomes empty, which indicates

that the system reaches to a steady state, where no further change in community

assignment is possible with a larger “benefit score”.

5.3.1. Best Community

Given a community assignment, we want to reconsider the community L(i) of

a node i by investigating options in its 1-neighborhood Γ(i). This is the function of

the procedure bestCommunity, which is described below. There are two different

approaches:

Individual Approach: Consider each neighbor j ∈ Γ(i) of i individually. Switch-

ing to the community of j produces a benefit of bi(j). Therefore, i switches to the

community of j, which produces the largest benefit. That is,

L(i) = L

(
arg max
j∈Γ(i)

bi(j)

)
.

If there is more than one community with the maximum benefit, one of them is selected

randomly.
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For the value of bi(j), we consider three metrics:

(i) I-R: Assign a uniformly random number in a range of [0, 1] to bi(j). Clearly,

this will not reflect any information regarding the properties of a node or its

neighborhood.

(ii) I-CC : Use the clustering coefficient of j as the benefit score, i.e., bi(j) = CCj.

(iii) I-CN : Use the number of common neighbors of i and j, i.e., bi(j) = ∩ij.

Community Groups Approach: We consider the communities represented by the

neighbors. The neighbors are grouped according to their communities. We look at the

collective contribution of each group. The community of the group with the largest

benefit score is selected as the new community of i. That is

L(i) = L

(
arg max

k
Bi(k)

)

where Bi(k) is the collective benefit score of community k in 1-neighborhood of node

i and defined as

Bi(k) =
∑
L(j)=k
j∈Γ(i)

bi(j).

For the value of bi(j), we consider the three metrics that we used in the individual

approach. The group versions are denoted by (iv): G-R, (v): G-CC , and (vi): G-CN .

In addition to these, we consider one more measure: (vii): G-1 : We assign bi(j) = 1 to

each neighbor j. Note that this is similar to the majority rule of labels in LPA.
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5.4. Experiments and Discussion

5.4.1. Deciding the Benefit Score

We define seven metrics for benefit score. In order to decide on which metric

to use, we try each one on LFR generated networks of 1, 000 nodes. NMI scores of

identified partitions and execution times of our algorithm are presented in Figure 5.4a

and Figure 5.4b, respectively. We also run LPA and LPAc algorithms on these networks

for comparison. The c parameter of LPAc is set as 0.25.
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Figure 5.4. Comparison of various benefit score candidates. (a) NMI scores and

(b) execution times of our algorithm with benefit score candidates, compared to LPA

and LPAc with c = 0.25 on LFR benchmark network datasets. LFR parameters:

[N, 〈k〉, kmax, Cmin, Cmax] = [1000, 15, 50, 10, 50] (Average of 100 realizations).

We observe that all the group-based benefit scores have better results than the

individual ones. Even group-random value assignment, G-R, has good results. Sur-

prisingly, the uniform benefit score using the group approach, G-1, has the worst

performance of all. Although it is similar to the majority rule of labels in the LPA, it

is not a good fit for our algorithm. As an exception among the individual ones, I-CN

outperforms LPA.
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Benefit scores based on common neighbors, both at individual and group level,

i.e., I-CN and G-CN, produce better results in our tests. G-CN is slightly better than I-

CN in terms of NMI values. Both LPA and LPAc algorithms have good NMI values, but

when µ > 0.6, their performances degrade while our algorithm still finds communities.

LPAc performs better than LPA. However, when we look at the execution times of

algorithms, LPAc has the worst performance. Its elapsed time is two to three times

higher than our G-CN algorithm. We conclude that our algorithm using the number

of common neighbors with the community-groups approach, namely G-CN, produces

the best results in our algorithm. We use G-CN for the rest of the paper.

5.4.2. Zachary Karate Club Network

Figure 5.5. Zachary karate club: Identified communities by our G-CN algorithm.

We run our algorithm on Zachary karate club network and compare the identified

communities with the ground-truth. Our algorithm G-CN identifies two communities

as seen in Figure 5.5. Only the node 10 is misidentified by our algorithm. There

is a tie-situation among the benefit scores exhibited to node 10 by its neighbors; so

with random selection among alternatives, our algorithm sometimes selects the wrong

community. The community labels of all the other nodes are identified correctly with

respect to ground-truth community structure.
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Table 5.1. Comparison of algorithms on large real-life networks with ground-truth:

number of communities.

