
DEVELOPING NEW APPROACHES FOR MULTI-PLATFORM AND

MULTI-INDIVIDUAL GENOMIC SEQUENCE ASSEMBLY

by

Pınar Kavak

B.S., Computer Engineering, Bilkent University, 2006

M.S., Computer Engineering, Boğaziçi University, 2009

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2017

iii

ACKNOWLEDGEMENTS

I want to give my sincere thanks to my advisors Prof. Tunga Güngör and Prof.

Can Alkan for the continuous support of my Ph.D. study, as well, for their knowledge,

guidance, patience and motivation. Their support made this research and thesis real.

I want to thank to Prof. Can Özturan, and Prof. Arzucan Özgür, for their kindness of

evaluating my progress each semester and contributing to my research with valuable

suggestions in addition to being my thesis committee members, reading and comment-

ing on my thesis. I also want to thank to Prof. Uğur Sezerman and Prof. Emre Karakoç

for being my thesis committee members, reading and giving insightful comments and

suggestions on my thesis. I want to thank Prof. S. Cenk Şahinalp who provided me the

opportunity to join SFU Lab for Computational Biology and all lab members: Ehsan

Haghshenas, Alex Gawronski, Ermin Hodžić, Salem Malikić, Mike Ford, and Hossein

Asghari for the friendly lab environment. I would especially like to thank to Dr. Faraz

Hach for the knowledge and support and Yen-Yi Lin for his kind help, sharing his knowl-

edge and working with me. I want to thank to Ibrahim Numanagić for his valuable

help too. I want to thank to my colleges at TÜBİTAK-İGBAM: Mete Akgün, Mahmut

Ş. Sağıroğlu, Huseyin Demirci, Yıldız Uludağ, Oğuzhan Külekçi, Ahmet Çakmak, M.

Yağmur Gök, Serkan Barut, Bayram Yüksel, Bekir Ergüner, Zeliha Görmez and Buğra

Özer. I would like to thank Turkish Human Genome Project (TGP) members for shar-

ing the DNA sample and data. I want to thank to the Republic of Turkey Ministry

of Development Infrastructure Grant (no: 2011K120020) and BİLGEM - TÜBİTAK

(The Scientific and Technological Research Council of Turkey) (grant no: T439000) for

their support on the first and second studies. Special thanks go to TÜBİTAK BİDEB

2214-A programme for supporting me to visit SFU Lab for Computational Biology. I

want to thank to all my friends and my supportive roommate Isla Robertson, for their

spiritual support. Lastly, I would like to thank to my family: my father Arslan Kavak,

my mother Gülseren Kavak, my sister Tülin Yaşar, and my brother Taşkın Kavak for

their spiritual support.

iv

ABSTRACT

DEVELOPING NEW APPROACHES FOR

MULTI-PLATFORM AND MULTI-INDIVIDUAL

GENOMIC SEQUENCE ASSEMBLY

High throughput sequencing (HTS) technologies generate huge amount of data

with very low cost, which prompted research on algorithm development to analyze

large DNA sequence datasets. In this thesis, we propose new solutions to three re-

lated problems in genomics field. Firstly, although the accuracy and reproducibility

of HTS based analyses is highly improved, the usability of these platforms in terms

of robustness is still an open question. We produced whole genome shotgun (WGS)

sequence data from the genomes of two individuals in two different centers to assess the

usability of a widely used HTS platform in terms of robustness in clinical applications.

We observe that HTS platforms are powerful enough for providing data for first-pass

clinical tests, but before using in clinical applications, the variant predictions need to

be confirmed by orthogonal methods. Secondly, we still need innovative methods for

the de novo genome assembly problem. The task of assembling very short DNA se-

quence reads into -ideally- complete chromosome sequences is further complicated due

to (i) the repetitive and duplicated structure of genomes, and (ii) the fact that the

data produced by the HTS technologies tend to be short and error prone. We present

a new method to increase the assembly accuracy by integrating data from Illumina,

Ion-Torrent and Roche-454 platforms. Lastly, characterization of novel sequence inser-

tions longer than the average read length remains a challenging task. There are only

a few algorithms that are specifically developed for novel sequence insertion discovery

that can bypass the need for the whole genome de novo assembly. We present a new

algorithm, Pamir, to efficiently and accurately discover and genotype novel sequence

insertions using either single or multiple genome sequencing datasets.

v

ÖZET

ÇOKLU PLATFORM VE ÇOKLU BİREYDEN ELDE

EDİLEN VERİLER İLE YENİ GENOM BİRLEŞTİRME

YAKLAŞIMLARI GELİŞTİRME

Yüksek hacimli dizileme (YHD) teknolojileri büyük ölçüde veriyi düşük maliyete

üretiyor, bu durum büyük miktardaki DNA dizisi verisini analiz etmek için algoritma

geliştirme araştırmasını hızlandırdı. Bu tezde, genomiks alanında üç bağlantılı prob-

leme yeni çözümler getiriyoruz. İlk olarak, her ne kadar YHD’ye dayalı analizlerin

doğruluğu ve tekrarlanabilirliği üzerinde önemli gelişmeler kaydedilse de YHD plat-

formlarının dayanıklılık açısından kullanılabilirliği hala açık soru. Yaygın bir YHD plat-

formunun klinik uygulamalarda kullanılabilirliğini dayanıklılık açısından incelemek için

iki bireyin genomlarının tüm genom dizileme verisini iki ayrı merkezde diziledik. YHD

platformları ilk-aşama klinik tesler için veri sağlamada çok güçlüler ancak varyant tah-

minlerinin klinik uygulamalarda kullanılmadan önce ortogonal yöntemlerle doğrulanması

gerektiği sonucunu gözlemledik. İkinci olarak genom birleştirme problemi için hala

yaratıcı çözümlere ihtiyacımız var. Çok kısa DNA dizilerini -idealde- tüm kromozom

dizilerine birleştirmek şu sebeplerden karmaşık bir iş (i) genomların tekrarlı ve kopyalı

yapısı (ii) YHD’nin ürettiği verinin kısa ve hatalı olması. Birleştirme doğruluğunu

artırmak için üç farklı teknolojiden (Illumina, Ion-Torrent, Roche-454) veri dahil eden

yeni bir metod sunuyoruz. Son olarak, ortalama dizi parçacığından uzun yeni dizi in-

sersiyonlarının tanımlanması hala zorlu bir iş. Özellikle yeni dizi insersiyon bulma için

geliştirilmiş ve yeniden tüm genom birleştirmesini es geçebilecek az sayıda algoritma

var. Tek veya çok genom dizisi verisetlerinde verimli ve doğru bir şekilde yeni dizi

insersiyonlarını bulan ve genotipleme yapan yeni bir algoritma Pamir’i sunuyoruz.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

1.1. Contributions . 4

1.1.1. Reproducibility of NGS . 4

1.1.2. Improving genome assemblies 5

1.1.3. Discovery of novel sequence insertions 5

2. ASSESSING THE ROBUSTNESS OF MASSIVELY PARALLEL SEQUENC-

ING PLATFORMS . 7

2.1. Methods . 9

2.1.1. DNA Samples and Ethics Statement 9

2.1.2. Sequencing . 10

2.1.3. Alignment, coverage, GC content 10

2.1.4. Variant calling . 11

2.1.4.1. SNP and Indel detection 11

2.1.4.2. Long Deletion detection 12

2.1.4.3. Pooled SNP and Indel calling 12

2.1.5. Variant annotation . 12

2.1.6. Data Availability . 13

2.2. Results . 13

2.2.1. Read length, coverages, and GC content 13

2.2.2. Callsets and comparisons . 14

2.2.2.1. SNP and Indel discovery 14

2.2.2.2. Long deletions . 14

vii

2.2.2.3. Separately generated callsets 14

2.2.2.4. Pooled BGI vs Pooled TÜBİTAK 20

2.3. Discussion . 20

3. IMPROVING GENOME ASSEMBLIES WITH MULTI-PLATFORM SEQUENCE

DATA . 25

3.1. Greedy Assembly . 26

3.2. Overlap Layout Consensus (OLC) Graph Based Assembly 26

3.3. De-Bruijn Graph Based Assembly . 29

3.4. OLC vs. De-Bruijn . 32

3.5. Hybrid Assembly . 33

3.6. Methods . 35

3.6.1. Data . 35

3.6.2. Pre-processing . 36

3.6.3. Assembly . 38

3.6.4. Correction . 40

3.6.5. Correction of the Data from All Platforms 42

3.6.6. Evaluation . 43

3.7. Results . 47

3.7.1. 454 vs. Ion Torrent . 47

3.7.2. Assemblers . 48

3.7.3. Correction . 48

3.7.4. Hybrid Assemblers . 49

3.7.5. Combination of the Data from All Platforms 50

3.8. Discussion . 51

4. DISCOVERY AND GENOTYPING OF NOVEL SEQUENCE INSERTIONS

IN MULTIPLE INDIVIDUALS . 52

4.1. Methods . 55

4.1.1. Pre-processing . 57

4.1.2. Cluster Formation . 59

4.1.3. Insertion Discovery . 62

4.1.3.1. Candidate Insertion Contigs 62

viii

4.1.3.2. Breakpoint and Content Detection 64

4.1.4. Post-processing and Genotyping 65

4.1.5. Discovery with Pooled Data . 67

4.2. Availability . 69

4.3. Results . 69

4.3.1. Simulations . 70

4.3.1.1. High coverage single sample 70

4.3.1.2. Low coverage multiple samples 71

4.3.2. Real Data . 73

4.3.2.1. High coverage sequencing of CHM1 73

4.3.2.2. High coverage sequencing of NA12878 76

4.3.2.3. Low coverage genomes from the 1000 Genomes Project 77

4.3.3. Running Times . 77

4.4. Discussion . 79

5. CONCLUSION . 86

6. FUTURE WORK . 89

REFERENCES . 91

ix

LIST OF FIGURES

Figure 2.1. Underlying sequence content of novel SNP and Indel calls. A) SNPs

and B) Indels in the genome of S1. C) SNPs and D) Indels in the

genome of S2. 19

Figure 3.1. Overview of the assembly improvement method. Shown with Illu-

mina and 454 data as an example. Same is valid for Illumina & Ion

Torrent. 37

Figure 3.2. Non-uniform A,T,G,C regions of Ion Torrent reads. First 4 bases

and the last 30 bases are trimmed in pre-processing. 38

Figure 3.3. Quality criteria algorithm . 39

Figure 3.4. N-density criteria algorithm . 39

Figure 3.5. Correction method: Correct the long read contig according to the

mapping information of the short read contig. 41

Figure 3.6. Correction method applied on three datasets together. 42

Figure 3.7. Average identity algorithm . 44

Figure 4.1. Classification of donor sequence regions in terms of read mappings. 56

Figure 4.2. Overview of Pamir. 57

Figure 4.3. General overview of Pamir. 60

x

Figure 4.4. Example clusters of Pamir for two insertions. 61

Figure 4.5. Exact breakpoint detection. 65

Figure 4.6. An example of a valid breakpoint passing the post-processing stage

with concordantly mapping paired-end reads. 66

Figure 4.7. Genotyping novel sequence insertions with Pamir. 67

Figure 4.8. Discovery with pooled data. 68

xi

LIST OF TABLES

Table 2.1. Summary of the sequence datasets. 13

Table 2.2. (Unified Genotyper) SNP and Indel numbers obtained from the data. 14

Table 2.3. Long deletions obtained from the data with mrFAST and Varia-

tionHunter. 15

Table 2.4. (Haplotype Caller) SNP and Indel numbers obtained from the data. 15

Table 2.5. (Unified Genotyper) Comparisons of total and novel SNP and Indel

callsets generated from the genomes of S1 and S2. S1B, S1T , S1BT :

S1 calls from BGI, TÜBİTAK, and pooled datasets; S2B, S2T , S2BT :

S2 calls from BGI, TÜBİTAK, and pooled datasets, respectively. . 17

Table 2.6. (Haplotype Caller) Comparisons of total and novel SNP and Indel

callsets generated from the genomes of S1 and S2. S1B, S1T , S1BT :

S1 calls from BGI, TÜBİTAK, and pooled datasets; S2B, S2T , S2BT :

S2 calls from BGI, TÜBİTAK, and pooled datasets, respectively. . 18

Table 2.7. Detailed view of novel SNP and Indel distributions of S1 that map

to common repeats. 20

Table 2.8. Detailed view of novel SNP and Indel distributions of S2 that map

to common repeats. 21

Table 2.9. Distribution of discrepant novel SNP-Indels of S1 and S2 over gene

regions. 22

xii

Table 2.10. (Unified Genotyper) Comparisons of total and novel SNP and Indel

intersections of B1 vs. T1 and B2 vs. T2. B1, T1:pooled S1 calls

from BGI and TÜBİTAK datasets; B2, T2:pooled S2 calls from BGI

and TÜBİTAK datasets, respectively. 23

Table 2.11. (Haplotype Caller) Comparisons of total and novel SNP and Indel

intersections of B1 vs. T1 and B2 vs. T2. B1, T1:pooled S1 calls

from BGI and TÜBİTAK datasets; B2, T2:pooled S2 calls from BGI

and TÜBİTAK datasets, respectively. 23

Table 3.1. Properties of the data . 36

Table 3.2. Notations of Tables 3.3 and 3.4. 44

Table 3.3. Results of assembly correction method on BAC data. 45

Table 3.4. Results with combination of 3 data types 46

Table 4.1. Precision and recall rates of perfect Illumina HiSeq2000 simulation

data distributed according to the insertion sizes. 71

Table 4.2. Precision and recall of Pamir, PopIns [1] and MindTheGap [2] and

BASIL ANISE [3] on simulated 30x datasets generated for different

sequencing platforms with varying read lengths. Best results are

marked with bold typeface. 72

Table 4.3. Precision and recall rates of 5 simulated samples (noisy HiSeq2500

100bp 10x). Best results are marked with bold typeface. 73

Table 4.4. Evaluation of predicted genotypes using 5 simulated genomes. Best

results are marked with bold typeface. 73

xiii

Table 4.5. Summary of insertions predicted in CHM1 with Pamir. 78

Table 4.6. Comparison of insertions in CHM1 predicted using Illumina reads

with Pamir and PacBio reads with SMRT-SV [4]. 78

Table 4.7. Comparison of insertions in CHM1 predicted using Illumina reads

with PopIns and PacBio reads with SMRT-SV [4]. 79

Table 4.8. Comparison of insertions in CHM1 predicted using Illumina reads

with MindTheGap and PacBio reads with SMRT-SV [4]. 79

Table 4.9. Analysis of predicted CHM1 insertions with Pamir with respect to

other datasets. 80

Table 4.10. Analysis of predicted CHM1 insertions with PopIns with respect to

other datasets. 80

Table 4.11. Analysis of predicted CHM1 insertions with MindTheGap with re-

spect to other datasets. 81

Table 4.12. (Strict version with 200bp spanning regions on the reference) Anal-

ysis of predicted CHM1 insertions with Pamir with respect to other

datasets. 81

Table 4.13. (Strict version with 200bp spanning regions on the reference) Anal-

ysis of predicted CHM1 insertions with PopIns with respect to other

datasets. 82

Table 4.14. Insertions in CHM1 predicted with Pamir, PopIns [1] and MindThe-

Gap [2]. 82

xiv

Table 4.15. Comparison of breakpoint locations in CHM1 predicted with Pamir

and with PopIns [1] and MindTheGap [2]. 83

Table 4.16. Summary of insertions predicted in NA12878. 83

Table 4.17. Comparison of NA12878 insertion calls with the existing databases. 83

Table 4.18. Comparison of insertions in NA12878 predicted with Pamir and

with PopIns [1]. 84

Table 4.19. Summary of novel sequences found in 10 low coverage WGS datasets

from the 1000 Genomes Project. 84

Table 4.20. Genotyping results for the novel sequences found in the 1000 Genomes

Project datasets. 84

Table 4.21. Analysis of insertions found in low-coverage samples with respect

to other datasets. 85

Table 4.22. Running times of Pamir, PopIns, MindTheGap, and BASIL-ANISE

on a 2x100bp simulation dataset based on HiSeq2500 model with

30X coverage. 85

xv

LIST OF SYMBOLS

3
′

The “tail” end of the DNA strand that has the hidroxyl group

at the end of the third carbon in the sugar ring

5
′

The end of the DNA strand that has the fifth carbon in the

sugar ring of the deoxyribose at the end

<v Ordering of vertices

a Leftmost mapping locus of an OEA

B1 SNP/Indels from pooled data genotyped within the BGI (1st

individual)

f(v) Maximum weight from the root to any vertex v

E Total number of edges in graph G

emv Edge connecting vertices m and v

G Graph

il Number of reads that align across the left breakpoint location

in I

ir Number of reads that align across the right breakpoint loca-

tion in I

I Temporary insertion sequence: Lbp upstream of the break-

point from the reference plus the insertion plus Lbp down-

stream from the reference

L Fragment length

m Second vertex

p Insertion breakpoint location

r Root of the graph

re Number of reads that align across the breakpoint location in

RE

R Number of reads in the given cluster

RE Temporary reference sequence: L bp upstream of the break-

point from the reference plus L bp downstream of the break-

point from the reference

S1 Sample of the 1st individual

xvi

S2 Sample of the 2nd individual

S1B The data generated at BGI (1st individual)

S2B The data generated at BGI (2nd individual)

S1BT Pooled callset of the 1st individual

S2BT Pooled callset of the 2nd individual

S1T The data generated at TÜBİTAK (1st individual)

S2T The data generated at TÜBİTAK (2nd individual)

T1 SNP/Indels genotyped within the TÜBİTAK (1st individual)

T2 SNP/Indels genotyped within the TÜBİTAK (2nd individual)

v Vertex

wmv Maximum prefix-suffix overlap between the reads represented

by m and v

x Ratio between i and re

γ Threshold value for genotyping

xvii

LIST OF ACRONYMS/ABBREVIATIONS

ABI SOLID Applied Biosystems Sequencing by Oligonucleotide Ligation

and Detection

ABySS Assembly By Short Sequences

ANNOVAR functional ANNOtation of genetic VARiations

BAC Bacterial Artificial Chromosome

BAM Binary format for sAM

BLAST Basic Local Alignment Search Tool

BWA Burrows-Wheeler Aligner

BGI Beijing Genomics Institute

CABOG Celera Assembler with the Best Overlap Graph

CNV Copy Number Variation

dbSNP The Single Nucleotide Polymorphism database

DNA DeoxyriboNucleic Acid

E.coli Escherichia coli

EST Expressed Sequence Tag

ERV Endogenous retroviruses

FastQC Fastq Quality Control

FN False Negative

FP False Positive

GATK Genome Analysis Toolkit

GRCh Genome Reference Consortium human genome

HC Homopolymer Compression

HTS High Throughput Sequencing

İGBAM İleri Genom ve Biyoenformatik Araştırma Merkezi/Advanced

Genomics and Bioinformatics Research Center

İNAREK İnsan Araştırmaları Kurumsal Değerlendirme Kurulu/ Com-

mittee on Ethical Conduct in Studies Involving Human Sub-

jects

LINE Long Interspersed Nuclear Elements

xviii

LRC Long Read Contig

LTR Long Terminal Repeat

NCBI National Center for Biotechnology Information

ncRNA non-coding RibuNucleic Acid

NGS Next Generation Sequencing

OEA One End Anchor

OLC Overlap Layout Consensus

NP-hard Non-deterministic Polynomial time hard

PacBio Pacific Biosciences

PbCR Pacbio Corrected Reads

PCR Polymerase Chain Reaction

PopIns Population scale detection of novel sequence Insertions

SAM Sequence Alignment/Map

SGA String Graph Assembler

SINE Short Interspersed Nuclear Elements

SMRT-SV Single Molecule Real Time - Structural Variant

SNP Single Nucleotide Polymorphism

SPAdes St. Petersburg genome Assembler

SRC Short Read Contig

SRA Sequence Read Archive

SV Structural Variation

TP True Positive

TÜBİTAK Türkiye Bilimsel ve Teknolojik Araştırma Kurumu/ The Sci-

entific and Technological Research Council of Turkey

UCSC University of California Santa Cruz

UTR3 3
′

UnTranslated Region

UTR5 5
′

UnTranslated Region

VCF Variant Call Format

VQSR Variant Quality Score Recalibration

WGS Whole Genome Shotgun

YHD Yüksek Hacimde Dizileme

xix

1

1. INTRODUCTION

Next generation sequencing (NGS) technologies have provided a great opportu-

nity to the researchers to investigate whole human and other species genomes. After

traditional sequencing methods such as Maxam-Gilbert [5] and Sanger sequencing [6]

revolution in sequencing in 1970s, it took researchers almost 30 years to develop new

approaches to enable faster and cheaper sequencing. Array based technologies in which

DNA fragments of specific chromosomal loci are fixed on a surface with either bacterial

artificial chromosome clones or oligonucleotide synthesis were considered in clinical ap-

plications first, but they have limitations such as non-uniform coverage, low accuracy

on low coverage regions, missing aneuploidies and marker chromosomes [7]. They also

need high amount of time (more than two days or longer) and financial requirements

compared to high throughput sequencing (HTS) technologies. On the other hand, HTS

technologies have many advantages over array based techniques and resolve most of

their limitations. Sequencing by synthesis, sequencing by ligation, and single molecule

sequencing are the general titles of these new methods. Sequencing by synthesis takes

a single strand of DNA and synthesizes its complementary strand enzymatically, one

base pair at a time. Sequencing by ligation uses DNA ligase enzyme to identify nu-

cleotides at the given positions in a DNA sequence. In single molecule sequencing,

DNA fragment is added with poly-A tail adaptors which are attached to the flow cell

surface and extension based sequencing is applied.

Currently, the most widely used platforms use sequencing by synthesis technol-

ogy, each of which has many advantages and/or disadvantages over the other according

to the purposes and financial issues. Illumina, Roche (454), PacBio, Ion-Torrent are

the most popular sequencing by synthesis platforms in use. The common characteristic

of next generation data generated by these platforms is that the reads are short (except

Pacbio), i.e. between 100bp (Illumina/Ion-Torrent) - 400bp (454). In order to make an

assembly with short reads, high coverage data are needed and this increases complexity,

also repeat resolving becomes a big problem with short reads [8]. Pacific Biosciences

platform generates longer reads than other platforms, but it has lower accuracy, i.e.

2

>= %14 error rate. The data generated by each of these platforms have their own char-

acteristics, benefits and deficits; e.g. none of them alone is appropriate for generating

a perfect assembly. With the development of these new sequencing technologies, the

cost of obtaining whole genome sequences has decreased in the following years which

also led to an increase in the amount of the produced data. The generation of the

huge amount of data by high throughput sequencing (HTS) platforms also increased

the amount of research to investigate them and the number of researchers interested

in exploring the data. In this thesis, we concentrate on three separate problems that

are related to next generation sequencing technologies in genomics.

First, this increase made more clinical sequencing projects such as Genomics

England and ClinSeq applicable. High throughput sequencing (HTS) based analysis

is improved significantly in terms of accuracy and reproducibility, but the usability of

these types of data for diagnostic and prognostic applications requires a near perfect

data generation. Although the performance of HTS platforms has been tested in var-

ious studies [9–11], the robustness of HTS platforms still needs to be systematically

assessed. As our first study, we perform an experiment to analyze the robustness of

HTS platforms.

Second, the two main problems of analyzing HTS data are the sequence alignment

and the de novo assembly. Although including its own existing problems, sequence

alignment became simpler and more useful than before, and gave chance to study

identifying variations which lead to genetic diseases. Complex disease problems also

have a wide range of data to be worked on, but their identification is harder than

identifying Mendelian disorders. After the draft human reference genome was produced

in 2001 [12], genome alignment has got importance to analyze new individuals for

diseases and population genetic studies, but genome assembly problem did not get

much attention. There are still many species which are waiting for their reference

genomes to be sequenced or constructed. Human genome has also some unknown

sections because of the repetitive structure of the genome itself. In addition, it is

generated by a limited number of human DNAs which cannot represent all populations

because of the missing sequences through the human lineage. These unknown genomic

3

regions or whole genomes still wait for our exploration. Therefore, the second problem

we scrutinize is improving the de novo genome assemblies of the whole genomes.

