
A COLLABORATIVE MULTI-ROBOT LOCALIZATION TECHNIQUE FOR

AUTONOMOUS ROBOTS

by

Hatice Köse Bağcı

B.S. in Computer Engineering, Boğaziçi University, 1997

M.S. in Computer Engineering, Boğaziçi University, 2000

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2007

iii

ACKNOWLEDGEMENTS

I would like to specially thank to my thesis supervisor, Prof. H. Levent Akın, for

his endless motivation, patient guidance, and understanding. This thesis would not be

possible without his contributions.

Many thanks to my sincere jury members Prof. H. Işıl Bozma, and Prof. A. C.

Cem Say for their kind and patient contributions to my thesis. In addition, I would like

to thank to Prof. Okyay Kaynak and Prof. A. Coşkun Sönmez, for kindly attending

to my thesis defense.

Special thanks to Gal Kaminka, Dieter Fox, Stephen Gutmann, and Olivier

Mitchell, and for the others who kindly helped when necessary. In addition, thanks

to Kerstin Dautenhahn, Chrystopher Nehaniv, and STRI members for their kind and

patient motivation.

Many thanks to all my instructors in CMPE department, for their endless mo-

tivational and scientific support, and thanks to the residents of AILab and Cerberus

Team, who supported me with their friendship and professional collaboration.

This work was supported in part by Boğaziçi University Research Fund projects

01A101 and 03A101D, and State Planning Agency project DPT 03K120250.

Special thanks to my parents, Gül and Mehmet Köse, for their motivation, kind-

ness and help during this study, and for the rest of my life. Their motivation and

support made this thesis and my dreams true.

This thesis is dedicated to my dear daughter Ayşe Alanur Bağcı, who deserves the

most, by letting her mother work, in their precious play time. Lastly, special thanks

to my husband Sadrettin Bağcı, for being in my life.

iv

ABSTRACT

A COLLABORATIVE MULTI-ROBOT LOCALIZATION

TECHNIQUE FOR AUTONOMOUS ROBOTS

This work proposes a novel method for collaborative global localization of a team

of soccer playing autonomous robots. It is also applicable to other indoor real-time

robot applications in noisy, unpredictable environments, with insufficient perception.

A novel solution, Reverse Monte Carlo Localization (R-MCL) is designed to solve

single self-localization problem using local perception and action about the surrounding

environment for each robot. R-MCL is a hybrid method based on Markov Localization

(ML) and Monte Carlo Localization (MCL) where the ML based part finds the region

where the robot should be and the MCL based part predicts the geometrical location

with high precision by selecting samples in this region.

In the multi-robot localization problem, robots use their own local position esti-

mations, and the shared information from other team mates, to localize themselves. To

integrate the local information and beliefs optimally, avoid conflicts and support collab-

oration among team members, a novel collaborative multi-robot localization method

called Collaborative Reverse Monte Carlo Localization (CR-MCL), based on R-MCL,

is presented. When robots detect each other, they share the grid cells representing this

observation. The power of the method comes from its hybrid nature. It uses a grid

based approach to handle detections which can not be accurate in real-time applica-

tions, and sample based approach in self-localization to improve its success, although it

uses lower amount of samples compared to similar methods. Both methods are tested

using simulated robots and real robots and results show that they are fast, robust,

accurate and cheap in terms of communication, memory and computational costs.

v

ÖZET

OTONOM ROBOTLAR İÇİN BİR ÇOKLU ROBOT

KONUŞLANDIRMA TEKNİĞİ

Bu çalışma bir otonom robotlar takımının dayanışmalı konuşlandırılması için

yeni bir yöntem önerir. Bu çalışma aynı zamanda gürültülü, önceden tahmin edilemez

ve yeterli algılama yapılamayan diğer iç mekan gerçek-zamanlı robot çalışmaları için

de uygundur.

Tekli kendini konuşlandırma sorununu her robot için bulunduğu çevreye ait yerel

algı ve hareket bilgisi kullanılarak çözmek için Ters Monte Carlo konuşlandırması(R-

MCL) isimli yeni bir yöntem tasarlanmıştır. R-MCL, Markov konuşlandırması(ML)

ve Monte Carlo konuşlandırması(MCL) üzerine kurulan melez bir yöntemdir. Bu

yöntemde ML tabanlı bölüm robotun olması gereken bölgeyi bulur ve MCL tabanlı

bölüm bu bölgeden örnekler seçerek geometrik konumu yüksek çözünürlükle bulur.

Çoklu robot konuşlandırması sorununda robotlar kendi yerel tahminlerini ve diğer

takım arkadaşlarından gelen paylaşılan bilgiyi kullanarak kendilerini konuşlandırır.

Yerel bilgi ve inançları uygun olarak birleştirebilmek, çatışmaları önlemek ve takım

elemanları arasında dayanışmayı desteklemek için R-MCL’e dayalı yeni bir dayanışmalı

çoklu robot konuşlandırma metodu sunulmuştur. Robotlar birbirlerini algıladıklarında

bu gözlemi yansıtan ızgara hücrelerini paylaşırlar. Yöntemin gerçek gücü melezliğinden

gelir. Gerçek-zamanlı uygulamalarda kesin olarak ölçülemeyecek gözlemleri ızgara ta-

banlı yaklaşımla, kendini konuşlandırma sorununu ise daha kesin sonuç veren örnek ta-

banlı yaklaşımla, benzer çalışmalardan daha az örnek kullanarak çözer.Her iki yöntem

de benzetim robotları ve gerçek robotlar ile denenmiş ve sonuçlar yöntemlerin hızlı,

sağlam, kesin ve hesap, hafıza ve iletişim masrafları açısıdan ucuz olduğunu göstermiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xii

LIST OF SYMBOLS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

2. BACKGROUND . 5

2.1. Localization Problem . 5

2.2. Single Robot Localization . 7

2.2.1. Triangulation . 8

2.2.2. Markov Localization Method 10

2.2.3. Monte Carlo Localization . 12

2.2.4. Kalman Filter Method . 14

2.2.5. Multi Hypothesis Localization 17

2.2.6. Markov Localization - Extended Kalman Filter 17

2.2.7. Fuzzy-Localization . 17

2.2.8. Simple Localization . 18

2.3. Multi Robot Localization . 20

2.3.1. Collaborative Probabilistic Constraint-based Landmark Local-

ization . 21

2.3.2. Distributed Multi-Robot Localization 21

2.3.3. Cooperative Monte Carlo Localization 22

2.3.4. Cooperative Positioning System 24

2.3.5. Robust Multi-robot Object Localization Using Fuzzy Logic . . . 24

2.3.6. Collaborative Multi-Robot Active Localization 25

2.3.7. Representing Hierarchical POMDPs as DBNs for Multi-scale

Robot Localization . 25

2.3.8. Ego-Centric Approach . 25

vii

3. PROPOSED METHODS FOR SINGLE ROBOT LOCALIZATION 26

3.1. Geometrical Localization . 26

3.2. Reverse Monte Carlo Localization Method 27

3.3. Fuzzy R-MCL . 33

3.4. Tests and Results for Single Robot Localization 35

3.4.1. The Testing Environment . 35

3.4.2. Sony AIBO Robots . 37

3.4.3. Offline Tests . 38

3.4.3.1. Offline Testing Tool 39

3.4.3.2. Noisy Data Test . 40

3.4.3.3. Sparse Data Test . 43

3.4.3.4. Recovery from Kidnapping Test 45

3.4.3.5. Speed Test . 46

3.4.4. Real Time Tests . 49

4. COLLABORATIVE REVERSE MONTE CARLO LOCALIZATION 53

4.1. Collaborative Reverse Monte Carlo Localization Method 53

4.2. Tests and Results for Multi-Robot Localization 59

5. DISCUSSION . 64

6. CONCLUSIONS . 69

REFERENCES . 71

REFERENCES NOT CITED . 77

viii

LIST OF FIGURES

Figure 2.1. The classification of single robot localization methods 7

Figure 2.2. The triangulation method with three points 9

Figure 2.3. The triangulation method with two angle and one distance infor-

mation . 9

Figure 2.4. The MCL Algorithm . 12

Figure 2.5. KF method . 15

Figure 2.6. The KF Time Update Algorithm 15

Figure 2.7. The KF Measurement Update Algorithm 15

Figure 2.8. The EKF Time Update Algorithm 16

Figure 2.9. The EKF Measurement Update Algorithm 16

Figure 2.10. Trapezoidal fuzzy sets . 18

Figure 2.11. The classification of multi robot localization methods 21

Figure 2.12. Localization algorithm for multiple robots 23

Figure 3.1. Calculation of distance to an observed landmark. 27

Figure 3.2. The R-MCL working schema . 29

ix

Figure 3.3. The basic representation of R-MCL in the game field 29

Figure 3.4. The R-MCL Algorithm . 30

Figure 3.5. The ML Motion Update Algorithm 31

Figure 3.6. The ML Vision Update Algorithm 31

Figure 3.7. The ML vision update model . 32

Figure 3.8. The fuzzy membership functions 34

Figure 3.9. The trapezoidal membership function 34

Figure 3.10. The old soccer field . 36

Figure 3.11. The new soccer field . 37

Figure 3.12. SONY AIBO ERS 210 . 38

Figure 3.13. SONY AIBO ERS 7 . 38

Figure 3.14. The soccer field of the test environment 39

Figure 3.15. The offline testing tool . 40

Figure 3.16. Results of the noisy data tests-1 41

Figure 3.17. Results of the noisy data tests-2 42

Figure 3.18. Results of the noisy data tests-3 43

x

Figure 3.19. Results of the noise tests for different thML 44

Figure 3.20. Results of the noise tests for comparing the static vs. random samples 45

Figure 3.21. Results of the sparsity tests-1 . 46

Figure 3.22. Results of the sparsity tests-3 . 47

Figure 3.23. Results of the sparsity tests-2 . 48

Figure 3.24. Results of the sparsity tests for different thML 48

Figure 3.25. Results of the sparsity tests for comparing the static vs. random

samples . 49

Figure 3.26. Results of the kidnapping tests-1 50

Figure 3.27. Results of the kidnapping tests-2 51

Figure 3.28. Real time test field with markers 51

Figure 3.29. Results of the real time tests with six markers 52

Figure 4.1. robot1 sees one beacon . 55

Figure 4.2. robot1 sees a second beacon . 55

Figure 4.3. robot1 localizes itself with using two beacons 56

Figure 4.4. robot2 sees one beacon . 56

Figure 4.5. robot2 estimates robot1’s location 57

xi

Figure 4.6. robot1 localizes itself integrating the shared and the observed infor-

mation . 57

Figure 4.7. The CR-MCL Algorithm . 58

Figure 4.8. Test results in the simulator . 60

Figure 4.9. First set of test results in the real field 62

Figure 4.10. Second set of test results in the real field 62

Figure 4.11. The real test field . 63

Figure 4.12. The test results in the simulated field-1 63

xii

LIST OF TABLES

Table 3.1. Results of the speed test on real robot (μsec.) 47

Table 3.2. Results of the speed test on real robot (μsec.) 47

Table 3.3. Results of the speed test on PC (μsec.) 48

Table 4.1. Test descriptions . 60

Table 5.1. Comparison of Single Localization Methods 65

Table 5.2. Comparison of Multi Robot Localization Methods 67

xiii

LIST OF SYMBOLS/ABBREVIATIONS

a The odometry data coming from actions

b The bias in Fuzzy localization

Bel(l) The belief that the robot is at the location l

Belnm The belief of the robot n using the shared information coming

from the robot m

G The grid list

G‘ The new grid list

Gi The ith grid cell

Gt The fuzzy grid map in Fuzzy localization

Gt(x, y) The degree of possibility of being in (x,y) in Fuzzy localization

h The height in Fuzzy localization

Hxk The expected measurement in Kalman Filter

K The Kalman Gain in Kalman Filter

l The current estimated location of the robot

l‘ The estimated location of the robot before the action is exe-

cuted

L The three dimensional random variable composed of the

robot’s position and heading

m The map of the environment in which the robot acts

sn The sensory inputs

St(x, y|r) The degree of possibility of being in (x,y) given the range r in

Fuzzy localization

p(l) The probability of the robot being in location l

P The covariance in Kalman Filter

PEx The x-coordinate of the pose estimate before a perception

or odometry update in MCL part of Reverse Monte Carlo

Localization

PE∗
x The x-coordinate of the updated pose estimate in MCL part

of Reverse Monte Carlo Localization

xiv

PEy The y-coordinate of the pose estimate before a perception

or odometry update in MCL part of Reverse Monte Carlo

Localization

PE∗
y The y-coordinate of the updated pose estimate in MCL part

of Reverse Monte Carlo Localization

PEθ The orientation of the pose estimate before a perception or

odometry update in MCL part of Reverse Monte Carlo Lo-

calization

PE∗
θ The orientation of the updated pose estimate in MCL part of

Reverse Monte Carlo Localization

Posex The x-coordinate of the pose estimate before a perception

or odometry update in Markov Localization part of Reverse

Monte Carlo Localization

Posey The y-coordinate of the pose estimate before a perception

or odometry update in Markov Localization part of Reverse

Monte Carlo Localization

Poseθ The orientation of the pose estimate before a perception or

odometry update in Markov Localization part of Reverse

Monte Carlo Localization

r The range

rm The detection information of the robot m in Collaborative

Reverse Monte Carlo Localization

S ′ The sample set

o The perception data coming from observations

on The perception data of robot n coming from observations

thML The threshold of grid cells in Markov Localization part of the

Reverse Monte Carlo Localization

u The control vector in Kalman Filter

wi The weight for the ith grid cell in Reverse Monte Carlo Local-

ization

w The importance weight in Monte Carlo Localization

x The position of the robot in the x-coordination in Reverse

Monte Carlo Localization

x′ The position of the robot in the x-coordination in Geometrical

Localization

xv

X The mean in Kalman Filter

XL The position of the landmark in the x-coordination in Geo-

metrical Localization

XO The old position of the robot in the x-coordination in Geo-

metrical Localization

y The position of the robot in the y-coordination in Reverse

Monte Carlo Localization

y′ The position of the agent in the y-coordination in Geometrical

Localization

YL The position of the landmark in the y-coordination in Geo-

metrical Localization

YO The old position of the agent in the y-coordination in Geo-

metrical Localization

Δx The distance the robot moved in sideways in the odometry

update of Reverse Monte Carlo Localization

Δy The distance the robot moved on the line of its heading in the

odometry update of Reverse Monte Carlo Localization

z The actual movement in Kalman Filter

2−D Two dimensional

3−D Three dimensional

α The slope in Fuzzy localization

α The normalizer in Markov Localization

θ The heading of the robot in Reverse Monte Carlo Localization

Δ The width of the core in Fuzzy localization

Δθ The angle that the robot has turned in odometry update of

Reverse Monte Carlo Localization

AI Artificial Intelligence

A-MCL Adaptive Monte Carlo Localization

CMCL Collaborative MCL

CMRAL Collaborative Multi Robot Active Localization

Comm. Communication

CP Cooperative Positioning

xvi

CPCBL Collaborative Probabilistic Constraint-based landmark local-

ization

CPS Cooperative Positioning System

CR-MCL Collaborative Reverse Monte Carlo Localization

DBN Dynamic Bayesian Network

DMRL Distributed Multi Robot Localization

EGO Ego-Centric Approach

EKF Extended Kalman Filter

GEO Geometrical Localization

H-POMDP Hierarchical Partially Observable Markov Decision Process

KLD Kullback-Leibler Distance

KLD-S Kullback-Leibler Distance-Sampling

MCL Monte Carlo Localization

ME My Environment

MHL Multi Hypothesis Localization

Mix-MCL Mixture Monte Carlo Localization

ML Markov Localization

ML-EKF Markov Localization - Extended Kalman Filter

POMDP Partially Observable Markov Decision Process

R-MCL Reverse Monte Carlo Localization

SLAM Simultaneous Localization And Mapping

S-LOC Simple Localization

SRL Sensor Resetting Localization

SRL∗ Modified Sensor Resetting Localization version which was

used in the tests

1

1. INTRODUCTION

The global localization problem is the estimation of the position of a robot relative

to its environment, using sensor readings and its actions. In a challenging real-time test

bed like robot soccer with four-legged robots, where the sensors and the environment

have uncertainties, localization results are typically erroneous and inaccurate.