Network |V | |E| CC
# communities

GT G-CN Inf LPA LPAc Lvn NM

European-email 1,005 16,064 0.40 42 23 38 3 20 25 28

DBLP 317,080 1,049,866 0.63 13,477 26,873 30,811 36,780 30,242 565 3,165

Amazon 334,863 925,872 0.40 75,149 33,395 35,139 24,045 30,908 248 1,474

YouTube 1,134,890 2,987,624 0.08 8,385 116,082 102,125 89,449 69,817 9,616 N/A

Table 5.2. Comparison of algorithms on large real-life networks: NMI and execution

times.

Network
NMI Execution time (ms)

G-CN Inf LPA LPAc Lvn NM G-CN Inf LPA LPAc Lvn NM

European-email 0.14 0.62 0.13 0.31 0.54 0.46 146 133 32 704 69 187

DBLP 0.56 0.65 0.64 0.61 0.13 0.16 8,825 35,753 26,413 894,858 8,217 4,362,272

Amazon 0.57 0.60 0.54 0.57 0.11 0.11 7,552 43,253 30,931 997,088 8,017 1,422,590

YouTube 0.07 0.13 0.07 0.05 0.06 N/A 295,935 188,037 324,641 76,129,367 52,798 N/A
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5.4.3. Large Real-life Networks

We run our G-CN algorithm on large real-life networks with ground-truth com-

munities, provided by SNAP [117]. For comparative analysis, Newman’s algorithm

(NM) [98], Infomap (Inf) [34], Louvain (Lvn) [36], Label Propagation (LPA) [35] and

neighborhood-strength driven LPA (LPAc) [43] are also run on these networks. New-

man’s algorithm is omitted for YouTube network due to its long execution time. The

results are presented in Table 5.1 and Table 5.2. There is no clear winner in Table 5.2,

which is a good news for local algorithms. That is, although the local algorithms

cannot see the global picture, they perform good enough.

The number of detected communities by G-CN, Infomap, LPA, and LPAc are

close to each other and not far from the ground-truth. There are exceptions; on the

YouTube network, all four detect too many communities. On European-email network

with 42 ground-truth communities, LPA merges many communities together and de-

tects only three communities while the other three do a better job. On DBLP and

Amazon networks; both Louvain and Newman’s algorithm detect very few number of

communities. Louvain has the best detection on YouTube network, while Newman’s

algorithm experiences performance problems. Our G-CN algorithm performs well on

most of the networks. However, it performs poorly on the YouTube network, which

has the smallest clustering coefficient of these four networks.

Considering NMI values of all six algorithms, it is possible that YouTube network

may have subtle community structure. On this network, the best performing algorithm,

Infomap, only gets NMI value of 0.13. On DBLP and Amazon networks; Infomap, LPA,

LPAc and our G-CN algorithm obtain similar NMI values, and they are much better

than Louvain and Newman’s algorithm. On European-email network, local algorithms

like LPA, LPAc and ours are not good enough. It is possible that the network is not

a good one for local approaches. On all of the networks, LPAc has highest execution

times among the local algorithms. Its execution time on YouTube network is very high

compared to our algorithm and LPA.
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For all the real-life networks, we use the provided ground-truth community struc-

ture to evaluate the quality of partitions found by each algorithm. However, there is no

single algorithm that performs good on all networks or there is not a single network on

which some algorithms perform very good. This may be due to the fact that supposed

ground-truth for these networks do not reflect the original ground-truth community

structure or show different aspects of the network structure, as discussed in the work

of Peel et al. [118]. For this reason, our test on real-life networks gives an idea about

the relative performance of algorithms compared to each other on different networks;

but does not lead to a conclusion on whether they perform well on these networks or

not.

5.4.4. Generated Networks

We test our algorithm, G-CN, also on generated LFR networks of 1, 000 and 5, 000

nodes as reported in Figure 5.6a and Figure 5.6c, respectively. The same algorithms

that we run on real-life networks are also used for comparative analysis on these net-

works. We also measure the execution times of the algorithms and report the results in

Figure 5.6b and Figure 5.6d. We present the details of the results on LFR networks of

5,000 nodes in Table 5.3 and Table 5.4. For each parameter set, we generate 100 LFR

networks for a given µ and run algorithms on all these datasets and then average the

results for each algorithm. On LFR networks with 1,000 nodes, our G-CN algorithm is

the best algorithm with Infomap when 0.1 < µ < 0.5. For 0.5 < µ < 0.8, our algorithm

is in the second place after Infomap. When µ > 0.7, most of the algorithms tend to

find a small number of communities while our algorithm still identifies a reasonable set

of communities. LPA and LPAc find a single community that leads to the NMI value

of 0. Louvain and Newman’s algorithm also find very few number of communities on

these networks.