Genome assembly is a very important problem because of the necessity of the dis-

covery of these unknown genomes and genomic regions. There are various solutions to

the genome assembly problem which are effectively in use, but the problem still has very

important issues to be solved. The accuracy of the results of the existing assemblers

is not as high as they should be which makes it still remain as an open problem. The

source of the assembly problem comes first from the nature of the genome structure.

The genome has a repetitive structure and next generation sequencing technologies are

not able to sequence long-enough reads that will cover these repeats. Although some

of them (Pacific Biosciences) are able to sequence long sequences, the error-rate is too

high (>= 30%). There are three kinds of assemblers introduced until now. Greedy

assemblers use simple mappings and work on a greedy basis. They are incapable of

assembling huge data. Overlap layout consensus (OLC) graph based assemblers use

pairwise alignments to find a layout and generate a consensus assembly; they usually

work well with long reads. De-Bruijn graph based assemblers use a k-mer graph ap-

proach, and they are successful with the short reads. OLC graph based assemblers and

de-Bruijn graph assemblers have their own advantages on specific cases, but none of

them is a state of the art assembler yet. The problem of these assemblers is that they

are usually developed for specific kind of data, so they might not work as well with

another kind of data. There are also some methods which use different types of data,

called hybrid assemblers.

The last problem we explore is discovering novel sequence insertions on whole

genome sequence data. Genomic structural variations (SVs) which affect more than

50 base pairs (bp) can be deletions, insertions, inversions, duplications and retrotrans-

positions [13, 14]. The characterization of insertions is important because they might

also exist in coding regions [15]. However, insertions have not been worked on as much

as other structural variations mainly because of the lack of long read sequences, and it

needs sequence assembly which is a computationally challenging task. The studies on

discovering the novel sequence insertions need to be improved. The third problem we

4

will examine is novel sequence insertion discovery.

Within this context, we present three different yet complementary studies intro-

ducing new approaches to the three problems of the genomics field. As the first study,

we analyze the reliability of a largely used HTS platform, i.e. Illumina, in terms of

reproducibility and also some of the most popular data analysis tools with an experi-

ment. In this experiment, we sequenced the DNAs of two donors twice with the same

machine and analyzed the sequencing data with the same tools. In the second study,

we propose a hybrid multi-platform sequence data approach to improve genome assem-

blies. Finally, we present a new algorithm for novel insertion discovery and our tool

Pamir which we developed for the discovery and genotyping of novel sequence inser-

tions in the genomes of one or more individuals. We explain each problem in detail in

the regarding sections.

1.1. Contributions

1.1.1. Reproducibility of NGS

In the first study, we aim to investigate the usability of a widely used HTS plat-

form, i.e. Illumina, in terms of robustness, for usage in accurate and reproducible

clinical applications. For this purpose, we generated whole genome shotgun (WGS)

sequence data from the genomes of two human individuals with the same model of

Illumina platform in two different genome sequencing centers. We used the same map-

ping and analysis tools (BWA, SAMtools and GATK) to characterize SNPs and Indels.

After analyzing the data, we observed significant number of discrepancies in the call

sets. Although most of the disagreements between the call sets were found within ge-

nomic regions containing common repeats and segmental duplications as expected, only

a small fraction of the discordant variants were within the exons and other functionally

relevant regions such as promoters. After our analysis, we came to a conclusion that

the variant predictions still need to be validated using orthogonal methods [16] before

using them in clinical applications even though HTS platforms are very powerful for

providing data for first-pass clinical tests.

5

1.1.2. Improving genome assemblies

In this study, our purpose is to propose a new approach to the de novo assembly

problem using multi-platform sequence data to increase the quality of the final assembly

with combination of short reads and long reads that belong to the same sample. Short

reads are from Illumina and long reads are from both 454 and Ion-Torrent. We assemble

different types of reads separately with appropriate assemblers. We obtain the first

group of contigs of the short reads with a de-Bruijn graph based assembler. In a de-

Bruijn graph based assembler nodes represent the k-mers (< read length) chopped

from the reads and edges represent the k-1 length overlaps between the k-mers on the

nodes. In this assembly algorithm, one follows an Eulerian path, i.e. each edge is

visited exactly once, on the graph to discover a consensus sequence. We assemble the

long reads into long-read contigs with OLC graph based assemblers where each node

represents a read and each edge represents the overlaps between the reads. After graph

generation, a Hamiltonian path (i.e. each node is visited exactly once) is followed to

determine the consensus sequence. After finding the consensus sequences with both

short reads and long reads, we use the short-read contigs to correct the long read

contigs. We show that with our method, we obtain a higher quality assembly than

either only short read or long read assembly. We tried our method with both 454

corrected with Illumina and Ion-Torrent corrected with Illumina and then compared

the results. We also combine all three types of contigs (Illumina short-read contigs,

454 long-read contigs and Ion-Torrent long-read contigs) and present our results. We

also ran other hybrid assemblers, Celera-CABOG [17,18] and Masurca [19] on the same

data and compared the results with ours. The results show that our method improves

the resulting assembly and gives better results than Celera-CABOG and Masurca.

1.1.3. Discovery of novel sequence insertions

In the last study, we present Pamir, a new algorithm to efficiently and accurately

discover and genotype novel sequence insertions using either single or multiple genome

sequencing datasets. Pamir is able to detect breakpoint locations of the insertions and

calculate their zygosity (i.e. heterozygous vs. homozygous). To do this, it analyzes

6

multiple sequence signatures, matches one-end-anchored (OEA) sequences to small-

scale de novo assemblies of unmapped reads (i.e. orphans) and conducts strand-aware

local assembly. We test the efficacy of Pamir on both simulated and real data, and

demonstrate its potential use in accurate and routine identification of novel sequence

insertions in genome projects.

We give the details of each study in the following chapters. In Chapter 2, we

explain the steps we follow to analyze the two whole genome shotgun (WGS) sequence

data from the genomes of two human individuals that are generated in two different

genome sequencing centers and we go through the results of the analysis. In Chapter

3, we describe our method to improve the genome assemblies using multi-platform

sequencing data and we present the comparative results of our method and hybrid

assemblers. In Chapter 4, we describe our method on discovering and genotyping the

novel sequence insertions in the genomes of one or many individuals.

7

2. ASSESSING THE ROBUSTNESS OF MASSIVELY

PARALLEL SEQUENCING PLATFORMS

Robustness and reproducibility are the essentials of each data that is aimed to be

used in clinical diagnostics. Whole-genome array based technologies were introduced to

measure the expression levels of many genes in a genome [7]. The main issues blocking

large scale applicability of array-based technologies for clinics are these two factors,

i.e. robustness and reproducibility. High throughput sequencing (HTS) platforms offer

alternative solutions to array based technologies with respect to genotyping. Compared

to the array based technology data, HTS data are considered to be more robust and

comprehensive. The performance of HTS platforms has already been tested in various

studies [9–11], but the questions about robustness of HTS platforms still need to be

systematically assessed. It is of crucial importance to obtain accurate single nucleotide

polymorphism (SNP), Indel, and structural variation (SV) call sets which means the

calls made for specific SNPs or SVs should be only dependent on the actual genotypes

of sequenced individuals. They should not be dependent on the platform, location, or

time of choice of the HTS study.

The ability of three sequencing platforms, Illumina-Miseq, Roche-454 in terms of

read lengths and coverage are assessed in [20]. The performance with respect to cover-

age and SNP-indel calling of two different sequencing platforms, Illumina and Complete

Genomics is compared in [9]. The performance with respect to read lengths and error-

rates of the platforms Roche-454, Illumina-MiSeq and Ion-Torrent is compared in [10].

Performances of Ion-Torrent-PGM, Illumina-MiSeq, and Pacific Biosciences in terms

of coverage distribution, bias towards GC content ratio, and variant calling are inves-

tigated in [21]. A method to obtain high confidence genotypes by integrating multiple

datasets from different platforms and using different mapping and variant calling tools

is presented in [11]. In addition, fourteen different mapping algorithms have been eval-

uated with a benchmark on Ion-Torrent sequencing data in [22]. The performances

of different platforms or data analysis tools are previously studied in the literature

8

but investigating the robustness of the data from a single high throughput sequencing

platform with sequencing the same DNA twice and analyzing the data with the same

mapping and variant calling tools has not yet been established.

Here we investigate a highly used HTS technology in genome sequencing, i.e.

Illumina HiSeq platform, in terms of robustness. The reason that we chose Illumina

HiSeq2000 to investigate is that, at the time of our analysis, Illumina HiSeq2000 was

the most accurate high throughput sequencing platform which has the least sequencing

error rate (∼ 0.1%) where other available platforms had higher sequencing error rates

(Ion Torrent (∼ 1% error rate), 454 (∼ 0.5%) and Pacific Biosciences (∼ 14% error

rate)). Also, the cost for sequencing a whole genome with Illumina was the cheapest

(0.07$ per Mb) compared to other available platforms (454 (10$ per Mb), Ion-Torrent

(1$ per Mb), Pacbio (0.13-0.60$ per Mb)). Providing accurate and cheap sequencing

data has made Illumina the most popular sequencing platform for large clinical appli-

cations. Therefore, we wanted to investigate the robustness of the data generated by

Illumina HiSeq2000.

For our purpose, we resequenced the genomes of two individuals from the Turk-

ish Genome Project (TGP) [23] for a second time. The two genomes were previously

sequenced as the first time [23], using the Illumina HiSeq 2000 platform in BGI Shen-

zhen. We resequenced the same DNA as the second time with the same model of

the Illumina HiSeq 2000 platform which is set up at the Turkish Advanced Genomics

and Bioinformatics Research Group (TÜBİTAK İGBAM). Although we used the same

model sequencing machines, and achieved roughly the same level of coverage, and used

the same tools with the same parameters during the analysis, there was significant

number of differences between the two trials when we assessed independent analysis

of the SNP and Indel calls. Especially, we noticed that roughly 280 thousand of the

3 million SNPs genotyped by the GATK [24] tool in one trial (e.g. BGI) or the other

(e.g. TÜBİTAK) are unique to only one callset - which means the reproducibility rate

of SNP calls is ∼ 92%. We expected to see an improvement in the reproducibility and

accuracy on the results if we perform a multisample calling with GATK. It is inter-

esting to see that, the multisample (pooled) calling that jointly analyzes two genome

9

datasets simultaneously does not seem to substantially improve the reproducibility and

thus accuracy of the results. In this study, we question the “sources” of the loss of

accuracy in terms of both quality scores and coverage levels in each of the samples.

Although the differences between the GATK calls for specific loci on the two samples

highly decrease when there is increase in coverage levels in each sample, there are still

some cases in which we cannot call the cause of the differences as low coverage or

quality score differences.

Our main contribution with this study is a detailed investigation of the causes

and types of unique variants within the call sets that are expected to be actually the

same. In addition, we try to define strategies to handle such discrepancies if there

are more than one WGS dataset generated from the genome of the same donor either

with the same or different platforms. With further technological advancements and the

cost improvements, sequencing a sample many times can be expected to be prevalent,

as storing the data may become more expensive than resequencing the same sample.

Here the same donor sample is sequenced twice, to evaluate the outcome of this highly

possible situation in the future. For such cases, when multiple WGS sequence of the

same donor exists, we state our remarks on how to exploit all the data fruitfully. We

describe the standard methods for analysis of all samples that we used in the study in

Section 2.1. We present the results of the study and show the shared and exclusive sets

of different SNP groups and which regions the exclusive SNPs belong in the genome,

in Section 2.2. Finally, in Section 2.3, we present our remarks on the obtained results

and conclude.

2.1. Methods

2.1.1. DNA Samples and Ethics Statement

Genomic DNA from two individuals were collected and purified in 2011, only

once from the blood of two volunteers for a previously published study [23]. The

source, i.e. blood, DNA extraction time and location are the same. Institutional

review board permission was obtained from INAREK (Committee on Ethical Conduct

10

in Studies Involving Human Subjects at the Boğaziçi University) before data collection.

All participants including those that are included in this study have already provided

consent during the previous study [23]. So, we did not need to get a permission for the

second time for this study.

2.1.2. Sequencing

During the Turkish Genome Project [23], the DNAs of the two individuals were

already sequenced with Illumina HiSeq 2000 and the first dataset was completed in

2011 at BGI Shenzhen in China. The same DNA samples were sequenced for a second

time with another Illumina HiSeq 2000. The second dataset was generated for this

study in 2012 at TÜBİTAK İGBAM in Kocaeli Turkey. For the first sequencing,

according to the report of BGI, DNA samples were fragmented to 500bp. Paired-

end sequencing dataset was produced with the read length of 90bp. For the second

sequencing experiment performed at TÜBİTAK, the same protocols are followed, the

DNA samples are fragmented to 500bp. The quantified and quality checked gDNA

libraries were prepared and paired-end dataset is generated with the read length of

104bp. To eliminate the possible variations in variant calls stemming from the library

preps and other wet lab work, the standard variant quality filtering software is used.

Hereafter, we refer to the data generated in BGI as S1B (the genomic sequence of the

first individual), S2B (the genomic sequence of the second individual) and the data

generated in TÜBİTAK for the same first and second individuals as S1T and S2T ,

respectively.

2.1.3. Alignment, coverage, GC content

We mapped the reads to the human reference genome (NCBI GRCh37) to dis-

cover SNP and short Indels. For mapping, we used BWA aligner (version 0-6-2) [25],

a widely used aligner in HTS data analysis, with paired-end mode (“sampe”) and de-

fault parameter values. We followed the general procedure and converted the mapping

output to sorted, duplicate-removed, and indexed BAM files using SAMtools [26]. The

expected coverage is calculated by dividing the total number of mapped bases to the

11

number of non-N bases in GRCh37 which can be shown as in Equation 2.1

expected coverage =
num mapped reads× read length

2, 897, 310, 462
(2.1)

Next, we used SAMtools and BEDtools [27] to calculate the effective coverage as

in Equation 2.2:

effective coverage =

(
num bases∑

i=1

Coveragei)

num bases
(2.2)

Lastly, FASTQC tool (version 0.10.1) [28] is used to collect the GC content and basic

statistics of the genomic sequence data.

2.1.4. Variant calling

2.1.4.1. SNP and Indel detection. After the initial alignment and the PCR-duplicate

removal, we re-aligned the Indel-containing reads back to the reference genome using

GATK Realigner tool. As the next step, we used the GATK Unified Genotyper tool

to obtain the SNP and Indel call sets. As an alternative approach for variant calling,

we also used GATK Haplotype Caller for generating SNP and Indel call sets. We

investigated if there is a difference between the number of exclusive variants generated

by Unified Genotyper and Haplotype Caller. GATK Haplotype Caller is also run for

variant calling to compare number of variants with Unified Genotyper output. In

the next step, we eliminated likely false positives using the GATK Variant Quality

Score Recalibration (VQSR) tool with GATK resource bundle v2.5. VQSR creates a

Gaussian mixture model according to the annotation values of a group of high quality

variants and according to the model it calculates a new well-calibrated quality score for

each variant which increases the sensitivity and specificity. It assigns a new “PASS”

or “FAIL” filtering label to the variant according to a threshold value.

12

As the last step, we used GATK VariantFiltration tool to further remove the low

confidence calls. It is the SnpCluster filter that removes SNPs if there are more than

3 SNPs in a 10 bp window. We applied the same variant calling pipeline defined here

to each of the four datasets separately: S1B, S1T , S2B and S2T .

2.1.4.2. Long Deletion detection. We discovered long deletions by mapping discordant

reads with mrFAST [29] and calling deletions with VariationHunter [30].

2.1.4.3. Pooled SNP and Indel calling. As a second experiment, we tested whether

multisample calling, i.e. pooling data from multiple sequencing runs for the same

samples, improves callset reproducibility. Mainly we explored if the slight differences

in the depth and coverage of the datasets could be improved by merging data for

discovery, and if this would improve genotyping accuracy. For this purpose, we applied

the same SNP/Indel detection process to both samples by pooling two sequencing

datasets generated at BGI and TÜBİTAK. The pooled datasets are named S1BT and

S2BT for the first and second samples, respectively.

However, we named the two datasets from the same sample from the pooled

calling as if they were generated from different genomes. In the remainder of the paper,

we denote the SNP/Indels genotyped within the BGI data from sample S1 (sample 1)

as B1, and the SNP/Indels genotyped within the TÜBİTAK data from S1 as T1 for

this experiment. In the same way, we have B2 and T2 for the sample S2 (sample 2) .

2.1.5. Variant annotation

Variant annotation is the process to predict the function of a variant based on

its location on the genome. We used ANNOVAR [31](version 2013-02-21) variant

annotation tool for annotating SNPs and Indels. It provides the information of whether

a variant is located in a functional genomic region like exonic regions or splice sites.

13

2.1.6. Data Availability

Sequence reads obtained from BGI for the Turkish Genome Project study [23]

are already stored to the SRA read archive (SRP021510). Primary run IDs relevant

to this study are: SRR839600 for S1B and SRR849493 for S2B. Datasets generated at

TÜBİTAK are also stored as “secondary sequencing” with sample IDs SRR2128004

and SRR2128088 respectively under the same SRA archive. The publication [32] is

available online. We also released the scripts that we used to map the reads and call

the variants at [33]. The resulting VCF files for the variant callsets are stored at [34].

2.2. Results

2.2.1. Read length, coverages, and GC content

The basic statistical analysis results of the datasets such as number of reads, read

lengths, expected and effective coverages and GC content rates are given in Table 2.1.

The total number of reads generated are of more than 5.5 billion reads which is equiva-

lent to ∼ 530 giga basepairs (Gbp). The effective sequence coverage per sample ranges

from 29.5X to 49.2X. The reads sequenced at TÜBİTAK (S1T and S2T) (104bp) are

14bp longer than the reads sequenced at BGI (S1B and S2B) (90bp). The GC contents

are similar to each other, they are ranged from 39% to 43% (Table 2.1).

Table 2.1. Summary of the sequence datasets.

Dataset

Number

of reads

Read

length

Expected

Coverage

Number of

mapped reads

Effective

Coverage

GC%

S1T 1,401,819,290 104 45.6X 1,366,858,600 42.3X 42%

S1B 1,394,524,622 90 41.5X 1,272,512,132 37.6X 39%

S2T 934,050,130 104 31.3X 914,763,337 29.56X 43%

S2B 1,793,560,406 90 53.4X 1,688,991,592 49.2X 41%

Sequencing statistics of the two samples (S1, S2) sequenced at two different centers. S1T

refers to sample S1 sequenced at TÜBİTAK, where the dataset S1B is generated from the

same sample at BGI. Similarly, datasets from sample S2 are denoted as S2T and S2B.

14

2.2.2. Callsets and comparisons

2.2.2.1. SNP and Indel discovery. SNP callsets for each individual sample and also

for multisample (pooled) sequences are generated (explained in Section 2.1). 4 SNP

callsets are named as S1T , S1B, S2T , S2B, and 2 pooled callsets for S1 and S2, which

are denoted as S1BT , S2BT , were generated. 3 callsets per sample (i.e., S1T , S1B, and

S1BT for S1 and S2T , S2B, and S2BT for S2) are compared with each other to quantify

and characterize any differences. The SNP and Indel statistics of all these 6 callsets for

2 samples which are called by GATK Unified Genotyper are summarized in Table 2.2.

The calls for the same callsets which are obtained by Haplotype Caller are summarized

in Table 2.4.

2.2.2.2. Long deletions. Total long deletions and novel long deletions compared to

1000 genomes project are shown in Table 2.3.

Table 2.2. (Unified Genotyper) SNP and Indel numbers obtained from the data.

SNPs Indels

Total Novel1 Total Novel1

S1T 3,320,545 40,936 34,407 430

S1B 3,356,829 60,596 132,144 2,076

S1BT 3,340,498 55,408 80,950 1,227

S2T 3,277,433 46,448 56,189 756

S2B 3,346,221 55,753 54,229 529

S2BT 3,393,037 98,383 32,743 502

1 Compared to dbSNP138

2.2.2.3. Separately generated callsets. In summary, after potential false positive re-

moval with GATK Variant Quality Score Recalibration and VariantFiltration (ex-

plained in Section 2.1), we observed approximately 95% agreement between the pairs

of SNP callsets generated from both genomes (Table 2.5).The Indel callsets showed a

larger discrepancy, where only 18%-68% of each callset were shared with the other two

15

Table 2.3. Long deletions obtained from the data with mrFAST and VariationHunter.

Deletions (>50bp)

Total Novel1

S1T 1,214 15

S1B 1,209 38

S1BT 1,150 40

S2T 1,102 27

S2B 1,008 26

S2BT 932 24

1 Compared to 1000 Genomes Phase 1

Table 2.4. (Haplotype Caller) SNP and Indel numbers obtained from the data.

SNPs Indels

Total Novel1 Total Novel1

S1T 3,540,735 57,905 614,241 35,624

S1B 3,504,854 58,578 668,779 41,558

S1BT 3,569,295 59,510 739,347 50,617

S2T 3,463,094 60,344 589,891 34,249

S2B 3,539,933 79,869 718,734 44,571

S2BT 3,613,663 72,099 217,365 57,056

1 Compared to dbSNP138

callsets (Table 2.5).The number of shared and discrepant SNP and Indels generated by

Haplotype Caller are shown in Table 2.6.

We studied the underlying sequence content of the discrepancies of novel SNP and

Indel calls in detail to understand the causes of different calls from the same genomes.

We first downloaded human reference genome annotations for segmental duplications

and common repeats from the UCSC genome browser [35] and copy number variation

(CNV) callsets from the 1000 Genomes Project [36]. We then counted the number of

novel SNP and Indel calls. SNPs and Indels found in segmental duplications, common

16

repeats, possible CNVs and also the calls discovered in low coverage regions are shown

in Figure 2.1A and 2.1C, Figure 2.1B and 2.1D, respectively. We found that 46%-59%

of discrepant novel SNP calls intersected with common repeats, and a group of 5%-28%

intersected with segmental duplications. In addition, a 3%-5% of the discrepant calls

were found within possible CNV regions reported in the 1000 Genomes Project [36],

and 0.3%-0.8% were discovered in low coverage regions (< 5X). We also analyzed the

discrepant Indel calls which showed similar distribution. The distribution of discrepant

Indel calls to the regions are shown in Figure 2.1B and 2.1D. The majority of dis-

crepant calls were found to be within Alu and L1 repeats (Tables 2.7 and 2.8). The

discrepant calls within satellites and low complexity repeats were negligible. In addi-

tion, a close look to Alu and L1 subfamilies revealed that the number of discrepant calls

peaked at ∼10% sequence divergence from consensus sequences, also showing negligible

differences at recent and distant mobile element insertion loci (data not shown). Both

of these observations can be explained by low mapping quality within these regions,

causing the VQSR algorithm to filter out such calls.

We studied the significance of the discrepant SNP and Indels closely in terms of

predicted functionality. The distribution of discrepant SNP and Indels in terms of their

functionality is shown in Table 2.9. We found that 88%-95% of the discrepant SNP

calls mapped to intergenic and intronic regions where a 3.5%-4.5% were predicted to be

within coding exons, and noncoding RNAs (ncRNAs). Intergenic regions in the DNA

exist in between genes. The reason they are called “junk DNA” is that currently they

do not have any known function and they are part of noncoding DNA. Intronic regions

exist in between coding exons within the genes. They are the intervening sequences

which are also part of noncoding DNA and are removed by RNA splicing during the

creation of mature RNA. Intergenic and intronic regions has no direct role on protein

coding. Coding exons are the DNA parts within genes which directly code DNA.