In robot soccer, a robot is typically expected to find its own location using dis-

tinguishable artificial landmarks in the field, and then use this information to find the

location of the interesting objects such as the ball and the goals. For such a real-time

application with robots limited by on board computational resources, speedy solutions

with less memory and computational resources are especially demanded. Consequently,

localization is a difficult and vital problem for robot soccer.

Triangulation is the simplest localization method which uses geometry to com-

pute a single point that is as close as possible to the actual location. However, in real

world applications, a robot can never calculate where it is exactly because of the uncer-

tainty in its sensors, and the environment. Consequently, several different approaches

which estimate the position of robot probabilistically were developed to consider this

uncertainty in the solutions.

The Kalman filter (Kalman-Bucy filter) is a well-known approach for this prob-

lem. This filter integrates uncertainty into computations by making the assumption of

Gaussian distributions to represent all probability densities including positions, odo-

metric and other sensory measurements. Since only one pose hypothesis can be rep-

resented, the method is unable to make global localization, and cannot recover from

total localization failures (Stroupe and Balch, 2002, Stroupe et al, 2003, Gutmann

and Fox, 2002).

Many works consider Markov localization (ML) (Burgard et al, 1996, Fox et al,

1999b, Thrun et al, 2005, Gutmann and Fox, 1998) which is similar to the Kalman

2

filter approach, but it does not make a Gaussian distribution assumption and allows

any kind of distribution to be used. Although this feature makes this approach flexible,

it adds a computational overhead.

The Monte Carlo Localization (MCL) is a version of Markov localization that

relies on sample-based representation and the sampling/importance re-sampling algo-

rithm for belief propagation (Thrun et al, 2001, Schulz and Burgard, 2001). Odometric

and sensory updates are similar to ML. Most of the MCL based works suffer from the

kidnapping problem, since this approach fails when the current estimate does not fit

observations. There are several extensions to MCL that solve this problem by adding

random samples at each iteration. Some of these methods are Sensor Resetting Lo-

calization (SRL) (Lenser and Veloso, 2000), Mixture MCL (Mix-MCL) (Gutmann and

Fox, 2002), Kullback-Leibler Distance (KLD)-Sampling (Fox, 2003) and Adaptive MCL

(A-MCL) (Gutmann and Fox, 2002).

The Markov Localization-Extended Kalman Filter (ML-EKF) method is a hy-

brid method that aims to make use of the advantages of both methods, taking into

consideration the fact that ML is more robust and EKF is more accurate (Gutmann

and Fox, 2002).

The Multi Hypothesis Localization (MHL) method discussed in (Kristensen and

Jensfelt, 2003) aims to avoid problems caused by using a single Gaussian, by consider-

ing a mixture of Gaussians, thus enabling the representation of any given probability

distribution of the robot pose.

Although there have been only a few fuzzy logic based approaches, they appear

to be promising (Buschka et al, 2000, Köse et al, 2003, Köse et al, 2005). In these

approaches, the uncertainty in sensor readings (distance and heading to beacons) is

represented by fuzzy sets.

The Simple Localization (S-LOC) method is a new technique which represents

every perception by a sample. The old position estimation is also represented by a

3

sample. This sample set together with a history based module, is used to estimate the

current position of the robot (Çelik, 2005).

This work is a part of a project which aims to localize legged robots in the

soccer field globally, while solving the above mentioned problems. There are several

limitations and assumptions related to the rules of the Four Legged League of Robocup

that make this localization problem challenging (Robocup, 2005).

The ML and MCL methods are the most widely used global localization methods

in the robotic soccer domain. Both have advantages and disadvantages. In this work

we first introduce Reverse Monte Carlo Localization (R-MCL) (Köse et al, 2004, Köse

and Akın, 2005, Köse et al, 2005, Köse et al, 2006, Köse and Akın, 2007) for single

robot localization which is a hybrid approach that aims to combine ML and MCL

methods, to make use of the advantages of both, and overcome the disadvantages. The

idea behind this algorithm is to converge to a part of the environment by using a coarse

2-D grid based ML algorithm and in this local area, use MCL algorithm to find the

current position estimation of the robot in a fast, robust and accurate manner. This

algorithm is especially successful in the kidnapping problem.

Global collaborative localization of autonomous mobile robots is a highly chal-

lenging task, which is generally more successful than single robot localization, de-

spite its high complexity and associated communication problems. In (Stroupe and

Balch, 2002) Kalman filters are used to integrate the information coming from differ-

ent robots. (Roumeliotis and Bekey, 2000, Roumeliotis and Bekey, 2000, Roumeliotis

and Rekleitis, 2004) divide a central Kalman filter into m Kalman filters, one for each

robot, to localize all the robots in the team. In (Fox et al, 2000), robots share a

density tree based on the samples representing the observation of the detected robot,

and Monte Carlo Localization (MCL) is used to localize the robots. In (Kurazume

and Hirose, 2000), some of the robots stand still to serve as landmarks for others, and

observe the moving ones for localization. Fuzzy membership functions are used to es-

timate the position, and the shared information is integrated by means of coalition in

(Canovas et al, 2004).

4

In these works it is assumed that the robots can detect and identify each other,

and the observations are either accurate or can be estimated using some known distri-

butions. There are also no false positives. Additionally, there are no conflicts between

the robots that share information. In real robot applications, like robot soccer, how-

ever, most of these assumptions are not valid. All the robots are dynamic, and they

can not detect and observe each other very accurately. In this work for simplicity we

also assume that they can identify each other. Conflicts can arise between robots when

one or more robot fails in sensing, or localizing itself, or is kidnapped. However, col-

laborative localization is expected to be more successful than single robot localization

since it avoids single point failure, and is helpful in case of high noise and sparsity,

where the robots can fine tune their estimations using the shared information from

their team mates.

In this work, we also propose a novel collaborative method that aims to globally

localize a team of robots, based on our single self-localization method R-MCL. When-

ever two or more robots detect each other, they represent these detections in terms of

grid cells, and mutually send them to each other. Production, fusion and integration

of the shared data are performed by Collaborative Reverse Monte Carlo Localization

(CR-MCL) which is a modified version of R-MCL for multi robot localization. The

real power of the method comes from its hybrid nature. It uses a grid based approach

to handle detections which can not be accurate in real time applications, and sample

based approach in self-localization which improves its success, although it uses lower

amount of samples compared to similar sample based methods.

In Chapter 2, the single-robot and multi-robot localization problems are discussed

and some well-known techniques are described briefly. The R-MCL method, which is

the novel solution proposed in this work to the single-robot localization problem, is

explained in Chapter 3, together with the implementation, test environment details,

and the test results in both simulated and real environments. The implementation

details and experimental results of the proposed multi-robot localization algorithm,

CR-MCL, are discussed in Chapter 4. Chapter 5 presents the comparisons, comments,

and discussions on the proposed works. Finally, Chapter 6 presents the conclusion.

5

2. BACKGROUND

Localization is a challenging field of robotics where many approaches have been

introduced. These approaches are generally based on some well known families of

solutions. A useful taxonomy and brief introduction to some of the most common ones

of these approaches are covered in this chapter.

2.1. Localization Problem

The localization problem is the detection of the position of a robot relative to

its environment, using the information about the environment gathered by the robot

with its sensors (e.g. infrared, camera, etc.). Unfortunately these sensors and the

environment are uncertain (except for specially designed toy problems), so the results

are mainly erroneous and inaccurate. Accordingly, localization still remains a nontrivial

and challenging problem. The localization problem can be divided into three sub-

problems (Thrun et al, 2005) as follows:

• Position (pose) tracking : This requires keeping track of the robots’ position

(x, y coordinates and heading) using odometry, with the assumption that the

initial position of the robot is known (Fox et al, 1999b). Unfortunately as time

passes, dead reckoning errors grow cumulatively, and in real time applications the

initial position can not be known in most cases. It can be also named as local

localization since it is based on local uncertainty.

• Global localization : This problem requires the robot to find its location in the

environment without using a priori information. This method generally makes

use of the sensors to get information about the environment. Global localiza-

tion based on only sensory information is a hard task due to the uncertainty

associated with the sensors, robot’s motion, and the dynamic nature of the en-

vironment, and has become a challenging problem for researchers. Therefore,

from the simplest geometric calculations which do not consider uncertainty at

all, to statistical solutions which cope with uncertainty by applying sophisticated

6

models, many solutions have been proposed for this problem. Although some

of these approaches produce remarkable results, due to the nature of the typi-

cal environments they are not satisfactory because fast solutions requiring less

memory and computational resources are demanded. This is especially true for a

real-time application in a dynamical soccer field using robots with onboard com-

putational resources. Generally, solutions producing precise results suffer from

slowness, and high memory usage, whereas a fast solution typically produces only

coarse results. Even when they produce precise local results, some approaches

like Kalman filters fail to find the global position.

• Kidnapping : This is possibly the hardest problem among others. In the kid-

napping problem, the robot is taken from its current location and carried to

another location by teleportation without the information of the robot. So sud-

denly, the whole belief set of the robot becomes invalid. Therefore the robot

should realize this, and initialize its beliefs from scratch, and relocalize itself in

its new position. Since most of the state-of-art localization methods fail in case

of kidnapping problem, it is a good indicator in the evaluation of the localization

algorithms.

The localization problem can also be classified as active and passive localization.

In active localization, the robot actively searches its environment to find landmarks to

localize itself better, and decrease its localization error. So in active localization, the

results are more successful. whereas in passive localization, the robot is busy with its

task, and it runs the localization as a background task, using the observations it gets

during its main task implementation. Notice that, even if the robot gets lost, it would

not seek for landmarks to localize itself, unless it is a part of its current task. So the

error rate is larger in passive localization.

Another dimension in localization problem is involved with the number of robots

taking place in the localization. Only a single robot might localize itself using its actions

and observations, or a team of robots might localize themselves using the intra-team

shared information, besides the single robot facilities.

7

The Localization problem is also studied in both static and dynamic environ-

ments. In dynamic environments, there might be other moving obstacles, besides the

environment could change, so they are noisier, and harder to cope with.

In this work, the passive global localization and kidnapping problems for dy-

namical environments, which are the hardest tasks among localization problems, are

studied. Solutions are proposed for both single and multi robots.

2.2. Single Robot Localization

In this work, first several well-known single robot localization techniques are

studied; their advantages and disadvantages are analyzed. In the following sub sections

these techniques, which vary from the simplest geometrical approach to hybrid solutions

which try to overcome failures by combining or extending the advantageous parts of

some well-known techniques, are described briefly (Figure 2.1).

Figure 2.1. The classification of single robot localization methods

These approaches estimate the position of the robot using the observations and

odometry. The probability of the robot being in a location l (p(l)) is estimated using

the following Bayesian update rules:

8

p(l) =

∫
p(sn|l)p(l)dsn (2.1)

p(l) =

∫
p(l|a, l′)p(l′)dl′ (2.2)

where the robot is given sensory inputs sn , and executed action a, and l′ is the

location where the robot is in before the action is executed. Equation 2.1 represent

the (observation update) and Equation 2.2 represents the (odometric update). The

methods differ in representing the probability p(l) and other uncertain features like

sensor or motion model as briefly analyzed in the following subsections.

2.2.1. Triangulation

The triangulation technique is the simplest localization method and it differs

from the other probabilistic methods studied throughout the rest of the chapter since

it disregards uncertainty instead of modeling it. This technique uses the geometric

properties of triangles based on the distances and/or angle measurements between the

robot and the observed landmarks (Betke and Gurvits 1994, Betke and Gurvits 1997,

Hightower, 2001).

In the case where both the distance and angle measurements are used, the po-

sition of the robot is calculated using the measured distance between the robot and

the multiple reference positions. For the position estimation in two dimensions, dis-

tance measurements from three non-collinear points are required (Figure 2.2). The

angle measurements with respect to the reference points are required to calculate the

orientation of the robot.

In the Figure 2.2, and Figure 2.3, d1, d2, and d3 represent the observed distances

between the robot and each observed landmark, which are shown by big filled circles.

In the Figure 2.3, θ1 and θ2 are the angles between the robot and the landmarks.

9

Figure 2.2. The triangulation method with three points

Two angle measurements and one distance measurement can also be used for

calculating two dimensional localization by triangulation (Figure 2.3). This case is

similar to the former case, except the fact that instead of distance measurements, angle

measurements are used for calculating the position of the robot. Unfortunately, in case

of noisy data, the error increases drastically. Therefore, whenever more perception

data are available, they should be used to reduce the error. As a result of these cases,

more than one position estimate could be found. In this case, different combination

methods such as averaging can be used to obtain a final position estimate.

In (Betke and Gurvits 1994, Betke and Gurvits 1997), both the cases with perfect

and noisy data are aimed to be solved by extensions to triangulation method.

Figure 2.3. The triangulation method with two angle and one distance information

10

2.2.2. Markov Localization Method

Markov localization (ML) is the most general method since it does not make any

distribution assumptions, and allows any kind of distribution to be used. Although

this feature makes it flexible, it adds a computational overhead. There are many

works based on ML (Fox et al, 1999b, Burgard et al, 1996, Fox et al, 1999c, Thrun

et al, 2001, Schulz and Burgard, 2001) in the literature. In this work we will consider

grid based ML, where the probability of being in a particular grid is represented by a

piecewise linear function.

