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ABSTRACT

CROWD-LABELING FOR CONTINUOUS-VALUED

ANNOTATIONS

As machine learning gained immense popularity across a wide variety of domains

in the last decade, it has become more important than ever to have fast and inexpensive

ways to annotate vast amounts of data. With the emergence of crowdsourcing services,

the research direction has gravitated toward putting ‘the wisdom of crowds’ to use. We

call the process of crowdsourcing based label collection crowd-labeling. In this thesis,

we focus on crowd consensus estimation of continuous-valued labels. Unfortunately,

spammers and inattentive annotators pose a threat to the quality and trustworthi-

ness of the consensus. Thus, we develop Bayesian models taking different annotator

behaviors into account and introduce two crowd-labeled datasets for evaluating our

models. High quality consensus estimation requires a meticulous choice of the candi-

date annotator and the sample in need of a new annotation. Due to time and budget

limitations, it is beneficial to make this choice while collecting the annotations. To this

end, we propose an active crowd-labeling approach for actively estimating consensus

from continuous-valued crowd annotations. Our method is based on annotator models

with unknown parameters, and Bayesian inference is employed to reach a consensus

in the form of ordinal, binary, or continuous values. We introduce ranking functions

for choosing the candidate annotator and sample pair for requesting an annotation.

In addition, we propose a penalizing method for preventing annotator domination,

investigate the explore-exploit trade-off for incorporating new annotators into the sys-

tem, and study the effects of inducing a stopping criterion based on consensus quality.

Experimental results on the benchmark datasets suggest that our method provides a

budget and time-sensitive solution to the crowd-labeling problem. Finally, we intro-

duce a multivariate model incorporating cross attribute correlations in multivariate

annotations and present preliminary observations.
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ÖZET

SÜREKLİ DEĞERLİ İŞARETLEMELER İÇİN KİTLE

ETİKETLEME

Hızlı ve ucuz veri işaretleme, makine öğrenmesinin son on yılda birçok alanda

aşırı rağbet görmesiyle birlikte daha da önemli bir hale geldi. Kitle kaynak servis-

lerinin çıkışı, araştırma yönünü ‘kitlelerin bilgeliğini’ kullanmaya itti. Kitle kaynak

temelli etiket toplama işlemini kitle etiketleme olarak adlandırıyoruz. Bu tezde, sürekli

değerli etiketler için kitle oydaşım kestirimi üzerine odaklanıyoruz. Maalesef, kötü

niyetli veya dikkatsiz işaretçiler, oydaşım etiketinin kalitesine ve güvenilirliğine kötü

etki etmektedir. Bundan ötürü, değişik işaretçi davranışlarını dikkate alan Bayesçi

modeller geliştiriyoruz ve modellerimizi değerlendirmek için iki yeni kitle işaretli veri

kümesi tanıtıyoruz. Kaliteli oydaşım etiketi kestirimi, işaretçi ve işaretlenecek örnek

seçiminin akıllı bir şekilde yapılmasını gerektirir. Zaman ve bütçe kısıtlarından dolayı,

bu seçimleri işaret toplama sırasında yapmak önemlidir. Bu nedenle, sürekli değerli

kitle işaretlerinden aktif bir şekilde etiket kestirimi yapan bir aktif kitle etiketleme

yaklaşımı öneriyoruz. Yöntemimiz, bilinmeyen parametreleri olan işaretçi modelle-

rine dayalıdır ve sıralı, ikili veya sürekli değerli etiketlere ulaşabilmek için Bayesçi

çıkarım kullanır. İşaret istemek için işaretçi ve işaretlenecek örnek ikilisini seçmede kul-

lanılan sıralama fonksiyonları tanıtıyoruz. Ek olarak, işaretçi baskınlığını engellemek

için cezalandırma yöntemi öneriyoruz, sisteme yeni işaretçiler eklemek için keşfetme ve

kullanma dengesini araştırıyoruz ve oydaşım etiketi kalitesine göre aktif işaretlemeyi

durdurma kriteri koymanın etkilerini inceliyoruz. Kıstas veri kümelerindeki deney-

sel sonuçlar, yöntemimizin kitle etiketleme problemine bütçeye ve zamana duyarlı bir

çözüm sağladığını göstermektedir. Son olarak, çok değişkenli işaretlemelerdeki nitelik-

ler arası bağıntıları dikkate alan çok değişkenli bir model tanıtıyoruz ve hakkındaki ilk

gözlemlerimizi sunuyoruz.



viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xxi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1. Crowd-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2. Active Crowd-Labeling . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2.1. Annotator Selection Strategies . . . . . . . . . . . . . 7

1.1.2.2. Sample Selection Strategies . . . . . . . . . . . . . . . 8

1.1.2.3. Joint Annotator and Sample Selection . . . . . . . . . 9

1.1.2.4. Binary Annotation Problems . . . . . . . . . . . . . . 9

1.1.2.5. Categorical Annotation Problems . . . . . . . . . . . . 10

1.1.2.6. Natural Language Processing Annotation Problems . . 11

1.1.2.7. Ordinal and Continuous Annotation Problems . . . . . 11

1.2. Novelty and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. DATASETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1. Age Annotations Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Head Pose Annotations Dataset . . . . . . . . . . . . . . . . . . . . . . 18

2.3. Affective Text Analysis Datasets . . . . . . . . . . . . . . . . . . . . . . 21

2.4. ELEA Personality Impressions Data . . . . . . . . . . . . . . . . . . . . 22

3. THE CROWD-LABELING PROBLEM DEFINITION . . . . . . . . . . . . 24

3.1. Annotator Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. PASSIVE CROWD-LABELING . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1. M-AH: Adversary Handling Model . . . . . . . . . . . . . . . . . . . . 35



ix

4.1.1. Update Equation for the Consensus Value x in M-AH . . . . . . 36

4.1.2. Update Equation for the Precision Parameter λ in M-AH . . . . 37

4.1.3. Update Equation for the Adverseness Parameter a in M-AH . . 38

4.2. M-SH: Scale Handling Model . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1. Update Equation for the Consensus Value x in M-SH . . . . . . 40

4.2.2. Update Equation for the Precision Parameter λ in M-SH . . . . 40

4.2.3. Update Equation for the Adverseness Parameter a in M-SH . . 41

4.2.4. Update Equation for the Opinion Scale Parameter w in M-SH . 41

4.3. M-ABS: Annotation Bias Sensitive Model . . . . . . . . . . . . . . . . 42

4.3.1. Update Equation for the Consensus Value x in M-ABS . . . . . 43

4.3.2. Update Equation for the Precision Parameter λ in M-ABS . . . 44

4.3.3. Update Equation for the Adverseness Parameter a in M-ABS . . 44

4.3.4. Update Equation for the Opinion Scale Parameter w in M-ABS 44

4.3.5. Update Equation for the Bias Parameter b in M-ABS . . . . . . 45

4.4. M-CBS: Consensus Bias Sensitive Model . . . . . . . . . . . . . . . . . 46

4.4.1. Update Equation for the Consensus Value x in M-CBS . . . . . 47

4.4.2. Update Equation for the Precision Parameter λ in M-CBS . . . 48

4.4.3. Update Equation for the Adverseness Parameter a in M-CBS . . 48

4.4.4. Update Equation for the Opinion Scale Parameter w in M-CBS 48

4.4.5. Update Equation for the Bias Parameter b in M-CBS . . . . . . 49

4.5. Performance of Crowd Consensus Estimation Models . . . . . . . . . . 51

4.5.1. Results on the Age Annotations Dataset . . . . . . . . . . . . . 51

4.5.1.1. Accuracy of the Models in Estimating Ground Truth . 51

4.5.1.2. Performance on Binary Labels . . . . . . . . . . . . . . 56

4.5.1.3. Discussion on Global Bias . . . . . . . . . . . . . . . . 58

4.5.2. Results on ELEA Personality Impressions Data . . . . . . . . . 60

4.5.2.1. Predicting Personality Impressions Using Nonverbal Cues 60

4.5.2.2. Performance on the Regression and Classification Tasks 62

5. ACTIVE CROWD-LABELING METHODOLOGY . . . . . . . . . . . . . . 63

5.1. Which Sample Needs a New Label? . . . . . . . . . . . . . . . . . . . . 64

5.2. Who Annotates Better? . . . . . . . . . . . . . . . . . . . . . . . . . . 67



x

5.2.1. How Beneficial Is Annotator Scoring? . . . . . . . . . . . . . . . 72

6. O-CBS: IMPROVING THE EXISTING CONSENSUS USING ACTIVE

CROWD-LABELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1. Effectiveness of the Sample Scoring Function SS . . . . . . . . . . . . . 78

6.2. Balancing the Scales: Suppressing Annotator Domination . . . . . . . . 81

6.3. Effects of Annotator Dominance Suppression . . . . . . . . . . . . . . . 84

6.3.1. Selecting Starting Subset for Active Crowd-Labeling: . . . . . . 85

6.3.2. Mean Absolute Age Error Improvement on the Age Annotations

Dataset: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.3. Mean Absolute Degree Error Improvement on the Head Pose

Annotations Dataset: . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4. Accuracy Improvement on the Affective Text Analysis Datasets: 90

6.4. Speeding Up the Inference Process . . . . . . . . . . . . . . . . . . . . 91

7. O-CBS+: STARTING ACTIVE CROWD-LABELING FROM SCRATCH . 93

7.1. Effect of Annotator Exploration . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1. Mean Absolute Age Error Improvement on the Age Annotations

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.2. Mean Absolute Degree Error Improvement on the Head Pose

Annotations Datasets . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.3. Accuracy Improvement on the Affective Text Analysis Datasets 99

7.2. Is It Wise to Take Risks by Incorporating New Annotators? . . . . . . 100

7.3. Comparative Performance of O-CBS+ Under Annotation Count Limi-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4. Comparative Performance of O-CBS+ While Enforcing a Sample Score

Related Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 108

8. A VARIATIONAL BAYESIAN APPROACH TO CROWD-LABELING WITH

MULTIVARIATE ANNOTATIONS . . . . . . . . . . . . . . . . . . . . . . . 114

8.1. The Multivariate Annotation Model . . . . . . . . . . . . . . . . . . . . 114

8.2. Variational Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2.1. The Factor q(Φ,Λ) . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.2. The Factor q(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . 120



xi

8.2.3. The Factor q(X) . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2.4. Required Expectations for the Posterior Parameters . . . . . . . 122

8.2.5. The Update Equations . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.6. Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3. Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.1. Observations on the Model Error . . . . . . . . . . . . . . . . . 126

8.3.2. Relation of the Sample Error and the Posterior Sample Variance 129

8.3.3. Observations on Annotators . . . . . . . . . . . . . . . . . . . . 129

9. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

APPENDIX A: PROOFS OF THEOREMS . . . . . . . . . . . . . . . . . . . 146

A.1. Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2. Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.3. Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.4. Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.5. Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.6. Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.7. Proof of Theorem 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

APPENDIX B: POSITIVE DEFINITENESS OF Wj . . . . . . . . . . . . . . 159



xii

LIST OF FIGURES

Figure 2.1. Sample images from the FGNet Aging Database . . . . . . . . . . 17

Figure 2.2. The FGNet Aging Database Age Histogram . . . . . . . . . . . . 17

Figure 2.3. 37 distinct head poses of a person, which are chosen for the annota-

tion tasks in the Head Pose Annotations datasets. The head pose

images are taken from the Head Pose Image Database [76]. . . . . 19

Figure 2.4. Image acquisition setup of the Head Pose Image Database . . . . . 19

Figure 2.5. Head Pose Annotations Dataset sample question . . . . . . . . . . 20

Figure 3.1. Real annotator examples . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4.1. Bayesian network for the proposed models . . . . . . . . . . . . . 34

Figure 4.2. Cumulative match curves for the models . . . . . . . . . . . . . . 54

Figure 4.3. Ground truth estimation performance of models on joint set anno-

tation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.4. Change in error with respect to the change in consensus binariza-

tion threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.5. Effect of removing global bias on the consensus scores . . . . . . . 60

Figure 5.1. ACL: Active Crowd-Labeling . . . . . . . . . . . . . . . . . . . . . 64



xiii

Figure 5.2. Annotator score calculation . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.3. Three examples of annotators. . . . . . . . . . . . . . . . . . . . . 71

Figure 5.4. The change in annotator scores with respect to w and b parameters

of M-CBS when the variance is fixed . . . . . . . . . . . . . . . . . 72

Figure 5.5. Annotator score histograms for the proposed models . . . . . . . . 73

Figure 5.6. Annotator score comparison for the proposed models . . . . . . . 74

Figure 5.7. The annotations of top scoring annotators. . . . . . . . . . . . . . 74

Figure 6.1. RequestAnnotation: Requesting annotation for improving the ex-

isting consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 6.2. Effect of using SS for sample selection on the Age Annotations and

the Head Pose Annotations datasets. . . . . . . . . . . . . . . . . 79

Figure 6.3. Effect of using SS for sample selection on the Affective Text Anal-

ysis datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 6.4. Change in the minimum, maximum, and average annotator work-

loads during the active crowd-labeling process. . . . . . . . . . . . 83

Figure 6.5. Create Starting Set By Elimination . . . . . . . . . . . . . . . . . 86

Figure 6.6. Improving the existing consensus on the Age Annotations and the

Head Pose Annotations datasets. . . . . . . . . . . . . . . . . . . . 88



xiv

Figure 6.7. Improving the existing consensus on the Affective Text Analysis

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 6.8. The effect of three different random initialization approaches on

the number of iterations. . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 7.1. RequestAnnotationExp: Requesting annotation for smart label col-

lection from scratch . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 7.2. Effect of changing the exploration parameter E on the Age Anno-

tations and the Head Pose Annotations datasets. . . . . . . . . . . 97

Figure 7.3. Effect of changing the exploration parameter E on the Affective

Text Analysis datasets. . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 7.4. New annotator exploration times on the Affective Text Analysis -

Anger dataset for O-CBS+(S 5
A) . . . . . . . . . . . . . . . . . . . 101

Figure 7.5. Comparison of O-CBS+ with the method of Welinder and Perona

[37] on the Age Annotations and the Head Pose Annotations datasets.103

Figure 7.6. Comparison of O-CBS+ with the method of Raykar and Agrawal

[53] on the Affective Text Analysis datasets. . . . . . . . . . . . . 104

Figure 7.7. The effect of enforcing the sample scoring threshold τ on the Age

Annotations and Head Pose Annotations Datasets. . . . . . . . . . 109

Figure 7.8. The effect of enforcing the sample scoring threshold τ on the Af-

fective Text Analysis Dataset. . . . . . . . . . . . . . . . . . . . . 110

Figure 8.1. Directed factor graph of the proposed multivariate annotation model.114



xv

Figure 8.2. Change of the lower bound value (L(q)) and attribute error while

fitting the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 8.3. Cumulative match curves for the proposed multivariate model com-

pared with two univariate models, namely mean model and M-CBS.

Combined error is the Euclidean distance (L2-norm) of a sample’s

2-dimensional ground truth and its inferred consensus tuple. . . . 128

Figure 8.4. Heat map depicting the relation of the sample error and the poste-

rior sample variance. . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 8.5. Examples of competent, spammer, and adversary annotators and

their annotations. These annotators are easily revealed by investi-

gating the posterior distribution parameters in detail. . . . . . . . 131



xvi

LIST OF TABLES

Table 2.1. Annotation datasets used in this work. . . . . . . . . . . . . . . . . 16

Table 2.2. Annotator workload for the Age Annotations Dataset (the number

of annotations made by an annotator) . . . . . . . . . . . . . . . . 18

Table 2.3. Number of annotations per sample for the Head Pose Annotations

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2.4. Annotator workloads for the Head Pose Annotations Datasets (the

number of annotations made by an annotator) . . . . . . . . . . . 21

Table 2.5. Personality annotations per annotator on the ELEA data . . . . . 23

Table 3.1. Variables pertaining to the crowd-labeling problem . . . . . . . . . 24

Table 4.1. Summary of annotator parameters . . . . . . . . . . . . . . . . . . 34

Table 4.2. Table of update equations . . . . . . . . . . . . . . . . . . . . . . . 50

Table 4.3. Errors on Set 1, Set 2 and the joint set . . . . . . . . . . . . . . . 52

Table 4.4. The Matthews correlation coefficient, sensitivity, specificity, and ac-

curacy measures for binarized results . . . . . . . . . . . . . . . . . 57

Table 4.5. Compensating for global bias: Errors of M-ABS and M-CBS with

µB = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 4.6. Regression and classification results on extraversion prediction . . 62



xvii

Table 5.1. Sample score formulas for the proposed models. . . . . . . . . . . . 66

Table 5.2. Annotator score formulas for the proposed models . . . . . . . . . 71

Table 5.3. Utilizing annotator scores: Errors after using only top scoring and

only bottom scoring annotators . . . . . . . . . . . . . . . . . . . . 75

Table 6.1. Details of the created subsets . . . . . . . . . . . . . . . . . . . . . 87

Table 7.1. The effect of enforcing annotation count or MAE/accuracy limit. . 106

Table 7.2. The effect of enforcing various sample scoring thresholds. . . . . . 112



xviii

LIST OF SYMBOLS

aj Adverseness parameter of the jth annotator

bj Bias parameter of the jth annotator

bj Rightmost column of Φj

c Annotation upper value for zero centered annotation range

C Number of annotator categories for the multivariate model

dj Lower limit of the annotator score path integral of the jth

annotator
ej Upper limit of the annotator score path integral of the jth

annotator
ik Sample index of the kth annotation

I Set of all samples

jk Annotator index of the kth annotation

J Set of all annotators

J ′ Set of currently active annotators

J 1 Set of annotators that have at least one annotation

K Set of current annotations

Ki Set of sample i’s annotations

Kj Set of annotator j’s annotations

K Number of annotations

Mc Location matrix prior parameter for the matrix normal ran-

dom variable Φj

n0 Degree of freedom prior parameter for the Wishart random

matrix Λj

Nj Annotation count of the jth annotator

N Number of samples

p Probability vector prior parameter for the categorical random

vector zj
pc cth element of the vector p

R Number of annotators



xix

sB Standard deviation hyperparameter for the annotator bias pa-

rameter
SA Annotator competence score function

S KA Annotator selector function based only on annotator’s work-

load
SRA Random annotator selector function

S ϕ
A Dominance suppression based annotator competence score

function with dominance suppression coefficient ϕ
SS Sample consensus quality score function

V0 Among column scale matrix prior parameter for the matrix

normal random variable Φj

wj Opinion scale parameter of the jth annotator

W0 Scale matrix prior parameter for the Wishart random matrix

Λj

xi Consensus value of the ith sample

xi Consensus value of the ith sample for the multivariate model

X Set of sample consensus values

yk Value of the kth annotation

yk Value of the kth annotation for the multivariate model

Y Set of annotation values

zj 1-of-C binary vector for annotator category

zjc cth element of the vector zj

Z Set of zj for all annotators

αλ Shape hyperparameter for the annotator precision parameter

βλ Rate hyperparameter for the annotator precision parameter

βw Rate hyperparameter for the annotator opinion scale param-

eter
δ Target sample consensus posterior variance

E Exploration rate parameter

θj Parameters of the jth annotator

θ Set of parameters of all annotators

λj Precision parameter of the jth annotator



xx

Λ Set of Λj for all annotators

Λj Random variable precision parameter for the multivariate

model
µB Location hyperparameter for the annotator bias parameter

τ Target lower limit on sample score

ϕ Dominance suppression coefficient

Φ Set of Φj for all annotators

Φj Random variable scale and bias parameter for the multivariate

model
χi Consensus value of the ith sample with 1 concatenated at the

end
Ωj Left d columns of Φj



xxi

LIST OF ACRONYMS/ABBREVIATIONS

ACL Active crowd labeling

CMC Cumulative match curve

CPU Central processing unit

ELEA Emergent LEAder corpus

EM Exceptation Maximization

FN False negative

FP False positive

M-ABS Annotation bias sensitive model

M-AH Adversary handling model

M-CBS Consensus bias sensitive model

M-SH Scale handling model

MAE Mean absolute error

MAP Maximum a posteriori

MCC Matthews correlation coefficient

ML Maximum likelihood

NLP Natural language processing

O-CBS Online M-CBS

O-CBS+ Online M-CBS from scratch

RAE Relative absolute error

RMSE Root mean squared error

TIPI Ten item personality inventory

TN True negative

TP True positive



1

1. INTRODUCTION

In 1906, statistician Francis Galton observed a contest held in a fair; on estimating

the weight of a slaughtered and dressed ox. He calculated that the median guess of 787

people was 1207 pounds which is within 0.8% of the true weight of 1198 pounds [1]. This

experiment broke new ground in cognitive science; establishing the notion that opinions

of a crowd on a particular subject can be represented by a probability distribution. This

is what we today call the wisdom of crowds. A crowd can be any group of people, such

as the students of a school, or even the general public. In daily life, when we lack

knowledge about a certain concept we inquire those around us to obtain a general idea.

A similar approach can also be adapted to scientific research where it is not feasible or

possible to observe the phenomenon directly.

Employing the power of a crowd for a task is called crowdsourcing. Many ap-

plications in crowdsourcing exist such as fundraising, asking for people to vote their

appreciation of movies and books, or dividing up and parallelizing complex tasks to be

completed. The microwork concept deals with breaking up a very large problem that

may or may not be solved by computers. Amazon Mechanical Turk [2] and Crowd-

flower [3] are examples of microwork platforms where task givers submit lots of small

tasks such as dataset labeling to be completed by annotators all around the world, for

a fee.

In the machine learning domain, labeled datasets are valuable commodities. Com-

puting resources have increased exponentially for two decades, driving machine learning

toward big data applications. The introduction of the ImageNet database [4], a large

crowd-labeled dataset, and the success of deep neural network methods have further

pushed the research direction toward the use of large datasets. When used in a super-

vised manner, deep neural networks heavily rely on the availability of vast amounts

of training data, with ground truth labels. Researchers in deep learning most often

depend on crowd labeling to supply these labels. This popularity has resulted in the in-
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troduction of many large crowd-labeled datasets such as the recently introduced Open

Images dataset [5].

Providing ground truth labels, which indicate the correct labels, for large datasets

often proves to be excessively time consuming. Thus, researchers tend to outsource the

labeling process, especially for the aforementioned large datasets. However, employing

expert labelers is expensive. Crowdsourcing the labeling process is a cost-effective and

fast method to solve this problem, especially when expertise is not necessarily required.

Crowd-labeling is the process of collecting annotations from crowds and using

them for estimating consensus values to be used as labels. In crowd-labeling, each

person annotates a randomized subset of samples and every sample is annotated by a

subset of all annotators. If we reorganize annotations into a matrix with annotators

as rows and samples as columns, the resulting matrix would often be sparse. This is

a common case for crowdsourced annotation tasks. The aim of crowd-labeling is to

obtain consensus labels for each sample using this sparse set of annotations.

Many crowd-labeling problems aim to obtain continuous or ordinal labels, such

as the position of an object, age of a person, or air temperature. Surprisingly, ac-

tive crowd-labeling for continuous-valued annotations is a rather sidelined open issue.

Related literature on active crowd-labeling mainly focuses on binary annotation prob-

lems due to several reasons. First of all, formulating the active crowd-labeling problem

in a binary setting is often more tractable with provable mathematical guarantees.

Due to the nature of the continuous domain, providing mathematical guarantees in

active crowd-labeling solutions proves to be hard, if not impossible. This has pushed

researchers to work with well-studied algorithms by binarizing existing continuous or

ordinal annotations. Additionally, presenting the annotation tasks in the form of yes/no

or positive/negative reduces task intricacy for the annotators. Although working with

binary annotations has several advantages, valuable information is often lost during

binarization. Moreover, binary active crowd-labeling approaches are simply impracti-

cal when continuous labels are sought. In Section 1.1.1, we give a literature review on

crowd-labeling.
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A problem that is commonly encountered during crowd-labeling is reduced quality

of consensuses arising from inattentive annotators and spammers. Although there are

numerous methods in the literature that deal with the low quality annotations provided

by said annotators, most are effective only after the annotation process is completed. At

this point, valuable time and money are already spent on low quality annotations. The

classical use of crowd-labeling is analogous to a careless shopper who buys excessively

without proper planning and ends up throwing away their purchase when the product

is of low quality or unneeded. In contrast, imagine that the researcher is a meticulous

shopper with limited time and money. The most important questions on their mind

would be: What am I in need of purchasing and which vendor should I purchase it from?

Applying this reasoning to the crowd-labeling problem calls for a smarter solution and

active learning is the remedy to this problem. The general idea of active learning can

be applied to the crowd-labeling problem in terms of choosing which annotation to

incorporate into the annotation pool. In this thesis, the process of smart annotation

collection using crowdsourcing is called active crowd-labeling. We give an extensive

review on active crowd-labeling literature in Section 1.1.2.

In this thesis, we focus on attaining high consensus quality from continuous-valued

annotations while reducing the cost of the annotation process. We achieve this goal by

modeling annotator behaviors and making use of active crowd-labeling. The crowd-

labeling method we propose is based on annotator modeling and consensus estimation

by Bayesian inference, which is used for producing ordinal and binary labels in addition

to continuous labels. One advantage of the method is that it is unsupervised: the gold

standard label is not needed for any sample. The proposed method only uses crowd or

expert annotations for estimating consensus values and does not depend on the features

extracted from the data to be labeled. For the active crowd-labeling part, we introduce

an effective mechanism that decides which sample needs a new annotation and who

should annotate it. In addition, we introduce a multivariate model for incorporating

correlations across different attributes.

In the remainder of this chapter, we discuss the related work in this domain (Sec-

tion 1.1), followed by the novelty and contributions of this thesis (Section 1.2). In
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Chapter 2, we introduce the datasets on which we evaluate our methods. In Chap-

ter 3, we give the definition of the crowd-labeling problem and investigate annotator

behaviors by explaining various annotator types. In Chapter 4, we focus on the prob-

lem of passive crowd-labeling. We propose four novel Bayesian models which are used

for simultaneously modeling the behaviors of annotators and finding the consensus for

each sample. Chapter 5 describes our methodology for dealing with the problem of

active crowd-labeling. Since crowdsourced labeling is an expensive process, choosing

good annotators and samples that would benefit from new annotations is crucial for

reducing the costs. Chapter 6 deals with how to use active crowd-labeling to improve

existing consensus in crowd-labeling problems. In Chapter 7, we elaborate on how to

conduct smart label collection from scratch and compare our methods with existing

methods in the literature. In Chapter 8, we introduce a multivariate annotation model,

give a variational Bayes solution, and present some preliminary experiments. Finally,

we conclude the thesis in Chapter 9, with possible future directions.

1.1. Related Work

An annotation task completed by crowdsourcing contains vast information along

with many interesting challenges. Annotators come from different backgrounds, their

experiences vary, and they provide opinions over a large scale. An in-depth survey

by Frenay et al. [6] focuses on defining label noise and its sources, and introduces a

taxonomy on the types of label noise. Potential drawbacks and related solutions are

discussed, including algorithms which are label noise-tolerant, label noise cleansing,

and label noise-robust.

