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ABSTRACT

FINITE AND SMALL-SPACE AUTOMATA WITH ADVICE

Advice is a piece of trusted supplemental information that is provided to a

computing device, in advance of its execution in order to extend its power beyond its

limits and hence to assist it in its task. The content of this assistance, which is not

restricted to be computable, typically depends only on the length, and not the full

content of the actual input to the device. Advised computation has been studied on

various computational models and in relation with concepts as diverse as complexity,

nonuniform computation, formal languages and pseudorandomness. Several models for

providing such external assistance to finite automata have also been studied by various

groups.

In this research, we introduce two novel models of advised finite automata: finite

automata with advice tapes and finite automata with advice inkdots. In the former

model advice is provided in the form of a string which is placed on a separate tape

accessible independently from the input. In the latter one, we model advice as a set

of uniform marks placed on the input tape which are called inkdots. We examine the

power and limits of each of these models in a variety of settings where the underlying

model of computation is deterministic, probabilistic or quantum and the advice is

deterministically or randomly chosen. The roles of increasing amounts of advice as

a computational resource are taken into consideration in various forms. The variants

of each model are compared with each other and with the previously studied models

of advised finite automata in terms of language recognition power. The main results

of this analysis are demonstrated by establishing various separations, collapses and

infinite hierarchies of the language classes that can be recognized with different models

in varying settings.
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ÖZET

ÖĞÜT ALAN SONLU DURUMLU VE KÜÇÜK BELLEKLİ

MAKİNELER

Öğüt, bir hesaplama aygıtına bu aygıtın gücünü kendi sınırlarının ötesinde genişle-

terek hesaplamasına yardım etmek için sağlanan dış kaynaklı güvenilir bir bilgi parçası-

dır. Hesaplanabilir olma kısıtlaması olmayan bu yardımın içeriği tipik olarak yalnızca

aygıtın gerçek girdisinin boyutuna bağlıdır ve girdinin esas içeriğinden bağımsızdır.

Öğüt alan hesaplamanın özellikleri çeşitli hesaplama modelleri baz alınarak ve karmaşık-

lık, çok biçimli hesaplama, formel diller ve sözde rastgelelik gibi farklı kavramlar ile

bağlantılı biçimde çalışılagelmiştir. Sonlu durumlu makinelere bu türden harici yardım

sağlamak için geliştirilen birkaç model de çeşitli gruplar tarafından çalışılmıştır.

Bu araştırma kapsamında iki yeni öğüt alan sonlu durumlu makine modeli tanım-

landı: öğüt şeritli sonlu durumlu makineler ve işaretle öğüt alan sonlu durumlu makine-

ler. İlk modelde öğüt, bir dizi şeklinde ve girdi şeridinden bağımsız olarak erişilebilen

ayrı bir şerit üzerinde sağlanır. İkinci modelde ise öğüt, girdi şeridi üzerine konulan

ve iz adı verilen tek biçimli işaretler aracılığı ile sağlanmaktadır. Bu modellerin her

birinin hesaplama gücü ve sınırları, temel hesaplama modelinin belirlenimci, olasılıksal

ya da kuantum olmasına ve öğütün belirlenimci ya da rastgele biçimde seçilmesine

bağlı olarak değişen çeşitli durumlarda incelendi. Artan öğüt miktarının bir hesaplama

kaynağı olarak etkileri çeşitli biçimlerde değerlendirmeye dahil edildi. Her bir modelin

versiyonları dil tanıma güçleri açısından, kendi aralarında ve daha önceden çalışılmış

benzer makine modelleri ile karşılaştırıldı. Bu incelemenin temel sonuçları olarak

söz konusu modeller tarafından değişik durumlarda tanınabilen dil sınıfları arasındaki

çeşitli ayrışma, örtüşme ve sonsuz sıradüzen ilişkilerinin varlığı gösterildi.
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1. INTRODUCTION

The idea of advised computation is based on providing supplemental external

assistance to computational devices that would enhance their capabilities beyond their

limits. Analyzing the effects of such external assistance is a well known method with

a long history, proven many times to be fruitful for gaining better insights on the

strengths and weaknesses of different computational models, for exploring the nature of

complexity inherent within computational problems and for discovering their relations

to each other. In this respect, advice has a fundamental similarity with other concepts

such as oracle machines and interactive proof systems (see e.g. [1]) that might make

it convenient to label such approaches altogether as “assisted computation” due to

the external assistance in the core of these concepts. Advice is different from the

assistance inherent in interactive proofs in the sense that it is trusted and it differs

from the assistance from an oracle as the content of the assistance is determined only

by the size of the input and it is provided in advance of the execution of the device.

The following set of characteristics can be said to distinguish the concept of advice

among other models of assisted computation:

• Advice is provided in advance of the execution of the device in the form of a piece

of supplementary information beyond the original input.

• The content of the advice depends only on the length of the actual input to the

device and not on the full content of it.

• The supplemental information provided as advice is trusted.

• Advice is assumed to be provided by a computationally unlimited source and

hence does not need to be computable.

Since its introduction in the early 1980’s, advised computation has been studied

in various contexts and in relation with various computational phenomena. Researchers

who are in search of better insights for various computational problems or who look for

a better understanding of the roles of advice applied this concept with different settings
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and on various models of computational devices. As many conventional techniques of

reasoning turn out to be useless due to the difficulty of analyzing the underlying steps

of computation in the presence of advice, demonstrating the exact nature of advised

computation many times required adopting or inventing novel methods or analyzing

new models. This lead to a distinctive literature on advised computation. A part of this

literature is dedicated to advised computation by finite automata which is particularly

interesting due to the relative weakness of the finite automata as the underlying model

of computation which leaves wider space for analyzing the roles of advice. A set of

advised finite automata models are introduced and examined by several groups of

researchers forming a basis of information in this domain, which we aim to extend with

this research.

New models of advised finite automata, the classes of languages that can be

recognized by these models and the relations among these classes are in the primary

focus of this thesis. Through these abstractions, we aim to examine the power and

limitations of advice as a computational resource in the context of finite automata. For

this purpose, we introduce two novel models of advised finite automata -finite automata

with advice tape and finite automata with inkdot advice- and analyze the roles of

advice in these models in comparison with each other and with the previously studied

models of advised finite automata. The relations among the classes of languages that

can be recognized in these models are examined in detail. The results indicating the

separations, collapses and hierarchies among these classes are the major contribution

of this research, most of which appeared previously on [2, 3] and [4].

The remainder of this work is structured as follows: Chapter 2 begins with the

basics of advised computation. Then, in chronological order, previously studied models

of advised finite automata will be introduced together with a brief discussion of what

is already known on each of them.

Chapter 3 will introduce an alternative model of advised finite automata in which

the supplemental information is placed on a separate tape. We will consider several

variants of this model where the advice is deterministic or randomized, the input and
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advice tape heads are allowed real-time, one-way, or two-way access, and the automaton

is deterministic, probabilistic or quantum. We will compare the power of this model

with the previously studied models and set several separations and collapses among

the classes of languages that can be recognized in each model. We will show that

allowing one-way access to either of the input or advice tapes, so that the automaton

can stay put on this tape during a transition, makes a deterministic finite automaton

with advice tape stronger over those with real-time access. We will present results

that demonstrate infinite hierarchies of language classes that can be recognized with

increasing amounts of advice in this model both when the advice is restricted to be

constant in length and when an increasing function of the input length is set as the

limit on the amount of the advice. We will introduce randomness into the model by

separately allowing probabilistically selected advice strings and probabilistic transitions

of the automata and show that both of these variations add up to the power of the

model in bounded-error setting. We will finally consider the quantum finite automata

with an advice tape and show it is computationally more capable than its probabilistic

counterpart in certain settings.

Chapter 4 will introduce inkdots placed on the input string as an alternative way

of providing advice to finite automata. The power of this model will be compared to

the previously studied models of advised finite automata and several results indicating

the separations and collapses among the classes of languages that can be recognized

in each setting will be presented. It will be shown that both when the number of

advice inkdots is restricted to be a constant and when it grows with the length of the

input, the class of languages that can be recognized with finite automata grows as

the amount of allowed inkdots increases, hence forming infinite hierarchies of language

classes. We will present results showing that finite automata with inkdots as advice

can be more succinct than the other advised automata models and the pure unadvised

automata in terms of the number of states required for recognizing certain languages.

We will discuss randomly placed inkdots as advice to probabilistic finite automata,

and demonstrate the superiority of this model in bounded-error language recognition

over its deterministic version. Finally, we will extend the model with access to infinite

secondary memory and present a result which shows that even very small and slowly
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growing amounts of space can bring in more power for language recognition when it is

provided to automata together with an inkdot as advice.

Chapter 5 will be a conclusion which summarizes the results we obtained in the

context of advised finite automata and it will also provide a list of open questions which

may point to future directions in this line of research.
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2. A SHORT SURVEY ON ADVISED FINITE

AUTOMATA

The idea of advised computation is put forward in the early 1980’s by Karp

and Lipton, in their seminal paper [5], “Turing machines that take advice”. At the

time, a range of models for assisted computation that depend on supplemental external

assistance - whether trusted or not- had already been studied by groups of researchers in

connection with various concepts. The novelty of Karp and Lipton’s approach was due

to their underlying motivation which they described as reaching conclusions on uniform

complexity of computational problems as a consequence of nonuniform complexity

bounds. As a consequence of this motivation, their model of external assistance took

the form of a string called advice, which depends only on the length of the actual input.

It is provided as trusted external assistance for a computational device in parallel with

its actual input in advance of its execution.

This notion of advised computation which was originally applied for Turing ma-

chines has been applied to other types of computational devices as well. Among such

examples, we are particularly interested in the models of advised finite automata as

they precede the models we study in the scope of this research.

The first advised finite automaton model was proposed by Damm and Holzer

in [6]. In this setup, prior to the computation of the automaton, advice is placed on

the input tape as a prefix of the original input so that the automaton starts by scanning

the advice. Yamakami and his coauthors, in a series of papers [7–13], studied another

model of advised finite automaton in which the advice is placed on a separate track

of the input tape and scanned by the automaton in parallel with the actual input.

Finally, the model of advised finite automata proposed by Freivalds and his coauthors

in [14–16], incorporates one or more separate tapes for the advice and the automaton

is granted two-way access to both the input and the advice tapes. Unlike the other

models, it is required in this model that the advice string for inputs of any length must
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be helpful not only for the inputs of that length but also for all inputs which are shorter

as well.

Below, in this chapter, we will first provide a short overview of the notion of

advised computation as introduced by Karp and Lipton and list their findings in Section

2.1. Then in the following parts, we will be presenting the advised finite automata

models which precede the models we examine in this research. Finite automata with

advice prefix as introduced by Damm and Holzer will be presented in Section 2.2.

Finite automata with advice track as introduced and examined by Yamakami and his

coauthors will be presented in Section 2.3. Finally, finite automata with multiple two-

way advice tapes as introduced by Freivalds and his coauthors will be presented in

Section 2.4.

2.1. Turing Machines that Take Advice

Karp and Lipton introduced the notion of advice in order to provide a framework

for studying nonuniform measures of complexity and to examine the cases where it

is possible to reach conclusions about uniform complexity of problems as a result of

nonuniform complexity results. In this context, they modeled advice as a piece of

supplementary information coded into a string depending only on the length of the

actual input which is provided as trusted external assistance for a computational device

in parallel with its actual input in advance of the execution. (The term “nonuniform

computation” refers to those models of computation like Boolean circuits or decision

trees where a different circuit or structure is needed for solving different instances of

a problem which vary in size; whereas “uniform” models of computation are those

like Turing machines where a single device is expected to solve every instance of a

problem regardless of its size. The reader may refer to [17,18] for a brief discussion on

the complexity of Boolean circuits which is a fundamental example for the concept of

nonuniform computation.)

Below, in Definition 2.1, we rephrase the original definition of the notion of advice

by Karp and Lipton [5].
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Definition 2.1. Let S be a language defined on the alphabet {0, 1} and let h : N →

{0, 1}∗ be a function that maps natural numbers to strings in {0, 1}∗ which are called

advice. Define the language S : h so that any member x of S : h prefixed by the

appropriate advice string, h(|x|) is a member of S.

S : h = {x | h(|x|)x ∈ S}. (2.1)

Now let V be any collection of languages defined on the alphabet {0, 1} and let F be

any collection of functions from N to N. Then, the collection of languages that can

be placed in V with the help of some advice the amount of which is bounded by F is

symbolized by V/F and defined formally as

V/F = {S : h | S ∈ V and h ∈ F}. (2.2)

P/log, for example, denotes the class of languages that can be recognized in poly-

nomial time by a Turing machine that takes advice strings, the size of which is bounded

by some logarithmic function of the input length. Similarly, DSPACE(log n)/poly de-

notes the class of languages that can be recognized by a deterministic Turing machine

with logarithmic space bound that takes advice strings the size of which is bounded by

some polynomial function of the input length. Fact 2.2 lists some of the direct results

of this definition.

Fact 2.2. ( [5]) Some preliminary facts are:

(i) for all V , V/0 = V ;

(ii) any subset of {0, 1}∗ is in P/2n;

(iii) if f is infinitely often nonzero, then P/f contains nonrecursive sets;

(iv) if g(n) < f(n) ≤ 2n infinitely many times, then P/g ⊆ P/f

The first statement in Fact 2.2, formulates the trivial fact that a zero-length

advice would be equivalent in power to the no advice case. Second statement can be
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justified by noting that a Turing machine would be capable of performing a search

for checking if its input occurs on its advice and then noting that for any language,

an exponentially-long advice string can list all the members of this language which

are of the same length as the input. The third statement can best be exemplified by

considering an undecidable unary language (which exists since every language has a

unary version). Note that a unary language can have at most one member of any

given length. Hence given the length of the input to a machine one bit of advice which

specify whether the language has a member of that length or not would be sufficient to

help the machine decide whether the input is a member or not. Recall that the advice

function needs not to be computable and note that an undecidable unary language (and

also its complement) would have infinitely many members hence the advice function

defined above need to provide that nontrivial membership information for infinitely

many values of the input length. The last statement which states that longer advice

strings are at least as powerful as the shorter ones as advice is rather trivial since it is

always possible to pack the information in a string into a longer one.

The classes of languages that attracted major initial interest are P/log and

P/poly, the classes of languages that can be recognized by a Turing machine within

polynomial time and with the assistance of advice strings of logarithmic or polynomial

length respectively. Of these two, P/poly has close ties with classical circuit complex-

ity: P/poly is equivalent to the class of languages that has circuits which are small in

the sense that the number of gates in these circuits are bounded by some polynomial

function of the input size.

Below, in Fact 2.3, this relation is expressed in the way Karp and Lipton cited it

from an earlier work by Pippenger [19].

Fact 2.3. ([5]) Let S be a subset of {0, 1}∗. Then the following are equivalent.

(i) S has small circuits.

(ii) S is in P/poly.
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Based on this notion of advised computation, Karp and Lipton obtained a set of

results most of which are of the form

L ⊆ V/F =⇒ L ⊆ S ′ (2.3)

where the idea of advised computation is used for gaining insights on the nonuniform

complexity class V/F from which one can then draw implications on the relation of

the uniform complexity classes L and S ′. The proofs for these results also share a

common pattern: First it is shown that there exists a language K which is complete

in L with respect to some reducibility function that is appropriate for use in reaching

the conclusion required for proving the particular statement in consideration. Then

assuming K ∈ V/F , it is stated that K must be of the form S : h for some language

S ∈ V and where |h(x)| has a known bound. The remainder is to show that K ∈ S ′

by providing an appropriate uniform algorithm for recognizing K, hence proving

K ∈ V/F =⇒ K ∈ S ′, (2.4)

which is then used for reaching the desired conclusion.

The method for constructing such a uniform algorithm for recognizing K varies

depending on the structure of K. As this algorithm will lack access to the advice

function h, it is suggested that the method needs to consider all strings that could be

the advice for the input string in consideration by exploiting the fact that the advice

string provided by h is consistent for all strings of the same length. This core idea is

used by Karp and Lipton with appropriate enrichments in cases where K is a game,

where K is self reducible and where K has a simple recursive definition and shown to

be fruitful in each case. (Informally, a set is said to be self reducible if the problem of

deciding whether a string is a member of this set can be reduced in polynomial time to

the same problem for smaller strings. For a more formal definition of self reducibility,

the reader may refer to the original text or to [20].)
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The problems that are complete for the classes of languages that can be rec-

ognized by an alternating Turing machine with use of certain amounts of time and

space can often be represented in the form of a game. Karp and Lipton introduced

a technique which they called round robin tournament method in order to relate the

nonuniform complexity of a game to its uniform complexity and hence to obtain a bet-

ter understanding of various complexity classes. Below is a list of relations, established

in this context.

PSPACE ⊆ P/poly =⇒ PSPACE =
∑p

2 ∩
∏p

2 (2.5)

PSPACE ⊆ P/log ⇐⇒ PSPACE = P (2.6)

EXPTIME ⊆ PSPACE/poly ⇐⇒ EXPTIME = PSPACE (2.7)

P ⊆ DSPACE((log n)l)/log ⇐⇒ P ⊆ DSPACE((log n)l) (2.8)

For each of these results, the existence of problems which can be represented in the

form of a game and which are complete for the uniform complexity class in consider-

ation is expressed with reference to earlier results in [21] and [22]. If some amount of

nonuniformity suffices to solve such a game which is complete for this class and if it

is possible to play a round robin tournament of the game in consideration, among all

potential strings that could be the advice for any input in consideration with use of ap-

propriate amounts of time and space associated with this class, then Karp and Lipton

suggested that it is possible to provide a uniform algorithm for the same game within

the same time and space bounds as well. The idea is simply to turn the nonuniform

algorithm into a uniform one by just playing the round robin tournament among all

potential advice strings and then picking the undefeated champion of this tournament

to guide the rest of the computation as in the nonuniform case.
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Karp and Lipton, next, showed that the uniform complexity of a self reducible set

K can be related to its nonuniform complexity by reducing instances of the problem

to smaller instances with use of its self reducibility structure. The complexity of the

uniform algorithm obtained in this manner would depend on the cost of testing mem-

bership in the minimal set specified in the self reducibility structure and its intersection

with K in addition to the number of reduction steps to reach a minimal member and

the number of strings that can be valid advice strings. The statements below are shown

to be true with use of this line of reasoning.

NP ⊆ P/log ⇐⇒ P = NP (2.9)

NSPACE(log n) ⊆ DSPACE(log n)/log ⇐⇒ NSPACE(log n) = DSPACE(log n) (2.10)

The self reducibility of SAT (satisfiability problem) is used for the proof of the former

statement and the self reducibility of DAG (a problem specified on directed acyclic

graphs that questions the existence of a directed path between two pre-specified ver-

tices) is used for the latter, for which the contribution of Ravindran Kannan is also

noted.

The famous result known as Karp-Lipton theorem (or more conveniently as Karp-

Lipton-Sipser theorem as the final form of the theorem is attributed by Karp and Lipton

to Sipser) is obtained in this context with use of the idea of using self referential

description of a language (the language of satisfiable quantified Boolean formulas in

this case) in order to derive conclusions about its uniform complexity based on its

nonuniform complexity.

