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ABSTRACT

GENERATIVE VS. DISCRIMINATIVE MODELS FOR

VISION BASED HAND GESTURE RECOGNITION

In this thesis, we focus on the problem of modelling sequential data, and partic-

ularly hand gestures. We approach the modelling problem using automata theory and

theory of formal languages, which allows us to determine the crucial aspects of hand

gestures. Furthermore, we show how this approach can help us assess the capabilities

of candidate models. The resulting framework can identify problems of models, and set

requirements for models to properly represent the gestures. We use this approach to ex-

amine common graphical models such as hidden Markov models (HMM), input-output

HMMs, explicit duration models, hidden conditional random fields, and hidden semi

Markov models (HSMM). We also devise an efficient variant of HSMMs that conforms

to all of the requirements set by our previous analysis. We further show that mixtures

of left-right models is the most suitable setting for gestures. Finally, we compare all

the mentioned models and report the results. In the second part of the thesis, we focus

on modelling hand shape with randomized decision forests (RDF). In particular, we

extend a known body pose estimation method to hand pose, and then introduce a novel

RDF that directly estimates the hand shape. Furthermore, we propose a multi-layered

expert network consisting of RDFs that either considerably increases the accuracy, or

reduces memory requirements without sacrificing accuracy.
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ÖZET

GÖRÜNTÜ TABANLI EL HAREKETİ TANIMA İÇİN

ÜRETİCİ VE AYRIŞTIRICI MODELLER

Bu tezde, dinamik el hareketleri gibi zaman dizilerinin modellenmesi konusunu in-

celiyoruz. Modelleme problemine otomata ve simgesel dil teorileri kullanarak yaklaşıyor

ve el hareketlerinin modellenmesi açısından önemli özelliklerin tanımlanmasını sağlıyo-

ruz. Bu sayede önerilen modellerin başarımları ve yeteneklerini ayrıntılı şekilde in-

celeyecek bir yaklaşım geliştirmiş oluyoruz. Bu yöntemle varolan modellerin eksiklik-

lerini tanımlıyor ve hangi özelliklere ihtiyaçları olduğunu keşfediyoruz. Özellikle saklı

Markov modelleri, girdi-çıktı Markov modelleri, belirli süre modelleri, saklı koşullu ras-

sal alanlar ve saklı yarı Markov modelleri inceliyor ve karşılaştırıyoruz. Bunların sonu-

cunda araştırmamızda ortaya çıkan tüm önşartlara uyan bir saklı yarı Markov model

örneği öneriyoruz. Ayrıca sol-sağ yapıdaki bir modelin izole el hareketleri için en uygun

model olduğunu gösteriyoruz. Son olarak bütün modelleri karşılaştırıyor ve sonuçlarını

belgeliyoruz. Tezin ikinci kısmında rassal karar ormanları kullanarak el şekli ve pozu

tanıma problemine yoğunlaşıyoruz. Bilinen bir beden pozu kestirim yöntemini ele

uyarlıyoruz, ve aynı yöntemi geliştirerek el şeklini bir defada tanıyan bir yöntem öneri-

yoruz. Ayrıca çok katmanlı bir uzman karar ormanı ağı kullanarak başarım oranını

artıran veya hafıza kullanımını düşüren bir model öneriyor ve karşılaştırıyoruz.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Hand Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Gestural Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1. Human Computer Interaction . . . . . . . . . . . . . . . . . . . 6

1.2.2. Sign Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1. Trajectory Modelling . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2. Clustering of Sequential Data . . . . . . . . . . . . . . . . . . . 9

1.3.3. Hand Shape Recognition . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4. Articulated Hand Pose Estimation . . . . . . . . . . . . . . . . 11

1.4. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. ANALYSIS OF HAND GESTURES . . . . . . . . . . . . . . . . . . . . . . 14

2.1. A Generative Grammar for Gestures . . . . . . . . . . . . . . . . . . . 15

2.2. Continuous Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Gestures with Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. MODELLING TRAJECTORY . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1. Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Maximum Entropy Markov Models . . . . . . . . . . . . . . . . . . . . 26

3.3. Input Output Hidden Markov Model . . . . . . . . . . . . . . . . . . . 28

3.4. Explicit Duration Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5. Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6. Hidden Conditional Random Fields . . . . . . . . . . . . . . . . . . . . 34



viii

3.7. Latent Dynamic Conditional Random Fields . . . . . . . . . . . . . . . 35

3.8. Hidden Semi Markov Models . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9. Explicit Ratio Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9.1. Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9.2. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9.3. Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9.4. A Fully Specified Graphical Model . . . . . . . . . . . . . . . . 50

3.9.5. Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10. Extending to Continuous Streams . . . . . . . . . . . . . . . . . . . . . 52

3.11. Extending to Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 57

3.11.1. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.11.2. Clustering a Gesture Dataset . . . . . . . . . . . . . . . . . . . 61

3.12. Modelling Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4. MODELLING SHAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1. Classification with Randomized Decision Forests . . . . . . . . . . . . . 68

4.2. Hand Pose Estimation using RDF . . . . . . . . . . . . . . . . . . . . . 72

4.2.1. Estimating Skeleton Parameters . . . . . . . . . . . . . . . . . . 73

4.3. Hand Shape Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4. Multi-layered RDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1. Clustering Training Data . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2. Training and Inference . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3. Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5. EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1. Trajectory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.2. Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.3. Model Parameters and Training . . . . . . . . . . . . . . . . . . 88

5.1.4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.4.1. Single Models . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.4.2. Mixture Models . . . . . . . . . . . . . . . . . . . . . . 92

5.1.4.3. Model Averaging . . . . . . . . . . . . . . . . . . . . . 94



ix

5.2. Experiments with Hand Shape Recognition . . . . . . . . . . . . . . . . 96

5.2.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.2. Shape Classification Forest . . . . . . . . . . . . . . . . . . . . . 96

5.3. Experiments with Hand Skeleton Extraction . . . . . . . . . . . . . . . 97

5.3.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1.1. Synthetic dataset . . . . . . . . . . . . . . . . . . . . . 97

5.3.1.2. Real Dataset . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.2. Effect of Model Parameters . . . . . . . . . . . . . . . . . . . . 98

5.3.2.1. The Effect of the Forest Size . . . . . . . . . . . . . . 98

5.3.2.2. The Effect of the Tree Depth . . . . . . . . . . . . . . 98

5.3.2.3. The Effect of the Feature Space . . . . . . . . . . . . . 98

5.3.2.4. The Effect of the Sample Size . . . . . . . . . . . . . . 99

5.3.2.5. The Effect of the Mean Shift Parameters . . . . . . . 99

5.3.3. Hand Pose Estimation Results . . . . . . . . . . . . . . . . . . . 100

5.3.4. Proof of Concept: American Sign Language Digit Recognizer . . 101

5.3.4.1. Hand Shape Classifiers . . . . . . . . . . . . . . . . . . 102

5.3.4.2. Model Selection on the Synthetic Dataset . . . . . . . 102

5.3.4.3. ASL Digit Classification Results on Real Data . . . . . 103

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



x

LIST OF FIGURES

Figure 1.1. A depth image retrieved with the depth sensor Kinect, with the

trajectory of the hand displayed on top. . . . . . . . . . . . . . . . 6

Figure 1.2. Examples from (a) Turkish sign language and (b) Turkish finger

spelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.1. A user performing the same gesture with two hands. Regardless of

the scale and speed, both sequences should be assigned to the same

class label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.2. A collection of performances for the digit five, collected from 13

people, normalized such that the height of each digit is the same. 21

Figure 3.1. The graphical model of a hidden Markov model. xt is the hidden

state variable, and yt is the observation at time t. . . . . . . . . . 23

Figure 3.2. The state transition diagram of a left-right HMM. Each state Si is

only allowed to make a transition to itself, or to the next state Si+1. 25

Figure 3.3. The state transition diagram of a mixture of left-right HMMs. . . 27

Figure 3.4. The graphical model of a maximum entropy Markov model. xt is

the latent label, and yt is the observation at time t. . . . . . . . . 28

Figure 3.5. The graphical model of a input-output hidden Markov model. xt is

the hidden state variable, yt is the observation, and ut is the input

or control variable at time t. Both state transitions and emissions

are now conditioned on the input sequence. . . . . . . . . . . . . . 30



xi

Figure 3.6. The graphical model of the explicit duration model. τt is the

counter variable that controls state transitions. . . . . . . . . . . 32

Figure 3.7. The graphical model of a conditional random field. CRFs are the

discriminative counterparts of HMMs. . . . . . . . . . . . . . . . . 33

Figure 3.8. The graphical model of a hidden conditional random field. HCRF

is basically a CRF augmented with a class variable c. . . . . . . . 34

Figure 3.9. The graphical model of latent dynamic conditional random field.

LDCRF has a separate class variable for each hidden state. . . . . 36

Figure 3.10. A graphical model for the general hidden semi Markov model. This

is not a fully specified model, since the topology varies depending

on the durations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.11. The graphical model for an explicit duration model, augmented

with the variable n. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.12. Proposed HSMM variant. The durations are conditioned on the

previous duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.13. A fully specified graphical model for the proposed explicit ratio

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.14. The graphical model of the augmented explicit duration model,

extended to handle continuous streams. . . . . . . . . . . . . . . . 53

Figure 3.15. The graphical model of the explicit ratio model, extended to handle

continuous streams. . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xii

Figure 3.16. Four different ways the digit 4 can be drawn. These are actual

samples from a digit dataset. The starting points are depicted

with a star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.17. Explicit ratio model adapted to multiple observation channels, when

the observations can be assumed to be independent. . . . . . . . . 66

Figure 4.1. A decision forest. The input pixels are tested at each node and

guided down the tree, finally reaching a leaf node that is associated

with a set of posterior probabilities, which is estimated from the

label histogram of data collected during the training. . . . . . . . 69

Figure 4.2. The 3D hand model with a hierarchical skeleton and 21 labelled

parts that is used to generate a synthetic training set. In the first

image, the skeleton is depicted with yellow parts indicating the

joint locations. The second image shows the parts, each of which

correspond to a joint or bone tip in the skeleton. . . . . . . . . . . 73

Figure 4.3. Hand pose estimation process. (a) is the depth image, (b) is the

assignment of each pixel to a class part by some RDF, (c) shows

the estimated joint locations, (d) depicts the skeleton. . . . . . . 75

Figure 4.4. The first four images are real depth images and their labels, and

the rest of the images are synthetic depth images and their labels. 75

Figure 4.5. The multi-layered RDF network. The first layer estimates the clus-

ter the image belongs to. The second layer estimates the hand pose

using the respective expert RDFs. . . . . . . . . . . . . . . . . . . 77

Figure 4.6. Local expert network. In this model, each pixel is sent to an expert

independently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



xiii

Figure 4.7. Global expert network. In this model, a global decision is made

regarding the cluster first. Then, all the pixels are sent to the

determined experts. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 5.1. Samples from the digit dataset, rescaled and resampled. . . . . . . 104

Figure 5.2. The effect of different clustering techniques. The first two columns

are the result of spectral clustering with Gaussian, and the other

two columns are the result of spectral clustering with k-means

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.3. The effect of different clustering techniques. (Continued from Fig-

ure 5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.4. 20 clusters formed from the samples of digit 4, using hierarchical

clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.5. The results of the grid search over parameters N and D for ERM. 108

Figure 5.6. The effect of N and D on the speed of ERM. . . . . . . . . . . . . 109

Figure 5.7. The number of clusters with more than one sequence for different

values of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.8. The accuracy of the first R mixtures, plotted against R for mHMM. 111

Figure 5.9. The accuracy of the first R mixtures, plotted against R for mERM. 112

Figure 5.10. The accuracy of the first R mixtures, plotted against R up to 50,

for both mHMM and mERM. . . . . . . . . . . . . . . . . . . . . 113



xiv

Figure 5.11. Confusion matrix for the ASL letter classification task using SCF

on the Pugeault dataset with 24 letters and five subjects [1]. (a)

Leave–one–subject–out with a success rate of 84.3%. (b) Half

training–half validation, with a success rate of 97.8%. The main

source of error is the similarity of the poses for the letters M , N

and T in ASL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 5.12. The effect of the forest size on the test accuracy. . . . . . . . . . . 114

Figure 5.13. The effect of the tree depth on the test accuracy. . . . . . . . . . . 115

Figure 5.14. The effect of the limits of the offset parameters u and v on the test

accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 5.15. The effect of the sample size on the test accuracy. . . . . . . . . . 116

Figure 5.16. In the upper row, the confidence score threshold is set too high

(0.5), eliminating true joints. In the middle row, the threshold

is set correctly (0.4) and only the spurious joints are eliminated.

In the lower row, the threshold is set too low (0.2), leaving one

spurious joint intact. . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.17. The effect of the number of starting points for the mean shift algo-

rithm. The columns correspond to number of seeds 1, 2, 3 and 4,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 5.18. Examples of extracted skeletons on synthetic ASL images. Upper

row lists the depth images. Middle row shows the per pixel classifi-

cation results. Third row displays the estimated joint locations on

top of the labelled images. The finalized skeleton is shown in the

lower row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xv

LIST OF TABLES

Table 1.1. Chomsky hierarchy of formal languages and the type of automata

that can recognize them. . . . . . . . . . . . . . . . . . . . . . . . 4

Table 5.1. Recognition rates and optimum model parameters on the resampled

datasets with T = 20, 50, 100, using leave-one-out technique. . . . 91

Table 5.2. Recognition rates and optimum model parameters on the resam-

pled dataset with T = 20 for each sequence, using leave-one-out

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 5.3. Recognition rates and optimum model parameters for the model

averaging of mixtures, on the resampled dataset with T = 20 and

T = 100, using leave-one-out technique. . . . . . . . . . . . . . . . 95

Table 5.4. Classification rates and evaluation times of each classifier on the

ASL digit dataset consisting of 20k synthetic images. . . . . . . . . 102

Table 5.5. Tested parameter values (H: hidden nodes, C: SVM cost, γ: Gaus-

sian spread) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Table 5.6. Optimal parameters, average training and validation accuracies. . . 103



xvi

LIST OF SYMBOLS

aij The state transition probabilities

b(i,di)(yt+1:t+di) The probability of observing a segment yt+1:t+di in the state

(si, di)

Bij Observation probabilities of a model with discrete observa-

tions, in the form of a matrix

Ci,j Gesture transition probability matrix

dk,i The random variable for the duration of a segment of a sub-

language

ek,i The exponent, i.e. the number of repetitions of a terminal of

a sub-language

E The set of exponents ei, i.e. segment lengths learned during

the training

gm A sample of gesture with the index m embedded in a contin-

uous stream

GL A grammar of a formal language

I Input depth image

K The number of sub-languages in a formal language

L A formal language

Nk The number of terminals in a specific sub-language

ot A letter from the alphabet of a formal language

Q A random variable for the cluster

Si A state of a graphical model

tk,i A terminal of a sub-language

Tk,i The random variable for a terminal of a sub-language

ut The input or control variable at time t

U U = u1:T is an input sequence of length T

wk Mixture coefficient for a cluster

wmq The per-pixel posterior probability of the cluster q for the

pixel m

W Similarity matrix used by the clustering methods



xvii

xt The hidden state variable at time t

X X = x1:T is a state sequence of length T

yt The observation at time t

Y Y = y1:T is an observation sequence of length T

αt(i, di) The forward variable for the HSMM

βt(i, di) The backward variable for the HSMM

∆ (yu, yv) The DTW distance between samples yu and yv

γt(i) The posterior probability of being in state i at time t given

the observation sequence

ηt(i, di) The posterior probability of being in state i for a duration of

di at time t given the observation sequence

θk,i Model parameters of the probability distribution function of

a segment duration

θn Parameters of the test function of an RDF node

λc Model parameters for the graphical model of class c

ξt(i, j) The posterior probability of being in state i at time t and

being in state j at time t+ 1 given the observation sequence

π Prior state probabilities of the model

ρi(di; di−1, E) The probability distribution function for the duration of state

i conditioned on the duration of state i− 1

Σ Alphabet of a formal language

τt The counter variable indicating the remaining time at the

current state at time t

φi Model parameters for the probability distribution function of

the observation variable

φt(i, di, j, dj) The posterior probability of being in state i at time t with

duration di and being in state j with duration dj at time t+1

given the observation sequence

Φ RDF in the first layer of the multi-layered RDF network

ΦM Number of motion observation symbols

ΦS Number of hand shape classes

Ψi RDF trained on the cluster i in the multi-layered RDF setting



xviii



xix

LIST OF ACRONYMS/ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Networks

ASL American Sign Language

BIC Bayesian Information Criterion

CRF Conditional Random Field

DAG Directed Acyclic Graph

DTW Dynamic Time Warping

EDM Explicit Duration Model

ERM Explicit Ratio Model

GEN Global Expert Network

HCI Human Computer Interaction

HCRF Hidden Conditional Random Field

HMM Hidden Markov Model

HSMM Hidden Semi Markov Model

IOHMM Input–Output HMM

LDCRF Latent Dynamic Conditional Random Field

LEN Local Expert Network

MEMM Maximum Entropy Markov Model

MLP Multi-layered Perceptron

PCA Principal Component Analysis

RDF Randomized Decision Forest

SCFG Stochastic Context Free Grammar

SVM Support Vector Machines

TSL Turkish Sign Language



1

1. INTRODUCTION

Fields like statistics, signal processing and econometrics often concern themselves

with sequential data, in order to extract meaningful statistics and predict future values

based on previously observed values. Sequential data consist of observations for which

there is a natural ordering. For instance, if the observations are sampled periodically

at successive time instants, then the ordering is temporal and the data are called time

series. The ordering can be spatial, as in the case of images retrieved by digital cameras,

or in any other dimension.

The primary focus of this thesis is mathematical modelling of such series of ob-

servations, using machine learning methods. In particular, our aim is to analyze the

strengths and weaknesses of several common models for tasks such as sequence classi-

fication, labelling or synthesis, and more importantly, to provide a procedure for the

modelling task. To do this, we will make extensive use of Bayesian probability and

automata theory.

We will focus on a specific and sufficiently complex modelling task to see how

it can be pursued. In particular, we will attempt to tackle vision based hand gesture

recognition, which is a relatively young, difficult and rich problem. There will be

some parallels with speech recognition, since both types of signals are natural and

important parts of human interaction, and the need to imitate human vision adds to

the complexity of the task.

Like many vision related tasks, humans can easily handle complex gesture recog-

nition tasks such as sign language recognition. This does not show that the mathe-

matical model behind hand gestures should be simple, especially when hand motion

and dynamic hand shapes form complex sign sequences under a certain grammar. The

seemingly effortless capability of humans to tackle such problems historically misled

researchers in several occasions.
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It has been 56 years since the name ‘Artificial Intelligence’ (AI) was adopted by

a group of scientists including Marvin Minsky, John McCarthy, Claude Shannon and

Ray Solomonoff, for the then-new field of simulating the human mind, in a conference

in 1956. Only a short time after the conference, computers were able to solve algebra

problems, prove theorems and even learn to speak English. Understandably, the highly

optimistic view of the early researchers was that the problem of AI would be largely

solved in a decade or two, and fully intelligent machines would be built by 1970.

This optimism largely stemmed from the belief that the problems that are considered

easy for humans would be easy for computers too. However, these researchers soon

realized that what humans did best, they did unconsciously, and precisely these acts

were much harder to simulate for computers. This embarrassing fact is now known as

Moravec’s paradox. Hans Moravec writes: “it is comparatively easy to make computers

exhibit adult level performance on intelligence tests or playing checkers, and difficult

or impossible to give them the skills of a one-year-old when it comes to perception and

mobility” [2]. Acts like recognizing a face, lifting a pencil, walking across a room or

answering a question are much harder than, say, proving an algebra theorem. Needless

to say, we still do not have fully intelligent machines in 2012.

One of the most astonishing aspects of the human mind is its ability to process

very high dimensional data, such as images and sound, seemingly without any effort.

The more the early scientists attempted to describe these processes as a ‘mechanical

manipulation of symbols’, the more baffled they became, since solving such problems

seemed mostly intractable. Consequently, entirely new sub-fields of AI emerged, which

tried to make it possible for computers to process such high dimensional data, either by

devising efficient algorithms, or by finding approximate solutions when they fail. In any

case, it is not possible to obtain feasible methods without exploiting the redundancy

that is typically found in such data: For natural images, there is a high correlation

between the brightness and color readings of neighboring pixels; for natural sounds

such as speech, the volume and frequency of neighboring sound signal segments are

highly correlated. Hence, the modern researcher constantly looks for mathematical

models that best explains these redundancies. Without analyzing and modelling these

correlations, it is indeed impossible to do the simple tasks that humans do.
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Sequential data of the type that we are interested in, i.e. natural signals such

as hand gestures, also carry a lot of redundancy. For instance, scaling such sequences

often does not change its meaning. This may not be possible for some other type of

structured data, such as natural language.

The said sequence can evolve in the temporal dimension, thereby forming time-

series, or in other dimensions such as space. They might be affected by sensor noise,

since we usually need sensors to sample them; they might suffer from interference, as

no natural event can be entirely isolated from its surroundings, and there might be

large information losses, due to the nature of sensors, their sampling rate, and what

is observable and what is not. These all add to the complexity of the already difficult

problem.

An intuitive approach to analyzing sequential data comes from the assumption

that the sequential observations forming the signals are generated by hidden factors.