The second set of test is performed on LFR networks of 5, 000 nodes. Infomap,

LPA and LPAc are successful in identifying communities when mixing parameter is

low, however, their quality degrades with increasing mixing parameter. LPA and LPAc

have slightly better results on the networks of 5, 000 nodes generated with 0.4 < µ <
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Table 5.3. Comparison of algorithms on LFR benchmark networks of 5,000 nodes:

communities.

Network |V | µ |E| CC
# communities

GT G-CN Inf LPA LPAc Lvn NM

LFR-1 5,000 0.1 38,928 0.52 102 102 102 102 102 89 65

LFR-2 5,000 0.2 38,834 0.37 101 102 101 100 101 81 32

LFR-3 5,000 0.3 38,883 0.26 101 103 101 98 101 73 18

LFR-4 5,000 0.4 38,939 0.16 101 109 101 97 102 64 12

LFR-5 5,000 0.5 38,965 0.10 101 131 101 94 104 53 9

LFR-6 5,000 0.6 38,935 0.05 102 203 104 87 110 41 11

LFR-7 5,000 0.7 38,857 0.02 101 356 159 5 114 24 15

LFR-8 5,000 0.8 38,873 0.01 101 530 239 1 1 12 13

LFR-9 5,000 0.9 38,909 0.01 102 614 86 1 1 12 13

LFR-10 5,000 1.0 38,923 0.01 101 618 79 1 1 12 13

Table 5.4. Comparison of algorithms on LFR benchmark networks of 5,000 nodes:

NMI and execution times.

Network
NMI wrt GT Execution time (ms)

G-CN Inf LPA LPAc Lvn NM G-CN Inf LPA LPAc Lvn NM

LFR-1 1.00 1.00 1.00 1.00 0.99 0.93 161 261 51 612 132 508

LFR-2 1.00 1.00 1.00 1.00 0.98 0.78 167 273 52 647 142 914

LFR-3 1.00 1.00 1.00 1.00 0.97 0.65 167 287 55 655 157 1,504

LFR-4 0.98 1.00 0.99 1.00 0.95 0.55 169 309 56 691 174 2,117

LFR-5 0.93 1.00 0.98 1.00 0.93 0.46 169 362 59 749 196 2,644

LFR-6 0.82 1.00 0.85 0.98 0.87 0.30 175 441 58 859 241 3,106

LFR-7 0.65 0.88 0.19 0.72 0.46 0.14 192 767 53 1,368 279 3,099

LFR-8 0.46 0.37 0.00 0.00 0.10 0.06 193 1,238 49 1,681 290 2,645

LFR-9 0.37 0.11 0.00 0.00 0.04 0.04 195 939 47 1,522 305 2,456

LFR-10 0.35 0.09 0.06 0.00 0.03 0.03 189 913 47 1,553 303 2,450
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Figure 5.6. Comparison of G-CN algorithm and known algorithms on LFR networks.

(a), (b) are for LFR networks generated with

[N, 〈k〉, kmax, Cmin, Cmax] = [1000, 15, 50, 10, 50]. (c), (d) are generated with

[N, 〈k〉, kmax, Cmin, Cmax, µ] = [5000, 15, 75, 20, 100] (Average of 100 realizations).
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0.6 compared to the previous set of networks of 1, 000 nodes. With increasing value

of the µ, performances of LPA and LPAc get worse and they tend to find a single

community after µ > 0.7. Infomap has the similar tendency but has better results on

LFR networks of 5, 000 nodes compared to the previous set of networks of 1, 000 nodes.

Newman’s algorithm and Louvain find a small number of communities; they tend to

merge communities, which may lead to a resolution limit [47].

Our G-CN algorithm identifies communities with high accuracy when µ is low. It

is the only algorithm to identify communities when community identification becomes

very hard, i.e., µ > 0.75. Its execution times are lower than most of the algorithms; only

LPA has better execution times. However, considering the quality of identified commu-

nities and corresponding execution times, G-CN algorithm performs better than LPA.