As stated in (Fox et al, 2000), ML uses odometry measurements a and per-

ceptional measurements o to estimate the current position of the robot. The robot

maintains a belief over its position which is denoted as Bel(t)(L) at time t. The vari-

able L in this representation is a three-dimensional random variable composed of the

robot’s position and its heading direction. Bel(t)(L = l) is the belief representation

showing that the robot is at location l. The initial knowledge of the robot is stated by

Bel(0)(L) which is initialized by a uniform distribution, in case of no initial location

information. Bel(t)(L) shows the posterior belief with respect to all data collected up

to time t as in

Bel(t)(L) = P (L(t)|d(t)), (2.3)

where d(t) denotes the data collected up to time t. For the perception update, the last

item in d(t) is denotes perception data, o(t). Using the Markov assumption, Bel(t)(L = l)

is calculated for each l as in Equation 2.4, and it is updated as in Equation 2.5.

Bel(t)(L = l) = P (L(t) = l|d(t))

= α P (o(t)|L(t) = l) Bel(t−1)(L = l) (2.4)

Bel(l) ← α P (o|l) Bel(l) (2.5)

here α is a normalizer independent from l. Based on the perception model, and per-

11

ceived data, P (o(t)|L(t) = l) is the probability of making the perception o(t) given that

the robot is at l at the time t; and Bel(t−1)(L = l) is the belief that the robot was

at l at the time t − 1. For the computation of P (o|l), different sensor models (Fox

et al, 1999b) could be used.

For the odometry update, the last item in d(t) is an odometry datum, a(t). Based

on the motion model, and odometry data, and using the Theorem of Total Probability,

Bel(t)(L = l) is calculated for each l as in Equation 2.6, and it is updated as in Equation

2.7.

Bel(t)(L = l) = P (L(t) = l|d(t))

=

∫
P (L(t) = l|a(t), L(t−1) = l′) Bel(t−1)(L = l′) dl′ (2.6)

Bel(l) ←
∑

for each l′
P (l|a, l′) Bel(l′) Δl′ (2.7)

The ML method uses a histogram filter for posterior belief. If it uses fine grained

grid cells, the algorithm slows down. Otherwise if the grids cells are coarse, this causes

information loss, the filter may not even work properly. The most basic version of

ML uses time-invariant same sized grid cells. Commonly grid cell size is chosen as 15

cm. The environment is assumed to be static in ML which is not realistic in our case.

There are some works that consider this problem (Thrun et al, 2005). There is also a

problem related with the motion model. Using the motion model on the center of the

grid cell yields a poor solution since when the cell size is 15 cm, and odometry update

comes in every second for a robot that moves 1 cm/sec, the robot is still in the same

cell, after moving several steps, so can not perform a state transition. There are several

solutions for this problem. One can modify both the motion-model and measurement

by inflating the amount of noise (Thrun et al, 2005), but this will reduce the amount

of information extracted from the sensors. One can also use the ratio between the

moved distance and cell diameter as the probability of moving to a nearby cell. But

this would make the robot move to the next cell even with a small motion, so the move

is much faster than commanded.

12

2.2.3. Monte Carlo Localization

Monte Carlo Localization (MCL) is a version of ML that relies on sample-based

representation and the sampling/importance re-sampling algorithm for belief propa-

gation (Thrun et al, 2001, Schulz and Burgard, 2001). Beliefs are represented by

a set of weighed samples (particles) which are of type ((x, y, θ), w), where w ≥ 0

is a non-negative numerical weighting factor such that the sum of all w is one. The

weighting factors are called importance weights. Odometric and sensory updates are

similar to ML. They are performed within the prediction and correction steps. The

algorithms start with a set of uniform random samples S ′. At each perception or ac-

tion, p(l) is calculated according to the following steps (Thrun et al, 2001, Lenser and

Veloso, 2000, Gutmann and Fox, 2002):

procedure MCL(S ′, a, o)

1: for i = 0 to n do
2: draw by replacement random sample l′ from S ′ according to w1..wn

(resampling)
3: draw sample l′ with p(l|a, l′)(sampling)
4: calculate w′=p(l′|o) (importance sampling)
5: add (l′, w′) to S ′

6: end for
7: normalize the importance factors w′ in S ′

8: return S ′

Figure 2.4. The MCL Algorithm

The MCL algorithm in Figure 2.4 takes the sample set S ′, observation (sensor

readings) o, and action (movement readings) a as input. Whenever an action is done, a

new sample l′ is drawn according to its probability density p(l|a, l′) and replaced with

sample l. The probability density functions of motion and observations depend on the

robots used, and their capabilities. The models of laser range finders or sonar sensors

would be used in perception (Thrun et al, 2001), as well as onboard cameras.

In case of a sensory update, the samples are given weights equal to their proba-

bility given the sensor reading. Using these weights, new unweighted samples are then

drawn from the sample set by replacement. The probability of drawing a sample is

13

proportional to the weights. Next, these samples are added to the sample set. There

is no addition of new samples in this step.

Notice that MCL represents the probability distribution of location l by a sample

set. The samples are located such that, the population size of samples is proportional

to the probability of the robot being in that location and the surroundings. After a

couple of steps, the samples converge to some place in the environment. The position

of the robot is found by taking the average of the positions of the samples, and the

standard deviation gives the uncertainty of the robot. So this fact could also be used

to dynamically change the number of samples. If the robot is totally unaware of its

place, more samples could be used to represent the field. On the other hand, if the

uncertainty is low, then a smaller number of samples is sufficient for finding the robot’s

location. The original MCL algorithm does not work well in case of kidnapping. So

several MCL extensions were proposed to overcome this problem. These extensions add

new samples to the sample set from different parts of the field, and differ in the number

of new samples and when to add these samples. Some of these methods are Sensor

Resetting Localization (SRL), Mixture MCL (Mix-MCL), Adaptive MCL (A-MCL),

and Kullback-Leibler Distance (KLD)-Sampling .

In SRL, when the likelihood of the current observation is below a threshold, a

small fraction of uniformly distributed random samples is added (Lenser and Veloso,

2000).

Mix-MCL additionally weights these samples with current probability density

p(l). This method has been developed for extremely accurate sensor information

(Gutmann and Fox, 2002).

Adaptive MCL only adds samples when the difference between short-term esti-

mate (slow changing noise level in the environment and the sensors) and the long-term

estimate (rapid changes in the likelihood due to a position failure) is above a threshold

(Gutmann and Fox, 2002). This approach was applied to the Robocup domain in 2002

by the University of Washington team (Crisman et al, 2002). The key idea is to use a

14

combination of two smoothed estimates (long term and short term) of the observation

likelihoods (Gutmann and Fox, 2002).

In KLD-sampling method, the size of sample sets are time-variant, which increases

the efficiency, especially if the complexity of the beliefs vary drastically over time

(Fox, 2003).

As stated before, when the robot is unaware of its location, it needs more samples

to be located. But as the number of samples increase, the algorithm dramatically slows

down. Besides if not enough landmarks are observed, after some steps, the robot could

converge to some location with a small number of distinct samples, and would not

move to the correct location, after new observations. MCL is capable of handling

only small systematic errors. When errors get bigger the overall localization error

gets cumulatively larger and the algorithm is not capable of overcoming this situation.

The algorithm also can not handle errors due to unexpected movements. The time to

recover from an error is proportional to how big the error is (Lenser and Veloso, 2000).

Even with adaptive sample size not all of the problems can be solved.

2.2.4. Kalman Filter Method

Kalman filter (Kalman, 1960, Maybeck, 1990, Welch and Bishop, 2006) is a well-

known approach for the localization problem. It implements belief computation for

continuous states. It is similar to Markov Localization but it makes a Gaussian distri-

bution assumption. This filter integrates uncertainty into computations by making the

assumption of Gaussian distributions to represent all densities including positions, odo-

metric and sensory measurements. Position estimates are updated by odometry and

sensing alternately using the property that Gaussian distributions can be combined

using multiplication (Stroupe and Balch, 2002, Stroupe et al, 2003).

It is unimodal, it can posses only a single maximum. Therefore only one pose

hypothesis can be represented. So the method is unable to make global localization, and

can not recover from total localization failures (Gutmann and Fox, 2002). Therefore

15

usually, this method is used to track the object’s pose locally, together with another

method, which is responsible for global localization making up a hybrid approach. It

is a very efficient algorithm, giving precise results, whereas, additional computation of

coefficient and covariance can increase the computational time undesirably (Stroupe

et al, 2003).

Figure 2.5. KF method

procedure T imeUpdate(Initial estimates for x̂k−1 and Pk−1)

1: Project the state ahead
x̂−

k = Ax̂k−1 + Buk−1

2: Project the error covariance ahead
P−

k = APk−1A
T + Q

3: return x̂−
k andP−

k

Figure 2.6. The KF Time Update Algorithm

procedure MeasurementUpdate

1: Compute the Kalman gain
Kk = P−

k HT (HP−
k HT + R)−1

2: Update the estimate with measurement
x̂k = x̂−

k + Kk(zk −Hx̂−
k)

3: Update the error covariance
Pk = (I −KkH)P−

k

Figure 2.7. The KF Measurement Update Algorithm

Beliefs are represented by multivariate normal distributions and characterized by

first and second moments, namely mean and covariance. Different notations are used

in the literature, in this section the notations in (Leonard, and Durrant-Whyte, 1991)

are used to keep parallel with the figures. We have two basic states in the cycle, Time

16

update (predict) and Measurement update(correct) as in Figure 2.5. In the Time update

(Figure 2.6), the current state estimation is predicted, and in the Measurement update

(Figure 2.7), it is corrected using the current measurements. The state transition

function should be linear with Gaussian noise. In the first step, the matrices A and

B satisfies this linearity, and uk is the control vector at time k. The algorithm takes

mean and covariance at time k−1, and estimates their values at time k. The predicted

belief is transformed to desired belief in correct state, with the help of Kalman Gain.

Kalman Gain specifies the degree to which actual measurement zk is integrated into

the new estimate. The difference between the actual measurement and the expected

measurement Hxk is the Innovation. Finally, the new covariance is calculated using

the information gain.

If the system model is non-linear and potentially numerically unstable, Extended

Kalman filter (EKF) is used. Here the linearity assumption in state transitions and

measurements is relaxed and these are governed with non-linear functions as shown in

Figure 2.8 and Figure 2.9.

procedure T imeUpdate(Initial estimates for x̂k−1 and Pk−1)

1: Project the state ahead
x̂−

k = f(x̂k−1, uk−1, 0)
2: Project the error covariance ahead

P−
k = AkPk−1A

T
k + WkQk−1W

T
k

3: return x̂−
k andP−

k

Figure 2.8. The EKF Time Update Algorithm

procedure MeasurementUpdate

1: Compute the Kalman gain
Kk = P−

k HT
k (HkP

−
k HT

k + VkRkV
T
k)−1

2: Update the estimate with measurement
x̂k = x̂−

k + Kk(zk − h(x̂−
k , 0))

3: Update the error covariance
Pk = (I −KkH)P−

k

Figure 2.9. The EKF Measurement Update Algorithm

17

2.2.5. Multi Hypothesis Localization

The Multi Hypothesis Localization (MHL) method discussed in (Kristensen and

Jensfelt, 2003) aims to avoid problems caused by using a single Gaussian, by consider-

ing a mixture of Gaussians, thus enabling the representation of any given probability

distribution of the robot pose.

2.2.6. Markov Localization - Extended Kalman Filter

Markov Localization - Extended Kalman Filter (ML-EKF) method is a hybrid

method aiming to make use of the advantages of both methods, taking into considera-

tion the fact that ML is more robust and EKF is more accurate. So this method finds

the location of the agent coarsely by grid based ML and then inside this area uses EKF

to find a more accurate solution (Gutmann and Fox, 2002, Gutmann, 2002).

2.2.7. Fuzzy-Localization

In (Buschka et al, 2000, Saffiotti, 2000, Saffiotti et al, 2002), a different approach

based on fuzzy logic is introduced and implemented in the Sony legged robot league

(AIBOs). This is a grid-based approach that presents uncertainty in terms of fuzzy

membership functions. The range r and the heading θ of the robot are represented in

terms of fuzzy sets. The trapezoidal membership functions are useful in representing

the uncertainty in sensor readings, and bias is useful in recovering from kidnapping

problem. All trapezoidal fuzzy sets, are represented with tuple (θ, Δ, α, h, b), where

θ is the center, Δ is the width of the core, α is the slope, h is the height and b is the

bias, as in Figure 2.10 (Buschka et al, 2000).

Bias is used to integrate the idea that ”the solution could be somewhere else”.

The method does not critically rely on the accuracy of these parameters (Buschka et al,

2000). This is a grid-based approach, and the distance from the observed landmark to

every grid is represented by tuples of the form (r, Δ, α, h). The robot’s position at

time t is represented by a two-dimensional fuzzy grid map Gt, where Gt(x, y) measures

18

the degree of possibility. For sensory updates, the possibility distribution St(x, y|r)
measures the probability of the robot being in (x, y) with the information that the

observed landmark is at distance r from the robot.

Figure 2.10. Trapezoidal fuzzy sets

The approach follows a predict-observe-update cycle. In the observe step, the

sensory information (observed range) is converted to possibility distribution of the

grids, as described in the previous paragraphs. The predict cycle was not properly

implemented until 2002. This step makes use of the odometric information to update

the current position. Previously, this step was implemented like blurring from the grid

to all directions by a maximum amount that could be achieved by the robot (Buschka

et al, 2000). After 2002, the locomotion module of the UNSW team was used by TEAM

SWEDEN, so it could be possible to use odometric information (Saffiotti et al, 2002).

Lastly in the update part this information is integrated into the fuzzy grid map, by a

fuzzy intersection operator (Buschka et al, 2000).

2.2.8. Simple Localization

The Simple Localization (S-LOC) method is a technique which represents every

perception by a sample. The old position estimation is also represented by a sample.

This sample set together with a history based module, is used to estimate the current

position of the robot (Çelik, 2005, Köse et al, 2006).

In S-LOC, assuming that the robot has the previous pose position, the orientation

19

of the sample pose is calculated so that the perception would be on the correct direction.

The position of the sample pose is then calculated on a line through the old position

and along with the same direction assuming that the perception was exact. These

temporary pose samples are calculated for each perceived landmark. In addition to

them, the previous pose is also used as an additional sample.

For each sample pose, the likelihood is calculated. Assuming that the robot’s

actual pose is the sample pose being processed, the Euclidean difference of the per-

ceived landmarks’ positions and their actual positions is calculated. Together with the

confidence of the perception from which that sample pose is calculated, these differ-

ences are used in the calculation of the likelihood of that sample pose. For the sample

that is copied from the previous pose, instead of the confidence of the perception, the

confidence of the previous pose is used.