Karp and Lipton first showed as a lemma that

NP ⊆ P/poly =⇒
∞⋃
i=1

∑p
i ⊆ P/poly (2.11)
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by use of the self reducibility structure inherent within the languages Ei and Ai of

satisfiable quantified Boolean formulas with a maximum of i alternating quantifiers

that begin with an existential quantifier in the case of Ei and with a universal quantifier

in the case of Ai. It is then pointed out that the test of membership of a string x in

Ai (or Ei) can be described with reference to the test of membership of strings x′ and

x′′ in Ai (or Ei) where x′ and x′′ are strings obtained by substituting the first variable

within x by values 0 and 1 and hence eliminating the first one of the quantifiers within

x.

If one assumes NP ⊆ P/poly then by Eq. 2.11 one can show that A3 ∈ P/poly.

Hence there exists a polynomial-length advice function, access to which enables a

Turing machine to perform the test of membership in A3 within polynomial time.

Combining this information with the self referential description of the membership test

provides sufficient means to conclude the main statement of the Karp-Lipton theorem:

NP ⊆ P/poly =⇒
∞⋃
i=1

∑p
i =

∑p
2. (2.12)

In other words, if NP is contained in P/poly (or equivalently if there exists small circuits

for any problem in NP) then the polynomial hierarchy of Meyer and Stockmeyer ([23])

would collapse at its second level.

Karp and Lipton report that their original statement which pointed to a collapse

at the third level of the polynomial hierarchy was later improved by Sipser to show a

collapse at the second level. Such a collapse is widely believed to be unlikely and thus

many experts believe that NP * P/poly which would then imply NP * P.

Finally, by noting the contribution of Albert Meyer, Karp and Lipton showed

that

EXPTIME ⊆ P/poly =⇒ EXPTIME =
∑p

2 =⇒ P 6= NP (2.13)
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with a similar reasoning on the recursive description of the languages associated with

the winning configurations of the special type of games mentioned earlier in this section.

Karp and Lipton’s notion of advice, the methods they introduced for analyzing

advised computation and the results they obtained have since then affected a wide range

of domains in computer science and related fields. Obviously nonuniform complexity

and circuit complexity are in the core of all these discussions. On the other hand, their

results affected many other fields including pseudorandomness, one-way functions and

zero knowledge proofs.

2.2. Advice as a Prefix of the Input

Karp and Lipton’s formalization of advised computation as a mean for studying

the effects of nonuniformity was later adopted by Damm and Holzer in [6], into the

field of automata and formal language theory in the mid 1990s. They examined the

classes of Chomsky hierarchy: regular, context-free, context-sensitive and recursively

enumerable languages relative to constant and polynomial-length advice and obtained

various separation results among these sets.

Following the same notation used by Karp and Lipton, the classes of languages

in consideration are denoted by expressions of the form V/F . V is either of the abbre-

viations REG, CFL, CS and RE denoting respectively the unadvised classes of regular,

context-free, context-sensitive and recursively enumerable languages where F takes ei-

ther of the values const or poly for representing the settings in which bound on the

length of the allowed amount of advice is a constant or a polynomial function of the

input length.

Damm and Holzer modeled advice as a supplementary piece of information that

depends only on the length of the actual input and which, prior to the computation of

the automaton, is placed on the input tape as a string that precedes the original input.

The function that maps the length of the input to the advice string is called advice

function and is conventionally signified by the letter h.
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The advised automata models in consideration are simply identical to the original

unadvised models other than the obvious difference that requires them to start their

execution while scanning the first symbol of the advice rather than the first symbol

of the actual input. Hence, the automata models with prefix advice are required to

consume the whole advice string before they can read the symbols from the input

string.

The first advised finite automata model, which we will call “finite automata with

prefix advice” throughout this work, was introduced in this context together with

advised versions of other automata models that correspond to the higher levels of

Chomsky Hierarchy. (See Figure 2.1.)

Figure 2.1. Schematic description of a finite automaton with prefix advice.

Damm and Holzer first considered the effects of varying amounts of advice pro-

vided to finite automata in this model. It is asserted that allowing advice strings which

grow as the input grows would bring in no additional computational power over the

advice strings of constant-length. Hence the classes of languages that can be recog-

nized by finite automata with the help of constant-length prefix advice is equal to the

class of languages that can be recognized with the help of advice strings whose length

is limited by a polynomial function of the input length. On the other hand, the class

of languages, REG/k, that can be recognized by finite automata with prefix advice, is
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shown to grow as the amount of the allowed advice increases:

REG/const = REG/poly (2.14)

REG/k ( REG/(k + 1), for all k ≥ 0 (2.15)

The first one of these propositions depends on the observation that, at any point of

its computation, the amount of information that a finite automaton can memorize, is

constant and this information has to be coded into its current control state. Hence,

the operation performed by a finite automaton with prefix advice, while scanning the

advice string, has no effect on the rest of the computation other than picking one of

its control states as the current state before it consumes the first symbol of the actual

input. As the number of control states of a finite automaton is constant, a finite set of

constant-length advice strings would be sufficient to guide a slightly modified version

of such an automaton to exactly the same set of states before its computation on its

actual input.

The second proposition is shown to be true by use of an argument that utilizes

Kolmogorov complexity terms, referring to the incompressibility of a random binary

sequence in addition to a characterization theorem, that indicates piecewise regularity

of the members of REG/k.

This theorem is cited as Fact 2.4 below. (A similar technique will be employed

in Chapter 4 of this work for showing the truth of the Theorem 4.5.)

Fact 2.4. (Piecewise characterization theorem [6]). Let L ⊆ Σ∗. The following state-

ments are equivalent:

(i) L ∈ REG/k.

(ii) There is a mapping c : N ⇒ {0, ..., 2k − 1} and there are regular languages

A0, ..., A2k−1 ∈ Σ∗ such that L ∩ Σn = Ac(n) ∩ Σn for all n ∈ N.
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Note that an immediate implication of (2.15) is that finite automata with a single

bit of prefix advice have strictly more language recognition power than the ordinary

finite automata:

REG = REG/0 ( REG/1. (2.16)

REG/1 is actually big enough to contain all tally languages (i.e. the languages over a

single letter alphabet) including the nonrecursive ones.

Based on the characterization of REG/k cited in Fact 2.4, Damm and Holzer also

proposed a method for showing that certain languages can not be recognized by finite

automata with the help of constant-length advice while actually showing that

{anbn | n ∈ N} /∈ REG/const, (2.17)

which require reference to van der Waerden’s theorem which guarantees the existence

of monochromatic arithmetic progression under finite coloring of natural numbers in

addition to the pumping lemma for regular languages. (For a detailed proof of van der

Waerden’s theorem, see e.g. [24] or [25].)

A similar line of reasoning can be applied for showing

{anbncn | n ∈ N} /∈ CFL/const. (2.18)

Based on these two statements, it is possible to separate the first three levels of Chom-

sky hierarchy relative to constant-length advice:

REG/const ⊂ CFL/const (2.19)

CFL/const ⊂ CS/const. (2.20)



17

In order to separate the context-sensitive and recursively enumerable languages relative

to constant-length advice, Damm and Holzer formed a chain of inclusions:

CS/const ⊂ DSPACE(n2)/const ⊂ DSPACE(2n)/const ⊂ RE/const (2.21)

The leftmost inclusion is due to the definition of a linear bounded automaton (see e.g.

[26]) and Savitch’s famous theorem (See e.g. [18] or [1]) that relates nondeterministic

and deterministic space complexity classes. The next inclusion is an application of a

result obtained by Mundhenk and Schuler which shows the existence of a nonuniform

space hierarchy for space constructible functions. (See [27] for details.) Finally the last

inclusion is based on the fact that a Turing machine has no space limit. Hence, this

concludes Chomsky Hierarchy relative to constant-length advice:

REG/const ⊂ CFL/const ⊂ CS/const ⊂ RE/const. (2.22)

In order to be used in their analysis of Chomsky Hierarchy relative to polynomial-

length advice, Damm and Holzer introduced regular, context-free, context-sensitive

and recursively enumerable cost of a language, as nonuniform measures of complexity

that depends on the nonuniform definition of minimal size of the generating grammars

of each type. Below we import their definition for regular cost and related classes of

languages.

Definition 2.5. ([6]) Given a language L ⊆ Σ∗, we define the regular cost of L as the

function regL : N→ N given by

regL(n) = min{|G| | G is a regular grammar such that L(G) ∩ Σn = L ∩ Σn}

where |G| denotes the size of G and is defined as the cardinality of the production set

of G.

The classes of languages with constant and polynomial regular costs are then

defined as:
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(i) Constreg = {L | regL(n) = O(1)},

(ii) Polyreg = {L | ∃k : regL(n) = O(nk)}.

The context-free, context-sensitive and recursively enumerable cost functions

(cfL(n), csL(n), reL(n)) of a language L are defined analogously as well as the related

classes of languages, Constcf , Polycf , Constcs, Polycs, Constre, Polyre. As steps of

proving the separation of the levels of Chomsky hierarchy relative to polynomial-length

advice, Damm and Holzer examined the relations among these classes in addition to

the classes of languages that each type of automata can recognize with the help of

polynomial-length advice.

All of the relations obtained in this while are visible in their inclusion diagram

that we cite as Figure 2.2. We will not list all the relations separately and just note

some interesting ones without going into details about their proofs. For further details,

the reader may refer to the original text in [6].

For each level of Chomsky Hierarchy, it turns out that the classes associated

with constant nonuniform cost in the sense defined above, are equivalent to the classes

of languages that can be recognized with the help of constant-length advice by the

appropriate type of automaton associated with that level of the hierarchy.

REG/const = Constreg (2.23)

CFL/const = Constcf (2.24)

CS/const = Constcs (2.25)

RE/const = Constre (2.26)
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RE/poly = Polyre

Constre = RE/const CS/poly = Polycs

Constcs = CS/const Polycf

CFL/poly

Constcf = CFL/const

Polyreg

Constcf = REG/const = REG/poly

inclusion

proper inclusion

Figure 2.2. The relations among the classes of languages recognized with prefix

advice.
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These statements can be justified by the piecewise characterization of each class

and the fact that there can be only a finite number of devices of each type that would

meet the requirement of a constant bound on the associated measure of cost. The same

is not always true for the classes associated with polynomial cost and polynomial-length

advice:

REG/poly ⊂ Polyreg (2.27)

CFL/poly ⊆ Polycf (2.28)

CS/poly = Polycs (2.29)

RE/poly = Polyre (2.30)

The first one of these statements is justified by the linear regular cost of the

language {anbn | n ∈ N} which does not belong to REG/poly. The inclusion pointed

out in the second statement is obvious. Although not shown to be so, Damm and

Holzer conjectured this inclusion to be a proper one. The latter two statements are

based on the fact that a Turing machine (or a linear bounded automaton) can read

the advice on its input tape several times and that it can simulate the derivation of an

unrestricted (or context-sensitive) grammar within a given amount of space.

The classes of languages associated with polynomial regular and context-free costs

are shown to be included in the classes of languages which are respectively context-free

and context-sensitive relative to polynomial-length advice:

Polyreg ⊂ CFL/poly (2.31)
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Polycf ⊂ CS/poly (2.32)

In both cases, the inclusion is shown to be proper by providing a language which is a

member of the difference set. In the former case, this language is {wwR | w ∈ {a, b}∗}

which is known to have exponential regular cost and in the latter, it is the language

{ww | w ∈ {a, b}∗} which is known to have exponential context-free cost. (See [28] for

both.)

The classes of regular languages relative to constant and polynomial-length advice

were shown to be equal to each other. The separation results below shows that the

advantages of polynomial-length advice are better utilized in the higher levels of the

hierarchy.

CFL/const ⊂ CFL/poly (2.33)

CS/const ⊂ CS/poly (2.34)

RE/const ⊂ RE/poly (2.35)

Finally, based on the relations mentioned above and on the nonuniform space hierarchy

shown by Mundhenk and Schuler ([27]), the separation of the Chomsky hierarchy

relative to polynomial-length advice is concluded as follows:

REG/poly ⊂ CFL/poly ⊂ CS/poly ⊂ RE/poly. (2.36)
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2.3. Advice on a Separate Track

The advised finite automata model which we call “finite automata with advice

track” is first defined in [7] where Tadaki, Yamakami and Lin introduced a novel way of

providing advice for computing devices in which instead of coding the supplementary

information into an advice string and placing it on the input tape as a prefix of the

original input, they suggested splitting the input tape into two tracks, one for holding

the original input and the other for the advice string. (See Figure 2.3.)

Other than this obvious difference, the model shares common characteristics of

advised computation in the sense defined by Karp and Lipton: advice depends only

on the length of the actual input and it is provided in advance of the execution of

the device. This model of advised finite automata, together with its probabilistic and

quantum variants are later examined in a series of papers ([8–10,12,13]) by Yamakami

and many relations have been established among the classes of languages that can be

recognized in each of these settings.

Figure 2.3. Schematic description of a finite automaton with advice track.

2.3.1. Deterministic Automata with Advice Track

It must be noted that unlike the advice prefix model, in this setup the advice

string can be scanned in parallel with the actual input by a single tape head and hence

it becomes possible to meaningfully utilize advice strings whose lengths grow linearly
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in terms of the input length. As a reflection, the class of languages recognizable by

deterministic finite automata with an advice track is denoted by REG/n in contrast to

the class of languages recognizable by deterministic finite automata with prefix advice

which is denoted by REG/const or by REG/k depending on the context. (In the sequel,

we will sometimes need to specify the size of the alphabet supporting the strings on

the advice track. In such cases, the number of elements in the advice alphabet will also

appear in the class name, e.g. REG/n(2) is the subset of REG/n where advice strings

are restricted to be on a binary alphabet.)

Placing advice on a separate track and scanning it in parallel with the actual

input brings in an advantage over the prefix advice model in utilizing the additional

information within the advice string. The language {ambm | m > 0}, for instance,

was stated in (2.17) not to be in REG/k for any constant k, whereas it can easily

be recognized by a finite automaton with an advice track. On the other hand, an

automaton taking constant-length advice in the prefix format can be converted easily

to one that reads it from a separate track. (Simply run in parallel copies of the original

automaton each with different initial states and when the end of the constant-length

advice is seen on the advice track pick that copy pointed by the constant-length advice

as the one to rule the rest of the computation.) Hence, finite automata with advice

tracks are strictly more powerful than finite automata with prefix advice which in turn

are more powerful than the ordinary finite automata.

REG ⊂ REG/k ⊂ REG/n. (2.37)

On the other hand, as shown in [7] by Tadaki et al., recognizing all context-free lan-

guages is beyond the limits of this power:

CFL * REG/n. (2.38)

This is justified by showing that the language EQUAL = {w| w ∈ {a, b}∗ and |w|a =

|w|b}, which is well known to be context-free, can not be recognized by a finite au-
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tomaton with advice track. To show this fact Tadaki et al. employed an argument

that exploits the inability of a finite automaton with advice track to distinguish long

enough strings with respect to the language EQUAL in a similar sense of distinguisha-

bility that is defined (see e.g. [17]) for ordinary finite automata. (This argument was

later generalized in [8] with the name “swapping lemma for regular languages”. We

will cite it as Fact 2.6 below.)

Also in [7], Tadaki et al showed that REG/n is equivalent to 1-DLIN/lin, the

set of languages that can be recognized by linear time one tape deterministic Turing

machines which are assisted by linear-length advice strings placed on a separate track

of the input tape:

REG/n = 1-DLIN/lin. (2.39)

For this result, it is first shown that given a linear-time one tape deterministic Turing

machine, it is possible to construct an equivalent machine which uses a technique

called “folding” in order to reorganize the original machine’s tape content, (including

the advice track) during its computation into its input area in a way that resembles a

multi track tape. Then the desired conclusion is reached by citing an earlier result by

Hennie ([29]) which states REG = 1-DLIN.

In [8] Yamakami pointed out the fact that pumping lemmata for regular and

context-free languages (see e.g. [17]) are of no help for showing that certain languages

can not be recognized by finite and pushdown automata in the presence of advice. This

is because “pumping” brings in a change in the length of the words in consideration

which should be matched with a change in the advice string for the pumped words and

this violates the original flow of the pumping argument. As substitutes of pumping

lemmata for use in showing such nonmembership results in the presence of advice, Ya-

makami instead introduced a set of useful lemmata which are called swapping lemmata

for regular and context-free languages. (It must be noted here that these lemmata can

be used as an alternative tool for unadvised cases as well.)
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The simple form of swapping lemma for regular languages is quoted from [8]

below, in Fact 2.6. The proof of this statement is an application of pigeonhole principle

showing that a finite automaton with constantly many states can not distinguish every

pair of sufficiently large strings.

Fact 2.6. (Swapping Lemma for Regular Languages [8]) Let L be any infinite regular

language over an alphabet Σ with |Σ| ≥ 2. There exists a positive integer m (called a

swapping-lemma constant) such that, for any integer n ≥ 1 and any subset S of L∩Σn

of cardinality more than m, the following condition holds: for any integer i ∈ [0, n]Z,

there exist two strings x = x1x2 and y = y1y2 in S with |x1| = |y1| = i and |x2| = |y2|

satisfying that

(i) x 6= y,

(ii) y1x2 ∈ L, and

(iii) x1y2 ∈ L.

This idea is further generalized in [8] to obtain a more general form of the swap-

ping lemma where the words in consideration are split into any fixed number of blocks

(instead of two) and one of them is used for swapping. This form of the lemma is given

as Fact 2.7 below.

Fact 2.7. (Swapping Lemma for Regular Languages [8]) Let L be any infinite regular

language over an alphabet Σ with |Σ| ≥ 2. There is a positive integer m (called a

swapping-lemma constant) such that, for any number n ≥ 1, any set S ⊆ L ∩ Σn and

any series (i1, i2, ..., ik) ∈ ([1, n]Z)k with
∑k

j=1 ij ≤ n for a certain number k ∈ [1, n]Z,

the following condition holds: If |S| > m then there exist two strings x = x1x2 · · ·xk+1

and y = y1y2 · · · yk+1 in S with |xk+1| = |yk+1| and |xj′ | = |yj′| = ij′ for each index

j′ ∈ [1, k]Z such that, for every index j ∈ [1, k]Z

(i) x 6= y,

(ii) x = x1 · · ·xj−1yjxj+1 · · · xk+1 ∈ L, and

(iii) x = y1 · · · yj−1xjyj+1 · · · yk+1 ∈ L.
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In order to prove that a language L is not in REG/n, one needs first to pick

the swapping lemma of the appropriate form. Then in order to show that assuming

L ∈ REG/n would lead to a contradiction, a sufficiently large number should be picked

as the length of the member words in consideration so that one can define a sufficiently

large subset (as described in the lemma) of member words with this length. Then

it suffices to show that no matter how the words in this subset are put into blocks,

swapping a pair of these blocks would produce a word not in L.