Noncoding RNAs are transcribed from DNA but are not translated into proteins. Some

ncRNAs have important roles on regulating gene expression. The noncoding intergenic

and intronic regions are less interesting compared to coding exons. The importance

of long ncRNA on regulating genes is discovered more in recent years [37]. Indels

showed similar distribution properties, where only 0-3 of them were predicted to incur

17

frameshifts. The frameshift insertions or deletions have important affect on protein

coding, so they are possible disease causing mutations.

Table 2.5. (Unified Genotyper) Comparisons of total and novel SNP and Indel

callsets generated from the genomes of S1 and S2. S1B, S1T , S1BT : S1 calls from BGI,

TÜBİTAK, and pooled datasets; S2B, S2T , S2BT : S2 calls from BGI, TÜBİTAK, and

pooled datasets, respectively.

SNPs Indels

Total Novel Total Novel

|S1B ∩∗ S1T ∩ S1BT | 3,167,254 (90.0%) 36,273 (49.3%) 23,293 (15.2%) 232 (9.1%)

|(S1B \# S1T)\S1BT | 75,839 (2.2%) 16,073 (21.9%) 67,478 (43.9%) 1,239 (48.6%)

|(S1T \ S1B) \ S1BT | 56,906 (1.6%) 1,444 (1.9%) 3,525 (2.3%) 56 (2.2%)

|(S1BT \ S1B) \ S1T | 22,737 (0.6%) 8,896 (12.1%) 11,647 (7.6%) 300 (11.7%)

|(S1B ∩ S1T) \ S1BT | 29,807 (0.9%) 615 (0.8%) 1,476 (0.9%) 26 (1.0%)

|(S1B ∩ S1BT) \ S1T | 83,929 (2.4%) 7,635 (10.4%) 39,897 (26.0%) 579 (22.7%)

|(S1T ∩ S1BT) \ S1B| 66,578 (1.9%) 2,604 (3.5%) 6,113 (3.9%) 116 (4.5%)

|S2B ∩ S2T ∩ S2BT | 3,164,900 (90.0%) 42,518 (40.0%) 12,823 (13.4%) 93 (6.7%)

|(S2B \ S2T) \ S2BT | 40,492 (1.2%) 4,899 (4.6%) 22,599 (23.6%) 258 (18.7%)

|(S2T \ S2B) \ S2BT | 62,748 (1.8%) 46,415 (43.8%) 34,980 (36.5%) 581 (42.2%)

|(S2BT \ S2B) \ S2T | 62,029 (1.8%) 2,314 (2.2%) 3,567 (3.7%) 219 (15.9%)

|(S2B ∩ S2T) \ S2BT | 12,972 (0.4%) 251 (0.2%) 5,420 (5.6%) 35 (2.5%)

|(S2B ∩ S2BT) \ S2T | 127,857 (3.6%) 8,085 (7.6%) 13,387 (13.9%) 143 (10.4%)

|(S2T ∩ S2BT) \ S2B| 37,532 (1.1%) 1,365 (1.3%) 2,966 (3.1%) 47 (3.4%)

∗ Cardinality of the intersection: |A ∩B| = The number of SNPs or Indels shared by set A

and set B.

Cardinality of the difference: |A \B| = The number of SNPs or Indels that set A has and

set B does not have.

18

Table 2.6. (Haplotype Caller) Comparisons of total and novel SNP and Indel callsets

generated from the genomes of S1 and S2. S1B, S1T , S1BT : S1 calls from BGI,

TÜBİTAK, and pooled datasets; S2B, S2T , S2BT : S2 calls from BGI, TÜBİTAK, and

pooled datasets, respectively.

SNPs Indels

Total Novel Total Novel

|S1B ∩ S1T ∩ S1BT | 3,373,868 (91.7%) 43,693 (58.8%) 552,114 (72.8%) 22,090 (36.3%)

|(S1B \ S1T) \ S1BT | 36,182 (0.9%) 7,005 (9.4%) 7,863 (1.0%) 6,189 (10.2%)

|(S1T \ S1B) \ S1BT | 55,145 (1.5%) 6,663 (8.9%) 9,729 (1.3%) 3,735 (6.1%)

|(S1BT \ S1B) \ S1T | 25,347 (0.7%) 2,418 (3.3%) 27,621 (3.6%) 5,919 (9.7%)

|(S1B ∩ S1T) \ S1BT | 18,223 (0.4%) 1,015 (1.4%) 794 (0.1%) 235 (0.4%)

|(S1B ∩ S1BT) \ S1T | 76,581 (2.1%) 6,865 (9.2%) 108,008 (14.3%) 13,044 (21.5%)

|(S1T ∩ S1BT) \ S1B| 93,499 (2.5%) 6,534 (8.8%) 51,604 (6.8%) 9,564 (15.7%)

|S2B ∩ S2T ∩ S2BT | 3,334,025 (89.9%) 46,783 (45.1%) 543,893 (66.4%) 22,332 (34.0%)

|(S2B \ S2T) \ S2BT | 35,153 (0.9%) 18,073 (17.4%) 4,807 (0.6%) 1,762 (2.7%)

|(S2T \ S2B) \ S2BT | 52,188 (1.4%) 8,034 (7.7%) 16,981 (2.1%) 6,611 (10.1%)

|(S2BT \ S2B) \ S2T | 43,596 (1.2%) 10,903 (10.5%) 54,639 (6.7%) 9,291 (14.2%)

|(S2B ∩ S2T) \ S2BT | 5,797 (0.1%) 600 (0.5%) 687 (0.1%) 175 (0.3%)

|(S2B ∩ S2BT) \ S2T | 164,958 (4.4%) 14,413 (13.9%) 169,347 (20.7%) 20,302 (30.9%)

|(S2T ∩ S2BT) \ S2B| 71,084 (1.9%) 4,927 (4.7%) 28,330 (3.5%) 5,131 (7.8%)

∗ Cardinality of the intersection: |A ∩B| = The number of SNPs or Indels shared by set A

and set B.

Cardinality of the difference: |A \B| = The number of SNPs or Indels that set A has and

set B does not have.

Figure 2.1. Underlying sequence content of novel SNP and Indel calls. A) SNPs and B) Indels in the genome of S1. C) SNPs and D)

Indels in the genome of S2.

20

Table 2.7. Detailed view of novel SNP and Indel distributions of S1 that map to

common repeats.

Novel SNPs at common repeats Novel Indels at common repeats

All S1 S1B only S1T only All S1 S1B only S1T only

Total 31,226 13,279 1,840 1,081 897 89

SINE/Alu∗ 8,911 4,175 706 204 196 5

LINE/L1 8,779 3,581 332 415 330 33

LTR/ERV 5,370 2,022 263 84 74 4

Low compl. 429 196 55 63 41 11

Satellite 237 89 14 9 7 0

Simple rep. 1,605 1,011 312 151 118 27

Other 5,895 2,205 158 155 131 9

∗ SINE/Alu: Short Interspersed Nuclear Elements

LINE: Long Interspersed Nuclear Elements

LTR/ERV: Long Terminal Repeats/Endogenous Retroviruses

2.2.2.4. Pooled BGI vs Pooled TÜBİTAK. The number of shared and discrepant SNP

and Indel calls of multisample (pooled) calling are shown in Table 2.10. This strategy

showed a better correspondence between the two datasets, reducing the contradicting

call rate to 0.1%-0.8%. The number of shared and discrepant SNP and Indel calls of

pooled calling with Haplotype Caller are also shown in Table 2.11.

2.3. Discussion

With the improvements in cost efficiency, speed, and analysis algorithms, HTS

platforms are now being considered to be used routinely as part of clinical diagnosis.

This assumption started a pilot project called ClinSeq [38] that aims to investigate

the strength and potential pitfalls of using HTS data in the clinic. However, the HTS

technologies continue to evolve and new platforms are introduced almost every year.

This fact, coupled with changes and updates of algorithms to analyze HTS data, raises

questions about the maturity and robustness of HTS platforms for accurate discovery

21

Table 2.8. Detailed view of novel SNP and Indel distributions of S2 that map to

common repeats.

Novel SNPs at common repeats Novel Indels at common repeats

All S2 S2B only S2T only All S2 S2B only S2T only

Total 28,483 7,597 1,907 517 204 265

SINE/Alu 9,499 4,048 507 71 45 24

LINE/L1 7,396 1,331 511 208 71 112

LTR/ERV 4,360 434 221 66 20 38

Low compl. 653 399 59 32 17 12

Satellite 260 61 29 0 0 0

Simple rep. 1,489 784 410 54 26 27

Other 4,826 540 170 86 25 52

∗ SINE/Alu: Short Interspersed Nuclear Elements

LINE: Long Interspersed Nuclear Elements

LTR/ERV: Long Terminal Repeats/Endogenous Retroviruses

and genotyping of genomic variants. The performance of different sequencing platforms

in terms of read lengths, coverage and GC ratio have been assessed in several studies

but the robustness of them have not yet been analyzed.

In an effort to answer this question, we analyzed the genomes of two individuals,

each sequenced twice using the same widely used technology, Illumina HiSeq2000, albeit

at different locations. We chose Illumina HiSeq2000 to investigate because it is the most

popular sequencing platform for large clinical applications by generating accurate reads

with low costs. Since our aim was to investigate the maturity of sequencing platforms in

this study, we used the same tools to characterize both single nucleotide and short Indel

variants. Under the assumption of 100% robustness, one would expect to characterize

the same set of variants in both sequencing datasets from the same genomes. However,

this is not what we found.

We believe multiple factors contribute to this effect. First, since the library prepa-

ration is different, one may expect difference in GC% bias, as clearly seen in Table 2.1.

22

Table 2.9. Distribution of discrepant novel SNP-Indels of S1 and S2 over gene regions.

Novel discrepant calls of S1 Novel discrepant calls of S2

S1T S1B S2T S2B

SNP Indel SNP Indel SNP Indel SNP Indel

Total 4,048 172 23,708 1,818 3,679 628 12,984 401

intergenic 2,191 107 13,451 1,029 2,261 358 6,470 249

intronic 1,506 50 8,899 694 1,196 233 5,016 126

upstream 62 2 139 10 34 2 467 4

downstream 44 1 144 8 28 2 89 3

UTR5 33 0 36 1 5 1 228 1

UTR3 29 3 199 17 21 5 96 5

exonic nonsyn 26 0 129 0 5 0 131 0

exonic syn 24 0 47 0 7 0 42 0

exonic stopgain 0 0 5 0 0 0 0 0

exonic unknown 0 0 1 0 0 0 4 0

exonic 0 0 1 0 0 0 0 0

ex. frmshift del1 0 0 0 1 0 1 0 0

ex. nonfrmshift del 0 0 0 1 0 0 0 0

ex. nonfrmshift ins 0 0 0 1 0 0 0 0

splicing 1 0 13 1 2 0 31 0

ncRNA intronic 114 9 609 55 116 26 357 12

ncRNA exonic 17 0 33 0 4 0 39 1

ncRNA UTR5 1 0 1 0 0 0 8 0

ncRNA UTR3 0 0 0 0 0 0 6 0

ncRNA splicing 0 0 1 0 0 0 0 0

1 ex. frmshift del: exonic frameshift deletion

This leads to differences in read depth over different regions of the genome, which in

turn causes discrepancies in variation calls. The GC% effect can also explain the over-

representation of repeats and segmental duplications in terms of SNP discrepancies, as

common repeats are high in GC content (41.45% GC within common repeats vs 40.33%

GC in unique regions), together with difficulties in mapping to repeats and duplica-

23

Table 2.10. (Unified Genotyper) Comparisons of total and novel SNP and Indel inter-

sections of B1 vs. T1 and B2 vs. T2. B1, T1:pooled S1 calls from BGI and TÜBİTAK

datasets; B2, T2:pooled S2 calls from BGI and TÜBİTAK datasets, respectively.

SNPs Indels

Total Novel Total Novel

|B1 ∩ T1| 3,308,870 41,289 79,948 1,195

|B1 \ T1| 25,857 13,536 651 17

|T1 \B1| 5,771 483 351 15

|B2 ∩ T2| 3,321,318 51,526 32,391 468

|B2 \ T2| 70,068 46,592 121 11

|T2 \B2| 1,651 265 231 23

Table 2.11. (Haplotype Caller) Comparisons of total and novel SNP and Indel inter-

sections of B1 vs. T1 and B2 vs. T2. B1, T1:pooled S1 calls from BGI and TÜBİTAK

datasets; B2, T2:pooled S2 calls from BGI and TÜBİTAK datasets, respectively.

SNPs Indels

Total Novel Total Novel

|B1 ∩ T1| 3,551,861 57,010 735,208 49,637

|B1 \ T1| 5,653 1,164 1,396 346

|T1 \B1| 11,781 1,336 2,743 634

|B2 ∩ T2| 3,595,114 69,416 789,834 55,740

|B2 \ T2| 11,140 1,722 3,687 719

|T2 \B2| 7,409 961 2,688 597

tions. Second, although the make and model of the sequencing instruments are the

same, they are individually different machines, which may account for slight differences

in base calling errors. Third, mapping biases against repeats and duplications incur

additional problems in terms of mapping and calling. In our publication [32] on this

study we mentioned that “we used the same mapping and calling tools with the same

parameters for all datasets in this study, therefore the tools should not be the reason

for discrepancies.” It was before another very similar study [39] in which the authors

found out that the mapping tool BWA has a bias against the read orders in FASTQ file.

24

The reads from repeat regions map to different locations if they are reshuffled. They

also found out that even if the same alignment file is used for variant calling, GATK

Haplotype Caller generates different callsets. After this, we cannot state our previous

note about the expectation of “the tools should not be the reason for discrepancies”;

actually they can be the reason.

Sequencing machines, alignment and genomic variant discovery and genotyping

algorithms change rapidly, and one must be careful when interpreting the results.

Orthogonal studies with more than one platform [16] or more than one sequencing

with the same platform can be considered to have better sensitivity and specificity for

variant calls. Although orthogonal methods are needed for definitive validations, we

suggest that when there are more than one dataset, one should use all the available data

for higher accuracy. Here we demonstrated potential problems that may arise within

HTS-based studies. Discrepancies between call sets generated from the same genomes

may be complementary false positives and false negatives in each callset, in addition

to common genotyping errors. Luckily, much of the differences were found within non-

genic regions, intronic regions and common repeats, which are of less importance for

most studies.

25

3. IMPROVING GENOME ASSEMBLIES WITH

MULTI-PLATFORM SEQUENCE DATA

The great ability of high throughput sequencing (HTS) platforms to generate

huge amounts of data made large-scale sequencing projects possible. This reduced the

attention towards traditional Sanger sequencing. The attention moved towards large

scale sequencing projects for which Sanger sequencing is pretty expensive. On the

other hand HTS is getting cheaper from day to day. HTS is cost effective for data

production but enormous amount of data needs to be stored and to be analyzed which

imposes the increased cost for storing, data processing, and computational burden. In

addition, the data obtained from HTS technologies is in fact of lower quality compared

to Sanger sequencing. The error rates are greater and the read lengths are shorter for

most platforms. One of the main algorithmic problems in analyzing HTS data is the de

novo assembly: i.e. “stitching” billions of short DNA strings into a collection of larger

sequences, ideally the size of chromosomes. However, accurate de novo assembly with

no gaps and no errors is still missing due to many factors. Some of these factors are

sequencing errors in basepair level, the short read and fragment (paired-end) lengths,

and the complex and repetitive nature of most genomes. There are several assembly

algorithms developed for assembling the data generated with different high throughput

sequencing technologies, and also there are some that can use data from more than one

sequencing technology but still the assemblies are far from being perfect. There is still

a need for computational approaches to improve draft assemblies.

There are briefly three classes of assemblers mainly used to do genome assem-

bly [14] : (i) greedy assemblers [40–42], (ii) overlap-layout-consensus (OLC) graph

based assemblers [17,43–45], and (iii) de-Bruijn graph based assemblers [46–51]. In ad-

dition, although they use one of the de-Bruijn or OLC graph based assembly, there are

also assemblers called hybrid assemblers which combine data from different platforms.

26

3.1. Greedy Assembly

Greedy assemblers follow a greedy approach in the sense that given one read

or contig, at each step the assembler adds one more read or contig with the largest

overlap. The biggest problem of greedy assemblers is that they can get stuck at local

maxima. They use more computational sources and are usually slow compared to other

assemblers too. Therefore they are not feasible for large genome assemblies and are

generally used for small genome assemblies. The greedy assembler SSAKE [40] at first

was working on only single end reads, later on it has been improved to exploit paired-

end reads too. It uses a lookup hash table indexed by unique sequence reads with their

occurences in the file. The reads and their reverse complements are indexed by their

first 11 bases at the 5
′

end prefixes and they are sorted according to their decreasing

number of occurences. SSAKE iteratively searches the reads that overlap prefix-to-

suffix at least above a threshold, to form an assembly. It stops when all possibilities

of 3
′

extension are finished and also the reverse complementary extensions for the 5
′

end. SCHARCGS [41] also works on unpaired short reads. It is similar to SSAKE,

but it also applies pre-processing and post-processing to the algorithm. In the pre-

processing step, SCHARCGS filters the erroneous reads according to coverage. After

pre-processing according to different settings, 3 sets of reads are obtained and each

set is assembled by iterative contig extension. In the post-processing step, the three

contig sets are merged by sequence alignment. Another greedy assembler VCAKE [42]

builds two hash tables from a group of reads called bin and set. The extension of seeds

(first eleven bases) in the set are used to search bin. Its superiority to the previous

assemblers is its ability to allow one mismatch after the first eleven bases during contig

extension.

3.2. Overlap Layout Consensus (OLC) Graph Based Assembly

OLC graph based assemblers were developed to work on long Sanger data and

then it is optimized for large genomes. So, OLC graph based assemblers work well usu-

ally on the long reads. They first generate all-against-all pairwise alignments (both for-

ward and reverse complement orientations) which construct the “overlap” part. They

27

use seed and extend heuristic algorithm while making pairwise read comparison. In

seeded algorithms, short, unique, fixed length sequences of the DNA (k-mer content)

are pre-computed across all reads, reads that share k-mers are identified, alignments

are computed using the k-mers as alignment seeds. Then, they build the graph in which

the nodes represent the reads and the edges represent the overlaps between the reads.

The graph may also contain additional information like forward and reverse comple-

ment of reads, the variables to distinguish the 3
′

and 5
′

end of the read, the length of

the read and the type of the overlap. After finding a “layout” on the graph, they ob-

tain the “consensus” assembly by following a Hamiltonian path on the graph in which

one visits each node exactly once. Finding a Hamiltonian Path is an NP-complete

problem [52]. The time required to solve Hamiltonian path increases exponentially

with the problem size. The consensus sequence is determined after contig generation

and scaffolding. Ideally there is only a single scaffold, but there may be gaps between

scaffolds resulting in a partial genome [8,53].

Newbler is a popular OLC assembler [43] used with 454 data. It runs OLC twice.

The first OLC builds unitigs from reads. Unitigs are the preliminary high-confidence

conservative contigs. The second OLC uses the unitigs and builds a contig layout based

on pair-wise overlaps between them. Unitigs can also be splitted, which may split the

reads too, which may be chimera or from repeat region.

The Celera Assembler [17] is also built for Sanger data but then revised for 454

data. The revised version of Celera is called CABOG [18] which finds overlaps between

compressed seeds. It reduces the homoplymers to single bases to solve the uncertainty

in the data. Initially, it does not use the reads which are substrings of other reads which

are possible false overlaps. It compares each read with a set of overlapping reads and

detects a sequencing error at each contradiction to the majority, but instead of fixing

the error, it assigns an error rate to it. According to a user-defined error-threshold,

among the overlapping reads that pass the threshold and the length limit, it selects

the longest overlap per read end. From the best overlaps and reads it builds an overlap

graph and finds the unitigs from maximal simple paths. Then another graph is built

from unitigs and paired-end constraints. From this new graph, unitigs construct contigs

28

and contigs construct scaffolds. Consensus sequence is obtained by multiple sequence

alignments from scaffold layouts and read sequences.

SGA (String Graph Assembler) is another OLC graph assembler which uses com-

pressed data structures [44,54]. It uses FM-index on sequence reads, it is parallelizable

and it requires low memory. SGA first applies pre-processing and filters the reads.

After filtering it constructs FM-index from the remaining reads. It then applies error

correction using k-mer frequencies. After reindexing the corrected reads, it removes the

duplicated sequences and low-quality sequences. From the remaining strings it builds

the OLC graph. Then the graph computations follow.

Edena [55] and Shorty [56] are OLC graph assemblers that work on short reads

from Solexa and SOLID. Edena is designed for single reads. It gets rid of repeated

reads, and finds error-free overlaps. It uses overlap transitive reduction algorithm to

get rid of individual overlaps by getting rid of bubbles and spurs [31]. Shorty accepts

a group of long reads to have them as seeds and to align short reads onto them. It

continues like this and at the end it uses contigs as seeds to construct larger contigs.

Hapsembler is another OLC graph based assembler that uses paired-end short

read sequences on an OLC graph [45]. It is not a simple OLC graph, it combines OLC

approach with a haplotype-aware Bayesian error correction approach. It also uses a

novel matepair graph which is used in reconstructing the genome with paired sequenc-

ing reads. Hapsembler first filters the reads in pre-processing and then applies pairwise

sequence alignment on the reads. The obtained overlaps are used in Näıve Bayes er-

ror correction algorithm to get rid of the sequencing errors. Hapsembler constructs a

bi-directed overlap graph with these corrected reads. This graph gives the tiling paths

between paired-reads. Then the graph is simplified and the paths between mate pairs

are found. A mate-pair graph is built which is constructed with nodes as mate-pairs

and edges as possible overlaps between mate-pairs. The maximal path in the mate-pair

graph gives the contigs.

29

3.3. De-Bruijn Graph Based Assembly

De-Bruijn graph based assemblers are designed for assembling short reads. In

a de-Bruijn graph, nodes are the fixed length string (k-mers) where k is shorter than

the read length and the edges are the suffix-to-prefix overlaps. There is no need for

calculating all-against-all pairwise alignments. De-Bruijn graphs also do not store in-

dividual reads or overlaps, it stores just the k-mers. In genome assembly de-Bruijn

graphs are generally used with edges as k-mers which are unique subsequences within

longer reads and nodes as the overlaps between consecutive k-mers. Another type [48]

may use it with nodes as k-mers and edges as the overlaps between k-mers. K-mer

graphs are very useful when there is large amount of short reads. The Eulerian path

in the graph generates the consensus sequence. Eulerian path visits each edge exactly

once which is easier than finding an Hamiltonian path. When used for WGS assembly,

the k-mer graph represents all of the input reads. Each read is in a path and the set

of overlapping reads results in a common path. De-Bruijn graph based assembly is

more sensitive to sequencing errors than OLC graph based assembly and they cannot

detect repeats longer than the read length but OLC graph assembly can detect longer

repeats [8]. Sequencing errors, DNA’s double stranded structure, repetitive and palin-

dromic structure are the main problems that de-Bruijn graph based assembly faces

which generate tips, bubbles and chimeric structures on the graph. Pre-processing,

weighting the graph edges, and eliminating the low-weight edges are some solutions to

these problems [8, 57,58].

Euler is a de-Bruijn graph assembler first developed for Sanger reads then modi-

fied for short 454 reads, and then modified for short unpaired and then paired Illumina

reads too [46,59]. In Euler, at first pre-processing is done to detect and note erroneous

k-mers. The k-mers which are repeated in several reads are supposed to be the most

true k-mers. The unique k-mers are supposed to be the most erroneous k-mers. Low-

frequency k-mers are either excluded or corrected. Correction can destroy true k-

mers with low coverage and a read can be signed as incorrect if its k-mers never

occur together in another read. Pre-processing may also hide the true polymorphism.

Then a k-mer graph is built with the rest of the corrected reads. It tries to solve the

30

problems caused by sequencing errors and genomic repeats by some graph operations.