The likelihoods of the sample poses are used for calculating their weights, and

a new pose position is calculated as the weighted average of these sample poses’ po-

sitions. This weighted average pose position is then used together with the previous

pose estimate’s position to calculate the current pose estimate’s position. The purpose

of not using the weighted average pose directly is to keep a history in order to prevent

fluctuations of the pose estimate and make it more stable. After the current position

of the agent is estimated, the current orientation of the agent is calculated using the

current position estimation and the perceptions.

In the case of having no perception at a certain time, the current pose estimate

could be obtained by decreasing the confidence of the previous pose estimate.

The odometry update process is as simple as updating the pose estimation with

the odometry data. Since only the pose estimation is used from the previous perception

update, no additional update or calculation is necessary.

In a way, S-Loc is similar to MCL as the sample poses are used in the same

way they are used in MCL. The main difference is the selection of these sample poses.

20

In MCL, there is a large number of pose samples, and they are populated according

to their confidences, and randomly mutated for small changes. In S-Loc, new pose

samples are calculated at every estimation, and for each perceived landmark a pose

sample is calculated. This way S-Loc becomes a much lower cost, i.e. much faster,

localization method with an accurate pose estimation capability. The memory used

in S-Loc increases the robustness of the system even further and the big jumps of the

pose estimate are prevented.

2.3. Multi Robot Localization

The use of cooperative robotics is becoming more prominent in many key applica-

tion areas. Multi-robot teams where robots cooperate with each other, and/or with hu-

man beings become popular as their performance are shown to be better, more reliable

and more flexible than single robots, in a variety of tasks (see (Saffiotti, 2002, Ribeiro

and Saffiotti, 2002)) for many papers about cooperative robotics). Unfortunately there

is yet a limited number of applications in this area, and many of these are about toy

problems or limited implementations of applicable problems due to the difficulty of

the problem. Problems in the coordination of the robots, efficient usage of limited

resources and the communication burden discourages researchers to work on real-time

problems with dynamic environments. Robot soccer is such an environment, with its

real-time, complex and dynamic nature, and, implementation of cooperative robotics

to legged robots makes it even more challenging where locomotion (moving the legged

robots) becomes a real bottle-neck.

One of the fundamental goals of this work is to solve multi-robot localization

in an efficient manner. Global collaborative localization in autonomous mobile robots

is a highly challenging task, which is generally more successful than single robot lo-

calization, despite its high complexity and associated communication problems. It is

a challenging field of robotics where many approaches have been introduced. These

approaches are generally based on some well known families of solutions. This problem

is usually solved by localizing each robot in the domain individually. Some works use

the leap frog method where some robots stand still to serve as landmarks for others,

21

and some works only solve the relative localization problem.A useful taxonomy and

brief introduction to some of the most common ones of these approaches are covered

in this section.

Figure 2.11. The classification of multi robot localization methods

2.3.1. Collaborative Probabilistic Constraint-based Landmark Localization

There are several Kalman based approaches in this domain. The work in (Stroupe

and Balch, 2002) uses a Kalman filter based approach to find the global locations of the

robots in the team. In this work, distance and bearing information are used separately,

each in a separate cycle. The observation of the other robot related to the robot itself

is shared and used whenever two robots meet. In the passive localization part, the

robots use each other as landmarks. This work uses action and sensory information as

separate Kalman filters.

2.3.2. Distributed Multi-Robot Localization

In (Roumeliotis and Bekey, 2000, Roumeliotis and Bekey, 2000, Roumeliotis and

Rekleitis, 2004) a Kalman filter based approach is used to combine multi-robot infor-

mation. It is assumed that the robots can detect and identify each other. They have

sensors to detect objects around and their own motion to use in localizing themselves.

The first approach is to use centralized Kalman filter to localize the team. The sec-

ond approach uses M different reduced dimension Kalman filters one for each robot to

22

localize the team. Only if the robot detects others it shares information. When two

robots detect each other they share their estimations. In these works it is claimed that

this is the first multi robot localization approach to explicitly address the problem of

sensor data interdependencies that appear when robots exchange information regard-

ing their pose estimates. The cases where when one robot is stationary, when nobody

has absolute position estimate, and when one has absolute position estimate, are tested

with real robots, and the results are compared with the dead-reckoning error.

2.3.3. Cooperative Monte Carlo Localization

In (Fox et al, 2000, Fox et al, 1999a), probabilistic methods are used to syn-

chronize each robot’s belief whenever detection takes place. In this work the following

assumptions are made:

• Robots can detect and identify each other

• No negative example-robots always can detect each other

• The map is known (indoor environment).

• Each robot can localize itself with action and sensor information which is available

for it, if it can not detect anybody

• The robots can not share information unless a predefined time passes between

two sequential detections.

This work approximates sample sets using piecewise constant density functions

represented by a tree. When a robot detects another, it forms a density tree from

the sample set it produced using the detected data, and then shares this tree with

the detected robot. Each node in the tree is represented with a hyper-rectangular

subspace of the 3-D state space of the robot. Initially all samples are in the root

node. Recursively each node is split until a termination condition is fulfilled. The

more samples exist in a region, the finer-grained the tree representation. After the

tree is grown, the density of each leaf is calculated using the quotient of the sum of

all the weights of all samples in the leaf, divided by the volume of the region covered

by the leaf. This is the maximum likelihood estimation of (piecewise) constant density

23

functions (Fox et al, 2000). Then the samples are transformed to a density tree. Then

these density values are multiplied into each individual sample of the detected robot

n. At the end a refined density for robot n is produced. The same can be applied to

robot m.

procedure Multi robot Localization

1: for each location l do /*initialize the belief*/
Beln(l)← P (L(0)

n = l)
2: end for
3: forever do
4: if the robot receives new sensory input on do
5: for each location l do /*apply the perception model*/

Beln(l)← α P (on|l) Beln(l)
6: end for
7: end if
8: if the robot receives new odometry reading an do
9: for each location l do /*apply the motion model*/

Beln(l)← ∫
P (l|an, l′) Bel(l′) dl′

10: end for
11: end if
12: if the robot is detected by the m-th robot do
13: for each location l do /*apply the detection model*/

Beln(l)← ∫
P (Ln = l|Lm = l′, rm) Belm(l′) dl′

14: end for
15: end if
16: end forever

Figure 2.12. Localization algorithm for multiple robots

In Figure 2.12 (Fox et al, 2000), the update rules for action and observation for

multi robots are summarized. There, Beln(l) represents the belief of a robot for being

in location l. P (on|l) is the perception model such that it gives the probability of

making observation o by robot n, at location l. P (l‘|an, l) is the motion model such

that it gives the probability of reaching to location l‘ by making action an by robot n,

at from location l. When a robot m observes another robot n, its own belief about n

and n’s current belief are used to estimate the new belief of n. The algorithm is based

on the assumptions that there are no negative sightings (robots can always see each

other) and robots can detect each other.

24

2.3.4. Cooperative Positioning System

In (Kurazume and Hirose, 2000), the authors assumed that there is at least one

stable robot, at a time, which serves as a landmark to the moving robots. This is called

Cooperative Positioning System (CPS). This can be used in outdoor environments, the

map need not be known, and the robots do not need other landmarks. They assume

the robots can detect each other and measure the relative distance between themselves

and the detected robots. The robots are divided into two groups, one of the groups

remains stationary and observes the others, while the others move. Then the stationary

ones share the information related to the move of the other group with them, so that

they can localize themselves. Then the stationary group moves, and the other group

stays stable and serves as landmarks. This continues until the robots reach the target

place.

2.3.5. Robust Multi-robot Object Localization Using Fuzzy Logic

The work in (Canovas et al, 2004) maintains a consensus between robots instead

of trade off provided by taking average. Information is combined by Fuzzy information

fusion. It is claimed that fuzzy fusion is better than similar approaches since it provides

a consensus, not a trade off, and it automatically discounts unreliable information. This

is a grid based approach, and the degree of possibility that object is located at grid x

given the available information coming from the sensors and action information is held.

When needed, the point estimate is found by center of gravity. The robots do not share

point estimates but the whole distribution, when they detect each other. The overload

of transmitting this large amount of information is being compensated by converting

cell values to one byte and treating the grid as gray-scale image, then using run length

encoding. The ball grid is sent only if the information is new or with better quality

than last sent.

25

2.3.6. Collaborative Multi-Robot Active Localization

In (Jones and Shel, 2004) ”active localization” issue is considered. In collaborative

multi-agent localization, the robots use MCL to localize themselves. When a robot

detects another robot, the detecting robot shares a subset of its sample set with the

detected robot. In case of active localization, when a robot fails to localize itself, it

calls for help. Another robot which localizes itself accurately, comes to help and helps

the failed one to localize itself. If it can not come on time or help, the failed one tries

to localize itself or calls another one to help. They use high level actions e.g. spin

around itself, stop, etc. The following assumptions are made:

• Robots can detect and identify each other

• No false detection or incorrect identification

• Map is known-indoor environment

• All robots see another robot to update their believes

• The range and bearing are modeled with Gaussian noise

2.3.7. Representing Hierarchical POMDPs as DBNs for Multi-scale Robot

Localization

The Hierarchical partially observable Markov decision processes (H-POMDPs)

are represented as Dynamic Bayesian networks (DBNs) in (Theocharous et al, 2004).

In particular, they focus on the special case of using H-POMDPs to represent multi-

resolution spatial maps for indoor robot navigation. They use basic actions like move

forward, and move backward, and represent pose and heading as nodes.

2.3.8. Ego-Centric Approach

This is a cooperative method for relative localization of mobile robot teams,

where the global positions of the robots are discarded, but every robot in the team

holds separate sample sets for the rest of the team, and estimates the relative positions

of every other robot using a Mixture-MCL based approach (Howard et al, 2003).

26

3. PROPOSED METHODS FOR SINGLE ROBOT

LOCALIZATION

In this work, we developed several single robot localization methods. The most

successful one is the R-MCL which is one of the outstanding methods in this domain.

It is a hybrid method based on the ML and MCL methods. In this chapter, a detailed

description and analysis of the methods are presented. The R-MCL method is tested

on both a simulated environment and on real robots, and comparison of results with

the other outstanding methods in the same domain is also given.

3.1. Geometrical Localization

The geometrical localization method assumes the input data is measured exactly

(does not contain noise), and therefore does not need any error modeling. Our previous

algorithm in (Akın et al, 2001) required at least two landmarks to be seen at any time

to calculate the position accurately. Although it worked also for the one landmark case,

it could not give satisfactory results. This new method is designed to work with one

landmark information which is much more realistic within the new field sizes. So even if

the robot sees more than one landmark, they are treated separately and one-landmark

information is used at each step. The ratio of the distance between the predicted

location and the observed location of the landmark is used to predict the new x and

y coordinates of the robot as in Equation 3.1 and Equation 3.2 (Stroupe et al, 2003).

In these equations, x′ and y′ represent the new x and y coordinates, XL, and YL are

the coordinates of the observed landmark, and XO and YO are the coordinates of the

old position of the robot. As shown in the (Figure 3.1), d is the calculated distance

between the landmark and the old position of the robot, and r is the currently observed

distance between the landmark and the robot.

(XL − x′)/r = (XL −XO)/d (3.1)

(YL − y′)/r = (YL − YO)/d (3.2)

27

The bearing is also found by using the new predicted x and y coordinates. When-

ever new visual data come, the new position is calculated based on the measurement

and the old position. A point between the newly measured position and the old posi-

tion is taken as the new position. This new position is placed between the two positions

proportional to the belief of the robot in them. The assumption here is as follows: The

more you believe in a position the closer you are to that position. This is used to reduce

the effect of inaccurate measurements on the new position. When the odometric data

arrive, the position is blurred among the moved distance and heading. The bearing

is added to the original heading and it is normalized to give the new heading of the

robot. The odometric data consist of the distance moved forward, left and the bearing

of turn. This method assumes that the measurements are exact, or noise is below a

threshold.

Figure 3.1. Calculation of distance to an observed landmark.

3.2. Reverse Monte Carlo Localization Method

As stated in the previous chapter in detail, both the ML and MCL methods are

well-known methods and they have a wide range of usage. Some of the advantages of

the ML and MCL methods are summarized below:

• they can process raw sensor measurements, there is no need to extract special

features,

28

• they are non-parametric, no unimodal distribution like EKF is needed,

• they can solve global localization, and in some instances the kidnapped robot

problem.

ML is a grid based method which allows any distribution to be used to integrate

uncertainty in the measurements. It is flexible, robust and converges fast, but is coarse

and computationally complex. On the other hand, sample based MCL is not as com-

putationally complex as ML, and gives accurate results. It is typically preferred since

its implementation is relatively easy. However, it cannot converge to a position as fast

as ML, especially in the case of an external impact on the position of the robot (such

as kidnapping). In addition, the number of samples to be used is generally kept very

high to cover all the space and converge to the right position. Several extensions have

been made for adaptive sample size usage, but these still do not solve the slow coverage

problem.

This work uses 2-D Grid based Markov Localization. From now on 2-D Grid

based ML is intended when we use the term ML. We do not prefer 3-D Grid based ML

since the state space grows dramatically, and slows down the method. So we exclude

the orientation information in ML. As the grid cell sizes get smaller, the resultant

position becomes more accurate. But since every sensory and action update is applied

to each grid cell, this brings a computational overhead to the robot. Besides since it is

2-D, the orientation information which could be vital in case of inadequate observation

during a real-time application like soccer game, can not be used at all. In addition,

action information can not be used in case of large sized cells, where the actions are very

small compared to the cell size, so it really does not make a significant difference when

applied as action update. This algorithm enables us to make use of the robustness, and

fast coverage from kidnapping facts of ML. Besides by using MCL, we aim to refine

the resultant location, and making use of orientation information, and action readings

as well.