1.1.1. Crowd-Labeling

Singular opinions of the annotators are unreliable, but the consensus of the crowd

provides a strong insight. Finding a reasonable consensus among the annotators is very

important, especially in cases where the ground truth (or gold standard) does not exist.
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A straightforward solution for the continuous annotation case might be taking the

mean or median of annotations for each sample. For the binary case, majority voting

is the first solution that comes to mind. However, annotator errors and outliers have a

high impact on the consensuses obtained with these approaches. Moreover, these simple

methods disregard valuable information on annotator behavior and expertise. Inves-

tigating and modelling annotator behaviors would prove useful for utilizing valuable

information. Numerous methods also make use of features extracted from data [7–9].

Although the extracted features provide additional information, the success of data

dependent methods relies heavily on the quality of the features. In addition, model

performance across different types of problems requiring different types of features is

unpredictable.

Crowd-labeling is a well-studied area for binary annotations [7,8,10–15]; neverthe-

less it is rather sidelined for continuous-valued annotations. For many annotation tasks

with continuous-valued attributes, researchers either acquire the annotations in binary

form or they binarize the continuous/ordinal-valued annotations after acquisition. An

example of this is the heart wall segment level ratings where trained cardiologists are

asked to rate the samples in the interval 1-5, but the input annotations are binarized

as normal (1) and abnormal (2-5) [13, 15]. Although working with binary annota-

tions streamlines the label estimation process, valuable information may be lost during

binarization. Carpenter [10] utilizes multilevel Bayesian approaches on binary data

annotations, and introduce priors on sensitivity and specificity of annotators. Ground

truth estimation is done by annotator modeling by using the annotators’ self-reported

confidences in [16]. Human personality trait evaluation is also a problem where no

quantifiable ground truth exists. Trait annotations collected by crowdsourcing are

used in [17] for personality trait classification.

Considering ordinal annotations as if they were categories, as input to the cat-

egorical models, is another simplification used in the literature [18, 19]. Rodrigues

et al. [11] challenged the results of Raykar et al. [7] in a supervised multiclass classi-

fication problem with a simpler probabilistic model. Srivastava et al. investigate the

problem of subjective video annotation and the majority opinion is shown to be the
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most objective annotation for a video [20]. Although it is possible to employ these

types of models for ordinal labels, the categorical approach falls short of preserving the

ordinal and proportional relations. For continuous or ordinal annotations, it is better

to employ models that make use of ordinal and proportional information.

There are only a handful of works focusing on ordinal or continuous annotations.

Raykar et al. estimate the gold standard and measure the competence of the annota-

tors iteratively in a probabilistic approach [7]. They mainly focus on the estimation

of consensus by making use of features extracted from the sample data. Their method

is also adapted to work without the sample features. The focus of Lakshminarayanan

and Teh is on ordinal labels where task difficulty is incorporated to the discretization

of continuous latent variables [21]. Peng et al. propose a domain-specific approach

to the protein folding annotation problem by maximizing the log-likelihood of an ex-

ponential family mixture model of annotation similarities [22]. Ok et al. model the

continuous crowd-labeling problem as a bipartite graph and use a belief propagation

based Bayesian iterative algorithm when the annotator noise levels are known [23]. For

the case where the annotator noise levels are unknown, they employ a non-Bayesian

iterative algorithm with marginal performance loss.

These works are pioneering elements in the continuous crowd-labeling problems.

However, to the best of our knowledge, our work is the first attempt to investigate

the effect of diverse annotator behaviors on consensus estimation and annotator scor-

ing mechanism for continuous crowd-labeling problems. In this thesis, we focus on

estimating the crowd consensus to be used as sample labels from continuous-valued

annotations by employing active crowd-labeling.

1.1.2. Active Crowd-Labeling

Active learning aims to concurrently reduce the training cost and increase the

performance of machine learning algorithms by smartly selecting the instances to be

included during the learning process. The concept of active learning is a well-suited

approach to the crowd-labeling domain where an immense number of annotations need
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to be acquired, costing both money and time. Settles surveys and organizes active

learning methods, practical considerations, and the relation of active learning to other

research areas in detail [24]. Fu et al. [25] survey the active learning domain from the

perspective of instance selection, where active learning methods are categorized into

two main groups: those that assume independent and identically distributed instances

and those that consider instance correlations.

1.1.2.1. Annotator Selection Strategies. The quality of the annotators varies largely

in crowd-labeling problems. Not only do the annotators’ expertise vary, but also some

of them may attempt to exploit the system for profit. Donmez et al. use the inter-

val estimation learning method for selecting the best annotators by incorporating the

exploration-exploitation trade-off [26]. Raykar and Yu introduce an annotator rank-

ing metric for detecting spammers [27]. Their metric works on binary, categorical,

and ordinal labeling tasks. Fang et al. try to tackle the problem of data scarcity in

crowd-labeling by using knowledge transfer from abundant unlabeled data [28]. They

report that the approach helps to estimate annotator expertise better and improves

performance. Li et al. propose a crowd targeting framework for selecting the best pos-

sible group of annotators for a specific task on binary and categorical data [29]. They

introduce information gain as a measure of annotator competence and use EM based

top-down and bottom-up approaches for selecting the best annotators. Jagabathula

et al. propose a soft penalty scheme for the case of non-malicious annotators for binary

labeled data [30]. For each sample, they count the number of times a given annotator

agrees with other annotators and calculate the reciprocal of the harmonic mean of such

quantities over all samples the given annotator has annotated. A hard penalty scheme

is proposed for handling sophisticated adversaries. They use optimal semi-matchings

with a quadratic cost function. Zhang et al. combine a reverse auction model with

annotator quality and sample difficulty for conducting crowd-labeling under a budget

constraint [31].

The problem of annotator reliability is a very popular subject and tackled in [32]

by using Gaussian mixture models. Liu et al. approach this problem by using belief
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propagation and mean field methods [33]. Statistical methods are used for estimating

annotator reliability and behavior [34], as well as including annotator parameters such

as bias, expertise, and competence [12]. Both approaches group annotator behaviors

into different ‘schools of thought’. Deciding on annotator reliability is also accomplished

by measuring annotator quality. Wu et al. propose a probabilistic model of active

learning with multiple noisy oracles together with the oracles’ labeling quality [35].

Dutta et al. also deal with annotator quality in a crowdsourcing case study where

multiple annotators provide high level categories for newspaper articles [36].

Annotators’ varying expertise both among themselves and over different parts of

the data are also factors affecting their reliability. Zhang et al. investigate annotator

expertise with a combination of ML and MAP estimation [8]. An online learning algo-

rithm weeding out unreliable annotators and asking for labels from reliable annotators

for instances which have been poorly labeled has been introduced in [37]. Varying

annotator expertise problems are also handled in [38] and [13] with ground truth es-

timation, using MAP estimation and EM approach. Whitehill et al. study annotator

expertise, taking noisy and adversarial annotators into account [39].

Detecting spammers/abusers, and biased annotators is useful for eliminating

and/or modifying specific annotations. Spectral decomposition techniques are used

for moderating abusive content in [40]. Raykar et al. propose an empirical Bayesian

algorithm for iteratively eliminating spammers and estimating consensus labels from

good annotators [14]. Wauthier et al. present a new Bayesian model for reducing

annotator bias to combine the data collection, data curation and active learning [41].

1.1.2.2. Sample Selection Strategies. The problem of selecting the most suitable sam-

ple has attracted the interest of researchers. The selection criteria can depend on var-

ious factors such as informativeness or uncertainty. Donmez and Carbonell study the

binary active learning problem by proposing a new sampling strategy [42]. They focus

on selecting a suitable sample to include in an unsupervised learning scenario, where

the annotator is considered to be infallible. Sheng et al. use noise-introduced bench-
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mark datasets for sample selection strategies on binary classification problems [43].

Gao et al. propose an online profit estimation method that weeds out samples which

do not need further annotations [44]. Lin et al. introduce variants of uncertainty sam-

pling and propose impact sampling to select the most informative sample suited for

the classifier [45]. Their method decides whether to obtain a new annotation for a

readily annotated sample or to introduce a new sample to the crowd-labeled dataset.

Khetan and Oh tackle the problem of binary active crowd-labeling by expending the

annotation budget on difficult tasks [46]. They classify high and low confidence tasks

in each annotation step and increase the budget allocation for more difficult tasks.

1.1.2.3. Joint Annotator and Sample Selection. Some of the works in the literature

deal with choosing the sample that needs to be annotated along with the most suitable

annotator. Donmez and Carbonell [47] extend their earlier work [42] by considering

multiple imperfect annotators and jointly select the optimum annotator-sample pair

under a budget constraint. Hsueh et al. study the annotation selection problem by

focusing on annotator noise, class label ambiguity, and the informativeness of a new

annotation with regard to the classifier [48]. Tran-Thanh et al. investigate the trade-

off between budget constraint and annotation quality [49, 50]. Nguyen et al. use a

decision theoretic approach for choosing between acquiring labels from crowds and

domain experts [51]. Their method selects a sample and annotator tuple to acquire

an annotation. During this process, they account for the active sampling bias and

estimate annotator accuracy.

1.1.2.4. Binary Annotation Problems. Current literature on active crowd-labeling is

mainly focused on binary annotation problems [26, 28,31,37,42–45,47–57]. We briefly

survey the main tenets below.

Raykar and Agrawal model the crowdsourced labeling task sequentially with an

epsilon-greedy exploration in a Markov Decision Process [53]. They use a utility func-

tion that considers label accuracy, cost and time. Li et al. deal with the budget

allocation problem in crowd-labeling by using a Markov Decision Process in a sequen-
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tial labeling scheme [58]. They propose a trade-off between label quality and quantity.

Karger et al. define the crowd-labeling problem as a bipartite graph and show results

supported by simulated binary data [59,60]. Their method is inspired by low-rank ma-

trix approximation and belief propagation. Zhuang and Young verify and investigate

the existence of in-batch annotation bias by using a factor graph based batch annota-

tion model on binary data [55]. Ho et al. formulate the setting as a linear programming

problem and work with the dual of the relaxed version. Their method requires the use of

gold standard labels for assessing annotator quality and uses weighted majority voting

for inferring the consensus [61]. Ho et al. treat the payment problem for crowdsourc-

ing markets as a multi-armed bandit problem, where each arm represents the contract

between a task and an annotator [57]. They propose a method called ’Agnostic Zoom-

ing’ for selecting the most beneficial contract and study dynamic task pricing. This

work focuses on annotator-sample pairing and deals with binary problems with the

task giver’s utility function as the main objective.

1.1.2.5. Categorical Annotation Problems. A relatively smaller portion of the exist-

ing work in the active crowd-labeling literature concentrates on categorical annota-

tions [37,52,54,56,62–65]. These methods may also be adapted for binary annotations

by considering only two categories. Yan et al. use uncertainty sampling for sample

selection, along with learning annotator expertise on binary and categorical data [52].

Mozafari et al. propose two active learning algorithms based on sample uncertainty

and a classifier’s expected error [54]. The methods are tested on a variety of datasets.

Zhu et al. [56] propose an online variant of the Dawid and Skene algorithm [18] that

is motivated by online EM variants and stochastic approximation methods. Kamar

et al. use the Galaxy Zoo dataset for the celestial object classification problem [62–64].

Galaxy Zoo is a crowdsourced effort mainly for the classification of different types of

galaxies. They use Bayesian structure learning to incorporate the human and ma-

chine knowledge into the classification task in [62] and they tackle the problem of

exploration-exploitation trade-off in worker hiring strategy by modeling the decision-

making process as a Markov decision process in [63]. In [64], they focus on the problem

of rectifying task-related bias of annotators and show that active learning with ex-
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pert annotators can be used for alleviating bias. Venanzi et al. use a time-sensitive

Bayesian aggregation method to estimate the labeling duration and annotator profile in

crowdsourcing systems [65]. They detect bots, spammers or lazy annotators from the

duration of their labeling process (either too short or too long). The study is carried

out for categorical data.

1.1.2.6. Natural Language Processing Annotation Problems. In addition to categori-

cal or numerical problems, natural language processing (NLP) is a popular area where

crowd-labeling is preferred [66–68]. Ambati et al. use crowdsourcing for collecting

translations from non-expert annotators [67]. They use inter-annotator agreement for

translation reliability computation. Laws et al. use majority voting in the active learn-

ing scheme for crowd-labeling in the NLP domain [68]. The results show that active

learning is to be preferred to random annotation selection.

1.1.2.7. Ordinal and Continuous Annotation Problems. Active crowd-labeling for con-

tinuous or ordinal valued annotations is a mostly unexplored research area. Marcus

et al. make use of gold standard labels to identify low-quality or spammer annotators

by a counting approach that combines several binary tasks into an ordinal task [69].

They also identify and avoid coordinated attacks from malicious annotators (i.e. Sybil

attacks). Guo et al. deal with the problem of ordering objects in a set by aggregating

pairwise comparison of said objects [70]. They devise a maximum likelihood formula-

tion for finding the correct order of objects and show that this problem is NP-hard for

their setting where all annotator accuracies are the same. However, their approach to

active labeling focuses on the one-shot utilization of the additional budget. Welinder

and Perona tackle the active crowd-labeling problem for continuous-valued annotations,

by including the label uncertainty and annotator ability measurement in an EM based

approach [37]. Their method detects and excludes spammers during the annotation

process and is suitable for both binary and categorical data.
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1.2. Novelty and Contributions

Annotating large datasets is a time consuming task and is usually expensive when

the annotation task is outsourced to experts. The wisdom of crowds is an efficacious

approach for this task in terms of budget and time constraints. However, inattentive

annotators and spammers reduce the quality of annotations. Since desired sample

labels are consensuses obtained from these annotations, it is beneficial to observe and

understand the behavior of the annotators early on in the annotation process and take

the necessary steps for improving the quality of consensus.

Our contributions in this study can be summarized as follows. First, we propose

four new Bayesian models that model annotator behaviors for continuous or ordinal

annotations to estimate the consensus scores [71]. The proposed methods do not require

any training step and are particularly designed for problems where there is no ground

truth available. As a result, they are suitable to the problems where the ground truth is

not available by construct, i.e. subjective annotations of human behavior. We believe

that this is the first work that incorporates numerous annotator behaviors in consensus

estimation for continuous crowd-labeling problems.

Second, we show that the consensus scores estimated by the proposed models can

be converted to categorical scores using simple techniques such as thresholding [71]. As

an example, we use the binary output case and used thresholding for the binarization

of continuous consensus values (i.e. model output). The experiments that we perform

show that the binarized consensus scores produced by the proposed models has higher

accuracy in comparison to the state of the art techniques that are specifically designed

for binary scores.

Third, we provide a new annotator scoring mechanism, which assigns a score to

each annotator, representing the annotation quality of that annotator [71]. This score

can be used to select high quality annotators for a given task to decrease annotation

cost and time. We show that the proposed annotator score successfully selects good
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annotators, and the consensus scores estimated using selected annotators has lower

error.

Fourth, we propose two active crowd-labeling methods [72] which produce con-

tinuous or ordinal valued consensus labels that can be further converted to binary or

categorical labels by quantization, if necessary. The first method, O-CBS, focuses on

improving the existing consensuses established from a set of previously collected anno-

tations by selecting a sample-annotator pair for the next annotation. The second active

crowd-labeling method, O-CBS+, is an extension of O-CBS. O-CBS+ eliminates the

requirement of a readily available annotation set and is able to infer consensuses from

scratch by means of annotator exploration/exploitation. Both methods target com-

putational feasibility through a two-tier approach, where choosing a sample with low

consensus quality is followed by choosing a high-quality annotator to annotate it. The

two-tier approach makes both methods highly scalable and tractable. The proposed

methods are data-independent, require no gold standard data to learn annotators, and

are specifically designed for problems where the ground truth is not available or easily

quantifiable.

Fifth, based on the variance of the sample’s consensus posterior, we provide a

novel formulation to estimate sample consensus quality, which corresponds to the total

precision of the annotators that annotated the sample [72]. This scoring mechanism

prevents budget exhaustion on confusing samples and provides a balanced sample se-

lection.

Sixth, we address annotator selection problem in active crowd-labeling by in-

troducing a family of annotator competence scoring functions that prevent annotator

domination [72]. The dominance suppression mechanism that we introduce prevents

ill-intentioned annotators from dominating the system and utilizes high-quality anno-

tators in a balanced manner. We investigate the effects of both sample and annotator

selection functions with extensive experiments on nine real-world datasets, three of

which are introduced in the course of this thesis (Age Annotations dataset, Head Pose

Annotations Pan and Tilt datasets).
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Seventh, we study the effects of both a budget induced and a sample consensus

quality induced stopping criteria with comparative experiments on all datasets [72].

The results show that O-CBS+ is an effective and budget-friendly (as low as one fifth

of the original budget) active crowd-labeling method with high accuracy. Moreover,

t-test results prove that it measures up to or surpasses contender algorithms.

Finally, we introduce a preliminary multivariate crowd-labeling model and solve

it using a variational Bayes approach. Our model takes cross dimensional correlations

in the datasets into account. Early results show that the proposed multivariate model

performs on par with or better than univariate benchmark models and has significant

potential for improvement.
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2. DATASETS

In this chapter, we give the details of the datasets that we used to evaluate

our work. First, we introduce two datasets: The Age Annotations dataset, and the

Head Pose Annotations dataset (tilt and pan attributes). Second, we give the details

of the Affective Text Analysis dataset (anger, disgust, fear, joy, sadness, and sur-

prise attributes) [66]. Last, we describe the ELEA Personality Impressions Data [73].

Throughout this thesis, each attribute is also referred as a distinct dataset for our

univariate models. Table 2.1 summarizes the datasets used in this thesis.

Most commonly, annotation schemes use binary symbols: Annotators choose be-

tween two options: These can be categorical options; such as male/female; or categori-

cal classification of a continuous variable such as age in the form of young/old. The age

of a person is actually a continuous variable; quantifying the time passed since birth.

There are many ways of annotating this variable: One may choose a binary classifi-

cation; such as young/old; or an ordinal representation, such as 0, 1, . . . , 7; each digit

representing an age bracket. In this thesis, we regard the annotations as continuous

variables to accommodate all possibilities, by adopting the most general representation.

The continuous variables can be converted back to their ordinal or binary form by sim-

ple thresholding techniques when needed. This way, we are able to handle continuous,

ordinal, or binary annotations.

For all datasets, annotations are linearly mapped to the range [−3, 3] before pro-

cessing. The results for the Head Pose Annotations datasets and the Age Annotations

dataset are given in mean absolute degree and age error, respectively. Therefore, their

inference results, which are in the range [−3, 3], are linearly mapped to their related

ground truth ranges (i.e. [−90, 90] degrees and ages 0 through 69.)

As we mention in Section 1.1, the work of [37] is the only approach besides this

work that estimates continuous-valued labels by means of active crowd-labeling. Thus,

on the Head Pose Annotations and the Age Annotations datasets, we compare our
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results with the work of [37]. We also provide binarized comparisons with the work

of [53] on the six Affective Text Analysis datasets.

Table 2.1. Annotation datasets used in this work. For evaluating our work, we

introduce Age Annotations and Head Pose Annotations tilt and pan datasets.

Additionally, we use six Affective Text Analysis [66] and ELEA Personality

Impressions Data [73].

Dataset Annotations Samples Annotators
Ground Truth

Range

Annotation

Range

Age Annotations

(introduced in this

work)

10020 1002 619 {0, . . . , 69} {1, . . . , 7}

Head Pose Annotations:

tilt, pan

(introduced in this

work)

5399 555 189 {−90, . . . , 90} {1, . . . , 7}

Affective Text Analysis:

anger, disgust, fear, joy,

sadness, surprise [66]

1000 100 38 {0, . . . , 100} {0, . . . , 100}

ELEA Personality Im-

pressions Data:

Big five personality

traits [73]

306 102 5 {1, . . . , 7} {1, . . . , 7}

2.1. Age Annotations Dataset

For evaluating our models, annotation datasets with ground truth values are

invaluable. We have decided to use a dataset of face images which also has the ground

truth age information of the subjects in the pictures. We found the FGNet Aging

Database [74] suitable for our needs. The dataset consists of a total of 1002 pictures

from 82 subjects. The age range of the dataset is 0–69. Figure 2.1 shows some samples

from this dataset and Figure 2.2 shows the age histogram of the dataset. The dataset

consists mostly of baby, child, and young adult photos.



17

Figure 2.1. Sample images from the FGNet Aging Database
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Figure 2.2. The FGNet Aging Database Age Histogram

For the annotation task, we prepared a questionnaire in which we show a facial

picture and ask the annotator to rate the age of the person in the picture. The an-

notators are asked to rate the age from 1 to 7 where a lower rate means young and a

higher rate means old. We used CrowdFlower [3] for collecting the annotation data and

executed two sets of data collection. In the first set, a task for an annotator consisted

of 10 annotations which means that the annotators were asked to annotate a batch of

10 images. However, if they desired they could annotate more than one batch. In the

second set, a batch consisted of 15 annotations. In both sets, we set the system up

to collect 5 annotations per sample. Table 2.2 shows annotation counts for these two
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sets and their joint set. The table describes the frequency of annotators’ annotations.

For example, there are 208 annotators in Set 1 that have provided 10 annotations and

there are 292 annotators in Set 2 that have provided 15 annotations. It can be seen

that not all of the annotation counts per annotator are multiples of 10 or 15. This is

because the system decides to collect fewer annotations when the ‘5 annotations per

sample’ criterion is met.

Table 2.2. Annotator workload for the Age Annotations Dataset (the number of

annotations made by an annotator)

Annotator
workload

Number of annotators

Set 1 Set 2 Joint

1 2 4 6

6 0 1 1

7 1 0 1

9 2 0 2

10 208 0 208

11 1 0 1

14 1 0 1

15 0 292 292

16 0 1 1

19 1 0 1

20 82 0 82

Annotator
workload

Number of annotators

Set 1 Set 2 Joint

29 1 1 2

30 26 12 38

31 1 0 1

33 0 1 1

36 1 0 1

40 5 0 5

42 0 1 1

43 0 1 1

45 0 1 1

50 3 0 3

59 0 1 1

2.2. Head Pose Annotations Dataset

In addition to the Age Annotations Dataset, we also collected annotations for

the Head Pose Image Database [75, 76]. The dataset has both pan and tilt ground

truth values for each of the 2790 photos. The tilt values in the dataset are -90, -60,

-30, -15, 0, +15, +30, +60, +90 degrees and the pan values are -90, -75, -60, -45, -30,

-15, 0, +15, +30, +45, +60, +75, +90 degrees. The pan-tilt pairs used in the dataset

result in 93 unique head pose configurations. There are two series of photos in which

15 subjects portrayed all of these configurations. Figure 2.3 shows sample images of



19

the dataset. The ground truth values and the images were acquired using the setup

shown in Figure 2.4.
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Figure 2.3. 37 distinct head poses of a person, which are chosen for the annotation

tasks in the Head Pose Annotations datasets. The head pose images are taken from

the Head Pose Image Database [76].

(a) Side View (b) Top View

Figure 2.4. Image acquisition setup of the Head Pose Image Database [75]

Due to budgetary constraints, we submitted a subset of these images to Crowd-

Flower [3] for annotation. We chose only one photo series for each subject. 6 subjects
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in the dataset wear glasses in one of their photo series. If available, we chose the photo

series with glasses, otherwise the first series was used. We tried to choose a balanced

combination of images with and without glasses. For pan and tilt values, we chose the

photos with -90, -60, -30, 0, +30, +60, +90 degrees in both dimensions. A total of 555

photos were annotated. For each photo, we asked the participants to annotate three

questions:

(i) Horizontal Orientation (pan): Left(1)-Right(7) (annotators’ own left and right)

(ii) Vertical Orientation (tilt): Up(1) - Down(7)

(iii) Whether the person is wearing glasses or not.

Figure 2.5 shows a sample of what the annotators see when they are working on

our head orientation tagging task.

Figure 2.5. Head Pose Annotations Dataset sample question

In Table 2.3, we present the annotation frequency of the samples. Out of 555

samples, 475 have 9 annotations, with other samples having as few as 7 and as many

as 17 annotations.
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Table 2.3. Number of annotations per sample for the Head Pose Annotations Datasets

Sample annotation count 7 8 9 15 16 17

Number of samples 10 10 475 6 34 20

Table 2.4 shows the annotation frequency of the annotators, which we call anno-

tator workload. A total of 189 annotators participated in the annotation tasks. Most

common annotator workloads are multiples of 10 since many annotators completed the

batch tasks assigned to them. For example, 61 annotators annotated 10 samples and

2 annotators annotated 100 samples.

Table 2.4. Annotator workloads for the Head Pose Annotations Datasets (the number

of annotations made by an annotator)

Annotator workload 5 10 17 20 24 30 39 40 45 50 55 60 70 75 80 84 90 100

Number of annotators 1 61 1 45 1 26 1 15 2 13 1 7 5 1 4 1 2 2

2.3. Affective Text Analysis Datasets

Another group of datasets that we used for evaluating our methods are the six

Affective Text Analysis datasets [66]. Each of these datasets has 1000 annotations

on 100 short news headlines, drawn from various news sources [77], regarding positive

and negative emotions. The task is to annotate a headline for each emotion, namely

anger, disgust, fear, joy, sadness, and surprise. The annotators were asked to provide

annotations in the interval of 0 to 100 for each emotion. 10 annotations per task were

collected from 38 annotators using Amazon Mechanical Turk. The provided ground

truth values are the averages of expert opinions.

Annotating emotions is a highly subjective task. There is no quantitative metric

with which to measure the intensity of an emotion. Thus, the best possible approach

is to consult experts and accept combinations of their opinions as the ground truth

labels. However, comparing estimated labels obtained from crowd annotations with

these ground truth values only establishes how well the crowd can estimate the average

opinion of experts. Thus, it is very likely that high quality crowd opinions may be
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dismissed as subpar since they differ from the ground truth produced by only a few

experts.

It is more common to express one’s emotions in a state of existent/non-existent

instead of on a scale of 0 to 100. Similarly, it is not easy for the annotator to annotate

the emotion on such a fine scale. Therefore, a more practical approach is to compare

the crowd’s opinions against the experts’ after binarization.

In light of these issues, we compare the binarized estimated labels with the bina-

rized ground truth values for the six Affective Text Analysis datasets, as has been done

in previous works that use this data [53]. Although we binarize the estimated output

labels, we use the input annotations from the crowd as they are. By not binarizing the

input annotations, we prevent the loss of valuable information, which may prove crucial

for borderline decisions. Therefore, the results for Affective Text Analysis datasets are

given as accuracies.

2.4. ELEA Personality Impressions Data

In parallel to the increasing existence of computers, robots, and machines equipped

with various multimodal sensors in our daily lives, there is also an increasing interest

in building automatic systems that are capable of inferring and predicting traits of

people. One of these traits, personality, defines an individual’s distinctive character

as a collection of consistent behavioral and emotional traits. The Big Five model has

been the widely used model, which factors personality into five different dimensions

(i.e., extraversion, agreeableness, conscientiousness, emotional stability, and openness

to experience). While some of those dimensions are apparent in brief observations, oth-

ers are not. For those dimensions of personality, the personality is evident in and can

be predicted from people’s verbal and nonverbal behavior in brief segments [17,73,78].

As a dataset to study personality, we used a subset from the Emergent LEAder

(ELEA) corpus [79]. The ELEA AV subset consists of audio-visual recordings of 27

meetings, in which the participants perform a winter survival task with no roles as-
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Table 2.5. Personality annotations per annotator on the ELEA data

Annotator 1 91

Annotator 2 83

Annotator 3 77

Annotator 4 49

Annotator 5 6

signed. The winter survival task is a simulation game where the participants in the task

are the survivors of an airplane crash. They are asked to rank 12 items to take with

them to survive as a group. Participants first ranked the items individually; then, as

a group. The task itself is designed such that it promotes interactions among the par-

ticipants in the group. The discussion and negotiation parts of the interaction present

cues on the personality of the participants, making it a suitable database to study

personality prediction. There are 102 participants in total in the ELEA AV subset.