In the same context, Yamakami also introduced a swapping lemma for the context-

free languages, which we cite below as Fact 2.8 where the term Si,u, for S ⊆ Σ∗, i ∈ N

and u ∈ Σ∗ for an alphabet Σ, denotes the set of words w ∈ S such that the subword,

wi+1, · · · , wi+|u| of w, is equal to the word u.

Fact 2.8. (Swapping Lemma for Context-Free Languages [8]) Let L be any infinite

context-free language over an alphabet Σ with |Σ| ≥ 2. There is a positive number

m that satisfies the following. Let n be any positive number at least 2, let S be any

subset of L ∩ Σn, and let j0, k ∈ [2, n]Z be any two indices satisfying that k ≥ 2j0 and

|Si,u| < |S|/m(k − j0 + 1)(n − j0 + 1) for any index i ∈ [1, n − j0]Z and any string

u ∈ Σj0. There exist two indices i ∈ [1, n]Z and j ∈ [j − 0, k]Z with i + j ≤ n and

two strings x = x1x2x3 and y = y1y2y3 in S with |x1| = |y1| = i, |x2| = |y2| = j and

|x3| = |y3| such that

(i) x 6= y,

(ii) x = x1y2x3 ∈ L, and

(iii) x = y1x2y3 ∈ L.

The proof of this lemma requires an analysis of a restricted form of a nondeter-

ministic pushdown automaton and its stack’s behavior. Nonmembership results for

CFL/n can be obtained with reference to it, as a substitute for the pumping lemma

for context-free languages, and with a similar reasoning that was described for REG/n

above.
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The reader may refer to [8] for details of the proofs for these lemmata and detailed

examples where this set of tools are employed for showing that certain languages are

not in REG/n or CFL/n.

2.3.2. Probabilistic Automata with Advice Track

Yamakami further extended his analysis of advised computation with track model

in [9], where in addition to the deterministically chosen advice, he also studied randomly

chosen advice, allowing the underlying machine models to recognize languages with

some probability of error. He showed that such randomized advice significantly extends

the language recognition power of the underlying machines such as one-tape linear-time

Turing machines and one-way finite automata.

The language families associated with linear-time unadvised Turing machines

which are taken into account in [9] are 1-DLIN (deterministic), 1-BPLIN (bounded-error

probabilistic), 1-PLIN (unbounded-error probabilistic), and 1-C=LIN (error probability

exactly 1/2). In the presence of deterministically chosen linearly sized advice, the

language families associated with the same model of underlying machines are named

respectively as 1-DLIN/lin, 1-BPLIN/lin, 1-PLIN/lin and 1-C=LIN/lin.

For cases where the advice is chosen randomly according to a certain probability

distribution, the notation is extended by use of the mark R (standing for random) pre-

ceding the amount of advice so that the language families associated with the same set

of machine models are named respectively as 1-DLIN/Rlin, 1-BPLIN/Rlin, 1-PLIN/Rlin

and 1-C=LIN/Rlin. The language families associated with finite automata and push-

down automata equipped with randomly chosen advice are named by following the

same pattern as REG/Rn or CFL/Rn.

Yamakami examined the exact nature of the relations among these families of

languages and obtained various results indicating separations and collapses. Below, in

Figure 2.4 we import a drawing from [9] which provides a summary of these results.
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In addition to the set of relations shown in Figure 2.4, most of which demonstrate

the power of randomized advice, Yamakami also established an immediate limit to this

power with the following result which states that even with randomized advice finite

automata can not recognize all context-free languages.

CFL * REG/Rn. (2.40)

1-C=LIN/Rlin =

1-PLIN/Rlin = ALL

CFL/Rn

1-PLIN/lin

CFL/n

1-BPLIN/Rlin

= REG/Rn
1-C=LIN/lin co-1-C=LIN/lin

1-DLIN/lin

= REG/n proper inclusion

no inclusion

Figure 2.4. The relations among the classes of languages recognized with

deterministic and randomized advice provided on a separate track.

In his analysis of the power and weakness of the randomized advice, Yamakami

introduced a pair of lemmas which provide simple yet powerful characterization for the

classes REG/n and REG/Rn. We quote them as Fact 2.9 and Fact 2.10 below for later

reference.
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Fact 2.9. ([9]) For any language S over an alphabet Σ, the following two statements

are equivalent. Let ∆ = {(x, n) ∈ Σ∗ × N | |x| ≤ n}.

(i) S is in REG/n.

(ii) There is an equivalence relation ≡S over ∆ such that

(a) the total number of equivalence classes in ∆/ ≡S is finite, and

(b) for any length n ∈ N and any two strings x, y ∈ Σ∗ with |x| = |y| ≤ n, the

following holds: (x, n) ≡S (y, n) iff, for all z with |xz| = n, xz ∈ S ⇔ yz ∈

S.

Fact 2.10. ([9]) Let A be any language over an alphabet Σ. The following two state-

ments are equivalent.

(i) A is in REG/Rn.

(ii) There exist a 1dfa M , an advice alphabet Γ, and an error bound ε ∈ [0, 1/2) that

satisfy the following condition: for every probability ensemble {µn}n∈N over Σ∗

there exists an advice function h : N→ Γ∗ such that M , when provided with h(n)

as advice, correctly decides whether x is a member of A or not with probability

more than 1− ε for every length n ∈ N.

2.3.3. Reversible and Quantum Automata with Advice Track

In [12], Yamakami extended his analysis of advised finite automata to the cases

of reversible and quantum finite automata with advice. In this context, one-way deter-

ministic reversible finite automata (1rfa) and one-way measure-many quantum finite

automata (1qfa) are chosen as base models of computation as the relative simplicity of

these models are expected to leave a larger room for examining the power and limits

of advice. (See [30–32], for formal definitions and fundamental characteristics of these

models.)

The language families associated with 1rfa’s and 1qfa’s augmented with deter-

ministic advice are named respectively as 1-RFA/n and 1-QFA/n. In order to capture
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the essential characteristics of these language families, Yamakami proved two main the-

orems, one for each of the two models in consideration, in which he showed machine-

independent, algebraic necessary conditions for languages to be recognized in these

settings with the help of deterministic advice.

We import these results below as Fact 2.11 and Fact 2.12. ( The term “closeness

relation” is used in this context, to denote a reflexive, symmetric, binary relation and

given any closeness relation ∼=S, an ∼=S-discrepancy set denotes a set S satisfying that,

for any two elements x, y ∈ S, if x and y are “different” elements, then x �S y.)

Fact 2.11. (A necessary condition for 1-QFA/n [12]) Let S be any language over

alphabet Σ and let ∆ = {(x, n) ∈ Σ∗ × N | |x| ≤ n}. If S belongs to 1-QFA/n, then

there exist two constants c, d ∈ N+, an equivalence relation ≡S over ∆, a partial order

≤S over ∆, and a closeness relation ∼=S over ∆ that satisfy the seven conditions listed

below. In the list, we assume that (x, n), (y, n) ∈ ∆, z ∈ Σ∗, and σ ∈ Σ with |x| = |y|.

(i) The cardinality of the set ∆/ ≡S of equivalence classes is at most d.

(ii) If (x, n) ∼=S (y, n), then (x, n) ≡S (y, n).

(iii) If |xσ| ≤ n, then (xσ, n) ≤S (x, n) and, if |x| = n > 0 , then (x, n) <S (λ, n).

(iv) When (x, n) =S (xz, n) and (y, n) =S (yz, n) with |xz| ≤ n, (xz, n) ∼=S (yz, n)

implies (x, n) ≡S (y, n).

(v) (x, n) ≡S (y, n) iff S(xz) = S(yz) for all strings z ∈ Σ∗ with |xz| = n.

(vi) Any strictly descending chain (with respect to <S) in ∆ has length at most c.

(vii) Any ∼=S-discrepancy subset of ∆ has cardinality at most d.

Fact 2.12. (A necessary and sufficient condition for 1-RFA/n [12] ) Let S be any

language over alphabet Σ and define ∆ = {(x, n) | x ∈ Σ∗, n ∈ N, |x| ≤ n}. The

following two statements are logically equivalent.

(i) S is in 1-RFA/n.

(ii) There are a total order ≤S over ∆ and two equivalence relations 'S and ≡S over

∆ such that two sets ∆/ 'S and ∆/ ≡S are both finite; any strictly descending

chain (with respect to <S) in ∆ has length at most 2; and for any length parameter
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n ∈ N, any two symbols σ, ξ ∈ Σ, and any three elements (x, n), (y, n), (z, n) ∈ ∆

with |x| = |y|, the following seven conditions hold.

(a) If |xσ| ≤ n, then (xσ, n) ≤S (x, n) and, if |x| = n > 0, then (x, n) <S (λ, n).

(b) Whenever |xσ| ≤ n, (xσ, n) 'S (yσ, n) iff (x, n) 'S (y, n).

(c) If (xσ, n) <S (x, n) =S (z, n) with |xσ| ≤ n, then (xσ, n) 6'S (z, n).

(d) In the case where (λ, n) =S (x, n) =S (z, n), (x, n) ≡S (z, n) iff (x, n) 'S
(z, n).

(e) If (xσ, n) <S (x, n) and (yξ, n) <S (y, n) with |xσ| ≤ n and |yξ| ≤ n, then

(xσ, n) ≡S (yξ, n) iff (xσ, n) 'S (yξ, n).

(f) If (xz, n) =S (x, n) with |xz| = n, then (xz, n) ≡S (x, n).

(g) If (x, n) ≡S (y, n), then S(xz) = S(yz) holds for all strings z ∈ Σ∗ satisfying

|xz| = n.

Also in [12], Yamakami introduced 1-RFA/Rn and 1-QFA/Rn as the language

families associated with 1rfa’s and bounded-error 1qfa’s augmented with randomized

advice. This notation is extended as in 1-QFA�/Qn and 1-QFA�/Rn in order to indicate

that the underlying quantum finite automata model uses a rewritable advice track.

Finally, for use in cases where unbounded-error language recognition by 1qfa’s is in

consideration, the notation is extended as in 1-QFA(a(n),b(n)), in order to indicate the

families of languages that can be recognized by 1qfa’s which are expected to accept

member strings of length n with probability at least a(n) and reject the nonmember

strings of length n with probability at least b(n).

In the light of the characterizations of 1-RFA/n and 1-QFA/n cited above, many

separations and collapses are obtained by Yamakami, among the above mentioned

language families and some of the other language families associated with advised

finite automata, pushdown automata and linear-time Turing machines. A summary of

these relations are provided in the Figure 2.5 which we cite from [12].
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1-QFA�(1/2,1/2)/Qn =

1-QFA�(1/2,1/2)/Rn = ALL

1-BQLIN/Qlin CFL/Rn

1-QFA�/Qn

1-BPLIN/Rlin

= REG/Rn
CFL/n

1-QFA/Rn

1-RFA/Rn

1-DLIN/lin

= REG/n

1-QFA/n

1-RFA/n

proper inclusion

inclusion

no inclusion

Figure 2.5. The relations among the classes of languages recognized by reversible and

quantum finite automata with advice track.
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2.3.4. Structural Complexity of Advised Language Families

In [10] and [13], Yamakami examined the structural complexity of the advised

language families REG/n and CFL/n in the framework of structural properties such as

immunity and pseudorandomness.

Below, we refer [20] for formal definitions of the terms such as immunity, co-

immunity, simplicity and bi-immunity which are widely used in this context. (For

further discussion on these concepts the reader may refer also to [33].)

Definition 2.13. ([20]) Let C be a class of sets,

• A set L is C-immune if and only if it is infinite and no infinite subset of L belongs

to C.

• A set L is C-co-immune if and only if its complement L is C-immune.

• A set is C-simple if and only if it is in C and is C-co-immune.

• A set L is C-bi-immune if and only if both L and L are C-immune.

In [10], Yamakami introduced primeimmunity as a weaker form of immunity

where not all but only polynomially dense subsets of the language in consideration are

taken into account. In close relation to immunity, he also examined computational

randomness in the framework of pseudorandomness and pseudorandom generators.

The notion of pseudorandomness is introduced as a non-asymptotic variant of the

notions of randomness introduced in [34,35]. We cite this definition below in Definition

2.14 where the characteristic function χL of a language L is defined as χL(x) = 1 if

x ∈ L and χL(x) = 0 otherwise, For every input string x.

Definition 2.14. ([10]) A language L is said to be C-pseudorandom if, for every

language A in C, the characteristic function χA of A agrees with the characteristic

function χL of L on nearly (with a negligible margin of error) half of the strings of

each length.
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Yamakami also applied Yao’s formulation ([36]) of pseudorandom generators to

the framework of formal language and automata theory where the adversaries to be

fooled by the generated sequences are represented in the form of languages.

Definition 2.15. ([13]) Given an arbitrary alphabet Σ, a (single-valued total) function

G : Σ∗ → Σ∗, which stretches n-symbol seeds to s(n)-symbol strings, is said to fool a

language A over Σ if the characteristic function χA of A cannot distinguish between

the output distribution of {G(x)}x∈Σn and a truly random distribution of {y}y∈Σs(n)

with non-negligible success probability. [We call G a pseudorandom generator against

language family C if G fools every language A over Σ in C. A generator G with the

stretch factor s(n) = n + 1 is called almost one-to-one if it is one-to-one for all but a

negligible fraction of its domain instances.]

The idea of pseudorandom generators and pseudorandomness of a language are

shown to be linked in a way that any generator which has a small stretch factor and

which is almost one to one is a pseudorandom generator if and only if its range is

pseudorandom.

Below we highlight some of the results Yamakami obtained in [10] and [13] which

are interesting in the context of advised automata.

Fact 2.16. ([10, 13])

(i) There exists a REG-immune language in CFL \ REG/n.

(ii) There exists a REG-bi-immune language that can be computed deterministically

using logarithmic space.

(iii) There exists a REG/n-bi-primeimmune language in CFL.

(iv) There exists a REG/n-pseudorandom language in CFL.

(v) There exists an almost one to one pseudorandom generator against REG/n, com-

putable by nondeterministic pushdown automata equipped with a write only output

tape.

(vi) There exists an almost one to one pseudorandom generator with stretch factor

n + 1 against CFL/n in the intersection of FL, the logarithmic space function
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class and CFLMV(2)/n, a functional analogue of CFL(2)/n, the 2-conjunctive

closure of CFL/n, or in other words, the set of languages that can be obtained as

the intersection of two languages in CFL/n.

(vii) There is no almost one to one pseudorandom generator with stretch factor n+ 1

against CFL in CFLMV, multiple-valued partial CFL-function class.

2.4. Advice on Additional Two-way Tapes

As part of their research on the notion of nonconstructive computation (see e.g.

[37,38] or Definition 2.17 ) Freivalds introduced and examined another model of advised

finite automata in [14], which provides means for quantitatively measuring the amount

of nonconstructivity in a proof. In this model, which incorporates one or more separate

tapes for the advice, the automaton is granted two-way access to both the input and

the advice tapes and unlike the advice prefix and advice track models, Freivalds’ model

requires the advice string for inputs of length n to be helpful for all shorter inputs as

well.

Figure 2.6. Schematic description of a finite automaton with multiple two-way advice

tapes.



36

This model was later used by Agadzanyan and Freivalds in [15], for an analysis of

the cases where the given advice contains zero information about the input word and the

language to be recognized. In this context, infinite random sequences are considered as

advice to finite automata and the term “finite state automata with intuition” is used to

denote the resulting model of the advised automaton. Later, in [16], Freivalds revisited

this idea and further extended the analysis where the term “finite state automata

with written random bits” is preferred for denoting a slightly modified version of finite

automata which takes infinite random sequences as advice.

2.4.1. Nonconstructive Language Recognition with Finite Automata

Language recognition with a certain amount of nonconstructivity is defined by

Freivalds in [14] as follows.

Definition 2.17. ([14]) We say that an automaton A recognizes the language L non-

constructively with nonconstructivity d(n) if the automaton A has an input tape where

a word x is read and an additional input tape for nonconstructive help y with the fol-

lowing property. For arbitrary natural numbers n there is a word y of the length not

exceeding d(n) such that for all words x whose length does not exceed n the automaton

A on the pair (x, y) produces the result 1 if x ∈ L, and A produces the result 0 if x /∈ L.

Technically, the word y can be a tuple of several words and may be placed on separate

additional input tapes. In this case, d(n) is the upper bound for the total of the lengths

of these words.

Based on this notion of nonconstructivity, and referring many times to the prop-

erties of Martin-Löf (see e.g. [39]) and De Brujin (see e.g. [40]) sequences, Freivalds

showed the statements listed in Fact 2.18 to be true in [14].

Fact 2.18. ([14])

(i) There exists a nonregular (and even a nonrecursive) language L such that it can

be nonconstructively recognized with nonconstructivity n.
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(ii) There exist nonregular languages that can be nonconstructively recognized by a

two-way finite automaton with nonconstructivity n but not with nonconstructivity

n− h(n), where h(n) is a total function such that log2 n = o(h(n)).

(iii) For arbitrary natural numbers k, there exist nonregular languages that can be

nonconstructively recognized with nonconstructivity not exceeding n1/k.

(iv) There exist a nonregular language L and a function g(n) such that L can be

nonconstructively recognized with nonconstructivity g(n) where log n ≤ g(n) ≤

(log n)2.

(v) If a language L can be nonconstructively recognized with a nonconstructivity

bounded by a function d(n) = o(log n), then L is regular.

(vi) There exist a nonrecursive language L and a function g(n) such that L can

be nonconstructively recognized by a finite automaton with a nonconstructivity

g(n) ∈ polylog(n).

(vii) Every language L over the c-ary alphabet {0, 1, · · · , c− 1} can be recognized non-

constructively with nonconstructivity O(cn).

(viii) There exists a language L such that it cannot be nonconstructively recognized with

nonconstructivity less than 2n.

(ix) There exists a language L in a binary alphabet such that it cannot be noncon-

structively recognized by a finite automaton with a nonconstructivity less than

Ω(2n).

2.4.2. Infinite Random Sequences as Advice for Finite Automata

The use of arbitrary infinite random sequences as advice to finite automata was

first examined by Agadzanyan and Freivalds in [15] in order to set up a case where a

finite automaton is given an advice that contains no information about the actual input.

In [16], Freivalds revisited this idea, using a slightly modified model and terminology

and extended the analysis in [15].1

1We will mostly cite [16] below, for the definitions and the results obtained in this context. The
reader, however, may also refer to [15] for similar content in some cases, where a slightly different
terminology is used.
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In this setup, the advice is required to be an arbitrary infinite random sequence

but the finite automaton can use only a finite initial fragment of this sequence the size

of which depends on the automaton. In [15] the infinite random advice is specified to be

an arbitrary infinite Martin-Löf random sequence, however the term “primitive Martin-

Löf random sequence” is preferred instead in [16], as only that property of a Martin-Löf

sequence mentioned in the Definition 2.19 is required for the results obtained in this

context.

Definition 2.19. ([16]) An infinite sequence S of bits is a primitive Martin-Löf random

sequence if for arbitrary finite binary string w, it is true that S contains infinitely many

occurrences of the string w.