We propose the Reverse Monte Carlo Localization(R-MCL) algorithm to benefit

from the advantages of these two methods while avoiding their disadvantages. The

29

Figure 3.2. The R-MCL working schema

Figure 3.3. The basic representation of R-MCL in the game field

30

algorithm is called Reverse since in the normal MCL methods, first the samples are

thrown, then they converge to a place in the field, then the position is estimated. In

R-MCL, first the place where the samples should converge is found, then the samples

are thrown to find the final position, so the routine is reversed. The average of the

thrown samples gives the final position estimate and the standard deviation gives the

uncertainty of the final position as in the MCL based methods. In the original MCL, the

number of samples is increased to decrease the bias in the result. In R-MCL since we

converge by selecting the cells with maximum probability, the bias is already relatively

low. (Köse et al, 2004, Köse and Akın, 2005, Köse et al, 2005, Köse et al, 2006, Köse

and Akın, 2007).

procedure R−MCL(max grid array, bool ML)

1: if bool ML==TRUE then
2: ML update
3: if ML number of grid cells in max grid array < ThML then
4: MCL init(ML samples)
5: bool ML=FALSE
6: end if
7: else
8: MCL update
9: MCL init(ML samples)

10: if MCL lost()==TRUE then
11: ML reset()
12: bool ML=TRUE
13: end if
14: end if

Figure 3.4. The R-MCL Algorithm

The R-MCL algorithm is given in Figure 3.4. Here, bool ML is a boolean variable

indicating whether or not to call ML. If it is TRUE, ML, otherwise the MCL module

is active. The ML reset() function initializes all grid cells with equal probability that

adds up to 1 for all cells. ML update works like the normal ML sensory and action

update as stated in the previous chapter. After each step the cells with non-zero

probability are put into a data structure called max grid array. If the number of

cells in this structure is smaller than a threshold called thML, this means the cells have

converged to a coarse location in the field. The MCL init() function is then called with

samples generated by ML as input. Instead of generating random samples, we produce

31

smaller-sized grid cells from the chosen non-zero weighted grid cells.1 The weights for

each sub cell which is a member of the sample set of MCL now, are calculated next,

using the sensory and action readings, and normal MCL updates are done as stated

in the previous chapter in detail. Since bool ML becomes FALSE, ML is not called

anymore, and MCL update function is used. If the uncertainty in MCL is below a

threshold ThMCL, this means either the cumulative error increased so much that the

robot feels totally lost, or it is kidnapped. The MCL lost() function then returns the

value TRUE, so the ML reset() function which initializes variables of ML module,

such as grid cell weights and max grid array is called. In addition, bool ML becomes

TRUE, so in the next step the ML module would be active.

At each iteration the odometric data (Δx, Δy, Δθ) are used to update the pose

which represents the current position of the robot, and the weights of the grid cells as

given in Figure 3.5.

procedure ML−Motion(Pose, G, a)

1: update Pose using motion parameters
2: Posex = Posex + Δx× sin(Poseθ) + Δy × cos(Poseθ)
3: Posey = Posey + Δy × sin(Poseθ)−Δx× cos(Poseθ)
4: Poseθ = Poseθ + Δθ
5: update wi where Pose is in Gi

6: return Pose, G

Figure 3.5. The ML Motion Update Algorithm

procedure ML− V ision(Pose, G, o, m)

1: G′ = 0
2: for i = 1 to n do
3: wi = vision update model(Gi, o, m)
4: if wi ≥ Threshold
5: G′ = G′ + (Gi, wi)
6: end for
7: normalize w
8: return G′

Figure 3.6. The ML Vision Update Algorithm

The grid cells with weights wi ≥ Threshold are stored in max grid array (G′)

and returned from ML-VisionUpdate algorithm given in Figure 3.6. The total number

1The size of those sub cells can be made adaptive to be used as adaptive sample set size.

32

of cells is n. The algorithm takes grid array G, map m, observations o, and old pose

Pose. If the number of grid cells in G′ ≥ MLTh as mentioned in the R-MCL algorithm

in Figure 3.4, then the MCL Vision Update algorithm is used to update the sample

weights as in the MCL algorithm given in Figure 2.4. The grid cells in G′ are divided

into smaller cells and the cell centers of these sub cells are added to the sample set

as new samples. Currently the number of samples are fixed, but adaptive number of

samples could also be used to decrease the computational complexity, and memory

requirements, and make the algorithm faster. These samples are then sent to the MCL

module, and until the robot is kidnapped and gets lost, the MCL module works with

this sample set.

In the implementation of R-MCL in this work many vision update models based

on the sensor model are used. In Figure 3.7 a simple model used in the tests is pre-

sented. In this figure, di is the absolute difference between the calculated and the

observed distance between the robot’s last calculated position and the observed land-

mark. In the MCL method, not only the distance, but also observed and calculated

angle measurements are used to calculate the probability. Different models were anal-

ysed and lastly, a similar but more complicated model based on a sigmoid function

instead of simple rectangular model (Figure 3.7) is used in the implementation, since

it provides higher accuracy in MCL.

Figure 3.7. The ML vision update model

33

The MCL method differs from the ML module by the motion model it uses. In

Equations (3.3), (3.4) and (3.5) the new (updated) coordinates and orientation of the

pose estimate is calculated.

PE∗
x = PEx + Δx× sin(PEθ) + Δy × cos(PEθ) (3.3)

PE∗
y = PEy + Δy × sin(PEθ)−Δx× cos(PEθ) (3.4)

PE∗
θ = PEθ + Δθ (3.5)

where PE∗
x, PE∗

y and PE∗
θ are the updated x-coordinate, y-coordinate and orienta-

tion of the pose estimate; PEx, PEy and PEθ are the x-coordinate, y-coordinate and

orientation of the pose estimate before the odometry update; Δx, Δy and Δθ are the

odometry data giving the change in the x-coordinate, y-coordinate and orientation.

Notice that, in ML module, 2-D grids are used, so that the orientation information

is not taken into consideration, whereas the samples used in the MCL module, also have

orientation, so that this valuable information coming from the observation of beacons

could be used in position estimation. Especially in cases, where there is high sparsity

and noise, orientation measurement which is more reliable than distance measurement

plays an important role in position estimation.

This algorithm enables us to make use of the robustness, and fast coverage from

kidnapping facts of ML. Besides by using MCL, we aim to refine the resultant location,

and making use of orientation information, and action readings as well.

3.3. Fuzzy R-MCL

In this method, the uncertainty model μ1 which is used in both ML and R-MCL

is replaced by the model μ2 based on a fuzzy membership function in Figure 3.8. The

old model was simple and fast but it was not flexible enough to improve success in high

sparsity and noise. Especially if the cell size is kept high as in (Köse et al, 2004, Köse

and Akın, 2005) -30 cm- relative to the works in (Gutmann and Fox, 1998) -5 cm-

34

a more flexible model is needed to weight the probability of being in that cell. It is

not preferable to give same weight to every point in the cells of big sizes, and to the

samples inside these cells. Besides fuzzy membership functions also allow us to adapt

parameters due to noise and sparsity level, and add bias, when necessary to cope with

kidnapping problem.

Figure 3.8. The fuzzy membership functions

Figure 3.9. The trapezoidal membership function

In both models, di represents the difference between the observed relative distance

from robot to the currently observed landmark, and the calculated distance from the

current cell center to the currently observed landmark. This enables us to weight the

samples according to their fitness to the observation and odometry. Several membership

functions (e.g. trapezoidal) and different sizes (e.g. twice the cell size) were tested.

The triangular model μ2 is presented in Figure 3.8b. Detailed information about Fuzzy

R-MCL with triangular model is found in (Köse et al, 2005).

In Figure 3.9, the trapezoidal model is presented. The absolute value of the

distance di is taken. The threshold th represents the limit value where the cell will

get weight 1. The di values between th and cell size get values calculated from the

35

trapezoidal model, and the rest of the cells get 0. There is no bias in this model. The

results of this model are presented in the Tests and Results section.

3.4. Tests and Results for Single Robot Localization

In this study, we first compared R-MCL with several methods which are developed

to be used in robot soccer, by using a well-known data set in an offline manner. Then

we tested the R-MCL method and other methods developed for our soccer team on

the real robot, based on a challenging scenario, with varying light conditions. These

real-time tests were implemented using current field conditions to test the success

and robustness of the method in the real environment, since simulation results may

underestimate the problems and bugs related to real life conditions.

3.4.1. The Testing Environment

This work is a part of the Cerberus Team Robot soccer project, and aims to

localize the legged robots in the soccer field globally within the rules of Sony Legged

Robot League. The Sony Legged Robot League is an international robot competition

that has been launched within the RoboCup initiative (Robocup Organization, 2005,

Sony Four-Legged Robot League, 2005). In robot soccer, teams of robots, that are

capable of seeing and moving, play matches against each other for fixed time periods,

and the team with the highest goal score win the match like in real soccer. In order to

do this, the player robots must detect their location, the goals, the ball, the members

of their team and the opponent team members (optional for high level planning), and

place the ball in the opponent team’s goal to score. A robot is typically expected to

find its own location using the artificial landmarks called beacons in the field, and then

use this information to find the location of the ball and goal. So localization is a vital

problem for robot soccer.

There are several limitations and assumptions related to the rules of the Robocup

(Robocup Organization, 2005). The locations of the beacons are given as prior infor-

mation to the robots. The robots can identify the beacons and estimate their relative

36

distance to these beacons using their cameras with some noise due to the imperfect

vision system and dynamic nature of the world around. With a well developed loco-

motion module, also odometric data are available to the robot. Consequently, a robot

can calculate to which direction relative to its current heading, and how much it has

moved during a specific time interval. When this information is not available, a motion

model may be used for estimating this, or it may be totally discarded.

The testing environment is the soccer field which has standards specified by the

Robocup legged robot league technical committee. The data used in the tests were

collected using the field specifications of 2001 (Figure 3.10). The background is green

with white strips showing the half line and penalty line, and covering walls are white.

There are six artificial landmarks called beacons which are uniquely colored and have

predefined position, size and colors to aid the robot to localize itself. There are two

goal areas which are blue, and yellow. Recently, the size of the field was enlarged,

Figure 3.10. The old soccer field

which allows working with larger number of robots, but adds more uncertainty to the

observations since now the landmarks are further away from the robots and it is harder

to observe the distance to them accurately as the distance increases. In addition, two

of the beacons, and the side walls are removed, to make the field look more like the

real soccer fields (Figure 3.11). These changes make the problem more challenging.

37

Figure 3.11. The new soccer field

3.4.2. Sony AIBO Robots

The single robot localization algorithms are tested on the ERS 210 type robot

dog AIBO as seen in Figure 3.12 that is a commercial product of SONY (AIBO, 2005).

These are quadruped legged robots which have an onboard CMOS camera with an angle

of view 57.6 degrees in horizontal, and 47.8 degrees in vertical axis. The resolution of

the camera is 176 x 144 pixels. The robot also has an IR sensor which work in the

range 10-90 cm, and wireless LAN card that allows wireless communication between the

robots. The robots used in the competition are dark gray with blue and red uniforms,

which allow the other robots to detect them and decide whether they are opponents

or teammates. Unfortunately identification of individual robots is not trivial, and

therefore could not be implemented and is not currently used in localization.

Since 2004, the new product ERS 7 which has higher computational and physical

power, is used by most of the soccer teams (Figure 3.13). The experiments on our

multi robot algorithms were done on ERS 7 robots (Section 4.2).

38

Figure 3.12. SONY AIBO ERS 210

Figure 3.13. SONY AIBO ERS 7

3.4.3. Offline Tests

The experimental data for offline testing is provided from (Gutmann and Fox,

2002), where it it used for comparison of several well-known localization methods in

literature. This now de facto standard set of test data is based on the records of the

test runs of Sony’s ERS 210 quadruped robot (AIBO) on the Robocup soccer field.

The raw data are produced by running the manually manipulated robot on the field

that is shown in Figure 3.14 (Gutmann and Fox, 2002) on a figure of eight like path

for almost an hour, stopping the robot on several predefined points called markers,

recording the perceptions of the landmarks and odometry readings during this run.

The tests aim to analyze accuracy and robustness in case of noisy and sparse data, the

time to recover from the kidnapping problem, and speed of the algorithms by measuring

the time required for processing the frames.

39

In this work, the R-MCL algorithm is tested against the other outstanding

methods whose details could be found in (Gutmann and Fox, 2002, Kristensen and

Jensfelt, 2003). The results of the methods in (Gutmann and Fox, 2002) were pro-

vided by Gutmann. The algorithm is also tested against the S-Loc, and SRL∗ (Kaplan

et al, 2006) algorithms which were implemented to be used in the same project in our

laboratory. SRL∗ is shown with an asterisk to distinguish from the SRL implementa-

tion in (Gutmann and Fox, 2002), which had minor differences, and therefore different

results in the tests.

Although the algorithms can make use of the goals and field lines to localize,

the test data do not include this information. Additionally, although more than one

beacon could be seen in one perception in the test data, since this is a very rare case

in real games, it is not considered in the R-MCL tests. R-MCL is not specially trained

and optimized for the test data, whereas the ones in (Gutmann and Fox, 2002) are, so

this also affects the final success rates.

Figure 3.14. The soccer field of the test environment

3.4.3.1. Offline Testing Tool. For the offline experimental study, the offline testing

tool developed in our laboratory is used. The user can choose one of the four tests

40

described in the next section, the data set, and one of the available methods which

should be previously embedded to Cerberus Station code, which covers the offline codes

of Cerberus Team. The user can also run the algorithm several times, and for different

time durations in batch mode. The visual interface is shown in Figure 3.15.

Figure 3.15. The offline testing tool

There are several display windows at the bottom of the visual interface, for dis-

playing the distance error, certainty and the estimated positions of the robot at each

predefined marker. The perceptions and estimated positions are also displayed visu-

ally. Besides there are several special purpose windows for special methods, like the

grid window for RMCL, and the ME window for SLOC.

3.4.3.2. Noisy Data Test. In the noisy data tests, the percentage of noise level on

the raw data is increased from 0 percent to 80 percent by 10 percent increments in

every data set. The number of noisy samples is increased to assess the robustness and

accuracy of observed methods in case of high noise levels.

In Figure 3.16, the error rates of the R-MCL, S-Loc, and SRL∗ are presented in

41

case of noisy data. The results of the previous versions of R-MCL can be found in

(Köse et al, 2004, Köse and Akın, 2005, Köse et al, 2005). The comparison of R-MCL

with other outstanding methods in the domain are presented in Figure 3.18. The error

rates of the tests are calculated from the distance between the expected location of

robot when it reaches a marker, and its exact location (the location of the marker).

Note that, there are also unavoidable errors in the manual measurement of the exact

locations of robot, for the evaluation of the test cases, due to experimental problems

reported by the data providers.

Figure 3.16. Results of the noisy data tests-1

In Figure 3.17 the error rates of the R-MCL, Geometric Localization (GEO), and

Fuzzy R-MCL (FUZZY) are presented. R-MCL and Fuzzy R-MCL show almost similar

behaviors, and outbeat the GEO method which is simple, fast but not robust to high

noise, since it assumes perfect data.

42

Figure 3.17. Results of the noisy data tests-2

The R-MCL algorithm shows a good overall performance. At the very high noise

levels which are not realistic, its performance decreases, due to the ML module which

is robust but coarse. As mentioned previously, the R-MCL algorithm is grid based. In

the referenced works typically the cell size is chosen as 5 cm. However, in this work,

it is taken as 25 cm for the R-MCL, to increase the speed. The triangulation method

which is considered in case of observing two or more landmarks is also not used in

the implementations. Using a smaller cell size and triangulation would decrease the

error rate considerably, but the current case is more realistic. The bigger cell size is

advantageous in fast recovery from kidnapping, and makes the algorithm quite fast by

decreasing the number of cells drastically, but using the odometric data for big cells is

useless. The odometric data are in terms of millimeters in every frame, and it is applied

to cell centers, so unfortunately it is impossible to update the cell confidence correctly,

or detect if the robot passes from one cell to the other by odometry. So odometric data

are useful mostly in the MCL part of R-MCL. Unfortunately odometry is really vital

especially in the sparse data case where the data are very rare.