Each meeting lasts approximately 15 minutes and is recorded with two webcams and

a microphone array. More details about the ELEA corpus can be found in [79,80].

For each participant in the dataset, the personality impressions are obtained from

external observers [73]. Ten Item Personality Inventory (TIPI) is used for measuring

the Big Five personality traits of the participants [81]. The TIPI questionnaire includes

two questions per trait, answered on a 7-point Likert scale. The score for each trait

is also calculated on a scale of one to seven. For each participant, a one-minute seg-

ment is selected from the meeting, which corresponds to the segment that includes the

participant’s longest turn. Each participant was annotated by three different annota-

tors, with a total of five annotators annotating the whole dataset. Table 2.5 shows the

number of annotations per annotator. More details on the annotations can be found

in [73].
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3. THE CROWD-LABELING PROBLEM DEFINITION

Assume that we consult R annotators to annotate a dataset of N samples. Due

to budgetary and annotator availability constraints, it is not always possible to collect

annotations for all samples from all annotators. Most often, each annotator annotates

a few out of N samples and every sample is annotated by a small group of annotators.

Out of all annotator-sample pairings (N×R possible annotations), we end up with

K�N×R annotations. This is a common case for crowdsourced annotation tasks.

The aim of our work is to choose these K annotations wisely and to infer high-quality

consensus labels for all samples.

In Chapter 4, we work on how to infer high-quality consensus labels from a readily

collected set of annotations. We call this problem passive crowd-labeling since we have

no control over the annotation collection process. Active crowd-labeling is the case

when we have control over the annotation collection process. In Chapters 5 to 7, we

work on how to choose beneficial annotator-sample pairing during the course of active

crowd-labeling.

Table 3.1. Variables pertaining to the crowd-labeling problem

Variable Description

N Number of samples

R Number of annotators

K Number of annotations

yk Value of the kth annotation

ik Sample index of the kth annotation

jk Annotator index of the kth annotation

xi Consensus value of the ith sample

Nj Annotation count of the jth annotator

Y {y1:K}
X {x1:N}
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In this thesis, collected annotation values are denoted as yk where k ∈ {1, . . . , K}
represents the annotation index. Additionally, the sample and the annotator indices of

the annotation k are denoted as ik and jk, respectively. The sought consensus value of

the ith sample is denoted as xi. Annotation count of the jth annotator is represented

with Nj. Table 3.1 summarizes these variables.

In the first section of this chapter, we elaborate on frequently encountered an-

notator behaviors which are the main motivation behind our methodology. In the

following section, we give the definitions of some probability distributions that are

used throughout this thesis.

3.1. Annotator Behaviors

Different annotator behaviors have been observed in crowdsourced tasks and dis-

cussed in several papers on analyzing crowdsourcing systems and on annotator model-

ing. The reasons behind these different annotator behaviors are various. While some of

these behaviors are due to the level of expertise of the annotators, some may occur due

to low-attention/low-concentration on the task, and some behaviors are observed due

to the bad intent of the annotators. For example, there are spammers [14], dishonest

annotators [82] or annotators who try to game the system by providing unrelated or

nonsense answers [83]. In [14], annotator behaviors such as bias or maliciousness are

also discussed.

We wish to understand the behavior and expertise of annotators for reaching a

common annotation (consensus) for each sample. Some basic annotator types can be

• Competent: Give annotations with low error rate

• Spammers: Give random annotations

• Adversaries: Give inverted rates

• Positively biased: Tend to give higher rates

• Negatively biased: Tend to give lower rates

• Unary annotators: Give the same rating to all samples
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Figure 3.1. Real annotator examples from the Age Annotations Dataset. Each graph

presents all annotations of a single annotator.
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• Binary annotators: Give rates at the opposite ends of the scale

• Ternary annotators: Give low, mid, and high ratings

These annotator types need not be mutually exclusive; an annotator may be a com-

bination of these types. We want to model the common behaviors of these annotator

types. If we infer an annotator’s behavior, we can utilize this information for our ben-

efit. For instance, we can use competent annotators’ annotations as is, we can ignore

spammers, and invert the annotations of adversaries. Figure 3.1 shows real annotations

from the Age Annotations Dataset, produced by different types of annotators. Note

that we do not try to classify annotator types, but we incorporate the behaviors of the

annotator types for designing better models.

3.2. Probability Distributions

Definition 3.1 (Bernoulli Distribution). Probability mass function of a Bernoulli ran-

dom variable k ∈ {0, 1} with probability parameter p ∈ (0, 1) is given by

B (k; p) = pk(1− p)1−k.

Definition 3.2 (Gamma Distribution). Probability density function of the Gamma

distribution is

G (x;α, β) =
βα

Γ (α)
xα−1 exp (−xβ)

where x ≥ 0 and α, β > 0, Γ (·) is the gamma function. Its mode is α−1
β

when α ≥ 1.

Definition 3.3 (Normal Distribution). Probability density function of a normally dis-

tributed variable x with mean µ and variance σ2 is given by

N
(
x;µ, σ2

)
=

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
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and its cumulative distribution function is

Φ

(
x− µ
σ

)
=

1

2

(
1 + erf

(
x− µ
σ
√

2

))
.

Definition 3.4 (Truncated Normal Distribution). Truncated normal distribution is

the distribution of a bounded and normally distributed random variable. Probability

density function of a truncated normally distributed variable x with parameters µ ∈ R,
σ > 0, lower bound a, and upper bound b is given by

Ntrunc
(
x;µ, σ2, a, b

)
=

N (x;µ, σ2)

Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Remark. When a = −∞, Φ
(
a−µ
σ

)
= 0; and when b =∞, Φ

(
b−µ
σ

)
= 1. Thus,

Ntrunc
(
x;µ, σ2,−∞,∞

)
= N

(
x;µ, σ2

)
.

Now, we introduce a new distribution called the Generalized Positively Truncated

Normal Distribution. To the best of our knowledge, this distribution does not appear

in the statistics literature.

Definition 3.5 (Generalized Positively Truncated Normal Distribution). Probability

density function of a generalized positively truncated normally distributed random vari-

able x > 0 with parameters µ ∈ R, σ > 0, and α ≥ 0 is given by

GPT N
(
x;µ, σ2, α

)
=

1

Zµ,σ(α)
xα exp

(
−(x− µ)2

2σ2
+

µ2

2σ2

)

The normalization constant Zµ,σ(α) is

Zµ,σ(α) = (σ
√

2)α+1

(
1

2
Γ

(
α + 1

2

)
1F1

(
α + 1

2
;
1

2
;
µ2

2σ2

)

+
µ

σ
√

2
Γ
(α

2
+ 1
)

1F1

(
α

2
+ 1;

3

2
;
µ2

2σ2

))
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where Γ (·) is the gamma function, and 1F1 (·; ·; ·) is the confluent hypergeometric func-

tion of the first kind [84].

Remark. When α = 0, the distribution reduces to the positively truncated normal

distribution, i.e. GPT N (x;µ, σ2, 0) = Ntrunc (x;µ, σ2, 0,∞).

Theorem 3.1 (Moments of the Generalized Positively Truncated Normal Distribu-

tion). The nth moment of the Generalized Positively Truncated Normal Distribution

with parameters α, µ, and σ is

E[xn] =
Zµ,σ(α + n)

Zµ,σ(α)
.

Remark. The mean of the distribution is
Zµ,σ(α + 1)

Zµ,σ(α)
and the variance is

Zµ,σ(α + 2)

Zµ,σ(α)
−
(
Zµ,σ(α + 1)

Zµ,σ(α)

)2

.

Proof.

E[xn] =

∫ ∞

0

xnGPT N
(
x;µ, σ2, α

)
dx

=

∫ ∞

0

xn
1

Zµ,σ(α)
xα exp

(
−(x− µ)2

2σ2
+

µ2

2σ2

)
dx

=

∫ ∞

0

1

Zµ,σ(α)
xα+n exp

(
−(x− µ)2

2σ2
+

µ2

2σ2

)
dx

=
Zµ,σ(α + n)

Zµ,σ(α)

∫ ∞

0

1

Zµ,σ(α + n)
xα+n exp

(
−(x− µ)2

2σ2
+

µ2

2σ2

)
dx

=
Zµ,σ(α + n)

Zµ,σ(α)

∫ ∞

0

GPT N
(
x;µ, σ2, α + n

)
dx

︸ ︷︷ ︸
1

=
Zµ,σ(α + n)

Zµ,σ(α)
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Theorem 3.2 (Mode of the Generalized Positively Truncated Normal Distribution).

The mode of the distribution is

µ

2
+

√(µ
2

)2

+ ασ2.

Proof.

log(f) = α log x− 1

2σ2
x2 +

µ

σ2
x+ Constant

0 =
d log(f)

dx
=
α

x
− 1

σ2
x+

µ

σ2

0 = − 1

σ2
x2 +

µ

σ2
x+ α

0 =
1

σ2
x2 − µ

σ2
x− α

x =

µ

σ2
±
√( µ

σ2

)2

+
4α

σ2

2

σ2

=
µ

2
±
√(µ

2

)2

+ ασ2

︸ ︷︷ ︸
≥|µ/2| (since α ≥ 0)

Therefore for all µ, the only positive root of the equation is

x =
µ

2
+

√(µ
2

)2

+ ασ2.

Definition 3.6 (Multivariate Normal Distribution). Probability density function of a

normally distributed vector x ∈ Rd with the mean vector µ ∈ Rd and the covariance

matrix Σ is given by

Nd (x;µ,Σ) = |2πΣ|− 1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where | · | denotes the matrix determinant.
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Definition 3.7 (Matrix Normal Distribution). Probability density function of a nor-

mally distributed random matrix X(n×p) with the location matrix M(n×p) and the

scale matrices U(n×n) and V (p×p) is given by

MN n,p (X;M ,U ,V ) =
exp

(
−1

2
Tr
(
V −1(X −M )TU−1(X −M )

))

(2π)np/2|V |n/2|U |p/2

where Tr(·) and | · | denote the trace and the matrix determinant, respectively.

Remark. The following statement defines the relation between the multivariate normal

and the matrix normal distributions [85]:

X ∼MN n,p (X;M ,U ,V ) ⇐⇒ vec(X) ∼ Nnp (vec(X); vec(M ),V ⊗U)

where vec(·) denotes the vectorization and ⊗ denotes the Kronecker product.

Remark. The following properties are shown to hold for the matrix normal distribution

[85]

E [X] = M (3.1)

E
[
(X −M )(X −M )T

]
= U Tr(V ) (3.2)

E
[
(X −M )T (X −M)

]
= V Tr(U) (3.3)

E
[
XAXT

]
= U Tr(ATV ) +MAMT (3.4)

E
[
XTAX

]
= V Tr(UAT) +MTAM (3.5)

E [XAX] = UATV +MAM (3.6)

where Tr(·) denotes trace.

Definition 3.8 (Wishart Distribution). Probability density function of the Wishart

distribution is

Wd (X; Ψ, ν) =
|X| ν−d−1

2

2
νd
2 |Ψ| ν2 Γd

(
ν
2

) exp

(
−1

2
Tr(Ψ−1X)

)
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where X and Ψ are d×d positive definite matrices, Γd (·) is the multivariate gamma

function, and |·| denotes the matrix determinant. The expected value ofX is E [X] =νΨ.

Definition 3.9 (Categorical Distribution). Let z be a categorically distributed random

1-of-C binary vector with elements zc and p be a vector where pc ∈ [0, 1],∀c and
C∑

c=1

pc = 1. Then, the distribution of z is

C (z;p) =
C∏

c=1

pzcc .

The expected value of observing category c is E [zc] = pc. Note that since only one

element of the vector z is 1,
C∑

c=1

zc = 1.
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4. PASSIVE CROWD-LABELING

In our approach, we want to cover as many diverse annotator behaviors as possi-

ble. We introduce three major annotator tendencies. The first one is the adverseness

of the annotator, which describes whether or not the annotator provides inverted an-

notations. The second one, which we call annotator bias, explains the main behavior

of positively and negatively biased annotators. Additionally, each annotator may tend

to describe a similar set of samples in a wider/narrower range of rates. We call this

third behavior the diversity of the opinion scale.

We assume that each sample has a single true rate (x) and an annotator tries to

assign a rate (y) as a function of the unknown true rate (µθ(x)). The behaviors of the

annotators are incorporated into our models via the annotator parameters (θ). Our

models share a similar characteristic in the way that each annotation is a Gaussian

random variable such that

N
(
y;µθ(x), σ2

θ

)
(4.1)

where y represents the annotation value, x is the true rate, µθ(·) is the annotator

function, and σθ represents noise. x has a flat prior and the priors of the annotator

parameters will be introduced with our models. Figure 4.1 shows a common Bayesian

network for the proposed models.

We use maximum a posteriori estimation for inferring the model parameters:

L = log p(Y |X, θ) + log p(θ) + log p(X) (4.2)

θ̂MAP = argmax
θ
{L} (4.3)
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where L is the log likelihood, Y are the annotations, X are the true labels, and θ =

{θ1, . . . , θN} are the annotator parameters. The solution is obtained by solving

∂L
∂θj

= 0,∀θj ∈ θ. (4.4)

The consensus rates are simultaneously inferred with the annotator parameters:

∂L
∂xi

= 0,∀xi ∈ X. (4.5)

ykθj

xi

N

R

Figure 4.1. Bayesian network for the proposed models

Now, we propose four novel models which handle various annotator behaviors

for univariate labels. In these models, x and y are scalars. Table 4.1 summarizes the

annotator parameters, their domains, default values, and priors that appear in all four

models. Table 4.2 shows a summary of the update equations for the consensus values

and the parameters of the proposed models.

Table 4.1. Summary of annotator parameters

Parameter Name Domain Default Prior

Annotator Precision λj R>0 N/A G (λj;αλ, βλ)

Adverseness aj {−1,+1} 1 Flat

Opinion Scale wj R>0 1 G (wj; βw + 1, βw)

Annotator Bias bj R 0 N (bj;µB, s
2
B)
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4.1. M-AH: Adversary Handling Model

Raykar et al. proposed a model for continuous annotation problems [7]. Their

model uses features from the data in addition to the annotations. They have adapted

the same algorithm for obtaining consensus without features. Since we don’t use fea-

tures in our work, the latter version is more suitable for comparing with our models.

This adapted version assumes that an annotator labels a sample with a rate around

its true value and every annotator has a variance parameter of their own. This model

does not deal with annotator behaviors.

As mentioned before, there might be some adversary annotators in crowd-labeling

tasks. In this model, we add adversary handling to Raykar et al.’s model. Along with

an annotator’s annotation variance, we find whether the annotator is an adversary or

not.

For simplicity, we assume that the annotations are centered around zero in our

models. For instance, if the annotators are asked to annotate between 1 and 7, we shift

those annotations to the range -3 to 3.

We model the annotations as instances generated by a normal distribution with

the mean as the consensus xi for that sample and variance σ2
θj

= 1
λj
. We choose a

Gamma prior for the parameter λj, which is a conjugate prior to the normal distribu-

tion. This is suitable for our problem, since we want our model to fit the data well,

but not too well to prevent overfitting. The prior on λj is

λj ∼ G (λj;αλ, βλ) . (4.6)

We choose the hyperparameters as αλ = 1.2 and βλ = 0.9 since we want λjs (which

are related to noise) to be small. However, we also want them to be a bit larger than

0, since it is evident that no annotation task is noiseless.
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We want to invert the annotation if the annotator is an adversary. For the normal

distribution, inverting the mean is equivalent to inverting the value of the random

variable. Thus, we set the mean parameter as µθj(xi) = ajxi where aj represents the

adverseness of the jth annotator. If the annotator is an adversary, aj takes the value

-1, if not it takes the value 1. The parameters of this model are θ = {Λ, A}, where
Λ = {λ1:R} and A = {a1:R}. We choose a flat prior on A. Then, the model is:

p(Y,X, θ) =
K∏

k=1

p(yk|xik , λjk , ajk)
R∏

j=1

p(λj)p(aj)
N∏

i=1

p(xi)

∝
K∏

k=1

N
(
yk; ajkxik ,

1

λj

) R∏

j=1

G (λj;αλ, βλ) .

(4.7)

Parameters of distinct annotators are independent of each other when X is given.

Therefore, we are able to produce the update equations of each annotator’s param-

eters seperately. That is, for finding the update equations of a specific annotator’s

parameters, we are only interested in the samples that are annotated by the said an-

notator. For calculating the update equations of xi, λj, and aj, we state and make use

of Theorems 4.1 to 4.3.

4.1.1. Update Equation for the Consensus Value x in M-AH

Theorem 4.1 (Posterior distribution of x). Let the distribution of yk be

N
(
yk; ajk(wjkxik + bjk),

1

λjk

)
.

Then, the posterior distribution of xi is

xi|{yk, θjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjkwjk(ajkyk − bjk)
∑

k:ik=i

w2
jk
λjk

,

(∑

k:ik=i

w2
jk
λjk

)−1



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where θj = {aj, wj, bj, λj} is the set of parameters of annotator j and Ki = {k ∈ K :

ik = i} is the set of annotations of sample i.

Proof. See Appendix A.1.

Using Theorem 4.1 for the setting in Equation 4.7, we find the posterior distri-

bution of xi as

N


xi;

∑

k:ik=i

λjkajkyk

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1


 . (4.8)

Then, the mode of this distribution is the update equation of xi, which is

xi =

∑

k:ik=i

λjkajkyk

∑

k:ik=i

λjk
. (4.9)

4.1.2. Update Equation for the Precision Parameter λ in M-AH

Theorem 4.2 (Posterior distribution of λ). Let xk, yk ∈ R,∀k ∈ {1, . . . , K}, w > 0,

and λ > 0. If the distribution of yk is N (yk;wxk, w
2λ−1), then the posterior distribution

of λ is

G
(
λ;
K

2
+ 1,

1

2

K∑

k=1

(yk
w
− xk

)2
)
.

Moreover, if the prior distribution of λ is G (λ;αλ, βλ), then the posterior is

G
(
λ;
K

2
+ αλ, βλ +

1

2

K∑

k=1

(yk
w
− xk

)2
)
.
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Proof. See Appendix A.2.

Considering the setting in Equation 4.7, we use Theorem 4.2 to find the posterior

of λj . Then, we obtain the posterior as

G
(
λj;

Nj

2
+ αλ, βλ +

1

2

∑

k:jk=j

(
yk
aj
− xik

)2
)
. (4.10)

The mode of this distribution is the update equation of λj, which is

λj =
2(αλ − 1) +Nj

2βλ +
∑

k:jk=j

(yk − ajxik)2
. (4.11)

Note that aj =
1

aj
and a2

j = 1 for all aj, since aj ∈ {−1, 1}. The update equations are

simplified using these equalities.

4.1.3. Update Equation for the Adverseness Parameter a in M-AH

Theorem 4.3 (Posterior distribution of a). Suppose that the values xk, yk ∈ R, ∀k ∈
{1, . . . , K} and λ > 0 are given. Let c ∼ B (c; p) and the distribution of yk be yk ∼
N (yk; axk, λ

−1) where a = 2c− 1. Then the posterior distribution of c is

B


c;

[
1 + exp

(
−2λ

K∑

k=1

ykxk

)]−1

 .

Moreover, the value a∗ that maximizes this distribution is given by

a∗ = sgn

(
K∑

k=1

ykxk

)
.

Proof. See Appendix A.3.
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Using Theorem 4.3 for the setting in Equation 4.7, we find the update equation

of aj as

aj = sgn

( ∑

k:jk=j

ykxik

)
. (4.12)

4.2. M-SH: Scale Handling Model

In addition to adversary handling of M-AH, we introduce opinion scale handling

in M-SH. Some annotators tend to give rates in a wider or narrower range with respect

to the ground truth. The opinion scale is represented by w. We incorporate this

behavior into the model by setting the model mean as µθj(xi) = ajwjxi. We assume

that the annotators generally have a standard opinion scale, so we want to favor w

being close to 1. Thus, we want to select a distribution having 1 as its mode. As the

prior for w, we select the Gamma distribution. The prior on w is

wj ∼ G (wj; βw + 1, βw) (4.13)

whose hyperparameters satisfy the mode of the distribution being equal to 1. We

choose βw = 4 so that the variance of this Gamma distribution is large enough not to

overconstrain wj and small enough to favor values around 1.

The parameters of the model are θ = {Λ, A,W}, where W = {w1:R}. Then, we

have

p(Y,X, θ) =
K∏

k=1

p(yk|xik , λjk , ajk , wjk)
R∏

j=1

p(λj)p(aj)p(wj)
N∏

i=1

p(xi)

∝
K∏

k=1

N
(
yk; ajkwjkxik ,

1

λj

) R∏

j=1

G (λj;αλ, βλ)

R∏

j=1

G (wj; βw + 1, βw) .

(4.14)
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For calculating the update equations of xi, λj, aj, and wj, we make use of Theo-

rems 4.1 to 4.4.

4.2.1. Update Equation for the Consensus Value x in M-SH

Using Theorem 4.1 for the setting in Equation 4.14, we find the posterior distri-

bution of xi as

N


xi;

∑

k:ik=i

λjkwjkajkyk

∑

k:ik=i

wjk
2λjk

,

(∑

k:ik=i

wjk
2λjk

)−1


 . (4.15)

Then, the mode of this distribution is the update equation of xi, which is

xi =

∑

k:ik=i

λjkwjkajkyk

∑

k:ik=i

λjkw
2
jk

. (4.16)

4.2.2. Update Equation for the Precision Parameter λ in M-SH

By using Theorem 4.2 for the setting in Equation 4.14, we find the posterior of

λj as

G
(
λj;

Nj

2
+ αλ, βλ +

1

2

∑

k:jk=j

(yk − ajwjxik)2

)
. (4.17)

The mode of this distribution is the update equation of λj, which is

λj =
2(αλ − 1) +Nj

2βλ +
∑

k:jk=j

(yk − ajwjxik)2
. (4.18)
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4.2.3. Update Equation for the Adverseness Parameter a in M-SH

Using Theorem 4.3 for the setting in Equation 4.14, we find the update equation

of aj as

aj = sgn

( ∑

k:jk=j

ykxik

)
. (4.19)

4.2.4. Update Equation for the Opinion Scale Parameter w in M-SH

Theorem 4.4 (Posterior distribution of w). Let xk, yk ∈ R,∀k ∈ {1, . . . , K}, w > 0,

and λ > 0. Let the distribution of yk be yk ∼ N (yk;wxk, λ
−1). Then, the posterior

distribution of w is

Ntrunc



w;

K∑

k=1

ykxk

K∑

k=1

x2
k

,

(
λ

K∑

k=1

x2
k

)−1

, 0,∞



.

Moreover, if w ∼ G (w;αw, βw), then the posterior distribution of w becomes

GPT N



x;

λ
K∑

k=1

ykxk − βw

λ

K∑

k=1

x2
k

,

(
λ

K∑

k=1

x2
k

)−1

, αw − 1



.

Proof. See Appendix A.4.
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Applying Theorem 4.4 to the setting in Equation 4.14, we find the posterior of

wj as

GPT N


wj;

λjaj
∑

k:jk=j

ykxik − βw

λj
∑

k:jk=j

x2
ik

,

(
λj
∑

k:jk=j

x2
ik

)−1

, βw


 .

Then, we find the mode of this distribution using Theorem 3.2, which gives the update

equation of wj as

wj =

aj
∑

k:jk=j

ykxik −
βw
λj

2
∑

k:jk=j

x2
ik

+

√√√√√√√√√




aj
∑

k:jk=j

ykxik −
βw
λj

2
∑

k:jk=j

x2
ik




2

+
βw

λj
∑

k:jk=j

x2
ik

. (4.20)

4.3. M-ABS: Annotation Bias Sensitive Model

In this model, we incorporate annotation bias into M-SH. This is the bias which

is added after scaling and has an unscaled effect on the annotation. We incorporate

this behavior into the model by setting the model mean as µθj(xi) = aj(wjxi + bj)

where bj represents either positive or negative bias. Since we model the bias as being

unaffected by the opinion scale, bj is not multiplied by wj. Moreover, we desire the prior

of negative and positive bias to be symmetrical. Thus, we find the normal distribution

suitable for our needs, resulting in the prior

bj ∼ N
(
bj;µB, s

2
B

)
. (4.21)

We want the mode of the bias distribution to be at 0. We favor unbiased annotators.

However, a consistent annotator with very low noise and a slight bias would be dis-

missed by having too much noise if the bias parameter is strictly constrained at 0. We

set its standard deviation sB = 0.05 to allow some positive and negative bias.
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The parameters for this model are θ = {Λ, A,W,B}, where B = {b1:R} and the

model is defined as

p(Y,X, θ) =
K∏

k=1

p(yk|xik , λjk , ajk , wjk , bjk)
R∏

j=1

p(λj)p(aj)p(wj)p(bj)
N∏

i=1

p(xi)

∝
K∏

k=1

N
(
yk; ajk(wjkxik + bjk),

1

λj

) R∏

j=1

G (λj;αλ, βλ)

R∏

j=1

G (wj; βw + 1, βw)
R∏

j=1

N
(
bj;µB, s

2
B

)
.

(4.22)

For calculating the update equations of xi, λj, aj, wj, and bj, we make use of

Theorems 4.1 to 4.5.

4.3.1. Update Equation for the Consensus Value x in M-ABS

Using Theorem 4.1 for the setting in Equation 4.22, we find the posterior distri-

bution of xi as

N


xi;

∑

k:ik=i

λjkwjk (ajkyk − bjk)
∑

k:ik=i

wjk
2λjk

,

(∑

k:ik=i

wjk
2λjk

)−1


 . (4.23)

Then, the mode of this distribution is the update equation of xi, which is

xi =

∑

k:ik=i

λjkwjk(ajkyk − bjk)
∑

k:ik=i

λjkw
2
jk

. (4.24)
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4.3.2. Update Equation for the Precision Parameter λ in M-ABS

By using Theorem 4.2 for the setting in Equation 4.22, we find the posterior of

λj as

G
(
λj;

Nj

2
+ αλ, βλ +

1

2

∑

k:jk=j

(yk − aj(wjxik + bj))
2

)
. (4.25)

The mode of this distribution is the update equation of λj, which is

λj =
2(αλ − 1) +Nj

2βλ +
∑

k:jk=j

(yk − aj(wjxik + bj))
2
. (4.26)

4.3.3. Update Equation for the Adverseness Parameter a in M-ABS

Using Theorem 4.3 for the setting in Equation 4.22, we find the update equation

of aj as

aj = sgn

( ∑

k:jk=j

yk(wjxik + bj)

)
. (4.27)

4.3.4. Update Equation for the Opinion Scale Parameter w in M-ABS

Applying Theorem 4.4 to the setting in Equation 4.22, we find the posterior of

wj as

GPT N


wj;

λj
∑

k:jk=j

(ajyk − bj)xik − βw

λj
∑

k:jk=j

x2
ik

,

(
λj
∑

k:jk=j

x2
ik

)−1

, βw


 .
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Then, we find the mode of this distribution using Theorem 3.2, which gives the update

equation of wj as

wj =

∑

k:jk=j

(ajyk − bj)xik −
βw
λj

2
∑

k:jk=j

x2
ik

+

√√√√√√√√√




∑

k:jk=j

(ajyk − bj)xik −
βw
λj

2
∑

k:jk=j

x2
ik




2

+
βw

λj
∑

k:jk=j

x2
ik

.