The random sequence used as advice is also required to be infinite to both ends

hence to avoid the unintended additional power the model would gain with the ability

of simulating a counter on its two-way advice tapes.

Definition 2.20. ([16]) A 2-infinite sequence of bits is a sequence {ai} where i ∈

(−∞,∞) and all ai ∈ {0, 1}.

Definition 2.21. ([16]) We say that a 2-infinite sequence of bits -{ai}- is primitive

Martin-Löf random if for arbitrary i ∈ (−∞,∞) the sequence {bn} where bn = ai+n

for all i ∈ N is primitive Martin-Löf random, and the sequence {cn} where cn = ai−n

for all i ∈ N is primitive Martin-Löf random.

Finally, “a deterministic finite automaton with written random bits” is defined

as follows.

Definition 2.22. ([16]) A deterministic finite automaton with written random bits is a

deterministic non-writing 2-tape finite automaton one tape of which contains the input

word , and the other tape contains a 2-infinite primitive Martin-Löf random sequence,

the automaton is 2-way on every tape, and it stops producing the correct result in a

finite number of steps for arbitrary input word. Additionally it is demanded that the

head of the automaton never goes beyond the markers showing the beginning and the

end of the input word.
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In this context, a language L is said to be recognizable by a deterministic finite

automaton A with written random bits if A for arbitrary 2-infinite primitive Martin-Löf

random sequence accepts every member of L and rejects every nonmember. Similarly, a

language L is said to be enumerable by a deterministic finite automaton A with written

random bits if A for arbitrary 2-infinite primitive Martin-Löf random sequence, accepts

every member of L and does not accept any nonmember.

The term, “finite automaton with written random bits on unbounded input”, is

used to denote a slightly different model where the automaton is allowed to go beyond

the markers showing the beginning and the end of the input word. In cases where more

than one help tapes are in consideration this is made explicit as in “finite automaton

with written random bits with 2 help tapes”. Both of these variations over the original

definition are shown to bring in excessive power of language recognition, hence they

are ruled out of the main analysis. This is justified by the following results which

are based on the observation that with these variations it would become possible to

use the infinite random sequence on the two-way advice tapes for simulating a set of

counters which in turn is known (see e.g. [41]) to provide a two-way deterministic finite

automata sufficient means to simulate a Turing machine.

• A language L is enumerable by a deterministic finite automaton with written

random bits on unbounded input if and only if it is recursively enumerable.

• A language L is enumerable by a deterministic finite automaton with written

random bits with 2 help tapes if and only if it is recursively enumerable.

Based on these definitions and observations, Freivalds obtained a set of results,

which are listed below in Fact 2.23, on the power of deterministic and nondeterministic

finite automata with written random bits.

Fact 2.23. ([16])

(i) There exists a language (e.g. L = {x2x | x ∈ {0, 1}∗}) that cannot be recognized

with a bounded error by a probabilistic 2-way finite automaton while it can be
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recognized by a deterministic finite automaton with written random bits.

(ii) The unary languages PERFECT SQUARES = {1n | (∃m)(n = m2)}, PERFECT CUBES =

{1n | (∃m)(n = m3)}, and PRIMES = {1n | n is prime } can be recognized by a

deterministic finite automaton with written random bits.

(iii) Every L ∈ NP is reducible by a deterministic log-space bounded Turing machine

to a language L such that L is enumerable by a deterministic finite automaton

with written random bits.

(iv) If a language L is enumerable by a nondeterministic finite automaton with written

random bits then L ∈ NP.

(v) If a language L is recognizable by a nondeterministic finite automaton with written

random bits then L ∈ NP ∩ co-NP.

(vi) Every language enumerable by a deterministic finite automaton with written ran-

dom bits is also recognizable by a nondeterministic finite automaton with written

random bits if and only if P = NP.

(vii) If a language L is enumerable by a nondeterministic finite automaton with written

random bits then L is also enumerable by a deterministic finite automaton with

written random bits.

(viii) If a language L is recognizable by a nondeterministic finite automaton with written

random bits then L is also recognizable by a deterministic finite automaton with

written random bits.
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3. FINITE AUTOMATA WITH ADVICE TAPES

In this chapter, we propose a new architecture for advised finite-state computation

where we place the advice string on a separate one-way tape and thereby enabling

the machine to pause on the input tape while processing the advice, or vice versa.

(Examples of finite-state machines with such a separate tape for untrusted help can be

seen in [42].) This model provides a more flexible access to the advice than the advice

prefix and advice track setups mentioned above, in Chapter 1 and it differs from the

alternative proposal of Freivalds for advised finite-state automata [14] in the number

of allowed advice tapes, and the way in which the advice can be accessed.

We consider many variants of our machines, where the advised automaton is

classical or quantum, the tapes can be accessed in various alternative modes, and

the advice is deterministic or randomized. The language recognition power of these

variants are compared among themselves, and also with the corresponding instances of

the advice prefix and the advice track models. Freivalds’ model with multiple two-way

advice tapes is left out in these comparisons, as it would not be fair to compare the

power of this model with the others due to the way language recognition is defined in

this model, which requires advice strings provided for inputs of a specific length to be

helpful for all shorter inputs as well.

Below in Section 3.1 we will introduce the advice tape model in detail and set the

notation for naming the classes of languages that can be recognized by variants of this

model. Section 3.2 will present some basic observations before proceeding to the main

results. Section 3.3 will focus on the power and weaknesses of variants of deterministic

finite automata with advice tape. Having separate tape heads for scanning the input

and the advice strings is shown to be advantageous when either of these tape heads

is allowed to move bidirectionally or at least stay put. For such settings it is shown

that more and more languages can be recognized by allowing longer and longer advice

strings so that one can form an infinite hierarchy of language classes in this manner.

Section 3.4 will introduce randomness into the model by allowing either of probabilistic
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transition functions or randomly picked advice strings. The classes of languages that

can be recognized with bounded error in both of these settings are shown to be strictly

larger than the class of languages that can be recognized with equal resources in fully

deterministic settings. Section 3.5 will provide a brief discussion on quantum finite

automata with advice tape which is also shown to recognize more languages (with

bounded error) than the deterministic automata with similar resources.

3.1. Basic Notions, Formal Definitions and Notation

We model advice as a string provided on a separate read-only tape. As usual, the

content of the advice depends only on the length of the input. Formally, the advice

to the automaton is determined by an advice function h, which is a mapping from N

to strings in Γ∗, where Γ is the advice alphabet. This function may or may not be

computable.

Our advised machine model is then simply a finite automaton with two tapes.

The transition function of a (two-way) deterministic finite automaton with advice tape

(dfat) determines the next move of the machine based on the current internal state,

and the symbols scanned by the input and advice tape heads. Each move specifies the

next state, and a head movement direction (right(R), left(L), or stay-put(S)) for each

tape. A tape head that is allowed to move in all these directions is called two-way.

A head that is not allowed to move left is called one-way. We may also require a

head to be real-time, forcing it to move to the right at every step. As will be shown,

playing with these settings changes the computational power of the resulting model.

We assume that both the input and the advice strings are delimited by special end-

marker symbols (`,a), beyond which the automaton is not allowed to move its heads.

The machine halts and announces the corresponding decision when it enters one of the

two special states qaccept and qreject.

Unlike Freivalds [14], we do not allow two-way motion of the advice tape head, as

permitting this head to make leftward moves would cause “unfair” accounting of the
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space complexity of the advised machine.2

Figure 3.1. Schematic description of a finite automaton with advice tape.

We define the probabilistic and quantum versions of our advised automata by

generalizing the definition for deterministic automata in the standard way, see, for in-

stance, [44]. The transition function of a probabilistic finite automaton with advice tape

(pfat) specifies not necessarily one, but possibly many choices, associated with selec-

tion probabilities, for the next move at every step, with the well-formedness condition

that the probabilities of these choices always add up to 1. In the case of quantum

finite automata with advice tapes (qfat’s), each such choice is associated not with a

probability, but with an amplitude (a real number in the interval [-1,1]).

The presentation of our results on qfat’s will not require knowledge of technical

details of their definitions such as well-formedness conditions, and we will therefore

omit these, referring the reader to [44]. We should stress that there are many mutually

inequivalent quantum finite automaton definitions in the literature, and we use the

most powerful one [44, 45]. The quantum machines with advice tracks defined in [11]

are based on an older model [30], and this difference will be significant in our discussion

in Section 3.5.

2See Section 5.3.1 of [43] for a discussion of this issue in the context of certificate tape heads.
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3.1.1. Deterministic Finite Automata with Advice Tape

Below is a formal definition for a deterministic finite automaton with advice tape.

Definition 3.1. A deterministic finite automaton with an advice tape is a 9-tuple

(Q,Σ,Γ, TI , TA, δ, q0, qaccept, qreject), where

(i) Q is a finite set of internal states,

(ii) Σ is a finite set of symbols called the input alphabet that does not contain the

endmarker symbols, ` and a, such that Σ ∩ {`,a} = ∅ and Σ′ = Σ ∪ {`,a},

(iii) Γ is a finite set of symbols called the advice alphabet that does not contain the

endmarker symbols, ` and a, such that Γ ∩ {`,a} = ∅ and Γ′ = Γ ∪ {`,a},

(iv) TI ∈ {{L,S,R}, {S,R}, {R}} represents the set of allowed head movements for

the input tape,

(v) TA ∈ {{S,R}, {R}} represents the set of allowed head movements for the advice

tape,

(vi) δ : Q× Σ′ × Γ′ → Q× TI × TA is the transition function such that, δ(q1, σ, γ) =

(q2, tI , tA) implies that when the automaton is in state q1 ∈ Q and it scans σ ∈ Σ′

on its input tape and γ ∈ Γ′ on its advice tape, a transition occurs which changes

the state of the automaton to q2 ∈ Q, meanwhile moving the input and advice

tape heads in the directions specified respectively by tI ∈ TI and tA ∈ TA,

(vii) q0 ∈ Q is the initial state,

(viii) qaccept ∈ Q is the accepting state upon entering which the automaton halts and

announces that it accepts the input, and

(ix) qreject ∈ Q is the rejecting state upon entering which the automaton halts and

announces that it rejects the input.

A dfat M = (Q,Σ,Γ, TI , TA, δ, q0, qaccept, qreject) is said to accept (reject) a string

x ∈ Σ∗ with the help of an advice string a ∈ Γ∗ if and only if M , when started at its

initial state q0 with ` x a on the input tape and ` a a on the advice tape and while

the tape heads scan the first symbols to the right of the left endmarkers, reaches the

accepting state, qaccept (qreject), by changing states and moving the input and advice
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tape heads as specified by its transition function, δ.

A language L defined on the alphabet Σ, is said to be recognized by such a dfat

M with the help of an advice function h : N→ Γ∗ if and only if

• L = {x |M accepts x with the help of h(|x|)}, and

• L = {x |M rejects x with the help of h(|x|)}.

A language L is said to be recognized by such a dfat, M , using O(f(n))-length

advice if there exists an advice function h with the following properties:

• |h(n)| ∈ O(f(n)) for all n ∈ N, and

• M recognizes L with the help of h(n).

3.1.2. Probabilistic Finite Automata with Advice Tape

A probabilistic finite automaton with advice tape is defined as follows.

Definition 3.2. A probabilistic finite automaton with an advice tape is a 9-tuple

(Q,Σ,Γ, TI , TA, δ, q0, qaccept, qreject), where

(i) Q is a finite set of internal states,

(ii) Σ is a finite set of symbols called the input alphabet that does not contain the

endmarker symbols, ` and a, such that Σ ∩ {`,a} = ∅ and Σ′ = Σ ∪ {`,a},

(iii) Γ is a finite set of symbols called the advice alphabet that does not contain the

endmarker symbols, ` and a, such that Γ ∩ {`,a} = ∅ and Γ′ = Γ ∪ {`,a},

(iv) TI ∈ {{L,S,R}, {S,R}, {R}} represents the set of allowed head movements for

the input tape,

(v) TA ∈ {{S,R}, {R}} represents the set of allowed head movements for the advice

tape,

(vi) δ : Q × Σ′ × Γ′ × Q × TI × TA → [0, 1]R is the transition function such that,

δ(q1, σ, γ, q2, tI , tA) = p implies that when the automaton is in state q1 ∈ Q and
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it scans σ ∈ Σ′ on its input tape and γ ∈ Γ′ on its advice tape, a transition

occurs with probability, p ∈ [0, 1]R which changes the state of the automaton to

q2 ∈ Q, meanwhile moving the input and advice tape heads in the directions

specified respectively by tI ∈ TI and tA ∈ TA,

(vii) q0 ∈ Q is the initial state,

(viii) qaccept ∈ Q is the accepting state upon entering which the automaton halts and

announces that it accepts the input, and

(ix) qreject ∈ Q is the rejecting state upon entering which the automaton halts and

announces that it rejects the input.

The transition function δ must satisfy the following well-formedness condition.

∀(q1, σ, γ) ∈ Q× Σ′ × Γ′
∑

(q2,tI ,tA)∈Q×TI×TA

δ(q1, σ, γ, q2, tI , tA) = 1.

A pfat M = (Q,Σ,Γ, TI , TA, δ, q0, qaccept, qreject) is said to accept (reject) a string

x ∈ Σ∗ with probability p ∈ [0, 1]R with the help of an advice string a ∈ Γ∗ if and

only if M , when started at its initial state q0 with ` x a on the input tape and ` a a

on the advice tape and while the tape heads scan the first symbols to the right of the

left endmarkers, reaches, qaccept, (qreject) with probability p, by changing states and

moving the input and advice tape heads according to the probabilities specified by its

transition function, δ.

A language L defined on the alphabet Σ, is said to be recognized by such a pfat

M with bounded error, with the help of an advice function h : N → Γ∗ if and only if

there exists a constant ρ ∈ (1/2, 1]R such that

• L = {x |M accepts x with probability p ≥ ρ, with the help of h(|x|)}, and

• L = {x |M rejects x with probability p ≥ ρ, with the help of h(|x|)}.

A language L is said to be recognized by such a pfat, M with bounded error,

using O(f(n))-length advice if there exists an advice function h with the following
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properties:

• |h(n)| ∈ O(f(n)) for all n ∈ N, and

• M recognizes L with bounded error, with the help of h(n).

3.1.3. Quantum Finite Automata with Advice Tape

There exists a set of alternative definitions for a quantum finite automaton and

they are not mutually equivalent in terms of computational power. Among these

alternatives, the base model, on which we will build our definition of a qfat will be the

finite automaton with quantum and classical states which was first introduced in [46] in

two-way input access setting. The real-time variations of this model were also examined

later in [47] and separately in [44], [48] etc. For a brief discussion on the alternative

definitions of a qfa with their respective computational power and for further references

in this subject, the reader may refer to i.e. [49] where a finite automaton with quantum

and classical states is shown to be able to simulate not only other qfa models but also

its deterministic and probabilistic counterparts which share similar settings such as

input access type and the amount of allowed error.

Our definition of a qfat will make frequent use of terms from quantum compu-

tation domain such as “quantum states”, “Hilbert spaces”, “unitary operators” and

“projective measurements” with which we assume the reader is familiar. (The reader

may however refer to [50] or [51] for the definitions of these terms and for an effective

introduction of basic quantum computation concepts.) Given a finite set of quantum

states Q, the Hilbert space spanned by Q will be denoted by H(Q) in the remainder

and the sets of unitary operators and projective measurements over H(Q) will be de-

noted by U(H(Q)) and O(H(Q)) respectively. A finite automaton with quantum and

classical states augmented with an advice tape is then defined as follows.

Definition 3.3. A quantum finite automaton with an advice tape is a 14-tuple (Q,S,Σ,

Γ, TI , TA, |q0〉, s0, saccept, sreject,Θ,∆, C, δ), where
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(i) Q is a finite set of quantum states,

(ii) S is a finite set of classical states,

(iii) Σ is a finite set of symbols called the input alphabet that does not contain the

endmarker symbols, ` and a, such that Σ ∩ {`,a} = ∅ and Σ′ = Σ ∪ {`,a},

(iv) Γ is a finite set of symbols called the advice alphabet that does not contain the

endmarker symbols, ` and a, such that Γ ∩ {`,a} = ∅ and Γ′ = Γ ∪ {`,a},

(v) TI ∈ {{L,S,R}, {S,R}, {R}} represents the set of allowed head movements for

the input tape,

(vi) TA ∈ {{S,R}, {R}} represents the set of allowed head movements for the advice

tape,

(vii) |q0〉 ∈ Q is the initial quantum state,

(viii) s0 ∈ S is the initial classical state,

(ix) saccept ∈ S is the classical accepting state upon entering which the automaton halts

and announces that it accepts the input,

(x) sreject ∈ S is the classical rejecting state upon entering which the automaton halts

and announces that it rejects the input,

(xi) Θ : S×Σ′×Γ′ → U(H(Q)) is a mapping, which rules the evolution of the quantum

state of the automaton by assigning a unitary transformation to be applied on the

quantum state, at each transition of the automaton, based on the current classical

state of the automaton and the symbols its heads scan on the input and the advice

tape,

(xii) ∆ : S ×Σ′ × Γ′ → O(H(Q)) is a mapping which, following the application of the

unitary operation, selects the projective measurement (if any) to be applied on the

quantum state,

(xiii) C = {c1, c2, · · · , cs} is the set of potential outcomes of a projective measurement

over H(Q),

(xiv) δ : S × Σ′ × Γ′ × C → S × TI × TA is a mapping which at each transition,

rules the changes in the classical state and the tape head positions such that,

δ(s1, σ, γ, c) = (s2, tI , tA) indicates that when the automaton is in state s1 ∈ S

and it scans σ ∈ Σ′ on its input tape and γ ∈ Γ′ on its advice tape and when the

outcome of the observation performed on the quantum state during that transition
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is c ∈ C, a transition occurs which changes the classical state of the automaton

to s2 ∈ S, meanwhile moving the input and advice tape heads in the directions

specified respectively by tI ∈ TI and tA ∈ TA,

The computation starts in the classical state s0 and the quantum state |q0〉. The

transition that takes place when the automaton is in quantum state |q〉 ∈ Q and the

classical state s ∈ S, and when the tape heads scan σ ∈ Σ′ on the input tape and

γ ∈ Γ′ on the advice tape, consists of the following steps in the specified order:

• The unitary transformation specified by Θ(s, σ, γ) is applied on the quantum

state |q〉 to produce the new quantum state |q′〉.

• If a projective measurement is specified by ∆(s, σ, γ), this measurement is applied

on the new quantum state |q′〉 producing the outcome c ∈ C. If no measurement

is specified by ∆(s, σ, γ), the outcome, c, of this step is assumed to be the symbol

cε ∈ C.

• The classical state transition and the tape head movements specified by δ(s, σ, γ, c)

are applied on the classical state and the tape heads producing a new classical

state s′ and new tape head positions.

The automaton halts when it enters either of the classical states saccept and sreject.

We assume that δ is well defined so that every input gets accepted or rejected by the

automaton in this way.