For example, it tries to resolve the repeats of length between k and the read length

by mapping the reads through the k-mer graph. Reads including a repeat can solve

one copy of the repeat by pulling out one piece of the frayed rope pattern [8]. Euler

exploits paired-end reads by mate threading, which is behaving the paired reads as one

long read which has missing bases in the middle. This helps resolving repeats. Euler

applies graph simplifications according to low or high coverage. It deletes the tips and

also highly possible repetitive edges, so breaks the contig at repeat boundaries [8].

Another de-Bruijn graph based assembler Velvet [48] follows a different strategy

by storing a group of overlapping k-mers by k−1 nucleotides in the nodes of the graph.

The information is hold on a sequence which consists of the prefix-suffix of the k-mers.

Each node also contains information for the reverse complements of the k-mers. The

nodes are connected with directed edges. Velvet builds a hash table consisting of k-

mer and the id of the read k-mer exists and the k-mer’s location on the read. Another

database of Velvet contains the information of the k-mers that are overlapping by

subsequent reads, for each read. If the k-mer does not overlap with other reads then a

node is created for it. Graph is constructed from these k-mers. The graph is followed

by the “roadmaps” existing in the first hash table, the edges are put or incremented

according to the correspondence between the k-mers and the nodes. After construction,

the graph is simplified by error removal without losing any information in an order:

first the tips then the bubbles and then the erroneous connections due to cloning errors

or to distant merging tips. The tips are removed according to the length and minority

count. The bubbles are removed with the tour bus algorithm. The redundant paths

are detected by Dijkstra-like breadth-first search. In the tour bus algorithm, some

markers are put along both paths node by node. Two paths are merged by comparing

the minority node to the consensus node by local sequence alignment. The information

on the node is also mapped onto the majority node. Tour Bus algorithm modifies the

path and corrects the graph. After this step the erroneous connections are removed

according to coverage. After all, with the help of Tour Bus algorithm, the unique

regions with low coverage are not removed, they are left as long nodes [48,60].

31

ABySS is another de-Bruijn graph assembler which tries to solve memory prob-

lems during the assembly of whole mammalian genomes with de-Bruijn graphs [8, 47].

ABySS is a parallel assembler for short reads, which can distribute the k-mer graphs

and graph computations to a grid. ABySS removes the tips and bubbles sequentially

like Velvet. ABySS uses a distributed de-Bruijn graph and for that it needs two in-

formation, the location of the k-mer and the adjacency information between k-mers

independent of the location of the k-mer. The location of the k-mer is computed with a

hash function by assigning 0, 1, 2, 3 to the bases A,C,G,T. The adjacency information

is stored on the edges. A k-mer has eight possible neighbors. After the k-mers are put

on the de-Bruijn graph, the adjacency information of the k-mers with the neighbors are

computed and set according to the neighbors. After removing tips and bubbles, node

merging procedure is applied by removing ambiguous edges and merging the remaining

unambiguous edges. To merge the initial contigs paired-end information is used.

ALLPATHS de-Bruijn graph based assembler exploits multiple length paired-end

reads [50, 61, 62]. ALLPATHS first computes the unipaths by behaving the reads as

unpaired. Then using these unipaths and paired-end reads, it selects the seeds. Seeds

are the unipaths which are selected to build the assembly around. Ideal seeds must be

long and must not include more than one copy number. Then, ALLPATHS tries to

build neighborhoods around the seeds. The neighborhood is the extended version of the

seed (10kb on each side). Then the neighborhood is assembled. For the assembly first,

the unipaths which are low in copy number are described in the neighborhood. Then,

two sets of reads are constructed: the set near the seed and the set near and outside

the seed. After this step, longer reads are obtained. Then all closures of “merged

short-fragment pairs” [50] are computed. These closures cover all neighborhood, but

also there are some wrong closures. The obtained closures are added together which

gives a local assembly. Then, by adding local assemblies to each other it obtains the

global assembly. At the end, it edits the assembly by removing ambiguous parts.

SOAPdenovo is another de-Bruijn graph assembler which applies pre-assembly

error correction to reduce the memory usage for large datasets [63,64]. Then, it builds

the de-Bruijn graph with the short reads from both ends of the clones and then it

32

removes the tips, chimeric connections, the bubbles and repeat connections. After

obtaining the contigs it re-aligns the reads to the contigs for scaffolding. It uses paired-

end information to fill the gaps between the contigs.

Cortex [65] uses colored-de-Bruijn graphs to detect genetic variation in multiple

individuals by coloring the nodes and edges in different colors according to the samples.

To detect variants of an individual against a reference genome, the reference sequence

is colored as red, and the sample sequence is colored as blue on the graph and one

can find out the polymorphisms which generate bubbles diverging from the reference

and repeat structures which are also observed as bubbles in the reference. One can

see different structures by putting multiple individuals all in different colors in the

graph. It is capable of limited number of individuals and it has high computational

requirements.

3.4. OLC vs. De-Bruijn

In de-Bruijn graphs, there is no need for pairwise sequence alignment to detect

the perfect overlaps. De-bruijn graphs also do not store individual reads or overlaps,

it stores just the k-mers. In de-Bruijn raphs, one tries to find an Eulerian path which

visits every edge exactly once. It is easier than finding an NP-complete Hamiltonian

path, which visits every node exactly once in OLC graphs. The disadvantage over OLC

graph is de-Bruijn graph is more sensitive to sequencing errors. Overlap graphs can

detect repeats longer than a read but de-Bruijn (k-mer) graphs can detect only perfect

short repeats. The length of the found repeat in the de-Bruijn graph has to be k or

more but less than the read length [8]. Overlaps in the de-Bruijn graphs are limited to

the k, which is not the case in OLC graphs. There might be multiple Eulerian paths

in de-Bruijn graphs which makes assembly more difficult. Another disadvantage of de-

Bruijn graph based assembly is, the de-Bruijn graph assemblers do not have distinct

stages as OLC assembler do, so it is difficult to modify the de-Bruijn graph assemblers

according to users’ needs.

33

De-Bruijn graph based assemblers are proper for assembling short-reads because

short reads are highly accurate and the sequencing error rate of short reads are very

low (< %0.1). De-bruijn graph based assemblers are not proper for assembling long

reads because long reads have higher sequencing error rate and this will cause a de-

Bruijn graph based assembler generate more than one assembly which will lead to

ambiguity. OLC graph based assemblers are proper for long read assembly because

they use overlap lengths instead of k-mers which eliminates any duplications caused

by sequencing errors in the resulting assembly.

3.5. Hybrid Assembly

Several assemblers use more than one dataset for better assembly construction,

which are called hybrid assemblers [18,19,66–69]. Hybrid assembly is expected to lower

the number of errors in the reads and so contigs [67].

PBcR (PacBio corrected Reads) [66] is developed as part of the Celera assem-

bler [17]. The method corrects the long single molecule PacBio reads which have high

error rate with the highly accurate short reads. It maps the short reads onto the long

reads to obtain highly accurate consensus sequence. The corrected reads are then as-

sembled by themselves or used with other data. LSC [70] is another tool to apply error

correction on PacBio data. It first compresses both short and long reads by homopoly-

mer compression (HC). It then applies a quality control on short reads. Then it aligns

short reads onto long Pacbio read contigs to reduce the error rate on the long reads.

At the end decompression transformation is done to get the last corrected long Pacbio

reads. PBcR and LSC both require high computational resources and time even on

small genomes. Cerulean is another hybrid assembler which exploits both short and

long reads [69]. It first assembles the short reads and obtains a consensus assembly.

Then, to resolve the repeats on this assembly, it maps the long reads onto the assembly.

Cerulean takes an ABySS assembly graph of paired-short reads and the mapping of long

reads onto these assembled contigs. It gives a simplified assembly graph of which the

nonbranching path gives the scaffold of the genome. Ray is another hybrid assembler

which uses both 454 and Illumina reads on an annotated de-Bruijn graph [67]. Each

34

k-mer has a c-confident score and represented with a node of the graph. C-confident

score means the coverage of that k-mer, how many times it occurs in the reads. The

edges of the graph represent 1-confident (k + 1)−mers. Which means (k + 1)−mer

occurs at least once in the reads. Ray does not search for an Eulerian path, instead

it uses offset functions, which gives a value to each path. It defines seeds and gener-

ates contigs from each seed as long as it is possible. Using heuristics with the offset

values it finds the best contig paths on the graph. Another hybrid assembler Masurca

uses Illumina, 454 and Sanger data together to obtain a consensus assembly [19]. It

introduces a new term “super-reads” which it obtains from the error corrected original

paired reads. Superreads contain all information as original reads and they are less

in number. To create the super-reads, k-mers of the error corrected original reads are

stored in a k-mer hash table. The hash table is used to extend each original read from

both sides into a super-read. Every original read is in a super-read, many of them result

in the same super-read, so there is no data loss and none of the unnecesary sequences

are kept. Masurca removes duplication from the long read library by extracting max-

imal super-reads among super-reads which is not substring of another super-read. It

then provides all available super-reads, linking mate pairs, long read mate pairs and

other long reads as input to modified CABOG assembler [18]. Then it fills the gaps

with the help of paired reads. CABOG [18] was revised to use 454 data, but it also

accepts Illumina data to generate a hybrid assembly. MIRAest [68] can use Sanger,

454, Illumina, Ion Torrent and corrected PacBio data for hybrid assembly. It works on

small genomes.

Some of the problems in de novo assembly can be ameliorated through using data

generated by different sequencing platforms, where each technology has “strengths”

that may be used to fix biases introduced by others. Other than hybrid assembly,

there are also strategies in the literature to merge different assemblies using different

data sources into a single coherent assembly (e.g. [71]).

With this study, we propose a new method to improve draft assemblies (i.e.

produced using a single data source, and/or single algorithm) by incorporating data

generated by different HTS technologies, and by applying novel correction methods.

35

To achieve better improvements, we exploit the advantages of both short but low-error-

rate reads and long but erroneous reads. Our method differs from that of [71], in data

types. [71] works on Illumina, 454 and ABI SOLID data, where we work on Illumina, 454

and Ion Torrent data. Also pre- and post-processing steps of the two methods differ. [71]

at first assembles 454, Illumina and SOLID data separately with different assemblers

and then assembles the resulting contig collection again with another assembler. We

show that correcting the contigs built by assembling long reads through mapping short

and high quality read contigs produces the best results, compared to the assemblies

generated by algorithms that use hybrid data all at once. With this study, we also give

a comparative evaluation of Ion Torrent and Roche-454 data in terms of their assembly

performances. We also show that using three data types all together further improves

the assembly quality. We compare our results with existing hybrid assemblers, CABOG

and Masurca.

In Section 3.6 we give the properties of the datasets, the pre-processing operations

to clean the data before assembly, the methods used to assemble and then correct the

assembly, and finally the evaluation methods used for the comparison of the results.

In Section 3.7 we present the results in different evaluation categories.

3.6. Methods

3.6.1. Data

We first cloned a part of human chromosome 13 into a bacterial artificial chromo-

some (BAC), and sequenced it separately using three different HTS platforms Illumina,

Roche-454, and Ion Torrent platforms. The data properties are shown in Table 3.1.

Illumina read lengths are 101bp, Ion-Torrent read lengths change from 5 to 201, and

454 from 40 to 1,027. Illumina has the highest mean base phred score quality and

Ion-Torrent has the lowest. We also obtained a “gold standard” reference assembly

for this BAC, first using GRCh37-guided assembly generated using Mira [72] with the

Roche-454 reads, and then correcting with the Illumina reads [73]. Since Roche-454

and Ion Torrent platforms have similar sequencing biases (i.e. problematic homopoly-

36

mers), we separated this study into two different groups: Illumina & 454 and Illumina

& Ion Torrent. We applied the same method on the two groups and evaluated them

separately which gave us the opportunity to compare Roche-454 and Ion Torrent data.

The overview of the assembly improvement method is shown in Figure 3.1. The expla-

nations of the column headers in the figure are as follows: Technology: The name of the

sequencing technology used to produce the reads. Length range: Minimum and maxi-

mum lengths of the generated reads. Mean length: The mean length among all reads.

Mean base qual: The average phred score sequence quality of all reads. Calculated by

summing up all phred scores of the bases in a read and dividing it to sequence length

of the read, over all reads. Paired: Represents whether the sequencing is performed as

paired-end or single-end.

Table 3.1. Properties of the data

Technology Length range Mean length Mean base

qual (phred s.)

Paired

Illumina 101bp (all reads

have equal length)

101bp 38 paired

Roche-454 40bp-1027bp 650bp 28 single-end

Ion Torrent 5bp-201bp 127bp 24 single-end

3.6.2. Pre-processing

We applied the following pre-processing steps:

• First, we discard the reads that have low average quality value, which are the

reads with phred score less than 17, i.e. ≥2% error rate (Figure 3.3).

• Then, we remove the reads with high N-density (with >10% of the read consisting

of Ns) from consideration. Ns would destroy the assembly contiguity (Figure 3.4).

• Third, we trim the groups of bases at the beginning and/or at the end of the reads

that seem to be non-uniform according to sequence base content (A,T,G,C). In

Figure 3.2 we see that the first 4 bases and the last 30 bases show non-uniform

(A,T,G,C) distribution. These regions would cause erroneous structures in the

assembly.

37

Figure 3.1. Overview of the assembly improvement method. Shown with Illumina and

454 data as an example. Same is valid for Illumina & Ion Torrent.

38

• Finally, we apply the pre-processing operations of each assembler we used.

Figure 3.2. Non-uniform A,T,G,C regions of Ion Torrent reads. First 4 bases and the

last 30 bases are trimmed in pre-processing.

3.6.3. Assembly

After the pre-processing step, we used several assembly tools which were suitable

to the data types we have. We used Velvet [48], a de-Bruijn graph based assembler

to assemble the Illumina reads. Considering the trimmed beginning and/or end parts

of 101bp long paired-end reads from Illumina, and after testing k-mers 21 and 31,

we decided to use k=51 for short read assembly. We ran Velvet with shortPaired

mode with insert size 400bp, expected coverage 80, coverage cutoff 2, and minimum

contig length 100. N50 value of the resulting short read contigs was 8,865 bp. To

assemble the long read datasets (Roche-454 and Ion Torrent) we used two different

39

Input: Input read file in FASTQ format

Output: Filtered input file in FASTQ format

for each read in input file do

if readlength > 0 then

sumQS = 0; // QS: Quality Score, SumQS: Sum of Quality Scores

i = 0;

while i < read length do

sumQS ⇐ sumQS + (TO DECIMAL(QS(read[i])))-33

end while

sumQS ⇐ sumQS/number of bases in the read

if sumQS > 17 then

keep the read

end if

end if

end for

return Output

Figure 3.3. Quality criteria algorithm

Input: Input read file in FASTQ format

Output: Filtered input file in FASTQ format

for each read in input file do

if readlength > 0 then

if count(N) < read length/10 then

keep the read

end if

end if

end for

return Output

Figure 3.4. N-density criteria algorithm

40

OLC assemblers: Celera [17] and SGA [44]. We ran Celera assembler in unmated mode

and with default parameters to assemble 454 and Ion Torrent reads. N50 value of the

assembly obtained with 454 and Ion Torrent reads with Celera was 1,308 bp and 1,284

bp, respectively. We also used SGA assembler in unmated mode for the same datasets.

We obtained N50 values of 505 bp and 117 bp for Roche-454 and Ion Torrent data,

respectively. In addition, we also used a de-Bruijn graph based assembler, SPAdes [49],

to assemble the long read data. Again, we applied default parameters. N50 values of

the assemblies obtained with 454 and Ion Torrent reads with SPAdes were 212 bp and

259 bp, respectively.

We mapped all draft assemblies to the E. coli reference sequence using BLAST’s [74]

MegaBLAST [75] task to identify and discard E. coli contamination due to the cloning

process. We discarded any contig that mapped to the E. coli reference sequence with

sequence identity ≥95%. Finally, we obtained one short read, and three long read

assemblies without any contamination.

3.6.4. Correction

In the correction phase, our purpose is to exploit the accuracy of the short read

contigs (SRC) and the coverage of the long read contigs (LRC) to obtain a better

assembly. Hence, we mapped all SRCs onto all LRCs of each group and corrected the

LRCs according to the mapping results. First, we used BLAST’s [74] MegaBLAST [75]

mapping task to map the SRC onto the LRC. We then used an in-house C++ program

to process the MegaBLAST mapping results. Since MegaBLAST may report multiple

mapping locations due to repeats, we only accepted the “best” mapping locations.

Reasoning from the fact that short reads show less sequencing errors, we preferred the

sequence reported by the SRC over the LRC when there is a disagreement between

the pair. By doing this, we patched the “less fragmented” long read assemblies. If

there is an overlap between different SRC mappings at the same region on the LRC,

the latter overwrites the first. Figure 3.5 shows a visual representation of the strategy

on correcting the LRCs.

41

We describe our strategy in the following steps:

• If there is a mapping between a SRC and a LRC, and if the mapping does not

start at the beginning of the LRC, add the unmapped prefix of the LRC.

• Next, if the mapping does not start at the beginning of the SRC (very rare situ-

ation), add the unmapped prefix of the SRC with lowercase (i.e. low confidence)

letters.

• Over the mapping region between SRC and LRC, pick the SRC values.

• If the mapping does not end at the end of the SRC (rare), add the unmapped

suffix of the SRC, again with lowercase letters. One may argue that it might

disturb the continuity of the resulting contig. However, we observe such mapping

properties very rarely. The reason for using lowercase letters is to keep track of

the information that there is a disagreement between the SRC and LRC on these

sections, so the basepair quality will be lower than other sections of the assembly.

• Finally, add the unmapped suffix of the LRC and obtain the corrected contig.

We repeated this process to correct each of the three long read assembly contig sets.

We applied our correction strategy on each dataset multiple times until there is no

improvement in the Coverage and Average Identity metrics.

Figure 3.5. Correction method: Correct the long read contig according to the mapping

information of the short read contig.

42

3.6.5. Correction of the Data from All Platforms

With our method, it is also possible to correct all three datasets in a sequential

order with a pairwise strategy. Correction mechanism with three datasets is shown

in Figure 3.6. Since our method is originally designed for two data types, we needed

to do it sequentially. It corrects one data type’s contigs with the other data type’s

contigs, so we needed to combine three types of contigs in order but the order is also

important. As mentioned in Section 3.6.4 our method accepts that the short read

data is more accurate than the long read data. If there is a map between the two, it

replaces the values of the short read data with the values of the long read data. For

that reason, while working with 3 data combination, we decided to use Velvet-Illumina

contigs which are built by the highest accurate reads as the last short read corrector

data.

Figure 3.6. Correction method applied on three datasets together.

43

3.6.6. Evaluation

In order to evaluate and compare the resulting and corrected assemblies all-

against-all, we mapped all of the assembly candidates, including primary assemblies

and also final corrected assemblies to the “gold standard” BAC assembly. According

to the alignment results, we calculated various statistics such as the number of mapped

contigs, how many bases on the reference sequence were covered, how many gaps exist

on the reference sequence, and the total gap length. We calculated metrics such as

“Coverage” and “Average Identity” and compared the resulting assemblies with these

metrics.

To calculate these statistics, we kept an array of arr reference[0,0,0,...0], where

length(arr reference)= length(reference). We updated the contents of arr reference

according to the alignments. If there is a match at a location, we assigned the corre-

sponding position in the array to “1”; if there is a mismatch at a location, we set it

as “-1”; and if that location is not included in any alignment, we left it as “0” (which

means a gap). We assumed deletions in the contig (query) as mismatches. We also cal-

culated the number of insertions in the contig. Scanning the array and summing up the

number of “1”s (matches), “-1”s (mismatches), “0”s (gaps) and “insertionInQuery”,

we obtained the number of matches, mismatches, gaps, and insertions in contig. Using

these numbers, we calculated the Coverage (Equation 3.1) and Average Identity values

(Figure 3.7).

Coverage =

(
of covered bases

length of the reference

)
(3.1)

We also used two hybrid assemblers, Celera-CABOG [18] and Masurca [19], with

Illumina & 454 and Illumina & Ion Torrent. These hybrid assemblers load all reads as

input and assemble them with a hybrid method. We assembled the two datasets with

these hybrid assemblers to compare our correction method with the results of them.

44

Table 3.2. Notations of Tables 3.3 and 3.4.

Notation Explanation

Name The name of the data group that constitutes the assembly

Length Length of the assembly

of Contigs The number of contigs that belong to the resulting assembly

of Mapped Contigs The number of contigs that successfully mapped onto the reference

sequence

of Covered bases The number of bases on the reference sequence that are covered by the

assembly

Coverage Percentage of covered reference

Avg. Identity Percentage of the correctly predicted reference bases

of Gaps The number of gaps that cannot be covered on the reference genome

Size of Gaps Total number of bases on the gaps.

Input: contigNum

Input: match,mismatch, insertionInContig, contigLength for each contig

Output: avgIdentity //avgIdentity: average Identity

i← 1

for i ≤ contigNum do

alignmentLeni ← matchi +mismatchi + insertionInContigi

identityi ← matchi

alignmentLeni

end for

avgIdentity ←
∑contigNum

i=1 identityi×contigLeni∑contigNum
i=1 contigLeni

return Output

Figure 3.7. Average identity algorithm

45

Table 3.3. Results of assembly correction method on BAC data.

Name Length # of

Con-

tigs

of

Mapped

Contigs

of

Covered

bases

Coverage Avg.

Identity

of

Gaps

Size of

Gaps

Velvet

Ill. Velvet 197,040 455 437 175,172 0.99055 0.97523 39 1,671

Celera

454 Celera 908,008 735 735 172,563 0.97580 0.92599 18 4,280

Ion Celera 39,347 27 27 47,638 0.26938 0.96932 47 129,205

Corrected Celera

Ill-454 Celera 371,065 250 250 176,071 0.995635 0.944558 5 772

Ill-454

Celera2[*]

365,802 245 245 176,343 0.9971 0.9455 4 500

Ill-Ion Celera 93,909 30 28 81,819 0.46267 0.96327 36 95,024

Ill-Ion Celera2 145,262 30 28 91,962 0.52002 0.97412 33 84,881

Ill-Ion Celera3 216,167 30 28 99,645 0.56347 0.98066 34 77,198

SGA

454 SGA 62,909,254 108,095 101,514 176,546 0.99832 0.97439 1 297

Ion SGA 842,997 6,417 6,122 153,092 0.86569 0.99124 197 23.751

Corrected SGA

Ill-454 SGA 295,009 335 335 176,757 0.99951 0.96823 5 86

Ill-Ion SGA 197,509 291 291 175,052 0.98987 0.97501 45 1,791

Ill-Ion SGA2 203,064 291 291 175,676 0.99340 0.97413 34 1,167

SPAdes

454 SPAdes 12,307,761 49,824 49,691 176,843 1.0 0.98053 0 0

Ion SPAdes 176,561 110 107 167,890 0.94937 0.92909 9 8,953

Corrected SPAdes

Ill-454 SPAdes 290,702 298 298 176,454 0.99780 0.96538 5 389

Ill-Ion SPAdes 198,665 52 52 171,977 0.97248 0.94215 4 4,866

Ill-Ion SPAdes2 200,307 52 52 172,101 0.97319 0.94230 2 4,742

Masurca

Ill-454 Masurca 380 1 0 0 0 0 0 0

Ill-Ion Masurca 2,640 8 8 1,952 0.01104 0.98223 9 174,891

Celera-CABOG

Ill-454 Celera 1,101,716 891 891 174,330 0.98579 0.92452 12 2,513

Ill-Ion Celera 0 0 0 0 0.0 0.0 0 0.0

Reference Length is 176,843. 2 represents the results of the second cycle of correction, 3

represents the third cycle of correction.

46

Table 3.4. Results with combination of 3 data types

Name Length # of

Con-

tigs

of

Mapped

Contigs

of

Covered

bases

Coverage Avg.