(4.28)

4.3.5. Update Equation for the Bias Parameter b in M-ABS

Theorem 4.5 (Posterior distribution of b). Let yk ∈ R, ∀k ∈ {1, . . . , K}, b ∈ R,
w > 0, and λ > 0. If the distribution of yk is yk ∼ N (yk;wb,w

2λ−1), then the

posterior distribution of b is

N
(
b;

1

wK

K∑

k=1

yk, (Kλ)−1

)
.

Moreover, if b ∼ N
(
b;µb, λ

−1
b

)
, then the posterior distribution of b becomes

N



b;

λ

w

K∑

k=1

yk + µbλb

Kλ+ λb
, (Kλ+ λb)

−1



.

Proof. See Appendix A.5.

Applying Theorem 4.5 to the setting in Equation 4.22, we find the posterior of bj

as

N


bj;

λj
∑

k:jk=j

(ajyk − wjxik) +
µb
s2
B

Njλj + 1
s2B

,

(
Njλj +

1

s2
B

)−1


 . (4.29)
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The mode of this distribution is the update equation of bj, which is

bj =

aj
∑

k:jk=j

yk − wj
∑

k:jk=j

xik +
µB
λjs2

B

Nj + 1
λjs2B

. (4.30)

4.4. M-CBS: Consensus Bias Sensitive Model

In this model, we incorporate consensus bias into M-SH. This is the bias which is

affected by the annotator’s scaling parameter. Since we model the bias as being affected

by the opinion scale, bj is multiplied by wj in contrast to M-ABS. We incorporate this

bias behavior into the model via setting the model mean as µθj(xi) = ajwj(xi + bj).

The prior on bj is the same as in M-ABS. In this model, we also assume that the noise

introduced by an annotator is affected by their opinion scale. We achieve this effect

by scaling the standard deviation of the model with the parameter wj, resulting in the

variance σ2
θj

=
w2
j

λj
. The parameters are again θ = {Λ, A,W,B}. Thus, we have

p(Y,X, θ) =
K∏

k=1

p(yk|xik , λjk , ajk , wjk , bjk)
R∏

j=1

p(λj)p(aj)p(wj)p(bj)
N∏

i=1

p(xi)

∝
K∏

k=1

N
(
yk; ajkwjk(xik + bjk),

w2
jk

λjk

) R∏

j=1

G (λj;αλ, βλ)

R∏

j=1

G (wj; βw + 1, βw)
R∏

j=1

N
(
bj;µB, s

2
B

)
.

(4.31)

For calculating the update equations of xi, λj, aj, wj, and bj, we make use of

Theorems 4.1 to 4.3, 4.5 and 4.7.
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4.4.1. Update Equation for the Consensus Value x in M-CBS

Theorem 4.6 (Posterior distribution of M-CBS x). Let the distribution of yk be

N
(
yk; ajkwjk(xik + bjk),

w2
jk

λjk

)
.

Then, the posterior distribution of xi is

xi|{yk, θjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjk(w
−1
jk
ajkyk − bjk)

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1




where θj = {aj, wj, bj, λj} is the set of parameters of annotator j and Ki = {k ∈ K :

ik = i} is the set of annotations of sample i.

Proof. See Appendix A.6.

Using Theorem 4.6 for the setting in Equation 4.31, we find the posterior distri-

bution of xi as

N


xi;

∑

k:ik=i

λjk
(
wjk
−1ajkyk − bjk

)

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1


 . (4.32)

Then, the mode of this distribution is the update equation of xi, which is

xi =

∑

k:ik=i

λjk

(
ajkyk
wjk

− bjk
)

∑

k:ik=i

λjk
. (4.33)
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4.4.2. Update Equation for the Precision Parameter λ in M-CBS

By using Theorem 4.2 for the setting in Equation 4.31, we find the posterior of

λj as

G
(
λj;

Nj

2
+ αλ, βλ +

1

2

∑

k:jk=j

(
yk
wj
− aj(xik + bj)

)2
)
. (4.34)

The mode of this distribution is the update equation of λj, which is

λj =
2(αλ − 1) +Nj

2βλ +
∑

k:jk=j

(
yk
wj
− aj(xik + bj)

)2 . (4.35)

4.4.3. Update Equation for the Adverseness Parameter a in M-CBS

Using Theorem 4.3 for the setting in Equation 4.31, we find the update equation

of aj as

aj = sgn

( ∑

k:jk=j

yk(xik + bj)

)
. (4.36)

4.4.4. Update Equation for the Opinion Scale Parameter w in M-CBS

Theorem 4.7 (Mode of M-CBS w). Let yk ∈ R,∀k ∈ {1, . . . , K}, a ∈ R, w > 0, and

λ > 0. If the distribution of yk is yk ∼ N (yk; awxk, w
2λ−1) and w ∼ G (w;αw, βw),

then the value w∗ maximizing the posterior probability is a root of the equation

w−3

(
λ

K∑

k=1

y2
k

)

︸ ︷︷ ︸
V3

+w−2

(
−λa

K∑

k=1

ykxk

)

︸ ︷︷ ︸
V2

+w−1 (αw − 1−K)︸ ︷︷ ︸
V1

+ (−βw)︸ ︷︷ ︸
V0

= 0
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Proof. See Appendix A.7.

Applying Theorem 4.7 for the setting in Equation 4.31, we find that a root of the

following cubic equation gives the desired value of wj:

V3

(
1

wj

)3

+ V2

(
1

wj

)2

+ V1

(
1

wj

)
+ V0 = 0 where

V0 = −βw
V1 = βw −Nj

V2 = −λjaj
∑

k:jk=j

yk(xik + bj)

V3 = λj
∑

k:jk=j

y2
k

(4.37)

Out of the solutions of Equation 4.37, the root maximizing the posterior is selected for

the update of wj.

4.4.5. Update Equation for the Bias Parameter b in M-CBS

Applying Theorem 4.5 to the setting in Equation 4.31, we find the posterior of bj

as

N



bj;

λjaj
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∑
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∑
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s2
B

Njλj + 1
s2B

,

(
Njλj +

1

s2
B

)−1



. (4.38)

The mode of this distribution is the update equation of bj, which is

bj =

aj
wj

∑

k:jk=j

yk −
∑

k:jk=j

xik +
µB
λjs2

B

Nj + 1
λjs2B

. (4.39)
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4.5. Performance of Crowd Consensus Estimation Models

In this section, we first evaluate the performance of our models on annotation

datasets with ground truth. We show how accurately the consensus values found by

our models estimate the ground truth.

Then, we use our models’ consensus values for creating training and test scores/la-

bels for a regression and a binary classification task and compare the performance of

the trained regression and classification models, with respect to the model that is used

to produce consensus scores.

4.5.1. Results on the Age Annotations Dataset

4.5.1.1. Accuracy of the Models in Estimating Ground Truth. In order to evaluate the

estimation accuracy of our models, we compare the estimated consensus values against

the ground truth. However, since the consensus values are in the range of 1 to 7, we

need to rescale them to be compatible with the ground truth values.

The error metrics that we use in this work are Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE), which are defined as follows:

MAE =
1

N

N∑

i=1

|g(xi)− zi| (4.40)

RMSE =

√√√√ 1

N

N∑

i=1

(g(xi)− zi)2 (4.41)

where zi is the ground truth value of the ith sample and g(·) is the linear scaling

function from the consensus domain to the ground truth range. Different types of

problems may require different scaling approaches. However, for the age mapping

problem linear scaling is simple and intuitive. Since we map the consensus values [1, 7]

to the ground truth value range [0, 69], the unit of error is in years of age. Note that

because of the discretization process even if the consensus values were exactly the same
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as the discretized ground truth labels, the error would not be zero. We call this error

the baseline error for this dataset.

Table 4.3. Errors on Set 1, Set 2 and the joint set. The results are presented as mean

and standard deviation for 100 repetitions.

(a) Mean absolute error (baseline=2.92)

Model Set 1 Set 2 Joint

Mean 9.68 8.95 8.91

Median 8.34 7.94 7.39

Raykar [7] 7.20 ± 0.048 6.94 ± 0.062 6.46 ± 0.019

M-AH 6.59 ± 0.002 6.35 ± 0.001 6.06 ± 0.000

M-SH 6.06 ± 0.112 6.04 ± 0.098 5.56 ± 0.087

M-ABS 6.07 ± 0.116 6.04 ± 0.103 5.58 ± 0.083

M-CBS 5.91 ± 0.011 5.84 ± 0.006 5.36 ± 0.008

(b) Root mean square error (baseline=3.40)

Model Set 1 Set 2 Joint

Mean 12.10 11.50 10.90

Median 10.92 10.55 9.58

Raykar [7] 9.57 ± 0.052 9.18 ± 0.073 8.52 ± 0.020

M-AH 8.71 ± 0.003 8.49 ± 0.001 8.04 ± 0.000

M-SH 8.54 ± 0.146 8.37 ± 0.128 7.68 ± 0.100

M-ABS 8.55 ± 0.150 8.40 ± 0.134 7.70 ± 0.101

M-CBS 8.35 ± 0.016 8.13 ± 0.010 7.50 ± 0.010

In order to compare the performance of the models among themselves, we con-

duct one-tailed paired-t tests with significance level α = 0.05 for every model pair.

We repeated each experiment 100 times, each time starting with randomly initialized

parameters in accordance with their prior distributions. By repeating the experiments

100 times, we show that the initial parameter values (drawn from their prior distri-

butions) do not affect the convergence of the results. The results showed us that the
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statistically significant order of performance is:

Mean < Median < Raykar [7] < M-AH < M-SH = M-ABS < M-CBS

The tests between M-SH and M-ABS are inconclusive.

Table 4.3 shows mean errors and standard deviations for the proposed and ref-

erence models. M-CBS outperforms all other models for all sets. Simpler models are

prone to errors arising from outliers. Since the median model is more robust to outliers

than the mean model, it performs slightly better. However, in the case of crowd-

labeling where lots of outliers are expected, the median model also fails to perform

successfully.

The results of Set 2 are slightly better than that of Set 1. The reason for this

might be that, the second set of annotators rated the samples in batches of 15 rather

than 10, or they just might be more competent. Note that the proposed models do not

make any assumptions on the number of samples that each annotator should annotate.

However, the more annotations we gather from an annotator, the more we can learn

about the annotator’s behavior. One would expect a better modeling when there

are more annotations from an annotator. Further examination of this phenomenon is

beyond the scope of this study and is left as a future work.

The best performance is achieved in the joint set. Remember that each sample

is annotated by 5 annotators in Sets 1 and 2, which results in 10 annotations per

sample in the joint set. Having more annotations per sample decreases the effect

of incompetent annotators and helps to achieve better consensus values. When we

investigate the samples with high error, we observe that most annotators actually do

have an agreement. However, this agreement is very different from the ground truth.

This is due to the fact that some samples are actually very hard to annotate where the

subjects in question look much younger or older than their real age.
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Figure 4.2. Cumulative match curves for the models

In Figure 4.2, we show the cumulative match curves (CMC) of the models. The

y coordinate of a point on the CMC is the ratio of the samples that have less error

than the corresponding x coordinate. If we are interested in the consensus being in

the 5–year vicinity of the ground truth, we fix the x coordinate at 5 and observe the y

coordinate values of each model. 59.88% of the sample consensus values obtained with

M-CBS fall within the 5–year error range of the ground truth values. When we observe

the curves, Models 2, 3, and 4 perform very similarly in terms of maximum absolute

age error, with M-CBS being marginally better.

Figure 4.3 shows the models’ ground truth estimation performances of every

sample for the joint set. As we can see, the annotations by themselves contain a huge

amount of noise and do not fit to the ideal line. Using even the simplest of models

allows us to reach an acceptable consensus with respect to the ground truth. We

observe that the mean model has a tendency to contain more noise around the ideal

line, especially in the 0–20 range. Observing Raykar et al.’s model, we see that it has

characteristics belonging to both the mean and median models. This is due to the fact

that the annotators are modeled after the normal distribution with the consensus being

their mean. The tail sections of the normal distribution provide the outlier elimination
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Figure 4.3. Ground truth estimation performance of models on joint set annotation

data (The perfect fit would be on the diagonal)
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power of the median model. The four models that we have proposed perform better as

the model complexity increases.

4.5.1.2. Performance on Binary Labels. In many crowd-labeling tasks, ordinal anno-

tations are requested for binary labeled data. In these tasks, the annotators are usually

asked to rate the degree of negativity or positivity of the sample. Then, continuous

or ordinal valued annotations are binarized to make them compatible with methods

accepting binary input. Unfortunately, this binarization process results in the loss of

valuable information.

We designed our models to accept continuous and ordinal annotations. When

we sought binary output labels, we used a threshold for the binarization of continuous

consensus values estimated from the proposed models (i.e. model output).

We compare our binary label fitting performance with Welinder et al.’s [12] work.

Their method is suitable for comparison since they use a data independent approach

(i.e. they don’t use features) and do not have a training phase. When evaluating

their work, we binarize the input annotations with a threshold of 4. For our methods,

we use the annotations as they are and binarize the output consensus values with the

same threshold value. The general intuition is to choose the median value during the

binarization process. This is the reason for choosing 4 as the threshold value from the

range 1–7.

In order to calculate the binary classification error, we also binarized the ground

truth labels of the Age Annotations Dataset to be ‘young’ when they are less than 35,

and ‘old’ otherwise.

In Table 4.4, we present the Matthews correlation coefficient(MCC), sensitivity,

specificity, and accuracy values. The Matthews correlation coefficient is a balanced

statistical measure that is extracted from the confusion matrix. It can be used even

if the classes are of very different sizes and symmetric in the sense of positive and
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Table 4.4. The Matthews correlation coefficient, sensitivity, specificity, and accuracy

measures for binarized results. For Welinder [12] results, the input annotations are

binarized, and for the other models the resulting consensus values are binarized. The

results are presented as mean and standard deviation for 100 repetitions.

Model Input MCC Accuracy Sensitivity Specificity

Welinder [12] Binarized 0.427 ± 0.009 0.718 ± 0.009 0.686 ± 0.010 1.000 ± 0.002

Mean Ordinal 0.521 0.814 0.796 0.980

Median Ordinal 0.491 0.782 0.758 1.000

Raykar [7] Ordinal 0.614 ± 0.001 0.880 ± 0.000 0.871 ± 0.000 0.961 ± 0.001

M-AH Ordinal 0.626 ± 0.000 0.884 ± 0.000 0.874 ± 0.000 0.971 ± 0.000

M-SH Ordinal 0.644 ± 0.007 0.896 ± 0.003 0.888 ± 0.003 0.961 ± 0.005

M-ABS Ordinal 0.642 ± 0.008 0.895 ± 0.003 0.887 ± 0.004 0.961 ± 0.005

M-CBS Ordinal 0.648 ± 0.002 0.897 ± 0.001 0.890 ± 0.001 0.961 ± 0.000

negative classes. Its value is between -1 and 1 where 1 is a result of perfect prediction.

It is calculated as

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.42)

where TP is the number of true positives, TN is the number of true negatives, FP is

the number of false positives and FN is the number of false negatives.

For two class problems, sensitivity and specificity values interchange when the

class labels are interchanged. For these types of problems, they are only meaningful as

a pair. As for the accuracy, it is strongly affected by unbalanced class sizes. Thus, out

of these four statistical measures, MCC is the most suitable measure for our problem

because of its symmetry and balance.

When we analyze the results, we observe better MCC and accuracy values for

M-CBS. Welinder [12] performs worse than the methods that accept continuous anno-

tations, since it ignores lots of valuable information when binarizing the input annota-

tions.
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Figure 4.4. Change in error with respect to the change in consensus binarization

threshold

In addition, we investigate the effect of different values of the consensus threshold

for binarization in Figure 4.4. Although the value 4 would be expected to be the best

threshold, we observe that 5 is a better threshold for this data. It can be deduced that

the threshold selection for binarization has important effects on the final accuracy of

the ground truth estimation and the best value depends on the data.

4.5.1.3. Discussion on Global Bias. With a careful look into Figures 4.3 and 4.4, one

can observe that there is a positive bias in the annotations: the annotation scores are

slightly above the ideal fit line. If we set the mean (µB) of the bias parameter(b)’s prior

accordingly, we can decrease the global bias effect of the annotators. We empirically

found that by setting µB = 0.7, we would have better results. Note that this is

only an observation of the annotations data and depends on the dataset; it is not

an improvement for the models. We were able to observe this global bias, since we

were in possession of the ground truth. Table 4.5 shows errors when the global bias is

compensated for. The errors reduce drastically when this effect is removed.

In Figure 4.5, we observe that the models estimate the ground truth better after

we take the global bias into account. In Figure 4.5a and Figure 4.5b, the estimated
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Table 4.5. Compensating for global bias: Errors of M-ABS and M-CBS with

µB = 0.7. The results are presented as mean and standard deviation for 100

repetitions.

(a) Mean absolute error

Model Set 1 Set 2 Joint

M-ABS (µB = 0.7) 4.52 ± 0.120 4.69 ± 0.102 4.24 ± 0.077

M-CBS (µB = 0.7) 4.44 ± 0.012 4.57 ± 0.007 4.14 ± 0.010

(b) Root mean square error

Model Set 1 Set 2 Joint

M-ABS (µB = 0.7) 6.06 ± 0.114 6.14 ± 0.119 5.45 ± 0.079

M-CBS (µB = 0.7) 5.91 ± 0.012 5.91 ± 0.007 5.33 ± 0.009

consensus scores are closer to the ideal fit line. In the CMC plot in Figure 4.5c, we

see that the models perform much better after the 5-year error range. For the 10-year

error range, the ratio shifts from 83% to 94%, when we compensate for the global bias

with µB = 0.7. Moreover, the binarization threshold shifts to four as one would expect

(see Figure 4.5d).

An explanation of why this global bias exists for the Age Annotations could be

related to the age range in the dataset. In the crowdsourcing phase, the annotators

were not informed about the age range of the subjects in the dataset. Most of the

annotators only saw young samples, since younger photos are in majority. Thus, the

annotators were inclined to give higher ratings to younger people. Since the annotators

would expect the minimum age to be zero, they were more successful in annotating

younger samples. Refraining from informing the annotators about the age range was

intentional. Our aim is to obtain annotations where the actual score range is not

exactly known by the annotators. An example for such cases is annotations for human

traits, such as personality, which we investigate in the next section.
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Figure 4.5. Effect of removing global bias on the consensus scores

4.5.2. Results on ELEA Personality Impressions Data

In this section, we analyze the performance of the annotator models on a real

dataset where there is no ground truth. We use the personality impressions as the

domain where the annotations are highly subjective. We evaluated the performance of

the annotator models on a regression and a classification task to predict the extraversion

trait based on the consensus scores estimated by each model.

4.5.2.1. Predicting Personality Impressions Using Nonverbal Cues. The nonverbal

cues that we display in our everyday life, particularly during our interaction with
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others, contain significant information regarding our personality [86]. Psychologists

have long investigated the links between the nonverbal cues that we display and our

personality traits and have shown that several dimensions of personality are expressed

through voice, face, body in the nonverbal channel [87]. In social computing literature,

predicting personality using automatically extracted nonverbal cues has been addressed

in several recent studies [17,73,78].

We use the data that is used in [73], where a large set of audio-visual nonverbal

features are extracted and used in the prediction of personality. The set of features

include attributes such as speaking turn features (speaking length, number of turns,

turn duration), prosodic features (energy, pitch), visual activity features, and visual

focus of attention features. More detail can be found in [73]. For the current study, we

use a concatenation of all the features used in [73] when training our regression models.

We only focus on the extraversion trait for the purposes of this study. We first

perform a regression task where the goal is to estimate the personality impression score.

Secondly, we perform a binary classification task where the goal is to predict whether

the person is high or low in extraversion. The median of the scores is used as the cut-off

point for binarization.

We use linear Ridge regression for estimating the personality impression scores

and report the Relative Absolute Error (RAE) on a leave-one-out cross validation

setting. RAE is calculated as:

RAE =

∑N
i=1 |pi − ai|∑N
i=1 |āi − ai|

(4.43)

where p is the value predicted by the regression model and a is the sample consensus

value as estimated by the model.

For binary classification, we used the estimated scores by the regression models

and labeled the samples as high and low based on the cut-off point. We report the

classification accuracy.
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4.5.2.2. Performance on the Regression and Classification Tasks. We perform regres-

sion and classification to predict personality impressions using the consensus scores

estimated by different annotator models. It is important to note that the consensus

scores of different models could have different ranges and scales. While one model

provides consensus scores in the range of 1 to 7, another model’s scores could be in the

range 1 to 6. As a metric which is less sensitive to such differences, we use RAE to

compare the regression performances.

Table 4.6. Regression and classification results on extraversion prediction

Model Name RAE
Classification
Accuracy (%)

Mean 0.78 72.55

Median 0.82 70.59

Raykar [7] 0.88 63.73

M-AH 0.86 67.65

M-SH 0.77 74.51

M-ABS 0.77 75.49

M-CBS 0.77 73.53

The results are given in Table 4.6. We see that the lowest errors are obtained

with consensus scores estimated by M-CBS, followed by M-ABS and M-SH. When it

comes to the classification accuracy, the observations are different and not directly in

agreement with the regression errors. The highest accuracy is achieved by M-ABS,

followed by M-SH and M-CBS. The reasoning behind this observation could be related

to the binarization of the scores. The errors of the regression models for the samples

that are close to the cut-off point directly affect the classification accuracy. Even if

a regression model has a low RAE, if the errors are concentrated around the cut-off

point, a lower classification accuracy could be observed.
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5. ACTIVE CROWD-LABELING METHODOLOGY

Passive crowd-labeling systems evaluate annotations after the completion of the

acquisition phase. Thus, they are easily affected by erroneous annotations given by

spammers and inattentive labelers. Each erroneous annotation means money wasted.

It is important to be able to distinguish competent labelers from spammers and inatten-

tive labelers early on in the labeling process for acquiring better annotations. Therefore,

the most important questions would be: Which sample’s label needs to be improved

and which annotator should give the annotation? Active crowd-labeling is the process

of collecting annotations with such concerns in mind. Smart selection of annotations

also result in reduced annotation costs in addition to improved label qualities.

Carrying out a hands-on approach during the annotation acquisition process is

in essence similar to active learning from the machine learning domain. In the classical

sense, active learning draws its power from selecting the sample to be included in the

learning process in a smart manner, thereby producing a well-trained algorithm with

fewer samples. In classical active learning, the label of a sample is assumed to be

provided by an annotator who always gives correct answers. In contrast, crowd-labeled

instances may suffer from low quality annotations. The main motivation behind active

crowd-labeling is to simultaneously select the most beneficial annotator-sample pair.

The process of active crowd-labeling is two-fold: One has to make good use of

collected annotations, and also make a smart choice about which annotation to request

next. The first part, which we call crowd consensus estimation, can be carried out by

any of the models described in Chapter 4. The second stage has two components: how

to select the sample to be annotated (Section 5.1) and how to select the annotator to

annotate that sample (Section 5.2). Our primary concern is to improve every sample’s

consensus evenly. Therefore, we select the sample with the lowest consensus quality to

be annotated. Once a sample is selected, we select the highest quality annotator for

annotating it. This process is repeated with each new annotation in order to even out

the sample consensus qualities across the whole dataset.
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Input:
Sets of all samples I, all annotators J , current annotations K, currently active annotators J ′

1: function ACL(I,J ,J ′,K)
2: EstimateLabels(I,J ,K)
3: repeat
4: k ← RequestAnnotation(I,J ,J ′,K, . . . )
5: K ← K ∪ k . Add the newly acquired annotation to the annotations set
6: EstimateLabels(I,J ,K) . Estimate consensus and relearn annotators
7: until Budget limit or other stopping criteria are met
8: end function

Figure 5.1. ACL: Active Crowd-Labeling

Our approach consists of iteratively estimating crowd consensus and acquiring

new annotations, as outlined in Figure 5.1. In this work, we denote the set of all sam-

ples to be annotated, the set of all annotators, and the set of current annotations as

I, J , and K, respectively. J ′ denotes the annotators that are currently in the system.

Any of the models described in Chapter 4 can be used as the EstimateLabels(·)
function used in Figure 5.1, which performs sample consensus estimation and anno-

tator modeling. In Figures 6.1 and 7.1, we present two different approaches for the

RequestAnnotation(·) function, the details of which are given in Chapters 6 and 7,

respectively.

5.1. Which Sample Needs a New Label?

Since we want to improve our consensus estimations for the samples, we are in

need of acquiring more annotations. Instead of randomly selecting samples for request-

ing annotations, a smarter strategy would reduce annotation costs while attaining high

quality consensuses. The process of choosing which sample to annotate in a timely

manner is of utmost importance since active crowd-labeling is a real-time process. Cal-

culating the utility of all possible sample-annotator pairings for finding the optimal

solution is often computationally very complex (at least O(nm)) and poses scalability

problems for large datasets and open annotator marketplaces. To this end, we opt

for adopting a sub-optimal yet still beneficial approach to predict samples with low

consensus quality by making use of readily available parameters inferred during the

active crowd-labeling process.
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During active crowd-labeling, our knowledge of a sample’s consensus is gathered

in its posterior distribution. Our motivation comes from the observation that a sample’s

quality may roughly be assessed by the variance of this posterior distribution. Using

Bayesian rule on the full joint probabilities of the four models that we propose in

Chapter 4, we find the posterior distributions of the consensus xi as follows

M-AH:

xi|{yk, ajk , λjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjkajkyk

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1


 (5.1)

M-SH:

xi|{yk, ajk , wjk , λjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjkwjkajkyk

∑

k:ik=i

wjk
2λjk

,

(∑

k:ik=i

wjk
2λjk

)−1


 (5.2)

M-ABS:

xi|{yk, θjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjkwjk (ajkyk − bjk)
∑

k:ik=i

wjk
2λjk

,

(∑

k:ik=i

wjk
2λjk

)−1


 (5.3)

M-CBS:

xi|{yk, θjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjk
(
wjk
−1ajkyk − bjk

)

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1


 (5.4)

where θj = {aj, wj, bj, λj} is the inferred set of annotator j’s parameters and Ki =

{k ∈ K : ik = i} is the set of sample i’s annotations. For M-AH, the result is obtained
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by setting bjk = 0 and wjk = 1 for all jk in either Theorem 4.1 or Theorem 4.6. For

M-SH, the result is obtained by setting bjk = 0 for all jk in Theorem 4.1. For M-

ABS and M-CBS, the resulting distributions are obtained using Theorems 4.1 and 4.6,

respectively.

Table 5.1. Sample score formulas for the proposed models. In these scores, λjk are the

precision parameters and wjk are the opinion scale parameters of every annotator j

that has annotated sample i.

Model Name M-AH M-SH M-ABS M-CBS

SS(i)
∑

k:ik=i

λjk
∑

k:ik=i

wjk
2λjk

∑

k:ik=i

wjk
2λjk

∑

k:ik=i

λjk

The smaller the variance of the posterior distribution, the more confident we are

on the inferred consensus and we want to request new annotations for the samples

that we are less confident about. Thus, we use the reciprocal of the variance as a

measure of consensus quality, namely the consensus quality score SS(i) of sample i.