For instance, the word ‘apple’ sounds the way it sounds, because of the letters forming

it. Yet, it sounds different when uttered by different people, due to factors that are not

directly observable from the sound data, such as their age, gender or accent. Likewise,

an image of a human face naturally consists of facial parts that are consistent among

people, in terms of symmetry and skin color. Therefore, analysis of sequential data

can be reduced to:

(i) the discovery of the latent factors, and the interaction between them,

(ii) and modelling how the observations are generated, based on the latent factors.

A common approach is explicitly stating the hidden factors and their interactions in the

form of a graph; hence the name, graphical models. Under certain assumptions, these

models are known to enable efficient methods for inference of hidden factors (the latent

or hidden states), prediction of future states and observations, smoothing of previous

samples, and even the discovery of the interaction network. These models have been

used for nearly every type of sequential data, ranging from pixels to market fluctuations,

speech, handwriting, natural language, DNA sequences, mimics and gestures. However,
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there is a limit to what can be achieved with graphical models. The powerful theory

of automata can be used to show what type of a model can be used to attack a certain

problem. For instance, a model called stochastic context free grammar (SCFG) is

known to be very effective for problems such as natural language processing. However,

SCFG cannot be represented as a graphical model [3].

Automata theory is the study of abstract machines, and problems which they are

able to solve [4]. The automata are classified by the class of formal languages they are

able to recognize, which are listed in the Chomsky hierarchy.

Table 1.1. Chomsky hierarchy of formal languages and the type of automata that can

recognize them.

Type Grammars Minimal automata

Type 0 Recursively enumerable Turing machine

Type 1 Context sensitive Linear-bounded Turing machine

Type 2 Context free Push-down automata

Type 3 Regular Finite state automata

The Chomsky hierarchy is concerned with strings formed by discrete terminal

symbols, and the grammars that generate them, which are appropriately called the

generative grammars. These grammars are formed by a set of non-terminal symbols

(corresponding to some hidden factors, in a certain hierarchy), a set of terminals (cor-

responding to the observations), and a set of production rules, which implicitly explain

the relation between the factors and observables. The hierarchy identifies four primary

families of grammars: Type 0 through 3. Type 0 grammars include all formal gram-

mars (including Type 1 through Type 3), and they generate all the languages that

can be recognized by a Turing machine. Type 1 grammars are called context-sensitive,

Type 2 grammars are called context-free, and Type 3 grammars are the regular gram-

mars, generating the well known class of regular languages. Type 2 grammars contain

Type 3, and Type 1 grammars contain Type 2. Table 1 shows this hierarchy, which

also explains why SCFG is more powerful than graphical models: graphical models are

finite state automata augmented with probabilities, and SCFG are context free gram-
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mars augmented with probabilities. Whereas SCFG can recognize Type and Type 3

languages, graphical models are restricted to Type 3 languages only. Since natural

languages are known to be mostly context free SCFG is naturally more suitable for

this task.

Automata theory is a powerful tool, and there have been attempts to unify the

graphical model theory and formal language theory through automata theory [5]. In

this thesis, we will use this tool to attack the specific problem of hand gesture modelling

using graphical models.

1.1. Hand Gestures

Hand gestures are a part of natural human communication, and they are con-

sidered to be alternatives to common input devices such as keyboard and mouse.

They are expected to play a greater role in human computer interaction (HCI) in

the near future, since more games and applications with gestural interfaces are be-

coming widespread. Recently, mobile devices and embedded systems using modern

CPUs and sensors started to emerge, which support hand gestures as a valid option

for interaction.

Like most vision based tasks, hand detection and tracking are dependent on the

lighting conditions, and this has been a large obstacle for commercialization of gestu-

ral interfaces. Most applications either require excellent illumination conditions, or a

marker such as a colored glove. A game changer in this area was the release of cheap,

commercial depth sensors such as Kinect, which can retrieve the depth information of

the scene in a manner that is independent from the lighting conditions. These sensors

typically produce output images in the usual pixel matrix format, where each pixel

value gives the depth of the pixel from the camera. Several of these sensors contain

depth and color cameras that are calibrated, such that a new image can be formed

from pixels associated with both color and depth values, as if the image was retrieved

from a single camera.
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Depth sensors considerably simplified vision based detection, segmentation and

tracking of objects. Following their release, new methods emerged that detect and

track bodies and even allow full body pose estimation in real–time. Consequently, hand

gesture recognition researchers were provided with robust methods that could detect

and track hands. An example of hand tracking is given in Figure 1.1, which shows the

depth image of a user performing a gesture. With these methods, multiple hands can be

tracked in real time, and hand silhouettes can be retrieved depending on the viewing

angle. Hence, the image processing stage of the hand gesture recognition problem

is simplified greatly. However, the pattern recognition aspect of the task remains,

and has become even more important, since the devices intended for hand gesture

recognition show large variation in terms of resources. In particular, classification

accuracy, real–time performance, generalization power, adaptability to users, ability to

spot meaningful gestures from continuous streams, and support for adding new gestures

are among the important considerations when choosing a model to represent gestures.

Figure 1.1. A depth image retrieved with the depth sensor Kinect, with the

trajectory of the hand displayed on top.

1.2. Gestural Applications

1.2.1. Human Computer Interaction

HCI using hand gestures is a rather new area, mostly popularized by science

fiction movies in the last decade. Since the recent introduction of Kinect, natural

interaction based interfaces have started to enter our daily lives, mostly through gaming
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consoles and last-generation TVs. We expect hand gestures to replace remote controls,

mice and keyboards for most tasks soon.

Hand gestures characteristically possess more degrees of freedom than conven-

tional input devices. Each joint angle, and any configuration of those angles, as well

as the absolute or relative location of the hand can be used to communicate intents.

This suggests that an HCI system will benefit more from hand gestures, if the system

or application is specifically designed to make use of this higher degree of freedom.

For instance, the effectiveness of a regular mouse is limited for a 3D modelling tool,

whereas the 3D nature of hand gestures is naturally suitable to view and manipulate

information in 3D. Likewise, hand shapes and fingers can be used to give commands or

manipulate objects in a far more intuitive manner than it is possible with cumbersome

devices. Especially, hand shapes are a good candidate for HCI, since they are easy

to learn, simple to perform and usually intuitive, as many hand shapes have universal

meanings.

1.2.2. Sign Language

Sign languages are the natural communication media of hearing-impaired peo-

ple. Like spoken languages, they emerge spontaneously and evolve naturally among

hearing-impaired communities. The signs are perceived visually and produced alone or

simultaneously, by use of hand shapes, hand motion, and hand location (manual signs),

as well as facial expressions, head motion, and body posture (non-manual signs). Sign

languages have both sequential and parallel nature, since signs come one after the

other showing a sequential behavior. However, each sign may contain parallel actions

of hands, face, head or body. Apart from differences in production and perception,

sign languages contain phonology, morphology, semantics, and syntax like spoken lan-

guages [6]. Figure 1.2 shows an example sign from Turkish sign language (TSL).

Apart from sign languages, there are other means of hearing impaired communi-

cation, such as finger-spelling. Finger-spelling is a method of visually spelling words by

using certain hand gestures for each letter. It is an important part of sign languages,
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(a) (b)

Figure 1.2. Examples from (a) Turkish sign language and (b) Turkish finger spelling.

which can be used to represent words which have no sign equivalent, to emphasize or

clarify concepts, or when teaching or learning a sign language. Figure 1.2 shows some

examples from the finger spelling alphabet of TSL.

1.3. Related Work

1.3.1. Trajectory Modelling

The two main sources of inter-personal variation for trajectory classes are the

per-frame observations and the sequence lengths of the associated time-series. The

variation in the sequence lengths may result from differences in the overall speed or

scale of the performances, as well as the sensor sampling rate. This type of variation

is usually difficult to capture. Using graphical models such as hidden Markov models

(HMM) [7] is the commonly preferred solution, since they are known to learn long term

relationships better than the other alternatives, such as the feed-forward or recurrent

neural networks [8], decision trees and n-gram models [9]. These methods typically

take a window of fixed size into account. Long-distance dependencies are either poorly

represented, or not represented at all. Consequently, HMMs have been used extensively

in literature [10–14]. In our previous work, we also used HMMs for several different

applications [15–17].
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As discussed in this thesis, there are several graphical models that are more com-

plex than the HMMs, which have been used in more challenging scenarios such as

sign language recognition. Such models include the Conditional Random Field [18],

the Hidden Conditional Random Field [19], the Latent Dynamic Conditional Random

Field [20], the Input-Output HMM [21] and Hidden Semi Markov Model [22,23]. CRFs

are popular for modelling high level gesture interactions for applications like sign lan-

guage [24,25]. IOHMMs are powerful models that have been demonstrated to perform

well [26] and we have used IOHMMs in a previous work [27], as well as HCRF and

EDMs [17].

1.3.2. Clustering of Sequential Data

Clustering of time series has been shown to be effective in many application do-

mains [28]. The goal of clustering is to identify sets of samples that form homogeneous

groups, in the sense that a certain distance measure, such as Euclidean distance for

static data, is minimized among the samples in the formed clusters.

There are two main approaches to time series clustering. In the first approach,

a distance measure that is applicable to time series is used to calculate a distance

matrix from pairwise distances of samples. A common measure is the dynamic time

warping (DTW) cost, which is the cost of aligning one sample to the other. Likewise,

pairwise distances can be trivially transformed to similarities, forming a similarity

matrix instead. Some clustering methods, such as hierarchical and spectral clustering

use these similarity or distance matrices as input to cluster the data [28]. In the

second approach, static features are extracted from each sample, essentially converting

the time series data to static data. Common static data clustering methods such as

k–means can then be used to cluster the features.

While DTW can estimate the similarity of two samples, graphical models such

as HMM can measure similarity of a sample respective to a set of samples. This can

be used to formulate a k–means type of clustering approach, where the HMMs play

the role of cluster means. Hence, each sample is assigned to the closest HMM, and
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each HMM is re–estimated using their own set of sequences. For instance, Oates et

al . use DTW to hierarchically cluster the data to form the initial clusters [29]. Hu

et al . use DTW iteratively to form initial clusters and for model selection [30]. Ma

et al . recursively model the dataset with HMM, calculate a feature called weighted

transition occurring matrix and use normalized cut algorithm to divide the set into

two clusters [31].

1.3.3. Hand Shape Recognition

The hand can be described either by a high level 3D hand model, or by a low

level appearance based model. 3D hand models make use of a priori knowledge about

the hand. In the case of a skeletal hand model, the system attempts to estimate

joint angles and global orientation directly by minimizing the difference between the

2D projection of the flexible 3D model and the 2D hand image with respect to the

model parameters [32]. Alternatively, a voxel model can be reconstructed, which can

be reconstructed from multiple silhouette images in order to estimate the joint angles

indirectly [33].

Variational segmentation methods can also estimate high–level parameters via an

energy minimization technique. These methods regard the general problem of region

segmentation, object tracking and 3D interpretation as an optimization problem, where

some energy measure that is usually a combination of region and boundary functionals

is minimized [34–36].

Appearance based models are used to relate the image of the hand to its actual

posture. The centroid of the hand and location of finger tips are among simple low–level

features describing such models. The most common low level features are the image

moments. Hu moments are invariant under translation, changes in scale, and rotation

[37], but they are neither complete, nor independent [38]. Zernike moments, on the

other hand, can be used to reconstruct the original image up to the required level of

accuracy, and are also rotation, scale and translation invariant [39]. A similar approach

is based on principal component analysis of the extracted hand images, which provides
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an efficient representation of the hand using a small number of features that can be

used to reconstruct the original image approximately. This is called the eigenhand

representation of the hand [40, 41], inspired by the analogous eigenface method used

for face recognition.

Motion energy images and motion history images are accumulated images that

are calculated over a limited history [42]. Motion energy images are union of all the

connected regions that show significant change over the given time interval, whereas

motion history images decrease the effect of older frames gradually. Unlike other fea-

tures, these features describe the hand motion as well, and are used to classify gestures

directly. Most discriminating features are used in [41], which aims to maximize the

distance of hand shape classes in the projected subspace. Another method is graph

elastic matching, which represents hands with labelled graphs that have Gabor filters

attached to the nodes [43].

Uebersax et al . propose a system that segments the hand and estimates the hand

orientation from captured depth data [44]. Their letter classification method is based

on average neighborhood margin maximization. Liu and Fujimura [45] recognize hand

gestures using depth images acquired by a time-of-flight camera. The authors detect

hands by thresholding the depth data and use Chamfer distance to measure shape

similarity. Then, they analyze the trajectory of the hand and classify gestures using

shape, location, trajectory, orientation and speed features. Suryanarayan et al . [46] use

depth information and recognize scale and rotation invariant poses dynamically. They

classify six signature hand poses using a volumetric shape descriptor which they form

by augmenting 2D image data with depth information. They use SVM for classification.

[44] provides a thorough review of American Sign Language (ASL) letter recognition

on depth data.

1.3.4. Articulated Hand Pose Estimation

Most approaches to hand pose estimation problem make use of regular RGB

cameras. Erol et al . [47] divide the pose estimation methods into two main groups
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in their review: partial and full pose estimation methods. They further divide the full

pose estimation methods into single frame pose estimation and model-based tracking

methods. Athitsos et al . [48] estimate 3D hand pose from a cluttered image. They

create a large database of synthetic hand poses using an articulated model and find

the closest match from this database. Similarly, Romero et al . [49] propose a non-

parametric, nearest neighbor based search in a large database to estimate articulated

hand poses. De Campos and Murray [50] use a relevance vector machine [51] based

learning method for single frame hand pose recovery. They combine multiple views

to overcome the self-occlusion problem. They also report single and multiple view

performances for both synthetic and real images. Rosales et al . [52] use monocular

color sequences for recovering 3D hand poses. Their system maps image features to 3D

hand poses using specialized mappings. Stergiopoulou and Papamarkos [53] fit a neural

network into the detected hand region. They recognize the hand gesture using the grid

of the produced neurons. De La Gorce et al . [54] use model-based tracking of the hand

pose in monocular videos. Stenger et al . [55] apply model-based tracking using an

articulated hand model and estimate the pose with an unscented Kalman filter. Bray

et al . [56] propose an algorithm that wraps a particle filter around multiple stochastic

meta–descent based trackers to form a smart particle filter that can track an articulated

hand pose. However, the resulting framework does not run in real–time. Heap et al .

[57] describe a 3D deformable point distribution model of the hand, which is used to

track hands using a single RGB camera.

A number of approaches have been reported to estimate the hand pose from depth

images. Mo and Neumann [58] use a laser-based camera to produce low-resolution

depth images. They interpolate hand pose using basic sets of finger poses and inter-

relations. Malassiotis and Strintzis [59] extract PCA features from depth images of

synthetic 3D hand models for training.

In a recent study Oikonomidis et al . [60] present a solution that makes use of

both depth and color images. They propose a generative single hypothesis model-based

pose estimation method. They use particle swarm optimization for solving the 3D hand

pose recovery problem, and report accurate and robust tracking in near real-time (15
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fps), with a GPU based implementation.

Recently, Kinect has been used to achieve real–time body tracking capabilities,

which has triggered a new era of natural interface based applications. In their rev-

olutionary work, Shotton et al . fit a skeleton to the human body using their object

recognition based approach [61]. They use a large amount of labelled real and syn-

thetic images to train a randomized decision forest (RDF) [62] for the task of body

part recognition. In a later study, Girschick et al. [63] use the same methodology with

a regression forest, and let each pixel vote for joint coordinates.

In this thesis, we followed the approach in [61]. Adopting the idea of an interme-

diate representation for the object whose pose is to be estimated, we generate synthetic

hand images and label their parts, such that each skeleton joint is at the center of one

of the labelled parts. We form large datasets created from random and manually set

skeleton parameters, and train several randomized decision forests, which are then used

to classify each pixel of the retrieved depth image. Finally, we apply the mean shift

algorithm to estimate the joint centers as in [61]. The resulting framework can estimate

hand poses in real time.

1.4. Outline of the Thesis

In Chapter 2, an in-depth analysis of hand gestures is given based on the theory of

formal languages. Chapter 3 focuses on graphical models and their usage in modelling

dynamic hand motion. We also introduce a novel model that can optimally attack

gesture recognition problem. Hand shape modelling issues, and the models we propose

are explained in Chapter 4. The proposed methods are tested and compared to previous

solutions to demonstrate their capabilities and efficiency in Chapter 5. Finally, we

conclude the thesis and discuss future work in Chapter 6.
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2. ANALYSIS OF HAND GESTURES

Hand gestures in general have three important aspects: (i) hand motion, (ii) hand

shape and (iii) articulated hand pose, i.e. hand skeleton. Hand motion is the mode

that is primarily used by most platforms that support gestures, albeit in a simplistic

manner, involving only hand motions such as swipes and waves. Hand shapes and

hand skeleton on the other hand, found no significant usage in HCI systems yet, as

real time methods have started to emerge only recently [64,65].

Hand gesture modelling is a complicated problem, due to the inherent spatio–

temporal variability of gesture signals. In particular, performing a gesture faster or

larger in scale usually does not change its meaning, and the model should capture this

variation. For instance, Figure 2.1 shows a user performing the same gesture with both

of her hands. Regardless of the scale, speed or starting point, the gestures should be

assigned the same label by the system. Depending on the application and gesture,

a clockwise and counter–clockwise circle may have the same (e.g. the digit zero) or

different meanings. This is typically learned from a dataset that consists of positive

samples.

Figure 2.1. A user performing the same gesture with two hands. Regardless of the

scale and speed, both sequences should be assigned to the same class label.

As a novel contribution, we present here a generative grammar for gestures, and

show that it is a Type 1 grammar. Then, we will discuss suitability of different models
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for this type of problem.

2.1. A Generative Grammar for Gestures

We start by representing gesture signals as strings, and gesture classes as lan-

guages, as it is common in automata theory. Since strings consist of discrete symbols,

the observations are quantized into a finite set of codewords, which form the alphabet

Σ of the grammar. A generic gesture signal will typically consist of motion and shape

features extracted at each time frame. These can be quantized separately and the

actual observations can then be represented by a pair of codewords describing both the

motion and the shape of the hand. For instance, a waving gesture can be represented

by the sequence {< L,O >,< R,O >,< L,O >,< R,O >}, where L stands for left,

R stands for right, and O stands for open hand. and we assumed that the motion

direction is quantized instead of hand position. Without loss of generality, a gesture

signal of length T can be written as {o1, o2, . . . , oT}, where ot ∈ Σ. The positive sam-

ples of a class of gestures are assumed to be members of the same language L, and

the generative gesture grammar GL is the grammar that generates all the strings in L,

and only the strings in L. We are interested in GL, and the type of languages it can

generate in general.

Note that the meaning of a gesture is independent from the temporal or spatial

scale of the gesture, as well as the sampling rate of the sensors. Changing the temporal

scale of a gesture does not affect the ratios of durations of sub-gestures, which could

otherwise change the meaning. For instance, performing the first half of a circle slow

and the second half much faster communicates extra information, and this gesture

should be modelled separately. Allowing a change in speed along the performance also

implicates that the temporal ordering is much less important than the final shape.

In those cases we can simply ignore the time dimension and handle the gesture as

a shape, for instance as in optical character recognition. One could also argue that

changing the spatial scale could change the meaning as well. However, these can simply

be recognized as the same gesture first, and then the distinction between smaller and

larger gestures can be made.
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We further restrict gestures to be aperiodic, such that multiple consequent per-

formances of a gesture such as waving the hand should not be considered as a single

gesture. This assumption considerably simplifies the gesture strings without loss of

generality, since consequent performances of such gestures can be combined to have a

single meaning after the recognition phase.

Next, we need to determine the observation features to be quantized. The most

natural selection is position of the hand, relative to some reference point on the user,

such as the head. However, generalizing to gestures with different spatial scale or

starting point is not trivial with this selection. Normalization in the spatial dimension

would handle both problems. Yet, it is not suitable for online recognition tasks, since

normalization requires that we know when the gesture starts and ends.

In this thesis, we quantize the angle of the velocity of the hand and discard its

magnitude. This will ensure independence from scale and starting point. However,

the effect of speed and scale will become interchangeable, as we have no means of

distinguishing between the possible causes of repeated observations, thereby allowing

distinctly different gestures to have the same string representation. For instance, con-

sider the symbols U , D, L and R as the codewords for the four major directions up,

down, left and right, respectively, and ignore the hand shapes for now. Then, the

string UUURRRDDDLLL can belong to a perfect square or to a rectangular gesture,

where the hand moves faster on the longer sides. This is an important weakness of this

kind of observation. However, it is not severe, as it is a very unlikely that such strings

belong to different classes. Therefore, we choose to quantize velocity for the sake of

simplicity.

It is important to note that speed, scale and sampling rate have similar effects

on the string. For instance, performing the gesture in the previous example two times

slower, or drawing a two times larger square, or using a camera with two times higher

sampling rate all generate the same string UUUUUURRRRRRDDDDDDLLLLLL,

if we disregard the noise. We can express this string as U6R6D6L6, and the generic

string for the square gesture as UnRnDnLn for n ≥ 1. In fact, UnRnDnLn with n ≥ 1
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is precisely the language consisting of all the clockwise squares that start from the left

bottom corner. It is then straightforward to account for all the other clockwise squares

by using the union operation:

LCWSq = UnRnDnLn ∪RnDnLnUn ∪DnLnUnRn ∪ LnUnRnDn (2.1)

It is important to note that a language consists of several sub-languages. Here, the

distinction is due to different starting points. In some other gesture, like a letter or

digit drawn in the air, alternative trajectories may play a role. Employing observations

other than the velocity of the hand may also lead to different kinds of sub-languages.