Newman’s algorithm and LPAc have the highest execution times on these networks.
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6. A FRAMEWORK FOR COMMUNITY DETECTION

ON COMPLEX NETWORKS

6.1. Introduction

During our research on developing a new community detection algorithm, besides

the core work of building a new community detection algorithm, we have to put much

effort on manual tasks during the process. Some of these tasks were finding real-life

networks with community structure, using network generators, understanding and us-

ing various network dataset formats, evaluating the quality of a community detection

algorithm, comparison with various existing algorithms, benchmarking the results and

analyzing the networks or community partitions using different metrics. These tasks

are mostly repetitive, manual and error-prone. During the development of a new com-

munity detection algorithm, a researcher may need to repeat these tasks many times

when she makes a small change in her algorithm and re-evaluate the outcome of that

change. We experienced the same problems, during our studies on defining a new com-

munity detection algorithm. Throughout the process, we build a community detection

framework in order to speed up and automate manual tasks and define an end-to-end

workflow for community detection analysis. The framework enables us to shorten the

process of development and testing of a new community detection algorithm. It is

built in an open and modular fashion so that one can incorporate new components

(i.e., network datasets, algorithms, metrics, functions, etc.) to the framework. A pa-

per describing the framework is at work in progress stage.
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6.2. Community Detection Framework

6.2.1. Why Do We Need a Community Detection Framework?

When a new community detection algorithm is proposed, one should expect that

it is doing something better than existing algorithms; i.e., running in a shorter time,

more scalable, more accurate results of detected communities, etc. In order to show

the proposed improvement, the algorithm should be tested on both real-life and gener-

ated networks. The first problem of the researcher is to find real-life network datasets

with community structure and their ground-truth community information. If the re-

searcher has real-life networks available with ground-truth community structure, then

she should run her algorithm on these networks and compare the identified partitions

with the corresponding ground-truth. If the algorithm is 100 % successful in finding the

communities in a network, then identified partition should be exactly the same with

that of ground-truth. When there are differences, then the success rate falls below

100 %, however, the decrease in success rate cannot be measured with manual inspec-

tion. We need a metric or method to evaluate similarity (or dissimilarity) between the

identified partition and the ground-truth.

Real-life network datasets may lack ground-truth community structure as well.

In some cases, meta-data that represents the communities can be misleading, so the

ground-truth produced with that meta-data may not reflect the actual community

structure [118]. In such cases, generated networks with planted community structure

can be useful. Generated networks can be produced by generator algorithms using

various input parameters. Input parameters can control many aspects of the generated

network, from community strength to the average degree of nodes, etc. The researcher

may need to generate many network datasets using these generators with varying input

parameters and test her algorithm on all of these networks. This may lead to a big

amount of work especially if it is done in a manual fashion. Also, if the researcher

does not have these generators readily available, he may need to re-code or implement

them.
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6.2.2. Implementation Issues

After testing the algorithm on various real-life networks and generated ones, the

researcher should perform a benchmarking with some of the existing algorithms. The

newly proposed algorithm’s results (i.e., quality of identified communities, execution

times, etc.) should be compared with the results of those existing algorithms. An-

other major problem for the researcher is to find the correct implementation of known

algorithms. Most of the time, well-known existing algorithms have available imple-

mentations by the original authors. The researcher can obtain these codes and compile

them to get the executables of these algorithms. However, when implementations are

missing, the researcher should implement them using the guidance of the related pa-

pers or description of those algorithms. After getting or implementing these known

algorithms, the researcher can run her algorithm and these known algorithms on the

same set of network datasets for benchmarking. This task is very time-consuming and

error-prone even on a single network dataset. When we think of many real-life networks

and especially a bunch of generated networks created with varying parameters, it is

impossible to handle this benchmarking in a short time manually.

6.2.3. Format Issues

Network datasets are generally represented in various formats for the use of dif-

ferent algorithms. The researcher should be careful about the network dataset format

and how the network is represented in that format, i.e., she needs to adapt her algo-

rithm for each network dataset format. When ready implementations of the known

algorithms are used, format problem can get complicated. First of all, many of the

known algorithms accepts different formatted datasets, i.e., Pajek’s .net format, GML

format or .dat format. Network generators also have their own format of the generated

network. For some of the different network file formats see Figure 6.1. A popular

network format is the Pajek’s .net file format, which requires to declare the number

of vertices (i.e., nodes) in advance and use internal identifiers where they need to be

continuous numbers starting from 0 (zero). It also has a section for edges where it

requires the number of edges declared in advance. In this format, the label of vertices
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can be provided in quotes and edge weights can be provided in *Edges section. Another

popular file format is GML network file format. In GML format, information about

each node and edge is provided inside brackets. This format also has its internal iden-

tifiers, however they may be numbers or letters, so algorithm using this format needs

its own implicit identifiers (i.e., numbers) when using this file format. Third network

file format in Figure 6.1 is the dat file format. In this format, nodes are not explicitly

provided; instead, each line has two numbers indicating an edge from the source node

to target node. These numbers representing edges can be used to identify nodes and

an algorithm should use its own implicit node identifiers. A major difference in this

network file format is that numbers showing edges from the source node to target node

do not need to start from zero and do not need to have continuous numbers, i.e., a

node can be represented with 100 while another with 123.