The consensus quality scores for all models are presented in Table 5.1, where λjk are

the precision parameters and wjk are the opinion scale parameters of every annotator

j that has annotated sample i. These types of formulations are equivalent to counting

the annotations of a sample weighted by its annotators’ precision and opinion scale.

Thus, a sample’s consensus quality is only as good as the annotators’ precision and

opinion scale that have annotated it. Additionally, it also ensures that a sample’s

annotation count is also incorporated into its quality assessment. Note that adding a

new annotation to an existing sample will definitely increase the sum and decrease the

variance since w and λ values are positive. From a budget minimization point of view,

it would be more beneficial to concentrate on those samples with the lowest scores.

The approach that we present here is a fast (with complexity O(n)) and reasonable

way to reduce annotation costs and improve on the consensus values.
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5.2. Who Annotates Better?

During the active crowd-labeling process, we need to identify competent anno-

tators to utilize for new annotations. Thus, we need to rate annotators based on

their competences. Unfortunately, some people try to abuse the crowdsourcing system

for easy money. The results are either random annotations that do not provide any

solid information or ill-intentioned/absent-minded annotators marking the opposite of

what they think. Naturally, one would expect to achieve a better consensus with more

annotations. However, increasing annotations will also increase costs. Due to these

challenges, an annotator scoring mechanism is beneficial for both improving consensus

quality and reducing annotation costs by weeding out low quality annotators. So far,

we have been interested in using a group of annotators to infer the label of a sam-

ple. Using the annotator scoring mechanism to select individually good performing

annotators will help us increase the crowd performance.

We would like to derive an annotator scoring function using the annotator pa-

rameters that we introduced in our models. The annotator score that we define is

the sum of the joint probabilities of all possible annotations that can be produced by

an annotator and the most probable originating label for those annotations given the

annotator parameters. In Equation 4.1, we defined µθ(·) as the annotator function and

in Table 5.2, we show these functions for each of our models.

Suppose that we have annotations of only a single annotator in our dataset.

Although it is not the case in real annotation scenarios, let us also suppose that we are

given the parameters θ of this annotator (Normally, we would infer these parameters

using our models.) Given an annotation y of this annotator, we can use the inverse

of the annotator function and try to obtain the originating label x. Because of σθ,

the obtained value µ−1
θ (y) may not be equal to the originating label x. However,

we can calculate the probability that the obtained value is indeed the true label as

p(x = µ−1
θ (y)|y, θ). This probability defines the accuracy of obtaining the original

label of a given sample using only a single annotator. By incorporating the probability

p(y|θ) of encountering the sample of interest, we obtain the joint probability of x and
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y conditioned on θ:

p(x = µ−1
θ (y), y|θ) = p(x = µ−1

θ (y)|y, θ)p(y|θ)

= p(y|x = µ−1
θ (y), θ)p(x = µ−1

θ (y))

= N
(
y;µθ(µ

−1
θ (y)), σ2

θ

) 1

2c

=
1

2cσθ
√

2π

(5.5)

where x ∈ [−c, c] and p(x) = 1
2c

since it is flat. c is a problem specific constant for

defining the annotation range. Recall that, we also shift annotations to fit in the [−c, c]
range, as we explained in Section 4.1. Therefore, we have the following constraints:

−c ≤ y ≤ c (5.6)

−c ≤ x = µ−1
θ (y) ≤ c (5.7)

For all of our models, µθ(x) is monotonically increasing if and only if aθ = 1, and

monotonically decreasing if and only if aθ = −1. Thus, we have

−c ≤ µ−1
θ (y) ≤ c =⇒




µθ(−c) ≤ y ≤ µθ(c) if aθ = 1

µθ(−c) ≥ y ≥ µθ(c) if aθ = −1

=⇒ aθµθ(−c) ≤ aθy ≤ aθµθ(c) (5.8)

By symmetry, we also have

−c ≤ y ≤ c =⇒ −c ≤ aθy ≤ c (5.9)
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From Inequalities (5.8) and (5.9), we have

min{c,max{aθµθ(−c),−c}}︸ ︷︷ ︸
dθ

≤ aθy︸︷︷︸
r

≤ max{−c,min{aθµθ(c), c}}︸ ︷︷ ︸
eθ

(5.10)

Note that r = aθy =⇒ y = r
aθ

=⇒ y = aθr, since aθ = 1
aθ
, ∀aθ ∈ {−1, 1}.

We can define a path for the tuple (x = µ−1
θ (y), y) on the joint distribution as

follows

l : [dθ, eθ]→ R2

r 7→ (x(r), y(r)) =⇒ r 7→ (µ−1
θ (aθr), aθr)

(5.11)

We are interested in this path since it contains all possible annotations y that can

be produced by an annotator, coupled with the estimations µ−1
θ (y) for the originating

labels.

We define the annotator score SA(θ) as the sum of the joint probabilities along

the path l:

SA(θ) =

∫

l

p(x, y|θ)ds

=

∫ eµθ

dµθ

p(µ−1
θ (aθr), aθr|θ)‖l′(r)‖dr

=
1

2cσθ
√

2π

∫ eµθ

dµθ

‖l′(r)‖dr

(5.12)

Figure 5.2 portrays the annotator behavior deduced from the θ parameters for

a selected annotator. This figure is provided for visualizing the annotator score cal-

culation and its sub-elements. Brighter areas indicate a higher probability p(y|x, θ).
For example, an annotation y = 0 most possibly originated from x = −0.25 with the

probability p(y|x, θ) = 0.30902. The originating label being anything other than −0.25
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is still possible, but less probable. The score is the sum of these probabilities along the

red line for every possible y.

y = −1⇒µ−1θ (y) = −1.5
p(y|x = µ−1θ (y), θ) = 0.30902

y = 0⇒µ−1θ (y) = −0.25
p(y|x = µ−1θ (y), θ) = 0.30902

‖l′(r)‖(eµθ
− dµθ

) = 7.6837 (Length of the red line)

SA(θ) = 0.39574 (Annotator score)
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Figure 5.2. Score calculation for an annotator with parameters a = 1, w = 0.8,

b = 0.2, λ = 0.6. The annotator is modeled using M-ABS. The intensity values depict

the probability of the annotator rating a sample with respect to the ground truth.

Brighter areas indicate a higher probability.

In Figure 5.3, we present three examples of annotators commonly encountered in

crowd-labeling problems. Grayscale values represent posterior probability of annota-

tion value (p(y|x, θ)); the higher the intensity, the higher the probability. The red line

is the peak of this distribution. For very competent annotators, wj is close to 1 and bj

is close to 0. Additionally, they have high λj values resulting in a concentrated band of

annotations around the peak. In contrast, inattentive annotators have lower λj values

which result in more scattered annotations.
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(a) Very competent

annotator

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Originating label (x)

A
n
n
ot
at
io
n
(y
)

(b) Positively biased

annotator
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(c) Inattentive annotator

Figure 5.3. Three examples of annotators: Very competent, positively biased, and

inattentive.

Table 5.2 shows the derived annotator score formulas for the proposed models.

A specific annotator j’s score is denoted as SA(θj), or in shorthand notation, SA(j).

Note that dµj and eµj depend on the related model’s µθ(·) function and their definition

is given in Equation 5.10. It is also notable to mention that SA(j) does not depend on

annotations or samples; it only depends on the parameters of the annotator.

Table 5.2. Annotator score formulas for the proposed models

Model Name µj σ2
j ‖l′(r)‖ SA(j)

M-AH ajx
1

λj

√
2

√
λj
π

(
eµj − dµj

)

M-SH ajwjx
1

λj

√
1 +

1

w2
j

1

wj

√
λj (1 + wj

2)

2π

(
eµj − dµj

)

M-ABS ajwjx+ bj
1

λj

√
1 +

1

w2
j

1

wj

√
λj (1 + wj

2)

2π

(
eµj − dµj

)

M-CBS ajwj (x+ bj)
wj

2

λj

√
1 +

1

w2
j

1

wj2

√
λj (1 + wj

2)

2π

(
eµj − dµj

)

In Figure 5.4, we demonstrate the change in annotator scores using the formulas

for M-CBS with respect to w and b when the variance is fixed. When selecting our

priors, we preferred w to be around 1 and b to be around 0. By examining Figure 5.4,

we can observe that our scoring mechanism reflects our constraints successfully. When

w is very small, it means that the annotator is giving rates in a narrow range providing

very little to no information. If an annotator marks every sample with the same rate,
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Figure 5.4. The change in annotator scores with respect to w and b parameters of

M-CBS when the variance is fixed. Higher intensities correspond to higher annotator

scores.

it does not matter which rate they give. In this case, the effect of b diminishes and the

annotator scores do not vary for different b. In the case where w is large, the annotator

rates the samples whose ground truths are similar to each other in a very wide range.

This is an unwanted behavior and even if the annotator is unbiased, their score will

not be high since their annotations easily deviate under the smallest of changes.

5.2.1. How Beneficial Is Annotator Scoring?

We discussed the importance of identifying competent annotators and proposed

a scoring metric. Now, we elaborate on the annotator scores calculated on real data

for different models and how to make use of these scores.

First, we show the robustness of our scoring mechanism across different models.

Figure 5.5 shows annotator score histograms for the models proposed in this work. It

is evident that the shapes of the histograms are similar for all models. In addition, the

median score improves slightly with increasing model complexity. The reason for this
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Figure 5.5. Annotator score histograms for the proposed models

behavior is that, a higher complexity model finds a higher quality consensus in which

the annotators’ individual opinions are represented better.

In Figure 5.6, we observe the scores of every annotator for each model. For each

annotator, we find the mean of the scores estimated by our proposed models. The anno-

tators are sorted by these values for the sake of better visuality. The scoring mechanism

usually agrees on similar scores for an annotator when employed with different models.

In this figure, there are 2496 scores plotted, in which roughly 70 are outliers. Most of

the scores follow an S–shaped trend. We also observe that for all models the scoring

mechanism agrees on pointing out the most incompetent annotators, which explains

the less scattered values at the tail section.
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Figure 5.6. Annotator score comparison for the proposed models
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Figure 5.7. The annotations of top scoring annotators.

Figure 5.7 presents the annotations of the top scoring 50% and 10% of the annota-

tors, respectively. We observe that the better the annotators, the better the annotations

fit the ideal line. The scoring mechanism proves useful in eliminating the annotators

who have given opposite or random rates to samples, as previously shown in Figure 4.3.

It is notable to mention that, although choosing the top 10% of the annotators seems

favorable, eliminating the annotators leaves some of the samples unrated, which is not

desired. Thus, in the remainder of this analysis we present our findings from the top
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50% of the annotators, where each sample is rated by at least one annotator. However,

if the crowd-labeling task were to be continued, we would ask the top 10% to annotate

more samples for solving the unrated sample problem.

Table 5.3. Utilizing annotator scores: Errors after using only top scoring and only

bottom scoring annotators. The results are presented as mean and standard deviation

for 100 repetitions.

Model
MAE RMSE

Top 50% Bottom 50% Top 50% Bottom 50%

Mean 5.56 13.49 7.61 16.29

Median 6.19 12.63 8.16 16.30

Raykar [7] 6.13 ± 0.037 12.44 ± 0.019 8.25 ± 0.044 15.34 ± 0.021

M-AH 5.65 ± 0.000 11.25 ± 0.072 7.70 ± 0.000 13.93 ± 0.066

M-SH 5.60 ± 0.075 10.06 ± 0.285 7.76 ± 0.082 13.84 ± 0.288

M-ABS 5.60 ± 0.078 10.12 ± 0.337 7.76 ± 0.085 13.86 ± 0.335

M-CBS 5.52 ± 0.000 10.18 ± 0.091 7.65 ± 0.000 13.76 ± 0.094

Table 5.3 shows the model errors obtained from employing top and bottom 50%

scoring annotators. After separating 50% of the annotators, we re-infer the consensus

values for each subset and report the related error for each model. Sets 1 and 2 have

5017 annotations each, resulting in 10034 annotations in the joint set. Total annotation

count of top 50% annotators is 5140. Although the amount of annotations of this subset

is similar to Sets 1 and 2, the model performances are almost as successful as the joint

set. Since the top scoring annotators provide a better representation of the consensus,

using a very simple model such as taking the mean produces very satisfactory results.

For the mean model, we achieve substantially better results with approximately half

of the annotations when we utilize only the top scoring annotators.

Although we strive to single out the most competent annotators, perfect anno-

tations would result in obtaining the baseline error that we have discussed earlier.

However, a little variance and annotator diversity would be preferable for beating the

baseline. Since the ground truth values (∈ {0, . . . , 69}) have more precision than the



76

annotation values (∈ {1, . . . , 7}) for this dataset, a better estimate can be obtained

with increased variance in annotations.
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6. O-CBS: IMPROVING THE EXISTING CONSENSUS

USING ACTIVE CROWD-LABELING

When dealing with annotation problems, the task at hand often requires working

with a limited pool of annotators, especially when the subject requires expert annota-

tors. However, due to budget and/or time constraints, each annotator annotates only

a subset of all samples. Although we can infer a preliminary consensus, later on we

may want to reconsult the same annotators for the samples that they did not annotate

beforehand in order to improve the consensuses.

In this section, we propose an annotation collection and consensus improvement

method for the situation mentioned above, which we call O-CBS (Online M-CBS).

Figure 6.1 gives the details of the annotation requesting mechanism for improving

the existing consensus. We first need to identify which sample’s consensus is not

satisfactory and needs to be improved the most. The algorithm expects a sample

consensus quality scoring function which measures trustworthiness of the consensus

estimation and gives higher results when the estimation on the consensus is more

trustworthy. Then, the sample with the least consensus quality score is selected to be

improved. The related sample consensus quality score function introduced in Table 5.1

is a suitable choice.

The second part of the problem is the selection of the most suitable annotator

for the selected sample. For this, we need an annotator competence scoring function

that gives higher scores for more competent annotators. Finally, we ask the annotator

with the highest competence score for a new annotation for the selected sample.

O-CBS is based on Figure 5.1 with M-CBS as the EstimateLabels(·) function
and Figure 6.1 as the RequestAnnotation(·) function. In this setting, Reques-

tAnnotation(·) employs SS(i) =
∑

k:ik=i

λjk (M-CBS row in Table 5.1) as the sample

consensus quality scoring function. We investigate a family of annotator competence
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Input:
Sets of all samples I, all annotators J , current annotations K, currently active annotators J ′

ik and jk are the sample and annotator of annotation k, respectively
SS(·) and SA(·) are the sample consensus quality function and annotator competence scoring function,
respectively. (We assume that SS and SA are intrinsically aware of the annotator parameters a, w, b,
and λ)

Output: New annotation k
1: function RequestAnnotation(I,J ,J ′,K, SS(·), SA(·))
2: for all i ∈ I do
3: Ki ← {k ∈ K : ik = i} . Annotations of sample i
4: Ji ← {jk ∈ J : k ∈ Ki} . Annotators of sample i
5: end for
6: i ← argmin

i′∈I s.t. J ′\Ji′ 6=∅
SS(i

′) . Select the sample with the worst consensus quality such
that at least one of the currently active annotators has
no annotations for that sample

7: j ← argmax
j′∈J ′\Ji

SA(j
′) . Select the most competent annotator from the set of ac-

tive annotators who had not annotated sample i
8: k ← Request an annotation for sample i from annotator j
9: return k

10: end function

Figure 6.1. RequestAnnotation: Requesting annotation for improving the existing

consensus

scoring functions, and we denote O-CBS with such different functions (SA, S KA , S 1
A, . . . )

as O-CBS(·). As a baseline method, we use O-CBS
(
SRA
)
which employs SS for sample

selection but selects annotators randomly. As another baseline method, we use O-

CBS(Random) which is a special case where the sample consensus quality scoring and

the annotator competence scoring functions are both replaced with random selection.

6.1. Effectiveness of the Sample Scoring Function SS

Since SS is our choice of sample selection strategy in O-CBS, we start with pre-

senting its performance by comparing it against random sample selection. In Fig-

ures 6.2 and 6.3, we observe the effectiveness of using the sample scoring function

SS across nine datasets. We report the MAE on the Age Annotations and the Head

Pose Annotations datasets. On the Affective Text Analysis datasets, we report the

accuracy. The graphs show that SS is a favorable sample selection strategy across all

datasets in terms of mean absolute error and accuracy. Especially in pan, anger, joy,

and sadness datasets, there is a significant improvement over random sample selection.

Although O-CBS
(
SRA
)
falls behind O-CBS(Random) in the fear and surprise datasets
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Figure 6.2. Effect of using SS for sample selection on the Age Annotations and the

Head Pose Annotations datasets, averaged over 100 runs with different starting

subsets. O-CBS(Random) employs both random sample and random annotator

selection, whereas O-CBS
(
SRA
)
employs random selection only for annotators and

uses SS for sample selection.
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Figure 6.3. Effect of using SS for sample selection on the Affective Text Analysis

datasets, averaged over 100 runs with different starting subsets. O-CBS(Random)

employs both random sample and random annotator selection, whereas O-CBS
(
SRA
)

employs random selection only for annotators and uses SS for sample selection.
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as the number of annotations increases, the overall performance of SS is beneficial.

Even in the absence of an annotator selection strategy, SS by itself provides significant

improvement to active crowd-labeling performance.

6.2. Balancing the Scales: Suppressing Annotator Domination

The annotator competence scoring function for M-CBS described in Table 5.2

satisfies the aforementioned requirement of giving higher scores for more competent

annotators. In this section, we discuss the shortcomings of the said annotator compe-

tence scoring function and propose several updates to alleviate these shortcomings.

Since our focus is on crowd annotation problems without any gold standard, we

trust the consensus of the crowd to be true. However, it is possible that the majority of

the crowd might be wrong or ill-intentioned. Moreover, ill-intentioned annotators are

inclined to annotate more samples for gaining more money, resulting in an unbalanced

system.

The stability of a crowd grows when more people are in it and the crowd-labeling

approach is more susceptible to the actions of said people when the crowd is small. If

the system is dominated by incompetent annotators, whenever a competent annotator

joins the system, their opinion will be treated as an outlier and good annotators will

have a low annotator competence score due to the mechanism introduced in Section 5.2.

Since the active crowd-labeling method is inclined to acquire new annotations from the

high scoring annotators, the method will continue requesting annotations mainly from

incompetent annotators. Even if more truly competent annotators join the system, it

may prove to be challenging to balance the scales in favor of them. Therefore, it is

crucial to prevent annotator overloading early on and to let the method concentrate

on competent annotators later on.

For overcoming these issues, we introduce a weighting factor to the annotator

scoring mechanism proposed in Section 5.2. The idea is to suppress the annotator

scores SA(j) proportionally to the annotator workloads so that the score of highly



82

loaded annotators are suppressed. Additionally, we want to reduce this effect as the

system gets more reliable in terms of annotations. We call this weighting factor the

dominance suppression factor, which is

∣∣Kj
∣∣−ϕ
|J 1|
|K| (6.1)

where ϕ > 0 is the dominance suppression coefficient which controls the effect of the

weight, |K| is the current number of annotations, |Kj| is the number of annotations of

annotator j, and |J 1| is the number of annotators that have at least one annotation.

|K|
|J 1| is the average number of annotations per annotator. With each new an-

notation, this factor increases; with each new annotator, it decreases momentarily.

New annotator introduction to the system is rarer than adding new annotations to the

annotation pool from current annotators. Thus, the suppression effect of the newly

introduced dominance suppression factor almost always decreases as the active crowd-

labeling process progresses.

Thus, we introduce a dominance suppression based annotator competence score

as the product of the annotator competence score and the dominance suppression factor

(Equation 6.1):

S ϕ
A (j) = SA(j)

∣∣Kj
∣∣−ϕ
|J 1|
|K| (6.2)

As a baseline method, we also introduce a simple annotator score based only on

the annotator’s workload:

S KA (j) = |Kj|−1 (6.3)
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(c) O-CBS(SA): Selecting highest

ranking annotators at the time
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: Annotator selection

with dominance suppression (ϕ = 5)
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Figure 6.4. Change in the minimum, maximum, and average annotator workloads

during the active crowd-labeling process. The results are provided for the Age

Annotations dataset.

Figure 6.4 shows the load of minimum, maximum and averagely loaded anno-

tators. The horizontal axis represents the total number of annotations currently in

the system. The vertical axis represents the number of annotations (workload) of the

annotator in question. Note that each point on the plots may represent a different

annotator. Depending on the annotator selection criterion, the maximally and min-
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imally loaded annotators will change during the annotation process. In Figure 6.4a,

where new annotations are randomly selected, maximum annotator load increases lin-

early and diverges quickly from the average load. This means that only a handful of

annotators are dominating the system. This is a tendency that we aim to avoid as

mentioned before.

If S KA (j) is used as the annotator score, we see that the maximum annotator load

tends to stay the same for a long time (Figure 6.4b). Although this behavior is desired

since it prevents domination by a group of annotators, this scoring mechanism by its

very nature does not incorporate the behavior of the annotator and fails to pinpoint

competent annotators.

When the scoring function SA(j) (Section 5.2) is used, the active crowd-labeling

system tends to overload the high scoring annotators and the maximum load increases

rapidly (Figure 6.4c). However, this is risky due to the problems described earlier.

When dominance suppression is active, the scores of highly loaded annotators

are weighted down for obtaining the desired behavior. In Figure 6.4d, we choose the

dominance suppression coefficient ϕ = 5 and it is clear that we reach a more stable an-

notator load distribution. Early on in the active crowd-labeling process, the maximum

annotator load holds steady while the system gets acquainted with the annotators in

an objective manner. After a while the maximum workload starts to increase with the

diminishing effect of the dominance suppression factor, thereby utilizing high quality

annotators.

6.3. Effects of Annotator Dominance Suppression

In this section, we will discuss the results of improving the existing consensus

by using active crowd-labeling under several different dominance suppression criteria.

However, the data described in Chapter 2 was not collected considering active crowd-

labeling. Thus, first we need to create starting subsets of the annotation data for
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evaluating O-CBS. We present our results on nine datasets, namely the Age Annota-

tions, the Head Pose Annotations, and the six Affective Text Analysis datasets.

6.3.1. Selecting Starting Subset for Active Crowd-Labeling:

Assume that annotations are already collected for a fixed sample set and we want

to improve the consensus values without adding new annotators to the system. This

is a common case in many institutions where a dataset is collected and annotated in-

house. In this setting, the problem of extending the annotation dataset boils down to

asking an annotator to annotate a sample that they have not annotated before. In

order to emulate this, we create annotation subsets for each dataset that satisfy the

following conditions:

• The resulting subset should have ν annotations,

• Minimum sample count of the resulting subset should be ρ,

• Minimum annotator count of the resulting subset should be η,

• Every annotator in the resulting subset should have at least ζ annotations,

• Every sample in the resulting subset should have at least δ annotations,

• Annotations of an annotator should not be disconnected from the rest of the

data. Every annotator must have an annotation for a sample that also has an

annotation from another annotator.

Figure 6.5 gives the details of the starting subset creation process.

Specific to our problem, we employ the algorithm in Figure 6.5 such that the

following conditions are satisfied:

• Every sample has an annotation (δ = 1)

• Every annotator has at least ζ = 2 annotations

• Every annotator has an annotation for a sample that also has an annotation from

another annotator (this is needed for being able to compare annotators)
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Input:
Sets of samples I, annotators J , annotations K
Target annotation count ν, minimum annotations per annotator ζ, minimum annotations per sample
δ, minimum sample count ρ, minimum annotator count η

Output:
Subset of annotations K

1: function CreateSubset(I,J ,K, ν, ζ, δ, ρ, η)
2: Shuffle(K)
3: for all k ∈ K do
4: for all j ∈ J do
5: Kj ← {k ∈ K : jk = j} . Annotations of the annotator j
6: end for
7: for all i ∈ I do
8: Ki ← {k ∈ K : ik = i} . Annotations of the sample i
9: end for
10: if |Kjk | < ζ then . If the annotator jk of the annotation k has less than

ζ annotations
11: D ← Kjk . Mark all annotations of jk to be removed
12: else
13: D ← {k} . Mark only the annotation k to be removed
14: end if
15: Ts ← {i ∈ I : |Ki \ D| > 0} . Samples with at least 1 annotation
16: Ta ← {j ∈ J : |Kj \ D| > 0} . Annotators with at least 1 annotation
17: if ∃i ∈ {ik : k ∈ D} s.t. |Ki \ D| < δ then . If any sample has less than δ annotations
18: continue . Reject
19: else if |Ts| < η or |Ta| < ρ then . If number of samples or annotators are

below limits
20: continue . Reject
21: else if ∃j s.t. |Ki \ D| = 1, ∀i ∈ Ij then . If an annotator does not have a com-

mon sample annotated with another
annotator

22: continue . Reject
23: else . Accept the removal of the annotation(s) in D
24: K ← K \ D . Update K by removing D
25: end if
26: if |K| < ν then . Break if target annotation count is reached
27: break
28: end if
29: end for
30: return K
31: end function

Figure 6.5. Create Starting Set By Elimination
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For each dataset, we prepare 100 different subsets satisfying these conditions. We fix

the subset sizes, i.e. number of annotations, to 2100 for the Age Annotations dataset,

1110 for the Head Pose Annotations datasets, and 200 for the Affective Text Analysis

datasets. In Table 6.1, we give pairwise inter-set similarity statistics of the created

subsets. We observe that there is approximately 20% overlap between the resulting

subsets on average. This similarity is low enough to ensure that the results of our

active crowd-labeling scheme do not depend on initial conditions.

Table 6.1. Details of the created subsets

Dataset Subset size
Inter-Set Similarity (%)

Min Average Max

Head Pose Annotations 1110 15.68 21.47± 1.17 26.13

Age Annotations 2100 18.43 21.13± 0.85 24.81

Affective Text Analysis 200 11 19.95± 2.63 29.5

6.3.2. Mean Absolute Age Error Improvement on the Age Annotations

Dataset:

In Figure 6.6a, we present the results of our method’s effect on mean absolute

error in terms of age, by trying out different dominance suppression coefficients ϕ on

the Age Annotations dataset. We have two baseline methods that we compare our

approach with. The first is O-CBS
(
SRA
)
where the annotator is selected randomly.

The second is where the sample with the worst consensus quality score is annotated

by the annotator with the least annotation count (O-CBS
(
S KA
)
). We do not plot

O-CBS(Random) curves in Figure 6.6, since we already gave their comparison with

O-CBS
(
SRA
)
in Figure 6.2. When ϕ is small, our method fails to suppress low-quality

annotators as we describe in Section 6.2, resulting in even lower performance than

the baseline methods. When ϕ ≥ 3 our method outperforms the baseline approaches

significantly. Instead of collecting 10000 annotations, roughly 6000 annotations are

sufficient to drop below 6 years in terms of mean absolute error.
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Figure 6.6. Improving the existing consensus on the Age Annotations and the Head

Pose Annotations datasets. The curves are averaged over 100 runs with different

starting subsets.
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Figure 6.7. Improving the existing consensus on the Affective Text Analysis datasets.