A generic gesture language can then be expressed as the union of all of its sub-

languages, which usually differ either in their starting point, or in their direction:

L =
K⋃
k

t
ek,1n

k,1 t
ek,2n

k,2 . . . t
ek,Nk

n

k,Nk
n ≥ 1 (2.2)

Here, k is the index of the sub-language, K is the number of such sub-languages, Nk

is the number of terminals in that specific sub-language, tk,i is the ith terminal of the

kth sub-language, and ek,i is the exponent of the ith terminal of the kth sub-language.

A simpler form can be obtained by expressing the concatenation operation with

a product sign, such that
2∏
i=1

ti = t1t2:

L =
K⋃
k

Nk∏
i

t
ek,in

k,i n ≥ 1 (2.3)

Note that anbncndn is not the same as a∗b∗c∗d∗, where the star sign indicates

the Kleene star operation, meaning that the terminal can be repeated any number of

times, including zero. The former string restricts the number of elements a , b , c and

d to be the same. We can generalize this remark with the following lemma:



18

Lemma 2.1. Star operation is not allowed in gesture languages.

The star operation enables the subsequence it affects to grow independently from

the rest of the gesture. However, we assumed that the ratio of durations of each sub-

sequence to the entire string is part of the definition of the gesture. Therefore, we do

not allow the star operation.

We present several other lemmas in accordance with our assumptions:

Lemma 2.2. Each terminal must have a common non-constant exponent n.

Since the string is affected by the speed, scale and sampling rate in the same

manner, the number of copies of each terminal should depend on a common non-

constant factor.

Lemma 2.3. Exponentiation over multiple codewords is not allowed.

Since each terminal must have the common exponent n, the only two possibilities

are exponentiations of the type (teii t
ej
j )cn, and (teini t

ejn
j )c, where c is a constant. Here,

only two terminals are considered for simplicity. The former operation creates multiple

copies of the sub-gesture, leading to partly or entirely periodic gestures, which we

assumed not to exist. On the other hand, the latter usage is not essential, as we

can always express it in the form of Equation 2.2. In fact, we will never need to

use parenthesis in gesture languages. This is also why left-right graphical models are

preferred to model gestures. We can always express the sub-languages as a linear

sequence of certain sub-regimes.

Lemma 2.4. Gesture languages are context sensitive.

The language tn1 t
n
2 . . . t

n
k is known to be context sensitive for any value of k. For

k = 2, the language is also context free, and for k = 1, the language is regular.

Therefore, each sub-language and each gesture language is context sensitive, since
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context sensitive languages are closed under the union operation. These languages

are evidently Type 1 languages, which cannot be recognized with finite state or push-

down automata. The sensitivity to the context arises from the parameter n, which is a

function of the sequence length. Hence, online recognition is much harder than offline

recognition, since n can be estimated in the latter case. This is also reflected in the

fact that, when solved for the common exponent n, the language reduces to

L =
K⋃
k

t
ek,1
k,1 t

ek,2
k,2 . . . t

ek,Nk
k,Nk

(2.4)

which is a type of star-free regular language. These are among the simplest languages in

the Chomsky hierarchy [4], being a subset of regular languages that can be recognized

with finite state automata without self-arcs.

2.2. Continuous Gestures

Continuous gesture recognition is concerned with longer strings without indica-

tors for start and end points of gestures. These strings are concatenation of singular

performances of these gestures, with possible co-articulation effects in between. By

ignoring such effects for now, we obtain the following form for continuous gesture

streams:

LC = g1g2 . . . gM (2.5)

LC =
M∏
m=1

Ngm
kgm∏
i

t
egm,kgm,ingm

gm,kgm ,i
(2.6)

Here, it is assumed that M gestures have been performed in sequence, with indices m

indicating their order. Then, kgm is the sub-language selected for that gesture, N gm
kgm

is

the number of sub-regimes in the selected sub-language, and ngm is the selected common

exponent for the gesture gm. The most important issue is that ngm is constant during a

performance of a gesture, yet it can have a different value for the next gesture. This is

consistent with realistic cases, since the user can choose to perform a gesture faster or
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slower, and then choose to perform the next one larger or faster. A change in sampling

rate is very rare in realistic cases, and does not need to be modelled explicitly. Different

values of the common exponent can handle these changes too, if not in the middle of

a gesture.

2.3. Gestures with Variation

So far, noise and variation have been ignored for simplicity, without which, the

grammars cannot represent realistic gestures. It is important to note that noise is

considered to be local. Increasing the scale or sampling rate does not produce the

same noisy observation repeatedly. This means that the noise is independent from the

common exponent n.

The durations of segments, and observations are subject to variation in realis-

tic cases. For instance, Figure 2.2 depicts a collection of motion-only performances,

which are normalized such that each digit has the same height. When such a digit is

represented as a string by quantizing the direction of the hand at each frame, we are

essentially approximating each path with a piece-wise linear function, where line angles

are quantized. Both the angles and the lengths of such lines vary between individual

performances. Therefore, the exponents and the observations are taken to be random

variables sampled from certain probabilistic distributions.

When the variations are incorporated into the general form, the following aug-

mented form is obtained:

L =
⋃
k

T
dk,1n

k,1 T
dk,2n

k,2 . . . T
dk,Nk

n

k,Nk
n ≥ 1 (2.7)

where the random variable Tk,i replaces the formerly deterministic observations tk,i,

and the segment durations dk,i come from the distributions p(dk,i; θk,i), such that

E[dk,i]p(dk,i;θk,i) = ek,i. The corresponding language is context sensitive as before, and

cannot be recognized by finite state automata due to the unbounded global variable n.
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Figure 2.2. A collection of performances for the digit five, collected from 13 people,

normalized such that the height of each digit is the same.

There are two major components of this grammar. The first is the sequential

process, represented by the variables K, Nk and dk,i, and the second is the observations,

represented with the variable Tk,i. Note that the random variables Tk,i are compound

observables indicating hand motion, hand shape and any other possible important

signal. Hand motion, along with the sequential process, defines a trajectory, and a

dynamic hand shape allows us to define more complicated gestures similar to sign

language.

First, we will focus on models used to attack trajectory classification in Chapter 3.

Since hand shape is a complicated non-temporal observation, its modelling process is

significantly different, and we will present several novel models in Chapter 4.
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3. MODELLING TRAJECTORY

The purpose of modelling gestures is the task of detection and classification of

gestures in real-time. This means that in most realistic cases, the start and end points,

or the lengths of the gestures are not known. At each time frame, the system must

compare the current stream against existing gesture models. Assuming that we are

looking for gestures that end at the current time frame, the system should calculate

a likelihood for each model and for several candidate start points, which is a costly

operation. Therefore, we are looking for models that can iteratively update the likeli-

hoods at each time frame with a finite number of operations, and that can handle long

sequences.

A simplistic approach is to first resample the candidate sequence to set its length

to a certain number to be able to use classification algorithms such as SVM or artificial

neural networks (ANN). Nevertheless, this approach is not suitable, since we need to

perform the costly resampling operation several times on every candidate sequence at

each time frame, to take each starting point into account. Graphical models provide

a much more elegant solution, typically needing only a few operations at each time

frame to update the likelihoods, which is independent from the sequence length.

Graphical models view observation sequences as a product of a hidden stochastic

process. The dependencies of the hidden states and observations are explicitly rep-

resented by a graph. Each random variable is represented with a node, and edges

between these nodes indicate pairwise dependencies. This representation is useful for

factorizing the otherwise complicated joint probability of the random variables. If the

network is a directed acyclic graph (DAG), it is called a Bayesian network; if the graph

is undirected, it is called a Markov random field. There are also graphs with combi-

nations of undirected and directed edges, forming a so-called chain graph. Graphical

models are the most popular among the hand gesture models, and we will focus on

several common graphical models in this thesis.



23

An important class of models that need to be mentioned is the stochastic gram-

mars. These are grammars consisting of production rules augmented with a probability.

Since we know the exact grammar to be modelled, a stochastic context sensitive gram-

mar would be a suitable choice. However, as we have shown in the previous chapter,

the context sensitivity of the grammar stems from the common exponent n. By finding

clever approximations for n at the run-time, it is possible to use the faster and simpler

graphical models. In this thesis, we only consider the graphical model alternatives and

leave stochastic grammars as future work.

3.1. Hidden Markov Model

Figure 3.1. The graphical model of a hidden Markov model. xt is the hidden state

variable, and yt is the observation at time t.

By far the most common graphical model used for gesture modelling is the

HMM [7]. HMMs are directed graphs formed by random variables corresponding to

the observation sequence, denoted by yt and a hidden state variable denoted by xt,

where t is the time index. HMMs model the probability density of the observation se-

quences. Such networks are called generative models, since they can be used to sample

new observation sequences from the estimated distribution. To use generative models

for the classification of a sequence Y = y1:T into a class label c, the likelihood of Y is

estimated by each model with parameters λc and the one with the highest likelihood

is selected. The posterior likelihood of the class label can be estimated using Bayes’

rule:

P(c|Y ;λc) =
P(Y |c;λc)P(c)

P(Y )
(3.1)
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where P(c) is the frequency of the class label, P(Y ) is a constant, and P(Y |c;λc) is

the likelihood of the observation sequence as estimated by the generative model, in

this case HMM. The important tasks are estimation of the parameters λc from a set of

positive samples, and evaluation of the likelihood P(Y |c;λc).

HMMs assume that observations are conditionally independent from each other,

when the state is known. Moreover, HMMs assume Markov property, which means that

state transition probabilities are conditioned on a finite number of previous states. It

is common to use a Markov order k = 1, and condition the transitions only on the

current state. Note that, even if the process has a naturally higher order k, we can

form new states for each possible value of the last k states, and reduce the order to 1.

Thus, a model with N states and order k can be expressed as a model with Nk hidden

states of order 1.

The graphical model of HMM is given in Figure 3.1. Here, xt is the hidden state

variable, and yt is the observation at time t. xt can take values between 1 and the

number of hidden states N . Observations can be discrete or continuous.

To define an HMM, we need to estimate the prior state probabilities πi = P (x1 =

i), the state transition probabilities aij = P (xt+1 = j|xt = i) and the conditional

observation probabilities P (yt|xt). If the observation yt is discrete, it comes from

a multinomial distribution, and the emission probabilities can be represented by a

matrix. If it is continuous, it is common to model it with a continuous distribution

function such as the Gaussian, or a mixture of Gaussians. The functions themselves are

assumed to be independent from the variable t, i.e. the probabilities do not change over

time. Such graphical models, where the probabilities are fixed, are called homogeneous.

Given these restrictions, the likelihood of the observation sequence can be factorized

as follows:
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P(y1:t|λc) =
∑
X

P(y1:t, x1,t|λc) (3.2)

=
∑
X

P(y1:t|x1,t;λc)P(x1,t|λc) (3.3)

=
∑
X

P(x1|λc)
T∏
t=2

P(xt|xt−1;λc)P(yt|xt;λc) (3.4)

where a summation over X indicates that all possible hidden state sequences should be

considered. The well-known dynamic programming based forward-backward procedure

can be used to estimate this likelihood.

Additional constraints can be imposed on the structure of the HMM network for

efficiency. For instance, it is a common practice to restrict state transitions, such that

the probability aij is non-zero only if j ≥ i. The resulting type of HMM is called a

left-right HMM, and is widely used for speech, hand writing and gesture modelling.

The reasoning for this architecture is that all these signals are sequential and linear in

nature (as opposed to cyclic). The state transition diagram of such a model is given in

Figure 3.2. Here, each state Si is only allowed to make a transition to itself or to the

next state Si+1.

Figure 3.2. The state transition diagram of a left-right HMM. Each state Si is only

allowed to make a transition to itself, or to the next state Si+1.

An important weakness of HMMs is that they have very limited control over

state durations, i.e. how many steps it takes to make a transition to another state.

HMMs implicitly restrict these durations to have a geometric distribution, since the

probability of making a transition to another state in the nth attempt is ρni (1 − ρi),

where ρi is equal to aii, the probability of making a self-transition when xt = i.
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We can use HMMs to model sequences generated by the gesture grammar intro-

duced in the previous chapter. The form of the grammar in Equation 2.7 is particularly

useful to show the effect of modelling such strings with an HMM. In the ideal case,

each alternative path associated with the gesture class is modelled with a separate

HMM, or a left-right HMM chain that is connected to a single initial state that can

make a transition to each of the chains. This is the graphical model corresponding to

a mixture model, which will be examined in more detail in Section 3.11. The corre-

sponding state transition diagram is given in Figure 3.3. Ideally, each chain models

a single sub-language, and each hidden state Ski is responsible from a single segment

Tk,i. The corresponding segment durations dk,i are implicitly modelled with a geomet-

ric distribution by the HMM through state durations. The most important weakness is

the inability of the HMMs to model a common factor n for the state durations. Hence,

n is ignored and HMMs describe variation only through the distribution of the state

durations, which are independent.

HMMs provide very little control over the durations. One can manipulate the

state duration distributions to some degree by modelling each segment with more than

one hidden state, resulting in a negative binomial distribution [66]. However, the mean

and variance cannot be independently modified. In the case of grammars, the expected

values of the duration distributions ei are defined by the gesture path, whereas the

amount of variation is learned from actual performances. These parameters cannot be

modelled separately by HMMs.

3.2. Maximum Entropy Markov Models

A maximum entropy Markov model (MEMM) is essentially an HMM with emis-

sion dependencies reversed, so that state transitions are conditioned on the observa-

tions. The corresponding graphical model is given in Figure 3.4. As before, the hidden

states are denoted as xt, and the observations yt. Note that, unlike HMMs, the density

of the observations is not modelled in the case of MEMMs. Instead, MEMMs model

the hidden state probability distributions, which are conditioned on the observation

sequence. Such models are called discriminative, because they directly model P(c|Y )
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Figure 3.3. The state transition diagram of a mixture of left-right HMMs.

in the Equation 3.1, which is more relevant for the task of classification. However,

MEMMs do not assign a single class label c to the sequence Y . Instead, they model

P(X|Y ), where X = x1 . . . xT is a sequence of labels. Hence, MEMMs are sequence

labelling models. To classify sequences instead of observations, on can estimate the

class label c at each time frame and then apply voting using all of the estimated label

posterior probabilities P(xt|xt−1, yt).

The discriminative nature of MEMMs allows them to make better use of the

observations, since the observations do not need to be assumed to be independent.

Hence, there is no naive Bayes assumption and certain features of observations can be

used, which are unavailable to HMMs, because they are not independent.

An important drawback of MEMMs is the so-called label bias problem. Due to

per-state normalization of the state transition probabilities, MEMMs effectively ignore

the observations for low-entropy state transition distributions such as the left-right
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Figure 3.4. The graphical model of a maximum entropy Markov model. xt is the

latent label, and yt is the observation at time t.

models. This means that the probability mass must be transmitted to the next state

regardless of the observation. For instance, if a certain symbol ν is missing from

the dataset, its density will be zero in the case of HMMs. Then, when the model

encounters ν, it correctly assigns the likelihood of observing it as zero. However, the

conditional state transition probabilities must be normalized for all combinations of

xt−1 and yt, in the case of MEMMs. Accordingly, if ν is encountered in run-time, the

posterior probabilities cannot be set to zero, since
N∑
j=1

P(xt = j|xt−1 = i, yt = ν) = 1,

due to local normalization. For a left-right model, this effect becomes more dramatic,

and MEMM assigns large probabilities for previously unseen observations. Because

of such problems, we do not consider MEMMs for modelling gestures. We will see a

discriminative Markov random field alternative later on, such as the conditional random

field (CRF) that solves the label bias problem, and the hidden conditional random field

(HCRF), which additionally allows sequence classification.

3.3. Input Output Hidden Markov Model

The input–output HMM (IOHMM) is an HMM variant, which conditions state

transition and emission probabilities on an external input or control sequence [21]. The

corresponding graphical model is given in Figure 3.5. This model is basically an HMM

augmented with an input or control sequence U . The state transition probabilities

become P(xt = j|xt−1 = i, ut) and emission probabilities become P(yt|xt = i, ut).

Likewise, the state prior probabilities are now P(x1 = i|ut). The likelihood of an

observation sequence Y is then:
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P(y1:t|λc) =
∑
X

P(x1|u1;λc)
T∏
t=2

P(xt|xt−1, ut;λc)P(yt|xt, ut;λc) (3.5)

Depending on U , the probabilities can take various forms. For discrete inputs

from a finite set, the state transition probabilities or emission probabilities for discrete

observations can still be given in the form of a matrix. It is also possible to employ

complex local models for each state, which can estimate the network parameters at

time t, conditioned on ut. For instance, a classifier such as ANN can be used at each

state to produce state transition and emission probabilities [21], if the input sequence

is continuous.

There is no conditional independence assumption for the inputs in the external

sequence, as in the case of MEMMs. Hence, any feature can be used as a control,

such as the time index, previous observations, synchronous or asynchronous external

observations, and features extracted from observations. For instance, in our previous

attempt to model hand gestures with IOHMMs, we used continuous hand shape sig-

nals formed from the Hu moments of the hand image as the control sequence U , and

hand motion related discrete observations as the output sequence Y . Furthermore,

we employed complex multi-layered perceptrons (MLP) for each state transition and

emission in the network. Finally, we augmented the model by using normalized time

as input, and showed that the resulting inhomogeneous model is significantly more

powerful than HMMs [27].

IOHMM can potentially remedy the three major weaknesses of HMMs: (i) IOHMMs

can be inhomogeneous, better adapting themselves to the observations. (ii) The ob-

servations are now conditionally independent given the hidden state and the input.

Since we can use previous observations in the current input, there is no naive Bayes

assumption, and a wider context can be taken into account. (iii) The input sequence

can be used to have a far greater control over the state durations. For instance, the
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control sequence can behave like a counter, and allow transitions only when a counter

reaches zero, enabling explicit durations.

Figure 3.5. The graphical model of a input-output hidden Markov model. xt is the

hidden state variable, yt is the observation, and ut is the input or control variable at

time t. Both state transitions and emissions are now conditioned on the input

sequence.

IOHMMs can be generative, discriminative, or both. In the most general case, we

need to set the input sequence in order to be able to generate the output sequence. It

is also possible to model each class separately as in the case of HMMs as we did in [27],

or a single IOHMM can be trained that discriminatively determines the class label

as in the case of MEMMs, by averaging over class posteriors estimated at each time

step [26]. We prefer to use the generative mode, since the discriminative setting is more

suitable for sequence labelling then sequence classification. Even though IOHMMs are

very powerful, they are usually rather complex and slow, and requires careful model

selection to determine U and Y , limiting their usage in real-time applications.

Now we consider modelling the grammar from Equation 2.7. Mixtures of left-right

IOHMMs can be trained on each gesture as before, using the IOHMM generatively.

Durations dk,i can be explicitly controlled by manipulating ut, such that state transition

is enabled only for a certain range of durations. However, modelling n is non-trivial.

n cannot be used as a latent variable, since it is unbounded, and it cannot be given

as input ut for recognition tasks, since it is unknown at time t. A suitable solution
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could be to estimate the value of n at each state transition, since we know the ratios

of the durations of each segment. However, this corresponds to a different graphical

model, where the control variables ut are conditioned on the previous state xt−1. The

resulting model is not IOHMM, and is more complex.

A trick we used in [27] to solve this issue was to use normalized time t/T as a

part of the input sequence. This way, the model could learn exactly when to make

a state transition. However, in order to normalize the time t, one needs to know

T , which is only suitable for offline recognition tasks, in which n is already known.

IOHMMs cannot model the dependency of the durations of the segments. We need a

model that explicitly conditions state durations on each other. Hidden semi Markov

models (HSMM) allow such interdependencies between durations, as well as explicit

modelling of the durations. First, we will focus on explicit duration models, a simpler

and common variant of HSMMs.

3.4. Explicit Duration Model

Explicit duration model (EDM) is designed to tackle the duration modelling

problem of HMMs by associating a sequence of observations with each latent state,

instead of a single observation [22, 66]. In this model, state transitions do not only

depend on the previous state, but also on an explicitly defined duration, integrated

in the form of a counter to the network. Such models belong to the family of hidden

semi-Markov models (HSMM). EDM does not condition the new state duration on the

previous state or the previous duration, and the state transition does not depend on

the duration. The transition occur when the durations end, however the duration does

not affect the choice of a next state. HSMMs allow more general network structures,

which will prove to be useful.

EDM is basically an HMM augmented with a counter variable τt. The counter is

initialized according to the target duration distribution when a new state is reached,

and the counter variable is deterministically decremented. The next state transition

occurs only when the counter reaches zero. EDM states are not allowed to make self-
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transitions. The graphical model of EDM is given in Figure 3.6.

Figure 3.6. The graphical model of the explicit duration model. τt is the counter

variable that controls state transitions.