*Vertices 5

0 ‘‘Adam’’

1 ‘‘Joy’’

2 ‘‘Jenny’’

3 ‘‘Alice’’

4 ‘‘Mike’’

*Edges 7

0 1

0 2

1 2

1 4

2 4

3 4

2 3

graph

[ node

[ id A

label ‘‘Adam’’]

node

[ id 4

label ‘‘Joy’’ ]

......

edge

[

source A

target 4

]

......

]

100 123

100 3

123 3

123 400

3 400

711 400

123 711

Pajek’s .net format GML format .dat format

Figure 6.1. A sample network represented by 3 different network file formats.
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When processing the very same network, different algorithms may use different in-

ternal identifiers (ID) to represent the nodes and edges of corresponding network data.

When network data is processed, i.e., for community detection etc., and results of these

algorithms are externalized for comparison, then this difference in node representation

may become a critical issue. We call it as ID mismatch problem, that is, a node is

represented by different IDs by different algorithms because of their handling of the

network data, i.e., node i is represented by ID(1) by algorithmA while it is represented

by ID(2) by algorithmB, and when their results need to be compared by externalizing

data, then this single node is treated as two different nodes by two algorithms. In Fig-

ure 6.1, the same network is represented in three different file formats. In this sample

network, Mike is represented with ID(4) in .net file format while Joy is represented

with ID(4) in GML format and moreover an algorithm reading GML network file will

have its own internal identifier which is totally different than ID(4). In .dat file format,

Joy is represented with ID(3), which is used for Alice in .net format. This situation

may lead to erroneous comparison results without giving a programmatic error, i.e.,

when a node is not represented with the same unique ID by all algorithms then the

comparison is misleading. So, algorithms using different network file formats need to

handled carefully to avoid this problem.

Community detection results are also represented in various formats and some of

these formats are not well-documented. Again, the researcher should be careful about

how communities are represented in the corresponding format. During benchmarking

of different algorithms, the researcher needs to unify all the outputs from different al-

gorithms in a common way for each network to avoid the ID mismatch, this time in

community representations. There are many different output formats of community

detection algorithms which may need post-processing to use for benchmarking. Some

of the examples of output formats are given in Figure 6.2. In Infomap’s tree file for-

mat, communities are represented with unique number identifiers and nodes belong to

that community are represented with their labels in quotes. The second format for

community representation, .joins file format, represent the communities as a dendro-

gram where each node is merged with another node or another group already merged

previously. Merge order is from top of the file to the bottom and the delta increase in
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network modularity is also given in the file in order to decide where to cut the dendro-

gram to reveal communities. The third file format, i.e., cmty file format, is relatively

simple; it represents a community in a line where each line contains node identifiers.

1:1 0.108974 "34"

1:2 0.0769231 "33"

1:3 0.0384615 "32"

...

2:10 0.0128205 "18"

2:11 0.0128205 "22"

2:12 0.00641026 "12"

3:1 0.025641 "6"

3:2 0.025641 "7"

3:3 0.0192308 "5"

-1 -1 -0.0498 0

17 6 -0.0376 1

6 7 -0.0139 2

7 1 -0.0014 3

5 1 0.0177 4

11 1 0.0490 5

27 30 0.0612 6

30 34 0.0784 7

24 34 0.0946 8

28 34 0.11111 9

1 2 3 4 5 6 7 8 11

12 13 9

14 17 18 20 22

10 15 16 19 21 23 24

27 28 29 30 31 32 33

34

25 26

Infomap .tree format .joins format .cmty format

Figure 6.2. Example file formats for community detection results.

A community detection algorithm’s results can also be reported using some net-

work or community detection metrics. From the definition of community, there are

some defined metrics to evaluate the quality of a partition. Conductance, expansion,

contraction are some of the metrics that can be used to asses the quality of the identified

communities by a community detection algorithm. These metrics can show whether

the found partition has a good community structure; i.e., the higher the conductance,

the higher the quality of the found communities. The researcher should implement

these metrics to perform a self-assessment for the new algorithm.