The curves are averaged over 100 runs with different starting subsets.
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6.3.3. Mean Absolute Degree Error Improvement on the Head Pose Anno-

tations Dataset:

We further test the performance of O-CBS on the Head Pose Annotations tilt

and pan datasets. Figures 6.6b and 6.6c show the change in the mean absolute er-

ror in degrees, according to different dominance suppression coefficients. Similar to

the performance on the Age Annotations dataset, O-CBS performs subpar when the

dominance suppression coefficient ϕ is small, or the non-suppressed annotator scoring

mechanism SA(j) is used. On the tilt dataset, the MAE achieved at the end of the

annotation procedure can be achieved earlier on with much fewer annotations by using

ϕ ≥ 5. For the pan dataset, we also observe that the curves with ϕ ≥ 5 have a trough

shape around 3000 annotations. This trend is due to the fact that high-quality annota-

tors are distinguished early on, resulting in low error. Additional annotations provided

by lower quality annotators result in degrading the system performance. Note that we

let the system to use all annotations for examining the total effect of the annotations

on consensus quality. Every point on these graphs actually show the performance at

the corresponding annotation limit. Therefore, it is also possible to interpret Figure 6.6

as what the performance of the system will be, should a budget limit be enforced.

6.3.4. Accuracy Improvement on the Affective Text Analysis Datasets:

We also test our method on the six Affective Text Analysis datasets, which present

a more challenging problem since the datasets are much smaller than both the Age

Annotations and Head Pose Annotations datasets. We do not plot O-CBS(Random)

curves in Figure 6.7, since we already gave their comparison with O-CBS
(
SRA
)
in

Figure 6.3. Our first observation in Figures 6.7a to 6.7f is that each dataset belonging

to an emotion results in different baseline method characteristics, presenting diverse

conditions in which we test our method.

In consort with the results in Figures 6.6a to 6.6c, a higher dominance suppres-

sion coefficient ϕ ≥ 5 helps to achieve high accuracy with fewer annotations. This

effect is most prominent in fear, joy, and surprise datasets where roughly 400 out of
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1000 annotations are sufficient for achieving near-maximum accuracy. Additionally,

introducing the dominance suppression factor helps us to outperform the two baseline

methods significantly, specifically in the anger, fear, and sadness datasets.

6.4. Speeding Up the Inference Process

In passive crowd consensus estimation, we randomly initialize the annotator pa-

rameters and iteratively infer the resulting annotator parameters using M-CBS. In an

active crowd-labeling process, this inference process is repeated with each new anno-

tation and the computational cost increases duly. However, we expect a small change

in annotator parameters since there is only a small change in the annotations set.

Thus, we can use our previous knowledge about the annotator parameters to reduce

the complexity of the process.

M-CBS describes an annotator using a linear map and a noise parameter. When

there are only a few annotations of an annotator, the model might infer a wrong

conclusion about the behavior of the annotator in question. This is a very common

case especially in the early phases of the active crowd-labeling scheme.
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Figure 6.8. The effect of three different random initialization approaches on the

number of iterations for O-CBS(Random) (random annotation addition) on the Age

Annotations dataset. Reinitializing the annotator parameters of only those providing

new annotations results in much fewer iterations with the same MAE.
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In Figure 6.8, we present three random initialization approaches and their ef-

fect on iteration count and MAE. The first approach is to initialize every annotator’s

parameters each time a new annotation is acquired, thus avoiding sticking to a local

extremum. This is actually a baseline approach which results in high iteration counts,

especially early on in the active crowd-labeling process. Alternatively, we may initial-

ize the parameters of every annotator that has provided an annotation for the newly

annotated sample, since the new annotation will affect the sample’s consensus. It is

also possible to take a more conservative approach and reinitialize the parameters of

only the new annotation’s annotator. Both of these approaches still have the advantage

of avoiding being stuck at local extrema. Results show that both of these approaches

result in a significantly decreased number of iterations, with the latter approach being

lower in iteration numbers. There is no change in the MAE, which confirms that these

time-saving methods do not affect the quality of the consensus estimation process.
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7. O-CBS+: STARTING ACTIVE CROWD-LABELING

FROM SCRATCH

When the task giver has full control over the label collection process, it is more

beneficial to identify the annotator quality as soon as possible. Timely evaluation of

annotator quality results in saving both money and time by achieving high quality

consensuses using fewer annotations. Thus, it is important to use the active crowd-

labeling process from scratch.

O-CBS handles the case when we are already acquainted with the annotators,

thus have an opinion about their annotation behaviors. However, for using active

crowd-labeling at the start of the crowd-labeling process, we need to not only utilize

current annotators, but also assess new annotators.

Even though the sample pool is fixed at the end, every sample seems to be new

at the early stages of active crowd-labeling since we do not have annotations for them.

O-CBS is not designed for the addition of new samples. When a new sample needs to

be annotated, it is crucial to have an opinion about its consensus in a timely fashion.

In Figure 7.1, we take these concerns into account. We first check whether there

is a new sample or not. If there are new samples that have not been annotated before,

we randomly select a sample to be annotated. Otherwise, we select the sample with the

worst consensus quality score, similar to O-CBS. Upon the selection of the sample, we

need to decide if we want to have this sample annotated by a known annotator (exploit)

or a new annotator (explore). If we decide to exploit an annotator, we request an

annotation for the selected sample from the highest scoring available annotator. When

exploring a new annotator, we want to have at least two annotations of the annotator

since we want to have an opinion about their behavior and one of the annotations

should be of an already annotated sample. Thus, we request two annotations from the

new annotator accordingly.
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Input:
Sets of all samples I, all annotators J , current annotations K, currently active annotators J ′

ik and jk are the sample and the annotator of the annotation k, respectively
SS(i) is the consensus quality score of sample i, SA(j) is the competence score of annotator j (We
assume that SS and SA are intrinsically aware of the annotator parameters a, w, b, and λ)
E defines the probability of exploring a new annotator

Output: New annotation(s) {k} or {k, k′}

1: function RequestAnnotationExp(I,J ,J ′,K, SS(·), SA(·), E)
2: for all i ∈ I do
3: Ki ← {k ∈ K : ik = i} . Annotations of sample i
4: Ji ← {jk ∈ J : k ∈ Ki} . Annotators of sample i
5: end for
6: for all j ∈ J do
7: Kj ← {k ∈ K : jk = j} . Annotations of annotator j
8: end for
9: Us ← {i ∈ I : |Ki| = 0} . Samples without any annotation
10: Ua ← {j ∈ J : |Kj | = 0} . Annotators without any annotation
11: if |Us| > 0 then . If there is a sample without any annotation
12: i ← Randomly select from Us
13: else
14: i ← argmin

i′∈I s.t. J ′\Ji′ 6=∅
SS(i

′) . Select the sample with the worst consensus qual-
ity such that at least one of the currently active
annotators has no annotations for that sample

15: end if
16: R ← Ua ∩ J ′ . Set of explorable annotators
17: T ← J ′ \ (Ji ∪ Ua) . Set of exploitable annotators
18: if |R| > 0 and |T | > 0 then . If there are both explorable and exploitable annotators
19: explore ← true with probability E . Randomly decide whether to explore a new anno-

tator or exploit an existing annotator
20: else if |R| > 0 then . If there are only explorable annotators
21: explore ← true
22: else if |T | > 0 then . If there are only exploitable annotators
23: explore ← false
24: end if
25: if explore then
26: j ← Randomly select from R . Select an annotator from explorable annotators
27: i′ ← Randomly select from I \ Us . Select a sample from previously annotated samples
28: k′ ← Request an annotation for a random sample i′ from annotator j
29: else
30: j ← argmax

j′∈J ′\Ji

SA(j
′) . Select the most competent annotator from the set of active

annotators who had not annotated sample i
31: end if
32: k ← Request an annotation for the sample i from annotator j
33: if explore then
34: return {k, k′}
35: else
36: return {k}
37: end if
38: end function

Figure 7.1. RequestAnnotationExp: Requesting annotation for smart label collection

from scratch
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O-CBS+ is based on Figure 5.1 with M-CBS as the EstimateLabels(·) func-

tion and RequestAnnotationExp(·) of Figure 7.1 as the RequestAnnotation(·)
function. In this setting, RequestAnnotationExp(·) employs SS as the sample

consensus quality scoring function, same as O-CBS. Since in Section 6.3 we observe

that O-CBS(S 5
A) performs to our satisfaction, we fix the dominance suppression coeffi-

cient as ϕ = 5 and use S 5
A as the annotator competence scoring function for O-CBS+.

We denote O-CBS+ with different exploration parameters (E) as O-CBS+(E). As a

baseline method, we use O-CBS+(Random) which is similar to O-CBS(Random). In

O-CBS+(Random), the annotators are selected randomly regardless of whether they

are already known or new. Note that if there are samples without any annotation, the

random selection is performed among them. As soon as all samples have annotations,

full random selection commences.

In the remainder of this section, we thoroughly study the performance of O-

CBS+. First, we investigate the effect of the exploration parameter E for all datasets

and discuss the risks and benefits of incorporating new annotators into the system..

Then, we compare the performance of O-CBS+ with two methods [37,53] from the lit-

erature. Note that the work of Welinder and Perona [37] provides the only directly com-

parable method to O-CBS+ as we have previously mentioned in Section 1.1. Raykar

and Agrawal [53] provide comparative results with the binary method of Welinder and

Perona [37] on the six Affective Text Analysis datasets using active crowd-labeling with

binarized inputs. Although the method of Raykar and Agrawal [53] is not directly com-

parable to our work, for the sake of completeness we also provide comparative results

by binarizing our continuous-valued consensuses. Finally, we investigate the effect of

enforcing a sample score related stopping criterion and provide further comparative

results with Welinder and Perona [37] and Raykar and Agrawal [53].

7.1. Effect of Annotator Exploration

In this section, we will discuss the results of starting active crowd-labeling from

scratch under several different exploration parameters. We present our results on nine
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datasets, namely the Age Annotations, the Head Pose Annotations, and the six Affec-

tive Text Analysis datasets.

7.1.1. Mean Absolute Age Error Improvement on the Age Annotations

Dataset

In Figure 7.2a, we present the effect of changing the exploration parameter E on

the Age Annotations dataset. Figure 7.2a shows the reduction in the mean absolute

error in terms of age, while the active crowd-labeling is started from scratch. For the

analysis to be meaningful, we start reporting the error once each sample has a consensus

estimation. Therefore, the curves do not start from zero annotations. Additionally, due

to the fact that the active crowd-labeling process has a random nature, the moment

where every sample has a consensus is different for each trial. Thus, the starting point

of the curves also differ from one another in the figures.

In Figure 7.2a, we compare O-CBS+ with fixed dominance suppression coefficient

of ϕ = 5 for different E values. We also compare with O-CBS(S 5
A) from Figure 6.6a and

the random annotation selection mentioned in Section 6.3, as baseline comparisons. It

is evident that active learning from scratch with exploration performs better than the

random selection method. We also observe that starting from scratch ensures the same

success with fewer annotations.

An important point worth mentioning is that using O-CBS+(E=0) is not the

same as using O-CBS with an empty set of initial annotations. Although E = 0 seems

like no exploration takes place in the process, inevitably exploration is done when there

is no annotator to exploit. This case may also happen for any E < 1. Similarly for

E > 0, when the system runs out of annotators to explore, it goes on full-exploitation

mode until a new annotator joins the system.

When we observe Figure 7.2a, we see that the results get better and the gain

eventually diminishes with higher exploration coefficient E . Note that the annotator

set is limited in the dataset, and thus the systems with large E values learn all an-
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Figure 7.2. Effect of changing the exploration parameter E on the Age Annotations

and the Head Pose Annotations datasets. The results are presented for ϕ = 5 and are

the averages of 100 repetitions.
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Figure 7.3. Effect of changing the exploration parameter E on the Affective Text

Analysis datasets. The results are presented for ϕ = 5 and are the averages of 100

repetitions.
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notators rapidly. When there are no new annotators to explore, the system begins to

exploit high quality annotators early on. Therefore, better results are achieved faster.

We have to keep in mind that the essence is in exploitation of high quality annotators,

and this is achieved by exploration. Since the Age Annotations dataset is a fairly large

dataset, the difference between choosing different exploration coefficients quickly be-

comes indistinguishable after all annotators are explored. However, exploration should

be used moderately on open ended annotation problems (i.e. where the annotator pool

is considered to be unlimited).

7.1.2. Mean Absolute Degree Error Improvement on the Head Pose Anno-

tations Datasets

Figures 7.2b and 7.2c show the effect of the exploration parameter E on the Head

Pose Annotations tilt and pan datasets. Similar to the Age Annotations dataset,

we compare the O-CBS+ results with the two baseline methods O-CBS(S 5
A) and

O-CBS+(Random). On both datasets, increasing the exploration coefficient E results

in marginal decrease in terms of mean absolute degree error. The results in Figures 7.2a

to 7.2c suggest that the effect of E is difficult to observe on large datasets and call for

a closer inspection on smaller datasets. The advantage of annotator selection over

random selection is more apparent in the tilt dataset.

7.1.3. Accuracy Improvement on the Affective Text Analysis Datasets

In Figures 7.3a to 7.3f, we present the effect of the exploration parameter E on the

Affective Text Analysis datasets, which are significantly smaller datasets compared to

the other three datasets. Overall, the results are in concord with those of the Age An-

notations dataset (Figure 7.2a) and the Head Pose Annotations dataset (Figures 7.2b

and 7.2c). In addition, the advantage of using a higher exploration parameter such as

E = 0.75 results in higher accuracies.

Since the annotation set is limited, all curves converge to the same point toward

the end of the active crowd-labeling process. Therefore, well-performing methods which
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reach a higher accuracy with fewer annotations converge to the same point with the

weaker methods at the end. An example for this can be observed in Figure 7.3f,

where the exploration-based methods outperform O-CBS(S 5
A) but end up with the

same accuracy at the end.

A striking difference from the Age Annotations dataset is the performance of the

E = 0 curve. In the six Affective Text Analysis datasets, it significantly falls behind

its counterparts. The strict imposition of annotator exploitation results in the late

integration of high-quality annotators to the system. Since the Affective Text Analysis

datasets are much smaller than the Age Annotations dataset, timely exploration of

high-quality annotators is much more critical for the success of the active learning

process and the tardiness caused by selecting E = 0 becomes evident in the graphs.

On specifically three datasets, namely fear, joy, and surprise, our method quickly

reaches high accuracies with a small number of annotations. This is due to the fact

that our method succeeds in selecting high-quality annotators faster. Another remark

is about the peaks observed in the anger, disgust, and sadness datasets. These peaks

indicate that the system has to exploit low-quality annotators when it runs out of

annotations from the high-quality ones. The reason is that we are working with a

limited annotation set and we force the system to use every annotation for observing

the complete behavior. Therefore, the active learning performance degrades in these

three datasets with an increasing number of annotations toward the end.

7.2. Is It Wise to Take Risks by Incorporating New Annotators?

Although it is apparent that a system without exploration would suffer when

the starting annotation set is small, the intuitive expectation is that a conservative

approach to exploration would be better. This is due to the fact that there is a risk

associated with new annotators and we can always select the better annotators among

the annotators we know. However, the results in Section 7.1 show otherwise.
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Figure 7.4. New annotator exploration times on the Affective Text Analysis - Anger

dataset for O-CBS+(S 5
A)

When we observe the exploration times shown in Figure 7.4, we see that the

system exhausts new annotators quickly since our datasets contain finite number of

annotators. When working with a limited annotator set, it is wise to assess all an-

notators quickly so that the active crowd-labeling approach starts to utilize better

annotators early on. The results presented in Figure 7.4 and Section 7.1 validate this

observation. A larger E results in the addition and assessment of new annotators to the

system very quickly and therefore better results are achieved with fewer annotations

by utilizing good annotators.

Note that these results are obtained from readily available datasets with a limited

number of annotators. In a live and open-ended active crowd-labeling process, it would
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be wise to concentrate more on exploiting the existing good annotators and choose a

smaller E value, instead of constantly exploring new annotators.

7.3. Comparative Performance of O-CBS+ Under Annotation Count

Limitations

So far, we have deduced that S 5
A is a good annotator competence scoring function

choice and fixed it in O-CBS+. Figures 7.2 and 7.3 shows that fast exploration of

annotators is preferable, especially for small datasets. Thus, we present the results

using O-CBS+(E=0.75) for the comparative performance evaluation of O-CBS+ with

the existing methods, namely Welinder and Perona [37] and Raykar and Agrawal [53].

The experiments with both opponent methods and our method O-CBS+(E=0.75) are

repeated 100 times.

In Figure 7.5, we compare our method with the Mean-Random baseline method

and the method of Welinder and Perona [37] on the Age Annotations and Head Pose

Annotations datasets. Additionally, we make similar comparisons with the method

of Raykar and Agrawal [53] on the Affective Text Analysis datasets in Figure 7.6.

By the very nature of active crowd-labeling, annotations of the samples are acquired

gradually. Thus, in the early steps of the process, not every sample has an estimated

label. Moreover, the required number of annotations for obtaining consensus label

of every sample varies depending on the sample selection strategy of the method in

question. However, for the mean absolute error (MAE) and accuracy comparisons

to make sense, every sample’s consensus error must contribute to the mean. For this

reason, we represent the initial part of the process where some sample labels do not have

estimations by dotted lines in the plots. Additionally, both methods by Welinder and

Perona [37] and Raykar and Agrawal [53] employ stopping criteria which results in the

algorithms stopping at different annotation counts among 100 repetitions. Therefore,

the ends of the curves are also shown in dotted lines when the MAE or the accuracy

is calculated with fewer than 100 repetitions. The middle portions of the curves are

shown in solid lines.
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Figure 7.5. Comparison of O-CBS+ with the method of Welinder and Perona [37] on

the Age Annotations and the Head Pose Annotations datasets. The circles mark the

required annotation counts for our method to reach the performances of the

contender methods. The horizontal black dashed lines provide visual guide.
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Figure 7.6. Comparison of O-CBS+ with the method of Raykar and Agrawal [53] on

the Affective Text Analysis datasets. The circles mark the required annotation counts

for our method to reach the performances of the contender methods. The horizontal

black dashed lines provide visual guide.
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In the Mean-Random baseline method, the annotations are added randomly and

the mean of the annotations of a sample are used as the resulting label. In Figure 7.5a,

we observe that the mean absolute age error achieved by this baseline method on the

Age Annotations dataset using all 10020 annotations can be matched by O-CBS+

with 1796 annotations (∼18% of all annotations). Figures 7.5b and 7.5c show that

our method can match the performance of the Mean-Random baseline method on the

Head Pose Annotations tilt and pan datasets with 2886 and 836 annotations (∼53%
and ∼15% of all annotations), respectively.

Figures 7.6a to 7.6f present the performance of O-CBS+(E=0.75) against the

method of Raykar and Agrawal [53] on the Affective Text Analysis datasets, accompa-

nied with the Mean-Random method as the baseline. Similar to Figures 7.5a to 7.5c,

O-CBS+(E=0.75) outperforms the Mean-Random method across all six datasets. Our

method matches the end result of the Mean-Random method, using a minimum of 193

and a maximum of 569 annotations across the six datasets, and thereby resulting in a

∼70% cost reduction on average.

We support the findings of Figures 7.5 and 7.6 with a more detailed breakdown

of the comparative results, presented in Table 7.1. We perform t-test for validating the

statistical significance of the results presented in Figures 7.5 and 7.6. For comparison,

we take the number of annotations at which an opponent algorithm stops, and use

this as a stopping criterion for O-CBS+(E=0.75) to report the MAE or accuracy.

Additionally, we also take the MAE or accuracy at which an opponent algorithm stops,

and report the mean number of annotations needed to reach this target using O-

CBS+(E=0.75). Significance test results against opponent methods are reported under

the rightmost two columns, where the underlined values indicate that our method is

significantly superior than the opponent method. Values written in regular font indicate

a tie and italic values indicate that the opponent method is better. The results for the

opponent methods are given in regular script as reference values.

In Table 7.1a, we observe the significance test results of O-CBS+(E=0.75) against

the method of Welinder and Perona [37]. On the Age Annotations dataset, the al-
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Table 7.1. The effect of enforcing annotation count or MAE/accuracy limit. The

tables indicate the results of the t-test with significance level 0.01 across 100

repetitions, using underlined font when our method performs better, regular font

when the test is inconclusive, and italic font when our method performs worse.

(a) Comparison with Welinder and Perona [37] on the Age Annotations and the Head Pose

Annotations datasets

Welinder and Perona [37] O-CBS+(E=0.75) Required annotations

for O-CBS+(E=0.75)

to reach target MAE
Dataset Annotations MAE

MAE at target

annotations

Age 4969.77 7.02 ages 6.06 ages 2775.98

Tilt 2705.03 10.10 degrees 9.33 degrees 1892.16

Pan 2689.77 7.58 degrees 6.49 degrees 1387.88

(b) Comparison with Raykar and Agrawal [53] on the Affective Text Analysis datasets

Raykar and Agrawal [53] O-CBS+(E=0.75) Required annotations

for O-CBS+(E=0.75)

to reach target acc.Dataset Annotations Accuracy (%)
Accuracy at target

annotations (%)

Anger 415.86 96.07 94.11 535.81

Disgust 387.78 98.92 94.76 726.82

Fear 363.49 91.50 93.28 247.32

Joy 355.51 89.17 92.53 196.22

Sadness 462.34 93.31 93.01 522.80

Surprise 365.22 91.60 94.38 231.41

gorithm of Welinder and Perona [37] stops at 4970 annotations on average and a

little more than half on the annotations are unused because they come from anno-

tators marked as spammers. At this point, the lowest mean absolute error is reached.

For matching the same MAE, our method requires 2776 annotations on average, and

achieves better overall performance as more annotators are employed. Similar results

are also observed for the the Head Pose Annotations tilt and pan datasets, where O-

CBS+ proves to be an effective algorithm both in terms of achieving significantly lower
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error with annotation count limitations and by using significantly fewer annotations

for a targeted MAE.

Note that Welinder and Perona [37] do not employ sample prioritization. They

acquire annotations for each sample one by one. For each sample, they acquire as many

annotations as they can and move onto the next sample. Thus, the point where each

sample has a consensus value occurs later in the annotation process. This is why in

Figures 7.5a to 7.5c the red curves preceding the red dots are almost invisible since

the annotation acquisition process stops after a very short while. Once their algorithm

flags an annotator as a spammer, that annotator is not consulted anymore.

Compared to the method of Welinder and Perona [37], our method uses a more

complex scheme. First, we employ sample prioritization by sample consensus qual-

ity scoring. Second, instead of grouping the annotators into two discrete groups as

spammers and non-spammers, we rank them according to four parameters for each

annotator. This way, better annotators are also ranked among themselves while low-

quality annotators are ignored until the end of the annotation process. Low-quality

annotators may also be completely excluded from the annotation process by a simple

thresholding mechanism on the annotator competence score.

An additional observation about these methods’ performances on the tilt dataset

is that the algorithm of Welinder and Perona [37] falls short of achieving the Mean-

Random baseline method’s performance. This is due to the fact that many annotators

are marked as spammers and the annotation process stops very early. Another reason

is that the tilt dataset is actually quite a challenging dataset in the sense that the

baseline method achieves a close performance to our method O-CBS+(E=0.75), albeit

using all annotations.

We present the performance of O-CBS+(E=0.75) against the method of Raykar

and Agrawal [53] on the Affective Text Analysis datasets in Figures 7.6a to 7.6f and Ta-

ble 7.1b. In contrast to Welinder and Perona, Raykar and Agrawal [53] employ a more

intricate annotation selection algorithm and the change in the accuracy over time (the
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green lines in Figures 7.6a to 7.6f) is observable since all samples have annotations. Our

method succeeds to achieve higher accuracies at the targeted number of annotations in

the fear, joy, and surprise datasets with a significant margin and is tied on the sadness

dataset. Although our method seems to struggle in the anger and disgust datasets,

observing Figures 7.6a and 7.6b shows that the overall performance of our method in

the long run (i.e. without annotation count limit) is capable of achieving a higher or

similar accuracy. These findings confirm that O-CBS+ is overall a better approach to

the active crowd-labeling problem with significant gains on annotation expenses.

7.4. Comparative Performance of O-CBS+ While Enforcing a Sample

Score Related Stopping Criterion

In Section 5.1, SS is defined as the precision (reciprocal of the variance) of the

posterior distribution of the sample consensus. In both O-CBS and O-CBS+, the aim

is to reduce this variance value (i.e. increase SS) for each sample. The algorithms are

designed to choose the sample with the lowest SS to be annotated in each annotation

step. Thus, the overall direction is the enhancement of every sample’s score (i.e.

reducing the sample consensus posterior variance) during the course of active crowd-

labeling.

So far, we were not concerned with the question of how high SS should be for

having a satisfactory sample consensus. Our aim was to increase consensus quality

as much as possible within the annotation budget limit. In Figures 6.2, 6.3, 6.6, 6.7,

7.2, 7.3, 7.5 and 7.6, we show the performance of the proposed methods with only the

budget limit as an enforceable stopping criterion. Every point on those graphs actu-

ally show the performance of the corresponding method for every possible annotation

budget limit. However, this approach does not consider the adequacy of sample con-

sensus values, and is at risk of prematurely ending the active crowd-labeling process

or overspending by collecting excessive annotations.

To address this concern, we aim to stop the annotation process upon attaining

satisfactory sample consensus values for all samples by setting a target on the sample
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Figure 7.7. The effect of enforcing the sample scoring threshold τ on the Age

Annotations and Head Pose Annotations Datasets. Blue curves show the final

annotation count when τ is enforced and red curves show the MAE at the end of the

annotation process for a given τ . The gray bands depict the region where 8 ≤ τ ≤ 12.
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Figure 7.8. The effect of enforcing the sample scoring threshold τ on the Affective

Text Analysis Datasets. Blue curves show the final annotation count when τ is

enforced and red curves show the MAE at the end of the annotation process for a

given τ . The gray bands depict the region where 8 ≤ τ ≤ 12.
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consensus posterior variance, namely δ. This is equivalent to stopping the active crowd-

labeling process when every sample has a satisfactory score SS since SS is the reciprocal

of the posterior variance, i.e.

min
i
SS(i) >

1

δ︸︷︷︸
τ

(7.1)

Therefore, τ signifies the target lower limit on SS.

The cost associated with the active crowd-labeling systems consists of not only

the annotation budget, but also the cost of reaching erroneous consensuses (which

may also have monetary repercussions). System designers are often faced with making

a trade-off between performance and budget to find a sensible operation range. In

our case, collecting more annotations often result in reduced error while increasing

expenses. Due to the nature of the sample score SS and O-CBS+, choosing a high τ

value would result in lower error and is preferable if the cost of making error is high.

In contrast, system designers working with very limited budgets may resort to using a

lower τ value. A reasonably low value for the posterior variance of a sample’s consensus

is 0.1. Enforcing a stopping criterion to reach this goal for each sample corresponds to

choosing τ = 10.

In Figures 7.7 and 7.8, we show the performance of O-CBS+(E=0.75) for varying

τ values. Blue curves show the final annotation count (i.e. cost) when τ is enforced

and red curves show the performance at the end of the annotation process for a given

τ . The gray bands in the plots show the region around τ = 10; specifically, the bands

rest between τ = 8 and τ = 12. The plots show promising performance and annotation

count values inside the gray bands. The results verify our previous deductions. Es-

pecially, for anger, disgust, and sadness datasets where our methods struggle, τ = 10

presents a turning point for both error and budget. Additionally, in the remaining

datasets the gray band areas signify very preferable operation ranges.
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Table 7.2. The effect of enforcing various sample scoring thresholds. The tables

indicate the results of the t-test with significance level 0.01 across 100 repetitions,

using underlined font when our method performs better, regular font when the test is

inconclusive, and italic font when our method performs worse.