Note that the counter is a latent random variable, and inference algorithms need

to take all possible values into account. Therefore, an upper bound D for the counter

τt must be determined beforehand. This means that a left-right EDM can process

sequences of length DN at most, where N is the number of states. On the other hand,

a larger value of D slows down evaluation process. Therefore, D should be selected

carefully.

EDMs are generative and homogeneous models like HMMs, and the only advan-

tage they have over HMMs is their ability to model durations explicitly. This means

that the gesture of Equation 2.7 can be modelled better with a mixture of left-right

EDMs, since the actual duration distributions dk,i can be estimated and modelled.

EDMs allow both parametric and non-parametric duration models.

We modelled gestures with non-parametric left-right EDMs in our previous works [17].

The major short-coming of EDMs is that the durations are independent from each

other. The general form of HSMM is suitable for this task. Therefore, we will focus on

HSMMs in much greater detail. First, we will introduce the prominent Markov random

fields that are commonly used for gesture modelling.
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3.5. Conditional Random Fields

Conditional random field (CRF) is the discriminative and undirected counter-

part of HMM [18], which does not assume conditional independence of observations

and can take context into account. Undirected graphical models such as CRFs encode

independence differently than their directed counterparts. This can be used to remedy

the major weakness of MEMMs, namely the label bias problem. As mentioned in Sec-

tion 3.2, this problem emerges due to the per-state normalization constraint of state

transition probabilities, which is a common problem of discriminative Bayesian net-

works. CRFs solve the label bias problem by globally normalizing the state transition

probabilities. The corresponding graphical model is given in Figure 3.7. As before, yt

are the observables or their functions, and xt are the sequence labels.

Figure 3.7. The graphical model of a conditional random field. CRFs are the

discriminative counterparts of HMMs.

Just like MEMM, CRF is a sequence labelling method that assigns a label to

each observation instead of the entire sequence. It is therefore more suitable for mod-

elling high level inter-class interactions. For instance, [24, 25] use CRFs to model sign

language, i.e. a grammar over gestures. However, like MEMMs and discriminative

IOHMMs, CRFs are not suitable for sequence classification tasks. CRFs do not model

the internal dynamics of gestures, as they are only capable of modelling inter-class

dynamics.

A common work-around for the incapability of CRFs to model sequences is to

let the sequence labels correspond to gesture class labels, find the Viterbi path, and

assign the final gesture label based on the most frequently occurring label. This is



34

not an elegant approach, and better suited models have been proposed. In particular,

hidden conditional random fields explicitly attack this problem. Therefore, we have

not considered CRFs for isolated gesture classification.

3.6. Hidden Conditional Random Fields

A hidden conditional random field (HCRF) is a CRF augmented with a single

latent random variable representing the class label to make it suitable for sequence

classification task [19]. Whereas hidden states correspond to class labels in the case

of CRFs, the hidden states of HCRFs behave just like their HMM counterparts. The

inferred state sequence can then be used to determine the class label. The graphical

model of HCRF is given in Figure 3.8.

Figure 3.8. The graphical model of a hidden conditional random field. HCRF is

basically a CRF augmented with a class variable c.

HCRF is the first purely discriminative model we saw that is not suffering from

the label bias problem, which can model internal dynamics of sequences and classify

them. Due to its discriminative nature, a single multi-class HCRF can be trained to

distinguish between each class label, or separate models can be trained for each class,

which are trained in a one-vs-all setting. In each case, HCRFs are quite powerful for

sequence classification tasks. However, they can only capture intra-class dynamics. In

comparison, CRFs were only able to model inter-class dynamics.
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HCRF is a powerful model, especially well-suited for the classification task. How-

ever, when used to model the gesture of Equation 2.7, it suffers from the same short-

comings regarding durations as before. It cannot incorporate the common exponent n,

and the state durations are independent.

Another problem is the complexity of modelling sub-languages with an HCRF.

Even though it is straightforward and simple to model a density as a mixture of gener-

ative models, this is a complicated task when discriminative models are employed. For

instance, either a single multi-class HCRF needs to be used to model all of the clusters

of every class at the same time, or a separate one-vs-all HCRF for each cluster needs to

be trained. We showed in our previous work that generative models benefit much more

than HCRFs from extending to mixture models [17]. According to these results, as a

single model, HCRF is the better than HMM, IOHMM and EDM. However, mixtures

of HMM, IOHMM and EDM all surpass the mixture of HCRF, both in accuracy and

speed.

3.7. Latent Dynamic Conditional Random Fields

The latent dynamic CRF (LDCRF) attempts to combine the strong points of

CRFs and HCRFs, i.e. to capture both intra– and inter–class dynamics of gestures [20].

This is achieved by further extending the HCRF to incorporate a sequence of class

labels. Hence, it can be used to infer both a hidden state sequence explaining internal

dynamics, and to infer a sequence of classes based on a higher order such as a grammar.

For instance, LDCRF is better suited for continuous gesture recognition than isolated

gesture recognition. The Figure 3.9 shows the graphical model of LDCRF.

As inter-class dynamics of gestures is out of the scope of this thesis, we will not

consider LDCRFs for modelling gestures.
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Figure 3.9. The graphical model of latent dynamic conditional random field. LDCRF

has a separate class variable for each hidden state.

3.8. Hidden Semi Markov Models

Hidden semi Markov model (HSMM) is an extension of HMM, where states are

represented along with their durations. In the most general case, a state transition to a

new state-duration pair is conditioned on the previous state-condition pair. Moreover,

each state of a HSMM produces a sequence of observations instead of a single observa-

tion, whose length is determined by the state duration. The corresponding graphical

model is rather complex for the most general case, when no independence assumption

is made. A simpler graph showing the dependencies explicitly is given in Figure 3.10.

Note that this is not a proper graphical model, since its topology is variable.

There are three prominent variants of HSMMs, namely the EDMs introduced in

Section 3.4, variable transition models and residential duration models [23]. The EDMs

are the simplest among all HSMM variants. They assume conditional independence

of observations and independence of state durations to both the previous state and

previous duration. The variable transition HMM, assumes that the state transition is

dependent on the state duration. However, it assumes that the new duration is in-

dependent from the previous one. The residential duration models assume that state

transition probabilities along with the new duration are independent on the previous
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Figure 3.10. A graphical model for the general hidden semi Markov model. This is

not a fully specified model, since the topology varies depending on the durations.

duration. In short, all these simplified HSMM variants assume that the durations are

independent from each other. Since the dependence of durations is the most impor-

tant characteristic of our definition of gestures, none of these models are suitable for

modelling the gesture in Equation 2.7. On the other hand, our gesture definition sug-

gests that conditional independence of observations can be assumed, since a segment

usually consists of the same symbols, whose order is of no importance. The problem

with this assumption is the co-articulation effects that occur during transitions be-

tween segments. However, during training, these co-articulation regimes are modelled

with separate states, provided that there are sufficiently many states in the model.

Therefore, we will assume conditional independence of the observations for simplicity.

The resulting model does not have a name in the literature as far as we know. For our

purposes, we will call this model an explicit ratio model (ERM).

Note that it is still not clear whether conditioning the durations on previous du-

rations will enable us to properly model gestures with the common factor n. Therefore,

we will first attempt to design a model that explicitly uses the factor n as intended.

As noted earlier, EDMs are variants of HSMMs, which assume that durations are

independent. We can add the relevant dependencies to this model to come up with a

graphical model. We start by assuming that the durations are dependent on external
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variables corresponding to the exponents ei, and the value of n, the common exponent.

This is the model based on the general form of Equation 2.2. By adding the relevant

nodes and dependencies to the graphical model of explicit duration models, we obtain

the model in Figure 3.11.

Figure 3.11. The graphical model for an explicit duration model, augmented with the

variable n.

Here, yt is the observation, xt is the hidden state, τt is the state duration counter,

E is the set of exponents ei learned during the training, and n is the common factor.

Note that yt is observable, and E is assumed to be known, whereas the other nodes are

not, as indicated by shaded nodes. In general, we could assume that E is also latent,

and marginalize it out. However, the exponents determine the shape of the gesture,

and can be defined beforehand.

The model generates gestures by first selecting a value for n, which corresponds

to adopting a certain scale and speed for the performance, and a sensor sampling

rate. The hidden state x1 is set to 1, since we employ a left-right model and start

always with state 1, such that P (x1 = 1) = 1. This state is expected to model the

first segment of the gesture string. Hence, the duration variable τ1 is initialized with

a counter value depending on the exponent of the first term, such that τ1 comes from
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the discrete probability distribution function p1(τ1|E, n), and E[p1(τ1|E, n)] = e1n is

the exponent of the first term in the gesture grammar. The observation y1 is the first

observation of the gesture and corresponds to the first literal of the gesture string,

coming from a distribution p(y1|x1 = 1;φ1). If the observations are quantized, this is

a discrete multinomial distribution, and φi is simply a matrix of probabilities Bij =

P (yt = νj|xt = i), where νj is the jth symbol. If the observations are continuous, we can

use a Gaussian or mixture of Gaussians, or any other feasible continuous distribution

instead.

The counter τt is deterministically decremented at each time frame. When the

counter reaches zero, the state variable xt is incremented, due to the restricted structure

of the left-right model. When a state transition occurs, the counter τt is re-initialized,

based on the value of n, the learned parameters E, and the new value of the state

variable. Once xt reaches the final state of the gesture N , and the counter reaches

zero, generation stops. These can be formulated explicitly as follows:

P (xt+1 = j|xt = i, τt = s) = δ(j, i+ 1), if s = 0 and i < N (3.6)

P (τt+1 = s′|τt = s, xt+1 = i, n) =

δ(s
′, s− 1), if s > 0

pi(s
′|n,E, i), if s = 0

(3.7)

P (yt = w|xt = i) =

Biw, if discrete

ρi(w;φi) if continuous

(3.8)

n ∼ U [1,∞) (3.9)

As expected, the major complication arises due to the dependency of the state

durations to n, since every slice of the dynamic network is conditioned on this latent

variable, which needs to be marginalized out.

A trick we can use is to estimate the value of n at each state transition, based on
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the duration of the previous state. Since we know the normalized ratios of the segment

durations, the total sequence length can be estimated easily. To do this, the value of n

needs to be variable, and it should depend on the previous duration. This is the idea

behind our novel model, the ERM.

3.9. Explicit Ratio Model

We define an explicit ratio model (ERM) as a variant of HSMM, which assumes

that the state durations depend on the previous state duration, and that the observa-

tions are conditionally independent, given the state. We now show that this model can

be used to model the gesture grammar we seek.

To see how this model would work, we re-express the gesture strings of Equa-

tion 2.2 in a way that the exponents only depend on the previous one, and not on a

common factor n:

L′ = td11 t
d2
2 . . . tdNN di ≥ 1 ∀i (3.10)

where we consider a single sub-language and drop the index k for simplicity, and the

durations di are recursively defined as:

d1 = e1n (3.11)

dm =
em
em−1

dm−1, m = 2, . . . , N (3.12)

(3.13)

such that each duration depends only on the previous duration. As in the case of

EDMs, we set an upper bound D for the duration variable.

In this new model, we concern ourselves with transitions between state-duration
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pairs. This allows us to discard the explicit dependency to n by conditioning consequent

state durations on the previous ones.

Figure 3.12. Proposed HSMM variant. The durations are conditioned on the previous

duration.

By making the appropriate changes, we obtain the model given in Figure 3.12.

In particular, the counter is discarded to show the dependencies between durations

explicitly, and the node n is eliminated from the model, as it is not explicitly needed

any more. For now, the time indexed state variable xt is replaced with the new state

variable si for simplicity, indexed by the segment number. For our left-right model,

s1 = 1, s2 = 2 . . . sN = N is predetermined. di is the duration of the ith state, and

yt:t′ is the time indexed observation sequence between frames t and t′, including the

boundary frames. Each such segment is conditioned on both the state and the state

duration. Each state si is deterministically conditioned on the previous state, and each

state duration is conditioned on the previous state duration. The topology is variable,

since the state durations are random variables, and the segment lengths directly depend

on the state durations. Therefore, this is not a fully specified graphical model.
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3.9.1. Model Parameters

The model parameters consist of prior state distributions, state transition proba-

bilities, emission probabilities, and E, which is the collection of sufficient statistics for

the selected duration model. This means that, following our discussion in Section 2.3,

some probability distribution functions need to be estimated for the durations. How-

ever, these distributions should be estimated from positive samples, for which n is

unknown. Therefore, we impose the following normalization constraint on the expo-

nents ei:

N∑
i=1

ei = 1 (3.14)

Due to this normalization, the durations correspond to the ratios of the entire string

now, and we can set n = T for the positive samples, since:

N∑
i=1

ein = T (3.15)

by definition. Hence, if e1 = 0.3, the first segment is responsible of the 30% of the string

length on average. For consistency, we introduce a new variable d′i for the normalized

duration of segments, with a distribution p(d′i) whose expected value is:

E[d′i]p(d′i) = ei (3.16)

The actual state duration di is then expected to come from the same distribution,

stretched by the sequence length T . However, T is not known during online recognition

tasks. This is why we condition durations on previous durations. Hence, we denote

the state distribution by ρi(di; di−1, E):

P (di|di−1, E) = ρi(di; di−1, E) (3.17)
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E and di−1 can be used to estimate T on the run, which can be used to find the

appropriate distribution for di.

The state distribution p(d′i) can come from various distributions, such as non-

parametric and exponential family distributions [23] in HSMMs. In our case, since

durations depend on each other, a parametric form such as a Gaussian or gamma

distribution is a more sensible and efficient selection.

The prior state distribution of the pair (s1, d1) consists entirely of the duration

distribution of the first state due to the left-right structure. d1 is the actual duration

of the first state, which needs to be sampled from p(d′1), stretched by an unknown T .

Without a prior on the distribution of T , the resulting distribution can be anything. To

reflect this, we use a uniform distribution for the first state duration. By replacing the

pair (si, di) with the time indexed state variable xt, such that (si, di) ≡ xt−di+1:t = i,

we get:

π(1,d1) = P(x1:d1 = 1) = U(1, rD) (3.18)

where U(a, b) is the discrete uniform distribution, D is the maximum state duration and

r is min(
E[p(d′1)]

E[p(d′i)]
), a factor included so that D is not exceeded during state transitions.

However, due to unbounded variation of distributions, a duration sample might still

exceed D, in which case we use D instead. Note that this is a concern for synthesis

mostly, since we assume that D is a large upper bound for realistic cases. This means

that the actual observed values of d1 will usually be much smaller than rD. We cannot

avoid this limitation entirely, since setting an upper bound D for n is the source of this

limitation.

The probability of observing a segment yt+1:t+di in the state (si, di) is:

b(i,di)(yt+1:t+di) = P(yt+1:t+di |xt+1:t+di = i) (3.19)

which is independent from t. If we assume conditional independence of observations,
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this can be factorized as:

P(yt+1:t+di |xt+1:t+di = i) =

t+di∏
t′=t+1

P(y′t|xt+1:t+di = i) (3.20)

and we can replace b(i,di)(yt+1:t+di) with b(i,di)(yt).

The probability of a state transition from the state pair (si, di) to (sj, dj) is:

a(i,di)(j,dj) = P(xt+1:t+dj = j|xt−di+1:t = i) (3.21)

This value is also independent on t, since we assume a homogeneous structure. Due

to the left-right structure, this probability is equal to the conditional state duration

distribution:

a(i,di)(j,dj) =

ρj(dj; di, E), if j = i+ 1

0, otherwise

(3.22)

3.9.2. Inference

Inference can be done using a forward-backward procedure similar to that of

HMMs. In the case of HSMMs, the forward and backward variables take the duration

into account as well. We define the forward variable as follows:

αt(i, di) = P(xt−di+1:t = i, y1:t) (3.23)

and the backward variable accordingly:

βt(i, di) = P(yt+1:T |xt−di+1:t = i) (3.24)
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As usual, these variables can be estimated recursively:

αt(i, di) =
N∑
j=1

D∑
dj=1

αt−di(j, dj)a(j,dj)(i,di)b(i,di)(yt−di+1:t) (3.25)

which can be simplified due to the left-right structure:

αt(i, di) =
D∑

di−1=1

αt−di(i− 1, di−1)a(i−1,di−1)(i,di)b(i,di)(yt−di+1:t) (3.26)

Similarly, the backward variable can be recursively calculated using:

βt(i, di) =
N∑
j=1

D∑
dj=1

a(i,di)(j,dj)b(j,dj)(yt+1:t+dj)βt+dj(j, dj) (3.27)

which can also be simplified due to the left-right structure:

βt(i, di) =
D∑

di+1=1

a(i,di)(i+1,di+1)b(i+1,di+1)(yt+1:t+di+1
)βt+di+1

(i+ 1, di+1) (3.28)

We assume that the first state starts at t = 1, and the last state ends at t = T .

Hence, the initial conditions for the forward and backward variable are as follows:

αd′(1, d
′) = b1,d(y1 : yd′)∀d′ ∈ D (3.29)

All other α1(i, di) are set to zero.

βT (N, dN) = 1 (3.30)

and all other βT (i, di) is zero if i 6= N .

Typically, we use the forward variable to calculate the likelihood of a given se-
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quence, and use the backward variable for parameter estimation. The likelihood of a

sequence y1:T is then:

P(y1:T ) =
N∑
i=1

D∑
di=1

αt(i, di) (3.31)

If we assume that N is the final state, we can set i = N and discard the first summation:

P(y1:T ) =
D∑

dN=1

αt(N, dN) (3.32)

Since the proposed model is generative, and the intended task is classification,

this likelihood should be calculated for each trained model in the system and compared.

The model that produces the higher likelihood is selected.

3.9.3. Training

So far, we have assumed that the model parameters are known, which need to

be estimated in the training phase from a set of positive samples. Typically, to train

HMMs, the posterior probability γt(i) of being in state i at time t given the observation

sequence, and the posterior probability ξt(i, j) of being in state i at time t and being

in state j at time t + 1 given the observation sequence are estimated. The HSMM

counterparts need to account for the state durations as well. Therefore, we define the

new variables ηt(i, di) and φt(i, di, j, dj) as follows:

ηt(i, di) = αt(i, di)βt(i, di) (3.33)

φt(i, di, j, dj) = αt(i, di)a(i,di)(j,dj)bj,dj(yt+1:t+dj)βt+dj(j, dj) (3.34)
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Note that φt(i, di, j, dj) = 0 if j 6= i + 1. Then, the familiar variables γt(i) and ξt(i, j)

can be calculated as follows:

γt(i) =
t+D∑
τ=t

D∑
di=τ−t+1

ηt(i, di) (3.35)

ξt(i, j) =
D∑

di=1

D∑
dj=1

φt(i, di, j, dj) (3.36)

where j = i + 1. In the case of HSMMs, γt(i) needs to consider all the state-duration

assignments that result in xt = j. It is also important to note that the HSMM coun-

terparts of γt(i) and ξt(i, j) are not conditioned on the observation sequence. Instead,

they define a joint probability with the entire observed sequence. Therefore, they can

be viewed as constrained likelihood estimates, where the possible state sequences are

constrained to follow paths that pass through the state i at time t, and also through j

at time t+ 1 in the case of ξt(i, j). Hence, these variables can be used to calculate the

likelihood of the observation sequence by taking all possible paths into account, i.e. by

marginalizing over the state variable:

P(y1:T ) =
N∑
i=1

γt(i) (3.37)

However, this method requires the backward variables to be calculated as well, whereas

the forward variables sufficed for the previous formula.

Even with these variables, it is not straightforward how to estimate the normalized

duration distributions p(d′i), which are used to calculate the stretched distributions

ρ(d). The problem is that each positive sample has a different length. Therefore, even

if a certain duration happens to be more likely for a sample, it should be normalized

according to that samples length, so that a consistent estimate of the ratios of segment

lengths to the sequence length can be obtained. The simplest way to achieve this is

by resampling all the training samples, such that they have the same common length

Tc. The larger the value of Tc, the more precise p(d′i) can be estimated. For instance,

if the average duration of the first segment is estimated as 25, and Tc = 100, then we
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know that e1 is 0.25. If we employ a Gaussian distribution, we also need the variance

of the normalized duration. First, we show how to estimate the duration distribution

for a given state i:

Pc(di) =

Tc∑
t=1

ηt(i, di)

D∑
d′=1

Tc∑
t=1

ηt(i, d′)

(3.38)

We use Pc to denote that this distribution is only valid for the specific value of Tc we

selected. Then, depending on the family of distribution, p(d′i) can be estimated. For

instance, if we employ a Gaussian distribution, we first estimate µi = E[Pc(di)] and

σ2
i = Var[Pc(di)]. Then, these can be scaled with 1/Tc and 1/T 2

c respectively to find

the normalized distributions:

p(d′i) = N (d′i; ei, σ
′2
i ) (3.39)

where ei = µi/Tc and σ′2i = σ2
i /T

2
c . This distribution can be scaled with other T to

construct the actual duration distribution.