Identity

of

Gaps

Size of

Gaps

Corrected Ion Celera

454-Ion Celera 500,251 27 27 149,021 0.84267 0.94515 63 27,822

Ill-“454-Ion

Celera”

570,865 27 27 170,348 0.96327 0.95503 16 6,495

Ill-“454-Ion

Celera”2

575,726 27 27 172,516 0.97553 0.95541 12 4,327

Ill-“454-Ion

Celera”3

578,727 27 27 174,535 0.98694 0.95555 10 2,308

Corrected Ion SPAdes

454-Ion

SPAdes

11,224,602 60 60 176,540 0.99828 0.97334 6 303

Ill-“454-Ion

SPAdes”

9,543,712 45 45 176,712 0.99925 0.97347 1 131

Corrected Ion SGA

“Ill-454”-Ion

SGA

281,155 212 212 176,769 0.99958 0.96562 4 74

Masurca(all)

Ill-454-Ion Ma-

surca

3,398 7 5 1,477 0.00835 0.99363 5 175366

Celera-CABOG(all)

Ill-454-Ion Cel-

era

575,642 485 485 164,621 0.93088 0.94664 39 12,222

Reference Length is 176,843. 2 represents the results of the second cycle of correction. 3

represents the third cycle.

47

3.7. Results

We present the results in Table 3.3, and interpret them in different point of views.

The results show that our novel correction method generates new assemblies with better

coverage and better identity compared to the existing hybrid assemblers. In addition,

according to the results, 454 assembly is more complete and accurate than Ion-Torrent

assembly. Although Ion-Torrent assembly is improved with the correction method,

this property is also transferred to the final results, corrected 454 assembly is better

than corrected Ion-Torrent assembly. Assembling Illumina reads with Velvet assembler

seems to be a good choice as well as assembling 454 reads with Celera and assembling

Ion-Torrent reads with SPAdes. Correcting separately obtained contigs using each

other with our new method gives more accurate and complete final assembly than

assembling different kinds of data together with the existing hybrid assemblers. Best

results are obtained with correcting all three data sequentially with our method.

3.7.1. 454 vs. Ion Torrent

Ion Torrent reads are shorter than 454 reads and they have less mean base quality

(Table 3.1). So, we did not expect to have better assembly with Ion Torrent reads than

454 reads. The results in Table 3.3 agree with our expectations. In Table 3.3, we see

that the assembly of 454 reads performs better on evaluation metrics than Ion Torrent

reads with all kind of assemblers. The assembly of Ion Torrent reads with Celera

assembler has very low coverage value: 26.94%. Although 454 and Ion Torrent reads

have similar error types at the homopolymer regions Celera had very low coverage on

Ion-Torrent data. The reason for the low coverage might be because Celera assembler

is not designed for Ion Torrent read type (shorter reads with lower quality). SGA

assembly with Ion Torrent reads performs better on Coverage (86.57%) but it cannot

reach to the Coverage of SGA assembly with 454 reads (99.83%). The assembly of Ion

Torrent reads has the highest coverage with SPAdes assembler (94.94%). Correction of

the Ion Torrent contigs improves the assembly quality but even after correction phase

Ion Torrent corrected assembly cannot reach the results of 454 corrected assembly.

48

3.7.2. Assemblers

Table 3.3 shows that the assembly obtained by Velvet with only short Illumina

reads showed good coverage (99.05%) and average identity rates (97.52%). The number

of contigs obtained with Velvet assembly is 455, of which 437 map to the reference.

There are 39 gaps and the total size of the gaps is 1,671 bp. Our aim was to increase

the coverage, improve the average identity, decrease the number of contigs and gaps,

and shrink the lengths of the gaps.

Since we observed that 454 reads resulted in better assembly than Ion Torrent

reads as stated in Section 3.7.1, we compared different assemblers using 454 contigs.

The assembly of Celera with the 454 long reads has 97.58% coverage and 92.59%

average identity, which are lower than Illumina-Velvet values. Number of contigs (735)

is reasonable but number of gaps and total gap length are high (18 and 4,280 bp,

respectively). SGA assembly using 454 reads has very high coverage (99.83%) and

identity (97.43%). It has just one gap with size 297 bp, but the number of contigs

is also very high (101,514), which is not welcomed. SPAdes-454 assembly also had a

large number of contigs (49,824) which completely cover the reference sequence with

98.05% average identity. SPAdes assembly resulted in lower number of contigs and had

higher coverage and average identity than SGA. If we evaluate the results according to

the number of contigs, Celera-454 results seem more reasonable than SGA or SPAdes

results, since it returned a reasonable number of contigs even with low coverage and

average identity.

3.7.3. Correction

We observed that the correction method improved both 454 and Ion Torrent

based assemblies generated with all assemblers we tested (Table 3.3). In the remainder

of the paper, we only mention the 454-based assemblies for simplicity.

When we applied our correction method on Celera-454 assembly using the Velvet-

Illumina assembly, we achieved better coverage and average identity rates: the coverage

49

of 454 assembly increases up to 99.56% and the average identity rate increases up to

94.45% on the first correction cycle. The second correction cycle increases the coverage

and average identity rates to 99.71% and 94.55%, respectively, and the correction

converges. The number of contigs decrease to 245 from 735, and the number of gaps

decrease down to 4 (500 bp) from 18 (4,280 bp). Since the third correction cycle does

not give better results it is not shown in Table 3.3.

Our correction method increased the coverage of SGA-454 assembly up to 99.99%

from 99.82% but with less average identity and with more gaps although the total

length of the gaps is decreased. Correction using the short read assembly decreased

the number of contigs down to a reasonable number (335). Corrected SGA assembly has

the largest coverage rate among all, and also with more identity than Velvet-Illumina

assembly.

The number of contigs in SPAdes assembly also decreased to 298 from 49,691

using our correction method. With the decrease in number of contigs, the coverage

also decreased (99.78%) as well as the average identity (96.53%). The number of gaps

increased to 5 from 0 with a total size of 389.

In summary, we obtained substantial assembly correction in draft assemblies by

using advantages of different technologies.

3.7.4. Hybrid Assemblers

We also compared the results of two hybrid assemblers on our multiple type

of data. We used Masurca and Celera-CABOG with default parameters given two

groups of hybrid data as input: Illumina & 454 and Illumina & Ion Torrent. Hybrid

assemblers Masurca and CABOG did not show good assembly rates. We obtained zero

coverage with 454 and Illumina reads using Masurca. The only contig left after the

contamination removal did not map to the reference sequence. We also observed very

low coverage (1.10%) with 98.22% average identity with Ion Torrent & Illumina reads.

Therefore, we conclude that Masurca did not work very well in our case with our data

50

types.

Similarly, we obtaizero coverage with Ion Torrent & Illumina using CABOG. All

of the resulting contigs obtained from the assembly were removed as contamination.

However, CABOG performed substantially better with Illumina & 454, and generated

assembly with 98.58% coverage and 92.45% average identity. The assembly composed

of 891 contigs and 12 gaps with a total gap length of 2,513 bp. Still, the performance

of CABOG was not better than the corrected assembly results described above.

3.7.5. Combination of the Data from All Platforms

We combined data from all three platforms to generate a new assembly in order

to see if we have better coverage or accuracy on the results. The results are presented in

Table 3.4. In the table one can see that Celera-454 contigs increase the coverage rate of

Celera-Ion Torrent contigs (from 26.93% to 84.26%) although the average identity rate

decreases from 96.93% to 94.51%. Correcting the resulting contigs with Velvet-Illumina

contigs increases the coverage (96.32%) and average identity rates (95.50%) even higher.

The coverage and average identity rates are improved on the second and third cycles

too. Correcting Ion SPAdes, with 454 SPAdes gives higher coverage (99.82%) and

average identity (97.33%) rates than correcting them with only Velvet Illumina contigs

(97.24% and 94.21% respectively). After using Velvet Illumina contigs for the last

correction, the results are improved approximately by 0.1% and 0.01% respectively.

Correcting Ion SGA contigs with 454 SGA contigs was not possible because of memory

limitations of BLAST mapping with such huge data. Instead, we used corrected version

of “454 SGA contigs with Illumina Velvet contigs” to correct the Ion SGA contigs. The

coverage is higher than both Ill-Ion SGA and Ill-454 SGA, average identity is lower

than Ill-454 SGA.

We also used the hybrid assemblers Masurca and CABOG with default parame-

ters with the combination of three data. Masurca resulted in very low coverage 0.8%

as it did before with the dual combinations. CABOG resulted in lower coverage and

higher average identity compared to Ill-454 combination and higher in both compared

51

to Ill-Ion Torrent combination. Hybrid assembler still did not result in as high coverage

and average identity as obtained with the correction method.

We note that exploiting all the data gives us more accurate results especially when

we are using a diverse data which has different strengths and weaknesses. However,

one must be careful about the weaknesses and strengths of the data and where and in

which order to use each of them.

3.8. Discussion

In this study, we presented a novel method to improve draft assemblies by correct-

ing high contiguity assemblies using the relatively more fragmented contigs obtained

using high quality short reads. Assembling short and long reads separately using both

de-Bruijn and OLC graph based assemblers according to data types and then using

correction methods gives better results than using only hybrid assemblers. Using three

data types together for correction or as the input of the hybrid assemblers rather than

using only two of them gives more accurate results.

However, the need to develop new methods that exploit different data properties

of different HTS technologies, such as short/long reads or high/low quality of reads,

remains. In this manner, as future work, our correction algorithm can be improved

by exploiting the paired-end information of the short, high quality reads after the

correction phase to close the gaps between corrected contigs.

We also note that, the biggest challenge of combining data from multiple plat-

forms is the cost of the sequencing platforms. Sequencing with Illumina platform is

cheap compared to other platforms but sequencing the same DNA with different plat-

forms highly increases the cost. Therefore, it cannot be used as part of the routine

analysis especially for high coverage whole genome sequencing of large genomes such

as human genome.

52

4. DISCOVERY AND GENOTYPING OF NOVEL

SEQUENCE INSERTIONS IN MULTIPLE INDIVIDUALS

Genomic structural variations (SVs) are broadly defined as alterations that affect

more than 50 base pairs (bp) of DNA [13], and they have major impact on both evo-

lution and human disease [13, 76]. Such alterations may be in various forms including

deletions, insertions, inversions, duplications, and retrotranspositions [13]. Thanks to

the wide availability and cost efficiency of high throughput sequencing (HTS), we now

have the ability to characterize SVs in the genomes of many individuals, as exemplified

by large-scale projects such as the 1000 Genomes Project [77, 78]. Accurate charac-

terization of SVs required the development of many novel algorithms [13, 79] that are

benchmarked within the 1000 Genomes and the Genome in a Bottle [11] projects.

Novel sequence insertions, or alternatively, “deletions from the reference”, are

genomic segments that are not represented in the reference genome assembly [15].

Similar to “deletions from the sequenced sample”, they may harbor sequences of func-

tional importance such as coding exons or regulatory elements [15], which underline

the importance of their accurate characterization. The non-reference sequences identi-

fied in various genome studies are thus “added” to the reference genome as additional

sequence. However, due to the complexity of these new sequences and their poly-

morphism in different populations, there is now a push towards building graph-based

representations [80,81].

Although several forms of SVs such as deletions, tandem duplications and mo-

bile element insertions are investigated to a certain extent [4, 13, 14], characterization

of novel sequence insertions longer than read lengths is still lagging. This is mainly

because long sequence insertions can be discovered only through sequence assembly,

which is computationally challenging and may lead to incorrect or fragmented se-

quence reconstructions due to common repeats that may lie within or close to such

insertions [15,82].

53

Pindel is a tool that detects large deletions and medium sized insertions from

paired-end short reads [83]. It depends on split read information to detect the break-

point. It splits the unmapped ends of the reads into three parts and remaps them

separately to the reference genome. If any of them maps to the reference sequence,

it is defined as the anchor location and it shows from where to split the whole read.

It then applies pattern growth to find the minimum and maximum unique substrings

from the 3
′

and also from the 5
′

of unmapped read. It checks both ends if they are

identical to each other and reports the middle sequence as the insertion if its support is

greater than 2. Pindel can only detect insertions shorter than the read length. Another

tool to detect structural variants is Cortex [84]. It aims to improve the accuracy in

complex regions by using colored de-Bruijn graphs to detect and genotype the inser-

tions in one or many individuals. A recent study found that it has high computational

requirements [1].

Aside from computationally intensive assembly-based algorithms, only a handful

of mapping and local assembly based methods for novel sequence insertion discovery

are currently available. The first of such algorithms is NovelSeq [82] which is developed

to find insertions >200 bp using paired-end whole-genome Illumina sequence data.

Briefly, NovelSeq extracts the unmapped reads (one-end-anchors (OEA) and

both-end-unmapped reads (orphan)) from the alignment output and maps them back

to the reference with multi-mapping. It assembles the orphan reads with a de-novo

assembler such as ABySS [47] or Velvet [48]. It clusters the OEAs and divides them

as OEA+ for the OEAs whose mates are aligned at the beginning of the breakpoint

and OEA- for the OEAs whose mates are aligned at the end of the breakpoint. Clus-

ters of OEA contigs are also constructed according to a distance rule. The beginning

of the cluster location should not exceed the end of the cluster location more than a

distance threshold (mean fragment size + four standard deviations). Each OEA+ and

OEA- cluster are assembled locally. The OEA contig clusters and the orphan contig

sets are merged together with a bi-partite graph matching algorithm and the pairs

of OEAs and orphan contigs are obtained. NovelSeq identifies both the content and

the approximate location of the insertion. However, NovelSeq was designed to analyze

54

one genome at very high sequence coverage. It could find insertions of length up to a

couple of kilobase pairs and it does not provide the exact content of the insertion, the

exact breakpoint location and the genotyping information. Similarly, MindTheGap [2]

was developed for finding insertions in a single sequenced genome. It uses an efficient

de-Bruijn graph based method. It first constructs the de-Bruijn graph with the reads

with Minia [51]. It then detects the insertion breakpoints on the reference genome

and finally it locally assembles the inserted sequences. It uses the same constructed

graph for both detection and assembly. The genotyping is also done at the breakpoint

detection stage.

Another algorithm, Swan [85] can only find breakpoints of long insertions using

“soft-clipped” reads. However, it does not report the content of the insertion. It col-

lects the estimation of library-specific parameters first, then it scans the whole genome

alignment file to find possible variant locations with two different methods: (i) a like-

lihood ratio-based method and (ii) split-read remapping method. Next, it merges the

outputs obtained from two methods.

BASIL and ANISE [3] are also designed for detecting insertion breakpoints and

assembling the insertions, respectively. BASIL implements an efficient sliding window

for clustering one-end anchored reads similar to NovelSeq [82] and ANISE assembles

the novel insertions with an overlap-layout-consensus graph based assembler approach

which is robust to repeated copies, by combining ideas from [17,18,68].

A more recent algorithm, PopIns [1] follows a similar approach and also incor-

porates the split-read sequence signature [13] to discover the sequence insertions in

one sample or a large cohort of samples. It first assembles the unmapped reads of

each individual separately. Then it merges the generated contigs into a higher quality

multi-individual contig set. Next, it finds the locations of these contigs on the refer-

ence genome through paired-end and split-read read information. Lastly, it assigns the

genotypes (homozygous, i.e. two copies, heterozygous, i.e. one copy, and no insertion)

of each call for each individual by mapping the raw reads of each individual separately.

55

In this study, we present a novel algorithm to efficiently and accurately discover

novel sequence insertions in single or multiple genomes sequenced with the Illumina

technology and based on this algorithm we developed a new tool called Pamir. Pamir

provides exact breakpoint positions, sequence contents, and genotypes of novel sequence

insertions. In order to discover insertions, Pamir matches one-end anchored sequences

to de novo assemblies of unmapped reads and generates a strand aware local assembly.

It outperforms both MindTheGap [2] and PopIns [1] when a high coverage simulated

single genome is used. Additionally, using simulated low coverage data (5 samples

at 10X coverage each) we demonstrate that Pamir has better precision and recall

rates than PopIns, which is the only other insertion characterization tool that can

use multiple genomes. We describe our method in Section 4.1 and we present our

results on both simulated data and real data in Section 4.3.

4.1. Methods

We developed Pamir to characterize novel sequence insertions using paired-end

whole genome sequencing (WGS) data generated by the Illumina platform. Pamir is

based on the observation that structural events such as “novel sequence insertion” leave

a group of one-end anchors around their breakpoint location when aligning the donor

sequences to the reference genome [15,82,86]. One-end anchor is one of the signatures

of the structural variations in the paired-end mapping, where one-end of the pairs is

mapped while the other is unmapped. By definition, a novel sequence does not exist on

the reference genome, thus it also causes some read pairs to remain unmapped, which

are called orphan reads, i.e. when none of the ends are mapped. Orphan reads are

seen if the inserted sequence is at least as long as the paired-end fragment size.

Figure 4.1 depicts the mapping information in the vicinity of the hypothetical

novel insertion. The explanations of the terms used in the figure are as follows: Con-

cordant read : both ends map in correct orientation and within expected insert size.

OEA read : one-end anchored, only one end maps to the reference. Split read is an

OEA read whose unmapped end crosses the breakpoint and generates split mapping.

Orphan read : none of the ends map to the reference. Pamir uses both types of reads to

56

characterize the novel sequence contents and their insertion breakpoints. First, it starts

with generating a de novo assembly of the orphan reads to obtain orphan contigs. Next,

Pamir clusters the OEA read pairs based on their mapping locations on the reference

genome. It then remaps the OEA reads to orphan contigs to match the orphan contigs

with OEA clusters. It outputs the putative novel insertion by assembling the updated

cluster and re-aligning the generated contig to the respective reference region (Figures

4.2, 4.3). Finally it applies filtering procedure to eliminate the low quality insertions

and finds the genotypes of the insertions. Genotype is the “zygosity” of the event if

it is seen as one copy (heterozygous), two copies (homozygous) or not seen (no inser-

tion). In this section, we provide a detailed description of the Pamir algorithm: Section

4.1.1 explains the pre-processing steps, such as unmapped read extraction, remapping

OEAs, orphan assembly and matching between OEAs and orphan contigs. Section

4.1.2 gives details about cluster formation. Section 4.1.3 describes the discovery of the

novel sequence insertions. Section 4.1.4 explains the filtering and genotyping phases.

Figure 4.1. Classification of donor sequence regions in terms of read mappings.

57

Pre-
ProcessingAlignment

output

Cluster
Formation

Discovery

Post-
Processing

● Extract OEAs and orphans
● Re-map OEAs with all mapping mode
● Assemble orphans
● Map orphans onto orphan contigs
● Map OEAs onto orphan contigs

● Group OEAs
● Connect orphan contigs with OEA groups
● Generate clusters

● Assemble clusters
● Map candidate contigs to respective reference region
● Find the insertion breakpoint locations and contents

● Remove duplicate insertions
● Eliminate false positives
● Report insertions in vcf format

Figure 4.2. Overview of Pamir.

4.1.1. Pre-processing

Pamir accepts both raw reads in FASTQ format or aligned reads as BAM files

as input. If raw reads are provided, Pamir first maps them to the reference genome

using mrsFAST-Ultra [87,88] in best mapping mode. Pamir skips the mapping step if

the read alignment is provided, i.e. BAM file. Next, Pamir extracts OEA and orphan

reads using the alignment results. OEA and orphan reads are shown in Figure 4.1.

Pamir then remaps the OEA reads using mrsFAST-Ultra in multi-mapping mode since

the breakpoints of a sequence insertion may lie within repeats, which causes mapping

ambiguity [39, 89] (Figure 4.3A). We track many possible locations of the OEAs with

multi-mapping by allowing a generous enough number of mappings which can also

be decided by the user. Using multi-mapping locations may introduce false positives

in repeat regions, which we eliminate in a post-processing step. We sort the multi-

mapping alignment output according to the OEA locations on the reference. The

OEAs are needed as sorted in the clustering phase.

Pamir assembles the orphan reads using Velvet [48] with the k-mer length set

to 31bp, although any other assembler may also be used for this step (Figure 4.3B).

58

We should remark that parameter setting during the assembly stage based on the data

type has significant role on obtaining complete orphan contigs which construct the

main body of the long insertions. If orphan assembly fails due to some reasons, such as

the wrong parameter setting, low coverage, and high error rate, we do not obtain any

orphan contig. Therefore left and right flanks constructed by only OEAs will have a gap

in between which is supposed to be filled by the orphan contig. In such a situation we

cannot report the long insertion. In order to decide on the assembler, we tried SGA [44]

with overlap length 71, 51, and 31, and Velvet and Minia [51] with k-mer length 31bp

on simulation data experiments. We observed that using SGA with k-mer=51 results in

approximately ∼%2−%3 better recall rates (∼%92−%98) on each dataset compared

to Velvet, but it causes ∼%28 lower recall rate (∼%53) on HiSeq2000, 100bp noisy

data. Minia was doing slightly better than Velvet on each high coverage dataset but

it had even less recall rate than SGA on low coverage simulated data. Therefore,

we decided using Velvet with k-mer=31bp which resulted good enough recall rates

(∼%81 − %96) on all datasets, which is better comparing to other competitor tools

on all datasets. The default assembler is Velvet, but Velvet might have some high

memory usage problems on very high coverage data, Minia has very efficient memory

usage. To allow the user making changes on the assembler according to their data

type, we kept assembler type optional. Two other options allowed by Pamir for now

are: (i) SGA [44], an overlap layout consensus (OLC) graph based assembler with 51bp

overlap length, and (ii) Minia [51] which is a de-Bruijn graph based assembler with the

k-mer length set to 31bp. After the assembly, we subject the contigs to a contaminant

filter by querying the nt/nr database with BLAST [90]. Before using orphan contigs in

further steps, we remove those contigs that map to vector and/or bacterial sequences

and other known contaminants. Support value of the contig (i.e the number of reads

constructing the contig) is not accessible, since redundant reads are discarded during

the assembly but we calculate the support value of the insertion at the last (genotyping)

stage. We then map the unmapped end of OEA read pairs to the orphan contigs using

mrsFAST-Ultra in the multi-mapping mode to match the OEAs to the corresponding

orphan contigs. In this way, the OEA-to-orphan remapping stage allows an OEA to

be aligned to more than one orphan contig (Figure 4.3C). In order to avoid missing

59

any associations between split reads (Figure 4.1) and orphan contigs, we divide the

unmapped OEAs into half (i.e. balanced splits [91]) and remap the balanced splits to

the orphan contigs.

In summary, the pre-processing step generates four types of information required

to discover a novel sequence insertion event:

(i) the mapping information of the OEA mapped reads;

(ii) unmapped OEA sequences;

(iii) orphan contigs; and

(iv) pairwise association between unmapped OEA reads and orphan contigs

which are going to be used in the following steps.

4.1.2. Cluster Formation

Pamir clusters the unmapped OEAs based on the mapping locations of their

mapped end to detect potential insertion breakpoints. It also keeps a flag for the pos-

sible strand of the unmapped OEA sequence either as forward or reverse complemented

according to its mate’s mapping strand. It then employs an iterative greedy strategy,

which “anchors” the first cluster with the “leftmost” mapping locus a of an OEA on

the genome. Next, it extends the cluster to include any other OEA mappings overlap-

ping with the interval
[
a, a + 2L

]
where L is the fragment size. Fragment size can be

described as follows: Let L be the fragment size of paired-end reads which can be esti-

mated from concordant mappings. For an insertion in breakpoint p, most of its OEA

anchors should be mapped within
[
p − L, p + L

]
, which spans a 2×L interval on the

reference genome. Once all such OEA mappings are added to the existing cluster, the

iterative strategy then greedily anchors the next cluster with the first OEA mapping

that is not included in the previous cluster. An example of two clusters is shown in

Figure 4.4. In the figure, the clusters consist of only unmapped OEAs (red reads) and

an assembly of orphans (green reads). In the first cluster insertion is longer than the

fragment size, therefore an orphan contig will be included in the cluster too. In the

60

Figure 4.3. General overview of Pamir.

61

second cluster, insertion is shorter than the fragment size, so the cluster will include

only OEAs.

Figure 4.4. Example clusters of Pamir for two insertions.