A qfat (Q,S,Σ,Γ, TI , TA, |q0〉, s0, saccept, sreject,Θ,∆, C, δ) is said to accept (reject)

a string x ∈ Σ∗ with probability p ∈ [0, 1]R with the help of an advice string a ∈ Γ∗ if

and only if M , when started at its initial quantum state, |q0〉 and initial classical state

s0 with ` x a on the input tape and ` a a on the advice tape and while the tape heads

scan the first symbols to the right of the left endmarkers, reaches, saccept, (sreject) with

probability p, by changing states and moving input and advice tape heads as specified

by the set, {Θ,∆, δ} of transition functions.
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A language L defined on the alphabet Σ, is said to be recognized by such a qfat

M with bounded error, with the help of an advice function h : N → Γ∗ if and only if

there exists a constant ρ ∈ (1/2, 1]R such that

• L = {x |M accepts x with probability p ≥ ρ, with the help of h(|x|)}, and

• L = {x |M rejects x with probability p ≥ ρ, with the help of h(|x|)}.

A language L is said to be recognized by such a qfat, M with bounded error,

using O(f(n))-length advice if there exists an advice function h with the following

properties:

• |h(n)| ∈ O(f(n)) for all n ∈ N, and

• M recognizes L with bounded error, with the help of h(n).

3.1.4. The Classes of Languages Recognized with Advice Tape

For naming the language families corresponding to different settings of finite

automata with advice tapes we will use an extension of the basic template, V/F ,

introduced by Karp and Lipton. The principal change will be the use of square brackets

to cover the amount of advice as in V/[F ] which will indicate the fact that the advice

in consideration is provided on a separate tape with a real-time tape head. Further

specifications (if any) about the advice function will also take place within the square

brackets and be separated by a comma. In order to indicate one-way access to the

advice tape, the notation will be extended by use of the phrase 1- preceding the advice

amount as in V/1-[F ]. The function description f(n) used in place of F will denote

that the machine uses advice strings of length O(f(n)) for inputs of length n. (General

descriptors like poly and exp, for polynomial and exponential bounds, respectively, can

also be used in place of F .)

Following the notational conventions set by the past research, the name of the

class of languages corresponding to the unadvised version of the automaton in question

will be used in place of the V item in the template, thereby making the type of the
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input tape head explicit. Use of 1-DFA, for instance, will indicate that the underlying

automaton is a deterministic finite automaton with one-way access to its input tape

while we prefer to keep the notation, REG, which was used in the naming of the older

models, untouched for marking a deterministic finite automaton with real-time input

tape access. The resulting notation for naming the classes of languages corresponding

to the deterministic finite automata with advice tapes is summarized in Table 3.1 with

sample class names.

Table 3.1. Naming of the classes of languages corresponding to the deterministic

finite automata with advice tapes.

Automaton Tape Access Advice

Class Name Model Error Input Advice Type Amount

REG/[n] dfa none real time real time deterministic O(n)

REG/1-[f(n)] dfa none real time one way deterministic O(f(n))

1-DFA/[n] dfa none one way real time deterministic O(n)

1-DFA/1-[poly] dfa none one way one way deterministic polynomial

2-DFA/[exp] dfa none two way real time deterministic exponential

2-DFA/1-[k] dfa none two way one way deterministic k

The notational convention introduced above is flexible enough to represent the

language classes corresponding to the probabilistic and quantum advised machines as

well. Computation in probabilistic and quantum settings comes with a probability of

error in language recognition and the classes of languages recognized in each setting are

categorized also with respect to the type of the error -bounded or unbounded- allowed

in each setting. PFA and QFA conventionally denote the class of languages that can

be recognized with unbounded error(ue) by real-time probabilistic and quantum finite

automata. The corresponding classes that can be recognized with bounded error(be) in

these settings are marked respectively by BPFA and BQFA. The use of 1- and 2- which

appear as a prefix of the class names denote the classes of languages corresponding
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to the one-way and two-way versions of probabilistic and quantum automata as well.

Table 3.2 and Table 3.3 present sample names generated in this way, for the language

classes that correspond to probabilistic and quantum finite automata with advice tape.

Table 3.2. Naming of the classes of languages corresponding to the probabilistic finite

automata with advice tapes.

Automaton Tape Access Advice

Class Name Model Error Input Advice Type Amount

PFA/1-[n] pfa ue real time one way deterministic O(n)

BPFA/1-[n] pfa be real time one way deterministic O(n)

1-BPFA/1-[n] pfa be one way one way deterministic O(n)

Table 3.3. Naming of the classes of languages corresponding to the quantum finite

automata with advice tapes.

Automaton Tape Access Advice

Class Name Model Error Input Advice Type Amount

QFA/1-[n] qfa ue real time one way deterministic O(n)

BQFA/[n] qfa be real time real time deterministic O(n)

BQFA/1-[n] qfa be real time one way deterministic O(n)

We will also be examining randomly picked advice, as defined by Yamakami [9]. In

this scenario, the advice string is randomly selected from a set of alternatives according

to a prespecified probability distribution. (Deterministic finite automata which use

randomized advice was shown to be able to perform tasks which are impossible with

deterministic advice in [9].) The use of randomized advice will be indicated by the

letter R appearing before the advice length in our class names as in V/[R-F ]. In our

class names corresponding to this model of computation, the items, be and ue will be

used in superscript form next to the original class name in order to indicate whether
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bounded or unbounded-error language recognition is intended when this is not clear

from the core class name. The samples from the resulting class names are listed in

Table 3.4.

Table 3.4. Naming of the classes of languages corresponding to the finite automata

with random advice placed on advice tape.

Automaton Tape Access Advice

Class Name Model Error Input Advice Type Amount

REGbe/[R-f(n)] dfa be real time real time random O(f(n))

1-DFAbe/1-[R-n] dfa be one way one way random O(n)

3.2. Preliminary Notes

As we set the notation for talking about the corresponding language classes to

our models of advised finite automata we can list some basic observations on them,

before proceeding to our main results.

The model of real-time finite automata with advice tracks [7] is equivalent to our

model with a separate advice tape when we set both the input and advice tape heads to

be real-time. Therefore, all the results shown for the advice track model are inherited

for this setting of our machines. We have, for instance,

REG/[n] = REG/n (3.1)

where REG/n is defined in [7]. On the other hand, the quantum class 1-QFA/n of [11]

does not equal BQFA/[n], as we will show later in Section 3.5.

Note that we allow only one advice tape in our model. This is justified by the

following observation about the great power of one-way finite automata with multiple

advice tapes.
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Theorem 3.4. Every language can be recognized by a finite automaton with a one-way

input tape and two one-way advice tapes.

Proof. Let L be any language on the alphabet Σ. We construct a finite automaton M

that recognizes L using a one-way input tape and two one-way advice tapes as follows.

Let Γ = Σ∪{ca, cr} be the advice alphabet, where Σ∩{ca, cr} = ∅. For an input

of length n, the advice on the first advice tape lists every string in Σn in alphabetical

order, where every member of L is followed by a ca, and every nonmember is followed

by a cr. So the content of the first advice tape looks like

w1c1w2c2 · · ·w|Σ|nc|Σ|n ,

where wi ∈ Σn, and ci ∈ {ca, cr} for i ∈ {1, . . . , |Σ|n}.

The second advice tape content looks like

cac
n
r cac

n
r · · · cacnr ca,

with |Σ|n repetitions, and will be used by the machine for counting up to n + 1 by

moving between two consecutive ca symbols on this tape.

M starts its computation while scanning the first symbols of the input string and

w1 on the first advice tape. It attempts to match the symbols it reads from the input

tape and the first advice tape, moving synchronously on both tapes. If the ith input

symbol does not match the ith symbol of wj, M pauses on the input tape, while moving

the two advice heads simultaneously until the second advice head reaches the next ca,

thereby placing the first advice tape head on the ith position of wj+1, where 1 ≤ i ≤ n,

and 1 ≤ j < |Σ|n. As the words on the first advice tape are ordered lexicographically,

it is guaranteed that M will eventually locate the word on the first advice tape that



55

matches the input in this manner. M halts when it sees the endmarker on the input

tape, accepting if the symbol read at that point from the first advice tape is ca, and

rejecting otherwise.

3.3. Deterministic Finite Automata with Advice Tapes

It is clear that a machine with advice tape is at least as powerful as a machine of

the same type with advice track, which in turn is superior to a corresponding machine

with advice prefix, as mentioned in Section 2.2. We will now show that allowing either

one of the input and advice head to pause on their tapes does enlarge the class of

recognized languages.

Theorem 3.5. REG/n ( REG/1-[n].

Proof. It follows trivially from the definitions of the classes that

REG/n = REG/[n] ⊆ REG/1-[n]. (3.2)

Let |w|σ denote the number of occurrences of symbol σ in string w. To show that the

above subset relation is proper, we will consider the language

EQUAL2 = {w| w ∈ {a, b}∗ and |w|a = |w|b},

which is known [7] to lie outside REG/n.

One can construct a finite automaton that recognizes EQUAL2 with real-time input

and one-way access to linear-length advice as follows. For inputs of odd length, the

advice to the automaton is 0. Upon scanning 0 on the advice tape, the automaton

moves to a rejecting state and never leaves it, hence rejecting the input. For inputs of

even length, n, the advice function is 1n/2. Hence, the advice function h is given by
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h(n) =

0, if n is odd

1n/2, if n is even

The automaton moves its advice tape head one position to the right for each a

that it reads on the input tape. The input word is accepted if the number of a’s on

the input tape and the number of 1’s on the advice tape do match and it is rejected

otherwise.

State diagram of the dfat described above is shown in Figure 3.2 where an arrow

from node qi to node qj labeled as “(SI , SA)/(DI , DA) ” marks a transition that occurs

when the automaton is in state qi and scans the symbol SI on the input tape and SA

on the advice tape. This transition brings the automaton to state qj while moving

the input and advice tape heads in the directions indicated by DI ∈ TI and DA ∈ TA
respectively. The symbol ∗ is used as a shortcut for “any symbol” from the appropriate

set of symbols.

q0start q1

qacc qrej

(∗, 0)/(R,R)

(a, 1)/(R,R)

(b, 1)/(R,S)

(b,a)/(R,S)

(a, 1)/(R,R)

(a,a)/(R,R)

(∗, ∗)/(R,R)

(a,a)/(R,R)

(a,a)/(R,R)

Figure 3.2. State diagram for a finite automaton with advice tape that recognizes the

language EQUAL2 = {w| w ∈ {a, b}∗ and |w|a = |w|b}.

Theorem 3.6. REG/n ( 1-DFA/[n].
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Proof. Consider the language

EQUAL = {w|w ∈ {a, b, c}∗ where |w|a = |w|b},

which is similar to EQUAL2, but with a bigger alphabet. EQUAL /∈ REG/n, as can be

shown easily by Yamakami’s characterization theorem for this class. We will describe

a dfat M with one-way input, and real-time access to an advice string that is just 12n,

where n is the input length. (State diagram for M is given in Figure 3.3.)

M moves the advice head one step to the right for each a that it scans in the

input. When it scans a b, it advances the advice head by three steps and for each c,

scanned on the input tape, the advice head is moved two steps. If the advice head

attempts to move beyond the advice string, M rejects. When the input tape head

reaches the end of the tape, M waits to see if the advice tape head will also have

arrived at the end of the advice string after completing the moves indicated by the last

input symbol. If this occurs, M accepts, otherwise, it rejects.

Note that the advice head is required to move exactly |w|a + 3|w|b + 2(n− |w|a−

|w|b) steps, which equals 2n if and only if the input is a member of EQUAL. Therefore,

we have

EQUAL ∈ 1-DFA/[n]. (3.3)

Then we can safely state that

REG/n ( 1-DFA/[n]. (3.4)

Tadaki et al. [7] studied one-tape linear-time Turing machines with an advice

track, and showed that the class of languages that they can recognize coincides with
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q0start

qc

qb1

qb2

qacc q1

qrej

(a, 1)/(R,R)

(c, 1)/(S,R) (c, 1)/(R,R)

(b, 1)/(S,R)

(b, 1)/(S,R)

(b, 1)/(R,R)

(a,a)/(R,R)

(a, 1)/(R,R)

(∗,a)/(R,R)

(b,a)/(R,R)

(b,a)/(R,R)

(c,a)/(R,R)

(∗, ∗)/(R,R)

(a,a)/(R,R)

Figure 3.3. State diagram for a finite automaton with advice tape that recognizes the

language EQUAL = {w|w ∈ {a, b, c}∗ where |w|a = |w|b}.
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REG/n. Theorem 3.5 above lets us conclude that simply having a separate head for

advice increases the computational power of a real-time dfa, whereas the incorporation

of a single two-way head for accessing both advice and a linear amount of read/write

memory simultaneously does not.

As noted earlier, advice lengths which are increasing functions of the input length

are not useful in the advice prefix model. Only linear-sized advice has been studied

in the context of the advice track model [7, 9]. Theorem 3.7 demonstrates a family

of languages for which very small increasing advice length functions are useful in the

advice tape model, but not in the advice track model.

Theorem 3.7. For every function f : N → N such that f(n) ∈ ω(1) ∩ O(
√
n),

1-DFA/1-[f 2(n)] * REG/n.

Proof. Consider the language

LABCf = {akbmck|k ≤ f(n), n = k +m+ k},

of words made up of ordered sequences of a’s, b’s and c’s the lengths of which is deter-

mined by any function f satisfying the properties in the theorem statement. Noting

f(n) /∈ O(1), one may use Theorem 2 of [9] (which was cited as Fact 2.10 in Section

2.2) to show that

LABCf /∈ REG/n.

One can construct a dfat with one-way access to input and advice that recognizes LABCf

as follows. For inputs of length n, the advice string is of the form

##a#aa#aaa# · · ·#af(n)#,
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with length O(f 2(n)). During any step, if the automaton detects that the input is not

of the form a∗b∗c∗, it rejects the input. For each a that it reads from the input tape,

the automaton moves the advice tape head to the next # on the advice tape. (If the

advice ends when looking for a #, the input is rejected.) When the input tape head

scans the b’s, the advice tape head remains idle. Finally, when the input head starts

to scan the c’s, the automaton compares the number of c’s on the input tape with the

number of a’s that it can scan until the next # on the advice tape. If these match, the

input is accepted; otherwise it is rejected.

When restricted to constant size advice, the parallelism and the two-way input

access inherent in our model does not make it more powerful than the advice prefix

model. As we show now, one can always read the entire advice before starting to read

the input tape without loss of computational power in the constant-length advice case:

Theorem 3.8. For every k ∈ N, 2-DFA/1-[k] = REG/k.

Proof. The relation REG/k ⊆ 2-DFA/1-[k] is trivial, as an automaton taking constant-

length advice in the prefix or track formats can be converted easily to one that reads it

from a separate tape. For the other direction, note that a dfat M with two-way input

that uses k bits of advice corresponds to a set S of 2k real-time dfa’s without advice,

each of which can be obtained by hard-wiring a different advice string to the program

of M , and converting the resulting two-way dfa to the equivalent real-time machine,

which exists by [52]. The advice string’s job is just to specify which of these machines

will run on the input string. It is then easy to build a dfa with advice prefix which

uses the advice to select the appropriate program to run on the input.

Since our model is equivalent to the advice prefix model for constant-length ad-

vice, we inherit the results like Theorem 5 of [6], which states that the longer advice

strings one allows, the larger the class of languages we can recognize will be, as long

as one makes sure that the advice and input alphabets are identical.
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For any language L on an alphabet Σ, and for natural numbers n and k such that

k ≤ n, we define the relation ≡L,n,k on the set Σk as follows:

x ≡L,n,k y ⇐⇒ for all strings z of length n− k, xz ∈ L if and only if yz ∈ L.

In the remainder of this chapter, we will make frequent use the following lemma, which

is reminiscent of Yamakami’s characterization theorem for REG/n [9], to demonstrate

languages which are unrecognizable with certain amounts of advice by automata with

one-way input.

Lemma 3.9. For any function f , if L ∈ 1-DFA/1-[f(n)], then for all n and all k ≤ n,

≡L,n,k has O(f(n)) equivalence classes.

Proof. Let M be the dfat which is supposed to recognize L with an advice string of

length O(f(n)). If we fix the position of the input head, there are just O(f(n)) combi-

nations of internal state and advice head position pairs that are potentially reachable

for M . Assume that the number of equivalence classes of ≡L,n,k is not O(f(n)). Then

for some sufficiently large n, there exists two strings x and y of length k in two different

equivalence classes of ≡L,n,k which cause M to reach precisely the same head positions

and internal state after being processed if they are presented as the prefixes of two

n-symbol input strings in two separate executions of M . But M will then have to give

the same response to the two input strings xz and yz for any z ∈ Σn−k, meaning that

x ≡L,n,k y.

We can now establish the existence of an infinite hierarchy of language classes

that can be recognized by dfat’s with increasing amounts of advice.

Theorem 3.10. For k ∈ Z+, 1-DFA/1-[nk] ( 1-DFA/1-[nk+1].

Proof. In order to prove the theorem statement, we will first define a family LSPOSk

of languages for k ∈ Z+. Each language in this family will consist of words made up
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of symmetrically placed ordered sequences of symbols in the corresponding alphabet.

Then, we will show that advice strings of length Θ(ni) are necessary (Lemma 3.12) and

sufficient (Lemma 3.13) to recognize any particular member LSPOSi of this family.

Definition 3.11. For k ∈ Z+, we define the language LSPOSk on the k + 1-symbol

alphabet {c0, c1, . . . , ck} as

LSPOSk = {cnk
k c

nk−1

k−1 · · · c
n1
1 c

n0
0 c

n1
1 · · · c

nk−1

k−1 c
nk
k |n0 > 0 and nj ≥ 0 for j ∈ {1, . . . , k}}.

Lemma 3.12. For i ∈ Z+, LSPOSi /∈ 1-DFA/1-[ni−1]

Proof. For a positive integer n, consider the set S of strings of length k = bn/2c+1 and

of the form c∗i c
∗
i−1 · · · c∗1c+

0 . Note that each member of S is the first half of a different

member of LSPOSi, no two distinct members x and y of S satisfy x ≡LSPOSi,n,k y, and

that there are Θ(ni) members of S. We conclude using Lemma 3.9 that

LSPOSi /∈ 1-DFA/1-[ni−1]. (3.5)

Lemma 3.13. For i ∈ Z+, LSPOSi ∈ 1-DFA/1-[ni].

Proof. An inductive argument will be employed to show the truth of the statement, so

let us first consider the language LSPOS1. To see that

LSPOS1 ∈ 1-DFA/1-[n1], (3.6)

we construct an advice function h1(n) and an automaton M1 as follows. For inputs of

length n, let h1(n) = 1n be given as advice. The automaton M1 checks if the input is

of the form ci1c
j
0c
k
1 for i, k ≥ 0 and j > 0. If not, it rejects. In parallel, M1 moves the

advice tape head while scanning the input as follows:
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(i) For each c1 that comes before the first c0 in the input, the advice tape head stays

put.