We can now estimate the model parameters. The prior state distribution becomes:

π1,d1 =
η1(1, d1)
D∑

di=1

η1(1, di)

(3.40)

The state transition distribution can be found in general using:

a(i,di)(i+1,di+1) =
Tc∑
t=1

φt(i, di, i+ 1, di+1)
D∑

di+1=1

φt(i, di, i+ 1, di+1)

(3.41)

(3.42)
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However, in our case state transitions are well defined:

a(i,di)(i+1,di+1) = ρi+1(di+1; di, E) (3.43)

For the Gaussian distribution above, ρi+1(di+1; di, E) can be calculated as follows:

ρi+1(di+1; di, E) = N (di+1;
di
ei
ei+1,

d2
i

e2
i

σ′2i+1) (3.44)

Note that the factor di
ei

is an estimate of the sequence length T . If we denote this

estimate as T̂ , we get:

ρi+1(di+1; T̂ , E) = N (di+1; T̂ ei+1, T̂
2σ′2i+1) (3.45)

The emission parameters depend on the observation model and conditional in-

dependence assumption. In our case, we are interested in discrete observations, con-

ditional independence assumption for observations and no dependence to the state

duration:

bi(νs) =

Tc∑
t=1

γt(i)δ(yt, vs)

Tc∑
t=1

γt(i)

(3.46)

where δ(yt, vs) is 1 when yt = vs, vs being one of the codewords, and otherwise 0.

Equation 3.45 clarifies the difference between the augmented explicit duration

model we proposed first, and the general HSMM we just introduced. Even though we

do not know n in the former model and need to marginalize it out, in the latter model,

we estimate its value at each state transition using E and the last state duration, and

use this estimate for the duration of the next state. Hence, the effect of employing

the latter model is to approximate the unknown distribution of n with a delta Dirac

function based on the most recent evidence. Therefore, a natural enhancement to
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this model would be a better online estimation of n, e.g. based on all previous state

durations, or by employing a sampling method to estimate P (n̂|y1:t), where t is the

current frame.

3.9.4. A Fully Specified Graphical Model

Based on the idea of online estimation of the parameter n, we can come up with a

fully specified model by introducing a time-varying variable for n, denoted as nt, which

can be used to store the best current estimate of n, and hence the sequence length T

due to the normalization we enforced on the exponents.

To update nt at the change points of the state, it needs to be conditioned on all

of τt, τt−1, xt and E. When τt−1 is zero, the value of τt is initialized to a duration

based on nt−1. At this point xt = i gives the state, τt is the duration di, and E can

be used to retrieve ei, all of which are needed to estimate nt. Figure 3.13 shows the

corresponding graphical model.

Figure 3.13. A fully specified graphical model for the proposed explicit ratio model.
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The associated probabilities are as follows:

P (nt+1 = m′|nt = m,xt+1 = i, τt = s′, τt+1 = s, E) =

δ(m,m
′), if s′ > 0

δ(b s
ei
c,m′), if s′ = 0

P (xt+1 = j|xt = i, τt = s) =

δ(i, j), if s > 0

δ(i+ 1, j), if s = 0

P (τt+1 = s′|τt = s, xt+1 = i, nt = m,E) =

δ(s
′, s− 1), if s > 0

ρ(s′|E, i,m), if s = 0

P (yt = ν|xt = i) =

Bi(ν), if discrete

f(ν; i, θ) if continuous

(3.47)

This model describes exactly the same process as before.

Like any other graphical model, this can be expressed as a flat HMM by creating

new hidden states that take all the hidden states into account. For instance, by creating

a separate state for each possible value of xt, τt and nt we can describe the same

process with a much simpler HMM. However, the number of hidden states would then

be equal to the product of all the cardinalities, namely NDnmax, and even for moderate

values, inference would quickly become intractable. HSMM successfully makes use of

the extremely sparse transition table of this process, enabling efficient inference and

training.

3.9.5. Synthesis

When synthesizing a new gesture sample, it is better to use the augmented explicit

duration model, since that model has more consistent control over state durations.

Since we explicitly choose a sequence length n = T , we do not need to use estimates

while sampling new durations later on.
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We start by sampling a duration d1 for the first state from the distribution

ρ1(d1;T,E) (see Equation 3.45), and setting x1:d1 = 1. Then, we generate the seg-

ment y1:d1 for the first state, according to the emission model. y1:d1 can be formed from

discrete symbols sampled from a multinomial distribution if conditional independence

of observations is assumed. A more complex segment model can be used to account

for co-articulations if needed. After the first segment is generated, the model makes a

deterministic transition to state 2, and we sample a new duration d2 from ρ2(d2;T,E).

This process is repeated until all segments are observed, at which point, we stop the

synthesis.

3.10. Extending to Continuous Streams

Now we extend the model to continuous streams. In this scenario, gestures are

performed one after the other, possibly with changing speed, scale, and in rare occasions

even sampling rate. The gesture sequence can be important, e.g. for a sign language

interpreter application. Moreover, gestures can have differing number of segments. As

before, we first give the simpler augmented explicit duration model, which is better for

certain tasks such as synthesis.

The resulting model is given in Figure 3.14. The new nodes introduced are the

gt ∈ G = {1, 2, . . .M}, which indicates the gesture at time t, and nt, which is the value

of n at time t. Note that, since we have normalized the exponents ei, n is equal to

the sequence length T of the current gesture. xt is the hidden state and τt is the state

duration counter as before.

The new variables gt and nt are dependent on both xt and τt, because both

variables change values only when a new gesture needs to be selected. This gesture

change is triggered when the counter τ reaches zero while xt is in the last state of a

gesture. Another change is that the durations are initialized with a function dependent

on gt, xt, nt and also E. We omitted E and the corresponding dependencies for

simplicity.
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Figure 3.14. The graphical model of the augmented explicit duration model, extended

to handle continuous streams.

The model is then as follows:

P (gt+1 = c′|gt = c, xt = i, τt = s) =

δ(c, c
′), if s > 0

Cc,c′ if s = 0 and i = Nc

(3.48)

P (nt+1 = m′|nt = m, gt = c, xt = i, τt = s) =

δ(m,m
′), if s > 0

U(nmin, nmax) if s = 0 and i = Nc

(3.49)
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P (xt+1 = j|xt = i, gt = c, τt = s) =


δ(i, j), if s > 0

δ(i+ 1, j), if s = 0 and i < Nc

δ(1, j), if s = 0 and i = Nc

(3.50)

P (τt+1 = s′|τt = s, gt+1 = c, xt+1 = i, nt = m,E) =

δ(s
′, s− 1), if s > 0

ρ(s′|E, i, c,m), if s = 0

(3.51)

P (yt = ν|gt = c, xt = i) =

B
c
i (ν), if discrete

f(ν; c, i, θ) if continuous

(3.52)

A gesture transition occurs only when the counter τt reaches zero, and the state

counter is in the last state Nc of the current gesture c. The transition probability Ci,j

is the probability of observing gesture j right after gesture i, where C is a matrix that

can be used to describe a higher level inter-gesture dependency, which depends entirely

on the application. For HCI systems where any gesture can be performed at any time,

all Ci,j can be chosen to be equal. C is normalized as usual, such that the row sums

are equal to 1.

nt has exactly the same transition pattern as gt. A new value for n is selected

only when we start to observe a new gesture, uniformly from the range [nmin, nmax].

Due to the normalization of the exponents ei, nmin corresponds to the smallest and

nmax to the largest sequence length possible.

The state variable behaves as before, making deterministic transitions depending
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on the counter. The added dependency to the gesture variable gt is needed to know

the number of states for the current gesture, since we are not allowed to pass through

the final state Nc. In that case, the transition is done to the first state of a gesture, so

that xt = 1.

The duration counter τ deterministically decreases as before, and is assigned a

new value each time it becomes zero. The only difference from the isolated model

is that the new duration also depends on the current gesture. gt and xt are used to

select the correct exponent and the respective distribution from E. Note that this

dependency on E is omitted in the figure.

Likewise, yt has the extra dependency to the gesture variable gt, since it needs to

be known to emit from the correct observation model. As before, the observations can

be discrete or continuous.

As mentioned before, synthesis is simple with this model, since we choose nt and

do not need to estimate it. However, since this model is an extension of the augmented

explicit duration model, it bears the same problem for inference tasks, namely the

need to marginalize out n. The way we solved this problem in the case of isolated

gestures was to use the estimate T̂ instead of n, calculated from the duration of the

most recently finished state. As before, we present a new model that allows online

estimation of nt, which makes inference efficient.

In Section 3.9.4, we showed how the general HSMM can be depicted with a fully

specified graphical model. The same trick can be applied here to account for the online

estimation of nt for the continuous recognition case. The resulting model is given in

Figure 3.15.
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Figure 3.15. The graphical model of the explicit ratio model, extended to handle

continuous streams.

Specifically, the following changes are made to the model:

P (nt+1 = m′|nt = m, gt+1 = c, xt = i, τt = s, τt+1 = s′, E) = (3.53)

=


δ(m,m′), if s > 0

δ(b s′
ei
c,m′), if s = 0 and i < Nc

U(nmin, nmax) if s = 0 and i = Nc

P (τt+1 = s′|τt = s, gt+1 = c, xt+1 = i, nt = m,E) = (3.54)

=

δ(s
′, s− 1), if s > 0

ρ(s′|E, c, i,m), if s = 0

(3.55)
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The adaptation of the isolated model to continuous recognition involves estimation of

the gesture length nt using the most recent duration as before. Additionally, the model

initializes nt whenever a new gesture starts, using a uniform distribution. The duration

τt on the other hand, now depends on the previous value of nt, which keeps the most

recent length estimate to avoid a cycle, since the current value of nt depends on it.

3.11. Extending to Mixture Models

Mixture models are extensively used in statistical analysis, machine learning and

data mining. Mixture models represent density distributions with a weighted sum of

density estimations from multiple local models, such as Gaussians for the spatial case,

and HMMs for the temporal case. Typically, each mixture component is responsible of a

different sub–population, or cluster. Therefore, clustering should be performed before

or during the modelling phase. Model based clustering is the commonly preferred

method, as it handles clustering and modelling at the same time, and also ensures that

the cluster densities conform to the parametric local models.

Model based clustering aligns the models and the clusters by adapting the model

parameters and the clusters to each other in an iterative manner. An initial clustering

should be supplied to the method, for which a number of well known solutions exist,

such as spectral clustering, k–medoids and hierarchical clustering, all of which require

a distance measure for the sequences. A common distance measure for sequences is

the DTW alignment cost. DTW aligns two sequences using a local cost measure, and

calculates the total cost of the optimal alignment. K–medoids and DTW are explained

in detail in Section 4.4.1.

Another major issue is the choice of the number of components in a mixture. A lot

of research effort has been put into determining the best mixture. An elegant solution

is adopting a Bayesian framework and marginalizing over model parameters. The

resulting likelihood can then be maximized with respect to the number of clusters [67].

This approach produces the best possible mixture; yet it does not make use of the

information from the rest of the mixtures. Using the same Bayesian framework, a prior
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over the number of clusters can be defined to combine different mixtures. Another

approach is to estimate the relative importance of the mixtures after they are trained,

and choose the best few mixtures to combine them with proper coefficients [68]. In

this work, we use an approach similar to the latter, since it is faster to evaluate, easy

to configure, and still more accurate than a single mixture.

To simplify the models and focus on the duration models, we have omitted the

discussion of mixtures so far. The need for a mixture model often emerges naturally,

as in the case of hand written letters and digits in the air. As an example, Figure 3.16

shows four different ways of drawing the digit 4. The density of observations in these

cases is multimodal, which can be better represented with mixtures. In theory, we can

also loosen the structural constraints and use a fully connected model instead of a left-

right one, since a mixture of HSMMs can be represented with a larger HSMM with no

structural constraints. However, this way we cannot exploit the sparse transition table,

and the resulting model is harder to analyze. Besides, we have already shown that what

is needed is exactly a mixture of left-right models in our discussion on grammars, as

explicitly indicated by the union sign in Equation 2.2.

Figure 3.16. Four different ways the digit 4 can be drawn. These are actual samples

from a digit dataset. The starting points are depicted with a star.

Mixture models represent each cluster (sub-population, or sub-language) with a

separate model. Naturally, we will use the left-right HSMM of Section 3.9.4 for this

task. To express the model as a mixture, a cluster variable Q needs to be introduced,

and every probability in the model needs to be conditioned on Q. The likelihood of a
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sequence can then be estimated by marginalizing over Q:

P (y1:T ) =
K∑
k=1

P (y1:T , Q = k)

=
K∑
k=1

P (y1:T |Q = k)P (Q = k)

L =
K∑
k=1

Lkwk

(3.56)

where K is the number of clusters, Lk = P (y1:T |Q = k) is the likelihood of the sequence

as estimated by the cluster model k, and wk = P (Q = k) is the respective mixture

coefficient learned during training. We also denote P (y1:T ) by L from now on. In

short, the likelihood is estimated from a weighted sum of cluster model likelihoods.

Once clusters are determined, the mixture coefficients wk can be estimated from a

training set by calculating the ratio of the samples in the cluster to the total number

of samples in the dataset.

3.11.1. Model Selection

In order to model the clusters, the dataset Y needs to be clustered into K sets

first, and the optimum value of K is not known a priori. Therefore, most attempts

at modelling with mixtures focus on finding the optimum value of K. Since this is a

parameter estimation problem, we can choose the ML estimate, the MAP estimate, or

we can pursue a Bayesian approach. In the ML and MAP methods, we are looking

for a specific parameter K∗ that best explains the dataset Y , where Y consists of the

gesture sequences yi belonging to the same class. We start with the Bayes’ rule:

P(K|Y ) =
P(Y |K)P(K)

P(Y )
(3.57)
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and we are looking for the value of K that is the mode of this distribution.

K∗ = arg max
K

P(K|Y ) (3.58)

= arg max
K

P(Y |K)P(K)

P(Y )
(3.59)

= arg max
K

P(Y |K)P(K) (3.60)

The ML estimate ignores the prior and uses the likelihood term:

K∗ML = arg max
K

P(Y |K) (3.61)

The problem with the ML approach is that it often causes overfitting if the parameter

determines model complexity. The MAP estimate takes the prior P(K) into account

as well, which can prevent overfitting by favoring smaller values of K. However, in any

case we use the best estimate of K in these cases, and ignore the other possibilities.

From a Bayesian point of view, the number of clusters K is actually a parameter that

needs to be marginalized out. The likelihood of the observation in Equation 3.56 can

be re-expressed to reflect this:

P (y1:T ) =
∑
K

K∑
k=1

P(y1:T |Q = k)P(Q = k)P(K)

(3.62)

This expression describes an ensemble of mixtures, each of which has its own weight.

The tricky probability to estimate is the prior probability P(K). Considering all pos-

sible ways of clustering a dataset to estimate the likelihood is costly. Therefore, these

so-called model averaging approaches usually consider the best few mixtures only. One

way of doing this is by sorting the mixtures according to Bayesian Information Crite-

rion (BIC), which favors low complexity and high likelihood models. BIC is defined
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for a generic parameter Θ as:

BICΘ = −2 lnP (Y |Θ) + f ln|Y | (3.63)

where P (Y |Θ) is the likelihood of the dataset given Θ, f is the number of free param-

eters in Θ, and |Y | is the number of samples in the dataset. In our case, BIC can be

calculated for a specific value of K as follows:

BICK′ = −2 lnP (Y |K ′) + (K ′ − 1) ln|Y | (3.64)

since we have exactly (K ′ − 1) free parameters, i.e. the mixture weights, due to nor-

malization. Note that the smaller this value, the better the model for this criterion.

We can now calculate the BIC values for each possible K, sort the mixtures

according to their BIC values, and then choose the first R models. Denoting the

respective number of clusters in each of these models K1 through KR, we can set the

weights of each model as follows:

P(Ki) =
1/b(Ki)
R∑
j=1

1/b(Kj)

(3.65)

where b(Ki) is the BIC value of the model with Ki clusters.

To train this model, we first need to cluster the dataset, which is a difficult task.

3.11.2. Clustering a Gesture Dataset

Clustering sequences is not a straightforward task, since the sequence lengths

may be different, there is no natural distance measure, and certain statistics like the

average are not defined. Sequences do not constitute data points in an N dimensional

space, and therefore, classical clustering methods such as k-means cannot be used.

Nevertheless, there are several well-established methods for clustering sequential data,
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as introduced in Chapter 1. These methods typically need a similarity or distance

measure for sequences of different lengths. Common methods include calculating pair-

wise distances non-parametrically using DTW, or pairwise similarities parametrically

by modelling each sequence separately, e.g. with a HMM. Afterwards, non-parametric

methods such as k-medoid, spectral clustering and hierarchical clustering, or paramet-

ric methods such as model based clustering can be used to determine the clusters.

Model based clustering can also be employed to directly estimate clusters without the

need for pairwise distances. Using different combinations of distance or similarity mea-

sures and clustering algorithms, it is possible to cluster the dataset in a parametric,

non-parametric or semi-parametric manner.

Model based clustering partitions a set of samples, such that each cluster is

automatically associated with a certain model, in our case the HSMM. Each sample is

assigned to the model that best explains it. Therefore, this method performs clustering

and modelling at the same time, while making sure that the underlying data in the

clusters fit the corresponding models well. Given our task, i.e. clustering a dataset and

modelling each cluster with a separate model, it is best to use model based clustering

using HSMMs.

Performing model based clustering with randomly initialized clusters often fails

in practice, since densities of the initial models significantly overlap and one of the

models end up receiving most of the samples in the end. It is better to first cluster the

data in some other way and then continue with model based clustering. This means

that we need to choose a distance measure, fill the distance matrix, apply a non-

parametric clustering method to form the initial clusters, and finally perform model

based clustering. This combination constitutes a semi-parametric clustering method.

As mentioned above, a distance or similarity can be defined using DTW or a

sequence model such as HMM. In order to use HMM as a similarity measure, each

sequence needs to be modelled separately. Then, the similarity between two sequences

can be estimated using the log-likelihood of observing each sequence given the other

model. The likelihoods need to be normalized with respect to sequence lengths, since
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the likelihoods decay exponentially with length, regardless of similarity. Note that this

similarity is asymmetric. A common method for making it symmetric is taking the

average of both similarities.

A disadvantage of using a parametric similarity measure is the need for optimiza-

tion for the new parameter, which often cannot be independently optimized. DTW

is a non-parametric alternative. However, it requires a local distance measure to be

defined between observations yt.

Using either DTW or a parametric model, all the pairwise distances between

samples can be calculated to form the distance matrix W , such that Wuv = ∆ (yu, yv),

for all yu, yv ∈ Y , where ∆ (yu, yv) is the distance between samples yu and yv. Note

that, similarity and distance measures can easily be converted into each other via

simple transformations. It is therefore straightforward to form a similarity matrix

if required. For instance, the k-medoids method needs a distance matrix, whereas

spectral clustering works on a similarity matrix.

K–medoids method is analogous to the k–means algorithm. The main difference

is that at each iteration, k–medoids marks the sample, whose average distance to all

the other samples is the smallest (i.e. the medoid) as the cluster center. Given the

matrix W and the number of clusters K ′, k–medoids finds K ′ medoids, and assigns the

cluster index of the closest medoid to each of the samples.

Spectral clustering methods are based on the Min–Cut algorithm, which par-

titions graph nodes by minimizing a certain cost associated with each edge in the

graph [69]. This is a binary clustering method, which can be used to hierarchically

cluster data into multiple clusters. A related algorithm has been proposed by Meila

and Shi [70], which can be used to form multiple clusters. Starting with the similarity
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matrix W , the following operations should be performed:

Ri,i =
∑
j

Wi,j (3.66)

P = WR−1 (3.67)

The eigenvectors corresponding to the V largest eigenvalues of the matrix P represent

the sequences as identical and independently distributed points in a V dimensional

space, which can be clustered using conventional clustering algorithms such as the

k-means method.

Hierarchical clustering method creates a cluster tree using the distance matrix

W [28]. Initially, the algorithm regards each sample as a separate cluster and forms

a tree. Then, starting from the leaves, the method merges clusters that have the

minimum distance, until a termination criterion is satisfied. The algorithm terminates

if a predefined number of clusters is obtained, or if all clusters are sufficiently apart

from each other.

3.12. Modelling Observations

Hand gestures consist of combinations of hand pose and motion, which suggests

a multi-channel representation for the observation sequence. Moreover, some hand

gestures in certain sign languages and HCI scenarios are performed with two hands,

further increasing the number of channels. Each of these channels may consist of

categorical data, such as quantized velocity symbols and hand shape class labels; or

they may consist of continuous observations, such as the motion in 3D and hand shape

model parameters such as angles.

It is possible to represent the multi-channel observation sequence with the HSMMs

we introduced by creating a compound description of observations. For instance, if

there are ΦM symbols for motion and ΦS hand shape classes, ΦMΦS new symbols can

be constructed that can represent every possible pair. For two-handed gestures, this
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number becomes Φ2
MΦ2

S, which is not practical.

Usually, coupled models are devised to handle multi-channel observations. These

models consist of parallel and inter-connected chains of latent states, each of which

is generating one of the channels. In our case, a coupled HSMM could be used to

model such multi-channel data. However, this causes the model to be considerably

more complex.

A more efficient approach is to model each channel independently. Hence, we

assume that the probability of observing a forward motion, indicated by νM =′ F ′,

while the hand is doing the thumbs up sign, indicated by νS =′ OK ′, can be factorized

as follows:

P(νM =′ F ′, νS =′ OK ′) = P(νM =′ F ′)P(νS =′ OK ′) (3.68)

for a single hand. Extending this to more channels is straightforward. The same trick

can easily be used for continuous observations. The corresponding model is shown in

Figure 3.17. In this new model, the observations from different channels are condition-

ally independent from each other, given the state xt.