Note that in this strategy each OEA mapping can only be part of a single cluster.

However, a single read pair may generate multiple OEA mappings (and thus belong to

multiple OEA clusters) due to the use of multi-mapping strategy. Since both ends of

the orphan reads do not map to the reference genome, we have no locus information for

orphans, as well as orphan contigs. The “OEA-to-orphan contig” mapping information

reveals if they are part of the same cluster (same structural variation). After the first

clustering pass is completed, Pamir adds the unmapped OEA mates of the reads and

their associated orphan contigs into each cluster (Figure 4.3C).

To find the associated orphan contigs, the “OEA-to-orphan contig” mapping

information generated in the pre-processing step is used. A contig is added to a cluster

if (i) the cluster contains OEAs that map to the both ends of the orphan contig; or

(ii) at least 30% of the OEAs in the cluster map only to either end of the contig. We

allow the second condition to avoid missing any partially assembled orphan contigs.

In order to decide on the orphan contig’s strand (forward or reverse complement), we

check OEA reads’ mapping strands on the reference sequence and also on the orphan

contig. We add the contig forwardly if majority of the OEAs’ mapping strands on the

reference and the orphan contig agree with each other. The contig is added as reverse

complemented if the aggregation is on disagreement with each other.

62

In summary, each cluster generated in this step contains the following information:

(i) the number of the OEA reads and their associated contigs;

(ii) the leftmost OEA mapping location;

(iii) the rightmost OEA mapping location;

(iv) unmapped OEA read information (see below); and

(v) contigs associated with unmapped OEA reads.

For each unmapped end of an OEA read pair, the following information is kept in the

cluster:

(i) read name;

(ii) strand (based on its corresponding mapped mate); and

(iii) read sequence.

The clusters with less than three members are not considered for insertion discovery.

4.1.3. Insertion Discovery

4.1.3.1. Candidate Insertion Contigs. Pamir generates a new assembly for each cluster

to compute the putative insertion. A putative insertion consists of its main body which

constitutes the insertion (Figure 4.3C) and also both left and right flanking regions that

overlap with the reference genome. The resulting cluster-aware assembly represents a

potential novel insertion sequence. We keep the OEAs in the cluster according to their

strand information and the orphan contigs’ strand is also decided on the OEA-orphan

contig matching stage, so the cluster is aware of the potential insertion’s strand. The

assembler assembles the cluster according to the given strand; it considers only forward

assembly not reverse complement. This gives us the cluster-aware assembly.

We assemble the reads and contigs in each cluster using an efficient in-house

overlap-layout-consensus (OLC) assembler. We found most of the available off-the-

shelf assemblers to be too slow for this task, especially because the total number of

63

clusters is measured in millions. Additionally, existing tools cannot be modified to

consider strand information that can be inferred from the mapping information while

our in-house assembler is strand-specific. Furthermore, the use of näıve greedy strategy

for assembly is not suitable for our goal because such a method cannot obtain optimal

contigs necessary for accurate insertion detection.

The objective of the in-house assembler is to construct a contig that maximizes

the total sum of overlaps between the reads. This problem can be optimally solved by

modeling it as an instance of maximum weighted path problem in a directed graph G

as follows. Let each vertex v represent a read in the cluster. Two vertices m and v are

connected with a directed edge em,v of weight wm,v if the maximum prefix-suffix overlap

between the reads represented by those vertices is of length wm,v. We can optimally

calculate the maximum weighted path via a dynamic programming formulation as

follows.

Suppose that there exists some ordering<v of the vertices ofG, where parent(v) <v

v always holds for any vertex v and its parent, parent(v). Furthermore, let r be the

root of the graph G (as long as <v exists, the root can be selected as the smallest vertex

with respect to <v). We can calculate the value of maximum path from the root r to

any vertex v, denoted as f(v), by the following recurrence:

f(v) = max
parent(v)

{
f(parent(v)) + wparent(v),v

}
(4.1)

assuming that initially f(r) = 0 for any root r (i.e. vertex with no incoming edges).

The equation 4.1 can be implemented in iterative fashion by iterating over vertices v in

order <v. This dynamic programming formulation has the complexity of O(|R|+ |E|),

where |R| denotes the number of reads in the given cluster, and |E| is the total number

of edges in G. This recurrence will always produce the optimal solution as long as there

exists ordering <v with the above-mentioned properties. The most natural choice for

<v is topological ordering of G, which maintains the necessary invariant parent(v) <v v.

Topological ordering can be efficiently calculated in O(|R|+ |E|) via Kahn’s algorithm

[92].

64

However, both topological sorting and Equation 4.1 require acyclic G, which

might not be always true, especially if the target region contains some repeat. In

that case, maximum weighted path problem is NP-hard, which can be easily shown by

reducing the longest path problem in a graph to the maximum weighted path problem.

If cycles are present, we remove any cycle from G in a greedy fashion by iteratively

removing cycle edges whose endpoint is the vertex with the largest indegree in G in

order to provide a feasible assembly. Because the size of each cluster is small, and

because the repeats are not often present in G, such cyclic graphs are not common.

Thus, in the majority of the cases, our assembler is guaranteed to produce an optimal

assembly for a given cluster.

4.1.3.2. Breakpoint and Content Detection. The cluster assembly provides the sequen-

ce content. The insertion breakpoint can be inferred using the provided assembled

contigs and the leftmost and the rightmost mapping locations kept for each cluster.

Thus, to characterize the exact insertion breakpoint, we extract a piece from the ref-

erence sequence which encapsulates the leftmost and rightmost mapping locations of

each cluster. We align the assembled contigs to the reference in the vicinity of each

cluster using a modified variant of Smith-Waterman [93] algorithm. In the variant

Smith-Waterman algorithm, we fix the left and right anchors of the assembled contig

as in global alignment, yet we expect a local alignment on the reference sequence, i.e.

the assembled contig is fully aligned to a substring of the genomic sequence (global to

local alignment). When we are backtracking, we expect to see two flanks (left and right)

and a big gap on the genomic side. In order to modify the Smith-Waterman aligner

to be suitable for detecting long insertions we changed the alignment scores. We tried

several scoring values on the simulation data and finally we set the match, mismatch,

gap opening, and gap extension parameters of the aligner to 20, -1000, -1000 and -1,

respectively. We only consider those candidate insertions that align to the reference

by at least 6bp at both sides. In addition, either or both of the left and right flanks

should align to the reference by at least 17bp. We finally cut out the left and right

flanks of the contig agreeing with the reference and return the sequence between these

two flanking sequences as the novel sequence insertion and the end of the left-mapping

65

flank as the exact breakpoint location (Figures 4.5 and 4.3D).

Figure 4.5. Exact breakpoint detection.

4.1.4. Post-processing and Genotyping

To refine our candidate list and eliminate false positives, for a dataset with frag-

ment size L, we construct a temporary reference segment by concatenating three se-

quences:

(i) L bp upstream of the breakpoint from the reference;

(ii) the obtained insertion sequence from the previous step; and

(iii) L bp downstream of the breakpoint from the reference.

We then map all OEAs and orphan reads to this temporary reference. If there is a

concordant mapping in which only one mate overlaps the insertion and the other mate

is in the flanking region for both breakpoint locations of the insertion, this breakpoint

passes our filter and we report the insertion. With this method, we guarantee that both

breakpoints are covered by supporting reads, which are signatures of an insertion. If

one of the flanking regions consists of Ns only, the other flanking region should meet the

criteria. A false positive case will miss these reads and will be eliminated. Figure 4.6

represents a valid insertion and its reads are concordantly mapping on each side as

described.

66

Figure 4.6. An example of a valid breakpoint passing the post-processing stage with

concordantly mapping paired-end reads.

There might be still some reads which map to multiple novel insertions. We

assign each such read to the insertion with the highest support via set-cover algorithm,

where the set of reads represents the universe, and where clusters represent the sets.

By selecting the minimal number of sets which describe all of the available reads,

we eliminate low-support insertions and ensure that each read belongs to only one

insertion event. Because the set cover problem is an NP-hard problem, we use a fast

greedy strategy to calculate the minimal set of events that covers all reads [94].

Finally, we perform a genotype inference from the reported sequences as follows.

We first construct the following two temporary sequences:

• I: concatenation of (i), (ii) and (iii) as the temporary reference that contains the

novel sequence as described above; and

• RE: concatenation of (i) and (iii) as the temporary reference that does not

contain the insertion.

We then align all reads to these two temporary reference sequences.

Let re be the number of reads that align across the breakpoint location in RE

and il, ir be the number of reads that align across, respectively, the left and right

breakpoint locations in I. Figure 4.7 shows RE, I, and the calculation of i and re. We

then predict the genotype using the Equation 4.2 below. In Figure 4.7, we show an

example for calculating re, i, and x based on the Figure: RE: L bp upstream of the

breakpoint on the reference + L bp downstream of the breakpoint on the reference;

I: L bp upstream of the breakpoint on the reference + the insertion sequence + L bp

downstream of the breakpoint on the reference; re = 2 (the # of mappings passing

67

through the breakpoint on RE); il = 9 (the # of mappings passing through the left

breakpoint on I); ire = 7 (the # of mappings passing through the right breakpoint on

I); i = (il+ir)/2=8; x =(i-re)/(i+re) = 0.6. We tested various values for γ and we

found γ = 0.3 yielded the best genotyping accuracy in simulated data. We report the

final set of calls in standard VCF format [95].

i =
il + ir

2
, x =

i− re
i+ re

Genotype =

No Insertion if x ≤ −γ

Homozygous if x ≥ γ

Heterozygous otherwise

(4.2)

Figure 4.7. Genotyping novel sequence insertions with Pamir.

4.1.5. Discovery with Pooled Data

For multi-sample analysis (i.e. “pooled calling”) Pamir maps all raw reads to

the reference individually in best mapping mode, it extracts OEAs and orphans indi-

vidually, and then it combines OEAs and orphans from all genomes, applies the same

strategy until genotyping step and provides the list of insertions which exist in any

or all of the genomes. After the initial discovery step, it genotypes each insertion for

each sample by using individual reads. The steps for insertion discovery with multiple

samples are depicted in Figure 4.8.

68

Figure 4.8. Discovery with pooled data.

69

4.2. Availability

Pamir is available at [96].

4.3. Results

We performed four sets of experiments to evaluate our method: two experiments

with simulated data, and two experiments using real data. In simulation experiments,

we inserted 350 new sequences into chromosome 21 of the GRCh37 reference in 7

different size ranges:

(i) 10–100bp,

(ii) 100–200bp,

(iii) 200–500bp,

(iv) 500–1,000bp,

(v) 1,000–2,000bp,

(vi) 2,000–5,000bp, and

(vii) 5,000–10,000bp.

We used randomly selected segments from the Methylobacterium reference genome for

this purpose, which are guaranteed to be missing in the human genome reference.

Next we generated several WGS read datasets using the ART read simulator [97] to

test Pamir under different conditions:

(i) error-free reads generated as

(a) 100bp Illumina HiSeq 2000,

(b) 100bp Illumina HiSeq 2500,

(c) 150bp Illumina HiSeq 2500;

(ii) noisy reads (i.e. introduced small variants as SNPs and Indels and sequencing

errors. Default values of ART simulator are used.) generated as

(a) 100bp Illumina HiSeq 2000,

(b) 100bp Illumina HiSeq 2500, and

70

(c) 150bp Illumina HiSeq 2500.

All simulated data were created at 30x sequence coverage.

We also evaluated the efficacy of Pamir on low-coverage multi-sample data. For

this purpose we simulated WGS data from five “samples” at 10x sequence coverage

(noisy 100bp Illumina HiSeq 2500), with different novel sequence insertions. The

“genome” of the first sample includes all 350 insertions described above, and we inserted

280 insertions to the other four samples. In all single-sample simulation experiments

we compared Pamir with MindTheGap and PopIns. In multi-sample datasets, we

compared Pamir with PopIns, which is the only tool capable of finding insertions in

multi-sample data.

We tested Pamir on real datasets in two experiments. First, we applied Pamir on

a high coverage WGS dataset generated from a single haploid sample (CHM1) [4] and

compared our results with novel insertions found in the same genome with the SMRT-

SV algorithm that uses long read, i.e. Pacific Biosciences, sequencing technology.

Finally, we evaluated Pamir’s performance in multi-sample insertion discovery and

genotyping using 10 low-coverage WGS datasets generated as part of the 1000 Genomes

Project [78].

4.3.1. Simulations

4.3.1.1. High coverage single sample. We summarize the results for the perfect simu-

lation experiment with Illumina HiSeq2000 with 100bp reads as shown in Table 4.1.

Recall rates are mostly lower in the longer insertion size regions and the recall rate of

the last segment(5Kbp–10Kbp) is the lowest. Recall and precision rates are defined as

follows: Precision is TP
TP+FP

, where TP is number of True Positives and FP is number

of False Positives. Recall is TP
TP+FN

, where TP is number of True Positives and FN

is number of False Negatives. Comparison with PopIns, MindTheGap and BASIL-

ANISE is given in Table 4.2. Briefly, Pamir outperforms MindTheGap, PopIns and

BASIL-ANISE in all simulation experiments in terms of recall. In terms of precision

71

Table 4.1. Precision and recall rates of perfect Illumina HiSeq2000 simulation data

distributed according to the insertion sizes.

Insertion Length # of Ins. TP FN FP Recall Precision

10-100bp 50 50 0 0 1.00 1.00

100-200bp 50 50 0 0 1.00 1.00

200-500bp 50 50 0 0 1.00 1.00

500-1Kbp 50 49 1 0 0.98 1.00

1Kbp-2Kbp 50 48 2 0 0.96 1.00

2Kbp-5Kbp 50 46 4 0 0.92 1.00

5Kbp-10Kbp 50 40 10 0 0.80 1.00

Total 350 333 17 0 0.95 1.00

Pamir outperforms all tools or has equal precision. The precision rates of Pamir and

MindTheGap are the same for the first four datasets, and for the rest Pamir outper-

forms all other tools. Here we consider a predicted insertion to be correct only if the

breakpoint matches that of the simulated insertion. In fact, if we also require the

lengths of the predicted insertions to be the same with the simulation, Pamir has the

best precision and recall among the tools we tested.

4.3.1.2. Low coverage multiple samples. Next, we tested the prediction performance

of Pamir when multiple genomes with low coverage data are available. In this experi-

ment we compared Pamir only with PopIns, as it is the only other multi-sample novel

sequence insertion discovery tool. To evaluate the importance of multiple samples, we

tested the same five genomes simulated at 10x sequence coverage both separately and

collectively (Table 4.3). In the table, we show precision and recall rates of both indi-

vidual and pooled calls of five low coverage samples. The paired-end reads (100bp) are

generated using Illumina HiSeq2500 error model. We have simulated 350 insertions in

this dataset: S1 have all insertions, and genomes of the other four individuals contains

280 events. The column All shows performances of Pamir and PopIns based on pool-

ing simulation reads, and each column Si represents single sample detection results for

i-th individual. We found that Pamir’s precision was substantially higher than that of

72

Table 4.2. Precision and recall of Pamir, PopIns [1] and MindTheGap [2] and BASIL

ANISE [3] on simulated 30x datasets generated for different sequencing platforms with

varying read lengths. Best results are marked with bold typeface.

Pamir PopIns MindThe-

Gap

BASIL-

ANISE

Error-free

HiSeq2500-100bp
Precision 1.000 0.973 1.000 0.989

Recall 0.954 0.814 0.900 0.757

HiSeq2500-150bp
Precision 1.000 0.958 1.000 0.989

Recall 0.960 0.726 0.900 0.763

HiSeq2000-100bp
Precision 1.000 0.972 1.000 0.989

Recall 0.951 0.823 0.900 0.763

Noisy

HiSeq2500-100bp
Precision 1.000 0.969 1.000 0.989

Recall 0.926 0.800 0.900 0.757

HiSeq2500-150bp
Precision 1.000 0.968 0.965 0.989

Recall 0.943 0.789 0.897 0.754

HiSeq2000-100bp
Precision 1.000 0.938 0.905 0.974

Recall 0.826 0.709 0.811 0.743

PopIns when each sample is processed separately, and use of multiple genomes resulted

in higher recall rates for both tools.

We also predicted genotypes of all five samples using Pamir (Table 4.4). In the

figure we show evaluation of genotyping results for the same five samples as in Table 4.3,

based on pooling simulated reads. The paired-end reads (100bp) are generated using

Illumina HiSeq2500 error model. We have simulated 350 insertions in this dataset: S1

have all insertions, and genomes of the other four individuals contains 280 events. Cor-

rect (INS) lists the number of insertions that are correctly genotyped. Correct (REF)

shows the number of detections discarded after genotyping, which are not actual inser-

tions in an individual but falsely predicted based on pooling reads. Incorrect zygosity

provides the number of insertions incorrectly genotyped as heterozygous; only 5 calls

were identified as heterozygous in S1, S3 and S4 although they were homozygously

inserted. All insertions map to common repeats. The No call (INS) row shows the

73

number of insertions missed in the pooled run for each sample, i.e. false negatives. No

call (REF) provides the number of insertions missed in the pooled run but the inser-

tion was not inserted into this sample. Here we first characterized insertions using all

five samples simultaneously as described above, and then calculated genotypes for each

predicted insertion in all samples separately. We observed no incorrect heterozygous

vs. homozygous genotyping results for any insertions, except 5 calls in 3 samples are

identified as heterozygous although they were homozygously inserted. All 5 insertions

map to common repeats, i.e. LINE elements.

Table 4.3. Precision and recall rates of 5 simulated samples (noisy HiSeq2500 100bp

10x). Best results are marked with bold typeface.

Samples All S1 S2 S3 S4 S5

Experiment Pooled Individual Individual Individual Individual Individual

of Insertions 350 350 280 280 280 280

Tools PamirPopIns PamirPopIns PamirPopIns PamirPopIns PamirPopIns PamirPopIns

Precision 1 0.977 1 0.575 1 0.591 1 0.575 1 0.574 1 0.603

Recall 0.911 0.811 0.726 0.657 0.711 0.675 0.704 0.657 0.714 0.646 0.714 0.668

Table 4.4. Evaluation of predicted genotypes using 5 simulated genomes. Best results

are marked with bold typeface.

Sample S1 S2 S3 S4 S5

of Insertions 350 280 280 280 280

of Ins. not in the sample 0 70 70 70 70

Tools PamirPopIns PamirPopIns PamirPopIns PamirPopIns PamirPopIns

Correct (INS) 317 284 253 210 252 214 253 225 259 227

Correct (REF) - - 66 54 66 56 64 59 60 57

Incorrect zygosity 2 0 0 0 1 0 2 0 0 0

No call (INS) 31 66 27 50 27 52 25 55 21 53

No call (REF) - - 4 16 4 14 6 11 10 13

4.3.2. Real Data

4.3.2.1. High coverage sequencing of CHM1. Our tests using real data also included

two types of datasets: (i) high coverage single sample WGS, and (ii) low coverage

multiple sample WGS. First, we evaluated Pamir using WGS data at 40x coverage

generated from a haploid cell line with the Illumina technology (CHM1, SRA ID:

SRX652547) [4]. We have identified a total of 22,676 insertions that corresponds to

593,5 Kb in total, of which, 2,444 were >50bp (348 Kb total) (Table 4.5). Chaisson

74

et al. (2015) also generated de novo assembly of the same genome using a long read

sequencing technology (Pacific Biosciences) from the same cell line, and predicted the

insertions with the SMRT-SV algorithm using this dataset [4]. Here we used an updated

call set (> 50bp) mapped to human GRCh38 for comparisons. Here, we used an

updated call set (> 50bp) mapped to human GRCh38 [98] for comparisons.

Pamir showed low recall rates when compared to the long read-based SMRT-SV

results [4]. We could identify only 488 of the 12,998 insertions detected by SMRT-

SV when we consider only nearby matches (less than 10bp distance) in breakpoint

predictions. One of the reasons for such discrepancy is the fact that more than half

of PacBio-predicted insertions are located within various repeat regions (Table 4.6),

and short-length Illumina reads are not sufficient to properly assemble such regions.

The same effect was also observed in the original publication [4], where only a handful

of insertions were also identified in another assembly of the same genome that was

constructed with a reference-guided methodology using both Illumina WGS and bac-

terial artificial chromosome datasets [99]. We also compared the results of PopIns

with SMRT-SV results in Table 4.7 and MindTheGap results with SMRT-SV results

in Table 4.8. The common breakpoint locations between PopIns and SMRT-SV were

low too same as PopIns SMRT and PopIns MindTheGap. Additionally, we found

that 14,121 out of our 22,646 predicted insertions were reported in dbSNP version 147,

considering 10bp breakpoint resolution.

To test whether the insertions we predicted in CHM1 were also previously discov-

ered in other studies, we mapped the longer insertions (>50 bp) to the latest version

of the reference (GRCh38) using BLAST [90]. Note that our predictions were based on

the GRCh37 version. In this experiment we required only highly identical (≥ 98%) hits

that covered at least 98% of the predicted insertion. We repeated the same remapping

experiment to both the long read-based assembly [4] and the alternative reference-

guided assembly of the same genome [99] (Table 4.9). In the table, we provide a

hierarchical non-redundant breakdown of comparison of insertions we predicted in the

CHM1 genome with Pamir. We compare our predictions in the following order: the

GRCh38 assembly, then remaining to the reference-guided CHM1 1.1 assembly, the

75

Pacific Biosciences (PacBio) assembly, SMRT-SV call set, long insert clones and those

that are in repeat regions. We also mapped the same sequences to the nt/nr database

to detect whether the sequences were also contained within other WGS studies, in par-

ticular, fosmid end-sequence data [100]. In summary, out of 2,444 (> 50 bp) insertions

we predicted, 1,418 are not found in any database, of which 1,189 were mapped to com-

mon repeats. We applied the same experiment on PopIns and MindTheGap calls too

(Tables 4.10 and 4.11). In these tables, same strategy as in Table 4.9 is used. We pro-

vide a hierarchical non-redundant breakdown of comparison of insertions we predicted

in the CHM1 genome with PopIns. We compare PopIns predictions in the following

order: the GRCh38 assembly, then remaining to the reference-guided CHM1 1.1 as-

sembly, the Pacific Biosciences (PacBio) assembly, SMRT-SV call set, long insert clones

and those that are in repeat regions. According to the results of this experiment, more

insertions predicted by PopIns were seen in the latest version of GRCh38, reference-

guided assembly of CHM1 [99] and long read-based assembly [4]. When we analyzed

the insertions predicted by PopIns in detail, we saw that many of them were reported

at different chromosomes, at different locations of chromosomes or they were partial

insertions compared to [98] results. Therefore, we needed to do a more strict experi-

ment to compare these insertion calls. We mapped the longer insertions (>50 bp) with

spanning regions around the breakpoint on the reference (GRCh37) to the latest ver-

sion of the reference (GRCh38) using BLAST [90]. In summary, according to the more

strict experiment, out of 2,444 (> 50 bp) insertions we predicted with Pamir, 1,446 are

not found in any database, of which 1,212 mapped to common repeats (Table 4.12).

In the table, we provide a hierarchical non-redundant breakdown of comparison of in-

sertions we predicted in the CHM1 genome with Pamir with spanning regions. We

compare our predictions in the following order: the GRCh38 assembly, then remaining

to the reference-guided CHM1 1.1 assembly, the Pacific Biosciences (PacBio) assem-

bly, SMRT-SV call set, long insert clones and those that are in repeat regions. We

performed the same experiment using PopIns (Table 4.13). Same as Table4.12, in this

table, we provide a hierarchical non-redundant breakdown of comparison of insertions

we predicted in the CHM1 genome with PopIns with spanning regions. We compare

PopIns predictions in the following order: the GRCh38 assembly, then remaining to

76

the reference-guided CHM1 1.1 assembly, the Pacific Biosciences (PacBio) assembly,

SMRT-SV call set, long insert clones and those that are in repeat regions. 1,014 out of

3,399 PopIns calls are not found in any database, of which 388 mapped to common re-

peats. 56% of PopIns calls map to long insert clones, but only a handful were included

in the latest version of the human genome reference, and assemblies of the same DNA

resource.