(a) Comparison with Welinder and Perona on the Age Annotations and the Head Pose

Annotations datasets

Welinder and Perona [37]
O-CBS+(E=0.75)

τ = 8 τ = 10 τ = 12

Dataset Ann. MAE Ann. MAE Ann. MAE Ann. MAE

Age 4969.77 7.02 4189.93 6.33 4911.37 6.07 5607.13 5.97

Tilt 2705.03 10.10 1657.70 10.42 1836.39 10.11 2009.94 9.92

Pan 2689.77 7.58 1560.16 7.32 1721.22 7.13 1868.02 7.01

(b) Comparison with Raykar and Agrawal [53] on the Affective Text Analysis datasets

Raykar and Agrawal [53]
O-CBS+(E=0.75)

τ = 8 τ = 10 τ = 12

Dataset Ann. Acc.(%) Ann. Acc.(%) Ann. Acc.(%) Ann. Acc.(%)

Anger 415.86 96.07 347.83 93.38 386.20 94.58 564.59 97.24

Disgust 387.78 98.92 346.12 94.64 392.72 95.53 625.24 97.41

Fear 363.49 91.50 331.49 93.45 365.74 93.77 458.29 93.74

Joy 355.51 89.17 323.10 92.59 352.96 92.79 394.22 92.98

Sadness 462.34 93.31 343.58 91.96 390.84 92.72 603.89 94.50

Surprise 365.22 91.60 334.87 94.60 371.00 94.67 447.00 94.64

In Table 7.2, we give the results of O-CBS+(E=0.75) for different τ values com-

pared to the methods of Welinder and Perona [37] and Raykar and Agrawal [53]. The

experiments with both the opponent methods and our method O-CBS+(E=0.75) are

repeated 100 times. We perform t-test for validating the statistical significance of the

results. We report the number of annotations and the error/accuracy when our algo-

rithm stops for the τ values 8, 10, and 12. Significance test results against opponent

methods are reported under the O-CBS+(E=0.75) heading, where underlined values

indicate that our method is significantly superior than the opponent method. Val-
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ues written in regular font indicate a tie and italic values indicate that the opponent

method is better. The results for the opponent methods are given in regular script as

reference values.

The results show that for τ = 8, the number or annotations at which our algo-

rithm stops are always significantly lower than its contenders, with acceptable error or

accuracy values. When τ = 10, our algorithm is tied with or better than its contenders

in terms of annotation count and the accuracies improve, especially for the tilt, anger,

disgust, and sadness datasets. For τ = 12, our algorithm achieves significantly supe-

rior performance across all datasets except disgust in terms of error/accuracy at the

expense of increasing cost.
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8. A VARIATIONAL BAYESIAN APPROACH TO

CROWD-LABELING WITH MULTIVARIATE

ANNOTATIONS

Some annotation problems have multiple attributes annotated by the same an-

notator, as observed in the Head Pose and the Affective Text annotations datasets.

In these cases, one might expect to observe that different attributes correlate with

each other. Multivariate models which take these correlations into account may prove

useful in consensus estimation. In this chapter, we propose a multivariate annotation

model and give its variational Bayesian solution. We test our method on the Head

Pose Annotations dataset.
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Figure 8.1. Directed factor graph of the proposed multivariate annotation model.

8.1. The Multivariate Annotation Model

In Figure 8.1, we illustrate the proposed multivariate annotation model. In the

figure, yk denotes an observed annotation, xi denotes the sought consensus value of the

sample i, and the parameters with subscript j are the latent parameters of the annotator

j. We denote the observed set of annotations by Y = {y1, . . . ,yK} where K is the

number of annotations and yk ∈ Rd, ∀k. The set of latent consensus values is denoted

by X = {x1, . . . ,xN} where N is the number of samples and xi ∈ Rd, ∀i. The sets
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of latent annotator parameters are denoted by Φ = {Φ1, . . . ,ΦR}, Λ = {Λ1, . . . ,ΛR},
and Z = {z1, . . . ,zR} where R is the number of annotators, Φj ∈ Rd×d+1, Λj is a

d×d positive definite matrix, and zj is a 1-of-C binary vector (i.e., one element of the

vector is one and the rest are zero) with elements zjc. The prior variables of the model

are p, V0, W0, n0, and {Mc|c ∈ {1, . . . , C}} where p ∈ [0, 1]C , such that
C∑

c=1

pc = 1,

V0 is a (d+1)×(d+1) positive definite matrix, Mc ∈ Rd×(d+1),∀c, n0 > d−1 is a real

scalar, and W0 is a d×d positive definite matrix.

We model the conditional distribution of the observed annotations given the latent

annotator parameters and the consensus as

p(Y |Φ,Λ, X) =
K∏

k=1

Nd
(
yk; Φjkχik ,Λ

−1
jk

)
(8.1)

where χik =

[
xik

1

]
.

We choose a flat prior over X and introduce priors over the annotator parameters

as

p(Φ,Λ, Z) = p(Φ|Λ, Z)p(Λ)p(Z) (8.2)

where

log p(Φ|Λ, Z) =
R∏

j=1

C∏

c=1

MN d,d+1

(
Φj ;Mc,Λ

−1
j ,V0

)zjc (8.3)

p(Λ) =
R∏

j=1

Wd (Λj ;W0, n0) (8.4)

p(Z) =
R∏

j=1

C (zj ;p) =
R∏

j=1

C∏

c=1

p
zjc
c (8.5)
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Then, the joint distribution of all of the random variables is given by

p(Y,Φ,Λ, Z,X) = p(Y |Φ,Λ, X)p(Φ|Λ, Z)p(Λ)p(Z)p(X) (8.6)

8.2. Variational Distribution

Our model defines the joint distribution p(Y,Φ,Λ, Z,X). We aim to find the

posterior distribution of the latent variables Φ, Λ, Z, and X given the observed vari-

ables Y . Using the variational Bayes approach, we can approximate the said posterior

distribution, p(Φ,Λ, Z,X|Y ). Let us decompose log p(Y ) as

log p(Y ) = L(q) + KL(q‖p) (8.7)

where

L(q) =
∑

Z

∫∫∫
q(Φ,Λ, Z,X) log

p(Y,Φ,Λ, Z,X)

q(Φ,Λ, Z,X)
dΦdΛdX (8.8)

KL(q‖p) = −
∑

Z

∫∫∫
q(Φ,Λ, Z,X) log

p(Φ,Λ, Z,X|Y )

q(Φ,Λ, Z,X)
dΦdΛdX (8.9)

We want q(Φ,Λ, Z,X) to be a good approximation of p(Φ,Λ, Z,X|Y ). Thus, we want

to minimize the KL divergence, KL(q‖p), or equivalently, maximize the lower bound

value, L(q). For obtaining a tractable solution to our model, we consider a variational

distribution factorizing the latent variables into three partitions such as

q(Φ,Λ, Z,X) = q(Φ,Λ)q(Z)q(X) (8.10)

Moreover, these factors can be further factorized:

q(Φ,Λ) =
R∏

j=1

q(Φj ,Λj) =
R∏

j=1

q(Φj|Λj)q(Λj) (8.11)
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q(Z) =
R∏

j=1

q(zj) (8.12)

q(X) =
N∏

i=1

q(xi) (8.13)

The logarithm of an optimized factor (log q∗(·)) is obtained by calculating the

expected value of log p(Y,Φ,Λ, Z,X) with respect to the distributions of the other

factors. Now, we derive the logarithm of the conditional annotation distribution which

is

Ly = log p(Y |Φ,Λ, X) =
K∑

k=1

logNd
(
yk; Φjkχik ,Λ

−1
jk

)

=
K∑

k=1

(
−1

2
log |2πΛ−1

jk
| − 1

2
(yk −Φjkχik)T Λjk (yk −Φjkχik)

)

=
K∑

k=1

(
−1

2
log |2πΛ−1

jk
| − 1

2
yT
kΛjkyk + χT

ik
ΦT

jk
Λjkyk −

1

2
χT

ik
ΦT

jk
ΛjkΦjkχik

)

(8.14)

Similarly, the logarithms of the priors of Φ, Λ, and Z are

LΦ = log p(Φ|Λ, Z) =
R∑

j=1

C∑

c=1

zjc logMN d,d+1

(
Φj ;Mc,Λ

−1
j ,V0

)

=
R∑

j=1

C∑

c=1

zjc

[
d+ 1

2
log |Λj|−

d(d+ 1)

2
log(2π)−1

2
Tr
(
V −1

0 ΦT
j ΛjΦj

)

−d
2

log |V0|+ Tr
(
V −1

0 ΦT
j ΛjMc

)
−1

2
Tr
(
V −1

0 MT
c ΛjMc

)]

=
R∑

j=1

[
d+ 1

2
log |Λj|−

d(d+ 1)

2
log(2π)−d

2
log |V0|−

1

2
Tr
(
V −1

0 ΦT
j ΛjΦj

)

+ Tr

(
V −1

0 ΦT
j Λj

C∑

c=1

zjcMc

)
−1

2
Tr

(
C∑

c=1

zjc
(
McV

−1
0 MT

c

)
Λj

)]
(8.15)

LΛ = log p(Λ) =
R∑

j=1

logWd (Λj ;W0, n0)
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=
R∑

j=1

(
n0−d−1

2
log |Λj| −

1

2
Tr(W−1

0 Λj)−
n0d

2
log 2−n0

2
log |W0| − log Γd

(n0

2

))

(8.16)

Lz = log p(Z) =
R∑

j=1

C∑

c=1

zjc logpc (8.17)

Since we choose the prior of X as flat, its logarithm Lx is constant. Then, the

logarithm of the full joint is

log p(Y,Φ,Λ, Z,X) = Ly + LΦ + LΛ + Lz + Lx (8.18)

8.2.1. The Factor q(Φ,Λ)

Let us consider the factor q(Φj ,Λj). The logarithm of the optimal value can be

expressed as:

log q∗(Φj ,Λj) = EX,Z [log p(Y,Φ,Λ, Z,X)] + const

= log q∗(Φj|Λj) + log q∗(Λj) (8.19)

We only consider the terms with Φj and take their expectation with respect to

X and Z. Then, we have

log q∗(Φj |Λj) = EX,Z

[
−1

2
Tr
(
V −1

0 ΦT
j ΛjΦj

)
+ Tr

(
V −1

0 ΦT
j Λj

C∑

c=1

zjcMc

)]

+ EX,Z

[ ∑

k:jk=j

(
χT

ik
ΦT

j Λjyk −
1

2
χT

ik
ΦT

j ΛjΦjχik

)]
+ const

= −1

2
Tr
(
V −1

0 ΦT
j ΛjΦj

)
+ Tr

(
C∑

c=1

E
[
zjc
]
McV

−1
0 ΦT

j Λj

)
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+ Tr

( ∑

k:jk=j

ykE [χik ]T ΦT
j Λj

)

− 1

2
Tr

( ∑

k:jk=j

Exik

[
χikχ

T
ik

]
ΦT

j ΛjkΦj

)
+ const

= const− 1

2
Tr

((
V −1

0 +
∑

k:jk=j

Exik

[
χikχ

T
ik

]
)

ΦT
j ΛjΦj

)

+ Tr

((
C∑

c=1

E
[
zjc
]
McV

−1
0 +

∑

k:jk=j

ykE [χik ]T
)

ΦT
j Λj

)
(8.20)

We observe that the equation above is in the form of the matrix normal distribution,

given by

q∗(Φj |Λj) =MN d,d+1

(
Φj ;Mj ,Λ

−1
j ,Vj

)
(8.21)

where

V −1
j = V −1

0 +
∑

k:jk=j

Exik

[
χikχ

T
ik

]
(8.22)

Mj =

(
C∑

c=1

E
[
zjc
]
McV

−1
0 +

∑

k:jk=j

ykExik
[χik ]T

)
Vj (8.23)

After removing the terms of log q∗(Φj|Λj) and considering the remaining terms

with Λj , we have

log q∗(Λj) = E [log p(Y,Φ,Λ, Z,X)]− log q∗(Φj |Λj) + const

=
n0 − d− 1

2
log |Λj |+

∑

k:jk=j

(
1

2
log |Λj| −

1

2
yT
kΛjyk

)

− 1

2
Tr(W−1

0 Λj)−
1

2
EZ

[
Tr

(
C∑

c=1

zjc
(
McV

−1
0 MT

c

)
Λj

)]

+
1

2
Tr
(
MjV

−1
j MT

j Λj

)
+ const (8.24)
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This equation is in the form of the Wishart distribution, given by

q∗(Λj) =Wd (Λj ;Wj , n0 +Nj) (8.25)

where

W−1
j = W−1

0 +
∑

k:jk=j

yky
T
k+

C∑

c=1

E
[
zjc
] (
McV

−1
0 MT

c

)
−MjV

−1
j MT

j (8.26)

Alternatively, W−1
j can also be represented as

W−1
j = W−1

0 +
C∑

c=1

E
[
zjc
]

(Mc −Mjz)V −1
0 (Mc −Mjz)T

+ (Mj −Mjz)V −1
0 (Mj −Mjz)T +

∑

k:jk=j

E
[
(yk −Mjχik)(yk −Mjχik)T

]

(8.27)

By construction, this form shows that Wj is positive-definite. Derivation of this form

is shown in Appendix B.

8.2.2. The Factor q(Z)

Now, for the factor q(Z), we have

log q∗(zj) = EX,Φ,Λ [log p(Y,Φ,Λ, Z,X)] + const

=
C∑

c=1

zjc log %jc + const

=⇒ q∗(zj) ∝
C∏

c=1

%
zjc
jc (8.28)

where

log %jc =

[
logpc +

d+ 1

2
E [log |Λj|]−

d(d+ 1)

2
log(2π)−1

2
Tr
(
V −1

0 E
[
ΦT

j ΛjΦj

])
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−d
2

log |V0|+ Tr
(
V −1

0 E
[
ΦT

j Λj

]
Mc

)
−1

2
Tr
(
V −1

0 MT
c E [Λj ]Mc

)]
.

(8.29)

Then,

q∗(zj) =
C∏

c=1

ρ
zjc
jc (8.30)

where

ρjc =
%jc

C∑

c′=1

%jc′

(8.31)

8.2.3. The Factor q(X)

Finally, let us consider the factor q(X). First, we partition the matrix Φj into

two matrices Ωj (d×d) and bj (d×1) as Φj =
[
Ωj bj

]
. Now, we consider the terms

with xi and take their expectation with respect to the other factors. We have

log q∗(xi) = EZ,Φ,Λ [log p(Y,Φ,Λ, Z,X)] + const

= EZ,Φ,Λ

[∑

k:ik=i

(
χT

i ΦT
jk

Λjkyk −
1

2
χT

i ΦT
jk

ΛjkΦjkχi

)]
+ const

=
∑

k:ik=i

EZ,Φ,Λ

[[
xi

1

]T [
Ωjk bjk

]T
Λjkyk

]

− 1

2

∑

k:ik=i

EZ,Φ,Λ

[[
xi

1

]T [
Ωjk bjk

]T
Λjk

[
Ωjk bjk

] [xi

1

]]
+ const

= xT
i

∑

k:ik=i

EΦ,Λ

[
ΩT

jk
Λjk

]
yk

− 1

2

∑

k:ik=i

EΦ,Λ

[
(xT

i ΩT
jk

+ bTjk)Λjk(Ωjkxi + bjk)
]

+ const

= xT
i

∑

k:ik=i

(
EΦ,Λ

[
ΩT

jk
Λjk

]
yk − EΦ,Λ

[
ΩT

jk
Λjkbjk

])
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− 1

2
xT
i

(∑

k:ik=i

EΦ,Λ

[
ΩT

jk
ΛjkΩjk

]
)
xi+const (8.32)

We observe that this equation is in the form of the multivariate normal distribution,

given by

q∗(xi) = Nd
(
xi;µi,Σ

−1
i

)
(8.33)

where

Σ−1
i =

∑

k:ik=i

EΦ,Λ

[
ΩT

jk
ΛjkΩjk

]
(8.34)

µi = Σi

(∑

k:ik=i

EΦ,Λ

[
ΩT

jk
Λjk

]
yk −

∑

k:ik=i

EΦ,Λ

[
ΩT

jk
Λjkbjk

]
)

(8.35)

8.2.4. Required Expectations for the Posterior Parameters

For calculating the posterior parameters found in Sections 8.2.1 to 8.2.3, we re-

quire the expectations of various random variables and their products. We start with

Exi
[χi] which is required for Equation 8.23:

Exi
[χi] =

[
Exi

[xi]

1

]
=

[
µi

1

]
(8.36)

since Exi
[xi] = µi.

For Equation 8.22, we need Exi

[
χiχ

T
i

]
:

Exi

[
χiχ

T
i

]
=

[
Exi

[
xix

T
i

]
Exi

[xi]

Exi
[xi]

T 1

]
=

[
Σi + µiµ

T
i µi

µT
i 1

]
(8.37)

since Exi
[xi] = µi and Exi

[
xix

T
i

]
= Σi + µiµ

T
i .
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For Equation 8.29, we need EΦj ,Λj

[
ΦT

j Λj

]
:

EΦj ,Λj

[
ΦT

j Λj

]
= EΛj

[
EΦj |Λj

[Φj ]
T Λj

]
= (n0 +Nj)M

T
j Wj (8.38)

For Equation 8.35, we need EΦj ,Λj

[
ΩT

j Λj

]
:

EΦj ,Λj

[
ΦT

j Λj

]
=


EΦj ,Λj

[
ΩT

j Λj

]

EΦj ,Λj

[
bTj Λj

]

 (8.39)

EΦj ,Λj

[
ΩT

j Λj

]
= (n0 +Nj)

[
Id Od1

]
MT

j Wj (8.40)

For Equation 8.29, we need EΛj
[Λj ], EΛj

[log |Λj|], and EΦj ,Λj

[
ΦT

j ΛjΦj

]
:

EΛj
[Λj ] = (n0 +Nj)Wj (8.41)

EΛj
[log |Λj|] = ψd

(
n0 +Nj

2

)
+ d log 2 + log |Vj| (8.42)

EΦj ,Λj

[
ΦT

j ΛjΦj

]
= EΛj

[
EΦj |Λj

[
ΦT

j ΛjΦj

]]

= EΛj

[
dVj +MT

j ΛjMj

]

= dVj + (n0 +Nj)M
T
j WjMj (8.43)

For Equations 8.34 and 8.35, we need EΦj ,Λj

[
ΩT

j ΛjΩj

]
and EΦj ,Λj

[
ΩT

j Λjbj
]
,

respectively. Since Φj =
[
Ωj bj

]
, we have

ΦT
j ΛjΦj =


ΩT

j

bTj


Λj

[
Ωj bj

]

=


ΩT

j ΛjΩj ΩT
j Λjbj

bTj ΛjΩj bTj Λjbj


 (8.44)
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which gives us


EΦj ,Λj

[
ΩT

j ΛjΩj

]
EΦj ,Λj

[
ΩT

j Λjbj
]

EΦj ,Λj

[
bTj ΛjΩj

]
EΦj ,Λj

[
bTj Λjbj

]

 = dVj + (n0 +Nj)M

T
j WjMj (8.45)

Then, we have

EΦj ,Λj

[
ΩT

j ΛjΩj

]
=
[
Id Od1

] (
dVj + (n0 +Nj)M

T
j WjMj

)
[
Id

O1d

]
(8.46)

EΦj ,Λj

[
ΩT

j Λjbj
]

=
[
Id Od1

] (
dVj + (n0 +Nj)M

T
j WjMj

) [Od1

1

]
(8.47)

For Equations 8.23 and 8.26, we need Ezj [zj ] which is

Ezj [zj ] = ρjc (8.48)

8.2.5. The Update Equations

By plugging the expectations into the posterior parameters, we end up with the

update equations below:

V −1
j = V −1

0 +
∑

k:jk=j

[
Σik + µikµ

T
ik
µik

µT
ik

1

]
(8.49)

Mj =

(
C∑

c=1

ρjcMcV
−1

0 +
∑

k:jk=j

yk

[
µT

ik
1
])
Vj (8.50)

W−1
j = W−1

0 +
∑

k:jk=j

yky
T
k+

C∑

c=1

ρjc
(
McV

−1
0 MT

c

)
−MjV

−1
j MT

j (8.51)

Σ−1
i =

[
Id Od1

] ∑

k:ik=i

(
dVjk + (n0 +Njk)M

T
jk
WjkMjk

)
[
Id

O1d

]
(8.52)

µi = Σi

[
Id Od1

] ∑

k:ik=i

(
(n0+Njk)M

T
jk
Wjk

(
yk−Mjk

[
Od1

1

])
−dVjk

[
Od1

1

])

(8.53)
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%jc = exp

(
logpc +

d+ 1

2
ψd

(
n0 +Nj

2

)
+
d+ 1

2
log |Vj|−

d(d+ 1)

2
log(π)

−d
2

Tr
(
V −1

0 Vj

)
−(n0 +Nj)

2
Tr
(
V −1

0 MT
j WjMj

)
−d

2
log |V0|

+(n0 +Nj) Tr
(
V −1

0 MT
j WjMc

)
−(n0 +Nj)

2
Tr
(
V −1

0 MT
c WjMc

)
)

(8.54)

8.2.6. Lower Bound

The lower bound of the model can be calculated as follows:

L(q) =
∑

Z

∫∫∫
q(Φ,Λ, Z,X) log

p(Y,Φ,Λ, Z,X)

q(Φ,Λ, Z,X)
dΦdΛdX (8.55)

= EΦ,Λ,X,Z

[
log

p(Y,Φ,Λ, X, Z)

q(Φ,Λ, X, Z)

]

= E [log p(Y,Φ,Λ, X, Z)]− E [log q(Φ,Λ, X, Z)]

= E [log p(Y |Φ,Λ, X)] +E [log p(Φ|Λ, X, Z)] +E [log p(Λ)] +E [log p(Z)]

+E [log p(X)]−E [log q(Φ|Λ, X, Z)]−E [log q(Λ)]−E [log q(Z)]−E [log q(X)]

(8.56)

= − 1

2

R∑

j=1

Tr

([ ∑

k:jk=j

yky
T
k +

C∑

c=1

E
[
zjc
]
McV

−1
0 MT

c +W−1
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−MjV
−1
j MT

j −W−1
j

]
E [Λj ]

)

+
R∑
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Tr
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E [χik ]yT
k+V −1

0
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E
[
zjc
]
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j MT
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]
E [ΛjΦj ]
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− 1

2
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Tr
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E
[
χikχ

T
ik

]
+ V −1

0 − V −1
j

]
E
[
ΦT

j ΛjΦj

]
)

+
R∑

j=1

(
d

2
log |Vj |+

(n0+Nj)d

2
log 2 +

n0+Nj

2
log |Wj|+ log Γd

(
n0+Nj

2

))

− (K +R(d+ 1))d

2
log(2π)− R

2
(d log |V0|+ n0 log |W0|+ n0d log 2)

−R log Γd

(n0

2

)
+
Nd

2
(log(2π) + 1) +

1

2

N∑

i=1

log |Σi|
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+
R∑

j=1

C∑

c=1

E
[
zjc
]

(logpc − log ρjc) (8.57)

The calculations of the expectations appearing in Equation 8.57 are shown in Sec-

tion 8.2.4.

8.3. Preliminary Experiments

In this section, we present some preliminary experiments on the Head Pose An-

notations dataset using the proposed multivariate model. Recall that our model needs

a set of hyperparameters to work. We incorporate adverseness behavior into the pro-

posed multivariate model through Mc matrices. To this end, we prepare all possible

(i.e. C = 2d many) Mc matrices of the form:

Mc =




� 0 0

mc
...

0 � 0


 (8.58)

where mc ∈ {−1, 1}d. Each element of mc encodes the presence or absence of an

annotator’s adverseness for different attributes. By construction, zjc = 1 if and only

if annotator j belongs to category c. The choice of Mc regarding any annotator j

is governed by the random variable zj , which depends on the hyperparameter p. We

assume that we have no prior knowledge about the annotator behaviors occurring in the

dataset and therefore, we choose a flat prior over p. The remaining hyperparameters

are chosen as V0 = 10−4Id+1, W0 = 104Id, and n0 = 2 for encouraging |Λj | to be

large and assisting Φj to somewhat resemble its mean Mc.

8.3.1. Observations on the Model Error

In Figure 8.2, we present the change in the lower bound value L(q) and the mean

absolute errors for the pan and tilt attributes during the model fitting process. The

lower bound monotonically increases (i.e. it is non-decreasing) with each iteration step
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as expected, which is equivalent to decreasing the KL-divergence between our model

and the actual full joint distribution of the problem. We observe that the increases

in the lower bound values are accompanied with slight decreases in the mean absolute

errors in both attributes. This means that the model’s success at describing the problem

is reflected by lowered errors, even though the model is unaware of any ground truth

values.
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Figure 8.2. Change of the lower bound value (L(q)) and attribute error while fitting

the model

In Figure 8.3, we present the cumulative match error curves for the proposed

multivariate model and compare them with the mean model and M-CBS. Recall that

both mean model and M-CBS are univariate methods. The results show that our

multivariate method outperforms the mean model significantly in the pan attribute

and it is marginally better in the tilt attribute. In the pan attribute, the multivariate

model performs slightly better than M-CBS for errors less than 20 degrees. We also

investigate the combined error by using vectoral distance (L2-norm) and deduce similar

conclusions. Considering that the multivariate model is in its preliminary phase, the

results show potential for improvement.
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Figure 8.3. Cumulative match curves for the proposed multivariate model compared

with two univariate models, namely mean model and M-CBS. Combined error is the

Euclidean distance (L2-norm) of a sample’s 2-dimensional ground truth and its

inferred consensus tuple.
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8.3.2. Relation of the Sample Error and the Posterior Sample Variance

In Figure 8.4, we present the relation of the sample error and the posterior sample

variance. We observe that low sample consensus error is often associated with a low

determinant value of the posterior sample variance, indicated by the bright intensity

area on the lower left corner of the figure. The slightly brighter patch located around

30 degrees of error with a low determinant is caused when multiple annotators mistak-

enly annotate the sample with the neighboring rate of the ground truth. Since each

increment in our rating system corresponds to an increment of 30 degrees, annotator

mistakes in neighboring rates translate into 30 degrees of error.
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Figure 8.4. Heat map depicting the relation of the sample error and the posterior

sample variance.

8.3.3. Observations on Annotators

In Figure 8.5, we give examples of competent, spammer, and adversary annotators

and their annotations that we encounter in the Head Pose Annotations dataset. The

variational distribution helps us to investigate the behaviors of the annotators. The

most obvious observation would be the adverseness categories of the annotators, which

we can find by E [zj ]. When we were collecting the Head Pose Annotations dataset
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on the CrowdFlower platform, we expected that some people would confuse left/right

and give inverted scores for the pan attribute. We see that out of 189 annotators

• Only one annotator is adverse in both tilt and pan attributes (see Figure 8.5d),

• 30 annotators are adverse in only pan attribute (see Figure 8.5c for an example),

• There are no annotators adverse in only tilt attribute.