The inference and training algorithm is slightly different for this new model. We

have now two or more sets of emission probabilities. For the discrete case, these can

be represented by:

b(i,di)(yt) = bM(i,di)(y
M
t )bS(i,di)(y

S
t ) (3.69)

where bM lists the motion and bS lists the shape symbol probabilities. Changes in
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Figure 3.17. Explicit ratio model adapted to multiple observation channels, when the

observations can be assumed to be independent.

training are also straightforward:

bMi (νM) =

Tc∑
t=1

γt(i)δ(y
M
t , νM)

Tc∑
t=1

γt(i)

(3.70)

bSi (νS) =

Tc∑
t=1

γt(i)δ(y
S
t , νS)

Tc∑
t=1

γt(i)

(3.71)

This can be extended to more channels if needed.
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4. MODELLING SHAPE

The hand is a very complex object with more than 20 degrees of freedom cor-

responding to joint angles, and it is an ambitious task to try retrieve the complete

articulated hand pose in real time using vision based methods. The extracted high-

dimensional hand pose can then be interpreted for target applications. Typically it is

not the exact configuration of the hand skeleton that is assigned a meaning. Depend-

ing on the application and the type of gesture, some features are extracted from the

hand pose first, which are used to understand the intent of the user. For instance,

in many different scenarios, the distance or angle between the tips of the index finger

and thumb has a meaning. The intent may be to describe a distance or magnitude,

to do a pinching gesture, to imitate turning a button and so on. These are manipu-

lative gestures and the corresponding observations that are interpreted are angles and

distances. For some other gestures, the entire hand pose needs to be interpreted, as in

communicative gestures of sign languages. For instance, the ASL letters G, L and Q

are also performed by extending the thumb and the index fingers. However, the output

is not a distance or angle in these cases, but a class label. For the first kind of gestures

consisting mostly of manipulative hand gestures, a subset of the articulated hand pose

is needed. For the second kind consisting of communicative gestures, the hand shape,

i.e. a mapping from the hand pose to a hand shape class is needed. The latter task can

be done in one of two ways: Either the articulated hand pose can be estimated first,

which is then classified into a hand shape, or the hand shape label is directly estimated

from the appearance of the segmented hand image.

We have developed very efficient methods that solve both articulated hand pose

estimation and direct hand shape recognition in real-time using depth sensors. Both

of these solutions depend on RDFs, in particular, classification forests which classify

each depth pixel on the hand into a class label. In the case of hand pose, the class

label corresponds to one of the 21 hand parts we have defined, and in the case of hand

shape, it corresponds to a hand shape label. Otherwise, the methods and the features

used are very similar.



68

4.1. Classification with Randomized Decision Forests

A classification tree is used to infer posterior probabilities of type P(c|X; θ),

where X is the input vector, θ is a set of parameters learned during training and

associated with each node, and c is the class variable. Such a tree consists of two types

of nodes: The internal or split nodes, which are used to test the input, and the leaf

nodes, which are used to infer a set of posterior probabilities for the input, based on

statistics collected from training data. Each split node tests the input using a different

test, and sends the incoming input to one of its children according to the test result.

The test associated with a split node n is usually of the form:

fn (X; θn) < τn (4.1)

where fn (X; θn) is a function of the input X with parameter set θn, and τn is a

threshold. The input is injected at the root node, which is forwarded by the split nodes

according to these test results. Each leaf node is associated with a set of posterior

probabilities for each of the possible values of c. Eventually, the input reaches one

of these leaf nodes and is assigned the corresponding posterior probabilities. The

parameters that need to be estimated are the θ that describe the tests, and the posterior

probabilities at each leaf node.

In our case, each pixel of given depth image is labelled using the tree. Therefore,

the input x represents a depth pixel, described by a location and the depth image. The

tree is expected to find a mapping from the context, i.e. the neighborhood of the pixel

in the depth image, into the class label c. To do this, the tests that split the data in

the best manner are selected during training. However, the number of possible tests

that can be defined on the neighborhood is usually very large, making an exhaustive

search for the best test intractable. A randomized tree provides an ailment for this

problem. During training, only a small random subset of possible tests are tried, and

the test that splits the data best is assigned to the node. We typically train several of

these trees and form a randomized decision forest (RDF).
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Figure 4.1. A decision forest. The input pixels are tested at each node and guided

down the tree, finally reaching a leaf node that is associated with a set of posterior

probabilities, which is estimated from the label histogram of data collected during the

training.

The input to these RDFs is a depth image I, and a pixel location x. The part of

the image I around the pixel location x defines the neighborhood of the given pixel,

which will be used to perform the tests. The test parameters are certain features

extracted from this neighborhood. The features used by Shotton et al . in [61] are very

simple to calculate, and shown to be effective for the very similar task of body pose

estimation. Therefore, the same features are used in this work.

Given a depth image I (x), where x denotes location, we define a feature Fu,v (I,x)

as follows:

Fu,v (I,x) = I

(
x +

u

I (x)

)
− I

(
x +

v

I (x)

)
(4.2)

The offsets u and v are relative to the pixel in question, and normalized according to

the depth at x. This ensures that the features are 3D translation invariant, but not

rotation or scale invariant, and the training images should be generated accordingly.

The depth of background pixels and the exterior of the image are taken to be a large

constant.
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Each split node is associated with the offsets u and v and a depth threshold τ .

The data is split into two sets as follows:

CL (u,v, τ) = {(I,x) |Fu,v (I,x) < τ} (4.3)

CR (u,v, τ) = {(I,x) |Fu,v (I,x) ≥ τ} (4.4)

Here, CL and CR are the mutually exclusive sets of pixels assigned to the left and right

children of the split node, respectively.

In the training phase, each split node randomly selects a tuple (u,v, τ) several

times, partitions the data according to each feature, and chooses the tuple that splits

the data best. Each split is scored by the total decrease in the entropy of the posterior

distribution of the class label:

S (u,v, τ) = H (C)−
∑

s∈{L,R}

|Cs (u,v, τ) |
|C|

H (Cs (u,v, τ)) (4.5)

where H (K) is the Shannon entropy estimated using the normalized histogram of the

labels in the sample set K. The process ends when the leaf nodes are reached. Each

leaf node is then associated with the normalized histogram of the labels estimated from

the pixels reaching it.

Starting at the root node of each RDF, each pixel (I,x) is assigned either to the

left or the right child until a leaf node is reached. There, each pixel is assigned a set of

posterior probabilities P (c|I,x) for each class c. For the final decision, the posterior

probabilities estimated by all the trees in the ensemble are averaged:

P (c = i|I,x) =
1

N

N∑
n=1

Pn (c = i|I,x) (4.6)

where N is the number of trees in the ensemble, and Pn (c = i|I,x) is the posterior

probability of the pixel estimated by the tree with index n. Another option is to

multiply the posteriors. However, the trees are correlated, and multiplication is more
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prone to the effects of noise.

Several problems such as hand detection, hand pose estimation and hand shape

recognition can be tackled using the RDF described. The only difference between

these seemingly different problems is the class label assigned to each depth pixel, and

a post-processing phase. For hand detection, hand pixels are given the label 1, and all

background pixels are assigned label 0, and the output is a likelihood image constructed

from P(c = 1|x, I) calculated at each pixel of the image I. For hand pose estimation,

the background pixels are labelled with label 0, and the hand pixels are assigned class

labels corresponding to the hand parts they belong to. For instance, all palm pixels

are given label 1, all the pixels belonging to the tip of the thumb are given label 4

and so on. The output is a set of 21 likelihood images corresponding to the posterior

probability of each joint, calculated at each hand pixel. For hand shape recognition,

all the pixels belonging to a range of images, in which the hand belongs to a certain

hand shape, are given the same label. For instance, every pixel belonging to an OK

gesture as viewed from any angle receive the same label 1; the pixels from the Peace

gesture are labelled with label 2 and so on. The output consists of M likelihood images

corresponding to the M shapes defined in the system. In each case, a post-processing

step is needed. In the case of hand detection and hand pose estimation, a mode fining

algorithm is needed to detect the centers of each class, whereas a voting step is needed

to determine the hand shape label. We will not focus on hand detection in this thesis.

Hand shape recognition models can be trained with real images labelled automatically,

and hand pose labels are synthesized along with corresponding depth images, since it

is very difficult to label real images in that case. For the latter task, we are using a 3D

synthetic hand model.

The overall accuracy of the system depends on a variety of factors, such as the

number of trees, the depth of individual trees, the degree of variation in the training

set and other training parameters. In particular, if the training images do not reflect

the variety of hand poses encountered in real life, the trees cannot generalize well to

unseen poses.
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By synthesizing training images, it is possible to automatically create a very large

set of configurations. First, a smaller set of plausible and common hand poses is man-

ually created, from which new poses are generated by extrapolating and randomizing

these configurations.

4.2. Hand Pose Estimation using RDF

As mentioned in the previous section, hand pose estimation requires the training

images to be properly labelled, which is difficult to do manually. The only viable

options are using a colored glove and collecting the data by manually performing the

gestures, or using a synthetic hand model to generate the ground truth labels. We

selected the latter option, since it allows perfect labelling unlike a vision based system,

and data generation is faster and easier. To generate the synthetic images, we use a

3D skinned mesh model with a hierarchical skeleton, consisting of 19 bones, 15 joints

and 21 different parts as viewed in Figure 4.2. Hand parts are defined such that all

significant skeleton joints are located near the centroids of corresponding parts. Hence,

the thumb contains three parts and all the other fingers contain four parts that signify

each bone tip. The palm is divided into two different parts, so that the deformations

are better captured.

The training sets are designed with target applications in mind, so that the trained

trees can generalize well to previously unseen hand poses that can be encountered

during common tasks, such as hand poses used for games, natural interfaces and sign

languages. These hand poses are manually modelled using the synthetic hand model.

Then, we can interpolate between these poses using the hierarchical skeleton model,

and add slight variations to each frame by perturbing joint locations, while changing

the camera pose. Skeletal constraints are applied to each interpolated pose, ensuring

that the resulting configurations are feasible. A data glove, which measures the joint

angles of the hand in real time, can also be used to manipulate the digital model and

create realistic hand poses. It can also be used to estimate and better model the inter-

personal variations in hand shape, such as size, finger lengths and thickness. However,

the models trained on a synthetic dataset formed by manipulating a single hand shape
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(a) (b)

Figure 4.2. The 3D hand model with a hierarchical skeleton and 21 labelled parts

that is used to generate a synthetic training set. In the first image, the skeleton is

depicted with yellow parts indicating the joint locations. The second image shows the

parts, each of which correspond to a joint or bone tip in the skeleton.

has been found to be sufficient for all types of hands, as inter-personal variance is low

for the hands, and the trained models can easily be adapted to different hand sizes by

scaling feature parameters if necessary.

To train the hand pose estimation RDFs, we use the synthetic images generated

using the 3D hand model. Each depth image corresponding to a new hand pose is

evaluated by this RDF. The output is the posterior likelihood of the part labels for

each pixel. The actual skeleton parameters need to be extracted from this output in a

post-processing step.

4.2.1. Estimating Skeleton Parameters

After each pixel is assigned posterior probabilities, the result can be used to

estimate the joint positions to form the skeleton. To locate the actual joint coordinates,

a number of approaches can be employed, such as calculating the centroid of all the

pixels belonging to a hand part. However, finding the centroid is not robust against

outliers, which is especially a greater problem for smaller hand parts.
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To reduce the effect of outliers, the mean shift local mode finding algorithm [71]

is preferred over finding the global centroid of the points belonging to the same class.

The mean shift algorithm estimates the probability density of each class label with

weighted Gaussian kernels placed on each sample. Each weight is set to be the pixel’s

posterior probability P (c = i|I,x) corresponding to the class label i, times the square

of the depth of the pixel, which is an estimate of the area the pixel covers, indicating

its importance. The joint locations estimated using this method are on the surface of

the hand and need to be pushed back to find an exact match for the actual skeleton.

Starting from a point estimate, or seed, the mean shift algorithm uses a gradient

ascent approach to locate the nearest mode of the distribution. As the maxima are

local, several different starting points are used and the one converging to the maximum

score is selected. Finally, a decision regarding the visibility of the joint is made by

thresholding the highest score reached during the mean shift phase. The joint positions

estimated in this manner are then connected according to their configuration in the

hand skeleton, forming the final pose estimate.

At this point, it is possible to make use of temporal or spatial information to

infer a better skeleton estimate. For instance, a particle filter can be used to eliminate

sudden jumps in joint locations, and skeletal constraints can be used to disregard some

of the local maxima reached by the mean shift phase. An important constraint is that

the joints on a finger lie on a 3D plane, which can also be used to detect occluded

joints.

4.3. Hand Shape Recognition

In the case of direct hand shape recognition, the same RDF can be used. As

before, the input to the RDF is a depth image I, and a pixel location x, the output is

a set of posterior probabilities for each shape class label c, and the model is trained on

a dataset consisting of depth image–class label pairs. The main difference of the new

model is that all pixels in an image are given a single hand shape label. Exemplary

input images are given in Figure 4.4. The first four images are real depth images
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(a) (b) (c) (d)

Figure 4.3. Hand pose estimation process. (a) is the depth image, (b) is the

assignment of each pixel to a class part by some RDF, (c) shows the estimated joint

locations, (d) depicts the skeleton.

Figure 4.4. The first four images are real depth images and their labels, and the rest

of the images are synthetic depth images and their labels.

retrieved from Kinect, and the rest of the hand images are synthetic. Each color

corresponds to a different hand shape class.

The features used are the same as before, and the posterior probabilities are

estimated in the same manner by averaging over N trees.

P (ci|I,x) =
1

N

N∑
n=1

Pn(ci|I,x) (4.7)

This is the result of per-pixel classification. However, the actual posterior likelihood

we are seeking is P (ci|I). To determine a final hand shape label for the hand image,

the posterior probabilities of every pixel in the input image are averaged, and the label

that maximizes this term is selected:

c∗ = arg max
c

1

M

M∑
m=1

P (c|I,xm) (4.8)
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where M is the number of foreground pixels in the input image, and c∗ is the determined

hand shape class label.

This is a discriminative model of hand shapes, with posterior hand shape class

likelihoods estimated in the form 1
M

∑M
m=1 P (c|I,xm). The model learns how to dif-

ferentiate between the predefined M shapes only. Therefore, adding a new label to the

system is not straightforward, and requires re-training the models. Likewise, rejecting

an input shape that is considerably different than the M shapes is not directly handled.

However, for the latter problem, the final posterior shape label distribution estimated

by the model can be analyzed to determine whether to reject the input hand shape.

Intuitively, a decision can be made based on the confidence of the distribution. For

instance, if the entropy of the distribution is lower than an empirically set threshold,

the confidence will be high, and the estimated c∗ will be accepted. Another approach

is to look at the difference between P(c∗|I) and the second largest likelihood. If the

mode is significantly larger than the next largest value, the confidence will be high,

and c∗ will be accepted.

4.4. Multi-layered RDFs

As noted earlier, RDFs estimate the posterior class probabilities P(c|x, I) of the

pixel. A common trick we employed while modelling with graphical models was to

augment the model with a latent state and then marginalize it out. We can do the

same trick here by introducing a new variable q:

P(c|x, I) =

Q∑
q=1

P(c, q|x, I) =

Q∑
q=1

P(c|q,x, I)P(q|x, I) (4.9)

where Q is the number of possible values q can take. The two new terms are P(q|x, I)

and P(c|q,x, I). Here, q behaves like a class label, and P(q|x, I) can be modelled

with an RDF as before. Then, P(c|q,x, I) can be modelled with another RDF that

is conditioned on q. This means that Q RDFs will be trained for each different value

of q. This can be visualized in the form of a multi-layered network as in Figure 4.5.
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Figure 4.5. The multi-layered RDF network. The first layer estimates the cluster the

image belongs to. The second layer estimates the hand pose using the respective

expert RDFs.

The RDF Φ in the first layer determines the posterior probabilities of q. The second

layer consists of expert RDFs denoted by Ψi specialized for q = i. To train the second

layer, the first layer needs to partition the training set into Q clusters. Then, each

RDF is trained on one of these clusters to form the experts. Hence, this is very similar

to a mixture model. The difference is that in this case, the mixture coefficients are

conditioned on the input, which are estimated using an RDF.

The RDF in the first layer estimates the likelihood that the pixel belongs to a

certain cluster P(q|x, I). First, we need to determine the Q clusters, which can be

formed from pixels or images. In the former case, pixels belonging to the same image

can be put into separate clusters. In the latter case, all pixels of an image are always

in the same cluster. This second approach conforms to the hand shape recognition

scenario, in which labels are associated with sets of images. This means that a hand

shape recognizer RDF can be used in the first layer, which can recognize the said image

clusters, given input images.
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We first cluster the dataset using a clustering method, then we assign shape

labels to these clusters and train a hand shape classifier. The experts of the second

layer are trained on mutually exclusive subsets of the images in the training set. The

second layer can be used to estimate both hand pose and hand shape. However, hand

pose estimation is a much more difficult problem, which would benefit more from this

multi-layered approach.

Note that if shape classifiers are employed at the first layer, we estimate both

the per-pixel class posterior probabilities P(c|x, I), and the per image class posteriors

P(c|I). Both probabilities can be used as the second term of Equation 4.9, i.e. as expert

coefficients of the likelihood. We can re-express this equation as follows:

P(c|x, I) =

Q∑
q=1

P(c|q,x, I)wmq (4.10)

where wmq = P(q|x, I), the per-pixel posterior probability of the cluster q for the pixel

m of image I. In this case, the first RDF directs each pixel to its own expert. This

means that the expert coefficients are determined locally, only using the local context of

the pixel in question. We call this network a Local Expert Network (LEN). If we follow

through with the post-processing of the first RDF and calculate the per-image posterior

probability P(c|I) instead, this corresponds to replacing the expert coefficients wmq with

their average over all the pixels, which we denote wq. The second layer still operates

on each pixel. It is only the coefficients that are altered. In this case we determine

the expert coefficients based on a global voting process, in which each pixel has equal

weight. We call the resulting network a Global Expert Network (GEN). Figure 4.6

shows the LEN model, and Figure 4.7 shows the GEN model.

GEN is more robust to noise, since wq is only slightly affected by noisy pixels

due to the averaging process. However, it requires an O(N) averaging method that

disrupts the parallel nature of the model and the problem. LEN, on the other hand, can

generalize to previously unseen shapes better. Even though GEN would assign a single

set of coefficients wq to all the pixels on such an image based on a global similarity
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Figure 4.6. Local expert network. In this model, each pixel is sent to an expert

independently.

to the preset clusters, LEN can assign each pixel a coefficient wmq depending on how

much its local context resembles clusters. If the input image has not been previously

observed, this latter approach is a better estimate. Moreover, LEN is faster, and can

be run in parallel over all the pixels at once.

To train both networks, we first need to cluster the training data, and then train

the experts on these clusters. The experts may be trained to infer the hand shape or

the hand pose. In the case of hand shape, we can use real images, since it is rather

simple to label hand poses. Therefore, real images need to be clustered in the first

layer. For hand pose estimation synthetic images are needed, since ground truth labels

can be automatically generated for each hand part. The network operates on clusters

of synthetic images in this case.

4.4.1. Clustering Training Data

In previous chapters, we have seen methods to cluster sequential data. In this

case, depth images in the training set need to be clustered.

Real depth images are high-dimensional data that can be clustered by employing

dimensionality reduction techniques first, such as PCA. Then, any clustering technique
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Figure 4.7. Global expert network. In this model, a global decision is made regarding

the cluster first. Then, all the pixels are sent to the determined experts.

can be used to partition the training images. In the case of synthetic images, dimen-

sionality reduction is unnecessary, since the skeleton parameters that were used to

generate the image can be used directly.

The resulting data can be clustered using classical methods such as k-means, k-

medoids, hierarchical clustering methods, and spectral clustering. We will specifically

focus on spectral clustering.

Spectral clustering methods are based on the Min–Cut algorithm devised for

graphs, which partitions graph nodes by minimizing a certain cost associated with

each edge in the graph [69]. This is a binary clustering method, which can be used to

hierarchically cluster data into multiple clusters. There is also a direct approach that

has been proposed by Meila and Shi [70], which can estimate multiple clusters. In this

method, a similarity matrix is formed for the samples to be clustered, where each entry

Sij in the matrix corresponds to the similarity of samples i and j. As the similarity

measure, the reciprocal of distance can be used.

First, a distance measure is needed. Since PCA forms orthogonal basis vectors,

euclidean distance can be used for real images. For the synthetic images, the distance

between two skeletal configurations is taken to be the weighted sum of the absolute
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differences of each angle pair.

The clustering procedure is as follows:

Sij = 1− 1

max (D)
Dij (4.11)

Rii =
∑
j

Sij (4.12)

P = SR−1 (4.13)

Here, vi and vj are the vectors formed by all the angles of a skeleton. S is the similarity

matrix formed by normalizing D by α and subtracting each element from 1. Then,

each column ci of S is normalized using the sum of elements in row ri to form the

matrix P. The eigenvectors corresponding to the m largest eigenvalues of this matrix

are then found in the form of a N × m matrix. Each row of this matrix is an m

dimensional representative of one of the N samples. To create the final clusters, the

rows are clustered using the k–means method, by setting k = Q.