Finally, we compared our results with PopIns [1] and MindTheGap [2] (Table 4.14

and Table 4.15). In Table4.15, we consider 10bp breakpoint resolution while comparing

Pamir, PopIns and MindTheGap breakpoint locations. We don’t compare the lengths

of the insertions, which may differ one tool’s callset to another. Insertion length ranges

in Total column show that Pamir reports them in that length range. “same range”

shows the number of insertions reported by the corresponding tool in the same length

range. “diff range” shows the number of insertions reported by the corresponding tool

in a different length range. For example, in the first row, Pamir shares 6 breakpoint

locations with PopIns and Pamir reports all of them in 1 − 50 bp length range and

PopIns reports all of them in a different length range. The number of shared insertions

between Pamir and PopIns is very low. Similarly, MindTheGap and PopIns share few

number (108) of insertions too (not shown in the table). Finally, 40 of Pamir - PopIns

intersection insertions are seen in MindTheGap - PopIns intersection.

4.3.2.2. High coverage sequencing of NA12878. As a second high coverage single sam-

ple WGS we ran Pamir on the sample NA12878 from 1000genome data sequenced at

∼ 200x coverage. We have identified a total of 78,996 insertions that corresponds to

4,54Mb in total. 21,379 of them were >50bp (3,75Mb total). The results are shown

in Table 4.16. In order to investigate whether the called insertions do also exist in the

existing databases we compared the insertion breakpoint locations (considering 10bp

breakpoint resolution) with Genome in a Bottle (GIAB) [101] results, 1000 Genomes

Project [78] calls and dbSNP147 [102] in a hierarchical non-redundant breakdown order

(Table 4.17). We also compared the results of NA12878 with Pamir and with PopIns

in Table 4.18. In this table, we consider 10bp breakpoint resolution while comparing

77

Pamir and PopIns breakpoint locations. We don’t compare the lengths of the inser-

tions, which may differ one tool’s callset to another. Insertion length ranges in Total

column show that Pamir reports them in that length range. “same range” shows the

number of insertions reported by the corresponding tool in the same length range. “diff

range” shows the number of insertions reported by the corresponding tool in a different

length range. For example, in the first row, Pamir shares 7 breakpoint locations with

PopIns and Pamir reports all of them in 1 − 50 bp length range and PopIns reports

all of them in a different length range. In order to compare with MindTheGap, we

also tried to run MindTheGap on NA12878 but we were not able to obtain a resulting

callset.

4.3.2.3. Low coverage genomes from the 1000 Genomes Project. Finally, we tested

Pamir using low coverage WGS datasets generated from 10 samples as part of the

1000 Genomes Project [78] (Table 4.19). We found 39,554 insertions when we pooled

all 10 genomes, 13,255 of them were reported in 1000 Genomes Project, and another

group of 11,019 insertions was seen in dbSNP version 147, considering 10bp breakpoint

resolution. We then genotyped for each sample (Table 4.20). To test whether the

insertions we predicted in these 10 samples were also previously discovered in other

studies, we mapped the longer insertions (>50 bp) to the latest version of the refer-

ence (GRCh38) using BLAST [90]. We also mapped the same sequences to the nt/nr

database (Table 4.21). In this table, we provide a hierarchical non-redundant break-

down of comparison of insertions we predicted in the 10 1000 genomes. We compare

our predictions in the following order: the GRCh38 assembly, then remaining to the

long insert clones and those that are in repeat regions.

4.3.3. Running Times

Finally, we evaluated the running time of all the benchmarked software. We ran

Pamir, PopIns, MindTheGap and BASIL-ANISE on a 800Mhz AMD machine with

256Gb memory with 1 thread on a high coverage simulation dataset (2x100bp error-free

reads sampled from human chromosome 21 based on Illumina HiSeq2500 model at 30X

78

Table 4.5. Summary of insertions predicted in CHM1 with Pamir.

All ≤ 50bp > 50bp

Number of insertions 22,676 20,232 2,444

Minimum length 5 5 51

Maximum length 4,135 50 4,135

Average length 26.20 12.12 142.51

Heterozygous 2,281 1,765 516

Homozygous 20,395 18,467 1,928

Table 4.6. Comparison of insertions in CHM1 predicted using Illumina reads with

Pamir and PacBio reads with SMRT-SV [4].

Size

range

Illumina

+ Pamir

PacBio +

SMRT-SV [4]

Shared SMRT-SV insertions

in repeat regions

1 - 50 bp 20,232 187 (all 50bp) 27 112

50 - 100 bp 1,273 4,384 205 2,358

100 - 200

bp

815 2,959 125 1,604

200 - 500

bp

291 3,123 97 1,707

>500 bp 65 2,345 34 1,411

All 22,676 12,998 488 7,192

coverage) until genotyping phase. Running times are given in Table 4.22. Pamir takes

∼ 3.6 times less time than BASIL-ANISE and ∼ 4.3 times less time than MindTheGap

where PopIns takes ∼ 5.7 times less time than BASIL-ANISE and ∼ 6.8 times less

time than MindTheGap. Although PopIns is faster than Pamir, in many of the cases

it does not provide the full inserted sequences. Pamir’s structure is embarrassingly

parallel where the user can declare the number of threads according to the number

of cores of the machine. We also tested the timing performance of Pamir on whole

genome real data. It takes Pamir ∼ 16 hours to complete the insertion discovery on

the whole genome of CHM1 real data (40X) with 72 threads.

79

Table 4.7. Comparison of insertions in CHM1 predicted using Illumina reads with

PopIns and PacBio reads with SMRT-SV [4].

Size

range

Illumina

+ PopIns

PacBio +

SMRT-SV [4]

Shared SMRT-SV insertions

in repeat regions

1 - 50 bp 21 187 (all 50bp) 0 112

50 - 100 bp 246 4,384 17 2,358

100 - 200

bp

793 2,959 116 1,604

200 - 500

bp

1,074 3,123 138 1,707

>500 bp 1,286 2,345 203 1,411

All 3,420 12,998 474 7,192

Table 4.8. Comparison of insertions in CHM1 predicted using Illumina reads with

MindTheGap and PacBio reads with SMRT-SV [4].

Size

range

Illumina +

MindTheGap

PacBio +

SMRT-SV [4]

Shared SMRT-SV insertions

in repeat regions

1 - 50 bp 23,955 187 (all 50bp) 34 112

50 - 100 bp 533 4,384 132 2,358

100 - 200

bp

555 2,959 90 1,604

200 - 500

bp

672 3,123 85 1,707

>500 bp 268 2,345 61 1,411

All 25,983 12,998 402 7,192

4.4. Discussion

The last few years since the introduction of HTS platforms witnessed the devel-

opment of many algorithms that aim to characterize genomic structural variation. The

first such algorithms focused mainly on the discovery of deletions, and other forms of

complex SV, especially inversions and translocations were largely neglected due to the

sequence complexity around their breakpoints and the ambiguity in mapping to these

80

Table 4.9. Analysis of predicted CHM1 insertions with Pamir with respect to other

datasets.

50 - 200 bp 200 - 500 bp >500 bp Total

of insertions 2,083 295 66 2,444

In GRCh38 134 1 1 136

In CHM1 1.1 [99] 353 48 0 401

in CHM1 PacBio [4] 138 11 21 170

In SMRT-SV [4] 94 53 13 160

In long insert clones∗ [100] 118 18 1 137

In repeat regions 1,039 127 23 1,189

Remainder 196 28 5 229

∗Long insert clones include both fosmid clones and bacterial artificial chromosomes (BAC).

Table 4.10. Analysis of predicted CHM1 insertions with PopIns with respect to other

datasets.

50 - 200 bp 200 - 500 bp >500 bp Total

of insertions 1,039 1,074 1,286 3,399

In GRCh38 367 461 775 1,603

In CHM1 1.1 [99] 116 78 7 201

in CHM1 PacBio [4] 439 470 482 1,391

In SMRT-SV [4] 11 6 4 21

In long insert clones∗ [100] 12 23 5 40

In repeat regions 62 24 8 94

Remainder 32 7 5 49

∗Long insert clones include both fosmid clones and bacterial artificial chromosomes (BAC).

regions.

Although novel sequence insertions can be considered “simpler” than most other

SV classes, their accurate characterization is still lacking due to the need for construct-

ing either global or local de novo assembly. However, they may fail to generate long and

accurate contigs due to the repeats that may occur around or within novel sequence

81

Table 4.11. Analysis of predicted CHM1 insertions with MindTheGap with respect to

other datasets.

50 - 200 bp 200 - 500 bp >500 bp Total

of insertions 1,088 672 268 2,028

In GRCh38 173 42 35 250

In CHM1 1.1 [99] 177 38 4 219

in CHM1 PacBio [4] 61 7 23 91

In SMRT-SV [4] 52 53 35 140

In long insert clones∗ [100] 165 200 72 437

In repeat regions 313 169 68 550

Remainder 147 163 31 341

∗Long insert clones include both fosmid clones and bacterial artificial chromosomes (BAC).

Table 4.12. (Strict version with 200bp spanning regions on the reference) Analysis of

predicted CHM1 insertions with Pamir with respect to other datasets.

50 - 200 bp 200 - 500 bp >500 bp Total

of insertions 2,088 291 65 2,444

In GRCh38 17 1 1 19

In CHM1 1.1 [99] 251 54 2 307

in CHM1 PacBio [4] 213 13 23 249

In SMRT-SV [98] 73 47 11 131

In long insert clones∗ [100] 212 21 1 234

In repeat regions 1,065 126 21 1212

Remainder 257 29 6 292

∗Long insert clones include both fosmid clones and bacterial artificial chromosomes (BAC).

insertions.

In this stduy, we presented Pamir, a new algorithm to discover and genotype

novel sequence insertions in one or multiple human genomes. Pamir uses several read

signatures (one-end-anchored, read pairs, split reads, and assembly) to characterize

insertions that span a wide size range. We demonstrated its performance on both

82

Table 4.13. (Strict version with 200bp spanning regions on the reference) Analysis of

predicted CHM1 insertions with PopIns with respect to other datasets.

50 - 200 bp 200 - 500 bp >500 bp Total

of insertions 1,038 1,075 1,286 3,399

In GRCh38 0 1 1 2

In CHM1 1.1 [99] 15 8 1 24

in CHM1 PacBio [4] 5 2 12 19

In SMRT-SV [98] 118 132 193 443

In long insert clones∗ [100] 565 627 705 1,897

In repeat regions 221 191 214 626

Remainder 114 114 160 388

∗Long insert clones include both fosmid clones and bacterial artificial chromosomes (BAC).

Table 4.14. Insertions in CHM1 predicted with Pamir, PopIns [1] and MindTheGap [2].

Size range Pamir PopIns [1] MindTheGap [2]

1 - 50 bp 20,232 21 23,955

50 - 100 bp 1,273 246 533

100 - 200 bp 815 793 555

200 - 500 bp 291 1,074 672

>500 bp 65 1,286 268

All 22,676 3,420 25,983

We consider 10bp breakpoint resolution.

simulated and real datasets and showed that it outperforms the existing tools designed

for the same purpose. We believe that further development and extensive testing of

the Pamir algorithm will help make the novel insertion discovery a routine analysis for

whole genome sequencing studies.

83

Table 4.15. Comparison of breakpoint locations in CHM1 predicted with Pamir and

with PopIns [1] and MindTheGap [2].

Size range Pamir Shared w. PopIns [1] Shared w. MindTheGap [2]

Total Same

range∗

Diff.

range

Total Same

range

Diff.

range

1 - 50 bp 20,232 6 0 6 5,137 5,114 23

50 - 100 bp 1,273 8 2 6 106 82 24

100 - 200 bp 815 31 26 5 67 49 18

200 - 500 bp 291 33 23 10 26 17 9

>500 bp 65 22 20 2 15 12 3

All 22,676 100 71 29 5,351 5,274 77

∗We consider 10bp breakpoint resolution while comparing Pamir, PopIns and MindTheGap

breakpoint locations.

Table 4.16. Summary of insertions predicted in NA12878.

All ≤ 50bp > 50bp

Number of insertions 78,996 57,617 21,379

Minimum length 5 5 51

Maximum length 6,796 50 6,796

Average length 57.49 13.43 176.20

Heterozygous 25,366 19,528 5,838

Homozygous 53,630 38,089 15,541

Table 4.17. Comparison of NA12878 insertion calls with the existing databases.

All ≤ 50bp > 50bp

Number of insertions 78,996 57,617 21,379

Genome in a Bottle (GIAB) [101]∗ 12,354 11,420 934

In 1000 Genomes Project [78] 7,834 5,361 2,473

In dbSNP version 147∗ 19,769 15,769 4000

∗ We intersected with 1000 Genomes after removing those insertions found in GIAB and

intersected with dbSNP database after removing those insertions that are found in 1000

Genomes.

84

Table 4.18. Comparison of insertions in NA12878 predicted with Pamir and with

PopIns [1].

Size range Pamir PopIns [1] Shared

Total Same range∗ Diff. range

1 - 50 bp 57,617 2 7 1 6

50 - 100 bp 7,083 127 33 12 21

100 - 200 bp 9,055 992 71 52 19

200 - 500 bp 4,453 1,065 88 61 27

>500 bp 788 818 59 27 32

All 78,996 3,004 258 153 105

∗We consider 10bp breakpoint resolution while comparing Pamir and PopIns breakpoint

locations.

Table 4.19. Summary of novel sequences found in 10 low coverage WGS datasets from

the 1000 Genomes Project.

Total > 50bp

Number of insertions 49,473 6,846

Minimum length 5 51

Maximum length 1,928 1,928

Average length 28.872 128.085

In 1000 Genomes Project [78] 14,837 425

In dbSNP version 147∗ 14,409 2,027

∗ We intersected with dbSNP after removing those insertions that are found in the 1000

Genomes Project.

Table 4.20. Genotyping results for the novel sequences found in the 1000 Genomes

Project datasets.

06985∗ 07357 10851 11840 11918 11933 12004 12044 12234 12286

Homozygous 22,971 22,582 23,274 20,973 22,610 21,049 19,024 18,753 20,841 19,027

Heterozygous 10,246 10,158 9,465 12,745 9,994 11,092 12,650 13,002 10,804 12,622

Total insertion

length (bp)

941,868 921,225 930,766 959,017 953,968 936,615 928,371 919,212 916,251 922,799

∗ All sample IDs start with “NA”.

85

Table 4.21. Analysis of insertions found in low-coverage samples with respect to other

datasets.

50 - 200 bp 200 - 500 bp >500 bp Total

of insertions 6,050 667 129 6,846

in GRCh38 377 7 1 385

in long insert

clones [100]

868 84 31 983

in repeat regions 3,614 464 69 4,147

Remainder 1,191 112 28 1,331

Table 4.22. Running times of Pamir, PopIns, MindTheGap, and BASIL-ANISE on a

2x100bp simulation dataset based on HiSeq2500 model with 30X coverage.

Pamir PopIns MindTheGap BASIL-ANISE

3min 9sec 1min 59sec 13min 25sec 11min 16sec

86

5. CONCLUSION

In this thesis, we presented our research on three different problems in the ge-

nomics field. The ability of high throughput sequencing technologies to generate

tremendous amount of data for very low costs enabled many large scale sequencing

projects possible. It also increased the research to analyze the huge amounts of data.

Reproducibility and robustness of the data are the essential priorities in clinical appli-

cations. HTS data are assumed to be more robust and comprehensive and there are

many studies testing the performance of HTS platforms, but the robustness has not

been tested much. In our first study, we presented our investigation on the robustness

of an HTS platform, Illumina HiSeq2000, in terms of being directly used in clinical

applications. We whole genome sequenced the genomes of two individuals twice with

the same model of HTS platform, Illumina HiSeq2000, placed at two different loca-

tions: BGI in Beijing, China and TÜBİTAK in Kocaeli, Turkey. We used the same

tools and parameters to call the small structural variations (SNP-Indels) and expected

to see the same results but it was not the case. We discovered that the reproducibility

rate of SNP calls is ∼ 92%, which are obtained with the standard BWA mapping and

GATK SNP calling pipeline. This also means that ∼280 thousand of 3 million SNPs

are unique to only one of the trials. Pooled calling with GATK did not improve the

reproducibility and accuracy of the results substantially. Multiple factors contribute to

this effect such as the difference in GC% bias which leads to differences in the coverage

over different regions of the genome, which then causes increasing number of false pos-

itives or false negatives in variation calls. Higher GC% content in repeat regions than

unique regions, in addition to the mapping biases to repeats and duplications also ex-

plain the high SNP discrepancies in repeat regions. In addition since the machines are

individually different, they might have slight differences in base calling errors. Most of

the differences were in non-genic regions and common repeats which is less important

to most o fthe studies but still one must be very careful when interpreting results from

HTS pipelines especially for clinical diagnosis. The results should be validated with

orthogonal studies.

87

As a second problem we worked on improving the de novo genome assemblies

which is one of the two main algorithmic problems in this area and offered a new

method. Genome assembly has not been improved as much as genome alignment since

a reference genome is not used, and the genome itself is repetitive and duplicated

and the HTS reads are either short or long but with higher error rate. Short reads

cannot assemble the repetitive regions no matter how accurate they are, and long

reads can assemble the repetitive regions but they are not accurate enough having

high sequencing error rates. With our method, we showed that by exploiting both

short and highly accurate and long but erroneous reads we can improve the resulting

assembly accuracy and coverage. We used short Illumina reads, long 454 reads and

medium sized Ion Torrent reads, assembled them separately and corrected the long

read contigs by short read contigs which gave more accurate and continuous de novo

assembly and our results showed that and using three data types all together further

improves the results. Correction with two data types or three data types both give

more accurate results than running the two other existing hybrid assemblers with the

raw data. For further study the gaps between the updated contigs can be filled with

the help of high quality paired-end information.

Finally we worked on a problem which did not get as much attention as other

structural variations (SV) such as deletions in the genome: finding and genotyping

novel sequence insertions in the whole genome sequencing data. One of the reasons

that the problem did not get as much attention was the difficulties in the assembly

itself. We tried to solve this problem with two different stages of assembly, first is a

regular de-Bruijn graph based assembly of orphan reads and the second is a strand

aware OLC assembly of the orphan contigs and OEA reads together which are both

contributing to the novel insertion. As a result of our studies we presented our tool

Pamir which identifies long novel sequence insertions in one or many human genomes

with a new algorithm. It exploits the unmapped reads of the data (one-end anchors,

split reads and orphan reads), and it is able to detect the exact breakpoint location

of the insertion, the exact sequence of the insertion, and the genotype of the insertion

(homozygous, heterozygous or no insertion). It can detect insertions in low coverage

genomes by making a pooled run where it combines the data from all genomes. Our

88

simulated experiments show that it outperforms MindTheGap and PopIns on single

genome and again outperforms PopIns when ran on multiple input data.

We are glad to mention that our studies are valuable contributions to the research

in HTS technologies, the de novo assembly problem and discovering novel insertions

in whole genome sequencing studies. Two last two studies contribute to have more

accurate and complete assembly sequences. The last study also contributes to find the

unknown genomic regions of the human reference sequence.

89

6. FUTURE WORK

In terms of investigating the robustness of the sequencing platforms, the method

followed in this thesis was only one of many ways of assessing the robustness of the

Illumina HiSeq2000 high throughput sequencing platform data with BWA and GATK

pipeline. For example the make and model of the machines used in our experiment were

same but they were individually different machines, which might cause slight differences

in the sequencing output. The test can be re-applied by sequencing the same DNA with

exactly the same machine to get rid of any differences caused by individually different

machines. Also, here we focused on only SNP-indel calling which is a routine analysis

in clinical applications. The robustness of the detecting large structural variations also

needs to be investigated.

In addition, independent from the sequencing machines, a recent study [39]

showed that BWA generates different mapping results even with the same but reshuf-

fled set of reads, because of mapping biases through repeat regions. Although sequence

alignment is simpler and more useful than before, decreasing the mapping biases against

repeat regions in sequence alignment is another topic of interest for future studies.

Same applies for variant calling, because it is shown that GATK also generates differ-

ent callsets given the same mapping files [39].

There is potential future work for improving genome assemblies. Although, the

results showed that correction method presented in this thesis works very well to im-

prove genome assemblies, the need to develop new methods that exploit different data

properties of different HTS technologies, such as short/long reads or high/low quality

of reads, remains. For example, there were still gaps between the contigs even after

the correction method. Regarding this, exploiting the paired end information of the

short, high quality reads after the correction phase to extend the corrected contigs

and to close the gaps between them would be a reasonable future work to improve the

method.

90

Discovering novel sequence insertions on whole genome data has also interesting

future work. Although our method, Pamir outperforms the existing tools it still lacks

very long insertions (> 10.000bp) due to breaks in the assembly caused by repetitive

structures. Multiple shorter contigs instead of one continuous contig are obtained from

the orphan assembly. Scaffolding with paired-end data information might be a good

way of extending and connecting orphan contigs which will increase the recall rate on

longer insertions. In addition, future work might also include improving the genotyping

algorithm by replacing the simplistic genotyping formula used in Pamir with a more

complicated genotype likelihood algorithm. Lastly, the multi-sample support is working

well for now, but orphan assembly from many samples might be a restrictive task in

terms of memory requirements. Potential future work can be to improve the orphan

assembly by applying it on groups of limited number of samples and combining the

resulting orphan contigs.

91

REFERENCES

1. Kehr, B., P. Melsted and B. V. Halldorsson, “PopIns: population-scale detection

of novel sequence insertions”, Bioinformatics , April 2015.

2. Rizk, G., A. Gouin, R. Chikhi and C. Lemaitre, “MindTheGap: integrated detec-

tion and assembly of short and long insertions.”, Bioinformatics , Vol. 30, No. 24,

pp. 3451–3457, December 2014.

3. Holtgrewe, M., L. Kuchenbecker and K. Reinert, “Methods for the detection and

assembly of novel sequence in high-throughput sequencing data.”, Bioinformatics ,

Vol. 31, No. 12, pp. 1904–1912, February 2015.

4. Chaisson, M. J. P., J. Huddleston, M. Y. Dennis, P. H. Sudmant, M. Malig,

F. Hormozdiari, F. Antonacci, U. Surti, R. Sandstrom, M. Boitano, J. M. Lan-

dolin, J. A. Stamatoyannopoulos, M. W. Hunkapiller, J. Korlach and E. E. Eichler,

“Resolving the complexity of the human genome using single-molecule sequenc-

ing.”, Nature, Vol. 517, pp. 608–611, January 2015.

5. Maxam, A. M. and W. Gilbert, “A new method for sequencing DNA”, Proceedings

of National Academy of Sciences of the USA, Vol. 74, pp. 560–564, August 1977.

6. Sanger, F., S. Nicklen and A. Coulson, “DNA Sequencing with chain terminating

inhibitors”, Proceedings of the National Academic of Sciences of the USA, Vol. 74,

pp. 5463–5467, December 1977.

7. Manning, M. and L. Hudgins, “Array-based technology and recommendations for

utilization in medical genetics practice for detection of chromosomal abnormali-

ties”, Genet Med , Vol. 12, No. 11, pp. 742–745, 2010.

8. Miller, J. R., S. Koren and G. Sutton, “Assembly Algorithms for Next Generation

Sequencing Data”, Genomics , Vol. 95, No. 6, pp. 315–327, June 2010.

92

9. Lam, H. Y. K., M. J. Clark, R. Chen, R. Chen, G. Natsoulis, M. O’Huallachain,

F. E. Dewey, L. Habegger, E. A. Ashley, M. B. Gerstein, A. J. Butte, H. P. Ji and

M. Snyder, “Performance comparison of whole-genome sequencing platforms”,

Nature Biotechnology , Vol. 30, pp. 78–82, 2012.