In the way noisy data sets are prepared for the experimental study, only the

false perception of the beacons is modeled, which constitutes only a small part of the

noise problem and occurs infrequently (Gutmann and Fox, 2002). The main problem

43

Figure 3.18. Results of the noisy data tests-3

with the perception observed in soccer games was actually the noise in the distance

estimation, which can be better tested in real time tests discussed in Subsection 3.4.4.

Different parameter sets for R-MCL were also tested to find the optimum choice.

First of all, different thML values were compared. The results of the noise tests for

different thML values such as 10, 15 and 20 are compared. The value of 15 gives the

best result as seen in Figure 3.19.

In these implementations, static samples are used to cover the field better with

smaller number of samples. In Figure 3.20, random and static samples are compared in

terms of noise. Random samples are also drawn from the selected cells. Static samples

give slightly better results.

3.4.3.3. Sparse Data Test. In sparse data tests, samples are deleted from the original

raw data, in a predefined sequence, (beyond the robot’s awareness). The sparsity

increases from 1/1 to 1/256, by 2−n of sparsity increases in every data set. As the

frequency increases, the behavior of the selected methods is observed.

44

Figure 3.19. Results of the noise tests for different thML

The error rates of R-MCL, S-Loc, and SRL∗ are presented in case of sparse data

(Figure 3.21) It should also be noted that S-Loc is using the ME output instead of

using the perception data directly, which is an important advantage especially against

sparsity. Also note that, R-MCL showed better performance than SRL∗ although it

uses fewer samples than SRL∗ even in the worst case. The comparison of R-MCL with

other outstanding methods in the domain are presented in Figure 3.22. It performs

well up to an acceptable sparsity level. In the very high levels of sparsity which can

not be normally encountered in real games and experiments, its performance is not as

good as others. This is because it is not using a memory and uses small amount of

samples.

In Figure 3.23 the error rates of the R-MCL, Geometric Localization, and Fuzzy

R-MCL are presented. R-MCL outperforms others. GEO shows a satisfactory behavior

although it does not use any uncertainty model, or samples. Fuzzy R-MCL is beaten

by the others.

In Figure 3.24, the results of sparsity tests for different thML values such as 10,

15 and 20 are compared. The value of 15 gives the best result, as it does in the noise

tests.

45

Figure 3.20. Results of the noise tests for comparing the static vs. random samples

In Figure 3.25, random and static samples are compared in terms of sparsity tests.

Random samples are also drawn from the selected cells. Static samples give slightly

better results, as observed in the noise tests.

Adaptive thresholds, adaptive number of samples and grid sizes, for different

levels of noise and sparsity could be used to increase success. Notice that the algorithm

has an error rate which is not greater than the outstanding methods in the domain up

to a high error and sparsity level, which are too high to be realistic, indeed. So the

error rate of the method is acceptable for real life applications.

3.4.3.4. Recovery from Kidnapping Test. In the third experiment, the ability of the

methods to solve the kidnapped robot problem is investigated. In this problem, the

robot is displaced without being aware. Since, its beliefs are wrong, it should reset

and localize itself from scratch. In this experiment, the average time the methods need

for re-localizing the robot after it has been kidnapped is computed over 22 kidnapping

tests. The results are shown in Figure 3.26 where the values are in seconds. According

to the experimental results, R-MCL recovers from kidnapping faster with the help of

its ML part.

46

Figure 3.21. Results of the sparsity tests-1

In Figure 3.27 the kidnapping test results of the R-MCL, Geometric Localization,

and Fuzzy R-MCL are presented. R-MCL and Fuzzy R-MCL show similar behaviors

and a very high success rate. GEO has a high error rate and, is beaten by the others.

3.4.3.5. Speed Test. In this experiment, which is carried on an ERS 210 robot, the

average processing time of the methods are tested. In order to have a fair comparison,

the only active process in the memory is the localization process. The average pro-

cessing times and the number of processed frames per second are calculated for each

method over the complete raw data set that contains 51523 frames ten times. For SRL

and R-MCL, the processing time interval is the average of each frame’s time intervals

for the motion and vision updates for localization module; whereas for S-Loc, the time

intervals include motion and vision updates for the ME module as well. As shown in

Table 3.1, where results are in microseconds, the total processing time for S-Loc and

ME is much less than both SRL and R-MCL whereas R-MCL is more than twice faster

than SRL. R-MCL uses big grid sizes and picks up samples only when the number of

good grids is below a threshold, so the total number of processed grids and samples

are less than that of SRL even in the worst case. This increases the computation speed

and decreases the memory needed to hold the samples, but accuracy is also lower.

47

Figure 3.22. Results of the sparsity tests-3

Table 3.1. Results of the speed test on real robot (μsec.)

S-Loc SRL∗ R-MCL

Processing Time 858 10484 4942

The experiment is also tested on ERS 7 robots. These robots have higher com-

putational power than ERS 210 robots, as stated before. The results are presented in

Table 3.2, where results are in microseconds, again the total processing time for S-Loc

and ME is much less than both SRL and R-MCL where as R-MCL is more than twice

faster than SRL.

Table 3.2. Results of the speed test on real robot (μsec.)

S-Loc SRL∗ R-MCL

Processing Time 155 1839 923

In Table 3.3 the results on PC for R-MCL, Geometric Localization, and Fuzzy R-

MCL are presented. Fuzzy R-MCL shows better performance than R-MCL, and both

have a good success rate. GEO has a very good timing, since it uses a very simple

working schema, and do not use any samples or grid cells at all.

48

Figure 3.23. Results of the sparsity tests-2

Figure 3.24. Results of the sparsity tests for different thML

Table 3.3. Results of the speed test on PC (μsec.)

GEO FUZZY R-MCL

Processing Time 181 284 383

49

Figure 3.25. Results of the sparsity tests for comparing the static vs. random samples

3.4.4. Real Time Tests

In order to observe the performance of the methods in the real environment

several real-time tests were conducted. The field used in these tests is the new field

which has four beacons, and is enlarged by almost 1.5 times the old field used in the

offline tests. The white walls around the field were also removed, so that the robot

could detect any object in the lab around the field and might be confused. Besides

the color table of the robot is an older one which was trained under different lighting

conditions, and the lighting conditions of the test field varied due to variations in day

light which could not be avoided. The scenario of the tests was taken from a localization

challenge of Robocup games. There are six markers on the field, four of them placed

nearby the beacons and two on the mid-field line, and the robot should visit all of these

markers in a predefined sequence. In Figure 3.28, the markers are represented by light

colored rectangles on the field (Although they are only points in the field their sizes

are exaggerated to be seen clearly in the picture). Each time the robot is started from

the center of the field. Whenever its distance to the current marker in the visiting

list is below a threshold (10 cm in the current tests), and it is confident enough, the

robot stops and wags its tail. During the tests, while the robot is following its path,

it becomes kidnapped many times when it goes out of the field and is placed on the

50

Figure 3.26. Results of the kidnapping tests-1

nearest position in the field. It was also kidnapped and placed on the opposite side of

the field many times on purpose to measure its robustness against kidnapping. These

facts besides problems due to the manual measurement and data collection increased

the overall error unavoidably.

Each test is performed ten times and the average and standard deviation of the

error in distance is calculated. Since the robot stops for every marker and is started

manually again, it was not suitable to measure the time. So only the error in distance

is measured in these tests.

We ran the four algorithms S-Loc, SRL∗ and two versions of R-MCL, according

to this scenario. All of the parameters of R-MCL1 and R-MCL2 are the same with the

offline tests, except thML which is 15 cm in the offline tests and R-MCL1, but 30 in

R-MCL2. Since the field is larger, the field is represented with more cells now, so it

is logical to increase the thML to improve the success. This also increases the number

of samples used in the MCL part, but it is still in the acceptable range. In the tests,

SRL∗ could not converge to the points in the limited time duration so its results are

not taken into consideration. In these tests, R-MCL outperforms S-Loc and another

version of itself, as seen in Figure 3.29.

51

Figure 3.27. Results of the kidnapping tests-2

Figure 3.28. Real time test field with markers

52

Figure 3.29. Results of the real time tests with six markers

53

4. COLLABORATIVE REVERSE MONTE CARLO

LOCALIZATION

Multi-robot localization is a newly developing area in the robotics domain. In

multi-robot localization, the aim is to decrease the localization error by using the shared

perception and estimations between the team members. In this work a novel multi-

robot localization method is proposed. Collaborative Reverse Monte Carlo Localization

(CR-MCL) is a collaborative method based on R-MCL method. This method is tested

both in the simulated environment and on real robots, and the results are presented in

this chapter.

4.1. Collaborative Reverse Monte Carlo Localization Method

The proposed collaborative method is based on the R-MCL self-localization method

described in Section 3.2. Each robot in the team is assumed to be capable of self-

localization using R-MCL by means of its sensors and actuators. But the accuracy and

speed of this self pose estimation may vary due to the environmental and intra-robot

conditions. In R-MCL, each robot has its local grid cells to estimate its own position.

When the certainty of the robot about its location increases, it uses a sample set based

on this grid set, initially. Since it is based on R-MCL, also in CR-MCL, when two or

more robots encounter each other, they represent the position of the robots they de-

tected in terms of grid cells, too. Each robot m that detects another robot n, updates

its local grid cells using the relative distance and orientation it observes between itself

and n, to produce the new shared grid cells estimating the position of n. For every

possible location l (in our work grid cell centers),Belnm(L = l), the belief of robot m

in robot n’s being in location l is calculated (Equation 4.1). The calculation uses the

following

• the probability of m observing n in the location l, while itself being in the possible

locations l′, and

54

• the detection information rm, which presents the relative information between m

and n observed by n, and sent to n

n then integrates these new grid cell beliefs coming from all m into its own grid set

as given in Equation 4.2 based on (Fox et al, 2000). Here the prior probabilities are

calculated with similar models that are used in ML method of the R-MCL (Section

3.2).

Belnm(L = l) ←
∑

for each l′
P (Ln = l|Lm = l′, rm) Belm(L = l′) (4.1)

Beln(L = l) ← Beln(L = l)
∑

for each m

Belnm(L = l) (4.2)

To describe the algorithm better, we present a two robot scenario on the test field.

In Figures 4.1 and 4.2 the robot observes two beacons simultaneously, and the grid cell

probabilities due to these observations are presented. In the figures light colored cells

are the ones with the highest probability. The rest of the cells have negligible small

probabilities and are represented with dark colors. In Figure 4.3 the resultant grid

cells to be used by the robot to localize itself, are presented. These are formed by the

integration of the first two sets based on the observations. Here the robot uses R-MCL

to self-localize itself.

In the two robot version of this scenario, in Figure 4.1, robot1 sees one beacon.

In Figure 4.4 robot2 also sees one beacon. Both robots form local grid sets representing

their position estimations using these observations. Then robot2 sees robot1. Using its

local grid set, and the relative distance and orientation it observed between itself and

robot1, robot2 produces a new shared grid set representing its estimation on robot1’s

position (Figure 4.5). It sends these cells to robot1. In Figure 4.6 robot1 integrates

these to its local grid set, to localize itself as if it sees two beacons as in Figure 4.3.

The CR-MCL algorithm is presented in Figure 4.7. This is a modified version of

the R-MCL algorithm. Whenever a robot observes another robot it produces a shared

55

Figure 4.1. robot1 sees one beacon

Figure 4.2. robot1 sees a second beacon

56

Figure 4.3. robot1 localizes itself with using two beacons

Figure 4.4. robot2 sees one beacon

57

Figure 4.5. robot2 estimates robot1’s location

Figure 4.6. robot1 localizes itself integrating the shared and the observed information

58

grid set. Observations are represented by grid cells instead of samples since observations

are not very accurate. This approach is more robust, and has less computational and

communication cost, since the same information is represented by fewer points. If the

robot is very accurate about its place and using samples to localize itself, it uses the

most recently updated grid set it used to produce its shared grid set. If the observed

robot is very accurate about its location (it is in MCL mode) it does not use the shared

information since it is not as accurate as its current estimations.

procedure CR−MCL(local max grid array, shared grid array, bool ML)

1: if bool ML==TRUE then
2: ML update
3: integrate(local max grid array, shared grid array)
4: if ML number of grid cells in max grid array < ThML then
5: MCL init(ML samples)
6: bool ML=FALSE
7: end if
8: else
9: MCL update

10: MCL init(ML samples)
11: if MCL lost()==TRUE then
12: ML reset()
13: bool ML=TRUE
14: end if
15: end if
16: update(shared grid array)
17: send(shared grid array)

Figure 4.7. The CR-MCL Algorithm

Using the shared information, we aim to increase the accuracy of pose estimations

of the whole team. Unlike other works in the same domain, if the uncertainty of

observation or the uncertainty of the detector robot about its own location is too high,

then this observation is not used by the detected robot, to filter out useless shared

data which will increase its error and uncertainty. By sharing only information with

relatively high certainty, we expect to improve success, decrease computational and

communication cost, and increase the benefit taken from the collaboration. If the

detected robot is too confident about its location, it does not accept shared data, since

shared information is not very accurate, and communication is costly. In addition,

59

not the whole grid set, but only the chosen grid cells with the highest certainties are

transferred as shared grids. This is also expected to decrease transfer and calculation

costs. e.g. if the whole test field is represented by 100 grid cells, and if a robot

with considerable certainty uses only 20 of them with the highest certainties, then the

number of new shared grid cells will be at most 20 whose calculation and transfer will

be considerably lower than 100 cells.

4.2. Tests and Results for Multi-Robot Localization

To verify the predictions, the method was tested on several AIBO ERS 7 robots

both using a simulator, and in the real field, which is the official field of Sony 4-

legged League (Sony Four-Legged Robot League, 2005). The field is the new field

which is larger and has only four beacons and no white walls which makes it more

challenging. Detailed information about the simulator, field, and robots is given in

Section 3.4.3. Some of the selected tests which cover the problem best are presented

here. The input data used for localization is the same as the single robot case, such

as the relative distance and orientation of robots to the beacons, observed using their

onboard cameras. In the tests, the observed robot is movable and additionally uses

odometry for localization. The observer robots are kept stationary, for simplicity.

In the simulator tests, there is no additional noise in the input data, but the

robots suffer from lack of adequate information for localization. The observed robot

moves 20 steps in the half field. Two stationary observers can observe the beacons and

the observed robot at each step, localize themselves and send the estimated position of

the moving robot. It uses shared data and its own observations to localize itself. The

robots can observe at most two beacons, as stated in Table 4.1. The test results in

Figure 4.8 show that the best results are obtained when the moving robot can observe

two beacons. The tests where it can use shared data containing two beacons show

similar success. In the tests where data from one beacon is observed or shared, the

success rate is almost as half as the two beacon case. In the worst case the robot is blind

(can not see or share anything) and can only use dead reckoning from its odometric

data.