(ii) For each c0 in the input, the advice tape head moves one step to the right.

(iii) Finally, for each c1 that comes after the last c0 in the input, the advice tape head

moves two steps to the right.

(iv) The input is accepted if the endmarkers are scanned simultaneously on both

tapes.

Since the advice head moves exactly j + 2k steps, which equals n = i + j + k if and

only if i = k, we conclude that M1 recognizes LSPOS1 when provided with h1(n), a

linear-length advice function.

Now let us prove that

LSPOSi ∈ 1-DFA/1-[ni] =⇒ LSPOSi+1 ∈ 1-DFA/1-[ni+1]. (3.7)

Assume LSPOSi ∈ 1-DFA/1-[ni]. Then there should be a dfat Mi which recognizes

LSPOSi when it has access to the advice function hi(n) of length O(ni). Below, we

construct a dfat Mi+1 and an advice function hi+1(n) of length O(ni+1) such that Mi+1

recognizes LSPOSi+1 when it has access to advice given by function hi+1(n).

Note that the members of LSPOSi+1 are members of LSPOSi sandwiched between

equal numbers of ci+1’s on each end. Therefore, the method for checking membership

in LSPOSi can be used in the test for membership in LSPOSi+1 if one can check whether

the ci+1 sequences at each end are of the same length separately. Hence, we define the

advice function hi+1(n) for LSPOSi+1 in terms of the advice function hi(n) for LSPOSi

as

hi+1(n) = hi(n)#i+1hi(n− 2)ci+1#i+1 · · ·#i+1hi(n− 2bn
2
c)cb

n
2
c

i+1#i+1,
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that is, one concatenates all the strings hi(n − 2j)cji+1#i+1 for j ∈ {0, . . . , bn
2
c} in

increasing order, where #i+1 is a new symbol in Mi+1’s advice alphabet. As hi(n) is of

length O(ni), the length of hi+1(n) can be verified to be O(ni+1).

When provided access to the advice function hi+1(n), the automaton Mi+1 per-

forms the tasks below in parallel in order to recognize the language LSPOSi+1.

(i) The input is checked to be of the form c∗i+1c
∗
i · · · c∗1 c+

0 c∗1 · · · c∗i c∗i+1. If not, it is

rejected.

(ii) For each ci+1 on the input tape, that comes before any other symbol, the advice

head is moved to the next #i+1 on the advice tape. If the endmarker is scanned

on the advice tape at this step, the input is rejected. When the first non-ci+1

symbol is scanned on the input, the control passes to the automaton Mi for

language LSPOSi, which runs on the input tape content until the first ci+1 or the

endmarker, and uses as advice the content until the first ci+1 or #i+1 on the

advice tape. If Mi rejects its input, so does Mi+1. If Mi accepts its input, Mi+1

accepts its input only if the number of ci+1’s on the remainder of the input tape

matches the number of ci+1’s on the advice tape until the first #i+1.

We now show that PAL = {wwR| w ∈ {a, b}∗and wR is the reverse of w}, the

language of even-length palindromes on the alphabet {a, b}, is unrecognizable by dfat’s

with one-way input and polynomial-length advice:

Theorem 3.14. PAL /∈ 1-DFA/1-[poly].

Proof. Similarly to the proof of Lemma 3.12, we consider the set S of all strings on

{a, b} of length k = n/2 for an even positive number n. No two distinct members x

and y of S satisfy x ≡PAL,n,k y, and there are 2Θ(n) members of S. We conclude using
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Lemma 3.9 that

PAL /∈ 1-DFA/1-[poly]. (3.8)

Note that, this result can be extended to include any sub-exponential advice

length function instead of polynomial, as the same line of reasoning can be applied in

these cases too. Moreover, since a machine with real-time input does not have time to

consume more than a linear amount of advice, we easily have

Corollary 3.15. For every function f : N→ N, PAL /∈ REG/1-[f(n)].

A natural question that arises during the study of advised computation is whether

the model under consideration is strong enough to recognize every desired language.

The combination of two-way input tape head and exponentially long advice can be

shown to give this power to finite automata. Let ALL denote the class of all languages

defined over the input alphabet Σ.

Theorem 3.16. 2-DFA/[exp] = ALL.

Proof. The advice string for input length n contains all members of the considered

language of length n, separated by substrings consisting of n + 2 blank symbols. The

automaton compares the input with each of the strings listed on the advice tape in the

order of appearance. If it is able to match the input to a word on the advice tape, it

accepts the input. If a mismatch occurs, the machine rewinds to the start of the input

while consuming blank symbols until the next member string on the advice tape. If

the advice ends without a match, the input is rejected. The advice length is 2O(n).

Whether 1-DFA/1-[exp] = ALL is an open question. We do not even know if PAL ∈

1-DFA/1-[exp]. But we are able to prove a separation between classes corresponding to
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machines with one-way versus two-way input that are confined to polynomial-length

advice, as the following theorem shows.

Theorem 3.17. 1-DFA/1-[poly] ( 2-DFA/1-[poly].

Proof. We already showed in Theorem 3.14 that polynomial-length advice is no help

for dfat’s with one-way input for recognizing PAL. To prove the present theorem, we

shall describe how a two-way dfa with real-time access to a quadratic-length advice

string can recognize PAL. On an input of length n, the advice tells the automaton to

reject if n is odd. For even n, the advice assists the automaton by simply marking the

n/2 pairs (i, n − i + 1) of positions that should be holding matching symbols on the

input string. Consider, for example

h(8) = #10000001#01000010#00100100#00011000#.

The automaton should just traverse the input from the first symbol to the last while

also traversing the part of the advice that lies between two separator symbols (#), and

then do the same while going from the last symbol to the first, and so on. At each

pass, the automaton should check whether the input symbols whose positions match

those of the two 1’s on the advice are identical. If this check fails at any pass, the

automaton rejects the input, otherwise, it accepts.

The method described above requires a two-way automaton with real-time access

to an advice of length n2/2. (The separator symbols are for ease of presentation, and

are not actually needed for the construction.)

3.4. Randomized Advice for Deterministic Machines and vice versa

We now turn to randomly selected probabilistic advice given to deterministic

machines. Yamakami [9] proved that this setup yields an improvement in language
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recognition power over REG/n, by demonstrating a deterministic automaton with ad-

vice track recognizing the center-marked palindrome language with randomized advice.

Considering the amount of randomness involved in the selection of the advice string as

a resource, Yamakami’s example requires O(n) random bits, since it requires picking a

string from a set with 2O(n) elements with uniform probability.

Furthermore, reducing the error bound of Yamakami’s automaton to smaller and

smaller values requires extending the advice alphabet to bigger and bigger sizes. In

the construction we will present in Theorem 3.18, the number of random bits does

not depend on the input length, and any desired error bound can be achieved without

modifying the advice alphabet.

Theorem 3.18. 1-DFA/1-[n] ( 1-DFAbe/1-[R-n].

Proof. We will use the language

EQUAL3 = {w| w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}

to separate the language classes in the theorem statement.

Let k be any positive integer, n = 3k, and consider the set S of all strings of

length k and of the form a∗b∗c∗. Note that S has
(
k+2

2

)
= ω(n) members, and that no

two distinct members x and y of S satisfy x ≡EQUAL3,n,k y. We conclude using Lemma

3.9 that

EQUAL3 /∈ 1-DFA/1-[n]. (3.9)

To show that

EQUAL3 ∈ 1-DFAbe/1-[R-n], (3.10)
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we will describe a set of advice strings, and show how a randomly selected member of

this set can assist a one-way dfat N to recognize EQUAL3 with overall bounded error.

We shall be adapting a technique used by Freivalds in [53].

If the input length n is not divisible by 3, N rejects. If n = 3k for some integer

k, the advice is selected with equal probability from a collection of linear-size advice

strings

Ai = 1i#1ki
2+ki+k for i ∈ {1, . . . , s},

where s is a constant.

N starts by reading the 1’s in the advice string that precede the separator char-

acter #, thereby learning the number i. N then starts to scan the input symbols, and

moves the advice head 1, i, or i2 steps to the right for each a, b or c that it reads

on the input tape, respectively. The input is accepted if the automaton reaches the

ends of the input and advice strings simultaneously, as in the proof of Theorem 3.4.

Otherwise, the input is rejected. Note that the automaton accepts the input string w

if and only if the number of symbols in the advice string that comes after the separator

symbol is equal to the total number of moves made by the advice tape head while the

input head scans w. N accepts w if and only if

|w|a + |w|bi+ |w|ci2 = k + ki+ ki2, (3.11)

which trivially holds for w ∈ EQUAL3 no matter which advice string is selected, since

|w|a = |w|b = |w|c = k in that case.

If w /∈ EQUAL3, the probability of acceptance is equal to the probability of selecting

one of the roots of the quadratic equation

(|w|c − k)i2 + (|w|b − k)i+ (|w|a − k) = 0, (3.12)
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as the value of i. This probability is bounded by 2
s
, and can be pulled down to any

desired level by picking a bigger value for s, and reorganizing the automaton accord-

ingly.

Another way of integrating randomness to the original model is to employ prob-

abilistic computation with access to deterministic advice. We show below that proba-

bilistic automata with advice can recognize more languages with bounded error than

their deterministic counterparts.

Theorem 3.19. 1-DFA/1-[n] ( 1-BPFA/1-[n].

Proof. The following inclusion is by definition:

1-DFA/1-[n] ⊆ 1-BPFA/1-[n]. (3.13)

So it remains to show that there is a language which can not be recognized by a one-

way dfat with one-way access to linear-size advice but can be recognized with bounded

error by a pfat with one-way input with the help of same amount of advice. We claim

that EQUAL3, which was introduced and was shown to lie outside 1-DFA/1-[n] in the

proof of Theorem 3.18, is one such language.

We now describe how to construct a one-way pfat P and an associated linear-

length advice function to recognize EQUAL3 for any specified nonzero error bound ε < 1
2
.

The idea is reminiscent of that used for the proof of Theorem 3.18. However we now

specify a deterministic advice function which contains all the alternatives and let the

probabilistic automaton randomly pick and use one.

Let n denote the length of the input, and let s = d2
ε
e. If n is not divisible by

3, the automaton rejects with probability 1. If n is divisible by 3, the advice is the

string which is obtained by concatenating all the strings #1
n
3
i2+n

3
i+n

3 for i ∈ {1, . . . , s}

in increasing order as seen below:
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#1n#1
7n
3 # . . .#1

n
3
s2+n

3
s+n

3 ,

P starts by randomly picking an integer i between 1 and s, and moving its advice

head to the i’th #. It then starts scanning the input, moving the advice head by

1, i, or i2 steps for each a, b or c, just as we had in the proof of Theorem 3.18. It

accepts if and only if the advice head reaches the next # (or the end of the advice

string) simultaneously with the arrival at the end of the input. The correctness of the

algorithm follows from the argument in the proof of Theorem 3.18. Hence we have

shown that

EQUAL3 ∈ 1-BPFA/1-[n] (3.14)

and therefore we can conclude

1-DFA/1-[n] ( 1-BPFA/1-[n]. (3.15)

3.5. Quantum Finite Automata with Advice Tapes

Yamakami [11,12] defined the class 1-QFA/n as the collection of languages which

can be recognized with bounded error by real-time Kondacs-Watrous quantum finite

automata (KWqfa’s) with advice tracks. The KWqfa is one of many inequivalent

models of quantum finite-state computation that were proposed in the 1990’s, and is

known to be strictly weaker than classical finite automata in the context of bounded-

error language recognition [30]. This weakness carries over to the advised model of

[11, 12], with the result that there exist some regular languages that are not members

of 1-QFA/n. We use a state-of-the-art model of quantum automaton that can simulate

its classical counterparts trivially, [44,45] so we have:

Theorem 3.20. 1-QFA/n ( BQFA/[n].
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Whether this strong version of qfa can outperform its classical counterparts with

advice tapes is an open question. We are able to show a case in which a quantum

automaton has an advantage over a classical one in the following restricted setup,

which may seem trivial at first sight: Call an advice tape empty if it contains the

standard blank tape symbol in all its squares. We say that a machine M receives

empty advice of length f(n), if it is just allowed to move its advice head on the first

f(n) squares of an empty advice tape, where n is the input length. This restriction

will be represented by the presence of the designation empty in the specification lists

of the relevant complexity classes.

Theorem 3.21. BPFA/1-[n, empty] ( BQFA/1-[n, empty].

Proof. An empty advice tape can be seen as an increment-only counter, where each

move of the advice tape head corresponds to an incrementation on the counter, with no

mechanism for decrementation or zero-testing provided in the programming language.

In [48], Yakaryılmaz et al. studied precisely this model. It is obvious that classical

automata augmented with such a counter do not gain any additional computational

power, so BPFA/1-[n, empty] equals the class of regular languages, just like the cor-

responding class without advice. On the other hand, real-time qfa’s augmented with

such an increment-only counter were shown to recognize some nonregular languages

like EQUAL2 with bounded error in [48].

Since increment-only counters are known to increase the computational power of

real-time qfa’s in the unbounded-error setting as well, [48], we can also state that

Theorem 3.22. PFA/1-[n, empty] ( QFA/1-[n, empty].
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4. INKDOTS AS ADVICE TO FINITE AUTOMATA

In this chapter, we introduce a novel way of providing advice to finite automata,

namely, by marking some positions on the input with inkdots. Deterministic and prob-

abilistic versions of the model are taken into account and the strengths and the limits

of these settings are analyzed in comparison with the previously studied models of

advised finite automata. The results of this analysis are presented in the form of sepa-

rations, collapses and hierarchies among the classes of languages that can be recognized

in different settings with varying amounts of advice. The discussion is also extended

to issues such as succinctness in terms of the number of states of a minimal finite

automaton and to coexistence of advice and access to very small secondary memory.

The remainder of this chapter is structured as follows. The advice inkdot model

and the corresponding language classes will be presented in detail in Section 4.1. This

new model will be compared with the previously studied models of advised finite au-

tomata in Sections 4.2 and 4.3, where it will be shown to be intermediate in power

between the prefix and the track models of advice. Section 4.4 will demonstrate the

existence of an infinite hierarchy among the classes of languages that can be recognized

with the help of different numbers of inkdots as advice; both when those numbers are

restricted to be constants, and when bounded by increasing functions of the input

length. In Section 4.5, we will show that inkdot advice can cause significant savings in

the number of states of the advised automaton when compared with the prefix advice

model, which in turn is superior in this sense to pure unadvised automata. In Sec-

tion 4.6, we will demonstrate that the strength of the model increases if one employs

a probabilistic automaton instead of a deterministic one, and assists it with inkdots

placed randomly according to an advice distribution. Section 4.7 will extend the ad-

vised machine model by allowing it access to a work tape. It is interesting to note

that arbitrarily small space turns out to be a fruitful computational resource along

with advice, while it is well known that one-way sublogarithmic space Turing machines

(TM’s) cannot recognize more languages than their constant-space counterparts.
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4.1. Basic Notions, Formal Definitions and Notation

In this section, we introduce a new model of advised finite automata in which the

advice will be provided as inkdots on the input string. An inkdot is a supplementary

marker that can be placed on any symbol of the input of a computing machine. The

presence of that mark can be sensed by the automaton only when the input tape head

visits that position. This mark can not be erased or moved, and no more than one

inkdot is allowed on one cell. (Inkdots are different from pebbles, which are more

widely used in the literature (see e.g. [54]), only in their inability to be moved around

on the input tape.)

It is known (see [55]) that a deterministic Turing machine would not gain any

additional computational power if it is also provided with the ability of marking one

input tape cell with an inkdot.

Figure 4.1. Schematic description of a finite automaton with inkdot advice.

A finite automaton that takes inkdots as advice does not have the power to mark

cells on the input tape with inkdots, however, it can sense these marks if they are

present on the currently scanned input cell. The inkdots are assumed to be placed prior

to the execution of the machine in accordance with an advice function, h : N→ P(N),

which maps the length of the input string to a set of positions on the input string

where the inkdots are to be placed. (p ∈ h(n) implies p ≤ n.)
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A deterministic finite automaton (dfa) with inkdot advice can then be defined in

a similar way to a standard unadvised dfa (see e.g. [17]), with an additional reference

to the set I = {0, 1} of values for expressing the presence (1) or absence (0) of an

inkdot on a cell. (As we do not allow more than one inkdot an a cell i ∈ I = {0, 1}

can be taken as the number of inkdots on a cell as well.)

4.1.1. Deterministic Finite Automata with Advice Inkdots

Below is a formal definition for a deterministic finite automaton with advice

inkdots.

Definition 4.1. A deterministic finite automaton with advice inkdots is a 5-tuple

(Q,Σ, δ, q0, F ), where

(i) Q is a finite set of internal states,

(ii) Σ is a finite set of symbols called the input alphabet,

(iii) δ : Q×Σ×I → Q is the transition function, such that, δ(q1, σ, i) = q2 implies that

when the automaton is in state q1 ∈ Q and it scans σ ∈ Σ on its input tape and

it senses i ∈ I = {0, 1} inkdots on the currently scanned input cell, a transition

occurs which changes the state of the automaton to q2 ∈ Q, meanwhile moving

the input head to the next cell to the right of the current one,

(iv) q0 ∈ Q is the initial state,

(v) F ⊆ Q is a set of accepting states.

A dfa with inkdot advice M = (Q,Σ, δ, q0, F ) is said to accept a string x ∈ Σ∗

with the help of inkdots as advice if and only if M , when started at its initial state,

q0, reaches an accepting state, qf ∈ F , after it scans the last symbol of the input by

changing states as specified by its transition function, δ. x is said to be rejected by M

in these settings if it is not accepted.

A language L defined on the alphabet Σ, is said to be recognized by such a dfa

M with the help of an advice function h : N→ P(N) iff
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• L = {x | M accepts x with the help of inkdots, placed on the input tape, at the

positions specified by h(|x|)}, and

• L = {x | M rejects x with the help of inkdots, placed on the input tape, at the

positions specified by h(|x|)}.

A language L is said to be recognized by such a dfa M using f(n) advice inkdots

if there exists an advice function h : N→ P(N) with the following properties:

• |h(n)| ≤ f(n) for all n ∈ N, and,

• M recognizes L with the help of h(n).

4.1.2. Probabilistic Finite Automata with Advice Inkdots

Below is a formal definition for a probabilistic finite automaton with advice

inkdots.

Definition 4.2. A probabilistic finite automaton with advice inkdots is a 5-tuple (Q,Σ,

δ, q0, F ), where

(i) Q is a finite set of internal states,

(ii) Σ is a finite set of symbols called the input alphabet,

(iii) δ : Q×Σ× I ×Q→ [0, 1]R is the transition function such that, δ(q1, σ, i, q2) = p

implies that when the automaton is in state q1 ∈ Q and it scans σ ∈ Σ on its

input tape and it senses i ∈ I = {0, 1} inkdots on the currently scanned input

cell, a transition occurs with probability p ∈ [0, 1]R which changes the state of the

automaton to q2 ∈ Q, meanwhile moving input head to the next cell to the right,

(iv) q0 ∈ Q is the initial state,

(v) F ⊆ Q is a set of accepting states.