Higher determinant value of an annotator’s precision matrix means that the an-

notator is more precise with their annotations. Using these determinant values, we

rank the annotators in the competent-spammer scale. Since we do not have the ac-

tual precision matrices, but their distributions, we use the expected values of their

log-determinants (E [log |Λj|]). We observe that

max
j
E [log |Λj|] ≈ 23.2652

min
j
E [log |Λj|] ≈ −2.1495

In Figures 8.5a and 8.5b, we present the annotations of the annotators having the

largest and smallest E [log |Λj|] values, respectively. We see that using E [log |Λj|] for
ranking annotators in the competent-spammer scale is an appealing idea for investi-

gating further.
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(a) Competent annotator (annotator with maximum E [log |Λj |])
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(b) Spammer annotator (annotator with minimum E [log |Λj |])
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(c) Adversary annotator in pan (with mc = [1− 1]T)

−3 −2 −1 0 1 2 3

−2

0

2

Ground truth

A
n
n
ot
at
io
n

Tilt

−3 −2 −1 0 1 2 3

−2

0

2

Ground truth

A
n
n
ot
at
io
n

Pan

(d) Adversary annotator in both tilt and pan (with mc = [−1− 1]T)

Figure 8.5. Examples of competent, spammer, and adversary annotators and their

annotations. These annotators are easily revealed by investigating the posterior

distribution parameters in detail.
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9. CONCLUSIONS

The process of collecting annotations from crowds and using them for estimating

consensus values is called crowd-labeling. In this context, every sample is annotated by

a small subset of available annotators, where each person annotates a small subset of

the dataset. The general aim of crowd-labeling is to make use of the resulting sparse

set of annotations for inferring consensuses on sample labels, where the ground truth

labels are unavailable and too costly to obtain. In this thesis, we tackle the problem

of continuous-valued consensus estimation in crowd-labeling.

In the first part of this thesis, we introduce the Age Annotations dataset and the

Head Pose Annotations dataset with tilt and pan attributes. Then, we propose four

Bayesian models for obtaining consensus in continuous-valued crowd-labeling tasks

by taking annotator behaviors into account. We also introduce a novel metric for

measuring annotator quality. In addition, we adapt our methods to work with binary

labeled data and reported their performance.

We observe various annotator behaviors and successfully compensate for this ver-

satility with the use of scale and bias parameters. The error rates show that our

methods perform better in estimating the consensus score than widely used methods.

We also show that it is possible to select competent annotators using our metric and

keep the consensus error rate the same while reducing labeling costs by 50%. On a per-

sonality impressions dataset, where there is no ground truth to compare the estimated

consensus scores, we observe that the consensus scores obtained with the proposed

models lead to lower regression errors in comparison to the widely used methods.

We make several important observations in the course of this thesis. First of all,

the samples that are hard to rate result in misleading most of the annotators where

the consensus value does not agree with the ground truth. In crowdsourced efforts,

this problem is inevitable. Another observation is that, the annotators may tend to be

biased as a whole due to the nature of the labeling problem. Informing the annotators
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about the opposite ends of the scale that occur in the dataset is important for alleviating

the global bias problem, where possible.

In the second part of this thesis, we introduce two active crowd-labeling algo-

rithms for the crowdsourced labeling process, namely O-CBS and O-CBS+. We base

our methods on selecting the most beneficial annotation by determining annotator and

sample consensus qualities. In addition to a novel sample consensus quality score, we

also introduce a family of competence scoring functions designed to prevent annotator

domination. Both O-CBS and O-CBS+ are capable of utilizing a wide range of sample

consensus quality and annotator competence scoring functions, inclusive of the two

novel approaches that we introduce.

We investigate the effect of the dominance suppression factor and annotator ex-

ploration/exploitation trade-off over nine different real-world datasets. A thorough

investigation of the dominance suppression factor in the annotator competence scor-

ing function reveals that preventing annotator domination is of utmost importance in

assessing the annotator quality correctly. The results also indicate that the timely

exploration of new annotators is crucial for high quality consensus estimation. Addi-

tionally, we reduce the computational cost of the consensus estimation phase in the

active crowd-labeling process, which constitutes a significant portion of the total CPU

time.

We test O-CBS+ on the Age Annotations dataset, the Head Pose Annotations

datasets, and the publicly available Affective Text Analysis datasets. Our method

measures up to and surpasses the literature standards by using as few as one fifth of

the annotations (i.e. ∼80% cost reduction). We also investigate a sample score related

stopping criterion so that the active crowd-labeling process is terminated automatically

when the sample consensuses attain an acceptable quality.

In some annotation problems, annotators are asked to annotate multiple at-

tributes for a single sample. This is the case for the Head Pose Annotations and

the Affective Text Analysis datasets, which have two and six attributes, respectively.



134

In the earlier parts of this thesis, we handle the annotations of each attribute as sepa-

rate and independent datasets. However, it could be beneficial to use those attributes

together for understanding the behavior of the annotator better. For this purpose,

we introduce a multivariate model and present a solution based on the variational

Bayes approach. We conduct preliminary experiments, measure the model error, and

investigate different annotator behaviors.

This thesis also sheds light on several open issues arising in the domain of crowd-

labeling. Preliminary experiments on the proposed multivariate model show promising

results and we believe that the multivariate model holds significant potential to be

improved. In addition, an active-labeling approach that uses multivariate annotations

should be investigated. Relaxing the homogeneous sample difficulty assumption by

incorporating a heterogeneous sample difficulty parameter is another interesting future

direction. Additionally, it may be worthwhile to investigate the effects of different

sample consensus quality and annotator competence scoring functions on the active

crowd-labeling system. Furthermore, addressing the issue of annotator competence

fluctuation over time and distributing the tasks according to the recent performance

of the annotators is also left to be explored in the future.
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APPENDIX A: PROOFS OF THEOREMS

A.1. Proof of Theorem 4.1

Theorem 4.1 (Posterior distribution of x). Let the distribution of yk be

N
(
yk; ajk(wjkxik + bjk),

1

λjk

)
.

Then, the posterior distribution of xi is

xi|{yk, θjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjkwjk(ajkyk − bjk)
∑

k:ik=i

w2
jk
λjk

,

(∑

k:ik=i

w2
jk
λjk

)−1




where θj = {aj, wj, bj, λj} is the set of parameters of annotator j and Ki = {k ∈ K :

ik = i} is the set of annotations of sample i.

Proof. Let N , R, and K be number of samples, annotators, and annotations, respec-

tively.

p(y1:K |x1:N , θ1:R) =
K∏

k=1

N
(
yk; ajk(wjkxik + bjk),

1

λjk

)
(A.1)

log p(y1:K |x1:N , θ1:R) = log
K∏

k=1

N
(
yk; ajk(wjkxik + bjk),

1

λjk

)
(A.2)

=
K∑

k=1

logN
(
yk; ajk(wjkxik + bjk),

1

λjk

)
(A.3)

=
K∑

k=1

(
−1

2
log 2π − 1

2
log

1

λjk
− 1

2

(
(yk − ajk(wjkxik + bjk))

2

1
λjk

))

(A.4)
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= −K
2

log 2π − 1

2

K∑

k=1

log
1

λjk
− 1

2

K∑

k=1

λjk (yk − ajk(wjkxik + bjk))
2

(A.5)

Since aj ∈ {−1, 1} ∀j, a2
j = 1:

= −K
2

log 2π − 1

2

K∑

k=1

log
1

λjk
− 1

2

K∑

k=1

λjk(ajkyk − bjk − wjkxik)2

(A.6)

From Bayes’ rule we know that

p(xi|y1:K , x−i, θ1:R) =
p(y1:K |x1:N , θ1:R)p(xi)

p(y1:K |θ1:R)
(A.7)

Since the prior of xi is flat

p(xi|y1:K , x−i, θ1:R) ∝ p(y1:K |x1:N , θ1:R) (A.8)

By omitting independent variables, we get

p(xi|{yk, θjk : k ∈ Ki}) ∝ p(y1:K |x1:N , θ1:R) (A.9)

Combining Equations A.6 and A.9 gives us

log p(xi|{yk, θjk : k ∈ Ki}) ∝ −
K

2
log 2π − 1

2

K∑

k=1

log
1

λjk

− 1

2

K∑

k=1

λjk(ajkyk − bjk − wjkxik)2 (A.10)
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By omitting the terms without xi we get:

∝ −1

2

∑

k:ik=i

λjk(ajkyk − bjk − wjkxi)2 (A.11)

∝ −1

2

∑

k:ik=i

(
λjk(ajkyk − bjk)2 + λjkw

2
jk
x2
i

−2λjkwjkxi(ajkyk − bjk)) (A.12)

Rearranging and omitting the terms without xi:

∝ −1

2
x2
i

∑

k:ik=i

w2
jk
λjk

︸ ︷︷ ︸
σ−2

+xi
∑

k:ik=i

λjkwjk(ajkyk − bjk)
︸ ︷︷ ︸

µσ−2

(A.13)

The equation is in the form of normal distribution. Therefore, we have

p(xi|{yk, θjk : k ∈ Ki}) = N


xi;

∑

k:ik=i

λjkwjk(ajkyk − bjk)
∑

k:ik=i

w2
jk
λjk

,

(∑

k:ik=i

w2
jk
λjk

)−1




(A.14)

A.2. Proof of Theorem 4.2

Theorem 4.2 (Posterior distribution of λ). Let xk, yk ∈ R,∀k ∈ {1, . . . , K}, w > 0,

and λ > 0. If the distribution of yk is N (yk;wxk, w
2λ−1), then the posterior distribution

of λ is

G
(
λ;
K

2
+ 1,

1

2

K∑

k=1

(yk
w
− xk

)2
)
.
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Moreover, if the prior distribution of λ is G (λ;αλ, βλ), then the posterior is

G
(
λ;
K

2
+ αλ, βλ +

1

2

K∑

k=1

(yk
w
− xk

)2
)
.

Proof.

L = log
K∏

k=1

N
(
yk;wxk, w

2λ−1
)

(A.15)

=
K∑

k=1

logN
(
yk;wxk, w

2λ−1
)

(A.16)

=
K∑

k=1

(
−1

2
log

(
2π
w2

λ

)
− 1

2

(
(yk − wxk)2

w2

λ

))
(A.17)

= −K
2

log(2πw2) +
K

2
log λ− λ1

2

K∑

k=1

(yk
w
− xk

)2

(A.18)

The equation is in the form of Gamma distribution. Therefore, we have

exp(L) ∝ G
(
λ;
K

2
+ 1,

1

2

K∑

k=1

(yk
w
− xk

)2
)

(A.19)

P = log G (λ;αλ, βλ) (A.20)

= αλ log βλ + (αλ − 1) log λ− λβλ − log Γ (αλ) (A.21)

Then, we have

exp(L+ P ) ∝ G
(
λ;
K

2
+ αλ, βλ +

1

2

K∑

k=1

(yk
w
− xk

)2
)

(A.22)
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A.3. Proof of Theorem 4.3

Theorem 4.3 (Posterior distribution of a). Suppose that the values xk, yk ∈ R, ∀k ∈
{1, . . . , K} and λ > 0 are given. Let c ∼ B (c; p) and the distribution of yk be yk ∼
N (yk; axk, λ

−1) where a = 2c− 1. Then the posterior distribution of c is

B


c;

[
1 + exp

(
−2λ

K∑

k=1

ykxk

)]−1

 .

Moreover, the value a∗ that maximizes this distribution is given by

a∗ = sgn

(
K∑

k=1

ykxk

)
.

Proof.

L = −1

2

K∑

k=1

(
log |2πλ−1|+ λ(yk − axk)2

)
(A.23)

= −1

2

K∑

k=1

(
log |2πλ−1|+ ykλyk − axkλyk − aykλxk + a2xkλxk

)
(A.24)

= −1

2

K∑

k=1

(
log |2πλ−1|+ ykλyk − 2aykλxk + xkλxk

)
(A.25)

= aλ

K∑

k=1

ykxk −
1

2

K∑

k=1

(
log |2πλ−1|+ ykλyk + xkλxk

)
(A.26)

= (2c− 1)λ
K∑

k=1

ykxk −
1

2

K∑

k=1

(
log |2πλ−1|+ ykλyk + xkλxk

)
(A.27)

= c

(
2λ

K∑

k=1

ykxk

)

︸ ︷︷ ︸
log p−log(1−p)

−λ
K∑

k=1

ykxk −
1

2

K∑

k=1

(
log |2πλ−1|+ ykλyk + xkλxk

)
(A.28)

Then, we end up with

exp(L) ∝ B


c;

[
1 + exp

(
−2λ

K∑

k=1

ykxk

)]−1

 (A.29)
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When

[
1 + exp

(
−2λ

K∑

k=1

ykxk

)]−1

<
1

2
, the c value that maximizes the above distri-

bution is c∗ = 0, i.e. a∗ = −1.

a∗ = −1 ⇐⇒ c∗ = 0 (A.30)

⇐⇒
[

1 + exp

(
−2λ

K∑

k=1

ykxk

)]−1

<
1

2
(A.31)

⇐⇒ 1 + exp

(
−2λ

K∑

k=1

ykxk

)
> 2 (A.32)

⇐⇒ exp

(
−2λ

K∑

k=1

ykxk

)
> 1 (A.33)

⇐⇒ −2λ
K∑

k=1

ykxk > 0 (A.34)

⇐⇒
K∑

k=1

ykxk < 0 (A.35)

⇐⇒ sgn

(
K∑

k=1

ykxk

)
= −1 (A.36)

The case for a∗ = 1 is similar, resulting in sgn

(
K∑

k=1

ykxk

)
= 1. Therefore, we have

a∗ = sgn

(
K∑

k=1

ykxk

)
.

A.4. Proof of Theorem 4.4

Theorem 4.4 (Posterior distribution of w). Let xk, yk ∈ R,∀k ∈ {1, . . . , K}, w > 0,

and λ > 0. Let the distribution of yk be yk ∼ N (yk;wxk, λ
−1). Then, the posterior

distribution of w is

Ntrunc



w;

K∑

k=1

ykxk

K∑

k=1

x2
k

,

(
λ

K∑

k=1

x2
k

)−1

, 0,∞



.
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Moreover, if w ∼ G (w;αw, βw), then the posterior distribution of w becomes

GPT N



x;

λ
K∑

k=1

ykxk − βw

λ
K∑

k=1

x2
k

,

(
λ

K∑

k=1

x2
k

)−1

, αw − 1



.

Proof.

L = log
K∏

k=1

N
(
yk;wxk, λ

−1
)

=
K∑

k=1

logN
(
yk;wxk, λ

−1
)

=
K∑

k=1

(
−1

2
log
(
2πλ−1

)
− λ

2
(yk − wxk)2

)

= −K
2

log(2π) +
K

2
log λ− λ

2

K∑

k=1

(yk − wxk)2

= −K
2

log(2π) +
K

2
log λ− λ

2

K∑

k=1

y2
k + w λ

K∑

k=1

ykxk

︸ ︷︷ ︸
σ−2µ

−1

2
w2 λ

K∑

k=1

x2
k

︸ ︷︷ ︸
σ−2

Since x > 0, the above equation is in the form of the positively truncated normal

distribution. Therefore, we have

exp(L) ∝ Ntrunc



w;

K∑

k=1

ykxk

K∑

k=1

x2
k

,

(
λ

K∑

k=1

x2
k

)−1

, 0,∞




P = log G (w;αw, βw)
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= αw log βw + (αw − 1) logw − wβw − log Γ (αw)

Then, we have

exp(L+ P ) ∝ wαw−1 exp



w λ

K∑

k=1

ykxk − βw
︸ ︷︷ ︸

σ−2µ

−1

2
w2 λ

K∑

k=1

x2
k

︸ ︷︷ ︸
σ−2




∝ GPT N



x;

λ

K∑

k=1

ykxk − βw

λ
K∑

k=1

x2
k

,

(
λ

K∑

k=1

x2
k

)−1

, αw − 1




A.5. Proof of Theorem 4.5

Theorem 4.5 (Posterior distribution of b). Let yk ∈ R, ∀k ∈ {1, . . . , K}, b ∈ R,
w > 0, and λ > 0. If the distribution of yk is yk ∼ N (yk;wb,w

2λ−1), then the

posterior distribution of b is

N
(
b;

1

wK

K∑

k=1

yk, (Kλ)−1

)
.

Moreover, if b ∼ N
(
b;µb, λ

−1
b

)
, then the posterior distribution of b becomes

N



b;

λ

w

K∑

k=1

yk + µbλb

Kλ+ λb
, (Kλ+ λb)

−1



.
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Proof.

L = log
K∏

k=1

N
(
yk;wb,w

2λ−1
)

(A.37)

=
K∑

k=1

logN
(
yk;wb,w

2λ−1
)

(A.38)

=
K∑

k=1

(
−1

2
log

(
2π
w2

λ

)
− 1

2

(
(yk − wb)2

w2

λ

))
(A.39)

= −K
2

log(2πw2) +
K

2
log λ− λ1

2

K∑

k=1

(yk
w
− b
)2

(A.40)

= −K
2

log(2πw2) +
K

2
log λ− λ1

2

K∑

k=1

(yk
w

)2

+ λ
K∑

k=1

yk
w
b− λ1

2

K∑

k=1

b2 (A.41)

= −K
2

log(2πw2) +
K

2
log λ− λ1

2

K∑

k=1

(yk
w

)2

+ b λ
K∑

k=1

yk
w

︸ ︷︷ ︸
σ−2µ

−1

2
b2 Kλ︸︷︷︸

σ−2

(A.42)

The equation is in the form of normal distribution. Therefore, we have

exp(L) ∝ N
(
b;

1

wK

K∑

k=1

yk, (Kλ)−1

)
(A.43)

P = logN
(
b;µb, λ

−1
b

)
(A.44)

= −1

2
log(2πλ−1

b )− λb
2

(b− µb)2 (A.45)

= −1

2
log(2πλ−1

b )− 1

2
b2λb −

λb
2
µ2
b + bλbµb (A.46)
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Then, we have

exp(L+ P ) ∝ N



b;

λ

w

K∑

k=1

yk + µbλb

Kλ+ λb
, (Kλ+ λb)

−1




(A.47)

A.6. Proof of Theorem 4.6

Theorem 4.6 (Posterior distribution of M-CBS x). Let the distribution of yk be

N
(
yk; ajkwjk(xik + bjk),

w2
jk

λjk

)
.

Then, the posterior distribution of xi is

xi|{yk, θjk : k ∈ Ki} ∼ N


xi;

∑

k:ik=i

λjk(w
−1
jk
ajkyk − bjk)

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1




where θj = {aj, wj, bj, λj} is the set of parameters of annotator j and Ki = {k ∈ K :

ik = i} is the set of annotations of sample i.

Proof. Let N , R, and K be number of samples, annotators, and annotations, respec-

tively.

p(y1:K |x1:N , θ1:R) =
K∏

k=1

N
(
yk; ajkwjk(xik + bjk),

w2
jk

λjk

)
(A.48)

log p(y1:K |x1:N , θ1:R) = log
K∏

k=1

N
(
yk; ajkwjk(xik + bjk),

w2
jk

λjk

)
(A.49)

=
K∑

k=1

logN
(
yk; ajkwjk(xik + bjk),

w2
jk

λjk

)
(A.50)
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=
K∑

k=1


−1

2
log 2π−1

2
log

w2
jk

λjk
−1

2


(yk−ajkwjk(xik+bjk))2

w2
jk

λjk







(A.51)

= −K
2

log 2π−1

2

K∑

k=1

log
w2
jk

λjk
−1

2

K∑

k=1

(
λjk

(yk−ajkwjk(xik+bjk))2

w2
jk

)

(A.52)

= −K
2

log 2π−1

2

K∑

k=1

log
w2
jk

λjk
−1

2

K∑

k=1

λjk(w
−1
jk
yk−ajk(xik+bjk))2

(A.53)

Since aj ∈ {−1, 1} ∀j, a2
j = 1:

= −K
2

log 2π − 1

2

K∑

k=1

log
w2
jk

λjk
− 1

2

K∑

k=1

λjk(w
−1
jk
ajkyk − bjk − xik)2

(A.54)

From Bayes’ rule we know that

p(xi|y1:K , x−i, θ1:R) =
p(y1:K |x1:N , θ1:R)p(xi)

p(y1:K |θ1:R)
(A.55)

Since the prior of xi is flat

p(xi|y1:K , x−i, θ1:R) ∝ p(y1:K |x1:N , θ1:R) (A.56)

By omitting independent variables, we get

p(xi|{yk, θjk : k ∈ Ki}) ∝ p(y1:K |x1:N , θ1:R) (A.57)
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Combining Equations A.54 and A.57 gives us

log p(xi|{yk, θjk : k ∈ Ki}) ∝ −
K

2
log 2π − 1

2

K∑

k=1

log
w2
jk

λjk

− 1

2

K∑

k=1

λjk(w
−1
jk
ajkyk − bjk − xik)2 (A.58)

By omitting the terms without xi we get:

∝ −1

2

∑

k:ik=i

λjk(w
−1
jk
ajkyk − bjk − xi)2 (A.59)

∝ −1

2

∑

k:ik=i

(
λjk(w

−1
jk
ajkyk − bjk)2 + λjkx

2
i

−2xiλjk(w
−1
jk
ajkyk − bjk)

)
(A.60)

Rearranging and omitting the terms without xi:

∝ −1

2
x2
i

∑

k:ik=i

λjk

︸ ︷︷ ︸
σ−2

+xi
∑

k:ik=i

λjk(w
−1
jk
ajkyk − bjk)

︸ ︷︷ ︸
µσ−2

(A.61)

The equation is in the form of normal distribution. Therefore, we have

p(xi|{yk, θjk : k ∈ Ki}) = N


xi;

∑

k:ik=i

λjk(w
−1
jk
ajkyk − bjk)

∑

k:ik=i

λjk
,

(∑

k:ik=i

λjk

)−1


 (A.62)

A.7. Proof of Theorem 4.7

Theorem 4.7 (Mode of M-CBS w). Let yk ∈ R,∀k ∈ {1, . . . , K}, a ∈ R, w > 0, and

λ > 0. If the distribution of yk is yk ∼ N (yk; awxk, w
2λ−1) and w ∼ G (w;αw, βw),
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then the value w∗ maximizing the posterior probability is a root of the equation

w−3

(
λ

K∑

k=1

y2
k

)

︸ ︷︷ ︸
V3

+w−2

(
−λa

K∑

k=1

ykxk

)

︸ ︷︷ ︸
V2

+w−1 (αw − 1−K)︸ ︷︷ ︸
V1

+ (−βw)︸ ︷︷ ︸
V0

= 0

Proof.

L = log
K∏

k=1

N
(
yk; awxk,

w2

λ

)

=
K∑

k=1

logN
(
yk; awxk,

w2

λ

)

=
K∑

k=1

(
−1

2
log(2πλ−1)− 1

2
logw2 − 1

2

(
(yk − awxk)2

w2

λ

))

= −K
2

log(2πλ−1)−K logw − λ

2

K∑

k=1

(w−1yk − axk)2

= −K
2

log(2πλ−1)−K logw − w−2λ

2

K∑

k=1

y2
k

+ w−1λa
K∑

k=1

ykxk −
λa2

2

K∑

k=1

x2
k

P = log G (w;αw, βw)

= αw log βw + (αw − 1) logw − wβw − log Γ (αw)

dL+ P

dw
=

d

dw

(
(αw − 1−K) logw − w−2λ

2

K∑

k=1

y2
k + w−1λa

K∑

k=1

ykxk − wβw
)

= w−3

(
λ

K∑

k=1

y2
k

)

︸ ︷︷ ︸
V3

+w−2

(
−λa

K∑

k=1

ykxk

)

︸ ︷︷ ︸
V2

+w−1 (αw − 1−K)︸ ︷︷ ︸
V1

+ (−βw)︸ ︷︷ ︸
V0
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APPENDIX B: POSITIVE DEFINITENESS OF Wj

In this chapter, we show that Wj defined in Equation 8.26 is positive definite.

Let us define

Mjz =
C∑

c=1

E
[
zjc
]
Mc (B.1)

Xj =
∑

k:jk=j

E
[
χikχ

T
ik

]
(B.2)

Yj =
∑

k:jk=j

ykE [χik ]T (B.3)

Then, by definitions of Vj (Equation 8.22) and Mj (Equation 8.23) we have

V −1
j = V −1

0 +Xj (B.4)

MjV
−1
j = MjzV

−1
0 + Yj (B.5)

Left multiplying Equation B.4 by Mj gives us

MjV
−1
j = MjV

−1
0 +MjXj (B.6)

Equations B.5 and B.6 give us

MjzV
−1

0 + Yj = MjV
−1

0 +MjXj (B.7)

Rearrange the terms

(Mj −Mjz)V −1
0 = Yj −MjXj (B.8)
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Take the transpose

V −1
0 (Mj −Mjz)T = (Yj −MjXj)

T (B.9)

Left multiply by (Mj −Mjz)

(Mj −Mjz)V −1
0 (Mj −Mjz)T = (Mj −Mjz)(Yj −MjXj)

T (B.10)

= MjY
T
j −MjXjM

T
j −MjzY

T
j +MjzXjM

T
j

(B.11)

Let us define Aj , Bj , and Cj :

Aj = (Mj −Mjz)V −1
0 (Mj −Mjz)T (B.12)

= MjY
T
j −MjXjM

T
j −MjzY

T
j +MjzXjM

T
j (B.13)

Bj =
∑

k:jk=j

E
[
(yk −Mjχik)(yk −Mjχik)T

]
(B.14)

=
∑

k:jk=j

yky
T
k − YjM

T
j −MjY

T
j +MjXjM

T
j (B.15)

Cj =
C∑

c=1

E
[
zjc
]

(Mc −Mjz)V −1
0 (Mc −Mjz)T (B.16)

=
C∑

c=1

zjcMcV
−1

0 MT
c −MjzV

−1
0 Mj

T
z (B.17)

By summing Equations B.13 and B.15 side by side, we get

Aj +Bj =
∑

k:jk=j

yky
T
k − YjM

T
j −MjzY

T
j +MjzXjM

T
j (B.18)

=
∑

k:jk=j

yky
T
k − YjM

T
j −MjzY

T
j +Mjz(V −1

j − V −1
0 )MT

j (B.19)

=
∑

k:jk=j

yky
T
k − YjM

T
j −MjzY

T
j +MjzV

−1
j MT

j −MjzV
−1

0 MT
j (B.20)
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=
∑

k:jk=j

yky
T
k −MjV

−1
j MT

j −MjzY
T
j +MjzV

−1
j MT

j (B.21)

=
∑

k:jk=j

yky
T
k −MjV

−1
j MT

j +MjzV
−1

0 Mj
T
z (B.22)

By adding Cj and W−1
0 to Aj +Bj , we end up with

W−1
0 +Aj +Bj +Cj = W−1

0 +
∑

k:jk=j

yky
T
k +

C∑

c=1

E
[
zjc
]
McV

−1
0 MT

c −MjV
−1
j MT

j

︸ ︷︷ ︸
W−1

j (Equation 8.26)

(B.23)

Therefore,

W−1
j = W−1

0 +
∑

k:jk=j

yky
T
k +

C∑

c=1

E
[
zjc
]
McV

−1
0 MT

c −MjV
−1
j MT

j (B.24)

= W−1
0 +

C∑

c=1

E
[
zjc
]

(Mc −Mjz)V −1
0 (Mc −Mjz)T

+ (Mj −Mjz)V −1
0 (Mj −Mjz)T +

∑

k:jk=j

E
[
(yk −Mjχik)(yk −Mjχik)T

]

(B.25)

SinceW−1
0 is positive definite and the remaining summands of the equation above are

positive semidefinite, Wj is also positive definite.
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