60

Table 4.1. Test descriptions

Test ID Test Description

Detected Robot Observer(s)

T1 Robot can see 1 beacon 1 observer can see 1 beacon

T2 Robot can not see 2 observers, each can see 1 beacon

T3 Robot can not see 1 observer, can see 1 beacon

T4 Robot can not see 1 observer, can see 2 beacons

T5 Robot can not see no observers

T6 Robot can see 1 beacon no observers

T7 Robot can see 2 beacons no observers

Figure 4.8. Test results in the simulator

61

In the real field tests, four stationary observer robots are placed equidistant to

each other, and one meter away from the upper half of the field, dividing the whole field

evenly. The observed dog is placed on four points on a path equidistant to observers

and the beacons, as in the simulator tests (Represented by ’+’ on the field in Figure

4.11). Unlike them, the observed robot is always blind. There is high vision error due

to imperfect lighting, and other irrelevant objects in the field and its surroundings,

e.g. posters on the walls, besides the actual positions of the robots on the field are

measured manually, which inevitably increases localization error. As seen in Figure

4.9, the first four results are the estimated positions of the observed robot calculated

by robot R0, R1, R2, and R3, without collaboration. The last one is the result of the

collaborative R-MCL. It is significantly better than the rest, including the best (R3),

and average of the non-collaborative estimations.

In the second set of tests, the observers are placed 1.5 meters away from the

upper part of the field. The location of the observed robot is the same with the first

set of tests. In this part of the field the lighting conditions were better, and the robots

can observe the beacons better so the results were better then the first set of tests.

However, as expected the relative ratio between the results were almost same with

the first set of tests, and CR-MCL has the best result again (Fig. 4.10). These tests

prove that regardless of the distance between the observers, and the observed robot,

CR-MCL method works successfully, and outperforms non-collaborating agents.

The real world tests are also repeated in the simulator under the same conditions

but without additional noise. So the perception and action information coming to the

robots are perfect. In Figure 4.12, the observed robot is placed 50 cm away from the

top of the field and the observers are placed 100 cm away from the top of the field. In

this test, as in the real field tests, CR-MCL performs better than both the best and

average values.

62

Figure 4.9. First set of test results in the real field

Figure 4.10. Second set of test results in the real field

63

Figure 4.11. The real test field

Figure 4.12. The test results in the simulated field-1

64

5. DISCUSSION

In this work we studied the global localization without a prior position informa-

tion problem. This is known to be a very hard task for autonomous mobile robots.

We have chosen Robot Soccer as a test bed for our proposed solutions. This is a chal-

lenging test bed for the applications designed and optimized for autonomous mobile

robots and requires fast, and accurate methods. Here, the perceived sensor data are

often inadequate, imprecise and even distorted as a consequence of low computational

complexity and memory requirements.

In this work, we studied several well known methods in this domain, their bene-

fits, and failures. The simplest localization method depending on the range and bearing

data is triangulation, which uses geometry to compute a single point that is closest to

the current location. But in real world applications a robot can never know where it is

exactly because of the uncertainty in its sensors, and the environment. Consequently,

several different approaches which estimate the position of robot probabilistically were

introduced to integrate this uncertainty into the solutions. Built on top of ML and

MCL, the R-MCL algorithm is proposed as a fast, reliable, computationally inexpen-

sive and resource efficient solution to the global localization problem, in environments

such as the Robocup Games and the Technical Challenges which require very high

accuracy and speed, robustness against noise, and insufficient data, and fast recovery

from kidnapping.

In Table 5.1, the well-known single localization methods analyzed in this work

are categorized according to several useful criteria. Comparisons of several methods

including Kalman Filter (KF), Markov Localization (ML), Monte Carlo Localization

(MCL), Sensor Resetting Localization (SRL), Adaptive MCL (A-MCL), Mixed-MCL

(M-MCL), and Markov Localization-Extended Kalman Filter (ML-EKF) are based on

the work in (Gutmann and Fox, 2002). The rest of the methods that are analysed in

this table are Multiple Hypothesis Localization (MHL) (Kristensen and Jensfelt, 2003),

Kullback-Leibler Distance-Sampling (KLD-S) (Fox, 2003), Simple Localization (SLOC)

65

Table 5.1. Comparison of Single Localization Methods

Method Capability Accuracy Speed Memory Robustness Fast

of usage to noise recovery

global from

localization kidnapping

KF no H H L L L

ML yes L** M H** H H

MCL yes M** M H** M M

SRL1*** yes M** M M** M L

SRL2*** yes M** M M** L H

A-MCL yes M** M M** XH H

M-MCL yes M** M M** H H

ML-EKF yes M** M H** H H

MHL yes M** M H** H H

KLD-S yes M** M H** H H

SLOC yes M** M H** L M

Fuzzy* yes L** M H** H H

GEO yes H** H L L L

R-MCL yes M** H H** H H

*Fuzzy method is the method implemented in (Köse et al, 2003).

** These are grid based and sample based methods. So accuracy and memory usage

changes with the cell size, and the number of samples used. But they still remain in

acceptable ranges.

***SRL1 and SRL2 differ in their wish to accept additional samples on each noisy

observation. This leads fast recovery from kidnapping but increase noise and decrease

accuracy.

66

(Çelik, 2005), Fuzzy Localization (Fuzzy), Geometrical Localization (GEO), and R-

MCL. Detailed information about these methods could be found in Section 2.2. The

comparisons have relative values as H for high, M for Medium and L for Low. First

comparison item is the capability of global localization. Among these methods only

KF can not localize globally. Accuracy is the accuracy of the resultant position. If

the method is a grid based method, the accuracy is evaluated as Low and if it is

a sample based approach, its accuracy is evaluated as High, since higher accuracy

could be gained using samples rather than large sized grids. Unfortunately using large

number of grids and samples increases memory usage. These also affect speed, since

as the number of samples or grids which should be integrated in the computations

increase, also computational time increase. So KF which do not use any samples

or grid cells have high speed and low memory usage, and is very accurate in local

localization. Unfortunately it fails in global localization, and kidnapping, as stated

before. Generally, sample and grid based methods are robust to noise, when they use

enough number of samples or grid cells. Adaptive methods could have lower costs, and

high accuracy as their sample sizes differ in different cases. But the parameter sets

should be carefully chosen to obtain the best results. According to the criteria in Table

5.1, R-MCL is one of the best methods in the literature. Its success could be increased

by using adaptive number of samples and grid cells.

In Table 5.2, the multi-robot localization methods which are studied in this

work are compared according to several criteria. These methods are Collaborative

Probabilistic Constraint-based Landmark Localization (CPCBL) (Stroupe and Balch,

2002), Representing Hierarchical POMDPs as DBNs for Multi-scale Robot Localization

(POMDP) (Theocharous et al, 2004), Robust Multi-robot Object Localization Using

Fuzzy Logic (Fuzzy) (Canovas et al, 2004), Cooperative MCL (CMCL) (Fox et al, 2000,

Fox et al, 1999a), Distributed Multi-Robot Localization (DMRL) (Roumeliotis and

Bekey, 2000, Roumeliotis and Bekey, 2000, Roumeliotis and Rekleitis, 2004), Collabo-

rative Multi-Robot Active Localization (CMRAL) (Jones and Shel, 2004), Cooperative

Positioning System (CP) (Kurazume and Hirose, 2000), Ego-Centric Approach (EGO)

(Howard et al, 2003), and CR-MCL, which are described in detail in Section 2.3. The

comparisons have relative values as H for high, M for Medium and L for Low. e.g. if the

67

Table 5.2. Comparison of Multi Robot Localization Methods

Method Capability Accuracy Speed Memory Robustness Comm.

of usage to noise cost

global

localization

CMCL yes H M M M M

POMDP yes L M H L L

Fuzzy yes L M H M H

CPCBL yes H M L L L

DMRL yes H H L L L

CMRAL yes H M M M H

CP yes L L M M L

EGO no H L H H H

CR-MCL yes H H M H L

algorithm uses samples its memory usage is rated as high, if it uses KF and does not

transfer samples, its communication cost is low. In these comparisons, using samples is

assumed to increase the accuracy, but also increase the cost, and memory usage. Using

grid cells is also costly but not as much as using samples, provided that the number

of grid cells is smaller than the number of samples. Hence this approach is also faster

than sample based algorithms. Additionally, grid based methods have less accuracy

than sample based algorithms. Notice that, these assumptions, and evaluations are

based on the general parameter sets studied in this work. A sample based algorithm

like SLOC which uses very small number of samples (one sample for each observation)

would be very fast, and less costly in terms of computational, and memory usage when

compared to a grid based algorithm.

In Table 5.2, the first item is the capability of global localization. Among these

methods only the Egocentric approach is designed only for relative positioning. The

rest of the methods are capable of global localization with different accuracies. The

accuracy of the grid based methods is evaluated as Low, and the accuracy of the

68

sample based methods as High. Speed is related to the number of grids and samples

used which bring a high burden in terms of the computational cost. So the speed of the

methods using high number of samples like Egocentric method are rated as Low. The

CP method which requires the action of some team members while others are standing

still as observers, is also rated as a slow method. The cost of memory usage is directly

proportional to the number of samples and grids that are used by the methods. Some

methods like POMDP, which do not use any samples or grids are also known to have

High memory usage. The Kalman Filter based methods generally have low robustness

to noise. The Ego-Centric method which uses a very large number of samples and

CR-MCL which is tested under high noise levels are evaluated with High robustness

to noise. The rest of the methods are evaluated as Medium. Most of the methods use

large number of grid cells and samples to represent the shared information, and some

of the methods even transfer these via communication which increase communication

cost. CR-MCL seems to have better values in all of the criteria, and is a good choice

for especially real time applications, as it is fast, cheap in communication, memory

and computational cost, and accurate and robust, as well. CR-MCL is also scalable,

whereas most of these methods are not, so it can be used in real-time applications,

which brings a good contribution to the domain. The multi-robot localization methods

studied in this work are not compared with each other in the referenced works. They

are just tested against odometry. Furthermore to the best of our knowledge, there is

no well-known data set as in the single-robot case, to compare the methods. Therefore,

unlike the other relevant works, CR-MCL is not tested against results based on only

odometry, but the non-collaborative version of itself, which is a much more challenging

opponent. This kind of testing is a better indicator of performance.

The are several drawbacks in the proposed algorithms, beside their advantages.

These are the usage of fixed number of cells in ML, and relying on a fixed threshold

for the switch between ML and MCL. As a future work, adaptive number of cells could

be used. The switch between ML and MCL could also be based on multiple criteria,

even a fuzzy inference system could be used for this purpose. This work is also flexible

enough to be extended to solve the multi robot object tracking problem.

69

6. CONCLUSIONS

In this work, the R-MCL algorithm is proposed as a fast, reliable, computation-

ally inexpensive and resource efficient solution to the global localization problem, in

environments like the Robocup Games and the Technical Challenges which require very

high accuracy and speed, robustness against noise and insufficient data, and fast recov-

ery from kidnapping. R-MCL is a hybrid approach which aims to combine the ML and

MCL methods, to make use of the advantages of both, and overcome the disadvantages.

The idea behind this algorithm is to converge to a part of the environment by using

a coarse 2-D grid based ML and in this local area, call the MCL to find the current

position estimation of the robot in a fast, robust and accurate manner. Starting with

no prior information about its position, the robot uses ML until the possibilities for

its current location are below a threshold. Then samples are thrown in these locations

and MCL is called to run with this sample set. MCL is active as long as the confidence

of the robot about its location is above a threshold. Then the ML module becomes

active again until the robot is confident enough to call MCL again.

The method has been shown to be very robust and fast and requiring less compu-

tational power and memory compared to similar approaches and is accurate enough for

high level decision making which is vital for robot soccer. Besides it is flexible, simple

to implement and can cover the environment with less amount of samples then similar

works. It is especially designed for working with imprecise and inadequate sensor data.

It outperforms many of the other methods especially in case of recovery from kidnap-

ping problem. It performs well in both offline tests and tests on the robot, outperforms

the methods implemented in our project and keeps in a satisfactory range when com-

pared with the results of other methods in (Gutmann and Fox, 1998, Kristensen and

Jensfelt, 2003). It has been outperformed by A-MCL, which is an adaptive method, in

the high levels of noise and sparsity. Notice that all of the thresholds of R-MCL are

fixed in these tests, although the noise and sparsity levels vary on purpose or depending

on the lighting and other environmental conditions. Therefore using adaptive thresh-

olds based on the confidence level of the robot and the current measurements might

70

improve the success in case of high noise and sparsity or varying lighting conditions.

After solving the single self-localization problem, we have developed a novel col-

laborative localization method, Collaborative Reverse Monte Carlo Localization (CR-

MCL) for a team of robots, where the shared data are represented as grid cells, fused

and integrated into local belief sets by our hybrid self-localization method, R-MCL. It

is tested on both a simulator and on real robots and shown to be fast, robust and ac-

curate, and avoids single point failure, and suitable to real-time robotic activities since

it is robust under high noise and sparsity. The real power of the method comes from

its hybrid nature. It uses a grid based approach to handle detections which can not

be accurate in real-time applications, and sample based approach in self-localization

which improves its success, although it uses lower amount of samples compared to

similar sample based methods. It could be extended to be used in holding relative

position information of the team members, and the track of the mission related objects

like ball, as well.

There is an ongoing project to improve and use this method in the real-time robot

soccer games.

71

REFERENCES

Akın, H.L., A. Topalov, and O. Kaynak, 2001, “Cerberus 2001 Team Description”,

Robocup 2001: Robot Soccer World Cup V , Birk, A., Coradeschi, S., and Tadokoro,

S. (Eds.), LNAI 2377, pp.689-692, Springer Verlag.

Betke, M., and L. Gurvits, 1994, “Mobile robot localization using landmarks”, In

Proceedings of the IEEE International Conference on Robotics and Automation,

Vol. 2, pp. 135–142.

Betke, M., and L. Gurvits, 1997, “Mobile robot localization using landmarks”, IEEE

Transactions on Robotics and Automation, 13(2):251–263.

Buschka, P., A. Saffiotti, and Z. Wasik, 2000, “Fuzzy Landmark-Based Localization

for a Legged Robot” Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS) , pp. 1205–1210.

Burgard, W., D. Fox, D. Hennig, and T. Schmidt, 1996, “Estimating the Absolute Po-

sition of a Mobile Robot Using Position Probability Grids,” Institut für Informatik

III. , Universität Bonn, Proc. of the Fourteenth National Conference on Artificial

Intelligence (AAAI-96).

Canovas, J-P., LeBlanc, K. , and A. Saffiotti, 2004, “Robust Multi-Robot Object Lo-

calization Using Fuzzy Logic”, In: D. Nardi, M. Riedmiller and C. Sammut (eds)

RoboCup 2004: Robot Soccer World Cup VIII. Springer-Verlag, Germany.