6.2.4. Manual Tasks

Besides all the challenges mentioned so far, a general challenge is the big amount

of manual tasks which are also error-prone and time-consuming. Some of these tasks

are running existing algorithms on many network datasets, conversion of input files,
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conversion of output files, unification of community partitions and comparison of them,

reporting results, etc.

6.3. Solutions Provided in the Framework

6.3.1. Network Datasets: Real-life and Generated Networks

In our framework, we incorporate many of the real-life networks and generators

for creating generated networks into the framework for the use of researchers; and

if available, we include the corresponding ground-truth community structure for the

real-life networks as well, i.e., co-authorship networks of condensed-matter-2005 and

astrophysics collaborations [122], network of political books [133], Facebook dataset

of SNAP [117], Les Miserables dataset [123], C.Elegans dataset [134], trust network of

Epinions consumer review site [135] and scientific collaboration network of DBLP [136],

YouTube dataset from SNAP [117] and Dogster dataset [137]. We also incorporate net-

work generators to produce generated networks with given input parameters. Some of

the network generators are Girvan-Newman [32] and LFR benchmark network genera-

tors [116]. These generators can produce many networks using a batch parameter file

automatically.

There is a need for format converters both for network datasets used as inputs to

community detection algorithms and community partitions produced as outputs. We

incorporate many file format converters that can be used for both purposes. In order

to avoid ID mismatch problem, we always use a common representation of network

data and make necessary conversions for the use of algorithms in the benchmark. We

ensure that the network is represented in the same way for all algorithms, regardless

of their internal representations.



93

6.3.2. Implementations of Community Detection Algorithms

For benchmarking with existing known algorithms, we get the source code of

some of existing known algorithms as implemented by the authors of those algorithms.

Currently we incorporated Newman’s algorithm (NM) [98], Infomap (Inf) [34], Louvain

(Lvn) [36] and Label Propagation (LPA) [35]. We also incorporate our newly proposed

algorithms in the framework; namely, community detection using preference networks

(PCN) [41] and community detection using boundary nodes (G-CN) [42]. Executa-

bles of these algorithms are incorporated such that they can be called using system

calls within the framework, without any manual work. This eliminates any possible

mismatch between the original algorithm and its implementation by the researcher

herself.

6.3.3. Format Converters

Input and output converters are also used here to feed all of these algorithms

and convert their outputs. The output of various algorithms representing the identified

communities need post-processing, so output converters are used to avoid ID mismatch

and unify results for comparison with each other.

6.3.4. Comparions of the Results

We need a quantitative metric to analyze how similar identified communities in

two different partitions. For this purpose, Normalized Mutual Information (NMI) [115]

is proposed as a metric for comparison of two partitions. If NMI of two partitions

is close to 1.0, then they are very similar; i.e., the number of communities and the

common members of communities are more similar; and when it is close to zero, two

partitions are not similar to each other. In our framework, we incorporated NMI and

one can compare any two algorithms with each other using NMI. Other metrics like

F-score and variations of NMI score can be added to the framework. However, there are

cases where NMI has issues on measuring the similarity accurately; especially when the

number of communities in different partitions varies too much. For very large networks,
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time-complexity of partition comparison is high. We use efficient data structures and

implement a fast version of NMI comparison that is suitable for very large networks.

6.3.5. Other Metrics

We also implemented many functions and metrics essential for network analysis

and assessment of the quality of identified communities, i.e., clustering coefficient,

average path length and other community detection related metrics like modularity,

conductance, expansion, contraction, etc. The researcher can readily use these metrics

to analyze the used networks and communities identified by her algorithm and other

known algorithms.

6.3.6. Using the Framework

One of the most important aspects of our framework is that it has an automatic

end-to-end structure without any manual work. It can be run by providing a batch file

for necessary parameters, i.e., network input file, algorithms to use, output reporting,

etc. When generated networks are needed, input parameters can be provided in the

batch file and all the process are carried automatically. An example process of the

framework is as follows: A batch file is prepared that contains all the details of the

work that needs to be carried by the framework. The batch file contains the necessary

parameters for input file names, repository, generated network parameters, algorithms

to use, etc. An example batch file is in Figure 6.3, which can be used for community

detection comparison of different algorithms on generated LFR networks that will be

produced with this batch file.