10. Loman, N. J., R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia,

J. Wain and M. J. Pallen, “Performance comparison of benchtop high-throughput

sequencing platforms”, Nature Biotechnology , Vol. 30, pp. 434–439, May 2012.

11. Zook, J. M., B. Chapman, J. Wang, D. Mittelman, O. Hofmann, W. Hide and

M. Salit, “Integrating human sequence data sets provides a resource of benchmark

SNP and indel genotype calls.”, Nat Biotechnol , Vol. 32, No. 3, pp. 246–251,

March 2014.

12. Venter, J. C. e. a., “The Sequence of Human Genome”, Science, Vol. 291, No.

5507, pp. 1304–1351, February 2001.

13. Alkan, C., B. P. Coe and E. E. Eichler, “Genome structural variation discovery

and genotyping.”, Nat Rev Genet , Vol. 12, No. 5, pp. 363–376, May 2011.

14. Chaisson, M. J. P., R. K. Wilson and E. E. Eichler, “Genetic variation and the de

novo assembly of human genomes.”, Nat Rev Genet , Vol. 16, pp. 627–640, 2015.

15. Kidd, J. M., N. Sampas, F. Antonacci, T. Graves, R. Fulton, H. S. Hay-

den, C. Alkan, M. Malig, M. Ventura, G. Giannuzzi, J. Kallicki, P. Anderson,

A. Tsalenko, N. A. Yamada, P. Tsang, R. Kaul, R. K. Wilson, L. Bruhn and

E. E. Eichler, “Characterization of missing human genome sequences and copy-

number polymorphic insertions.”, Nat Methods , Vol. 7, No. 5, pp. 365–371, May

2010.

16. Chennagiri, N., E. J. White, A. Frieden, E. Lopez, D. S. Lieber, A. Nikiforov,

T. Ross, R. Batorsky, S. Hansen, V. Lip, L. J. Luquette, E. Mauceli, D. Mar-

gulies, P. M. Milos, N. Napolitano, M. M. Nizzari, T. Yu and J. F. Thompson,

93

“Orthogonal NGS for High Throughput Clinical Diagnostics”, Nature Scientific

Reports , Vol. 6, April 2016.

17. Myers, E. W., G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J.

Flanigan, S. A. Kravitz, C. M. Mobarry, K. H. Reinert, K. A. Remington, E. L.

Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan, A. L. Halpern, S. Lonardi,

E. M. Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R.

Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams and J. C.

Venter, “A whole-genome assembly of Drosophila.”, Science, Vol. 287, No. 5461,

pp. 2196–2204, March 2000.

18. Miller, J. R., A. L. Delcher, S. Koren, E. Venter, B. P. Walenz, A. Brownley,

J. Johnson, K. Li, C. Mobarry and G. Sutton, “Aggressive assembly of pyrose-

quencing reads with mates”, Bioinformatics , Vol. 24, No. 24, pp. 2818–2824,

October 2008.

19. Zimin, A., G. Marçais, D. Puiu, M. Roberts, S. L. Salzberg and J. A. Yorke, “The

MaSuRCA genome Assembler”, Bioinformatics , Vol. 29, No. 21, pp. 2669–2677,

August 2013.

20. G. Frey, K., J. H.-G. Enrique, C. L. Redden, T. V. Luu, S. L. Servetas, A. J.

Mateczun, V. P. Mokashi and K. A. Bishop-Lilly, “Comparison of three next-

generation sequencing platforms for metagenomic sequencing and identification

of pathogens in blood”, BMC Genomics , Vol. 15, No. 4, February 2014.

21. Quail, M. A., M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Con-

nor, A. Bertoni, H. P. Swerdlow and Y. Gu, “Comparison of mapping algorithms

used in high-throughput sequencing: application to Ion Torrent data”, BMC Ge-

nomics , Vol. 13, No. 1, p. 341, July 2012.

22. Caboche, S., C. Audebert, Y. Lemoine and D. Hot, “Comparison of mapping

algorithms used in high-throughput sequencing: application to Ion Torrent data”,

BMC Genomics , Vol. 15, No. 1, p. 264, April 2014.

94

23. Alkan, C., P. Kavak, M. Somel, O. Gokcumen, S. Uğurlu, C. Saygı, E. Dal,

K. Buğra-Bilge, T. Güngör, S. C. Sahinalp, N. Özören and C. Bekpen, “Whole

genome sequencing of 16 Turkish genomes reveals functional private alleles and

impact of genetic interactions with Europe, Asia and Africa.”, BMC Genomics ,

Vol. 15, No. 963, November 2014.

24. DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl,

A. A. Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fen-

nell, A. M. Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler

and M. J. Daly, “A framework for variation discovery and genotyping using next-

generation DNA sequencing data.”, Nature genetics , Vol. 43, No. 5, pp. 491–498,

May 2011.

25. Li, H. and R. Durbin, “Fast and Accurate Short Read Alignment with Burrows-

Wheeler Transform”, Bioinformatics , Vol. 25, No. 14, pp. 1754–1760, Jul. 2009.

26. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, R. Durbin and . G. P. D. P. Group, “The Sequence Alignment/Map

format and SAMtools”, Bioinformatics , Vol. 25, No. 16, pp. 2078–2079, May

2009.

27. Quinlan, A. R. and I. M. Hall, “BEDTools: a flexible suite of utilities for com-

paring genomic features.”, Bioinformatics , Vol. 26, No. 6, pp. 841–842, March

2010.

28. Simon, A., “FastQC: A Quality Control tool for High Throughput Se-

quence Data”, http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/,

accessed at February 2017.

29. Alkan, C., J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci, F. Hormozdi-

ari, J. O. Kitzman, C. Baker, M. Malig, O. Mutlu, S. C. Sahinalp, R. A. Gibbs and

E. E. Eichler, “Personalized copy number and segmental duplication maps using

next-generation sequencing.”, Nature genetics , Vol. 41, No. 10, pp. 1061–1067,

95

October 2009.

30. Hormozdiari, F., C. Alkan, E. E. Eichler and S. C. Sahinalp, “Combinatorial algo-

rithms for structural variation detection in high-throughput sequenced genomes”,

Genome Research, Vol. 19, No. 7, pp. 1270–1278, May 2009.

31. Wang, K., M. Li and H. Hakonarson, “ANNOVAR: functional annotation of ge-

netic variants from high-throughput sequencing data”, Nucleic Acids Research,

Vol. 38, No. 16, p. e164, September 2010.

32. Kavak, P., B. Yüksel, S. Aksu, M. O. Kulekci, T. Güngör, F. Hach, S. C. Şahinalp,

T. H. G. Project, C. Alkan and M. S. Sağıroğlu, “Robustness of Massively Parallel

Sequencing Platforms”, PLOS ONE , Vol. 10, No. 9, pp. 1–11, September 2015.

33. “Robustness of Massively Parallel Sequencing Platforms Scripts directory”,

https://github.com/pinarkavak/robust, accessed at January 2017.

34. “Robustness of Massively Parallel Sequencing Platforms VCF files directory”,

https://github.com/pinarkavak/robust, accessed at January 2017.

35. “UCSC Genome Browser”, http://genome.ucsc.edu, accessed at January 2017.

36. Consortium, T. . G. P., “An integrated map of genetic variation from 1,092 human

genomes”, Nature, Vol. 491, pp. 56–65, November 2012.

37. Kung, J. T. Y., D. Colognori and J. T. Lee, “Long Noncoding RNAs: Past,

Present, and Future”, Genetics , Vol. 193, No. 3, pp. 651–669, March 2013.

38. Biesecker, L. G., J. C. Mullikin, F. M. Facio, C. Turner, P. F. Cherukuri, R. W.

Blakesley, G. G. Bouffard, P. S. Chines, P. Cruz, N. F. Hansen, J. K. Teer,

B. Maskeri, A. C. Young, N. I. S. C. C. S. P. , T. A. Manolio, A. F. Wilson,

T. Finkel, P. Hwang, A. Arai, A. T. Remaley, V. Sachdev, R. Shamburek, R. O.

Cannon and E. D. Green, “The ClinSeq Project: piloting large-scale genome

96

sequencing for research in genomic medicine.”, Genome Res , Vol. 19, No. 9, pp.

1665–1674, September 2009.

39. Firtina, C. and C. Alkan, “On genomic repeats and reproducibility.”, Bioinfor-

matics , March 2016.

40. Warren, R. L., G. G. Sutton, S. J. M. Jones and R. A. Holt, “Assembling millions

of short DNA sequences using SSAKE”, Bioinformatics , Vol. 23, No. 4, pp. 500–

501, 2007.

41. Dohm, J. C., C. Lottaz, T. Borodina and H. Himmelbauer, “SHARCGS, a fast and

highly accurate short-read assembly algorithm for de novo genomic sequencing”,

Genome Research, Vol. 17, No. 11, pp. 1697–1706, 2007.

42. Jeck, W. R., J. A. Reinhardt, D. A. Baltrus, M. T. Hickenbotham, V. Magrini,

E. R. Mardis, J. L. Dangl and C. D. Jones, “Extending assembly of short DNA

sequences to handle error”, Bioinformatics , Vol. 23, No. 21, pp. 2942–2944, 2007.

43. Margulies, M. e. a., “Genome sequencing in microfabricated high-density picolitre

reactors”, Nature, Vol. 437, No. 15, pp. 376–380, September 2005.

44. Simpson, J. and R. Durbin, “Efficient de novo assembly of large genomes using

compressed data structures”, Genome Research, Vol. 22, pp. 549–556, December

2012.

45. Donmez, N. and M. Brudno, “Hapsembler: An Assembler for Highly Polymorphic

Genomes”, Proceedings of the 15th Annual International Conference on Research

in Computational Molecular Biology , RECOMB’11, pp. 38–52, Springer-Verlag,

Berlin, Heidelberg, 2011.

46. Chaisson, M. J., B. Brinza, Dumitru and P. A. Pevzner, “De novo fragment

assembly with short mate-paired reads: Does the read length matter?”, Genome

Research, Vol. 19, No. 2, pp. 336–346, December 2008.

97

47. Simpson, J. T., K. Wong, J. S. D., J. E. Schein, S. J. Jones and I. Birol, “ABySS:

A parallel assembler for short read sequence data”, Genome Research, Vol. 19,

No. 6, pp. 1117–1123, February 2009.

48. Zerbino, D. R. and E. Birney, “Velvet: algorithms for de novo short read assembly

using de Bruijn graphs.”, Genome Res , Vol. 18, No. 5, pp. 821–829, May 2008.

49. Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov,

V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V.

Sirotkin, N. Vyahhi, G. Tesler, A. M. A. and P. A. Pevzner, “SPAdes: A New

Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing”,

Journal of Computational Biology , Vol. 19, No. 5, pp. 455–477, May 2012.

50. Butler, J., I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S.

Lander, C. Nusbaum and D. B. Jaffe, “ALLPATHS: De novo assembly of whole-

genome shotgun microreads”, Genome Research, Vol. 18, pp. 810–820, 2008.

51. Chikhi, R. and G. Rizk, “Space-Efficient and Exact de Bruijn Graph Representa-

tion Based on a Bloom Filter.”, WABI , Vol. 7534 of Lecture Notes in Computer

Science, pp. 236–248, Springer, 2012.

52. Karp, R. M., “Reducibility among combinatorial problems.”, Complexity of Com-

puter Computations , pp. 85–104, 1972.

53. Taylor, D. L., PHAST (PHAGE assembly suite and tutorial), A web-based genome

assembly teaching tool , computational biology, Davidson College, May 2012.

54. Simpson, J. T. and R. Durbin, “Efficient construction of an assembly string graph

using the FM-index”, Bioinformatics , Vol. 26, pp. 367–373, 2010.

55. Hernandez, D., P. François, L. Farinelli, M. Oster̊as and J. Schrenzel, “De novo

bacterial genome sequencing: Millions of very short reads assembled on a desktop

computer”, Genome Research, Vol. 18, pp. 802–809, March 2008.

98

56. Hossain, M. S., N. Azimi and S. Skiena, “Crystallizing short-read assemblies

around seeds”, BMC Bioinformatics , Vol. 10, No. 1, pp. 1–12, January 2009.

57. Compeau, P. E. and P. A. Pevzner, Genome Construction: A Puzzle with a Billion

Pieces , pp. 36–65, University of California, San Diego, 2011.

58. Compeau, P. E., P. A. Pevzner and G. Tesler, “How to apply de Bruijn graphs to

genome assembly”, Nature Biotechnology , Vol. 29, No. 11, pp. 987–991, November

2011.

59. Mulyukov, Z. and P. A. Pevzner, “Euler-Pcr: finishing experiments for repeat

resolution”, Pacific Symposium on Biocomputing , Vol. 19, No. 2, pp. 199–210,

2002.

60. Zerbino, D. R., Using the Velvet de novo assembler for short-read sequencing

technologies , Vol. 11, pp. 1–12, John Wiley & Sons, Inc, September 2010.

61. Gnerrea, S., I. MacCalluma, D. Przybylskia, F. J. Ribeiroa, J. N. Burtona, B. J.

Walkera, T. Sharpea, G. Halla, T. P. Sheaa, S. Sykesa, A. M. Berlina, D. Airda,

M. Costelloa, R. Dazaa, L. Williamsa, R. Nicola, A. Gnirkea, C. Nusbauma, E. S.

Lander and D. B. Jaffe, “High-quality draft assemblies of mammalian genomes

from massively parallel sequence data”, Proceedings of the National Academy of

Sciences of the United States of America, Vol. 108, pp. 1513–1518, January 2011.

62. MacCallum, I., S. Przybylski, Dariuszand Gnerre, J. Burton, I. Shlyakhter,

A. Gnirke, J. Malek, K. McKernan, S. Ranade, T. P. Shea, L. Williams, S. Young,

C. Nusbaum and D. B. Jaffe, “ALLPATHS 2: small genomes assembled accurately

and with high continuity from short paired reads”, Genome Biology , Vol. 10, pp.

1–10, October 2009.

63. Li, R., H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kris-

tiansen, S. Li, H. Yang, J. Wang and J. Wang, “De novo assembly of human

genomes with massively parallel short read sequencing”, Genome Research, pp.

99

1–8, December 2009.

64. Luo, R., B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu,

J. Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. W.

Cheung2, S.-M. Yiu, P. Shaoliang, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang,

J. Wang, T.-W. Lam and J. Wang, “SOAPdenovo2: an empirically improved

memory-efficient short-read de novo assembler”, Giga Science, Vol. 1, No. 18, pp.

1–6, 2012.

65. Iqbal, Z., M. Caccamo, I. Turner, P. Flicek and G. McVean, “De novo assembly

and genotyping of variants using colored de Bruijn graphs”, Nature Genetics ,

Vol. 44, No. 2, pp. 226–232, February 2012.

66. Koren, S., M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy,

Z. Wang, D. A. Rasko, W. R. McCombie, E. D. Jarvis and A. M. Phillippy, “Hy-

brid error correction and de novo assembly of single-molecule sequencing reads”,

Nature Biotechnology , Vol. 30, pp. 693–700, May 2012.

67. Boisvert, S., F. Laviolette and J. Corbeil, “Ray: Simultaneous Assembly of Reads

from a Mix of High-Throughput Sequencing Technologies”, Journal of Computa-

tional Biology , Vol. 17, No. 11, pp. 1519–1533, November 2010.

68. Chevreux, B., T. Pfisterer and B. Drescher, “Using the miraEST Assembler for

Reliable and Automated mRNA Transcript Assembly and SNP Detection in Se-

quenced ESTs”, Genome Research, Vol. 14, No. 6, pp. 1147–1159, June 2004.

69. Deshpande, V., E. D. K. Fung, S. Pham and V. Bafna, “Cerulean: A Hybrid

Assembly Using High Throughput Short and Long Reads”, WABI , Vol. 8126, pp.

349–363, Springer-Verlag, Heidelberg, Berlin, 2013.

70. Au, K. F., J. G. Underwood, L. Lee and W. H. Wong, “Improving PacBio Long

Read Accuracy by Short Read Alignment”, PLOS One, Vol. 7, No. 10, pp. 1–8,

October 2012.

100

71. Wang, Y., Y. Yu, B. Pan, P. Hao, Y. Li, Z. Shao, X. Xu and X. Li, “Optimizing

hybrid assembly of next-generation sequence data from Enterococcus faecium: a

microbe with highly divergent genome”, BMC Systems Biology , Vol. 6, No. S-3,

p. S21, 2012.

72. Chevreux, B., T. Wetter and S. Suhai, “Genome sequence assembly using

trace signals and additional sequence information”, Computer Science and Bi-

ology:Proceedings of the German Conference on Bioinformatics (GCB), Vol. 99,

pp. 45–56, 1999.

73. Ergüner, B., D. Üstek and M. Şamil Sağıroğlu, “Performance comparison of Next

Generation sequencing platforms”, 2015 37th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6453–6456,

August 2015.

74. Altschul, S., W. Gish, W. Miller, E. Myers and D. J. Lipman, “Basic local align-

ment search tool”, Journal of Molecular Biology , Vol. 215, No. 3, pp. 403–410,

October 1990.

75. Zhang, Z., S. Schwartz, L. Wagner and W. Miller, “A greedy algorithm for aligning

DNA sequences”, Journal of Computational Biology , Vol. 12, No. 7, pp. 203–214,

2000.

76. Sharp, A. J., Z. Cheng and E. E. Eichler, “Structural variation of the human

genome”, Annu Rev Genomics Hum Genet , Vol. 7, pp. 407–442, 2006.

77. Mills, R. E. e. a., “Mapping copy number variation by population-scale genome

sequencing.”, Nature, Vol. 470, No. 7332, pp. 59–65, February 2011.

78. The 1000 Genomes Project Consortium, “A global reference for human genetic

variation.”, Nature, Vol. 526, No. 7571, pp. 68–74, September 2015.

79. Medvedev, P., M. Stanciu and M. Brudno, “Computational methods for discover-

101

ing structural variation with next-generation sequencing.”, Nat Methods , Vol. 6,

No. 11 Suppl, pp. S13–S20, November 2009.

80. Church, D. M., V. A. Schneider, K. M. Steinberg, M. C. Schatz, A. R. Quin-

lan, C.-S. Chin, P. A. Kitts, B. Aken, G. T. Marth, M. M. Hoffman, J. Herrero,

M. L. Z. Mendoza, R. Durbin and P. Flicek, “Extending reference assembly mod-

els.”, Genome Biol , Vol. 16, p. 13, 2015.

81. Marschall, T. e. a., “Computational Pan-Genomics: Status, Promises and Chal-

lenges”, bioRxiv , 2016.

82. Hajirasouliha, I., F. Hormozdiari, C. Alkan, J. M. Kidd, I. Birol, E. E. Eichler

and S. C. Sahinalp, “Detection and characterization of novel sequence insertions

using paired-end next-generation sequencing.”, Bioinformatics , Vol. 26, No. 10,

pp. 1277–1283, May 2010.

83. Ye, K., M. H. Schulz, Q. Long, R. Apweiler and Z. Ning, “A pattern growth

approach to detect break points of large deletions and medium sized insertions

from paired-end short reads”, Bioinformatics , Vol. 25, No. 21, pp. 2865–2871,

November 2009.

84. Iqbal, Z., M. Caccamo, I. Turner, P. Flicek and G. McVean, “De novo assembly

and genotyping of variants using colored de Bruijn graphs”, Nature genetics ,

Vol. 44, No. 2, pp. 226–232, 2012.

85. Xia, L. C., S. Sakshuwong, E. S. Hopmans, J. M. Bell, S. M. Grimes, D. O.

Siegmund, H. P. Ji and N. R. Zhang, “A genome-wide approach for detecting novel

insertion-deletion variants of mid-range size”, Nucleic Acids Research, Vol. 44,

No. 15, p. e126, June 2016.

86. Kidd, J. M., T. Graves, T. L. Newman, R. Fulton, H. S. Hayden, M. Malig,

J. Kallicki, R. Kaul, R. K. Wilson and E. E. Eichler, “A human genome structural

variation sequencing resource reveals insights into mutational mechanisms.”, Cell ,

102

Vol. 143, No. 5, pp. 837–847, November 2010.

87. Hach, F., F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eichler and

S. C. Sahinalp, “mrsFAST: a cache-oblivious algorithm for short-read mapping.”,

Nat Methods , Vol. 7, No. 8, pp. 576–577, August 2010.

88. Hach, F., I. Sarrafi, F. Hormozdiari, C. Alkan, E. E. Eichler and S. C. Sahi-

nalp, “mrsFAST-Ultra: a compact, SNP-aware mapper for high performance se-

quencing applications.”, Nucleic Acids Res , Vol. 42, No. Web Server issue, pp.

W494–W500, July 2014.

89. Bailey, J. A., A. M. Yavor, H. F. Massa, B. J. Trask and E. E. Eichler, “Segmental

duplications: organization and impact within the current human genome project

assembly.”, Genome Res , Vol. 11, No. 6, pp. 1005–1017, June 2001.

90. Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman, “Basic local

alignment search tool.”, J Mol Biol , Vol. 215, No. 3, pp. 403–410, October 1990.

91. Karakoc, E., C. Alkan, B. J. O’Roak, M. Y. Dennis, L. Vives, K. Mark, M. J.

Rieder, D. A. Nickerson and E. E. Eichler, “Detection of structural variants and

indels within exome data.”, Nat Methods , Vol. 9, No. 2, pp. 176–178, 2012.

92. Kahn, A. B., “Topological Sorting of Large Networks”, Commun. ACM , Vol. 5,

No. 11, pp. 558–562, November 1962.

93. Smith, T. F. and M. S. Waterman, “Identification of common molecular subse-

quences.”, J Mol Biol , Vol. 147, No. 1, pp. 195–197, March 1981.

94. Johnson, D. S., “Approximation Algorithms for Combinatorial Problems”, J.

Comput. Syst. Sci., Vol. 9, No. 3, pp. 256–278, December 1974.

95. Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo,

R. Handsaker, G. Lunter, G. Marth, S. T. Sherry, G. McVean, R. Durbin and

103

T. G. P. A. Group, “The Variant Call Format and VCFtools.”, Bioinformatics ,

June 2011.

96. “Pamir source code directory”, https://bitbucket.org/compbio/pamir, ac-

cessed at January 2017.

97. Huang, W., L. Li, J. R. Myers and G. T. Marth, “ART: a next-generation se-

quencing read simulator.”, Bioinformatics , Vol. 28, No. 4, pp. 593–594, February

2012.

98. Huddleston, J., M. J. Chaisson, K. M. Steinberg, W. Warren, K. Hoekzema,

D. S. Gordon, T. A. Graves-Lindsay, K. M. Munson, Z. N. Kronenberg, L. Vives,

P. Peluso, M. Boitano, C.-S. Chin, J. Korlach, R. K. Wilson and E. E. Eichler,

“Discovery and genotyping of structural variation from long-read haploid genome

sequence data”, Genome Research, , No. Accepted, November 2016.

99. Steinberg, K. M., V. A. Schneider, T. A. Graves-Lindsay, R. S. Fulton, R. Agar-

wala, J. Huddleston, S. A. Shiryev, A. Morgulis, U. Surti, W. C. Warren, D. M.

Church, E. E. Eichler and R. K. Wilson, “Single haplotype assembly of the human

genome from a hydatidiform mole.”, Genome Res , Vol. 24, No. 12, pp. 2066–2076,

December 2014.

100. Kidd, J. M. e. a., “Mapping and sequencing of structural variation from eight

human genomes.”, Nature, Vol. 453, No. 7191, pp. 56–64, May 2008.

101. Zook, J. M. e. a., “Extensive sequencing of seven human genomes to characterize

benchmark reference materials”, Scientific Data, Vol. 160025, No. 3, p. online,

June 2016.

102. Sherry ST, K. M. B. J. P. L. S. E. S. K., Ward MH, “dbSNP: the NCBI database

of genetic variation”, Nucleic Acids Res , Vol. 29, No. 1, pp. 308–11, 2001.