Additionally, we can introduce a weight matrix W that assigns importance factors

to each joint in the case of synthetic images to calculate the distances.

Dij = ||W(vi − vj)||1 (4.14)

(4.15)

W can be used to shift importance to certain joints. For instance, a change in the palm

creates more drastic difference between poses than a change in a finger tip. Therefore,

clustering process needs to assign a larger weight to angles formed by the palm joints.

4.4.2. Training and Inference

The RDF Φ in the first layer can be directly trained as a hand shape classifier

RDF with shape labels replaced by cluster labels. Next, Q RDFs depicted as Ψk are

trained on the clusters formed in the clustering phase.
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In the case of GEN, Φ is used to estimate the expert coefficients P(q|I). Send-

ing each pixel to all of the Q experts is inefficient for large Q, and unnecessary for

smaller coefficients. Instead, it is possible to consider the highest Q′ coefficients and

the corresponding experts only. Renormalization of the chosen weights is not necessary,

since each of the pixels are assigned the same coefficients in GEN. However, it should

be noted that without normalization, the final posterior distribution is not a proper

probability distribution.

P(c|x, I) =

Q′∑
q′=1

P(c|q′,x, I)wq′ (4.16)

where q′ denotes the sorted cluster index, such that q′ = 1 corresponds to the cluster

with the largest coefficient, and so on. A renormalization step would replace each wq′

with w′q′ :

w′q′ =
wq′
Q′∑
i=1

wi

(4.17)

In the case of LEN, the posterior probabilities estimated by Φ in the first layer

is P(q|x, I) as before. However, we skip the averaging over the pixels step, so that we

have per-pixel expert coefficients wmq corresponding to P(q|xm, I). For efficiency, we

can then select the largest Q′ of these weights for the pixel in question, and send the

pixel to the corresponding experts.

4.4.3. Efficiency

Inference with N trees of depth d on an image I with M foreground pixels is

O(NMd), where O(d) sequential operations are needed for each pixel. Pixels and trees

can be processed in parallel. Especially by using parallel programming paradigms or

dedicated hardware such as the GPU, inference can be done very efficiently. However,

we cannot increase d indefinitely, since the number of nodes is exponential in the depth
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of the tree. For instance, a tree of depth 20 has 219−1 internal nodes and 219 leaves. To

increase the depth to 30, the computer needs terabytes of memory. The memory is the

bottleneck, which especially affects more restricted platforms. The memory required

is O(N2d).

A GEN with Q clusters, N1 trees of depth d1 in the first layer, N2 trees of depth d2

for each cluster in the second layer has the time complexity O(N1Md1 +QN2Md2) for

inference and O(M) for the averaging phase. If N1 = N2, and d1 = d2, the complexity

becomes O((Q+ 1)NMd). The associated memory cost is O((Q+ 1)N2d). This shows

what we have achieved with a multi-layered RDF. Instead of forming a single tree of

depth 2d with a huge memory cost, we formed a network of RDFs with depth d with

a linear increase in time complexity, and exponentially less memory requirements. For

instance, it is impossible to create a tree of depth 40 in a regular PC. However, a GEN

or LEN formed by trees of depth 20 can approximate the large tree.

LEN has very similar time complexity and memory requirements. The only dif-

ference is that the O(M) averaging phase is not needed for LEN.

If only the best Q′ experts are used, the time complexities mentioned above will

have the terms Q replaced by Q′. However, finding the best Q′ coefficients need a

sorting step. For GEN, this only needs to be done once on the averaged posterior

probabilities, with a time complexity of O(Q logQ). For LEN, however, the sorting

needs to be done for each pixel. The associated time complexity is O(MQ logQ), which

is significant for larger values of M and Q.
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5. EXPERIMENTS

In this thesis, we thoroughly analyzed hand gestures as a time series, and proposed

an HSMM variant that we called ERM to model them. On the other hand, we proposed

using single- and multi-layered RDFs that classify each pixel into hand shapes, or hand

parts in order to form the articulated hand pose. In this chapter, we report the results

of the experiments conducted to show the efficiency of these models.

The three major considerations in gesture recognition are speed, accuracy and

generalization power of the model. There is usually a trade-off between speed and

accuracy, as both depend on the model complexity. How good the model can generalize

to previously unseen data is a measure of how accurately the observation densities or

class boundaries are modelled. Using a model that is too general and that does not

fit the data well will increase the number of false positives, and a model that is too

complex will often result in overtraining and an increase in false negatives.

A typical testing scheme is cross-validation, where a random subset of the training

set is used for training and the remaining samples are used for validation. However,

a high accuracy on the validation set does not directly translate into accurate results,

when models trained in this manner are used in realistic scenarios. If the training

set is formed from performances of only a few users, the models will often fail to

generalize to new users. Cross-validation technique will not reveal this problem, since

samples belonging to the same user appear both in the training and validation tests

due to randomness. Therefore, leave–one–out technique should be preferred to test the

actual generalization power of the model; i.e. the model should be validated on the

test samples belonging to a single user, while the model is trained on the remaining

dataset. In this scheme, each user is tested once and the validation results are averaged.

The dataset should contain samples from as many people as possible to increase the

validation accuracy, which will also implicate how good the model will perform in

realistic scenarios.
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We make use of mixtures for both trajectory and hand shape models. Conse-

quently, special emphasis will be put on comparison of several clustering algorithms

aimed at both hand trajectory and hand shape. Note that, we cluster the dataset

in order to increase the accuracy of the mixture model, and not to determine actual

clusters, i.e. sub-populations in the dataset. There are quantitative measures designed

for the latter task, which test the quality of a set of clusters discovered in the dataset.

In our case, we are only interested in the efficiency of the mixture model.

Due to the significant differences between associated algorithms, we will focus on

the trajectory and shape models in separate sections.

5.1. Trajectory Models

Throughout this thesis we described how several graphical models can be used to

attack the gesture recognition problem. We showed theoretically, why certain models

should perform better or worse. In this section, we compare these models to provide

evidence for our arguments. In particular, we compare HMM, EDM, IOHMM, HCRF

and ERM, the HSMM variant we proposed. We also compare mixtures of these models,

using different clustering algorithms. We start by introducing our dataset, and by

showing the effect of clustering.

5.1.1. Dataset

The set of gestures chosen for this task needs to conform to our assumptions in

Section 2.1. A suitable gesture set is the digits drawn in the air. The manner a digit

is drawn depends on the preferences of the performer, and each preference creates a

sub-population, or cluster in the dataset.

Our dataset was collected using a Kinect camera. A total of 16 users were verbally

instructed to draw the digits in the air without visual guidance. 5 of the 16 users

were left–handed and 11 were right handed. Each gesture was performed 10 times

by each user, for a total of 1600 samples. The hands of the users were located with
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third party programs from the OpenNI library. Each recording contained exactly one

isolated gesture, possibly with unintentional movements at the start and at the end of

the gesture. The hand coordinate ~I(t) at time frame t was calculated by taking the

relative location of the dominant hand with respect to the neck, which is defined as

the middle point of the line connecting the two shoulders of the user, as estimated by

the body skeleton. The actual local observations ~yt forming the samples were position

differences only, since hand shapes are ignored for this part of the experiments.

The lengths of the samples in the dataset differ, since each sample can be per-

formed with a different scale or speed. As mentioned in Section 3.9.3, the sample

lengths need to be normalized to obtain the exponents ei of each segment. Hence, we

resample each gesture signal, so that all sample lengths are 50, roughly corresponding

to 2 seconds for a Kinect camera. Furthermore, we map each gesture sample to 2D and

rescale it isometrically, such that it fits in a square between the corner points [−1,−1]

and [1, 1]. This step is only needed to properly visualize the gestures. The entire

dataset consisting of rescaled and renormalized samples is visualized in Figure 5.1. In

these and every similar figure, small green stars indicate starting points, and the red

stars indicate the ending points.

Note that digit recognition problem could be attacked by discarding the temporal

dimension and using shape features only. Our intention is not to solve this simpler

problem, but to provide a dataset that is intuitive, easy to visualize, and inherently

multi-modal. In the end, the model we propose is not only capable of modelling

the shape of the gesture, but also the distribution of speed over the performance.

For instance, we can define a new digit 0, in which the second half of the gesture

is performed twice as fast as the first half. We can also make a distinction between

clockwise and counter-clockwise zero. For a shape-only model, these new gestures

cannot be distinguished.

The observation sequences are formed from the tangential angles of the hand in

each frame. This means that we first represent the velocity in polar coordinates and

discard the magnitude. Next, we examine the results of several sequence clustering
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algorithms.

5.1.2. Clusters

In Section 3.11.2, we listed three clustering techniques that could be used as

the preliminary step of model based clustering: (i) k-medoids method, (ii) spectral

clustering, and (iii) hierarchical clustering. The final step of spectral clustering can

be any classical clustering technique that can be used for non-sequential data. In

particular, we employ k-means and mixture of Gaussians to cluster the eigenvectors.

In each of these methods, we use the DTW alignment cost as the distance measure.

As mentioned earlier, the primary task is not discovering the actual clusters. We

are concerned with increasing the accuracy of the mixture model only. Besides, the

secondary step of model based clustering makes sure that the resulting clusters perfectly

fit the models used. Therefore, the qualitative differences between these methods are of

little interest. The primary difference is that, while k-medoids and spectral clustering

with k-means assume clusters with the same size, the hierarchical method and spectral

clustering coupled with MoG can form clusters of different sizes. Since the number of

samples in a cluster determines the mixture coefficients, one could argue that these

latter techniques are more appropriate. However, increasing the number of clusters

result in a very similar partitioning for all these methods. The effect of the assumption

is more visible for lower numbers of clusters. For instance, Figure 5.2 and Figure 5.3

show the difference between using MoG and k-means for spectral clustering, when only

two clusters are formed. The two columns on the left are the clusters formed with

MoG, and the other two are the result of k-means.

The effect of the assumption on cluster sizes is most visible in the case of digit 4,

which has two primary modes: starting at the top, and starting at the right hand

side. Whereas the MoG accurately clusters the two major modes of the digit, k-means

produces more heterogeneous clusters, due to the unbalanced natural frequencies of the

modes. However, once the number of clusters is increased, all such natural modes are

correctly separated by both methods. See Figure 5.4 to see the 20 clusters formed by the
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hierarchical clustering method. Evidently, each of the formed clusters is homogeneous.

Following this initial step, model based clustering starts with these partitions

and moves samples between clusters or merges them until models are obtained that

are perfectly aligned with the resulting clusters. Next, we will focus on the graphical

models.

5.1.3. Model Parameters and Training

Each class or cluster in the dataset are modelled with a graphical model. Our

aim is to compare the ERM, HMM, EDM and HCRF. We omitted the tests with

IOHMMs for these trajectory only tests, since the input sequence we proposed in [27],

which consists of hand shape features and normalized time, cannot be employed here.

Normalized time can only be calculated in the offline setting, since the sequence length

needs to be known. Besides, the idea behind the proposed ERM is estimating this

length in an online manner. Therefore, comparing these models is not meaningful.

Moreover, using only the input or output sequence effectively reduces IOHMM to

MEMM and HMM respectively. Therefore, IOHMMs are not considered. However,

IOHMMs were compared to other models in an offline setting in our previous work

in [17], and shown to be accurate yet slow.

Each type of model will be tested in three different settings: (i) single model for

each class, (ii) mixture model, and (iii) model averaging using best R mixtures. The

models will be evaluated on both the resampled and the original datasets.

The graphical models we test have the following parameters:

• The number of hidden states N

• The maximum duration D (EDM, ERM)

• The window size w (HCRF)

• The number of clusters K for mixtures

• The ensemble size R for model averaging
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We applied grid search for parameter optimization over all possible parameters.

HMMs are trained using the well-known Baum-Welch algorithm. ERMs are

trained using the forward-backward procedure explained in Section 3.9. EDMs can be

trained with a very similar procedure. HCRFs are trained using the Broyden Fletcher

Goldfarb Shanno [19] method.

EDM and ERM both assume Gaussian state distributions. The difference is that

EDM learns absolute distributions, whereas ERM learns normalized durations and

their ratios.

5.1.4. Experiments

We have conducted several experiments on the dataset to compare the models

under certain conditions. The first test compares the models on the digit dataset in

terms of speed and accuracy, using the leave-one-out technique. Then, in a second

experiment, we test one of the most important claims of this thesis, namely that the

ERM is not affected by speed, scale and sampling rate, whereas the other models

do. To test this in the leave-one-out scheme, the models are trained and tested on

sequences resampled to different lengths. The third type of test compares the mixture

models. Special emphasis is put on speed, as mixture models are more expensive to

evaluate. Finally, a fourth test is conducted to compare the best R mixtures using

model averaging.

5.1.4.1. Single Models. In the first test, each digit in the Figure 5.1 is modelled without

clustering. Leave-one-out technique is used to conduct 16 experiments, and the average

accuracy is reported. Since the normalized durations are needed for the EDM, the

dataset is resampled, such that each sequence has the length 20. Both training and

test samples are resampled to the same length in this case. Therefore, EDM and

ERM are expected to perform similarly. The results are given in the first column of

Table 5.1. According to these results HCRF has the highest accuracy with 76.7%,
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which is expected since HCRF is a discriminative model. The next best model is the

proposed ERM, with an accuracy of 70.9% on the evaluation set, followed by EDM and

HMM, with accuracies 70.5% and 68.3%. As expected, EDM and ERM has very similar

performances. The fifth model EDM’ is a manipulated form of the EDM. Specifically,

we increased the state duration variances of EDM to form EDM’, which proved to be

necessary for the other tests. Increasing the variance reduces the success rate on this

dataset, since we reduce the confidence of state duration models.

In the second experiment, the evaluation sets are resampled to length 50 and 100

to test the effect of sequence length. The second and third columns list the average

success rates on the leave-one-out evaluation sets with sequence length T = 50 and

T = 100, respectively. This test provides the strongest evidence for the claims of

this thesis. Every model except for ERM and the manipulated EDM’, experiences

significant drops in accuracy, when the durations of the test and training samples

do not match. ERM, which we specifically proposed to handle this problem, is not

affected by the length of the sequences as expected. When trained on sequences of

length T = 20, ERM has a success rate of 72.9% when evaluated on sequences of

length T = 50, and 69.9% when T = 100. EDM’ is also not significantly affected, when

we manually increase the variances by 1.0. The original EDM suffers the most, by

15.2% on T = 50 and 39.4% on T = 100, because the state duration variances learned

on shorter sequences do not represent variation on longer sequences correctly. On the

other hand, it is surprising that EDM’ performs nearly as well as ERM, since the state

duration Gaussians it has learned have very small expected values. Apparently, the

density estimation is still accurate enough for classification tasks. HMM, which is by

far the most common model in the literature, suffers a 10.1% decrease in accuracy on

T = 50 and 23.8% on T = 100. The discriminative HCRF also experiences a sharp

reduction in accuracy, since it does not have an explicit duration model, or dependent

state durations.

The best parameters found by the grid search over parameter space are given

in columns four, five and six. The fourth column gives the best number of hidden

states, the fifth column gives the best window size for HCRF, and the sixth column
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Table 5.1. Recognition rates and optimum model parameters on the resampled

datasets with T = 20, 50, 100, using leave-one-out technique.

Accuracy on Accuracy on Accuracy on N w D

Dres, T = 20 Dres, T = 50 Dres, T = 100

HMM 68.3% 58.2% 44.5% 11

EDM 70.5% 55.3% 31.1% 12 0.25 T

EDM’ 69.7% 69.0% 67.7% 12 0.25 T

ERM 70.9% 72.9% 70.4% 12 0.25 T

HCRF 76.7% 71.2% 65.0% 10 3

lists the maximum durations allowed for the HSMM variants, in terms of the sequence

length. The results of the grid search over parameters N and D for ERM is given in

Figure 5.5. Here, the best five values of N around the optimum value are depicted as

separate curves. Evidently, increasing D does not have a significant effect on accuracy,

as long as it is sufficiently large. For N = 8 or more, D = 5 is enough to represent

sequences of length T = 20. On the other hand, the effect of overtraining on N is

clearly visible. The accuracy increases until N = 11 and then sharply falls. We choose

N = 11 and D = 5 as the optimal parameters.

The effect of D on speed is crucial in our analysis, since speed is as important as

accuracy. The number of sequences that can be evaluated by the models is plotted in

Figure 5.6. A line signifying 30 fps camera speed is also included. These results show

that it is better to select D as small as possible.

The HCRF is trained with window size w = 3. Increasing w further has a drastic

effect on speed, especially for training. Therefore, we did not consider larger values for

w.

For most realistic cases, where the sequence lengths do not differ too much be-

tween training and test sets, HCRF is still a better classifier than ERM. However, in

the next tests we will see that mixtures of ERM and other generative models surpass

HCRF and its mixtures in accuracy.
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The manual increase in variance of EDM to construct EDM’ seems to remedy

the problem of EDMs. However, the amount of variance to be added depends on T ,

which is not known for the online case. Sufficiently increasing the variance to handle

most realistic values of T , reduces the accuracy of the model in general. Therefore,

ERM should be preferred over EDM’. We do not consider EDM’ in the rest of our

experiments.

5.1.4.2. Mixture Models. The previous experiments showed that if we only consider

single models, ERMs are the most accurate among other models, when sequence lengths

are expected to vary considerably. Otherwise, T does not vary significantly, the discrim-

inative HCRF performs the best. However, our analysis of gestures using automata

theory showed the need for a mixture model explicitly. Next, we experiment with

mixtures of the candidate models.

As before, the tests are conducted on the datasets formed by resampled sequences.

In each case, model based clustering is used to cluster the dataset into K partitions.

Then, each of the cluster is used to train a separate model.

The optimum K often differs for different classes. Therefore, we choose the best

K for each class separately. Instead of these individual values, we will report an average

number of clusters per gesture in a mixture.

Note that the optimum value of K needs to be searched in the range K =

1, . . . , Nc, where Nc is the number of samples in the dataset, belonging to the ges-

ture class c. For the digit dataset, this number is 160. However, and increasing K

generates clusters with a single sequence, which are labelled as outliers and not used

in the modelling process. Empirically we found that increasing K beyond 50 does not

increase accuracy. The number of effective clusters for different values of K can be

seen in Figure 5.7.

The success rates of the best mixtures on the three resampled datasets with
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T = 20 and T = 100 are listed in Table 5.2. We skipped T = 50 as it does not add

new information. As before, ERM has no advantage over EDM in the case of T = 20,

since training and test sequences are of the same length.

In Table 5.2, the first two columns list the success rates on the resampled datasets.

Third column lists the optimum values of N , which are equal to the optimum values

estimated for the single models, with the only exception of HCRF, which has N = 15

in this case. The fourth column lists the average number of clusters per class in the

best mixture. Samples evaluated per second is the unit of speed measured in the

experiments, which are listed in the final column.

Table 5.2. Recognition rates and optimum model parameters on the resampled

dataset with T = 20 for each sequence, using leave-one-out technique.

Accuracy on Accuracy on N Kavg Samples

Dres, T = 20 Dres, T = 100 per second

mHMM 81.4% 64.1% 11 13.3 2905

mEDM 85.2% 45.3% 12 7.0 151

mERM 84.3% 86.3% 12 10.3 135

mHCRF 80.4% – 15 8.2 98

Note that the increase in success rates are very significant for the generative

models. The best mixture of HMM, denoted mHMM, sees an increase of 12.1% in

accuracy with a success rate of 81.4%, when each class is partitioned with an average

of 13.3 clusters. Similarly, the mixture of ERM, denoted as mERM, has a success rate

of 84.3%, which is 13.4% higher than the best single ERM. Mixture of EDM (mEDM)

reaches 85.2%, with an increase of 14.7%.

HCRF on the other hand, does not benefit from the clusters as much as the other

models. mHCRF is more accurate than HCRF by 3.7%, and needs an increase in the

number of hidden states. The reason is that the clusters have too few samples to train

HCRF, especially for larger window sizes. Moreover, the discriminative HCRF needs

to distinguish between all the clusters in this setting. This experiment is an evidence

of a weakness of HCRF: it is not well-suited for forming mixtures. In our previous
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work in [17], even though mixtures of HMMs, EDMs and IOHMMs reached perfect

accuracy with very simple left-right models, HCRFs received only a small benefit, at

the expense of increased complexity. Combined with the other weakness of HCRF, i.e.

the fact that it cannot represent durations, or that durations are independent from

each other, HCRF starts to perform worse than the generative models we test with.

Another problem with HCRF is that training takes days, and evaluation is also slow.

We do not consider HCRF in the rest of the experiments.

Evidently, mixture models are significantly more accurate than single models.

However, the cost is the considerable reduction in evaluation speed, which is crucial for

real time applications. Whereas the mHMM can process 2905 sequences every second,

mEDM can evaluate 151, and mERM can evaluate 135 sequences. It should be noted

that these numbers are per CPU core. For instance, a high end quad core computer can

evaluate eight times more samples in a second. More importantly, online recognition

is 20 times faster than offline training, since T = 20 for these tests.

In the second part of this experiment, the sequence length of the evaluation set

is increased to T = 100. Both mHMM and mEDM suffer very large reductions in

accuracy, by 17.3% and 39.9% respectively. On the other hand, the success rate of

mERM is increased by 2% to 86.3%. This clearly demonstrates that ERMs are not

affected by sequence length, whereas the other model do. Therefore, mERM should be

preferred over mEDM and mHMM.