The transition function δ must satisfy the following well-formedness condition.

∀(q1, σ, i) ∈ Q× Σ× I
∑

(q2)∈Q

δ(q1, σ, i, q2) = 1.
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A pfa with advice inkdots M = (Q,Σ, δ, q0, F ) is said to accept a string x ∈ Σ∗

with probability p ∈ [0, 1]R with the help of inkdots as advice if and only if M , when

started at its initial state, q0, reaches an accepting state, qf ∈ F with probability p, after

it scans the last symbol of the input by changing states according to the probabilities

specified by its transition function, δ. x is said to be rejected by M , in these settings

with probability 1− p if it is accepted with probability p.

A language L defined on the alphabet Σ, is said to be recognized with bounded

error by such a pfa M with the help of an advice function h : N→ P(N) if and only if

there exists a constant ρ ∈ (1/2, 1]R such that

• L = {x | M accepts x with probability p ≥ ρ, with the help of inkdots, placed

on the input tape, at the positions specified by h(|x|)}, and

• L = {x |M rejects x with probability p ≥ ρ, with the help of inkdots, placed on

the input tape, at the positions specified by h(|x|)}.

A language L is said to be recognized with bounded error by such a pfa M with

the help of f(n) advice inkdots if there exists an advice function h : N → P(N) with

the following properties:

• |h(n)| ≤ f(n) for all n ∈ N, and,

• M recognizes L with bounded error, with the help of h(n).

4.1.3. The Classes of Languages Recognized with Inkdot Advice

The language families associated with advice inkdots will be named according to

an adaptation of the template V/F , introduced by Karp and Lipton where the fact

that the advice in consideration is provided in the form of inkdots will be made explicit

by use of the symbol � in parentheses, as in V/F (�). In that template F may either

be a natural number, describing cases where the advised machine is supposed to use

at most that constant number of inkdots regardless of the length of the input, or a

function f(n), indicating that at most O(f(n)) inkdots can appear in the advice for
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inputs of length n.

The name of the class of languages corresponding to the unadvised version of the

automaton in question will appear in our advised class names in place of the V item

in the template. In most of the cases, deterministic finite automata will be considered

as the underlying model of computation which will be reflected by use of REG in the

corresponding class names. One-way Turing machines which use space bounded by an

amount s is the only other model for which inkdots will be considered as advice as part

of our discussion and in this case 1-DSPACE(s) will appear in the corresponding class

names in place of V in the template.

We will also examine randomly placed inkdots as advice to the finite automata

where the positions of the advice inkdots are randomly selected from a set of alterna-

tives according to a prespecified probability distribution. In our class names, the use of

such randomized advice will be indicated by the letter R appearing before the amount

of the advice inkdots and we will also make it explicit that bounded-error language

recognition is in consideration by adding the item be in superscript form, next to the

original unadvised class name as in REGbe/R-a(�).

Table 4.1 provides a summary of the notation described above for the classes of

languages that will be mentioned in the subsequent sections.

Table 4.1. Naming of the classes of languages corresponding to the finite and small

space automata with inkdot advice.

Automaton Advice

Class Name Type Space Error Input Type Amount

REG/n(�) dfa const none real time deterministic O(n)

1-DSPACE(log n)/1(�) 1tm log n none one way deterministic 1

REGbe/R-n(�) dfa const be real time random O(n)
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4.2. Inkdots vs. Prefix Strings as Advice

We start by establishing that the inkdot advice model is stronger than the prefix

model, even when it is restricted to a single inkdot per advice.

Theorem 4.3. For every k ∈ N, REG/k ( REG/1(�).

Proof. We first show that REG/k ⊆ REG/1(�) for all k ∈ N. Let L be a language

that is recognized by a dfa M using k bits of binary prefix advice. Without loss of

generality, assume that L is defined on a binary alphabet. One can construct a finite

automaton N that recognizes L with the help of a single inkdot as advice as follows.

N will use a lookup table to treat inputs shorter than 2k bits on its own, without

utilizing advice. For longer inputs, view each advice string given to M as a natural

number b written with k bits. This information will be conveyed by placing the inkdot

on the (b+ 1)’st symbol of the input to N .

Note that reading the prefix advice may bring M into one of at most of 2k different

states when it is positioned at the beginning of the actual input. N simulates at most

2k different instances of M starting from each of those different initial states in parallel

on the actual input. When it scans the inkdot, N uses the information encoded in the

inkdot’s position to pick one of the simulated machines, run it to its completion, and

report its outcome as the result of its computation.

Having proven the subset relation, it remains to exhibit a language recognized by

a finite automaton that takes an inkdot as advice but not by any dfa that takes prefix

advice. Consider the language {ambm | m ∈ N}, which can not be recognized by any

finite automaton with advice prefix, by Propositions 1 and 7 of [6]. An inkdot marking

the (n/2) + 1’st symbol for inputs of even length n is sufficient to help a dfa recognize

this language, since the machine need only check that the string is of the form a∗b∗,

and that the first b appears precisely at the marked position.
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4.3. Inkdots vs. the Advice Track

It is evident that inkdot advice is a special case of the advice track model, when

the advice alphabet is restricted to be binary. Recall that REG/n(t) denotes the class

of languages recognized by dfa’s with the aid of advice written on a track using a t-ary

alphabet.

Theorem 4.4. REG/n(�) = REG/n(2).

Proof. Any inkdot pattern on the n-symbol-long input string corresponds to a unique

n-bit advice string, with (say) 1’s for the marked positions, and 0’s for the rest. The

way the advice track is accessed simultaneously with the input track makes the two

simulations required for proving the equality trivial.

The reader is thus referred to Section 2.3 (and to [7] and [9]) for what is already

known about the capabilities and limitations of advice read from tracks with binary

alphabets. In particular, Theorem 2 of [9] , which is cited as Fact 2.9 in Section 2.3,

provides a straightforward characterization of REG/n, and can thus be used to show

that certain languages are not in REG/n, and therefore neither in REG/n(�).

In order to show the difference between the inkdot model and the general advice

track approach, we consider bigger track alphabets.

Theorem 4.5. REG/n(�) ( REG/n(k) for all k ∈ Z with k > 2.

Proof. Since we have REG/n(�) = REG/n(2) by Theorem 4.4 and since it is trivially

true that REG/n(2) ⊆ REG/n(k) for all k ∈ Z with k > 2, we just need to show

the existence of languages that can be recognized by finite automata with the help

of k-ary advice but not with the help of binary advice supplied on the advice track.

Below, we will adopt a method used by Damm and Holzer in [6] which is based on the

incompressibility of a random binary sequence.
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Let w = w1w2 · · · be an infinite (Martin-Löf) random binary sequence. Let wi

denote i’th symbol of w and let wi:j denote the segment of w which starts with wi and

ends with wj, where i ≤ j. As w is random, none of its prefixes can be compressed by

more than an additive constant, i.e. there is a constant c such that K(w1:n) ≥ n − c

for all n where K(w1:n) stands for the Kolmogorov complexity or equivalently, size of

the minimum description of w1:n. (For a precise definition of Kolmogorov complexity

the reader may refer to [56] or to [57].) With reference to w, we will define a k-ary (for

arbitrary k > 2) language, LRSw of words obtained by a special re-encoding of subwords

of w as a result of which LRSw will have exactly one member, li, of each length i ∈ Z+.

For i ∈ Z+, we first divide w into consecutive subwords si the lengths, |si| of which

will be specified further below.

We obtain each member li of LRSw from the corresponding subword si of w by

first reading si as a binary number, then converting it to a k-ary number, and then

padding with zeros to the left if necessary to make the result i symbols long. This

relation can be expressed by a function f as li = f(si, k, i). We are yet to specify the

lengths of each subword si in w. We need to be able to encode the content of si into i

k-ary symbols. This entails |si| ≤ blog2(ki)c. So we set |si| = blog2(ki)c for maximum

compression.

Then we can formally define LRSw as

LRSw = {f(wa:b, k, i) | a =
i−1∑
u=1

(blog2(ku)c) + 1, b =
i∑

u=1

(blog2(ku)c) for i ∈ Z+}.

Since LRSw has exactly one member of each length, it is obvious that providing this

member as advice and letting the automaton check the equality of the advice and the

input would suffice to recognize LRSw when a k-ary alphabet is used on the advice

track. Therefore, we have LRSw ∈ REG/n(k).

Now let us assume LRSw ∈ REG/n(2), which would mean that there is a dfa

M which recognizes LRSw with the help of binary advice on the advice track. Let
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a1, a2, . . . , an be the binary advice strings to M for inputs of length 1, 2, . . . , n respec-

tively. Then Algorithm 4.2 working on the input a1, a2, . . . , an would compute and

print the concatenation of the first n subwords s1, . . . , sn of w.

1: on input a1, a2, . . . , an

2: result = blank

3: for i = 1 to n do

4: for every k-ary string s of length i do

5: Simulate M on input s with advice ai

6: if M accepts s then

7: si = TranslateToBinary(s, blog2(ki)c)

8: result = concat(result, si)

9: break

10: end if

11: end for

12: end for

13: print result

14: end

15: procedure TranslateToBinary(word, length)

16: binary-number = transform word from k-ary to binary

17: binary-word = pad binary-number with zeros to the left until it fits length

18: return binary-word

19: end procedure

Figure 4.2. A short program for printing a prefix of the infinite random binary

sequence w.

So Algorithm 4.2 (which is, say, c bits long) and the first n advice strings for

M form a description of the prefix of w formed by concatenating the first n subwords

s1, . . . , sn. But this violates the incompressibility of w, since for large values of n,

the total length of s1, . . . , sn is given by
∑n

u=1(blog2 k
uc), which will be approximately



82

log2 k times the length of its description, c+
∑n

u=1(u). Therefore, we have

LRSw /∈ REG/n(2), (4.1)

and hence

LRSw /∈ REG/n(�), (4.2)

which suffices to show the truth of the theorem statement.

4.4. Language Recognition with Varying Amounts of Inkdots

Having shown that a single inkdot is a more powerful kind of advice to dfa’s than

arbitrarily long prefix strings, and that no combination of inkdots could match the full

power of the track advice model, we now examine the finer structure of the classes of

languages recognized by dfa’s advised by inkdots. A natural question to ask is: How

does the recognition power increase when one allows more and more inkdots as advice?

Or equivalently: How stronger does a finite automaton get when one allows more and

more 1’s in the binary advice string written on its advice track?

We start by establishing the existence of an infinite hierarchy in the class of

languages recognized by dfa’s aided with a constant number of inkdots, independent

of the input length. It will be shown that m + 1 inkdots are stronger than m inkdots

as advice to dfa’s for any value of m. The following family of languages, defined for

m ∈ Z+, on the binary alphabet {0, 1}, will be used in our proof:

LAELSm = {(0i1i)dm/2e(0i)m+1−2dm/2e | i > 0}.

Note that, LAELSm is the set of strings that consist of m + 1 alternating equal-length

sequences of 0’s and 1’s. LAELS1 and LAELS2, for example, coincide with the well known
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languages shown below:

LAELS1 = {0n1n | n > 0}, (4.3)

LAELS2 = {0n1n0n | n > 0}. (4.4)

Theorem 4.6. For every m ∈ Z+, REG/(m− 1)(�) ( REG/m(�).

Proof. We start by showing that m inkdots of advice is sufficient to recognize language

LAELSm for any m.

Observe that LAELSm has no member of length n if n is not divisible by m + 1,

and it has exactly one member of length n if n is divisible by m+ 1. A member string

is made up of m+ 1 segments of equal length, each of which contains only one symbol.

Let us call the positions ( n
m+1

+ 1), ( 2n
m+1

+ 1), . . . , ( mn
m+1

+ 1) of a member of LAELSm,

where a new segment starts after the end of the previous one, the “border points”. If

m inkdots marking these m border points are provided as advice, a finite automaton

can recognize LAELSm by simply accepting a string whose length is a multiple of m+ 1

if and only if the input consists of alternating runs of 0’s and 1’s, and that all and only

the marked symbols are different than their predecessors in the string.

We have thus proven that

LAELSm ∈ REG/m(�) for m ∈ Z+. (4.5)

To show that LAELSm /∈ REG/(m − 1)(�) for any m, suppose that there is a finite

automaton M which recognizes the language LAELSm with the help of m − 1 inkdots

for some m ∈ Z+. Let q be the number of states of M , and let u be an integer greater

than 4q2.
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Note that the string s = (0u1u)dm/2e(0u)m+1−2dm/2e is in LAELSm, and so it should

be accepted by M . We will use s to construct another string of the same length which

would necessarily be accepted by M with the same advice, although it would not be a

member of LAELSm.

Note that there are m border points in s. Let us call the (4q2 + 1)-symbol-long

substring of s centered at some border point the neighborhood of that border point.

SinceM takes at mostm−1 inkdots as advice, there should be at least one border point,

say, b, whose neighborhood contains no inkdot. Without loss of generality, assume that

position b of the string s contains a 1, so the neighborhood is of the form 02q212q2+1.

Since M has only q states, and there is no inkdot around, M must “loop” (i.e. enter

the same state repeatedly) both while scanning the 0’s, and also while scanning the

1’s of this neighborhood. Let d denote the least common multiple of the periods of the

two loops (say, p1 and p2) described above. Note that as p1 ≤ q and p2 ≤ q, d can not

be greater than q2.

Now consider the new string s′ that is constructed by replacing the aforemen-

tioned neighborhood 02q212q2+1 in s with the string 02q2−d12q2+d+1. s′ is of the same

length as s, and it is clearly not a member of LAELSm, since it contains segments of

different lengths. But M would nonetheless accept s′ with the advice for this input

length, since M ’s computation on s′ would be almost the same as that on s, with the

exception that it loops d/p2 more times on the segment containing position b, and

d/p1 fewer times on the preceding segment, which is still long enough (i.e. at least q2

symbols long) to keep M looping. M therefore enters the same states when it starts

scanning each segment of new symbols during its executions on both s and s′, and

necessarily ends up in the same state at the end of both computations. This means

that M accepts a nonmember of LAELSm, which contradicts the assumption that M

recognizes LAELSm with m− 1 inkdots as advice.

It has been shown that every additional inkdot increases the language recognition

power of dfa’s that operate with constant amounts of advice. Extending the same
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argument, we now prove that more and more languages can be recognized if one allows

the amount of inkdots given as advice to be faster and faster increasing functions of

the length of the input.

Theorem 4.7. For every pair of functions f, g : N→ N such that f(n) ∈ ω(1)∩ o(n),

if there exists n0 ∈ Z such that g(n) < f(n) − 2 for all n > n0, then REG/g(n)(�) (

REG/f(n)(�).

Proof. Let f be a function on N such that f(n) ∈ ω(1)∩o(n), and let f ′(n) = dn/f(n)e.

Note that f ′(n) ∈ ω(1) ∩ o(n), and f(n) ≥ n/f ′(n) for all n. Consider the

language

LBSES1f = {w | w = w1 · · ·wi · · ·wn where wi ∈ {0, 1} and wi = 1 iff i = kf ′(n) for

some k ∈ Z+}.

Each member w of LBSES1f is simply a binary string with equally spaced 1’s.

It contains 1’s at the f ′(|w|)’th, 2f ′(|w|)’th, etc. positions, and 0’s everywhere else.

Since the gaps between the 1’s is f ′(|w|), i.e. an increasing function of the input

length, sufficiently long members of LBSES1f can be “pumped” to obtain nonmembers,

meaning that LBSES1f can not be recognized by a finite automaton without advice.

However a finite automaton which takes inkdots as advice can recognize LBSES1f easily:

The advice for length n consists simply of inkdots placed on the exact positions where

1’s are supposed to appear in a member string of this length. As a member with length

n contains at most n/f ′(n) 1’s, f(n) inkdots are sufficient. We conclude that

LBSES1f ∈ REG/f(n)(�). (4.6)

Now, suppose that LBSES1f ∈ REG/g(n)(�) for some function g : N → N such

that g(n) < f(n) − 2. Then there should be a finite automaton M which would

recognize LBSES1f with the help of at most g(n) inkdots.
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Note that the precise number of 1’s in a member of LBSES1f of length n is given

by

f ′′(n) = bn/f ′(n)c = bn/dn/f(n)ec. (4.7)

For large values of n, f ′′(n) takes values in the set {f(n)− 1, f(n)}, since f(n) ∈ o(n).

Therefore g(n) < f(n) − 2 for sufficiently long inputs implies that g(n) inkdots will

not be enough to mark all input positions where a member string of that length should

contain a 1. In fact, recalling that the distance between 1’s in the members of LBSES1f

of length n is given by f ′(n), we see that sufficiently long members of LBSES1f must

contain at least one 1 which has an inkdot-free neighborhood (in the sense of the term

used in the proof of Theorem 4.6), where the all-0 segments to the left and the right of

the 1 are long enough to cause M to loop. We can then use an argument identical to

the one in that proof to conclude that a nonmember of LBSES1f also has to be accepted

by M , reaching a contradiction. Hence we can conclude that

LBSES1f /∈ REG/g(n)(�) (4.8)

and therefore

REG/g(n)(�) ( REG/f(n)(�). (4.9)

4.5. Succinctness Issues

In this section, we investigate the effects of advice on the succinctness of finite

automata. In particular, we will demonstrate a family of languages where the sizes of

the associated minimal automata depend on whether advice is available, and if so, in

which format.
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For a given integer k > 1, we define

LMODk = {w ∈ {0, 1}∗ | |w| < k or wi+1 = 1 where i = |w| mod k}.

Theorem 4.8. A dfa with no advice would need to have at least 2k states in order to

recognize LMODk.

Proof. Let x, y be any pair of distinct strings, x, y ∈ {0, 1}k. There exists a position i

such that xi 6= yi. Without loss of generality, assume that xi = 0 and yi = 1. Then for

any string z ∈ {0, 1}∗ with i − 1 = |z| mod k, we have xz /∈ LMODk and yz ∈ LMODk.

In other words, the index of LMODk (in the sense of the Myhill-Nerode theorem (see

e.g. [58]) is at least as big as the number of distinct strings in {0, 1}k, namely, 2k.

Therefore, a dfa would need at least that many states in order to recognize LMODk.

Note that testing membership in LMODk is as easy as checking whether the i+1’st

symbol of the input is a 1 or a 0, where the length |w| of the input word satisfies

|w| = mk + i. The problem is that in the setting without the advice, the value i is

learned only after the machine scans the last symbol. i, however is a function of the

length of the input, and advice can be used to convey this information to the automaton

at an earlier stage of its computation.

Theorem 4.9. LMODk can be recognized by a (k + 3)-state dfa with the help of prefix

advice. However, no dfa with fewer than k states can recognize LMODk with prefix advice.

Proof. We describe a (k + 3)-state machine M1, which takes binary prefix advice of

length k to recognize LMODk. For inputs of length less than k, the advice is 0k. For

longer inputs of length i (mod k), the advice is the string 0i10k−i−1.