Then framework reads the input network file and converts it to all necessary for-

mats for the algorithms to be used, then all algorithms are run on same representation

of the network and they produce partitions in their own format. When algorithms

finish their run, output converters unify all these partitions and make them ready

for comparison. NMI comparator compares the partitions and reports the results. If

other network quality parameters are requested, they are also created using necessary
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LFRSampleCount=10 allNodeWeightMethods=0 commentStr="BulkLFR1"

printDetails=0 allBorderNodeMethods=1 bnScoreMethods=0

borderNodeExecute="_XIE025CNPLUS1_"

GCDSampleCount=0 randomSampleCount=1 printGML=0 printCommunities=0

gossipAlgorithm="batchGossipNew" communityMethod=7

expectedOn=12 contributionType=2 model=5

networkRepo="15_LFRBenchmark"

N=1000 avgDeg=15 maxDeg=50 minc=10 maxc=50

mut=0.1 copyCSVtoFile="LFR.csv"

Figure 6.3. Sample batch input file for community detection framework.

functions and procedures. When generated networks are used as network inputs, all

the networks are generated in the beginning with the given inputs and automatically

passed to converters and algorithms. There are no manual tasks in this end-to-end

workflow. All this workflow is provided in a batch file for the use of the framework. A

simple layout of the framework and an example workflow is illustrated in Figure 6.4.

6.3.7. Extendable Structure

The framework is also in an open format and can be extended by the researcher.

It has reusable components, data structures and easy to use building blocks to create

new capabilities. The researcher can add new network datasets, new network genera-

tors, new format converters easily. She can also incorporate new community detection

algorithms either by implementing them or using executables of existing algorithms

easily (with necessary format converters if needed). New network metrics, as well as

partition comparison techniques, can be incorporated. The source code of the frame-

work is soon available at [138].
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Translator / Converter

Post-processing

Comparison

Reporting /

Visualization

karateClub.net celegans.gml . . . Co-authorhip.dat

LFR generator GN generator

GT GT GT

GT GT

karateClub

celegans

Co-authorship

LFR-generated

GN-generated

karateClub

celegans

Co-authorship

LFR-generated

GN-generated

karateClub

celegans

Co-authorship

LFR-generated

GN-generated

Algorithm 1 Algorithm 2 Algorithm 3

GT

GT

GT

GT

GT

Comparison set(1) Comparison set(2) Comparison set(3)

Comparison out(1) Comparison out(2) Comparison out(3)

Figure 6.4. Community detection framework’s layout and workflow.
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7. CONCLUSION

During our studies in complex networks, we first focus on information diffusion;

namely gossip spreading in complex networks. We propose a new gossip spread model

for weighted networks. When we introduce the role of edge weights on the gossip

spreading model, we can learn more about the connection patterns, edge weight distri-

butions and topology of the networks. Using this, we define a new metric in our model

which reveals more information about a network, i.e., edge weight distribution, topol-

ogy, etc., so it can be used to classify weighted networks using gossip spreading. The

metric successfully discriminates co-occurrence networks and social pattern networks.

Details are given in Chapter 3.

Gossip spreading model on weighted networks uncovers some other interesting

features of the networks as well. Both high-degree and low-degree victims are more

vulnerable to being gossiped even when the weight promotes not spreading the gossip.

The first reason is that an edge or connection is perceived differently by the nodes

connected with that edge: while a node may see the connection as “important” the

other node can see it as “not so important”. Low degree nodes have highly connected

neighbors for whom the lower degree nodes are not seen as “important”. The second

reason for this behavior is that there is a threshold degree after which additional

connections are not close friends to the victim. Most of the time, these connections

are not because of “close friendship” to the victim but as a result of attraction due to

the high degree of victim node, that is, the result of preferential attachment in real

networks. We can interpret this threshold degree as the optimal friendship capacity

one can manage.

Information spreading and specifically gossip spreading can help us on under-

standing the complex networks in more detail. Gossip spreading model can be used

to discriminate or classify networks with subtle differences. It is a powerful way to

analyze how connection patterns lead to information diffusion and can be used to infer

strategies to avoid it in a particular network.
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Gossip can spread in networks with many triangles, i.e., triangles are building

blocks of strong relations in many networks. Triangles can be interpreted as the smallest

pattern in networks representing the common neighbors. They are building blocks of

groups or communities in networks. Communities are emergent features in complex

networks which is investigated by many researchers. During our research, we deeply

worked on community detection algorithms and proposed two new local algorithms.

Firstly, we propose a new local community detection, Community detection using

preference networks. The algorithm is a local algorithm which builds a meta-network

representing the communities based on individual community preferences. It has two

variants, PCN and PSC, where each one builds a preference network using two different

node similarity score metrics; namely common neighbors and gossip spread capability.