Next, we consider combining several mixtures to further increase the accuracy.

5.1.4.3. Model Averaging. In the final set of experiments, the best R mixtures of each

model are chosen to form an ensemble. This technique is called model averaging in the

literature and is explained in more detail in Section 3.11.1.

Note that our automata based analysis did not specifically suggest that model

averaging is needed. However, we choose a single value K for each class, which is an



95

estimate for the actual number of sub-languages in a gesture language according to our

analysis. Choosing multiple values for K and averaging them smooths the otherwise

overconfident density of a single mixture.

Table 5.3. Recognition rates and optimum model parameters for the model averaging

of mixtures, on the resampled dataset with T = 20 and T = 100, using leave-one-out

technique.

Accuracy on Accuracy on R Kavg Samples

Dres, T = 20 Dres, T = 100 per second

emHMM 83.25% 64.1% 11 174 197

emEDM 85.8% 55.3% 6 48.6 25.4

emERM 85.3% 88.0% 4 30.6 41

The results of model averaging are listed in Table 5.3. As before, the first two

columns give the success rates. The third column shows R, the number of mixtures

used in the most accurate ensemble. The number of clusters per ensemble is in the

fourth column, and the last column shows the number of samples the that can be

evaluated in a second using the ensemble.

The results on the first dataset with T = 20 show slight increase in the accuracies

of mEDM and mERM. mHMM receives the largest enhancement, with an increase of

2%. As before, EDM and ERM perform very similarly on the first dataset. However,

the ensembles of both mHMM and mEDM, denoted as emHMM and emEDM respec-

tively, have significantly lower success rates for T = 100, whereas emERM has a higher

accuracy, reaching 88.0%.

Judging from the results on the first dataset, the ensemble of mHMM is a good

choice for a model, since it is fast and accurate enough. In this setting, the ensemble

is more accurate by 15.0% than a single HMM. Since HMMs are fast, the ensemble

can be used to evaluate around 200 samples per core per second, in the offline setting.

This model is therefore very suitable for real time applications. mERM and MEDM

ensembles are also fast enough for real time. However, they are five to eight times
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slower than the HMM ensemble. Note that this difference was much larger for previous

tests. The reason is that, whereas there is an average of 30.6 clusters in the mERM

ensemble and 48.6 clusters in the mEDM ensemble classes on the average, this number

is 174 in the case of mHMM. This means that 174 HMMs are trained to represent a

single class. The accuracy of the mHMM ensemble is plotted against the values of R

in Figure 5.8.

Figure 5.9 shows the same plot for the mERM ensemble. Unlike mHMM, mERM

benefits less from using more samples. Mixing the best few mixtures slightly increases

the accuracy. However, adding more mixtures decreases the success rate instead. A

comparison of mHMM and MERM ensembles is given in Figure 5.10.

5.2. Experiments with Hand Shape Recognition

5.2.1. Dataset

The accuracy of the proposed hand shape recognition model, which we call shape

classification forest (SCF) is tested on a dataset consisting of 65K depth images corre-

sponding to 24 of the 26 ASL letters (omitting non–static letters j and z) performed

by five subjects [1]. Pugeault et al . reported their results on this dataset using both

leave–one–subject–out cross–validation and by using half of the set for training and

half for validation. For the former validation technique, we employed four trees of

depth 20, and sampled 1000 features at each node.

5.2.2. Shape Classification Forest

Our model achieved a recognition rate of 84.3%, while [1] report 47%. For the

latter, an SCF consisting of a single tree reached 97.8%, compared to 69% using only

depth features, and 75% using both depth and color features [1]. SCF can be trained

using real images, whereas synthetic images are needed to train GEN and LEN. We

provide the confusion matrices in Figure 5.11.
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5.3. Experiments with Hand Skeleton Extraction

5.3.1. Datasets

5.3.1.1. Synthetic dataset. Performance of RDFs on previously unseen poses depends

heavily on the training set provided. Ideally, we want the trained RDF to generalize

to all possible hand poses. However, the number of images that need to be synthesized

for this ambitious task is immense. A static hand pose is a single configuration of

the 22–dof skeleton. The number of possible configurations, even with a modest step

size for each angle, is huge. Moreover, simply rotating a single static pose in 3D to

generate all possible views with a step size of 15 degrees, produces 15k images per pose.

This suggests that the target application should determine the extent of the dataset.

Here, we choose the 24 static ASL letters, the 10 ASL digits, and six hand poses that

are widely known and used, such as the sign for OK. For the 40 poses selected and

manually synthesized with the hand model, we rotate the camera in 3D, perturb the

angles, and interpolate between the poses to generate 200k synthetic images. The offline

learning method we proposed can be used to train an RDF on this dataset. However,

to incorporate a larger dataset, incremental learning methods should be preferred [72].

5.3.1.2. Real Dataset. For the hand shape classification task, both synthetic and real

images can be used. However, only the accuracy on a real set is of importance. There-

fore, a dataset consisting of real depth images retrieved from a Kinect depth camera is

collected. Data collection is simple; one needs to perform the sign for several seconds

in front of the sensor, while slightly moving and rotating the hand. We collected a

dataset for the ten ASL digits from five different people. Each shot takes ten sec-

onds, amounting to a total of 300 frames for each digit per person. Hence, the dataset

consists of 15k images.
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5.3.2. Effect of Model Parameters

The RDF parameters that have an effect on the classification accuracy are as

follows: (i) The number of trees; (ii) The tree depth; (iii) The limits of u, v and τ ; iv)

The number of feature samples tried at each node; v) Mean shift weight threshold; vi)

The number of mean shift seeds.

5.3.2.1. The Effect of the Forest Size. Training a large RDT by maximizing informa-

tion gain is likely to produce over–confident posteriors. Since posterior probabilities

are averaged over all trees, increasing the forest size produces smoother posteriors, al-

leviates overtraining, and allows better generalization, while monotonously increasing

test accuracy. This is illustrated in Figure 5.12. The trade–off is the linear increase in

memory and the time it takes to test. We typically use one to four trees, as real time

performance is of importance in most application areas.

5.3.2.2. The Effect of the Tree Depth. The depth of a tree determines the number of

tests to apply to the input. If the depth is too large, noisy training data will be isolated

by the tests, causing overtraining. Likewise, a shallow tree will produce low–confidence,

high entropy posteriors. Therefore, it is important to optimize the tree depth.

The effect of the tree depth is illustrated in Figure 5.13. Overtraining starts at

around depth 22, and the gain from increasing depth over 20 is minimal. As the need

for memory increases exponentially, we prefer setting the depth to 20.

In our implementation, a tree of depth D evaluates pixels using exactly D binary

comparisons. The number of internal nodes is 2D − 1, and the number of leaves is 2D.

5.3.2.3. The Effect of the Feature Space. The feature space is determined by the max-

imum range of the offset parameters u, v and τ . We use a single limit for both x and

y coordinates of the u and the v parameters, and a separate limit for the τ parameter.

This defines the spatial context that can be used for tests in the form of a cube around
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the pixel. Intuitively, taking a larger context into account should increase the test ac-

curacy. However, a fixed number of parameter values are sampled at each node. Hence,

incorporating a larger context may reduce the probability of selecting good features

that maximize information gain for a split. Moreover, the training dataset must be

large enough to prevent the RDT from overtraining, if it uses a large spatial context.

This effect is visible for different values of u and v limits in Figure 5.14. The optimum

value for the limit of u and v is estimated to be 23 pixel meters, i.e. 23 pixels if the

hand is 1m away, 46 pixels if the hand is 50cm away, or 11.5 pixels if the hand is 2m

away from the camera. In our tests, we estimated the optimum value of τ to be 60mm.

5.3.2.4. The Effect of the Sample Size. The sample size is the number of parameter

values sampled from the feature space for each internal node. Increasing the sample

size increases the test accuracy, as it is likelier to sample features that increase the

information gain with a larger sample size. The trade–off is the increase in training

time. Since forest size must be small due to memory constraints, the RDTs must

produce confident posteriors. However, as we are sampling from a fixed feature space,

the effect of the sample size levels off after some value. This is illustrated in Figure 5.15.

For the fixed limit of 23 pixel meters for u and v, the gain from increasing the number

of trials is negligible after sample size reaches 5000.

5.3.2.5. The Effect of the Mean Shift Parameters . Since hands are highly articulate

and flexible objects, self occlusion of entire hand parts is natural and happens fre-

quently. In the ideal case, there should be no pixel assigned to the hidden hand part.

However, it is common that some pixels are misclassified. In such cases, the mean

shift algorithm determines the joint location for the hidden hand part based on the

misclassified pixels only. Therefore, such spurious joint estimates need to be eliminated.

A decision regarding the visibility of the joint is made by thresholding the highest

score reached during the mean shift phase. The effect of the thresholding process is

shown in Figure 5.16. Here, the images on the first column are the original pixel clas-

sification results, with colors assigned according to the highest posterior. The images
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in the second column are the same images, with the corresponding joint locations as

estimated by the mean shift algorithm. The images on the third column are produced

by eliminating joints that have low confidence values. Here, the confidence is defined as

the value of the peak reached during the mean shift phase, which is evaluated using a

combination of the pixel posteriors, joint bandwidth, which is a measure of the spread

of the joint, and the importance of the pixel, which is the square of its depth, i.e. a

measure of its area. The range of values depends on the implementation, and we em-

pirically estimated it to be around 0.4. In the upper row of Figure 5.16, the threshold

is set to 0.5, which eliminates legitimate joints. In the middle row, the threshold is set

to 0.4, and only spurious joints are eliminated. In the lower row, the threshold is set

to 0.2, leaving one spurious joint intact.

Mean shift is a local mode finding method that only finds the closest maximum.

To increase the likelihood of converging to the global maximum, we start multiple times

from different seed points. The maximum with the highest score is selected, once all

iterations converge. Seeds are randomly selected from the list of pixels with posterior

probabilities higher than a certain value. We empirically determined this likelihood

to be 0.35. The effect of the number of seeds is illustrated in Figure 5.17. Here, the

rows depict two examples, and the columns correspond to seed numbers 1, 2, 3 and 4,

respectively. The higher this number, the likelier it is to converge to the correct joint

locations. The trade–off is the increase in joint estimation time. In practice, we start

from up to 20 different seeds.

5.3.3. Hand Pose Estimation Results

A synthetic dataset of size 200k formed with 40 hand poses is used to conduct

hand pose estimation experiments. First, 5 × 2 cross–validation strategy is used to

determine the best parameters. In this method, the dataset is randomly divided into

two sets. In the first run, the model is trained on the first set and tested on the second

set. In the second run, the model is trained on the second set and tested on the first set.

This procedure is repeated on five randomly created pairs, and the average accuracy is

regarded as a robust estimation of the success rate. The optimal forests are achieved
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with the following parameters: (i) Forest size = 4; (ii) Tree depth = 20; (iii) Offset

limit = 23 pixel–meters; iv) Sample size = 5000; v) Mean shift seed posterior threshold

= 0.35; vi) Number of seeds = 20. The test accuracy of the resulting RDF is also

determined with 5 × 2 cross–validation. The per–pixel classification accuracy (using

hard labels) on this dataset is 67.5%.

Another important measure of error is the average distance between the estimated

joint coordinates and the ground truth. However, spurious joints, especially misplaced

finger tips, have a large effect on this type of error. Therefore, we estimate the number

of spurious or missing joints as an indicator of the error instead. Hence, we count the

number of correct joints in the test dataset, and divide it over the number of visible

joints. The visibility of the joints is determined automatically, and correctness of a joint

estimation is determined by thresholding the projected distance between the estimated

and actual joint coordinates. For the synthetic dataset of size 200k, with 40 poses,

82.1% of the visible joints are estimated correctly. For a smaller dataset of size 20k,

formed by ASL digits only, the method is able to find 97.3% of the joints correctly.

Most of the error in the latter case is attributable to misplaced finger tips.

5.3.4. Proof of Concept: American Sign Language Digit Recognizer

To test the system on a real world application, we developed a framework for

classifying ASL digits in real–time. The method described in Section 4.2 is used to

estimate the hand skeleton. The pose classifier uses these estimates to recognize the

digits by mapping the joint coordinates to known hand poses.

First, the RDF is trained on a synthetic ASL digit dataset of size 20k, so that

it learns to extract the skeleton from poses that closely resemble ASL digits. Then,

this RDF is used to evaluate the real depth images acquired from the Kinect, while a

user is performing ASL digits. A training set is formed using the extracted skeleton

parameters by properly labeling each hand skeleton according to its corresponding

hand shape. Such a training set can be used to train classifiers in a supervised manner.

These shape classifiers can then be used to map the extracted hand skeletons into ASL
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digits in real time.

5.3.4.1. Hand Shape Classifiers. As the intended usage of the system is real–time

recognition of ASL digits, speed is as important as the recognition rate. We choose ar-

tificial neural networks (ANN), since they are fast, and SVMs, since they are accurate.

We use 5 × 2 cross–validation strategy for both model selection and to test accuracy.

Model selection for the RDF is done only on the synthetic dataset.

5.3.4.2. Model Selection on the Synthetic Dataset . Both the RDFs and the skeleton

classifiers need to be optimized. To select an RDF model, a synthetic dataset needs

to be used, since there is no ground truth labels that are associated with real data.

We optimized ANN and SVM separately for both synthetic and real datasets. The

synthetic dataset consists of 20k samples, formed by 2k synthetic images for each of

the ASL digits. For the ANN, the optimum number of hidden nodes is estimated to

be 20. For SVMs, the optimal parameters are found to be 26 for the cost parameter

and 2−4 for the Gaussian spread (γ).

The test accuracies and evaluation times are listed in Table 5.4. The first column

gives the average accuracies achieved by the cross–validation tests. The second column

gives the evaluation times. Evidently, ANN is significantly faster than SVM. However,

SVM performs slightly better on the test data. The intermediate phases and the final

skeletons for several examples are given in Figure 5.18.

Table 5.4. Classification rates and evaluation times of each classifier on the ASL digit

dataset consisting of 20k synthetic images.

Method Accuracy Classification

Name Duration (ms)

ANN 99.89 0.0045

SVM 99.96 0.3
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5.3.4.3. ASL Digit Classification Results on Real Data. We conducted 5 × 2 cross–

validation and grid search to estimate the optimal parameters of ANN and SVM again

for the real dataset. Table 5.5 shows the parameters tested.

Table 5.5. Tested parameter values (H: hidden nodes, C: SVM cost, γ: Gaussian

spread)

Method Parameter

Name Values

ANN H = {5,10,15,20,25,30,35,40,45,50,55}

SVM C = {2−1,20,21,22,23,24,25,26,27}

SVM γ={2−5,2−4,2−3,2−2,2−1,20,21}

Table 5.6. Optimal parameters, average training and validation accuracies.

Method Optimal Training Validation

Name Parameters Accuracy Accuracy

ANN Hidden nodes = 40 99.27 98.81

SVM Cost=25, Γ = 2−2 100 99.90

Table 5.6 lists the optimal parameters and recognition rates on training and

validation sets for ANNs and SVMs for real data. SVMs outperform ANNs and reach

nearly perfect accuracy on the validation set, indicating that the descriptive power

of the estimated skeleton is sufficient for the task of hand shape classification on real

depth images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.1. Samples from the digit dataset, rescaled and resampled.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5.2. The effect of different clustering techniques. The first two columns are the

result of spectral clustering with Gaussian, and the other two columns are the result

of spectral clustering with k-means method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5.3. The effect of different clustering techniques. (Continued from Figure 5.2)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5.4. 20 clusters formed from the samples of digit 4, using hierarchical

clustering.
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Figure 5.5. The results of the grid search over parameters N and D for ERM.
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Figure 5.6. The effect of N and D on the speed of ERM.
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Figure 5.7. The number of clusters with more than one sequence for different values

of K.
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Figure 5.8. The accuracy of the first R mixtures, plotted against R for mHMM.
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Figure 5.9. The accuracy of the first R mixtures, plotted against R for mERM.
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Figure 5.10. The accuracy of the first R mixtures, plotted against R up to 50, for

both mHMM and mERM.
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(a) (b)

Figure 5.11. Confusion matrix for the ASL letter classification task using SCF on the

Pugeault dataset with 24 letters and five subjects [1]. (a) Leave–one–subject–out

with a success rate of 84.3%. (b) Half training–half validation, with a success rate of

97.8%. The main source of error is the similarity of the poses for the letters M , N

and T in ASL.

Figure 5.12. The effect of the forest size on the test accuracy.
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Figure 5.13. The effect of the tree depth on the test accuracy.

Figure 5.14. The effect of the limits of the offset parameters u and v on the test

accuracy.
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Figure 5.15. The effect of the sample size on the test accuracy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.16. In the upper row, the confidence score threshold is set too high (0.5),

eliminating true joints. In the middle row, the threshold is set correctly (0.4) and

only the spurious joints are eliminated. In the lower row, the threshold is set too low

(0.2), leaving one spurious joint intact.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.17. The effect of the number of starting points for the mean shift algorithm.

The columns correspond to number of seeds 1, 2, 3 and 4, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.18. Examples of extracted skeletons on synthetic ASL images. Upper row

lists the depth images. Middle row shows the per pixel classification results. Third

row displays the estimated joint locations on top of the labelled images. The finalized

skeleton is shown in the lower row.
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6. CONCLUSIONS

In this thesis, we primarily focused on modelling of hand gestures, which are rich

spatio-temporal signals. As a result, we have made many contributions to this field

of research by designing novel graphical models such as the HSMM variant ERM, by

proposing efficient RDF based hand shape and hand pose models such as the GEN

and LEN, by devising and implementing efficient real time algorithms for each of these

models, by showing the importance of mixture models for both trajectory and shape

models, and by providing comparisons with many prominent existing models. These

contributions aside, on of the major aims of this thesis was devising a procedure for

modelling complex sequential data using generative and discriminative models. In

particular, we proposed an approach based on automata theory for analyzing complex

sequential data. We applied this procedure to modelling of hand gestures, and showed

how this approach can be used to determine the strengths and weaknesses of existing

models. Through such an analysis of hand gestures, we managed to pinpoint a certain

variant of HSMMs as the most suitable model, and determined why and how each

common model may fail.

Our analysis of hand gestures relied on the automata theory, which gives us the

ability to prove that certain models cannot be used for certain problems. Specifically,

automata theory states the types of automata that can be used to attack certain types

of problems. To apply concepts from this theory to our field of research, we first re-

duced the task of gesture recognition to the well known problem of accepting strings.

Accordingly, we quantized gesture signals and formed strings. Then we formed col-

lections of strings, i.e. languages that represent gesture classes. Automata theory can

then be used to determine the grammar that generates that language, and to deter-

mine which family the language belongs to in the Chomsky hierarchy. These families

can be recognized by certain automata only. By incorporating well-known aspects of

hand gestures, we constructed a gesture language, and showed that this language be-

longs to context sensitive languages in the Chomsky hierarchy. This analysis directly

showed how and when common models such as HMMs will fail at recognizing gestures.
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A further analysis revealed under which conditions graphical models can be used to

model hand gestures. Moreover, the analysis of the language showed directly why

mixture models are needed, and left-right models are more suitable. It also made the

dependence between segment durations explicit, which proved to be the most difficult

requirement.

Based on the analysis, we showed where models like HMM, EDM, MEMM,

IOHMM, CRF and HCRF fail. HSMM turned out to be the only model capable

of efficiently handling dependent and explicit state durations. We showed how the

well known variants of HSMM do not conform to our requirements, and designed our

own variant which we called explicit ratio model (ERM). We proposed mixture of left-

right ERM as the most suitable model for the gesture language we devised, with the

only limitation being the upper bound on the state durations. We proved that with-

out this limitation, the gesture cannot be modelled with graphical models, since the

corresponding language is context sensitive.

We conducted several experiments, comparing the models mentioned above in

terms of accuracy, speed and most importantly, generalization power. To test the latter,

we used the leave-one-out testing procedure, which revealed several short-comings of

other testing techniques such as cross validation. the problem is that gestures are

performed by people, and are inherently personal. It is of utmost importance that

the model be able to generalize to not only previously unseen samples, but also to

new people. The most suitable technique to test this is the leave-one-out method. We

collected a large digit database from 16 people, and conducted the experiments on this

dataset. We compared single models, mixture models, clustering methods and different

observation models.

Another major contribution of this thesis is the RDF based hand skeleton and

hand shape estimation methods we proposed. Currently, these are the fastest methods

available in the literature that can retrieve the full DOF hand pose and the hand shape,

using a depth camera. We also proposed multi-layered RDF networks, which we call

GEN and LEN, that basically forms a mixture model, or a network of experts. These
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networks can be used to reduce memory requirements without sacrificing accuracy, or

to increase accuracy of the models without the need for extra memory.

Even though this thesis has several important contributions to the field of hand

gesture recognition, the problem is not solved entirely. Our analysis revealed that there

may be stochastic grammars that may be better suited at modelling a context sensi-

tive language, and we did not focus on undirected graphs. For instance, semi Markov

random fields, the discriminative and undirected counterparts of HSMMs are not con-

sidered in this thesis. These are left as future work. However, this thesis provides

a solid approach for analysis of such models, which is perhaps the most important

contribution of this work, since it can be applied to other problems as well.
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