M1 is depicted in Figure 4.3, where double circles are used to indicate accepting

states. M1 remains at its initial state, which is an accepting state, as long as it scans

0’s on the combined advice-input string. If it scans a 1, it attempts to verify if the
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k’th symbol after that 1 is also a 1. If the input ends before that position is reached,

M1 accepts. If the input is sufficiently long to allow that position to be reached, M1

accepts if it scans a 1 there, and rejects otherwise. It is easy to see that k + 3 states

are sufficient to implement M1.

q0start q1 q2 · · · qk

qA

qR

0

1 0,1 0,1 0,1

1

0

0,1

0,1

Figure 4.3. State diagram for a finite automaton with k + 3 states that recognizes

LMODk = {w ∈ {0, 1}∗ | |w| < k or wi+1 = 1 where i = |w| mod k} with prefix advice.

Let us now assume that a (k−1)-state finite automaton M2 recognizes LMODk with

the help of prefix advice. Then M2 must accept the string s = 0k−110k
2+k−1, which is a

member of LMODk, utilizing the advice for (k2 +2k−1)-symbol-long inputs. Since the 0

sequences to the left and right of the single 1 in s are of length at least k− 1, M2 must

“loop” during its traversals of these sequences while scanning s. Let p < k and q < k

be the periods of these loops to the left and right of 1, respectively. Now consider the

string s′ = 0k−1+pq10k
2+k−1−pq. Note that s′ is of the same length as s, and therefore it

is assigned the same advice as s. Also note that M2 must enter the same states at the

ends of the 0 sequences on both s′ and s, since q additional iterations of the loop to

the left of the 1 and p fewer iterations of the loop to the right of the 1 does not change

the final states reached at the end of these 0 sequences. (The “pumped down” version

of the zero sequence to the right of 1 is k2 + k− 1− pq symbols long and since we have

pq < k2 this means it is still sufficiently long (i.e. longer than k symbols) to ensure

that it causes at least one iteration of the loop.) This implies that M2 should accept

s′ as well, which is a contradiction, since s′ is not a member of LMODk.
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Theorem 4.10. There exists a dfa with just two states that can recognize LMODk with

the help of inkdot advice for any k.

Proof. For inputs of length less than k, no inkdots are provided as advice. For longer

inputs whose length is i mod k, the advice is an inkdot on the i + 1’st symbol of the

input. A dfa that accepts if and only if either senses no inkdots or if the single marked

position contains a 1 can be constructed using two states, as seen in Figure 4.4.

q0start qR

0,1,1̇

0̇

*

Figure 4.4. State diagram for a finite automaton with 2 states that recognizes

LMODk = {w ∈ {0, 1}∗ | |w| < k or wi+1 = 1 where i = |w| mod k} with inkdot advice.

4.6. Randomized Inkdot Advice to Finite Automata

It is known that “randomized” advice, selected for each input from a set of

alternatives according to a particular distribution, is even more powerful than its de-

terministic counterpart in several models (see [9] and [3]). In this section, we will show

that a similar increase in power is also the case for the inkdot advice model, even with

a restriction to a constant number of inkdots.

For each input length n, the advice is a set of pairs of the form 〈I, p〉, where I is

an inkdot pattern to be painted on a string of length n, and p is the probability with

which pattern I is to be used, with the condition that the probabilities add up to 1.

Whenever the advised dfa is presented with an input, an inkdot pattern is selected from

the advice with the corresponding probability. A language is said to be recognized with

bounded error by such a machine if the automaton responds to each input string with



90

the correct accept/reject response with probability at least 2
3
. (Recall that the class

of languages recognized with bounded error by a dfa aided with randomized advice in

the advice track model is called REG/Rn in [9]. We call the corresponding classes for

k inkdots REGbe/R-k(�) for k ∈ Z+, and REGbe/R-n(�) when there are no restrictions

on the number of inkdots.)

By importing Proposition 16 in [9] about the advice track model directly to the

inkdot advice case, one sees immediately that

REG/n(�) ( REGbe/R-n(�). (4.10)

We will present a new result, showing that randomization adds power even when the

number of inkdots is restricted to be a constant.

Theorem 4.11. REG/2(�) ( REGbe/R-2(�).

Proof. As deterministic advice is a special case of the probabilistic version, the inclusion

is trivial. In order to show the separation, consider the language

LAELS3 = {0m1m0m1m | m > 0},

defined as part of a family in Section 4.4. By the proof of Theorem 4.6, we have

LAELS3 /∈ REG/2(�). (4.11)

So it remains to show that LAELS3 ∈ REGbe/R-2(�).

Recall from the proof of Theorem 4.6 that we call the m + 1’st, 2m + 1’st, and

3m+ 1’st positions of the string 0m1m0m1m the “border points”. We build a dfa that

will take two inkdots as advice to recognize LAELS3. In the randomized advice that

will be given for inputs of length 4m, the three pairs of border points (m+ 1, 2m+ 1),
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(m + 1, 3m + 1), and (2m + 1, 3m + 1) will be marked with probability 1
3

each. The

dfa simply checks whether its input is of the form 0+1+0+1+, the input length is a

multiple of 4, and also whether each inkdot that it sees is indeed on a symbol unequal

to the previously scanned symbol. The machine accepts if and only if all these checks

are successful.

If the input string is a member of LAELS3, all checks will be successful, and the

machine will accept with probability 1. For a nonmember string s of length 4m to be

erroneously accepted, s must be of the form 0+1+0+1+, and contain only one “false

border point,” where a new segment of 1’s (or 0’s) starts at an unmarked position after

a segment of 0’s (or 1’s). But this can happen with probability at most 1
3
, since two

of the three possible inkdot patterns for this input length must mark a position which

contains a symbol that equals the symbol to its left. Hence we have shown that

LAELS3 ∈ REGbe/R-2(�) (4.12)

and therefore we can conclude that

REG/2(�) ( REGbe/R-2(�) (4.13)

4.7. Advised Computation with Arbitrarily Small Space

In this section, we will consider one-way Turing machines, instead of finite au-

tomata, as the underlying advised machine model in order to explore the effects of

combining inkdot advice with non-constant, but still very small amounts of memory.

It is known that unadvised deterministic Turing machines with sublogarithmic

space which scan their input once from left to right can only recognize regular languages

(see [59]). Therefore such small amounts of additional workspace does not increase the
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computational power of dfa’s. On the other hand, sublogarithmic space can be fruitful

for nonuniform computation. In [55] for example, log log n space was proven to be

necessary and sufficient for a demon machine, which is defined as a Turing machine

whose work tape is limited with endmarkers to a prespecified size determined by the

length of the input, to recognize the nonregular language {anbn | n > 1}.

Deterministic machines, (log log n space Turing machines in particular) was shown

in [55] not to gain any additional computational power if they are also provided with

the ability of marking one input tape cell with an inkdot. Below, we will show that a

one-way Turing machine which has simultaneous access to arbitrarily slowly increasing

amounts of space and one inkdot provided as advice can effectively use both of these

resources in order to extend its power of language recognition. Note that the head

on the single work tape of the TM is allowed to move in both directions. (Recall

that the class of languages recognized by one-way input deterministic Turing machines

which use s(n) cells in their work tape when presented inputs of length n are denoted

by 1-DSPACE(s(n)). With an advice of k inkdots, the corresponding class is called

1-DSPACE(s(n))/k(�).)

Theorem 4.12. For any slowly increasing function g(n) : Z+ → Z+, where g(n) ∈

ω(1) ∩ o(n),

• 1-DSPACE(log g(n)) ( 1-DSPACE(log g(n))/1(�),

• REG/1(�) ( 1-DSPACE(log g(n))/1(�).

In other words, automata with access to arbitrarily slowly increasing amounts of

space and a single inkdot as advice are more powerful than those which lack either of

these resources.

Proof. Both inclusions are straightforward, and we proceed to show the separation

results. First, note that

1-DSPACE(log g(n)) ⊆ REG/k(�) (4.14)
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for any such g and any k, since one-way deterministic Turing machines can not uti-

lize sublogarithmic space in order to recognize nonregular languages (see [59]), and

are therefore computationally equivalent to dfa’s without advice. It will therefore be

sufficient to demonstrate a language which is in 1-DSPACE(log g(n))/1(�) but not in

REG/1(�).

For this purpose, we define the language LIELSg over the alphabet {#, 0, 1}

to be the collection of words made up of interrelated, equal-length sequences as in

s1#s2# · · ·#sm#+, where

• for a member of length n and for i = 1, 2, . . . ,m; si is a subword of the form 0∗10∗,

the length of which is given by bg(n)c, (meaning that m is at most bn/(bg(n)c+

1)c), and,

• For all si, pi denotes the position of the symbol 1 within that subword, and

pi ∈ {pi−1 − 1, pi−1, pi−1 + 1} for i = 2, 3, . . . ,m.

As mentioned earlier, Fact 2.9 provides a useful tool for showing that certain

languages are not in REG/n(�). We see that LIELSg is in REG/n if and only if the

number of equivalence classes of the equivalence relation ≡LIELSg associated with LIELSg

in the way described in Fact 2.9 is finite.

Considering pairs of distinct strings x and y of the form 0∗10∗ such that |x| = |y| =

bg(n)c, for values of n which are big enough that g(n)� n, one sees that ≡LIELSg must

have at least bg(n)c equivalence classes. This is because one has to distinguish bg(n)c

different subword patterns to decide whether the relationship dictated between sub-

words s1 and s2 holds or not. Noting that the number of equivalence classes of ≡LIELSg

is not finite, we conclude that LIELSg is not even in REG/n, let alone in REG/n(�).

To prove LIELSg ∈ 1-DSPACE(log g(n))/1(�), we describe a one-way Turing ma-

chine T that uses one inkdot and O(log g(n)) space to recognize LIELSg. The advice

for strings of length n is a single inkdot on the bg(n)c’th position, i.e. where the last

symbol of the first subword s1 should appear in a member of the language. During its
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left-to-right scan of the input, T performs the following tasks in parallel:

• T checks if its input is of the form (0∗10∗#)+#∗, rejecting if this check fails.

• Using a counter on its work tape, T counts the rightward moves of the input head

up to the point where the inkdot is scanned. Having thus “learned” the value

bg(n)c, T notes the number of bits required to write this value on the work tape,

and marks the tape so as to never use more than a fixed multiple of this number

of cells. It compares the lengths of all subsequent subwords with this value, and

rejects if it sees any subword of a different length. T also rejects if the cell with

the inkdot does not contain the last symbol of the first subword.

• T checks the condition pi ∈ {pi−1 − 1, pi−1, pi−1 + 1} for i = 2, 3, . . . ,m, by using

another pair of counters to record the position of the symbol 1 in each subword,

rejecting if it detects a violation.

• T accepts if it finishes scanning the input without a rejection by the threads

described above.

Clearly, the amount of memory used by T is just a fixed multiple of log g(n).Therefore

we have

LIELSg ∈ 1-DSPACE(log g(n))/1(�), (4.15)

which suffices to conclude that

1-DSPACE(log g(n)) ( 1-DSPACE(log g(n))/1(�), (4.16)

and that

REG/1(�) ( 1-DSPACE(log g(n))/1(�). (4.17)
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Let us also note that the argument of the proof above can be applied to the general

advice track and advice tape models, showing that such small amounts of space are

useful for advised automata of those types as well.
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5. CONCLUSION

We introduced two novel models of advised finite automata -finite automata with

advice tapes and finite automata with inkdot advice- and analyzed the power and

weaknesses of advice in these models. We examined variations of these models including

probabilistic and quantum versions and compared them among themselves and with the

previously studied models of advised finite automata. In addition to many separations

and collapses among the classes of languages that can be recognized in each settings

we also obtained several results that show infinite hierarchies of language classes that

can be recognized with increasing amounts of advice.

We first introduced a model of advised computation by finite automata where

the advice is provided on a separate tape which enables the automata to use the

advice more flexibly than the previously studied models of advised finite automata

by enabling it to pause on the input tape while processing the advice, or vice versa.

Many variants of this model were taken into account, where the advised automaton

is classical or quantum, the tapes can be accessed in various alternative modes, and

the advice is deterministic or randomized. The power of these variants are compared

among themselves, and also with the corresponding instances of the alternative models

in the literature. Below is a list of results which summarizes our contribution in this

context.

• A finite automaton with an advice tape when it is restricted to have real-time

access on both of its input and advice tapes is equivalent in power to a finite

automaton with an advice track. We showed that allowing one-way access to

either of the input or advice tapes, so that the automaton can stay put on this

tape during a transition, brings in strictly more language recognition power to

the advice tape model.

• We showed that arbitrarily small and slowly increasing amounts of advice is a

fruitful resource for finite automata with advice tape with one-way input access.

We further showed that there exist languages that can be recognized in this
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setting and not by a finite automaton with an advice track that uses linearly

sized advice.

• When restricted to constant-length advice, finite automata with advice tape is

shown to be equivalent in power to finite automata with prefix advice even in two-

way input access mode. However we proved that allowing increasing amounts of

advice brings in more and more power so that it is possible to show an infinite

hierarchy of language classes that can be recognized by finite automata with one-

way input access which is assisted by increasing amounts of advice provided on

a separate one-way advice tape.

• It is shown that exponentially long advice strings would be sufficient for finite

automata with a two-way input and a real-time advice tape to recognize any

language. A finite automaton with two-way input head is also shown to be

strictly more powerful than a finite automaton with one-way input head when

both of them are assisted with polynomially long advice strings on a one-way

advice tape.

• We examined probabilistic advice function together with deterministic transitions

and deterministic advice function together with probabilistic transition functions

as alternative ways of integrating randomness into the model of finite automata

with advice tapes. In both cases, it is shown that allowing bounded error would

strictly increase the language recognition power of the model over the fully de-

terministic settings.

• We also considered quantum finite automata with advice tapes, noting first that

this model is by definition more powerful than a previously introduced model

of quantum finite automata with advice track. Then we showed that one-way

access to an advice tape, even when it is empty, would bring in additional power

both in bounded and unbounded-error language recognition to a quantum finite

automata with real-time input head, over its probabilistic counterpart with the

same set of settings.

Next, we introduced another novel method for providing advice to finite au-

tomata, which depends on marking some cells on the input tape with advice inkdots.
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We examined the power of this model in various settings and compared the language

recognition power of this model with the previously studied models. We established

many relations including separations, collapses and hierarchies of language classes that

can be recognized with different models of advised finite automata and varying amounts

of advice as a computational resource. This analysis also covers issues such as the ran-

domly placed inkdots as advice and the succinctness of the advised finite automata.

We also discussed an extension of this model with access to secondary memory and

obtained nontrivial results in this context as well. The list of items below provides a

summary of these results.

• We showed that a single inkdot as advice to finite automata is strictly more

powerful than the prefix advice no matter how long an advice string is being used

in the prefix model. On the other hand, inkdot advice model is shown to be

equivalent in power to advice track model restricted to a binary alphabet which

is separately shown to be strictly less powerful than the advice track model with

no restriction on the alphabet size.

• We showed that in case where the number of advice inkdots is restricted to be a

constant, the class of languages that can be recognized in this setting, grows with

every additional inkdot, hence forming an infinite hierarchy of language classes.

Another infinite hierarchy is shown to exist among the classes of languages that

can be recognized with the help of inkdots as advice in case where the amount of

advice inkdots is allowed to grow with the input size rather than being a constant.

• We showed that finite automata with inkdots as advice can be more succinct than

the other advised automata models and the pure unadvised automata in terms

of the number of states required for recognizing certain languages.

• The fact that more languages can be recognized by finite automata which takes

randomly placed inkdots as advice and which is allowed to make errors with

a bounded probability can be inherited from similar results previously shown

for advice track model. We showed that this is still true when the amount of

randomly placed inkdots is restricted to be a constant rather than being bounded

by the size of the input.
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• We extended the model with access to infinite secondary memory and showed

that automata with access to arbitrarily slowly increasing amounts of space and

a single inkdot as advice are more powerful than those automata which lack

either of these resources. This result is particularly interesting because such

small amounts of space is known to be not fruitful for many well-known models

of computation.

The advice tape model, we introduced in [2, 3] has recently been the subject of

further investigation by Duris et al. in [60]. A question that we had listed among open

questions in [2, 3] has been answered in this context, as it is shown that there exist

languages which cannot be recognized with any amount of advice by a deterministic

finite automaton with an advice tape which has one-way input access. PAL, the language

of even length palindromes, in particular, is shown to be one such language. In [60] it is

also shown that finite automata with advice tape, can not utilize more than exponential

advice if its access to the input tape is restricted to be one way.

Nondeterministic version of advice tape model is also considered by Duris et al.

in [60] and it is shown in this setting, that exponential advice suffices to recognize

all languages even with one-way input access whereas there exist languages, such as

PAL, which can not be recognized with the help of polynomial amounts of advice even

in nondeterministic settings. When constant length advice is taken into considera-

tion, nondeterministic finite automata are shown not to be more powerful than their

deterministic counterparts.

Our analysis on advised computation can be extended in multiple ways such

as considering further alternatives as means of providing advice to the underlying

automata or by taking other models of computation as the base model of computation

in the analysis. Applying computational limits on the advice functions to be used in

our models in a similar way to that was discussed for advised Turing machines in [61],

is another direction that has the potential to reveal interesting relations. Below is a list

of open questions that could be the subject of further analysis in this line of research.
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• Real-time probabilistic automata can be simulated by deterministic automata

which receive coin tosses within a randomly selected advice string. It would be

interesting to explore the relationship between deterministic automata working

with randomized advice, and probabilistic automata working with deterministic

advice further.

• Are there languages which cannot be recognized with bounded error with any

amount of advice by a probabilistic or quantum finite automata with advice

tapes?

• Can a quantum finite automaton assisted with a non-empty advice on its advice

tape recognize any language which is impossible for probabilistic finite automata

in the same settings?

• Are there hierarchies like those in Theorems 4.6 and 4.7 for the case of randomly

placed advice inkdots as well?

• We considered only deterministic transition models for our machines that takes

inkdot advice. How would things change if we allowed probabilistic or quantum

models?

• Can the inkdot advice model be applied to other machine models, like pushdown

or counter automata?

• In what other ways we can provide advice to “weaker” models of computation so

that we can establish nontrivial relations?

• What would be the effects of applying limits on the computational power for the

source of the advice?

To conclude, it can be stated that the analysis of advised computation is the focus

of a rich past literature which has many strong relations with the core problems in the

closely related domains such as computability, computational complexity, automata

theory and formal language theory. Research in this domain uncovered many relations

of advice also with seemingly unrelated problems in a wide range of other fields which

can be as diverse as cryptography (see e.g. [62, 63]), neural networks (see e.g. [64–

66]) and pseudorandomness (see e.g. [67, 68]). This literature keeps growing with the

contribution of recent research activities including ours: new ways of reasoning on
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the roles of advice are being investigated and these techniques are being examined

in relation with a growing set of computational phenomena. As a result, the field of

advised computation is rich in terms of questions which are yet to be answered and

research directions which are open for further investigation.
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