The algorithm uses only local information to identify and represent the commu-

nities as a preference network. Its performance in identifying communities is good

especially when community structure is not easily detectable. We used computer-

generated LFR networks with planted community structure. Community structure of

an LFR network is weak when it is generated with higher mixing value (µ > 0.7).

However our algorithm performs better than all the other benchmark algorithms used

for comparison, details are in Chapter 4. On such networks, algorithms like Infomap

and LPA merge all the nodes into a single community, where these algorithms are stuck

in a local optimum and fail to identify communities.

We think that building a preference network to identify communities is a simple

and powerful approach. With this, we preserve the preferences of all of the nodes

for being in the same community with another node, whether they are highly con-

nected or have a few connections. This approach prevents loss of granular community

information, especially in very large networks.

Due to its local nature, our algorithm is scalable and fast, i.e., it needs only

a single pass on the whole network to construct a preference network and similarity

metric used for this construction can be evaluated in 1-neighborhood of each node. It
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can run on very large networks without loss of quality and performance.

Secondly, we propose another local community detection algorithm, G-CN, which

is based on identifying borderlines of communities using boundary nodes in the network.

It is based on label propagation algorithm, however, it both eliminates unnecessary

steps of original LPA and incorporates additional information, i.e., the number of

common neighbors, for the use of nodes to choose the best community label. The

proposed algorithm is able to run on very large networks with low execution times. It

can identify communities with high quality, regardless of the network size.

On the networks with subtle community structure, it outperforms other algo-

rithms, details are in Chapter 5. On these networks; Infomap, LPA, and LPAc merge

all the nodes into a single community. This is due to the heuristics of these algorithms,

where they lose granular structures and fail to identify communities for certain kinds

of networks. However, our approach keeps granular communities by focusing on the

similarity of nodes even when it has many dissimilar neighbors but only a few similar

ones. It does not force small communities to join to a larger group. Our algorithm per-

forms successfully on generated LFR networks. However, on real-life networks where

ground-truth is created by using some meta-data, all of the algorithms in benchmark

find different results. This may be due to the fact that meta-data does not reflect the

actual ground-truth communities or metadata shows different aspects of the network

structure as discussed in the work of Peel et al. [118].

Both of the community detection algorithms, i.e., community detection using

preference network approach and boundary nodes approach, are scalable algorithms

and they are suitable for distributed and parallel processing. These algorithms can be

deployed as agents on different parts of a large real-life network which is evolving over

time. On such a network, collecting the data of the whole network is costly (time,

space, computation), while information about small parts of the network can easily

be obtained and analyzed by each nearby agent for community detection. Agents can

easily identify community structures of that particular area without knowing the rest of

the network; which is a valuable information at that scale and can be used in real-time
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by systems like peer-to-peer networks.

The source codes of the algorithms are available; community detection using

preference networks is available at [139] and community detection algorithm using

boundary nodes algorithm is available at [140].

Defining a new community detection algorithm requires many tasks repetitively.

While working on community detection, a researcher needs to carry out manual tasks

repetitively like finding and converting network datasets, comparing with other al-

gorithms, calculating metrics to describe networks or found communities. Especially

when a new algorithm is developed, every little change in the algorithm needs to be

tested and analyzed over and over. During our research, we build a set of tools and a

new community detection framework with modular structure and ready to use built-

in features. In order to eliminate repetitive manual tasks, our framework provides a

structured and automated way of handling many of these tasks. These manual tasks

also may lead to human errors during these works. We also provide methods to an-

alyze the results of a community detection algorithm; i.e., comparison of partitions

with ground truth or with other algorithms’ outputs, metrics showing the quality of

partitions. Our framework is modular and open to new additions of network datasets,

network generators, community detection algorithms and new metric calculators.

We build and use our framework during our research on community detection

algorithms. With its availability, manual and repetitive tasks consumed less time and

we find more time for focusing on the quality of the proposed algorithms. It also elim-

inates human errors while dealing with many network datasets and comparison with

various different formats of benchmark algorithms. The framework has a principled

workflow that enables us to try many changes in our algorithms and see the results

easily. This leads to the easy development of a new community detection algorithm.

Source code of the framework is soon available at [138].



101

REFERENCES

1. Euler, L., “Solutio Problematis ad Geometriam Situs Pertinensis”, Commentarii

Academiae Scientiarum Petropolitanae, Vol. 8, pp. 128–140, 1741.

2. Wasserman, S. and K. Faust, Social Network Analysis: Methods and Applications ,

Vol. 8, Cambridge University Press, Cambridge, 1994.
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