Çelik, B., 2005, “S-LOC and MY ENVIRONMENT: A New Localization System for

Autonomous Robots”, M.Sc. Thesis,Bogazici University.

Cerberus Soccer Team, 2005, http://robot.cmpe.boun.edu.tr/aibo/home.php3.

Crisman, Z., E. Curre, C. T. Kwok, L. Meyers, N. Ratliff, L. Tsybert, and D. Fox,

72

2002, “Team Description: UW Huskies-01”, RoboCup 2001: Robot Soccer World

Cup V, Springer-Verlag, Seattle, Washington, Lecture Notes in Computer Science

Series, Vol. 2377, pp 721–724.

Fox, D., W. Burgard, H. Kruppa, and S. Thrun, 1999a, “A Monte Carlo Algorithm for

Multi-Robot Localization”, CMU-CS-99-120,

Fox, D., W. Burgard, and S. Thrun, 1999b, “Markov Localization for Mobile Robots in

Dynamic Environments”, Journal of Artificial Intelligence Research, Vol. 11, pp.

391-427.

Fox, D., W. Burgard, F., Dellaert, and S. Thrun, 1999c, “Monte Carlo Localization:

Efficient Position Estimation for Mobile Robots”, Proc. National Conference on

Artificial Intelligence (AAAI’99).

Fox, D., W. Burgard, F., Dellaert, and S. Thrun, 2000, “A Probabilistic Approach to

Collaborative Multi-Robot Localization”, In Special issue of Autonomous Robots

on Heterogeneous Multi-Robot Systems, 8(3):325–344.

Fox, D., 2003, “Adapting the Sample Size in Particle Filters Through KLD-sampling”

International Journal of Robotics Research, 22:985–1003.

Gutmann, J.S., W. Burgard, D. Fox, and K. Konolige, 1998, “An Experimental Com-

parison of Localization Methods”, In proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS98), Victoria, Canada.

Gutmann, J.S., and D. Fox, 2002, “An Experimental Comparison of Localization Meth-

ods Continued”, In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS’02), Lausanne, Switzerland, pp.454–459.

Gutmann, J. S., 2002, “Markov-Kalman Localization for Mobile Robots”, Int. Conf.

on Pattern Recognition (ICRP), Vol. 2, No. 2, pp.601–604.

Hightower, J., and G. Borriello, 2001, “A Survey and Taxonomy of Location Systems

73

for Ubiquitous Computing”, Technical Report, UW-CSE Tech Report #01-08-03.

Howard, A., M.J. Mataric, G.S. Sukhatme, 2003, “Putting the ’I’ in ’Team’: An Ego-

Centric Approach to Cooperative Localization”, In Proceedings of the International

Conference on Robotics and Automation (ICRA 2003), IEEE, vol. 1, pp. 868-874,

Taipei, Taiwan.

Jones, C.V., and D. A. Shel, 2004, “Collaborative multi-robot active localization”,

University of Southern California, Los Angeles, Center for Robotics and Embedded

Systems ,http://www-robotics.usc.edu/ dshell/mcl/res/report.pdf

Kalman, R. E., 1960, “A New Approach to Linear Filtering and Prediction Problems”,

Transactions of the ASME–Journal of Basic Engineering, Vol. 82, Series D, pp.35–

45.

Kaplan,K., B. Çelik, T. Meriçli, C. Meriçli, and H. L. Akın, 2006, “Practical Extentions

to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain”,

RoboCup 2005: Robot Soccer World Cup IX, A. Bredenfeld, A. Jacoff, I. Noda, Y.

Takahashi (Eds.), LNCS Vol. 4020, pp. 420 - 427.

Köse, H., S. Bayhan, and H. L. Akın, 2003, “A Fuzzy Approach to Global Localiza-

tion in the Robot Soccer Domain” IJCI Proceedings of International XII Turkish

Symposium on Artificial Intelligence and Neural Networks (TAINN 2003), ISSN

1304-2386, Vol:1, No:1, pp.1–7.

Köse, H., and H. L. Akın, 2004, “Experimental Analysis and Comparison of Reverse-

Monte Carlo Self-Localization Method”, Proceedings of CLAWAR/EURON Work-

shop on Robots in Entertainment, Leisure and Hobby, Vienna, Austria, pp.85–90.

Köse, H., and H. L. Akın, 2005, “Robots from nowhere”, RoboCup 2004: Robot Soccer

World Cup VIII, Daniele Nardi, Martin Riedmiller, Claude Sammut, etal (Eds.),

LNCS, Vol. 3276, pp.594–601.

74

Köse, H., and H. L. Akın, 2006, “A Fuzzy Touch To R-MCL Localization Algorithm”,

RoboCup 2005: Robot Soccer World Cup IX, A. Bredenfeld, A. Jacoff, I. Noda, Y.

Takahashi (Eds.), A. Bredenfeld, A. Jacoff, I. Noda, Y. Takahashi (Eds.), LNCS

Vol. 4020, pp.420–427.

Köse, H., B. Çelik, and H. L. Akın, 2006, “Comparison of Localization Methods for a

Robot Soccer Team”, International Journal of Advanced Robotic Systems, Vol. 3,

No. 4, pp.295–302.

Köse, H., and H. L. Akın, 2007, ”The Reverse Monte Carlo Localization Algorithm”,

Robotics and Autonomous Systems, (Accepted).

Kristensen S., and P. Jensfelt, 2003, “An Experimental Comparison of Localisation

Methods, the MHL Sessions”, Proc. of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’03), pp.992–997.

Kurazume R., and S. Hirose, 2000, “Collaborative Probabilistic Constraint Based Land-

mark Localization”, Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intel-

ligent Robots and Systems EPFL, Lausanne, Switzerland, pp. 447–452.

Maybeck, P. S., 1990, “The Kalman Filter: An Introduction to Concepts”, I. Cox and

G. Wilfong, editors, Autonomous Robot Vehicles, Springer-Verlag, pp.194–204.

Lenser, S., and M. Veloso, 2000, “Sensor Resetting Localization for Poorly Modelled

Mobile Robots”, Proc. ICRA 2000, IEEE, Vol. 2, pp.1225–1232.

Leonard, J. J., and H. F. Durrant-Whyte, 1991, “Mobile robot localization by tracking

geometric beacons”, IEEE Trans. Robotics and Automation, 7(3):376-382.

Ribeiro, I. and A. Saffiotti (Eds), 2002, “Lecture Notes from European Summer School

on Cooperative Robotics”, 2-7 September.

Sony 4Legged Robot League, 2005, “Soccer Rules”,

http://www.tzi.de/4legged/pub/Website/History/Rules2005.pdf.

75

Robocup Organization, 2005a, http://www.robocup.org/.

Roumeliotis, S.I., and G.A. Bekey, 2000, “Distributed Multi-Robot Localization”, Dis-

tributed Autonomous Robotic Systems 4, , Springer Verlag, pp.179–188.

Roumeliotis, S.I., and G.A. Bekey, 2002, “Distributed Multi-Robot Localization”,

IEEE Transactions on Robotics and Automation, 18(5), pp.781–795.

Roumeliotis, S.I., and I.M. Rekleitis, 2004, “Propagation of Uncertainty in Coopera-

tive Multirobot Localization: Analysis and Experimental Results”, Autonomous

Robots, 17(1), pp.41–54.

Saffiotti, A., 2000, ”The ’Team Sweden’ Entry at RoboCup 2000”.

Saffiotti, A., A. Bjorklund, S. Johansson, and Z. Wasik, 2002, “Team Sweden”,

RoboCup 2001: Robot Soccer World Cup V, Springer-Verlag, Seattle, Washington,

Lecture Notes in Computer Science Series, Vol. 2377, pp.725-729, 2002.

Saffiotti, A.(Organizer), 2002a, Proceedings Workshop WS7 Cooperative Robotics,

IROS 2002, IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems.

Schulz,D., and W. Burgard, 2001, “Probabilistic State Estimation of Dynamic Objects

with a Moving Mobile Robot,” Robotics and Autonomous Systems, 34, pp.107–115.

Sony’s AIBO product, http://www.aibo.com/.

Sony Four-Legged Robot League, 2005, http://www.tzi.de/4legged/.

Stroupe, A. W., and T. Balch, 2002, “Collaborative Probabilistic Constraint Based

Landmark Localization”, Proceedings of the 2002 IEEE/RSJ Intl. Conference on

Intelligent Robots and Systems EPFL, Lausanne, Switzerland, pp. 447–452.

Stroupe, A.W., K. Sikorski, and T. Balch, 2003, “Constraint-Based Landmark Local-

76

ization”, RoboCup 2002: Robot Soccer World Cup VI, Springer-Verlag, Fukuoka,

Busan, Lecture Notes in Computer Science Series, Vol. 2752, pp.8–24.

Theocharous, G., K. Murphy, and L. P. Kaelbling, 2004, “Representing hierarchical

POMDPs as DBNs for multi-scale robot localization”, In Proceedings of the Inter-

national Conference on Robotics and Automation (ICRA 2004).

Thrun, S., D. Fox, W. Burgard, and F. Dellaert, 2001, “Robust Monte Carlo Localiza-

tion for Mobile Robots”, Artificial Intelligence, Elsevier, Vol. 128, pp.99–141.

Thrun, S., W. Burgard, and D. Fox, 2005, “Probabilistic Robotics”, MIT Press, Cam-

bridge, MA,ISBN 0-262-20162-3.

Welch, G., and G. Bishop, 2006, “An Introduction to the Kalman Filter”, UNC-Chapel

Hill, TR 95-041.

77

REFERENCES NOT CITED

Akın, H. L., Pavlova, P., and Yildiz, O. T., 2002, “Cerberus 2002”, Robocup 2002: Robot Soc-

cer World Cup VI , The 2002 International Robocup Symposium Pre-Proceedings,

June 24-25, Fukuoka, pp.448.

Borenstein, J., H.R. Everett, and L. Feng, 2001, “Navigating Mobile Robots, Systems and

Techniques”, A. K. Peters, Ltd., Wellesley, MA.

Corne, D.W, Deb, K., Fleming, P.J., and Knowles, J.D., 2003, “The Good of the Many

Outweights the Good of the One: Evolutionary Multi-Objective Optimization”,

coNNectionS ,1(1): 9-13, ISSN 1543-4281.

Dias, M. B., and A. Stenz, 1999, “A Free Market Architecture for Coordinating Multiple

Robots”, CMU-RI-TR-99-42, December.

Dias, M. B., and A. Stenz, 2001, “A Market Approach to Multirobot Coordination”, CMU-

RI-TR-01-26, August.

Dietel, M., J.S. Gutmann , and B. Nebel, 2001, “Cooperative Sensing in Dynamic Environ-

ments”, In Proc. of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 2001) , Maui, Hawaii.

Dissanayake, G., P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba, 2001, “A

Solution to the Simultaneous Localization and Map Building (SLAM) Problem”,

IEEE Transactions on Robotics and Automation ,Vol. 17, No. 3, June.

Gerkey, P.B., and M.J. Mataric, 2002, “Sold!: Auction methods for multi-robot coordina-

tion”, IEEE Transactions on Robotics and Automation, special issue on Advances

in Multi-Robot Systems, 18(5), pp.758–786.

Guivant, J. E., and E. M. Nebot, 2001, “Optimization of the Simultaneous Localization and

78

Map-Building Algorithm for Real-Time Implementation”, IEEE Transactions on

Robotics and Automation ,Vol.17, No.3, June, pp.242–257.

Kaplan, K., 2001, “Design and Implementation of fast controllers for Mobile Robots”, Master

Thesis ,Vol. 17, No. 3, June.

Köse, H., C. Meriçli , K. Kaplan, and H. L. Akın, 2003, “Genetic Algorithms based Market-

Driven Multi-Agent Collaboration in Robot Soccer Domain”, Proceedings of 2003

FIRA Robot World Congress, Vienna.

Köse, H., C. Meriçli , K. Kaplan, and H. L. Akın, 2003, “All Bids for One and One Does

for All: Market-Driven Multi-Agent Collaboration in Robot Soccer Domain”, IS-

CIS XVIII The Sixteenth International Symposium on Computer and Information

Sciences (ISCIS 2003), Springer-Verlag, Lecture Notes in Computer Science Se-

ries,2003.

Köse, H., U. Tatlıdede, C. Meriçli , K. Kaplan, and H. L. Akın, 2004, “Q-Learning based

Market-Driven Multi-Agent Collaboration in Robot Soccer”, XIII Turkish Sym-

posium on Artificial Intelligence and Neural Networks TAINN 2004, June 10-11,

Izmir, Turkey, pp.219-228.

Köse, H., K. Kaplan, C. Meriçli , U. Tatlıdede, and H. L. Akın, 2005, “Market-Driven Multi-

Agent Collaboration in Robot Soccer Domain”, in V. Kordic, A. Lazinica and M.

Merdan (Eds.), Cutting Edge Robotics, pp.407–416, pIV pro literatur Verlag, 2005.

Nagatani, K., H. Choset, and T. Thrun, 1998, “Towards Exact Localization without Ex-

plicit Localization with the Generalized Voronoi Graph”, In IEEE International

Conference on Robotics and Automation, Luven, Belgium, May.

Schmitt, T., R. Hanek, S. Buck, and M. Beetz, 2001, “Cooperative Probabilistic State Esti-

mation for Vision-based Autonomous Mobile Robots”, In Proc. of the IEEE Intl.

Conf. on Intelligent Robots and Systems (IROS 2001), Maui, Hawaii.

79

Schulz, D., and W. Burgard, 2001, “Probabilistic State Estimation of Dynamic Objects with

a Moving Mobile Robot”, Robotics and Autonomous Systems, Elsevier, 34, pp.

107-115.

Schulz, D., W. Burgard, D. Fox, and A.B. Cremers, 2001, “Tracking Multiple Moving Objects

with a Mobile Robot”, In Proc. of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR 2001), Kauwai, Hawaii.

Tatlıdede, U., K. Kaplan, H. Köse, and H. L. Akın, 2005, “Reinforcement Learning for

Multi-Agent Coordination in Robot Soccer Domain”, AAMAS’05, Fifth European

Workshop on Adaptive Agents and Multi-Agent Systems, Paris, March 21-22 2005.

(Accepted)

Thrun S., 2002, “Robotic Mapping: A survey”, CMU-CS-02-111.

Veloso, M., S. Lenser, D. Vail, M. Roth, A. Stroupe, and S. Chernova, 2002, “CMPack-

02: CMU’s Legged Robot Soccer Team”, Carnegie Mellon University, Pittsburgh,

October.

Zlot, R., A. Stenz, M. B. Dias, , and S. Thayer, 2002, “Market-driven Multi-Robot Ex-

ploration”, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech.

Rep. CMU-RI-TR02 -02, January.

